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Abstract of the Thesis

Clock and Data Recovery Loops: A Frequency Domain

Approach

by

Mohammadhasan Fayazi

Master of Science in Electrical Engineering

University of California, Los Angeles, 2016

Professor Asad A. Abidi, Chair

While being frequency compact and easy to implement, Non-Return to Zero (NRZ) encoded

data does not contain any energy at its clock frequency which makes the clock extraction

impossible using any kind of Linear Time Invariant (LTI) operations. Therefore, Clock Data

Recovery circuits (CDRs) have an inherent non linear recovery process. In this work we

present a frequency domain analysis of the mechanisms leading to the energy generation at

clock frequency for NRZ clock data recovery systems. We also propose a frequency domain

analysis which is applicable to both Bang-Bang and linear loops. We show the theory results

match the measurements very well.
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CHAPTER 1

Introduction

1.1 Motivations

The advantages of Digital Communication over its Analog counterpart have been stated

in [1] and [2]. This type of communication is employed in both wireline and wireless systems.

While the latter needs a carrier frequency, the former does not and is referred to as “Serial

Communication” since digital bits are transmitted one by one. In order to decode the

transmitted message a synchronous clock with the incoming data is required [3]. Figure

1.1 shows this necessity. As we can see, although data waveform is identical in both cases,

received messages in Figure 1.1 (a) and (b) are 101100 and 110011110000, respectively.

(a) Received message is 101100 (b) Received message is 110011110000

Figure 1.1: Data sampled by different clocks

There are various standards for data encoding in serial communication among which
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Pulse Amplitude Modulation (PAM) and especially 2-PAM, also known as Non Return to

Zero (NRZ), and 4-PAM have become very popular, because of their bandwidth efficiency

which proves to be desirable when dealing with bandlimited channels [4–6]. Interestingly

these encoding schemes do not have any energy at the clock frequency (see section 3.1).

Therefore, clock cannot be extracted with any Linear Time Invariant (LTI) operation [7].

In this work we present a mathematical model for the processes used to recover clock

from random NRZ data. These methods have been designed based on common sense but

according to our knowledge a rigorous analysis of them is lacked.

In addition these loops are mostly designed by reliance on time domain simulations, which

is extremely time consuming. There have been efforts for a frequency domain analysis for

Phase Locked Loops or CDRs [8–13]. These analyses mostly do not include the effect of

random sampling of phase errors in a CDR or the noise introduced by it [8–12] and hence

are not accurate. [13] discusses the random data transition and the noise associated with it,

but this discussion is limited to non-linear phase detectors. In addition, it relies on graphical

solution for the phase detector gain calculation and does not offer a closed form solution. It

has also neglected the deterministic jitter effect on the phase detector gain.

In this work we present a frequency domain analysis that is capable of producing very

accurate results with minimal computational cost, and also provide closed form expressions

for gain calculation in non-linear loops. This analysis allows loop design without recourse to

time domain simulations.

1.2 Organization

This work is organized as follow: In chapter 2 we briefly overview the fundamental blocks

and concepts in a wireline link.

In chapter 3 the frequency content of different modulation schemes is investigated and the

generation of a tone at desired clock frequency by derivation and rectification is discussed.
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Chapter 4 introduces a linearization method for Bang Bang Phase Detectors. It also includes

an overview on s-domain analysis of clock and data recovery and phased locked loops. We

will explain how the concept of noise bandwidth is applicable to such systems and present

formulas for an easy calculation of mean squared phase noise at the output.

Analysis introduced in chapter 4 is verified against silicon measurement in chapter 5. We

analytically calculate power spectral density of the output phase noise and its mean squared

value and show it closely matches the silicon measurement.
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CHAPTER 2

An Overview on Wireline Communication

2.1 A Wireline Link

Figure 2.1 shows a general illustration of the key parts in a wireline link. we will briefly

introduce each of these parts in this section.

Figure 2.1: A Wireline Link

Digital data needs to be modulated before being sent and this operation is done by

the Encoding block. There are numerous encoding methods [5, 14, 15], the most frequently

used of which are 4-PAM, 2-PAM, and Return to Zero (RZ) (Figure 2.2). A proper choice

of encoding scheme heavily depends on the application, as each of them have their own

4



advantages and disadvantages [16].

5

T

(a) RZ waveform

T

(b) NRZ waveform

2T

(c) 4-PAM waveform

Figure 2.2: Various encoding schemes

As shown in Figure 2.2, in order to obtain the same symbol rate, the symbol period

in a 4-PAM system can to be twice that for 2-PAM and RZ systems. Thus, the required

bandwidth is two times less for 4-PAM. However, having the same voltage headroom, 4-PAM

is more susceptible to voltage noise as there are more possible voltage levels.

Channel is the media through which signal propagates. It can be either optical fiber or

electrical wire. A channel can be crudely modeled by a low pass filter. Figure 2.3 shows an
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example channel (a backplane with 5mm via stub) frequency response, which is borrowed

from [17].

5GHz 10GHz 15GHz

-60dB

-30dB

0dB

0GHz

5mm via stub back plane channel frequency response from [17]

Figure 2.3: An example channel frequency response

As Figure 2.3 shows, channels have finite bandwidths, which, in time domain, translates

into finite speeds . As a result, in high speed applications pulse tails have not died out by

the time the next pulse arrives. This situation is shown in Figure 2.4.

I II III VI V VI

0

+1

1

Dashed lines show the trace if it was not disturbed by other pulses.

Figure 2.4: ISI generation mechanism

This phenamenon, which is called Inter Symbol Interference (ISI), causes the channel

response at each time to be determined by the transmitted bit at that time as well as effects

6



from the other (mostly previous but in some cases even future) transmitted bits. In Figure

2.4, the second and fifth intervals were expected to be the same (because both are a “1”

to “0” transition), but it could be readily seen that they are not and the zero crossing has

changed a result of different effects from the previous bits.

Severe ISI can result in link failure. In order to mitigate this problem, equalizers are em-

ployed in transmitter and (or) receiver to compensate for the channel frequency behavior by

implementing the inverse of its transfer function. They are mostly implemented adaptively,

as the channel response is not precisely known beforehand. There are various options for

these blocks, two of which can be found in [4, 18].

DAC is required because digitally encoded data needs to be converted into analog voltage

so as to be transmittable over the channel. In some applications the clock might also be sent

along with the data over a separate path to ease the timing recovery process.

Figure 2.5: ISI experienced data and non-optimum clock
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The Clock and Data Recovery (CDR) block is responsible for generation of the clock

which samples the received waveform (to associate a logic level to it) and drives the digital

blocks in the receiver. Therefore, it needs to be synchronized with the incoming data. The

received data has experienced ISI and, therefore, analog voltages associated with different

logical levels have become close to each other and transitions smooth out (Figure 2.5). So as

to determine the transmitted bit correctly we need to sample the analog received voltage with

a proper clock. The optimum sampling point is exactly in the middle of each transmitted

bit, where the voltage waveform is locally flat, so if the sampling position changes slightly

the sampled voltage does not change severely. This optimum sampling implies, other than

the right frequency, the recovered clock needs to have correct phase. It is notable that even

if the clock is sent the phase needs to be adjusted. The reason is that albeit the received

clock has the correct frequency, it might have a shifted phase with respect to the data as

they have traversed different paths [19].

2.2 Wireline Communcation Terminology

In this section we introduce definitions and concepts used in wireline communication. These

definitions are mostly taken from [20].

Unit Interval (UI): It is defined as the time associated to a single transmitted bit. All

time references are measured and reported with respect to UI. In figure 2.2 (a) and (b) T is

one UI and in Figure 2.2 (c) one UI is 2T .

Jitter: Jitter is the time domain effect of phase noise. As it is discussed in [21] jitter could

be viewed as phase noise sampled at zero crossings. It is quantified with different definitions,

such as “Timing Jitter”, “Period Jitter”, and “Accumulated Jitter”. Shimanouchi in [22]

has clearly identified these terms. Later in this work we refer to the timing jitter simply as

“jitter”.

Jitter sources can be divided into several categories. Random noise sources in the system

such as thermal or flicker noise cause Random Jitter. On the other hand Deterministic Jitter

8



and Periodic Jitter are generated by non random sources. Periodic jitter is a result of any

kind of coupling to periodic sources in the system such as clock feedthrough. Unlike periodic

jitter, deterministic jitter is not necessarily periodic. A bandlimited channel creating ISI

causes deterministic jitter, because depending on the previously transmitted random data,

zero crossings might change [23]. This phenomena is observable in Figure 2.4. The zero

crossings have changed in different intervals because of ISI.

Bit Error Rate: Bit Error Rate (BER) is a gauge of the receiver’s decision accuracy.

As we sample a random data due to noise and Jitter we might err in associating the correct

bit to the sampled analog voltage. Acceptable BER is very small and varies from application

to application. For instance, it is 10−12 for SONET standard.

A useful tool for characterizing a channel is the Eye Diagram. If we overlay several UIs we

will get a plot similar to Figure 2.6. If data is chosen truly randomly and the number of

overlaid UIs is large, its covering approaches all possible scenarios in the channel. Eye Closure

and Eye Opening are closely related to ISI severity and dictate the receiver sensitivity. Eye

Opening can be tens of millivolts for high speed I/O links. Figure 2.6 shows an example

of eye diagram measurement for a 60GB/s NRZ data from [24]. As we can see the the eye

opening is 100mV.

It is possible to plot BER versus timing error and voltage error simultaneously. We discussed

how deviation of sampling time from the center of eye diagram can lead to error. This plot,

an example of which is shown in Figure 2.7, depicts how BER changes (for fixed timing

offsets) with an offset in the threshold voltage. It can be seen that even if samples are taken

at the eye center, offset in the threshold voltage will lead to error. This graph gives the time

and voltage margins for a desired BER.

9



The eye diagram measurement for 60GB/s NRZ data [24]

Figure 2.6: An example of eye diagram
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Figure 2.7: An example of BER vs time and voltage offsets
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CHAPTER 3

Clock Data Recovery from NRZ Data

3.1 Power Spectral Density of a Random Bitstream

We pointed out, without proof, that NRZ data does not contain any energy either at clock

frequency or any of its harmonics. In this section we derive the Power Spectral Density

(PSD) of different data encoding schemes.

A bitstream could be represented mathematically as follows:

x(t) =
∞∑

k=−∞

akp(t− kT ) (3.1)

where p(t) is the modulating pulse and T =
1

fclk
is 1 UI, as was defined in Chapter 2. The

sequence ak is data and is a Wide Sense Stationary (WSS) random process. For NRZ data

p(t) ideally spans 1 UI, while for RZ modulation it is shorter than 1 UI, which means the

transmitted waveform goes back to zero after each bit. According to [2] the PSD of x(t) is

Sx(f) =
1

T
|P (f)|2

∞∑
n=−∞

Ra(n)e−j2πnfT (3.2)

In this expression P (f) is the Fourier Transform of the modulating pulse, p(t), and Ra(n) is

defined as the auto-correlation between ak and ak+n.

Ra(n) = E(akak+n) (3.3)

We note that the existence of Ra(n) is guaranteed by the WSS assumption on ak. For

the case where ak’s are Independent Identically Distributed (i.i.d.) with average of ma and

standard deviation of σa, another more insightful formulation of (3.2) can be derived which

11



is also presented in the same reference.

Sx(f) =
1

T
|P (f)|2(σ2

a +
∞∑

n=−∞

m2
ae
−j2πnfT )

=
σ2
a

T
|P (f)|2 +

m2
a

T
|P (f)|2(

∞∑
n=−∞

e−j2πnfT )

(3.4)

If we use the fact that
∑∞

n=−∞m
2
ae
−j2πnfT =

∑∞
n=−∞ δ(f −

n

T
) we can further simplify (3.4)

Sx(f) = σ2
afclk|P (f)|2 + (m2

afclk)
∞∑

n=−∞

|P (nfclk)|2δ(f − nfclk) (3.5)

Figure 3.1: Modulating Pulse

It is noteworthy that in (3.5) there is the po-

tential for impulses to appear at clock fre-

quency and its harmonics. 3.5 also tells us that

these impulses will be evident if |P (nfclk)| is

non-zero for n = 1, 2, ... and data bits have a

non-zero average (i.e. ma 6= 0). For almost

all practical cases p(t) is a square pulse with

duration Tp, which is set by the modulation as

shown in Figure 3.1. The Fourier Transform of

p(t), P (f), in this case would be a Sinc func-

tion with its nulls at multiple integers of 1
Tp

.

In RZ data, the pulse duration is less than a bit period and, hence, the first null will be

at a higher frequency than the clock frequency. This means P (
1

T
) = P (fclk) 6= 0 and the

random data PSD contains impulses at clock harmonics. Figure 3.2 shows the spectrum of

a RZ waveform (For RZ modulation, conventionally, ak = +1 or 0⇒ ma 6= 0).

On the contrary, because Tp = T for NRZ data, P (f) has nulls exactly at clock harmonics

which suppresses the impulses. NRZ data PSD is shown in Figure 3.3.

The only difference between 2-PAM and 4-PAM is that ak takes only two different values

in a 2-PAM system, while it can take four values in a 4-PAM system. However, 4-PAM still

has a zero average but its variance might be different from that of 2-PAM. This tells us that

12



fclk 2fp3fclkfp 2fp  3fclk   fp  fclk

Spectrum of a RZ waveform with T =
Tp
2

. Clock even harmonics are suppressed.

Figure 3.2: RZ data PSD

their PSD will be similar, only with different σa, and without any energy at clock frequency.

3.2 Clock Data Recovery Architectures

In general, a selective bandpass filter can extract a specific frequency. This is similar to our

clock recovery problem. If the incoming data has non-zero energy at clock frequency, we need

a high Q filter or a Phase Locked Loop (PLL) to extract that component [25]. However, a

PLL does not lock if random data is given to it as the input, and an LTI filter tuned to the

clock frequency does not pick up any energy at fclk if an NRZ data is fed to it. This suggests

some non-linear action to generate energy at clock frequency. We have demonstrated before

that a random bitstream will contain a tone at clock frequency if the modulating pulse has

non-zero frequency content at fclk and the bits have non-zero mean. None of these conditions

13



Figure 3.3: NRZ data PSD

are met for NRZ data. Taking derivative from x(t) will give us

x′(t) =
k=∞∑
k=−∞

(ak − ak−1)δ(t− kT ) (3.6)

As we can see the modulating pulse has become an impulse, which has a white spectrum and,

therefore, meets the first condition. Still, obtained by a linear operation x′ does not have any

spectral line at fclk due to its zero mean (ak − ak−1 is zero or takes +2 and − 2 with equal

probability1). However, if we pass xder through a rectifier it will create a non-zero average

for the bits and, thus, a spectral component at clock frequency. This operation could be

done in analog or digital domain [26] and the result fed to a PLL or a high Q filter. Figure

3.5 shows these two methods. Besides rectified derivative [27], squaring has also been used

as a non-linearity for clock generation [7].

Usually a PLL is preferred over a conventional filter since it does not rely an advance

knowledge of the clock frequency, and does not need high quality passive2.

Another approach for clock recovery systems is to drive the phase of the recovered clock

1ak takes +1 and − 1 with equal probability for NRZ data
2A sharp filter bandpass filter would need high Q passive elements

14



(a) The incoming data. Zero average and

P (fclk) = 0

(b) The incoming data derivative. Zero average

but P (fclk) 6= 0

(c) The incoming data rectified derivative. non-

zero average and P (fclk) 6= 0

Figure 3.4: Generation of a tone at clock frequency by derivation and rectification

to the optimum sampling point. In such systems the derivatives of the voltage at sampling

points operate as the error signal for a feedback loop, and the loop behavior diminishes this

error. In that situation the sampling edges strobe the waveform exactly at the optimum

point which is its maxima or minima [28].

3.3 Phase Detection for Random Data

The reason a PLL fails to lock to NRZ data is that conventional Phase Detectors (PDs),

an example of which is shown in 3.6 (a), do not operate correctly for random data. Figure

3.7 illustrates an example where two late random data waveforms. If the shown clock and
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Data d
dt

L C

(a) By passive filtering. L and C must be chosen

so ωclk =
1√
LC

(b) Using a PLL as filter

Figure 3.5: Clock recovery from data rectified derivative by filtering

data waveforms are connected to a conventional PD the output will be different, while it was

expected to be the same. The problem arises because the phase detector tries to infer timing

information from input levels, which could have been done if data was deterministic (where

levels and timing frames are tied together). Still, as far as random data in concerned, such

connection does not exist.

If we just swap the role of clock and data (Figure 3.6(b)) the problem will be solved. As we

can see, in both example waveforms a zero level on clock is sampled, which corresponds to

a late decision. The reason is that this circuit concludes phase information from transition

edges of data, which are starting points of timing frames, and the clock, a deterministic

signal, levels.

Another way to look at these two circuits is by focusing on a D Flip-Flop (DFF) function.
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We know DFFs sample their input at clock rising or (and) falling edges. Therefore, the

output of the circuit (a) in Figure 3.6 is Data× r( d
dt
Clk), where:

r(x) =


x x > 0

0 o.w

(3.7)

whereas in circuit (b) the output will be Clk×r( d
dt
Data). We can clearly see the first circuit

only performs a linear operation on the incoming data, but the second half wave rectifies
d

dt
Data, which will create a tone at the clock frequency.

Data
D Q

ClkClk

out

(a) A conventional PD

Clk
D Q

ClkData

out

(b) A random data PD

Figure 3.6: A conventional PD and a PD for random data

Clk

Data1

Data2

Figure 3.7: An example of two late

random data waveforms

When the incoming data is sampled by the

clock, any misalignment between the sampling

edge and the center of eye diagram will de-

grade BER. This misalignment occurs because

of the phase error between the data and clock.

Thus, minimizing the phase error is of a great

consequence. It is known that the static phase

error can be eliminated using a Type-II loop.

However, if this clock is used outside the loop

to sample data, then due to parasitic delays

we cannot guarantee zero static phase error.

Therefore, it is desirable to include the data
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sampling inside the loop at the phase detector, so the phase error is forced to be zero by

feedback characteristics.

Two widely used phase detectors for CDRs are the one by Hogge [29] and the one by

Alexander [30]. As will be discussed, the phase comparison is performed in both of these

phase detectors at transitions in incoming data. Both combine rectification, differentiation,

and phase detection, which makes them suitable for random data applications. They also

sample the input as a part of their operation, which yields the optimum data estimate,

without additional parasitic delay.

3.3.1 Hogge Phase Detector

Since this type of phase detector provides an output linearly related to the phase difference,

it is very common in CDR loops where output jitter is the main concern. Figure 3.8 shows

the implementation of this phase detector as described by Hogge in [29]. When data changes

first XOR will produce “1” till clock rising edge comes and the first D Flip Flop makes its

output equal to the new data. This pulse width provides a measure of the phase difference

between the input data and clock. When the output of first DFF changes second XOR

produces “1” till falling clock edge arrives. It is notable that duration of the pulse at the

output of second XOR is exactly equal to the time clock is high, which is half clock period

for most cases. The difference of the output of two XOR gates (X − Y ) is fed as the phase

error signal to a loop. We can easily understand the duty cycle of this waveform varies with

the phase difference, and think of it as a Pulse Width Modulated (PWM) signal. Given

that the loop has enough gain at DC, error will diminish to zero which means the difference

between clock rising edge and data transition becomes equal to half of the clock period. This

indicates the rising edge happens exactly at the middle of eye diagram and minimizes BER.
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Figure 3.8: Hogge phase detector

3.3.2 Alexander Phase Detector

This phase detector provides a quantized output, based solely on whether the clock is late

or early at each data transition. It samples data with twice the clock frequency (using both

rising and falling edges) and compares the samples at the falling edge samples with samples

at the previous and next rising edge (Figure 3.9). We name falling edge samples Ei and

rising edge samples Di, because in lock, as shown in Figure 3.10, falling edges coincide with

data edges and rising edges with the center of eye diagram (Figure 3.10). If Ei is only equal

to Di, it implies the clock is early (D1, E1, and D2 in Figure 3.9). If Ei is the same as

Di+1 but different from Di, the clock is late (D2, E2, and D3 in Figure 3.9). The case where

Di = Ei = Di+1 means there was no transition in data, so no output is produced (D3, E3,

and D4 in Figure 3.9).

The circuit of Figure 3.11 implements the operations discussed above. As was mentioned,

we need to sample data using both positive and negative edges, and at each decision instant,

in addition to the sample at that time, we need two previous samples. Decisions are made at

rising edges which means we need the previous rising edge sample. Q3 is the previous rising

edge sample and Q4 retimes the falling edge sample so the outputs X and Y change only at

positive clock edges. (X − Y ) provides the error information.
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E

Data3

Early

No Transition

Late

D1 E1

D2 E2 D3

E3 D4

+1

1

Figure 3.9: Early-Late decision based on sampling

D1

E1
D2

E2

D3 E3

+1

1

0

Figure 3.10: Early-Late decision in lock

3.4 NRZ Data Phase Detector (PD) Output Spectrum

In this section we want to investigate the output PSD of a phase detector connected to NRZ

data. For the case of deterministic data we know the phase difference, ∆φ, between input

and output always appears at the PD’s output. Whereas, in CDRs the phase difference will

appear at the PD output if a transition in data happens, otherwise PD’s output is 0. We can

model this as a random sampling of the phase difference or, in other words, multiplication

of phase difference by a random impulse train w[i] (Figure 3.12).
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X

Y

Clk

Data D Q1

Clk

D Q3

Clk

D Q2

Clk

D Q4

Clk

Figure 3.11: Alexander Phase Detector

wi=

PDout
Data

Clk
f(Δϕ)

|Di+1-Di|
2

Figure 3.12: Random Sampling of Phase Error

Di−1 Di Transition

−1 −1 ×

−1 +1

+1 −1

+1 +1 ×

Table 3.1: Possible pairs of bits

If we assume Di, the data, takes values of

+1 and −1, w[i] =

∣∣∣∣Di+1 −Di
2

∣∣∣∣.
With this definition w[i] = 1 when Di 6= Di+1

and 0 otherwise. The function f(∆φ) in Fig-

ure 3.12 depends on the phase detector archi-

tecture. This function for a Bang-Bang PD is

sgn(∆φ) and for a linear PD f(∆φ) =
1

2π
∆φ.

Consider PDout[i] = w[i]f(∆φ[i]), as in Figure 3.12. (3.8)
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If Di is i.i.d. +1 and −1 with equal probability, the probability of w[i] = 1 which means

the probability of a data change from Di to Di+1 by enumeration of all possible pairs of bits

that correspond to data transition in Table 3.1 is:

p(w[i] = 1) =
1

2︸︷︷︸
Di = +1

× 1

2︸︷︷︸
Di+1 = −1

+
1

2︸︷︷︸
Di = −1

× 1

2︸︷︷︸
Di+1 = +1

=
1

2
(3.9)

The auto-correlation function of PDout is needed for calculating its PSD. We are assuming

PDout is WSS.

RPDout [n] = E(PDout[k]× PDout[k + n])

= E

(
(w[k]f(∆φ[k]))× (w[k + n]f(∆φ[k + n]))

)
= E(w[k]w[k + n]f(∆φ[k])f(∆φ[k + n]))

(3.10)

Because w[i] is a random process, we need to look at power spectral densities. Although

w[i] and ∆φ[k] might be correlated due to ISI, we prove in Appendix A that this correlation

does not change the results and we can treat them as if they were uncorrelated. Therefore:

RPDout [n] = E(w[k]w[k + n])× E(f(∆φ[k])f(∆φ[k + n]))

= Rf(∆φ)[n]×Rw[n]
(3.11)

Because multiplication in time domain translates into convolution in frequency domain

SPDout(e
jω) = Sf(∆φ)(e

jω) ∗ Sw(ejω) (3.12)

In order to find Sw(ejω) we need the auto-correlation of w[i].

Rw[n] = E(w[k]w[k − n]) (3.13)

If n = 0, Rw[n = 0] = E(w[k]w[k]) which is the same as E(w[k]), because w[i] takes only

+1 and 0. If |n| > 1, w[k] and w[k − n] are i.i.d., which means:

Rw[n] = E(w[k]w[k − n]) = E(w[k])E(w[k − n]) = E(w[k])2 =
1

4
(3.14)
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For n = ±1, w[k] and w[k−n] are correlated, because w[k] depends on two consecutive bits.

In that case:

Rw[n] = E(w[k]w[k − n]) = E(1× w[k − n])

∣∣∣∣
w[k]=1

+ E(0× w[k − n])

∣∣∣∣
w[k]=0

=
1

4
(3.15)

Therefore,

Rw[n] =
1

4
+

1

4
δ[n] (3.16)

This auto-correlation function is shown in Figure 3.13.

1
2

1
4

0 1 2 3 44 3 2 1

Rw[n]

[n]

Figure 3.13: auto-correlation of w[i]

The PSD is the Fourier Transform of auto-correlation function.

Rw[n]↔ Sw(ejω) (3.17)

⇒ Sw(ejω) =

[
(2π)

k=∞∑
k=−∞

1

4
δ(ω + 2πk)

]
+

1

4
(3.18)

Figure 3.14: PSD of w[i]
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The white noise level of
1

4
is because of the random transitions of data and, consequently,

sampling impulses at random integer multiplies of the clock, w[i]. According to (3.12), in

order to find SPDout we need to convolve Sf(∆φ)(e
jω) and Sw(ejω) to find PSD of PDout.

SPDout(e
jω) =

1

2π

∫
2π

(
k=∞∑
k=−∞

2π

4
δ(λ+ 2πk) +

1

4
)Sf(∆φ)(e

j(ω−λ))dλ

=
1

4
Sf(∆φ)(e

jω) +
1

2π

∫
2π

1

4
Sf(∆φ)(e

jλ)dλ

(3.19)

As Figure 3.15 shows, the original spectrum is scaled by
1

4
, which can be viewed as a

PD gain of

√
1

4
=

1

2
. In addition there is a white noise, which is the second term in (3.19),

and its energy is one fourth of the mean squared value of f(∆φ). This is the noise level in

Sw(ejω), due to data random transitions. Therefore, we name it Random Transition Noise

(RTN). This process can be modeled by the block diagram of Figure 3.16.

In [31] Duttweiler investigates the effect of random transitions on the output jitter, assuming

large static phase errors. This assumption no longer holds in modern systems that employ

Type-II loops. Roza has also studied the effect of random transitions on the output jitter [32].

Interestingly, the noise he calculates due to random transitions is similar to what we have

found of a CDR, but he ignores the VCO noise. Moreover, his time domain approach does

not provide much intuition, and makes it difficult to calculate the effect of the other noise

sources, especially in a non-linear loop.

3.4.1 Alexander Phase Detector

This PD samples sgn(∆φ), nd holds the constant at its output for 1 UI (T =
1

fclk
). This

process is a conversion of discrete time samples into their continuous time counterparts

and passing them through a Zero-Order Hold, as is shown in Figure 3.17. If we view this

operation in frequency domain, it is a multiplication by H(f) =
sin(π f

fs
)

π
f

fs

e
−jπ

f

fs .

For the case of the Alexander PD f(∆φ) = sgn(∆φ) = ±1. Let m denote the probability
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0 2π 4π ω2π4π

Sf(Δϕ)(e
jω)

4

0 2π 4π

4
2π

1

Sw(ejω)

ω2π4π

*

Sw(ejω)*Sf(Δϕ)(e
jω)

A

 σ2

0 2π 4π ω2π4π

4

4
A

RTN

 σ2

Figure 3.15: Convolving Sw and Sf(∆φ)

that sgn(∆φ) = 1. We want to find the output spectrum. Thus, we need to know the PSD

of sgn(∆φ). We start with its auto-correlation function.

Rsgn(∆φ)[n] = E
(
sgn(∆φ)n+ksgn(∆φ)k

)
(3.20)

Rsgn(∆φ)[n = 0] = (+1)2m+ (−1)2(1−m) = 1 (3.21)

As was mentioned earlier ISI shifts zero crossings from their ideal positions. Therefore,

previous bits will affect the present phase error, which might correlate different ∆φ[i]s.

The Probability Density Function (PDF) of ISI in many applications is modeled by Dual-

Dirac function [33–35], although higher number of impulses is possible. In the analysis

presented here we focus on Dual-Dirac distribution, but this analysis can be extended for

other cases as well.
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PDout

qRTN

f(Δϕ)

Figure 3.16: Random sampling linear model

fclk
1

outCT

PDout,CT

t

Figure 3.17: Continuous Time output of Alexander PD. Solid: Continuous Time impulses.

Dashed: Output of a Zero-Order Hold

The Dual-Dirac distribution suggests that there are two possible situations that determine

ISI. Analui in [23] states that for most practical cases one3 of the previous bits has the most

significant effect on this deviation of zero crossing from its ideal position at each transition.

This most significant bit is normally the bit before the transition. It means that, for example,

depending on whether we have “101” or “001” two possible values for zero crossing will be

observed, and the effect of other bits may be neglected.

According to this argument and the independence of the bits for that determine the ISI

at every comparison, we claim that ISI does not create correlation between phase errors4.

In addition, the loop inside which the phase detector is employed is very narrowband and

inevitably slow: 100∼1000 times slower than the incoming data. This implies that a single

phase error will have a minor effect5 on the future loop output samples and consequently

3This number is bigger than one for more than two impulses
4Phase errors are slightly correlated when multiple impulses are present in the ISI PDF
5Less than 1%
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on subsequent phase errors. As a result, we neglect the correlation between different phase

error samples. Thus,

Rsgn(∆φ)[n 6= 0] = E
(
sgn(∆φ)n+ksgn(∆φ)k

)
= E

(
(sgn(∆φ)n+k

)
× E (sgn(∆φ)k)

= 2m(1−m)(1)(−1)︸ ︷︷ ︸
1&−1

+m2(1)2︸ ︷︷ ︸
Both: 1

+ (1−m)2(−1)2︸ ︷︷ ︸
Both:−1

= (2m− 1)2

(3.22)

Depicted in Figure 3.18, this auto-correlation function can be expressed as Rsgn(∆φ)[n] =

(2m− 1)2 + (1− (2m− 1)2)δ[n], and, hence, the PSD as shown in Figure 3.19 is:

Ssgn(∆φ)(e
jω) = [2π(2m− 1)2

k=∞∑
k=−∞

δ(ω + 2πk)] + 4m− 4m2 (3.23)

Figure 3.18: The auto-correlation of sgn(∆φ)

Figure 3.19: The power spectral density of sgn(∆φ)
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Using (3.19) we can find SPDout .

SPDout(e
jω) =

1

2π

∫
2π

(
k=∞∑
k=−∞

2π

4
δ(λ+ 2πk) +

1

4
)Sf(∆φ)(e

j(ω−λ))dλ

=
1

4
Sf(∆φ)(e

jω) +
1

2π

∫
2π

1

4
Sf(∆φ)(e

jλ)dλ

= [
2π

4
(2m− 1)2

k=∞∑
k=−∞

δ(ω + 2πk)] +m−m2 +
1

4

(3.24)

This waveform is converted into continuous-time impulses and passes through the de-

scribed Zero-Order Hold. The resultant spectrum of this process is shown in Figure 3.20.

It could be readily seen if m 6= 1

2
there is a “tone” at DC. We will discuss in detail a

complete loop in Chapter 4 where the output of PD is fed as the error signal to a Type-II

feedback loop. This DC component of phase error will be suppressed to zero by feedback

loop, and only the colored noise remains. This implies that when lock is achieved, (from

Figure 3.20) m must be
1

2
and E (sgn(∆φ)) = 0.

0 fclk 2fclk

4

ωfclk2fclk

4
1

2π(2m   1)2

+m   m2

SPDout,CT ( f )

Solid: Before passing through Zero-Order Hold, dashed: After Zero-Order Hold

Figure 3.20: The continuous time spectrum of Alexander PD output.

3.4.2 Hogge Phase Detector

A typical waveform at the Hogge PD output is shown in Figure 3.21 (a). We can model it

with a square wave to which pulses are added whose widths are proportional to w[i]∆φ[i]

(Figure 3.21 (b)). If the phase difference is small, the width modulated pulses will have

a very short duration and could be approximated with impulses with the same area, as is
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shown in Figure 3.21 (c). We therefore decompose the output into a 50% waveform and a

train of amplitude modulated impulses.

SPD(f) = SPDout,CT
(f) + SSquareWave(f) (3.25)

+1

  1
  0

(a) Hogge PD output

+1

  1
  0

(b) Decomposition into 50% duty cycle waveform

(dashed) and PWM waveform (solid)

+1

  1
  0

(c) Approximation by 50% duty cycle waveform

(dashed) and train of impulses (solid)

Figure 3.21: Hogge PD continuous time waveform

PDout,CT is obtained when discrete phase errors f(∆φk) are converted to their continuous
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counterparts. We need the auto-correlation of f(∆φ) to find its spectrum.

Rf(∆φ)[n] = E

(
f(∆φk)f(∆φn+k)

)
(3.26)

If n = 0:

Rf(∆φ)[n = 0] = E

(
f(∆φk)

2

)
= E

(
(
∆φk
2π

)2

)
= σ2

∆φ ·
1

(2π)2

(3.27)

If n 6= 0:

Rf(∆φ)[n 6= 0] = E(f(∆φk)f(∆φn+k))

= E(f(∆φk))× E(f(∆φn+k))

= m2
∆φ ·

1

(2π)2

(3.28)

m∆φ and σ∆φ denote mean and mean squared value of ∆φ, respectively. Using the similar

argument to the case of Alexander PD we can deduce that in the locked condition in a

Type-II PLL, m∆φ must be 0. Thus,

Rf(∆φ) =
σ2

∆φ

(2π)2
δ[n]↔ Sf(∆φ)(e

jω) =
σ2

∆φ

(2π)2
(3.29)

We use (3.19) to find SPDout(e
jω):

SPDout(e
jω) =

σ2
∆φ

2(2π)2
(3.30)

So if we replace discrete time impulses with continuous time ones:

SPDout,CT
(f) =

σ2
∆φ

2(2π)2
, (3.31)

and the complete spectrum of the output waveform will be obtained by adding the spectrum

of a square waveform to (3.31):

SPD(f) =
σ2

∆φ

2(2π)2
+

k=∞∑
k=−∞

(
4

(2k − 1)π
)2δ(f − (2k − 1)fclk) (3.32)
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Figure 3.22: The continuous time spectrum of Hogge PD output

It could be readily seen that, unlike Alexander PD, the output of Hogge PD contains

harmonics at the clock frequency (Figure 3.22). We will discuss in Chapter 3 that this will

lead to Duty Cycle Distortion (DSD).
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CHAPTER 4

Clock Data Recovery Loop Analysis

PLLs and CDR loops are very similar to each other. A great deal of our knowledge of PLLs

could be applied to CDRs as well. This chapter includes as yet unpublished works of Hao

Xu, a fellow graduate student, and includes a simple and accurate analysis of these loops.

We focus our analysis on the case of PLLs because of their generality.

4.1 Phase Domain Modeling of PLLs

If we take voltage as our input to PLLs and CDRs they include non-linear blocks, such as

phase detectors and Voltage Controlled Oscillators (VCOs). However, these blocks can be

treated linearly if we accept phase as our input. [36] presents an accurate linear model for

these loops.

Phase detector, as complicated as it might be, only extracts the phase difference between

its inputs. Therefore, it amounts to a simple subtraction in phase domain. A Charge Pump

(CP) usually follows the phase detector. It converts the phase domain information into

current, but this conversion has no importance as far as loop behavior is concerned. Loop

filter operates on the charge-pump generated current. The current passes through a filter

and produces a voltage. Again, if we neglect the dimension change, it only filters the input.

Charge pump is replaced by a digital filter in All Digital PLLs (ADPLLs). This modifi-

cation does not cause any problems since digital filter’s input is voltage which is provided by

the phase detector, and a charge pump is not necessary as far as dimension transformation is

concerned. Charge Pump functionality is also built into the loop filter by including a digital
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PD

N Divider

Figure 4.1: A charge-pump PLL

integration
1

1− z−1
.

KVCOω0

ω

Vctrl

Figure 4.2: VCO frequency ver-

sus control voltage

The final block is the VCO, an oscillator whose

output frequency is controlled by a control

voltage taken as the loop filter output in this

system. The output frequency of VCO is mod-

eled as linearly dependent on control voltage:

ω = kV COVcntrl + ω0 (4.1)

KV CO unit is
rad

s.Volt
and ω0 is the VCO’s free-

running frequency.

Phase is the integration of frequency, hence:

φ(t) =

∫ t

−∞
kV COVcntrl(τ)dτ (4.2)

Each of described blocks is LTI and, therefore, can be expressed in s-domain.

The loop for a CDR is usually a Type-II loop which brings about a zero static phase error.
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Φin F(s) s Φout

Figure 4.3: S-domain representation of a PLL

The loop type is dictated by the number of poles at s = 0 in the loop gain. In this system

a pole at zero is contributed by the integration in VCO and another from the integrator in

the loop filter. It is readily seen that such loop will not be stable unless it contains a Left

Half Plane (LHP) zero to provide sufficient phase margin. This zero is implemented inside

the loop filter. Furthermore when the Hogge phase detector is used, a spectral component is

present at the clock frequency in the phase detector output. This component appears in the

VCO control voltage and, thus, modulates the VCO frequency. As we know, if a tone at f0

gets Frequency Modulated with a carrier fc, tones at fc + f0 and fc − f0 will be generated.

In this case, fc = f0 = fclk, and the generated tones will be at DC and 2fclk. Having a tone

at 2fclk implies that the VCO output does not have a 50% duty cycle. DCD1 is undesirable

and needs to be controlled. Hence, the PD component at fclk needs to be suppressed by the

loop filter which might require an additional pole (at ωp2) in the loop filter. (4.3) is a general

case for loop filter transfer function. If the loop filter does not have the second pole, as is

the case when using the Alexander phase detector, we can assume ωp2 → ∞ in the results

of the following analysis.

F (s) = (
α

s
+ β)(

1
s

ωp2
+ 1

) (4.3)

1Duty Cycle Distortion
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4.2 Linearization of Bang Bang Phase Detector (BBPD)

Bang bang phase detection is a non-linear process. The output is simply the sign of the

phase error irrespective of the error magnitude. A lot of prior works have tried to linearize

the characteristics of this block so we can apply our knowledge of linear systems to it. [8]

and [9] have proposed a linearization method for small phase errors. [10] relies on simulation

for calculating the quantization noise spectrum and does not give any analytical proof for

its spectrum. Da Dalt in [37] performs the linearization with an analysis based on Markov

chains. Park and Kim [13] assume a constant phase difference and ignore the deterministic

jitter when calculating the gain. They assume a normal distribution for the input phase error,

which is a good approximation for the case of frequency synthesizer. However, deterministic

jitter in a link with random data causes the phase error distribution to deviate from normal,

and makes it close to Dual-Dirac distribution [33,34]. Here we calculate the gain using this

corrected PDF for the incoming phase error and also clearly define the quantization noise

and explain how it cannot be correlated to the input, using a signal space representation.

In addition, [13] only relates the BBPD gain to the noise level at its input, but does not

give an expression for that noise. However, we analytically calculate this noise level and,

subsequently, we are able to obtain an accurate closed form expression for the output jitter.

The output of a non-linear system y and its input x are shown in signal space domain

in Figure 4.4. If we extract the input correlated component of the output, c · x, the residue

error q will be orthogonal to the input. The scaling factor of correlated part, c, will be

considered as gain and the residue error acts as a noise source, which is uncorrelated to the

input because of the orthogonality.

y = c.x+ q (4.4)

So as to calculate the gain we note that:

E(yx) = c.E(x2) + E(qx)
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Figure 4.4: Signal space decomposition of BBPD output
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Random jitter

σT

Total jitter

Figure 4.5: Total jitter at the

phase detector input

q and x are orthogonal which means E(qx) = 0 and

implies a zero correlation between them. There-

fore,

c =
E(yx)

E(x2)
(4.5)

Also we can find the energy of q using Pythagoras’

theorem in signal space.

E(q2) = E(y2)− c2E(x2) (4.6)

The incoming jitter can be decomposed into

a deterministic component due to ISI and a ran-

dom component. We know the random component

is produced by various independent sources. Al-

though central limit theorem only applies to linear

superposition of independent noise sources which

is violated by Bang-Bang PD, Hao’s result shows

that it still remains a good approximation. Thus,

the random component has a Gaussian distribution

with standard deviation σr, where the subscript r

stands for “random”. We also assume a Dual-Dirac

distribution at +d and −d for the deterministic jit-

ter, as Figure 4.5 shows. The gain could be calcu-
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lated as follow.

KBPD =
E(sgn(x)× x)

E(x2)

KBPD =

√
2

π
σre
−
d2

2σ2
r + d(Qfunc(−

d

σr
)−Qfunc(

d

σr
))

σ2
r + d2

(4.7)

where Qfunc(x) determines the probability that a normal variable is greater than x.

If we define σ =
√
σ2
r + d2, when deterministic jitter is very small (i.e. d � σr), this

expression simplifies to

KBPD =

√
2

π

1

σ
(4.8)

which has been found for BBPD gain in previous works [8–10,12,13] and is very close to [37].

If d < 2σr, which is the case for most applications with effective equalization, the cal-

culated gain from (4.7) matches the normal approximation (4.8) within 12%. Even when

d > 2σr, the difference between (4.7) and (4.8) does not exceed 20%. The error between

these two expressions is plotted in Figure.4.6.
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Figure 4.6: The error between the gain with a normal approximation in (4.8) and the exact

gain in (4.7)

The additive noise, which we label “quantization noise” is quantified by (4.6).
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σ2
q = E(q2) = 1−K2

BPDσ
2 (4.9)

where σ2 is the total jitter mean squared value.

Unlike gain, the quantization noise changes dramatically with deterministic jitter. If the

deterministic jitter is small (d < σr), we can continue to use the approximation of a normal

distribution and write

σ2
q = E(q2) ≈ 1− 2

π
(4.10)

The error between the exact value and the approximation is within 10%. This function is

plotted in Figure 4.7.
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0

0.1

0.2
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d
σr

σq
 2

Figure 4.7: σ2
q for different deterministic jitters

We assume a white spectrum for the input noise, but we need to prove q also has a white

spectrum. Because q by definition is uncorrelated with the random input phase at the PD

output, we claim the values it takes are independent from one phase comparison to another.

Each of these values is held for a period Tref , the phase sampling period, until the next

comparison is done. Therefore, its auto-correlation decreases linearly when we shift it, and

goes to zero if it is shifted more than Tref . We can express the auto-correlation function to
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be

Rq(τ) = σ2
qΛ(

τ

Tref
) (4.11)

In this equation Λ(t) denotes the triangular function.

Λ(t) =


1− |t| |t| < 1

0 o.w

(4.12)

This auto-correlation function corresponds to the following PSD.

Sq(f) = 2Trefσ
2
qSinc

2(fTref ) (4.13)

This noise source only sees low pass transfer functions in the loop, whose upper cutoff is

equal to the loop unity gain frequency fu. Since these loops are designed to have a very

small bandwidth compared to their reference frequency, fref , Sq(f) can be approximated by

a constant level over the frequency interval (0, fref ) and, therefore, considered to be white.

The mentioned gain is only associated to PD behavior. According to our discussion in

the previous chapter, if this phase detector is used for a CDR, the equivalent system may be

modeled as Figure 4.8 (a). If we associate all noise sources to the output node we will end

up with the block diagram in Fig 4.8 (b)

If a Hogge detector is used q = 0 and KBPD =
1

2π
.

q+qRTN

 KBPD

PDOut

Q=  

 Δɸ 1
2

1
2

KBPD

PDout
Δɸ

q qRTNBBPD

Random
Sampling

1
2

(a) (b)

(a) BBPD followed by random sampling, (b) Integration of amplifications and noise sources

Figure 4.8: CDR BBPD modeling

It was proved in (3.19) that the mean squared value of RT noise is one fourth of the PD

output mean squared value. In the case of BBPD :

σ2
qRTN

=
1

4
σ2
sgn(∆φ) =

1

4
(4.14)
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From Figure 4.8 (b) we can calculate the mean squared value of Q, the effective noise for a

BBPD to be:

σ2
Q = (

1

2
)
2

× σ2
q + σ2

qRTN
(4.15)

For d < σr, this simplifies to

σ2
Q = (

1

2
)
2

(1− 2

π
) +

1

4
=
π − 1

2π
(4.16)

In the Hogge PD the effective noise depends on the mean squared value of the incoming

phase noise, according to (3.29)

σ2
Q =

1

4
·
σ2

∆φ

(2π)2
(4.17)

4.3 s-Domain Loop Model and Noise Sources

Figure 4.9 shows the loop in s-domain. The noise source Vn intends to model the VCO phase

noise by a noise voltage. If the noise parameter of VCO is Kw, the VCO phase noise equals:

SφV CO =
Kw

f 2
(4.18)

The phase noise produced by Vn equals SVn

∣∣∣∣KV CO

2πf

∣∣∣∣2. By equating this to (4.18).

SVn = (2π)2 Kw

K2
V CO

(4.19)

This value is constant over frequency suggesting a white spectrum for Vn.

We let T (s) denote the open loop gain.

T (s) = KPDF (s)KV CO
1

N
(4.20)
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Figure 4.9: CDR Loop in s-domain

In most wireline applications jitter peaking should not exceed certain values which re-

quires adequate phase margin. Thus, well separated poles and zeros are needed. The goal

of the second pole, ωp2 is to attenuate clock feed through at PD output, Hence, it is located

at much higher frequencies than ωu so as not to erode phase margin. As a result of the fact

that phase margin is controlled by the zero, ωz = −α
β

, position, it needs to be low enough to

provide desired phase margin. Typically it is placed three or four times lower than the unity

gain frequency and the second pole is located three or four times higher than ωu. Given

these conditions are met we can calculate ωu.

ωu = 2πfu = KPDβKV CO
1

N
(4.21)

With these definitions and approximations we can reformulate T (s).

T (s) =
ωu
s
.

1 +
ωz
s

1 +
s

ωp2

(4.22)

4.4 Loop Parameters Calculation

We have so far set up a loop and defined all of its parts, but in order to calculate phase noise

at the output we need numerical values for the loop parameters.

It is discussed in section 4.2 that the effective quantization noise for both phase detector

types as well as the gain for BBPD depend on the noise at phase detectors input, σφe . In
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this section we use equivalent noise bandwidth, NBW, to derive a closed form expression for

σφe .

The noise at PD’s input can be decomposed into three components due to three noise sources

in the system: Input, VCO, and PD.

s
s

Vn

( ( ωp2
(( s

Φin

Φout

ΦQ

Figure 4.10: BBPD Input phase noise calculation

Φe = ΦIn
1

1 + T
+ ΦQ

1

KPD

T

1 + T
+ Vn

KV CO

sN

1

1 + T
(4.23)

All of these noise sources are uncorrelated and we can find the PSD of φe by the following

formula.

Sφe = SφIn |
1

1 + T
|2 + SφQ

1

K2
PD

| T

1 + T
|2 + SVn

K2
V CO

|2πfN |2
| 1

1 + T
|2 (4.24)

What we are interested in is the mean squared value of φe. It could be found by integration

of the PSD of φe.

fp2fufz
f

1
1+T

T
1+T

Dashed:
T

1 + T
, solid:

1

1 + T

Figure 4.11: High pass and low

pass functions in a loop

The first term captures the effect of input

phase noise at PD input. The transfer function
1

1 + T
exhibits a high pass behavior (Figure

4.11) with low frequency cut off of fu. Since

this frequency is much lower than fclk almost

all of the input jitter appears in σφe .

σ2
φe(input) =

∫ ∞
0

SφIn |
1

1 + T
|2df ≈ σ2

In

fclk
2

.
fclk
2

= σ2
In

(4.25)
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The PD effective noise is filtered by
T

1 + T
,

which is the low pass filter shown in Figure

4.11, and we are interested in

σ2
φe(Q) =

∫ ∞
0

SφQ
1

K2
PD

| T

1 + T
|2df (4.26)

φQ has a white spectrum for our purposes, as was mentioned earlier. Therefore we can

use NBW. We know if we have a second order transfer function H(s), we can associate an

effective noise bandwidth to it.

H(s) =
1

s2

ω2
0

+
s

ω0Q
+ 1

⇒ NBWLP =
ω0

4Q
=
π

2

f0

Q
(Hz) (4.27)

Assuming widely separated poles and zeros and ωp2 � ωu

T

1 + T
≈ 1

(1 +
s

ωu
)(1 +

s

ωp2
)
⇒ NBWLP ≈

ωu
4

=
π

2
fu (4.28)

Therefore the result of the integral in (4.26) will be :∫ ∞
0

SφQ
1

K2
PD

| T

1 + T
|2df ≈

σ2
Q

fclk
2

1

K2
PD

.NBWLP = σ2
Q

π

K2
PD

fu
fclk

(4.29)

The third term in (4.24) is the effect of VCO noise which experiences a bandpass function.

σ2
φe(V CO) =

∫ ∞
0

SVn
K2
V CO

|sN |2
| 1

1 + T
|2df (4.30)

We can again use NBW, because Vn has a white spectrum. A standard formulation of a

second order bandpass filter and its equivalent noise bandwidth is presented by (4.31).

H(s) =

s

ω0Q

s2

ω2
0

+
s

ω0Q
+ 1

⇒ NBWBP =
ω0

4
Q =

π

2
f0Q(Hz) (4.31)

We can rearrange the transfer function seen by Vn to match the standard format, assuming

a well designed loop.

1

s
· 1

1 + T
≈ 1

ωu

s

ωz
s2

ωuωz
+

s

ωz
+ 1

⇒ NBWBP =
π

2
fu (4.32)
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By employing this equation we can find σ2
φe

(V CO).

σ2
φe(V CO) =

∫ ∞
0

SVn
K2
V CO

|sN |2
| 1

1 + T
|2df ≈ (2π)2 Kw

K2
V CO

K2
V CO

N2ω2
u

NBWBP =
Kw

N2fu

π

2
(4.33)

(4.25), 4.26, and 4.33 express the different components of σφe . Putting all together we can

write:

σ2
φe = σ2

φe(input) + σ2
φe(Q) + σ2

φe(V CO) (4.34)

4.4.1 Bang Bang Phase Detector Gain and Quantization Noise

Consider the case of low deterministic jitter for now. (4.8) expresses the relation between

the BBPD gain and its input phase noise as

KBPD =

√
2

π

1

σφe

We need to pay attention that this is the gain of BBPD due to bang-bang action, but the

effective gain seen by the loop is KPD =
1

2
KBPD, as could be seen in Figure 4.8, because of

the random sampling. By plugging in (4.8) into 4.34 we will get:

2

π

1

K2
BPD

= σ2
ΦIn

+ (
π − 1

2π
)
βKV COTclk

2NKPD

+
π2KW

NβKPDKV CO

(4.35)

We can solve this quadratic equation to find KBPD in terms of loop parameter.

⇒KBPD = −
σ2

Φ0

2σ2
ΦIn

+

√(
σ2

Φ0

2σ2
ΦIn

)2

+

(
2

π

)
· 1

σ2
ΦIn

where we defined σ2
Φ0

=
2π2KW

NβKV CO

+
π − 1

2π

βKV COTclk
N

(4.36)

σ2
Φ0

is called the Intrinsic Noise Power.

For a CDR the input jitter is extremely high. Thus σ2
Φ0
� σ2

In. This assumption simplifies

the BBPD gain to

KBPD ≈
√

2

π

1

σφIn
(4.37)

This equation suggests that the BBPD gain in CDR is set by the input phase noise only. It

is worth noticing that the incoming jitter mean squared σφIn value encompasses the effect of

both random and deterministic jitter in this case.
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What would happen if the deterministic jitter is not low and our approximations do not

hold?

In this case, we can still use 4.34 to calculate σφe . Figure 4.7 shows the Band Bang quanti-

zation noise decreases with increasing ISI. Since σQ and σq are related according to 4.15, we

can deduce the quantization noise and, therefore, its effect on σφe decreases with increase of

ISI. Thus, the spectrum of σφe will still be dominated by the incoming phase noise. As a

result the deterministic and random component at the PD’s input will be identical to those

for the incoming data, and we can use equation 4.7 and 4.10 to find the Quantization noise

and gain.

4.4.2 Hogge Phase Detector Effective Quantization Noise

If a Hogge PD was employed instead of a BBPD, we know the gain was known in advance.

However, as we discussed in section 4.2 the RT noise of the Hogge phase detector depends

on its input mean squared jitter, σ2
φin

, which is dominated by the incoming jitter, according

to our discussion. Hence, from here we can find the RTN for Hogge PD using 4.17

σ2
Q(Hogge) =

1

4

σ2
φIn

(2π)2
(4.38)

4.5 Output Phase Noise Calculation

Now that we know the PD gain, we can write the transfer function from each of the loop

noise sources to the output.

Φout = ΦInN
T

1 + T
+ ΦQ

N

KPD

T

1 + T
+ Vn

KV CO

s

1

1 + T
(4.39)

Owing to independent sources of these noises we can add their PSDs to get the output phase

noise PSD.

Sφout = SφInN
2| T

1 + T
|2 + SφQ

N2

K2
PD

| T

1 + T
|2 + SVn|

KV CO

2πf

1

1 + T
|2 (4.40)

In many cases we are interested in the mean squared value of phase noise. Similar approach

that we used for calculating σφe with equivalent noise bandwidths is taken here.

45



σ2
φout(input) =

∫ ∞
0

SφInN
2| T

1 + T
|2df ≈ σ2

in

fclk
2

N2NBWLP = σ2
inN

2π
fu
fclk

(4.41)

σ2
φout(Q) =

∫ ∞
0

SφQ
N2

K2
PD

| T

1 + T
|2df ≈

σ2
Q

fclk
2

N2

K2
BPDTD

2
NBWLP = σ2

Q

N2

K2
PD

π
fu
fclk

(4.42)

σ2
φout(V CO) =

∫ ∞
0

SVn|
KV CO

2πf

1

1 + T
|2df ≈ K2

V CO(2π)2 Kw

K2
V CO(2πfu)2

NBWBP =
Kw

fu

π

2
(4.43)

By adding these components together we can find the overall output mean squared phase

noise.

σ2
φout = σ2

inN
2π

fu
fclk

+ σ2
Q

N2

K2
PD

π
fu
fclk

+
Kw

fu

π

2
(4.44)

This formula could be used for both types of phase detectors. We just need to choose the

correct gain and also adjust σQ and KPD accordingly.

46



CHAPTER 5

Verification of Theory against Measurement

The analysis introduced in the previous chapter was straightforward and intuitive, but we

need to verify its accuracy on a practical circuit. In this chapter we investigate the work

of Jaussi et al. in [38]. In this work they have presented ”A 20 Gb/s Embedded Clock

Transceiver in 90nm CMOS” (Figure5.1).

5.1 System Overview

The incoming data is four 5Gb/s channels. The CDR loop is a subrate architecture [39]

using a phase detector that samples the phase error. As we mentioned previously, we need

two samples for each decision. Therefore, 40GS/s are needed. In this technology it would

be difficult and power hungry to generate high frequency clocks. Instead, a 5GHz clock

with 8 phases is used which creates transitions at 40GS/s. These phases are generated with

a Voltage Controlled Delay Line (VCDL) which takes its reference from an 8 stage Delay

Locked Loop (DLL). The phase detector whose architecture will be studied in detail in the

next section makes binary decisions and drives the charge pump.

An LC VCO is preferred because of its lower phase noise compared to the ring oscillator.

The clock is generated at 10GHz, and then divided by two to create a 50% duty cycle and

overcome duty cycle distortion caused by reference feedthrough.
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Ref. ”A 20Gb/s Embedded Clock Transceiver in 90nm CMOS”, Jaussi et al.

Figure 5.1: Receiver architecture of the case study

5.2 Phase Detector Operation

The phase detector uses Early-Late decisions on input transitions. The architecture is very

similar to one used in [39]. Figure 5.2 shows the phase detector.

It is always preferred to run the logic at lowest possible frequency in order to save power.

Ref. ”A 20Gb/s Embedded Clock Transceiverin 90nm CMOS”, Jaussi et al

Figure 5.2: Case study phase detector circuit

Here the PD produces one output per four incoming bits, determined by the majority. We

will discuss this method of decimation shortly.
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Per each incoming bit a decision is made by the corresponding XOR, which is identical to

an Alexander-type output. If there is a transition in the data waveform (whose probability

is 50%) the output is equiprobable +1 or −1. But if there is no transition the output is 0.

We denote the output with w[i]sgn(∆φ[i]) (see Figure 3.12), where before w[i] is defined by,

+1 if data transitions and 0 otherwise.

In order to understand the function of the average block in Figure 5.2, we focus on the case

where the outputs of two identical inverters are tied together (Figure 5.3). If x1 = x2 = 1,

then P1 and P2 are on and y is connected to VDD, which corresponds to a logical “1”. The

similar argument holds when x1 and x2 are low and y will be a logical “0”. However, when

one of the inputs is high and the other one low, for instance x1 = 1 and x2 = 0, N1 and

M2 will be on. Assuming the transistors are properly sized y will be around
VDD

2
which

does not correspond to any logical level. Therefore, this architecture picks the majority of

its inputs, if exists. Otherwise, it produces a voltage level which is in the middle of logical

voltage levels. This discussion may be extended for the case with four inverters easily.

x1

x2

y

(a) Two inverters with connected outputs

x1 x2
y

N1 N2

P1 P2

VDD

(b) Two inverters with connected outputs,

transistor level

Figure 5.3: Averaging block

The averaging block’s output is fed to a Schmitt Trigger. The advantage of the Schmitt

Trigger over a simple slicer is its resilience to the noise at its input. Hence, according to this

discussion, if there is a majority of +1 or −1 among the four outputs of averaging block, the

PD output will be the same as the majority, otherwise the PD output will not change and
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it retains its output value from the previous phase decision. This system block diagram is

shown in Figure 5.4.

We can see this system performs two non-linear actions. We had studied the first one, which

z-1 z-1 z-1 4
ɸin[n]

ɸVCDL[n]

Δɸ[n] PDout

      w[4n]sgn(Δɸ[4n])+w[4n-1]sgn(Δɸ[4n-1])
+w[4n-2]sgn(Δɸ[4n-2])+w[4n-3]sgn(Δɸ[4n-3])

Loop

w[n]

(a) The phase detector complete block diagram

w[4n]sgn(Δɸ[4n])

w[4n-1]sgn(Δɸ[4n-1])

w[4n-2]sgn(Δɸ[4n-2])

w[4n-3]sgn(Δɸ[4n-3])

sum[n] PDout[n]

(b) The Schmitt Trigger only

Figure 5.4: Phase detector block diagram

is an Alexander phase detection in detail in Chapter 3, and developed a linear model for it.

So as to be able to analyze this system we need to linearize the second non-linearity, which

is different from the first one because of two reasons. Firstly, its input is not a continuous

random variable. Secondly, if a majority does not exist the output is not determined by the

input. Notwithstanding these differences, we can still use the methodology we deployed for

BBPD linearization. We decompose the output of the Schmitt Trigger to a correlated part

to input and an uncorrelated part. According to (4.5) we can define the gain as KBBPD2 =
E(sum× PDout)

E(sum2)
. The additive white quantization noise qPD2 also has the mean squared

value of σ2
qPD2

= E(PD2
out)− c2E(sum2).
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In order to calculate these values we need to know the distribution of the input, sum. As is

shown in Figure 5.4 (b):

sum[n] =w[4n]sgn(∆φ[4n]) + w[4n− 1]sgn(∆φ[4n− 1])

+ w[4n− 2]sgn(∆φ[4n− 2]) + w[4n− 3]sgn(∆φ[4n− 3])
(5.1)

And as we proved in the appendix, in lock, w[i]sgn(∆φ[i]) may be treated as an i.i.d. process.

Therefore, we can convolve the PDF of each terms in (5.1) to find the PDF of sum[n]. Thus,

we can easily find PDF of w[i]sgn(∆φ[i]) by considering all cases:

Pw[i]sgn(∆φ[i])(n) =



1

4
n = +1 or − 1

1

2
n = 0

0 o.w.

(5.2)

And from here we see that for the four independent contributions to the sum (see (5.1)):

Psum(n) = Pw[i]sgn(∆φ[i])(n) ∗ Pw[i]sgn(∆φ[i])(n) ∗ Pw[i]sgn(∆φ[i])(n) ∗ Pw[i]sgn(∆φ[i])(n) (5.3)

This PDF is shown in Figure 5.5.

When the input is 0, which means that there is no majority, the output, PDout, is determined
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Figure 5.5: The PDF of the Schmitt Trigger input

by the previous output, which is independent from the current input. From here we can easily
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find the gain:

KBBPD2 =
E(PDout × sum)

E(sum2)
(5.4)

First note that, due to Independence of w[i]sgn(∆φ[i]) we can find the variance of sum using

(5.1) and (5.2).

E(sum2) = 4× E(w[i]sgn(∆φ[i])2)

= 4× 1

2

= 2

(5.5)

We can take two different approaches to calculate the gain, KBBPD2. The first method,

which calculates the exact value, finds E(PDout × sum) by enumerating all possible cases

with their corresponding probability from Figure 5.5.

E(PDout × sum) =
35

32
(5.6)

Hence,

KBBPD2 =

35

32
2

=
35

64
(5.7)

The other method is to use central limit theorem and approximate the PDF of sum with a

Gaussian distribution1 with the same variance (i.e. σ =
√
E(sum2) =

√
2). We have found

the BBPD gain for a Gaussian distribution in (4.8):

KBBPD2 ≈
√

2

π

1

σ
=

1√
π

(5.8)

(5.7) and (5.8) are very close and match within 3%.

The additive quantization noise is:

σqPD2
= PD2

out − σ2
sumK

2
BBPD2 = 1− (

35

64
)
2

× 2 (5.9)

We can combine the linear model of the second non-linear operation in the phase detector

with the linear model for the first non-linearity, to obtain a linear model for the complete

1Because sum is a linear super position of 4 independent random variables

52



 KBBPD1

PDout[n]

QBBPD1[4n]
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1
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2

(a) Four paths are linarized

PDout[n]
 Δɸ[4n]  KPD

Q

Qref

(b) Viewing three paths as noise and one path as main

Figure 5.6: The PD linear model

phase detector, as shown in Figure 5.6.

The forward gain is the multiplication of the first and the second non-linear actions.

KPD =
1

2
KBBPD1KBBPD2 =

1

2

√
2

π

1

σ∆φ

× 35

64
(5.10)

Although the addition of noises at the output in Figure 5.6 (b) , Qref and Q, act as an

effective additive noise source, Qeff . However, they originate differently.

Qref is the effect of the input noise which has travelled through the forward gain of the other

three paths and appears at the output.

Qref [n] =
1

2
KBBPD1∆φ[4n− 1] +

1

2
KBBPD1∆φ[4n− 2] +

1

2
KBBPD1∆φ[4n− 3] (5.11)

Because of the i.i.d. assumption we can find the mean squared value of Qref by adding each
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mean squared values:

σ2
Qref = 3

(
1

2
KBBPD1

)2

σ2
∆φ (5.12)

Q encompasses the other noise sources: the bang-bang actions, and random sampling from

all paths.

Q[n] = KPD2(QBBPD1[4n]+QBBPD1[4n−1]+QBBPD1[4n−2]+QBBPD1[4n−3])+qPD2 (5.13)

Again, owing to independence of each of the above terms:

σ2
Q = 4K2

PD2σ
2
QBBPD1

+ σ2
qPD2

(5.14)

5.3 Analysis parameters

With introduction of a linear model for the PD we are able to apply our theory to predict the

output spectrum. However, first we must find the phase noise level at the loop input (Figure

5.1, left). We use the measured input jitter. It has been reported in the presentation slides2

that the incoming data has 7.2ps peak to peak deterministic jitter and 2.6ps rms random

jitter. We assume a Dual-Dirac distribution for the deterministic jitter, which corresponds

to two impulses at +3.6ps and −3.6ps and from here the input jitter mean squared value

σin is calculated. We also use the low ISI approximation.

σin =

√
(2.6)2 + (

7.2

2
)2 = 4.4ps (5.15)

This time jitter, which is different from the phase noise by a factor of
2π

T
, is spread over the

sampling Nyquist band of 20GHz. Therefore, it translates into a white phase noise with a

white PSD of −105dB/Hz.

The following table was used for other loop parameters, as was provided by the authors, in

a private communication.

2Available Online: http://ieeexplore.ieee.org/xpl/abstractMultimedia.jsp?arnumber=1696181
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Analysis Parameters

ICP 50µA

R 200Ω

C 79pF

KV CO 870MHz/V

Kw 200rad2.Hz

BW 25MHz

Table 5.1: Loop simulation parameters

5.4 Analysis Results

In this section we compare the analysis results with reported measurements. Figure 5.7

compares the loop output spectrum from simulation and also the measurement. We can
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Figure 5.7: The loop output spectrum

see the predicted spectrum matches the measurement very well. We can also calculate the

rms output jitter by either integration of the predicted spectrum or the equivalent noise

bandwidths.

The strength of our analysis is enabling us to see the break down of the contribution from

each noise source (Figure 5.8). This can lead to design of an optimum loop. We investigated
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Method RMS output jitter

Integration of PSD (Figure 5.7) 1.38ps

Calculation ((4.44)) 1.29ps

Measurement 1.52ps

Table 5.2: Output jitter calculation

the loop performance for the measured loop filter as well as other loop filters. It turns out

that the quantization noise is the most dominant noise source at the output. As Figure

5.8 shows, increasing the loop bandwidth increases the contribution from the input and

quantization noise, and reduces the VCO contribution. In addition, The output jitter goes

down with reducing the bandwidth and the best performance was achieved for the lowest

bandwidth. However, further bandwidth reduction increases the VCO contribution and may

not lead to a better output jitter.
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Figure 5.8: The loop output phase noise break down
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CHAPTER 6

Conclusion

In this work we presented a frequency domain methodology for analysis and design of clock

data recovery loops. The approach allows us to determine the noise contributions, compare

them, and design the best loop for the application. It can reduce the reliance on time domain

simulations and offer more intuition.

The random sampling of the phase detector was investigated and modeled by an effective

gain and additive noise. We also studied the locking mechanism and mathematically showed

how a tone at clock frequency is generated while the incoming data has no energy at that

frequency.

Moreover, a linearized model for bang-bang phase detectors was presented, which is helpful

for both CDR and PLL design. It is proved that this gain is determined by the incoming

jitter jitter. By integrating this model with the linear random sampling model we are able

to analyze any CDR loop, and predict the output phase noise accurately. We also illustrated

the concept of equivalent noise bandwidth is applicable and we can simply predict the output

jitter using it.
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Appendix A

Correlation between w[i] and ∆φ[k]

We know that due to ISI, phase error samples at a given time are influenced by prior bits.

We noted that usually there is only one significant bit (for the case of Dual-Dirac jitter

distribution) that determines this effect. It is reasonable to assume the most significant bit

is the bit prior to each transition. Strictly speaking, the most significant transition is a

more accurate name, because two possible cases for the deterministic jitter happen based on

whether we had a transition prior to the current one or not; therefore, w[i] and ∆φ[i + k]

are independent for |k| > 1.

Assume ∆φ[k] can be decomposed into a deterministic component, which is d1 if w[k− 1] =

w[k] = 1 and d2 if w[k−1] 6= w[k] = 1, and a component due to the actual phase error ∆φ0[k].

∆φ[k] = ∆φ0[k] + d1w[k − 1] + d2(1− w[k − 1]) (A.1)

Let us assume f(∆φ[k]) has an average value mf . Using this we can find the auto-correlation

of w[k]f(∆φ[k]).

Rw·f(∆φ)[n] = E

(
w[k]f(∆φ[k])w[k − n]f(∆φ[k − n])

)
(A.2)

Rw·f(∆φ)[n] =



1

2
m2
f n = 0

1

4
mfmf1 |n| = 1

1

4
m2
f |n| > 1

(A.3)

In this equation mf1 is the average value of the f function if ∆φ[k] = ∆φ0[k] + d1 is the

input (see Figure 3.12).
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This auto-correlation can be expressed in another form:

Rw·f(∆φ)[n] =
1

4
m2
f +

1

4
m2
fδ[n] +

1

4
(mfmf1 −m2

f )(δ[n− 1] + δ[n+ 1]) (A.4)

To find the PSD we take the Fourier Transform,

Sw·∆φ(ejω) =
2π

4
m2
f

k=∞∑
k=−∞

δ(ω + 2πk) +
m2
f

4
+ (mfmf1 −m2

f )(e
jω + e−jω)︸ ︷︷ ︸

Noise

(A.5)

We can see the first term has an impulses at DC, and the second and third term are a col-

ored noise. Thus, as we explained in Section 3.4 the tone at DC will drive the loop towards

lock, which leads causes mf → 0. This result was derived earlier with an assumption of

uncorrelation.

Now, consider the loop in lock (i.e. mf = 0).

Rw·f(∆φ)[1] = E

(
w[k]f(∆φ[k])w[k − 1]f(∆φ[k − 1])

)
= E(f(∆φ[k − 1]))E

(
w[k]f(∆φ[k])w[k − 1]

)
= 0 = E(w[k]f(∆φ[k]))E(w[k − 1]f(∆φ[k − 1]))

(A.6)

Here we use the fact that ∆φ[k] might have correlation with w[i] only if i < k. Thus, we

conclude that in lock, w[i] and ∆φ[k] are uncorrelated even for |i− k| = 1.

If the most significant transition was not the one prior to the current transition or we

were dealing with a case with multiple impulses in ISI distribution, we could still use the

similar approach and arrive at the same result.
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