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ABSTRACT OF THE THESIS 

 

Identification of Shared Molecular Pathways and Networks between Alzheimer’s Disease and 

Type 2 Diabetes 

 

by 

 

Katherine Jung Wei 

 

Master of Science in Physiological Science 

University of California, Los Angeles, 2016 

Professor Xia Yang, Chair 

We hypothesize that Alzheimer’s disease (AD) and Type 2 Diabetes (T2D) share genetically 

perturbed molecular pathways, with T2D also inducing biological processes upstream of AD that 

promote AD development. Our study employs a systems biology approach integrating human 

genetic association studies, gene expression profiling studies, biological pathways, and tissue-

specific gene networks to investigate the mechanistic links between the two diseases. Our 

approach has identified tissue-specific gene subnetworks from adipose, brain, liver, and skeletal 

muscle tissues enriched for both AD and T2D genetic signals. These subnetworks are involved in 

immune regulation, cell cycle processes, oxidative phosphorylation, extracellular matrix 
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function, and keratan sulfate degradation and biosynthesis. These biological annotations are of 

particular interest as they are consistently identified across multiple tissues. The identification of 

known and novel pathways and genes testifies to the power of our systems-wide approach to 

identifying causal mechanisms and genes shared between metabolic and neurodegenerative 

diseases. 
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Introduction 

Overview of Alzheimer’s disease and Type 2 Diabetes 

Type 2 diabetes mellitus (T2D) and Alzheimer’s disease (AD) are two of the most 

prevalent and debilitating diseases among aging individuals. T2D is a common metabolic disease 

featuring hyperglycemia and insulin resistance, whereas AD is a neurodegenerative disorder 

mainly characterized by cognitive decline and amyloid plaque accumulation. In the United 

States, approximately 5.4 million individuals are affected by AD and 25.8 million individuals are 

affected by T2D1. Among individuals 65 and over, the incidence of diabetes is 26.9%, compared 

to an incidence of 8.3% in the overall population1. Both AD and T2D are among the top leading 

causes of death in the United States. 

 

Epidemiological, biochemical, molecular, and clinical supporting evidence connecting AD and 

T2D 

An increasing volume of epidemiological evidence suggests that a link exists between 

T2D and AD. Individuals with diabetes, particularly T2D, have lower cognitive function and are 

at twice the risk for developing AD compared to those without diabetes2. A study employing a 

neuropsychological evaluation known as the Minimum Cognitive Examination revealed that 

having diabetes contributed significantly to the negative impact of age on cognitive ability, 

particularly in areas of global cognition and executive function3. In another meta-analysis 

involving over 67,000 participants, onset of T2D was associated with an increased risk of 

dementia4. 

At the biochemical and molecular levels, AD and T2D also share multiple pathological 

characteristics. One of these shared hallmarks between the two diseases is insulin resistance. In 

the case of AD, this characteristic insulin resistance occurs in the neurons. Insulin is also 
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speculated to regulate neuronal connectivity and activity throughout the brain, and deficiency of 

or resistance to insulin could potentially impair transmission of information between neurons, 

leading to decline in cognitive ability5; 6. A second feature that the two pathologies have in 

common is the presence of amyloid β plaques and tau protein deposits. Pancreatic islet 

amyloidosis, or the presence of amyloid β plaque and tau deposits, is a key feature of T2D, and 

shares key structural features with the neurofibrillary tangles in amyloid plaque found in the 

neurons of AD patients.7 Another recent study also found that doubling the blood glucose levels 

of young mice without amyloid deposits in their brains raised the amount of amyloid deposits by 

20%. In older mice that had already developed amyloid plaques in the brain, doubling blood 

glucose levels caused a 40% increase in amyloid deposits8. These findings suggest that having 

chronically high blood glucose levels could potentially promote amyloid β production, which 

eventually aggregates into plaques and contribute to the development of AD. A third shared 

molecular feature between the two diseases is the sustained activation of inflammatory processes 

and presence of cellular oxidative stress9; 10. 

In addition to the above epidemiological and molecular studies that clearly demonstrate 

the co-occurrence and shared pathological features between the two diseases, experimental and 

clinical studies also support shared therapeutic strategies.  Several medications commonly 

prescribed for the treatment of diabetes, such as metformin, intranasal insulin administration, 

PPARγ inhibitors, and GLP-1 activators, have been shown to be useful in the attenuation of 

neurodegenerative symptoms characteristic of AD11; 12. A study of metformin, one of the most 

common drugs used to treat T2D, demonstrated the neuroprotective effects of metformin on 

lessening the progression of AD-like changes in the brains of obese, leptin-resistant mice. 

Metformin was shown to attenuate the increase of total accumulated tau protein, phosphorylated 
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tau, and activated JNK (N-terminal kinase) that is responsible for tau phosphorylation, 

polymerization and neuronal dysfunction and death13. In a meta-analysis involving over 67,000 

participants, the overall dementia risk decreased when participants consistently took antidiabetic 

medications sulfonylureas and metformin4. Furthermore, a study including 60 adults who were 

diagnosed with either mild cognitive impairment or mild to moderate Alzheimer’s disease 

showed that participants receiving 40 IU (International Units) of intranasal insulin spray 

demonstrated significant improvements in working memory compared to those receiving 20 IU 

or a placebo12. These findings strongly substantiate the causal and mechanistic conjectures 

surrounding the pathological relatedness of AD and T2D. 

To tackle the underlying molecular connections between T2D and AD, candidate gene 

and pathway studies have revealed the potential role of insulin signaling, growth factor, protein 

misfolding, inflammation, and apoptosis triggering pathways14. However, whether these 

pathways play causal roles in both diseases is unclear and a comprehensive understanding of the 

shared causal mechanisms has not been achieved. 

 

Integrative genomics study overview 

To systematically investigate the causal molecular connections between the two diseases, 

in this study we conduct a data-driven, systems genomics analysis by integrating genetic data 

from human genome-wide association studies (GWAS) of AD and T2D, functional genomics 

data from tissue-specific expression quantitative trait loci (eQTLs) and Encyclopedia of DNA 

Elements (ENCODE) studies, tissue-specific transcriptome profiling, canonical pathways, and 

molecular networks to provide a systems-level understanding of AD and T2D as well as their 

connections. Specifically, we address whether T2D and AD share genetically driven pathogenic 
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pathways (i.e., common genetic factors drive both T2D and AD), occur in a sequential manner 

(i.e., T2D onset drives molecular changes that in turn induce AD), or both scenarios occur to 

some extent. A better understanding of the mechanistic connections between T2D and AD will 

unravel novel therapeutic targets and open new avenues for the treatment of these prevalent and 

debilitating diseases. 

 

Materials and Methods 

Overall Study Design 

As illustrated in Figure 1, we first delineated the molecular pathways and gene networks 

that are perturbed by genetic risks of AD and T2D separately. We then compared the genetically 

perturbed pathways and networks between T2D and AD to derive shared genetic mechanisms 

that may be causally linked to both diseases. To test whether molecular pathways downstream of 

T2D (i.e., reactive to and non-causal for T2D) also pose predisposition to AD development, we 

extracted tissue-specific transcriptomic profiles of T2D and compared the T2D gene signatures 

with those tested causal for AD from the genetic analysis. 

 

Computational Pipeline for Genomic Data Integration 

 We have previously developed a computational pipeline, Mergeomics, to integrate a 

diverse array of disease-related datasets, including disease GWAS, eQTL studies, ENCODE 

studies, knowledge-based canonical pathways, data-driven co-expression networks, and gene 

regulatory networks15. Systematic data integration enables identification of disease key drivers 

and biological pathways that are perturbed in disease pathogenesis. The overall framework for 

our study can be divided into four key steps: 1) SNP (single nucleotide polymorphism) Set 
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Enrichment Analysis (SSEA), 2) merging of overlapping pathways or gene sets into independent 

supersets, 3) Key Driver Analysis (KDA) to identify potential regulators of the disease-

associated supersets, and 4) gene network visualization, as depicted in Figure 2. 

 

AD and T2D GWAS datasets 

 The AD GWAS dataset was from the International Genomics of Alzheimer’s Disease 

(IGAP) consortium. The IGAP GWAS dataset includes over 7 million genotyped and imputed 

SNPs from 17,008 Alzheimer’s disease cases and 37,154 controls of European ancestry16. The 

dataset excluded any SNPs with call rates of less than 95%, and the meta-analysis included only 

SNPs genotyped or successfully imputed based on 1000G in at least 40% of AD cases and 40% 

of the controls.  

 The T2D GWAS dataset was from the Diabetes Genetics Replication and Meta-analysis 

(DIAGRAM) consortium. The DIAGRAM GWAS dataset was a meta-analysis of 12,171 cases 

and 56,862 controls of primarily European descent17. The DIAGRAM consortium comprises 

datasets from approximately 40 groups investigating T2D genetics, including studies from 

groups such as WTCCC (Wellcome Trust Case Control Consortium), DGI (Diabetes Genetics 

Initiative), FUSION (Finland-United States Investigation of NIDDM Genetics), DGDG 

(Diabetes Gene Discovery Group), KORA, Rotterdam, DeCODE (Diabetes epidemiology: 

collaborative analysis of diagnostic criteria in Europe), EUROSPAN, Framingham, ARIC 

(Atherosclerosis Risk in Communities), and NHS (Nurses’ Health Study). Large-scale 

genotyping was performed using the Metabochip, a custom array consisting of 196,725 variants17 

and was imputed to up to 2.5 million autosomal SNPs17.  
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Biological pathways 

 A total of 1825 metabolic, biochemical, and signaling pathways were curated from 

Reactome18, BioCarta (www.biocarta.com), and KEGG (Kyoto Encyclopedia of Genes and 

Genomes)19. databases. Reactome is an open-source publicly available, manually curated 

biological database which includes pathway annotations from UCSC and HapMap Genome 

Browsers, KEGG Compound and ChEBI small molecule databases, PubMed, and Gene 

Ontology18. The main entities, such as genes, RNAs, proteins, complexes, and small molecules, 

that are involved in the same network of biological interactions are grouped together and given 

the same pathway annotation. BioCarta is a community-fed database that catalogues the 

biological interactions of signal transduction pathways, and involves over 120,000 genes from 

multiple species and proteomic and genomic information, as well as canonical biological 

pathways and suggestions for new pathways. KEGG is an aggregation of databases involved 

with genomes, biological pathways, diseases, drugs, and chemical substances often used in 

bioinformatics studies, various omics studies, and translational drug research19. 

 

Gene coexpression networks 

 Tissue-specific coexpression networks of adipose, blood, brain, heart, islet cells, kidney, 

liver, and muscle tissues were constructed from data obtained from independent, publically 

available transcriptomics studies from human and mouse (Table 1). We also included human 

brain region-specific coexpression networks using the data from the Kang et al study20. This 

dataset included transcriptome data for 16 brain regions: the orbital prefrontal cortex (OFC), 

dorsolateral prefrontal cortex (DFC), ventrolateral prefrontal cortex (VFC), medial prefrontal 

cortex (MFC), primary motor cortex (M1C), primary somatosensory cortex (S1C), posterior 
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inferior parietal cortex (IPC), primary auditory cortex (A1C), posterior superior temporal cortex 

(STC), inferior temporal cortex (ITC), primary visual cortex (V1C), hippocampus (HIP), 

amygdala (AMY), striatum (STR), mediodorsal nucleus of the thalamus (MD), and cerebellar 

cortex (CBC). The brain samples were taken from clinically unremarkable males and females of 

multiple ethnicities from a range of 15 different developmental periods, with period 1 being the 

developing embryonic brain and period 15 being the late adulthood brain (older than 60 years of 

age)20.  

 We used the Weighted Gene Co-expression Network Analysis (WGCNA) R package to 

construct coexpression networks from each transcriptome dataset 21. The overall method for 

clustering genes into coexpression modules involves performance of a pairwise correlation to 

determine the correlation between different genes. Genes that not only show high pair-wise 

correlation (either positively or negatively) but also share similar correlation patterns with the 

rest of the transcriptome were clustered into the same module in the co-expression network. 

Gene co-expression networks provide useful biological information as co-regulated genes are 

typically either functionally related, regulated by the same transcriptional mechanism, or belong 

to members of the same biological pathway22. The dynamic method for branch cutting of the 

clustering dendrogram was used to define individual modules in the gene co-expression 

networks. A minimum module size of 30 was used in the hierarchical clustering process. The 

lowest power at which the scale-free topology fit index reaches a height of 0.9 was used to 

generate the gene modules and the clustering dendrogram of genes, with each module assigned a 

unique module color23. A total of 3020 coexpression modules, including 339 brain coexpression 

modules, were constructed using WGCNA. These data-driven co-expression modules, along 
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with knowledge-based canonical pathways described in the previous section, were then used in 

downstream analysis. 

 

Functional Genomics Data 

 As GWAS SNPs frequently fall in non-coding regions, many disease-associated gene 

variants may be responsible for gene regulation rather than altering protein functions. Thus, 

tissue-specific eQTL mapping as well as regulatory element information may provide functional 

support to connect genetic variants with altered gene expression and ultimately with disease 

susceptibility. Human expression SNPs (eSNPs) under eQTLs from adipose, brain, liver, 

lymphoblastoid, blood, artery, pituitary, lymphocytes, sigmoid colon, transverse colon, 

esophagus mucosa, esophagus Muscularis, small intestine, stomach, spleen, and skeletal muscle 

tissue were curated from GTEx (Genotype-Tissue Expression project)24 and additional eQTL 

studies . Additionally, functional information in the RegulomeDB database25 based on the 

ENCODE (Encyclopedia of DNA Elements) project26 were collected. These various types of 

functional information were used to perform the gene to GWAS SNP mapping.  

 

SNP Set Enrichment Analysis (SSEA) 

 The GWAS, network, pathway, and functional genomics datasets described above were 

used in SSEA to determine if any of the modules from our data-drive co-expression networks or 

knowledge-driven biological pathways demonstrate significant genetic association with AD and 

T2D (Figure 2). SSEA comprises of 4 general steps. First, gene sets from knowledge-driven 

pathways and data-driven co-expression modules are collected. Second, the gene sets are 

converted to SNP sets with functional support according to tissue-specific eQTL and ENCODE 
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studies, or without functional support based on chromosomal distance mapping, or both. Third, 

P-values from T2D and AD GWAS are extracted for each mapped SNP to provide associations 

between the SNPs and the respective diseases. Finally, the GWAS P-values within the SNP sets 

representing the pathways or modules are compared against permutated sets of random genes in 

an enrichment analysis to derive pathways and network modules enriched for T2D and AD 

genetic signals.  

 Before performing the SSEA, we preprocessed the GWAS datasets for AD and T2D to 

prevent linkage disequilibrium (LD) structure in the SNPs from producing spurious results. To 

adjust for LD structure, we performed SNP pruning using a LD cutoff of r2 < 0.7. The LD 

information was obtained from HapMap for the CEU population, as the majority of study 

participants in the AD and T2D GWAS are of European descent. 

 After LD pruning of the DIAGRAM and IGAP GWAS datasets for T2D and AD, we 

tested for enrichment of T2D and AD associated SNPs in the tissue-specific co-expression 

networks and knowledge-driven canonical pathways using SSEA. When using eSNPs from the 

tissue-specific eQTL studies to map the GWAS SNPs to genes, we focused on T2D and AD-

relevant tissues including adipose, blood (including lymphoblastoid), brain, liver, islet, and 

skeletal muscle. We also used regulome-based and chromosomal distance-based mapping 

methods as well as a pooled set of eSNPs from all tissues and cell types curated (“All eSNPs”), 

and a combined set including all eQTL-based, distance-based, and RegulomeDB-based mapping 

methods (“Combined”). Each set of SNPs mapped to a coexpression module or pathway based 

on a mapping method was then compared to a background of SNPs from sets of random genes to 

determine whether a particular pathway or module was enriched for disease-associated SNPs. 

After performing the SSEA using both GWAS datasets, we adjusted the enrichment p values by 
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estimating false discovery rate (FDR) using the Benjamini-Hochberg method. Significant 

modules at FDR<25% and suggestive modules at p<0.05 were selected for T2D and AD, and 

then compared between the two diseases. 

 

Gene Module Merging, Construction of Supersets, and Second Round of SSEA 

 There are redundancies among the pathways and coexpression modules in terms of gene 

and functional overlaps. To reduce the redundancy, we merged the pathways and modules with 

significant sharing (>20%) of member genes into supersets. To prevent very large supersets that 

may lose functional specificity, we restricted the gene number in each superset to include only 

the most consistent core genes shared between pathways or modules. After merging the shared 

pathways or modules between T2D and AD into supersets, a second round of SSEA was 

performed on these supersets to confirm that they still retained the significant association to both 

diseases as demonstrated by their constituent pathways or modules. The supersets were 

functionally annotated using KEGG and Reactome pathway databases.  

 

Key Driver Analysis (KDA) of the Shared Supersets 

 To identify potential key regulatory genes that contribute to both T2D and AD, we 

performed KDA on the significant supersets shared between diseases. Bayesian networks, which 

illustrate detailed gene-gene interactions, for adipose, brain, liver, and skeletal muscle tissue 

were used for the KDA as these tissues are biologically relevant to both T2D and AD pathologies 

and they were found to be informative for both diseases in our SSEA analysis. To perform the 

KDA, the member genes of the shared supersets are overlaid over the Bayesian gene networks to 

determine the key driver genes whose network neighborhoods are enriched for AD-T2D superset 
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genes based on the network topology. Enrichment was assessed with Fisher’s Exact Test and 

Bonferroni-corrected p<0.05 was used to determine the significance of key drivers. After 

identifying the key drivers from the supersets in this manner, we focused on the top 5 statistically 

significant key drivers identified from each tissue. The regulatory subnetworks for each key 

driver were retrieved from each tissue-specific Bayesian network and visualized using 

Cytoscape27. 

 

Identification of Differentially Expressed Genes in T2D to Define Tissue-specific T2D 

signatures 

 To test whether biological pathways downstream of T2D may drive AD development, we 

analyzed tissue-specific T2D transcriptome profiles to identify genes that are differentially 

expressed between T2D cases and controls. We extracted transcriptome profiles from T2D-

relevant tissues including adipose, brain, islet, liver, and muscle tissues from the Gene 

Expression Omnibus (GEO). We included only datasets generated using common microarray 

platforms (Illumina, Affymetrix, and Agilent) that examined both T2D and non-T2D subjects 

with n>= 3 samples in each group, and excluded datasets in which other comorbidities were 

involved (such as heart failure and diabetic kidney disease). Studies from human, mouse, and rat 

were used. Of the datasets we analyzed, 10, 2, 5, 2, and 11 were from adipose tissue, brain, islet, 

liver, and muscle, respectively. 

 To identify differentially expressed genes between T2D and non-T2D subjects, we 

selected the genes that exhibited at least a 2 fold change in expression levels between T2D cases 

and non-T2D controls in at least 1/3 of the studies for each tissue, or both studies for liver and 

brain since only two datasets were included for each of these tissues. The differentially expressed 
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genes in each tissue were defined as tissue-specific T2D transcriptome signatures. These 

signatures were compared with the pathways and supersets associated with AD, T2D, or both, 

derived from the GWAS (genetics)-based SSEA analysis. To determine the significance of 

overlap between T2D signatures and the genetically associated AD/T2D gene sets, we used a 

Fisher’s exact test and Bonferroni-corrected p-value cutoff of 0.05. 

  

Results 

Pathways and coexpression modules enriched for AD GWAS signals 

 At FDR<25%, a total of 53 unique pathways or coexpression modules out of the 4,845 

sets tested were found to be enriched for AD GWAS signals. A majority (48) of the significant 

signals were derived when chromosomal distance was used as the SNP-gene mapping method, 

whereas the tissue eQTLs and ENCODE information from RegulomeDB did not appear to be 

informative for AD GWAS interpretation. A likely explanation is that the genetic risks of AD 

affect gene functions that are poorly captured in the functional genome information that is 

currently available.  

 As summarized in Table 1, the AD-associated pathways or modules are involved in 

metabolic processes (ascorbate and aldarate metabolism, aminoacyl tRNA biosynthesis, 

metabolism and transport of lipids and lipoproteins, metabolism of vitamins and cofactors), 

immune system (chemokine signaling pathways, cytokine-cytokine receptor interactions, 

interferon signaling, intestinal immune network for IGA production, antigen processing and 

cross presentation, complement pathways, primary immunodeficiency, FC gamma R mediated 

phagocytosis), cell communication (extracellular matrix (ECM) glycoproteins, adherens 
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junctions, and cell-cell junction organization), signaling pathways (NGF signaling, calcineurin 

signaling pathway), hematopoietic cell lineage, and development.  

 

Pathways and coexpression modules that are significantly enriched for T2D GWAS signals 

 At FDR<25%, a total of 176 unique pathways and coexpression modules out of the 4,845 

sets used in our analysis showed significant enrichment for T2D GWAS signals. In contrast to 

AD, tissue-specific eQTLs were found to be highly informative for T2D GWAS signals: 34, 45, 

68, and 27 modules were detected when using eQTLs from blood, liver, skeletal muscle, and all 

eSNPs, respectively. In addition, 103 modules were identified when functional information from 

the ENCODE-based RegulomeDB was used as the SNP-gene mapping method. Distance-based 

mapping method and the combined mapping method revealed 34 and 42 modules, respectively.  

 As summarized in Table 2, these significant biological pathways and coexpression 

modules are related to signal transduction (G alpha signaling, JNK-signaling, platelet derived 

growth factor (PDGF) receptor beta signaling, PI3K cascade, MAPK signaling, olfactory 

transduction signaling, calcium signaling pathways), metabolic pathways (type 2 diabetes, 

steroid hormone biosynthesis, amino sugar and nucleotide sugar metabolism, cholesterol 

biosynthesis, PPAR signaling, triglyceride biosynthesis, lipid and lipoprotein metabolism, 

integration of energy metabolism, respiratory electron transport and ATP synthesis, 

mitochondrial protein import, oxidative phosphorylation, drug metabolism involving cytochrome 

P450), immune system (cytokine receptor interactions, complement pathways, chemokine 

signaling pathways, interferon signaling), neuronal processes (axon guidance, serotonin 

receptors), cell cycle regulation (apoptosis pathways, p53 downstream pathways), translation 

(deadenylation dependent mRNA decay, ribosome function), coagulation (fibrin clotting 
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cascades, platelet activation and aggregation), and cell-cell communication (ECM glycoproteins, 

focal adhesion). Based on these broad functional categories, metabolic pathways, immune 

system, and cell communication are related to both AD and T2D. Interestingly, a pathway related 

to Alzheimer’s disease was also found among the T2D-associated modules detected by our 

SSEA. 

 

Significant pathways and coexpression modules shared between AD and T2D 

 A total of 16 coexpression modules directly overlapped between the AD and T2D 

analyses. These shared modules are involved in metabolic pathways (metabolism of lipids and 

lipoproteins, metabolism of xenobiotics by cytochrome P450, immune system (cytokine-

cytokine receptor interaction, chemokine signaling pathway, IL12 family signaling pathways, 

chemokine receptors, interferon signaling, antigen processing and cross-presentation, 

complement pathway), cell communication (core matrisome function, ECM glycoproteins, cell 

adhesion molecules), and ribosome function. 

 

Suggestive pathways and coexpression modules shared between AD and T2D 

 We noted that many of the previously implicated processes such as apoptotic pathways 

and insulin signaling pathways were not among the top significant pathways for AD and T2D at 

FDR<25%. However, they appeared to show enrichment signals at a nominal p-value of p <0.05 

for both AD and T2D. We reason that these weaker pathways may still be of biological 

significance given the ample supporting evidence in the literature. Therefore, we further 

extracted the shared pathways and modules at a nominal p value cutoff of p<0.05, and defined 72 

suggestive gene sets as shared between T2D and AD. These gene sets are characterized by 
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annotation such as apoptosis pathways, regulation of insulin-like growth factors, WNT signaling, 

glycosphingolipid metabolism, actin cytoskeleton regulation, respiratory electron transport, 

glycan degradation. 

 

Merging of the overlapping T2D and AD-associated gene sets into non-overlapping supersets 

 Since the pathway and gene modules come from a variety of sources, it is possible that 

some of these gene sets overlap in member genes as well as functional annotation. To account 

for this redundancy, we merge the shared AD-T2D gene sets (including both significant and 

suggestive sets discovered in the above analyses) with >30% member gene overlap into 42 

relatively independent supersets. We confirmed that 39 of these supersets retained significant 

enrichment for both AD and T2D GWAS signals at a nominal p-value of p<0.05 and 1 superset 

retained significance at a Bonferroni-corrected p<0.05 in the round of SSEA.  

 As summarized in Table 3, the shared supersets were associated with processes such as 

metabolism (insulin like growth factor activity regulation, cholesterol biosynthesis, PPAR 

signaling), immune regulation, cell cycle regulation and apoptosis, transport, ECM-related 

functions, autophagy, and cell communication or cell signaling (MAPK signaling, JAK STAT 

signaling).  

 

Identification of key network drivers for the shared supersets between AD and T2D 

 To pinpoint the most influential regulatory genes in the AD-T2D shared supersets, we 

used tissue-specific Bayesian network models from adipose, brain, liver, and skeletal muscle 

tissues. We mapped our T2D and AD-associated supersets to determine key driver genes based 

on the Bayesian network topology. A key driver was defined as a gene that has an over-
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representation of genes in the T2D and AD-associated supersets in its network neighborhood. 

We identified 51, 18, 20, and 32 key drivers from the adipose, brain, liver, and muscle networks. 

The subnetworks for the top 5 key drivers for each tissue were visualized using Cytoscape 

(shown in Figures 3, 4, 5, and 6 for adipose, brain, liver, and muscle subnetworks, 

respectively).  

 

The adipose subnetwork (Figure 3) connected immune system functions including interferon 

and cytokine signaling with FC gamma R mediated phagocytosis and keratan sulfate 

biosynthesis and degradation via key drivers AIF1, GPM6B, RTP4, OAS2, and IFI44. The brain 

subnetwork (Figure 4), orchestrated by key drivers SERPING1, CYP1B1, OMD, CTGF, and 

ADORA2A, mainly regulates core matrisome and proteoglycan production, G alpha S signaling 

events, nucleotide-like purinergic receptor function, and keratan sulfate degradation and 

biosynthesis. The liver subnetwork (Figure 5) centered at key drivers C1QC, CSF1R, HLA-F, 

IFIT1, and LILRB3 primarily represents immune system regulation including the complement 

pathway, endosomal vacuolar pathways, antigen processing and presentation, FC gamma R 

mediated phagocytosis, natural killer cell-mediated cytotoxicity, interferon signaling, and 

interactions between lymphoid and non-lymphoid cells. The muscle subnetwork (Figure 6) 

containing key drivers HLA-DRB1, MMT00074772, PCOLCE2, PLAC8, and POSTN is enriched 

for genes involved in antigen processing and presentation, allograft rejection, ECM, and 

chemokine signaling pathways. 

 

Identification of pathways downstream of T2D and upstream of AD  
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 To test the hypothesis that some downstream pathways perturbed after the onset of T2D 

can be causal for AD, we collected T2D transcriptome signatures from different tissues and 

obtained 2956, 5471, 2793, 596, and 1547 differentially expressed genes as T2D transcriptome 

signatures in adipose tissue, brain, islet, liver, and muscle, respectively. Of the supersets shared 

between T2D and AD in the genetic analysis, 25 supersets significantly overlapped with the T2D 

transcriptome signatures at a Bonferroni-corrected p-value < 0.05 (Table 5).  In addition, 27 

(42%) AD modules and 70 (45%) T2D modules from the genetic analysis significantly 

overlapped with the T2D transcriptome signatures. These results support that transcriptome 

profiling can capture causal pathways detected from genetic studies. The biological pathways 

and coexpression modules that are genetically associated with AD and significantly overlap with 

T2D transcriptome signatures are listed in Table 6. As shown in Figure 7, specific overlaps exist 

between gene sets that are genetically associated with AD or T2D, and between these genes sets 

and T2D transcriptome signatures. In particular, the pathways that are downstream of T2D, as 

evidenced by significant perturbation at the transcriptome level but lack of evidence for genetic 

perturbation in T2D GWAS, but are putatively causal for AD based on AD GWAS, include 

annotations such as toll endogenous pathway, T-cell receptor (TCR) pathway, hematopoietic cell 

lineage, phagocytosis, NGF signaling, and calcineurin signaling. 

 

Discussion 

 To better understand the shared the molecular mechanisms between AD and T2D, we 

conducted a highly integrative analyses leveraging a multitude of genetic and genomic data. The 

aggregation of diverse types of data allowed us to identify diverse biological processes common 

to both diseases and to support a causal role of T2D in AD development. Our systems-level 
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investigation revealed both previously implicated pathways such as antigen processing and 

presentation, interferon signaling, overall immune regulation and adaptive immune function, 

PPAR signaling, and IGF activity regulation, as well as novel processes such as oxidative 

phosphorylation and respiratory chain function, cell cycle processes, MAPK signaling, 

autophagy regulation, cell adhesion molecules, and extracellular matrix-related functions in the 

pathogenesis of both diseases. Our network analysis revealed tissue-specific key regulators of 

these shared pathways, which may serve as effective targets to mitigate these common 

debilitating diseases. 

 

Known Biological Pathways Involved in AD and T2D 

 Among the shared pathways identified through our integrative study, immune and 

inflammatory signaling are one of the most well characterized similarities between AD and T2D 

pathologies. Both AD and T2D are diseases associated with a chronic inflammatory state. 

Obesity and metabolic dysregulation are strongly linked to insulin resistance, hypertension, 

dyslipidemia, and increased levels of pro-inflammatory adipokines released by adipose tissues. 

Type 2 diabetes is known to be strongly associated with obesity, as well as highly correlated with 

high circulating levels of inflammatory compounds, particularly CRP (C-reactive protein) and 

IL-6 (interleukin-6)28. AD development is also characterized by a state of systemic inflammation, 

leading to an increase of pro-inflammatory factors as well. This chronic inflammatory state can 

reduce the ability of the body to clear beta amyloid plaque buildup, leading to neuronal damage 

and further increasing the levels of inflammatory mediators in circulation. Ultimately, when 

inflammatory signaling is dysregulated in various organs or tissues, this can lead to progression 

of a variety of diseases, from T2D and AD to cancer and cardiovascular disease. Because 
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inflammatory factors and other immune regulators are released into the bloodstream, immune 

dysregulation can potentially have a systems-wide effect and can manifest as the nexus of a host 

of complex diseases and comorbidities. As multiple shared gene sets were found to be enriched 

with immune signals in our data-driven genetic analyses, our findings not only provide further 

support for the previously discovered immune connection between AD and T2D, but poses 

immune signaling as causal mechanisms for both diseases based on genetic evidence. 

 An increasing volume of evidence demonstrates that insulin signaling abnormalities and 

insulin resistance, the hallmark of T2D, can play a role in AD as well. Insulin receptors are 

selectively expressed in certain brain regions, including areas that are involved in memory 

formation29. Studies suggest that insulin may be involved in the processes of memory function, 

as well as play roles in regulation of amyloid precursor protein and beta-amyloid levels in the 

brain29. It has also been conjectured that insulin plays a role in the transport of beta-amyloid 

proteins and obstructs its degradation and eventual clearance from the brain29. Insulin-sensitizing 

actions throughout the body seem to be modulated by PPAR-gamma (peroxisome proliferator-

activated receptor gamma), a nuclear receptor that plays essential roles in adipocyte 

differentiation, as well as other developmental and metabolic processes throughout the body. 

PPAR agonists, a common medication used to treat T2D, have also been shown to exert 

neuroprotective effects as well and slow both the onset and the progression of AD30. It is thought 

that PPAR gamma alleviates the symptoms and slows the progression of AD by downregulating 

inflammatory processes that occur in the AD brain31. With multiple studies pointing to the 

neuroprotective effects and insulin-sensitizing actions of PPAR agonists, our study further point 

to a causal role of PPAR signaling in driving both T2D and AD pathologies. 
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 Impaired IGF (insulin like growth factor) signaling and impaired insulin receptor 

function are pathophysiological conditions that characterize both T2D and AD. As discussed 

earlier, the impairment of IGF-1 and proper insulin signaling prevents the degradation of beta-

amyloid protein aggregations in the brain32. In the case of insulin resistance, insulin competes 

with beta-amyloid for the insulin-degrading enzyme as well, leading to reduced beta-amyloid 

clearance and sustained hyperinsulinemia conditions in the brain as well32. Insulin signaling 

appears to be central to the development of both diseases, both according to preexisting literature 

and to our data-driven analysis.  

 

Novel Biological Pathways Involved in AD and T2D 

 Our data-driven analysis also uncovered novel processes shared between AD and T2D 

such as oxidative phosphorylation and respiratory chain function, cell cycle processes, MAPK 

signaling, autophagy regulation, cell adhesion molecules, and extracellular matrix-related 

functions. While these biological pathways have not yet been identified or well-characterized in 

the literature as processes connected to both AD and T2D, they are biologically plausible and 

warrant future study. 

 A potential novel connection between AD and T2D as identified by our study is the 

involvement of mitochondrial respiratory dysfunction in both diseases, as well as many other 

complex aging-related diseases33. Mitochondrial dysfunction plays a largely mechanistic role in 

aging and the development of complex diseases, mainly in the generation of reactive oxygen 

species and subsequent oxidative stress and metabolic dysregulation that ensues33. Mitochondrial 

malfunction has also been shown to impair autophagy, a process in which damaged or aged 

cellular components are degraded, which further contributes to the aging process and the 
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development of age-related diseases33.  Furthermore, the frequency of mutations in 

mitochondrial DNA may be as high as 1/5000 in the adult population34, pointing to possible 

genetic factors at play, particularly at the mitochondrial function loci, in the process of complex 

aging-related disease development. As T2D and AD both affect considerably large proportions 

of the aging population, our integrative genomics pipeline seems to accurately capture this aspect 

shared by both diseases, and may provide a causal explanation for this similarity between AD 

and T2D. 

 Cell cycle processes were also found to be pathways associated with both T2D and AD in 

our analysis. Pathogenic aggregation of amyloidogenic proteins as a result of protein misfolding 

characterize both AD and T2D35. Beta-amyloid peptide aggregations lead to eventual 

degradation of neural tissue and loss of synaptic connections in AD, while islet amyloid 

polypeptide (IAPP) is one of the major products secreted by pancreatic β cells and major 

contributing factors to the destruction of islet cells in T2D35. The tumor suppressor p53 is 

involved with cell cycle and apoptosis regulation, and is a known amyloidogenic protein that 

promotes the formation of amyloid oligomers and fibrils in the event of misfolding35. While p53 

dysregulation is mostly implicated in the pathophysiology of cancers, studies have also shown 

that p53 is involved in both AD and T2D as well, specifically in the upregulation of its apoptotic 

activity in the brain and pancreatic β cells respectively36; 37. According to our results, apoptotic 

pathways were also shared between T2D and AD. These convergent findings of upregulation of 

p53 activity in both T2D and AD pathologies as well as the amyloidogenicity of p53 in the event 

of protein misfolding poses an intriguing causal mechanism in both diseases. While AD and T2D 

disease conditions are characterized by increased p53 activity as a result of amyloid protein 
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aggregation in brain and pancreatic tissue, it seems that p53 itself could be involved in further 

contributing to the pathogenesis due to its amyloidogenicity. 

 The insulin signaling involves a complex protein cascade, which includes MAPK 

(mitogen activation protein kinase)38. MAPK is associated with most of the metabolic effects of 

insulin, including uptake of glucose and amino acids, inhibition of fat breakdown, and the 

synthesis of fatty acids in the liver. Interestingly, the physiological effects of insulin in the brain 

are different from its metabolic effects in the periphery. Instead of regulating glucose uptake, the 

central effects of insulin include altered neurotransmitter release, neuronal growth, tubulin 

activity, and synaptic plasticity39. In this way, insulin activity can adversely affect neuronal 

function, primarily by inducing susceptibility to various stress effects39. Thus, chronic 

hyperinsulinemia, a hallmark of T2D, appears to play pathogenic roles both in T2D and AD, 

with insulin exerting different central and peripheral effects that are consistent with both disease 

conditions. MAPK signaling pathways that were found in our analysis could be related to the 

dysregulated insulin signaling that occurs in both disorders and suggest an involvement of 

specific aspects of the insulin signaling cascade as causal mechanisms of both diseases as 

supported by genetic evidence. 

 Autophagy, the catabolic process responsible for the breakdown of damaged or aged 

cellular components, has been shown to exhibit impaired efficiency in affected tissues of both 

T2D and AD40. Autophagy regulation is dependent on age, as well as AMPK (AMP activated 

protein kinase) and mTOR (mammalian target of rapamycin) signaling pathways40. Medications 

such as metformin, the most commonly prescribed T2D treatment, are also AMPK- activators 

and are known to diminish the symptoms of T2D and other age-related metabolic diseases40. 

Furthermore, additional studies also demonstrate that alterations in the autophagy pathway also 
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cause synaptic damage in both AD and T2D41. These findings from existing literature are 

consistent with our data-driven results, and again suggest that autophagy pathway genes could 

potentially act as susceptibility loci for both T2D and AD. 

 As one of the most consistent findings across different analyses carried out in our study, 

ECM-related pathways were captured as multiple gene sets and tissue-specific networks shared 

between AD and T2D. Although little literature exists to highlight ECM as a shared mechanism 

between AD and T2D, the importance of ECM in both metabolic diseases and brain disorders 

have been noted very recently. For instance, our previous data-driven research indicates that 

ECM plays a central role in driving and regulating the metabolically connected cardiovascular 

disease and type 2 diabetes, as well as functions as key regulators of cognitive functions42-45. 

Structural components of the ECM have been shown to be important orchestrators of synaptic 

plasticity in the brain, as well as play an important role in regulation of neurite outgrowth, 

supporting the connection between ECM perturbation and neurodegenerative diseases46. 

Disruption of ECM-involved gene networks and pathways have also been found to be important 

in promoting metabolic disease such as T2D and cardiovascular disease, likely through 

perturbation of cell integrity and cell communication pathways that are vital for vascular 

functions43. The cross-disease pathophysiological role of ECM has also been supported by the 

systemic perturbation of lipid metabolism, glucose homeostasis, and cognitive functions in 

knockout mouse models lacking key ECM proteins45. The role of the ECM and cell adhesion 

proteins in overall structural integrity and biological scaffolding could provide a systems-wide 

link between complex metabolic and brain diseases. 

 

Tissue-Specificity of Significant Coexpression Networks from SSEA 
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 From the AD genetic analysis, disease gene-enriched modules appear to have moderate 

overlap among different tissues. Immune function related coexpression networks with functional 

annotations such as “immune system”, “intestinal immune network for IGA production”, and 

“IL12-2 pathway” seem to have especially high overlap among various tissues. “Immune 

system” annotations represent 16 distinct modules found across four different tissues, 

specifically adipose tissue, liver, muscle, and the kidney medulla. “Intestinal immune network 

for IGA production” annotations represent 19 distinct modules found across five different 

tissues, including the liver, brain, gonadal white adipose tissue, kidney cortex, and kidney 

medulla. The “IL12-2 pathway” is found in six distinct modules and represented across five 

different tissues—the kidney medulla, kidney cortex, adipose, liver, and gonadal white adipose 

tissue. All other functional annotations of the coexpression networks found to be enriched with 

AD-associated genes do not exhibit as much cross-tissue overlap, and represent at most two 

different tissues. Given that AD is a disease primarily localized to the brain, the degree of tissue 

overlap seen in the biological pathways found to be perturbed in AD supports the possibility of a 

peripheral origin of AD, and suggests that multiple peripheral tissues relevant to metabolism may 

contribute to the development of AD, thus raising the likelihood of AD as a metabolic disease in 

addition to a neurodegenerative disorder.  

 T2D-associated coexpression networks as identified by our study show more cross-tissue 

overlap compared to the AD-associated gene modules. Annotation such as “immune system”, 

“antigen processing and presentation”, “respiratory electron transport and oxidative 

phosphorylation”, “fatty acid and cholesterol biosynthesis”, and “ribosome/translation” show the 

highest degree of cross-tissue representation. Modules associated with “antigen processing and 

presentation” are found in the brain, liver, muscle, adipose, and kidney medulla, modules 
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associated with “fatty acid and cholesterol biosynthesis” are found in the liver, adipose, muscle, 

and kidney medulla, modules with the annotation “immune system” are found in the brain, liver, 

kidney cortex, kidney medulla, and adipose, “respiratory electron transport and oxidative 

phosphorylation”-associated modules are found in the brain, adipose, muscle, omental, and liver, 

and “ribosome/translation”-associated modules are found in the adipose, brain, liver, omental, 

and gonadal white adipose tissue. Overall there appears to be tighter cross-tissue correlations 

among the different biological pathways in T2D, with most pathways present in multiple tissues. 

The exceptions are the “Alzheimer’s disease”-associated modules which are found only in the 

muscle, the “platelet activation, signaling, and aggregation” modules which are found only in the 

brain, “MAPK signaling”-associated modules which are found only in the kidney cortex, and 

“PPAR signaling pathway”-associated modules which are found exclusively in the muscle. The 

implication of multiple tissues engaging shared or different biological pathways to affect T2D 

further confirms the systems-level origin of this metabolic disease. 

 When examining the shared AD-T2D processes after merging overlapping pathways, we 

again observed both cross-tissue and tissue-specific properties. A few functional pathways 

appear to be highly conserved across tissues, including the “interferon signaling”, “Type I 

Diabetes Mellitus”, and “allograft rejection”, reflecting the systemic nature of immune function 

signals. Interestingly, perturbation of insulin like growth factor (IGF) pathways were identified 

to be specific to the brain in both AD and T2D, suggesting that brain IGF signaling, when 

genetically perturbed, may contribute to the two diseases. Again the involvement of a wide 

variety of tissues supports systems-wide perturbations that are genetic in origin in both diseases. 

 

Top Key Drivers of AD-T2D Subnetworks 
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 We identified numerous potential regulatory genes, termed key drivers, in tissue-specific 

gene subnetworks governing the genes and pathways shared between AD and T2D. Key drivers 

found in the adipose network include: AIF1 (involved in the immune system/fc gamma r 

mediated phagocytosis), GPM6B (involved in keratan sulfate degradation and biosynthesis), 

IFI44 (involved in interferon signaling and cytokine signaling in the immune system), OAS2 

(involved in interferon signaling), and RTP4 (involved in interferon signaling). Overall, the top 

key drivers and their respective subnetwork genes seem to be predominantly involved in immune 

regulation, although the keratan sulfate synthesis and degradation subnetwork suggests potential 

association of adipose key driver genes with cellular processes such as protein ligand 

recognition, axonal guidance, cell motility, and an array of other nervous system functions47.  

The GPM6B subnetwork in particular deals primarily with keratan sulfate biosynthesis and 

degradation. This particular functional annotation found in the adipose gene subnetwork is, to 

our knowledge, a novel connection between AD and T2D. Keratan sulfate is a structural 

carbohydrate synthesized in the CNS typically associated with cell-surface or extracellular 

matrix proteins. It participates in neuronal development and glial scar formation in the event of 

CNS injury. GPM6B and OMD—another key driver found in brain tissue—are both found to be 

associated with keratan sulfate synthesis and degradation. Extracellular protein misfolding and 

aggregation contributes significantly to both AD and T2D pathologies. Extracellular chaperones 

are likely to play an important role in maintaining “proteostasis”, or protein homeostasis and 

preventing amyloidosis from occurring48. Mainly extracellular proteins maintain proteostasis by 

facilitating clearance of protein aggregates via endocytic receptors and monitoring the 

extracellular fluid for the presence of misfolded proteins48. In addition to its potential role in 

facilitating amyloidogenic protein clearance, extracellular matrix pathways have also been 
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identified by another systems biology study as a pathway shared in T2D among diverse ethnic 

groups43. Although initially thought to function predominantly in the cornea, keratan sulfate is 

actually synthesized in many tissues throughout the body, including cartilage, bone, oocytes, the 

epidermis, synaptic vesicles, and the brain47. In the brain, keratan sulfate in microglia is reduced 

during inflammation and also reduced in the cerebrum due to Alzheimer’s disease47.  This 

suggests a potential link between production of inflammatory cytokines and the synthesis of 

keratan synthesis. The upregulation of certain glycoproteins such as lumican, vasorin, and retinol 

binding protein-4 were identified in a clinical study in T2D patients with diabetic nephropathy, a 

common and serious complication associated with T2D49. An altered glycoproteome was 

determined by the study to be a hallmark of this condition, and glycoprotein biomarkers were 

shown to be a potential clinical method for predicting onset of diabetic nephropathy. As keratan 

sulfate seems to present a link between inflammatory aspect and the altered blood glycoproteome 

aspect of AD and T2D respectively, it seems worthwhile to investigate this biological molecule 

further and unravel its potential causal impact on the development of both diseases. 

 The liver key driver subnetworks constructed for both AD and T2D are heavily involved 

in immune function, just like the adipose key driver networks. Key drivers found in the liver 

subnetwork include: C1QC (involved in the triggering of the complement system and 

complement pathway), HLA-F (involved in the endosomal vacuolar pathway/antigen processing 

and presentation), CSF1R (involved in fc gamma r mediated phagocytosis and natural killer cell-

mediated cytotoxicity), IFIT1 (involved in interferon signaling), and LILRB3 (involved in 

interactions between lymphoid and non-lymphoid cells, as well as the adaptive immune system). 

Genetic variants in genes HLA-DRB1 and HLA-DQB1, part of the HLA-F and C1QC 

subnetworks respectively, are significantly associated with both AD and T2D, according to AD 
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and T2D GWAS data. HLA-DRB1 was found to be a member gene belonging to five significant 

supersets identified to be enriched with T2D and AD genes as well, while HLA-DQB1 was found 

to belong to two significant supersets. Different alleles of the HLA-DQ and HLA-DR loci have 

been found to be associated with an increased risk of developing type 1 diabetes (T1D), 

specifically with the autoimmunity aspect of the disease50-52. Interestingly, since these genetic 

loci typically associated with T1D were captured in our analysis as significantly associated with 

T2D and AD as well, our results suggest a potential connection of autoimmunity with T2D and 

AD. Islet cell autoimmunity, which typically characterizes T1D, has been found in 10-15% of 

T2D patients as well53, suggesting the possible existence of an autoimmune form of T2D. 

Additionally, neurons exhibiting apoptotic features have been found to contain abnormal 

vascular-derived immunoglobulins, supporting the conjecture that neuronal cell death in AD may 

be induced by autoimmunity54. Coupled with our finding on autoimmunity genes as key 

regulators of both diseases through the data-driven systems biology study, it is highly likely that 

this pathway plays a causal role in both diseases. 

 The muscle key driver subnetworks appear to connect ECM related processes with 

autoimmunity. Key drivers found in the muscle subnetworks are: HLA-DRB1 (involved in 

antigen processing and presentation, as well as allograft rejection), PLAC8 (involved in the 

matrisome and the chemokine signaling pathway), PCOLCE2 (involved in the matrisome and 

collagen formation), MMT00074772 (involved in the matrisome and collagen formation), and 

POSTN (involved with the core matrisome and glycoproteins). The immune and inflammatory 

response pathways are still represented in the muscle subnetworks, as shown by the antigen 

processing and chemokine signaling pathway annotations for the HLA-DRB1 network, but most 

of these key driver subnetworks detected appear to be involved with the ECM. Interestingly, 
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HLA-DRB1 was detected to be a key driver in the muscle subnetworks, as well as determined as 

an important part of the liver subnetworks associated with both T2D and AD. HLA-DQB1 (also 

identified as a significant AD and T2D-associated node in the liver subnetworks) was also found 

to be part of the HLA-DRB1 subnetwork in the muscle. The connection between these immunity 

genes with ECM is intriguing. 

 Finally, the brain subnetwork annotations revealed that many key regulators were heavily 

involved in the ECM as well. The key drivers found in the brain subnetwork include: 

SERPING1, CYP1B1, CTGF (all related to core matrisome and proteoglycan function), OMD 

(related to keratan sulfate degradation and biosynthesis), and ADORA2A (g alpha s signaling 

events and nucleotide like purinergic receptors). OMD is a key driver involved in keratan sulfate 

degradation and biosynthesis, which is a pathway represented in both adipose and brain tissues, 

again supporting the novel connection between this pathway and ECM-related processes in 

general and the onset of AD and T2D. Further experimental validation of the key regulator genes 

identified in this study could yield promising results into our understanding of both diseases. 

 

Disease Association Strengths in the Shared Subnetworks  

 Despite the sharing of a number of gene subnetworks between AD and T2D, we found 

that the member genes in these subnetworks do not necessarily demonstrate similar genetic 

association strengths for the two diseases. For instance, in adipose tissue, genetic variants of 

OASL and AIF1 appear to show stronger association with AD than with T2D, as can be seen by 

the much larger node sizes in the AD subnetwork; the key driver OAS2 appears to be much more 

significantly associated with T2D than with AD; PSMB9, on the other hand, appear to be highly 

associated with both AD and T2D. Similar results can be observed in the other tissue 
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subnetworks. This observation may indicate that perturbations of these subnetworks by genetic 

variants in different genes have non-equivalent effects on the two diseases. 

 

Similarities and Differences of Different Tissue Analyses 

The results of our analyses of the different tissues reveal interesting commonalities as 

well as tissue-specific implications. In terms of our key driver analysis, the muscle and brain key 

driver networks show more extracellular matrix (ECM), core matrisome (ECM constituents and 

ECM-modifying enzymes), and proteoglycan (found in a lot of connective tissues) related 

process involvement, while the liver and adipose key driver networks are heavily involved in 

immune functions, such as cytokine and interferon signaling. In terms of the subnetwork 

structure for both T2D and AD, differences exist in strength of disease association at the tissue-

specific level. In adipose tissue, the subnetwork member genes appear to show relatively similar 

association strength (according to disease GWAS p-values) in regards to both AD and T2D, 

implying that molecular pathways perturbed in adipose tissue appear to be significantly affected 

in both diseases. The brain subnetworks reveal a number of genetic nodes that appear to be 

highly associated with both AD and T2D, including HLA-DRB1, which is seen in five of the 

supersets shared between AD and T2D. The immune aspect of AD pathology again appears to be 

heavily represented in the brain subnetworks as several immune genes show high GWAS 

significance, while in terms of T2D, potential more widespread effects involving TMEM40 and 

SLEC22A18 appear to be involved. The liver subnetworks, which regulate largely immune 

functions, show more distinctly different subnetwork features between T2D and AD. Since genes 

that are involved in the immune regulatory process appear to be differentially associated with the 

two diseases in the liver subnetworks, it appears that different aspects of immune function may 
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be involved in the two disease pathologies, although immune signals are strongly captured in 

genetic analyses of both AD and T2D. The muscle subnetworks show better agreement between 

genes associated with both diseases, in terms of immune function related genes. The significant 

genetic nodes seen in the AD and T2D subnetworks appear to be involved in mostly different 

biological functions and include biological annotations such as signal sequence receptors, in lipid 

metabolism, Ras oncogene family, and calcium/calmodulin-dependent protein kinases, although 

most of the genes seem to be involved in general signal transduction cascades. Considering our 

KDA results and the visualization of each key driver’s subnetwork structures, the results from 

muscle and adipose tissue align better with each other while those from the brain and liver 

tissues show more differences in terms of disease associations. These tissue-specific similarities 

and differences at the subnetwork structure level could suggest that biological networks in brain 

and liver tissues are more similarly perturbed in AD and T2D than those in muscle and adipose 

tissues. In terms of AD pathology, these results may highlight the strong association previously 

found between cognitive decline and metabolic dysregulation, as the liver is the primary organ 

responsible for maintaining glucose homeostasis. Perturbations in the body’s ability to 

metabolize glucose could in turn be driving aberrations in brain as well, as evidenced by the 

crucial role of IDE (insulin degrading enzyme) in preventing beta amyloid formation in the brain 

as well as promoting glucose tolerance. 

 

Pathways and Networks Downstream of T2D but Causal for AD  

 Our GWAS-based analysis strongly support that genetic perturbation of certain pathways 

and gene networks contribute to both AD and T2D. To explore whether genes perturbed as a 

result of T2D onset were also responsible for driving downstream development of AD as an 
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additional mechanistic connection between the two diseases, we used T2D transcriptome 

signatures which can capture both causal (upstream) and reactive (downstream) processes 

relative to T2D status.  

 We found that genes in the toll endogenous pathway, T cell receptor (TCR) pathway, 

hematopoietic cell lineage, phagocytosis, NGF signaling, and calcineurin signaling pathways that 

were likely downstream of T2D due to the lack of causal inference based on our T2D GWAS 

analysis, but were among the AD genetic pathways based on the AD GWAS analysis. These 

processes likely contribute to the sequential development of AD after development of T2D.  

 T-cell receptor signaling, or TCR, pathways were identified through our analysis to be 

processes downstream of T2D development and genetically causal for AD. This finding reflects 

the robust immune signals captured for the AD analysis through both the SSEA and KDA 

portions of our pipeline, suggesting that these immune-related modules are gene networks 

strongly perturbed in both AD genetic level and in T2D after disease onset. Chronic low-grade 

inflammation, or widespread activation of the innate immune system involving upregulated T-

cell signaling processes, is a characteristic of T2D pathogenesis and is also closely associated 

with complications such as dyslipidemia and atherosclerosis55. Inflammatory markers such as C-

reactive peptide (CRP) and interleukin-6 (IL-6) levels have also been shown to be predictive of 

T2D development, and drugs with anti-inflammatory effects have been shown to reduce both 

serum levels of inflammatory compounds as well as glycemic index, potentially decreasing the 

risk of T2D development55. These findings suggest that inflammation and increased activation of 

innate immune signaling and T-cell response plays a pathogenic role in T2D, and the results of 

our analysis further implicate T2D-driven inflammatory changes may be involved in sequential 

development of AD. Convergence of immune pathway perturbations in the event of T2D 
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development on the same biological pathways causally involved in AD could be subsequently 

driving AD following T2D development. Furthermore, defects in T-lymphocyte function and 

signaling result in global immune response changes as well, including abnormal cytokine 

profiles, signal transduction, ECM interaction, and adhesion molecule expression56. The result of 

these disturbances in immune function is increased susceptibility to a host of metabolic and 

neurodegenerative diseases. Ultimately, this increased risk, conferred following development of 

T2D, could converge on preexisting genetic risk to drive AD onset. 

 Phagocytosis pathways were also detected as biological processes perturbed in T2D and 

causal for AD development. This pathway captured in our analysis could be reflecting the 

dysregulation of autophagy and mitochondrial function seen in both diseases. Normal autophagy 

processes, which involves mTOR and AMPK signaling pathways, is dependent on cell metabolic 

status40. Drug agonists of AMPK, particularly metformin, are known to attenuate the symptoms 

of T2D and restore insulin sensitivity and glucose homeostatic balance to some extent. Although 

the mechanism of action of AMPK activators in improving insulin resistance symptoms in T2D 

patients has yet to be fully understood, the efficacy of metformin and other AMPK activators that 

mimic the effects of caloric restriction and improve metabolic dysregulation characteristic of 

T2D suggests a central role of AMPK pathways in T2D pathophysiology. Perturbations of 

AMPK pathways in T2D could subsequently be affecting autophagy pathways and lead to 

alterations of proteome homeostasis and aberrant protein aggregation57.  Additionally, autophagy 

was found to be protective in neurons by promoting degradation of damaged proteins and 

organelles58. The phagocytotic pathways detected as causally involved in AD and downstream of 

T2D development suggests that perturbation of AMPK signaling in T2D could be affecting 
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autophagy pathways and subsequently obstructing clearance of harmful protein aggregates that 

could be driving AD onset. 

 Calcineurin signaling pathways were also detected as an overlapping pathway between 

AD causal processes and T2D transcriptome profile gene signatures. Dysregulation of calpain, an 

important cellular calcium sensor, and calcineurin signaling pathways has been implicated in the 

pathogenesis of numerous metabolic disorders such as cardiovascular disease, hypertension, 

diabetes, and Alzheimer’s disease. Although the role of calpain-calcineurin signaling cascades in 

T2D pathology has yet to be fully elucidated, there is considerable evidence pointing to greatly 

increased risk of new onset diabetes after transplantation as a result of immunosuppressive 

medications59. Calcineurin inhibitors given to treat insulin resistance developed as a result of 

new onset diabetes mellitus have been shown to acutely improve insulin sensitivity, implicating 

calcineurin signaling pathways as interacting with insulin signaling processes. In addition to the 

potential convergence of calcineurin and insulin signaling pathways in the event of 

immunosuppression, other lines of evidence also demonstrate involvement of calcineurin 

pathways in neurons as well. Recent studies have shown that calpain is directly involved in the 

regulation of calcineurin activity through proteolysis events in glutamate-stimulated neurons60. 

Calpain-mediated proteolytic cleavage of calcineurin upregulates phosphatase activity, and 

ultimately promotes neuronal cell death, a defining hallmark of AD and neurodegenerative 

disease in general 60. As networks significantly enriched for calcineurin signaling pathways were 

identified as causal for AD as well as enriched for T2D signatures, this provides support for 

calcineurin signaling processes as a potential mediator between T2D pathogenesis and d 

development of AD. 
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 Interestingly, NGF or nerve growth factor signaling was also found to be the functional 

annotation of an AD-associated module significantly enriched for T2D differentially expressed 

genes found across multiple tissues, specifically the islet and the muscle. NGF signaling, or 

neutrophic factor signaling, which is known to be impaired in both AD and T2D61. As this 

particular pathway was identified through performing an enrichment analysis of AD-associated 

modules for tissue-specific genes differentially expressed in T2D, it seems likely that this 

particular module may be genetically perturbed as a result of T2D, thus driving AD development 

downstream. Thus, perturbation of this module during T2D can be interpreted as a risk factor for 

AD. As growth factors such as BDNF (brain-derived neurotrophic factor), IGF-1 (insulin-like 

growth factor 1), and NGF have been shown in clinical studies to be neuroprotective, 

perturbation of these cellular pathways in T2D could trigger a cascade of neurodegenerative 

events eventually leading to AD62.  

 Cancer-related pathways, such as apoptosis, VEGF signaling, and MAPK signaling, as 

well as overall immune function and regulatory pathways seem to be pathways that are strongly 

perturbed in both AD and T2D, as well as perturbed after T2D onset and prior to AD 

development. These biological processes may also be interpreted as pathways that may become 

dysregulated as a result of T2D development, as they are represented in the T2D signatures 

identified across multiple studies, as well as pathways that could be causal for both T2D and AD, 

as they are represented in both AD and T2D supersets enriched for T2D and AD GWAS genes. 

As these pathways and coexpression networks were identified to be enriched for both signatures 

downstream of T2D development as well as those genetically causal for AD and T2D, there is 

the possibility that some of these coexpression networks and biological pathways contain 

susceptibility loci as well as genetic loci that are altered as a result of T2D onset. These 
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perturbations can then subsequently contribute to driving AD onset downstream as well. Since 

many of these pathways and gene networks identified to contain T2D signatures as well as causal 

AD and T2D genes converge on immune processes and cancer-related pathways, it seems that 

genetic associations with other disease such as cancer may be captured by these modules and 

networks as well. This makes intuitive sense, as development of cancers have been linked to 

metabolic disease and dysregulation as well, such as that seen in T2D and AD pathologies63. 

T2D, AD, cancer, and chronic metabolic diseases, share many similar characteristics including 

excessive generation of free radicals, oxidative DNA damage, apoptotic pathway dysregulation, 

and mitochondrial DNA abnormalities. Oftentimes, individuals affected by one of these 

conditions also experience comorbidities with other cancers, metabolic diseases, or 

neurodegenerative diseases. Since the disease burden of these conditions is enormous, and 

presents both greatly diminished quality of life to patients who suffer from these conditions as 

well as tremendous economic strain to our healthcare system, a systematic analysis of genetic 

loci linked to these conditions is necessary to better understand the intricate relationships 

between these comorbidities. 

 

Advantages and Limitations of the Study 

 This study integrates a large amount of genomic and genetic data, and provides a data-

driven approach to understanding the genetic architecture of both AD and T2D. Our approach 

involving the identification of coexpression networks and biological pathways potentially 

involved in the two diseases and the subsequent network modeling to identify disease key drivers 

provides a holistic, systems-wide outlook on AD and T2D. Furthermore, as both diseases can be 

classified as metabolic disorders and have wide-ranging effects throughout the body, an 
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approach such as ours is needed to fully elucidate how the two diseases may be interconnected 

and provide novel insights into genes and biological processes in multiple tissues involved in 

both diseases. However, given our data-driven methods, it is difficult to substantiate the 

involvement of our detected novel biological pathways and key driver genes in AD and T2D 

using purely computational techniques. Thus, validation in a laboratory setting is needed to fully 

understand the biological implications of our findings. Some key genes identified as important 

for driving both AD and T2D pathologies that would be interesting to validate in a laboratory 

setting to are GPM6B and OMD – the keratan sulfate metabolism genes found to be key drivers 

in the adipose and brain tissue respectively. As the brain and adipose tissue are tissues centrally 

affected in neurodegenerative and metabolic diseases respectively, it is interesting that key 

drivers that to orchestrate similar biological processes were found to be in involved in these 

tissues.  Extracellular matrix related processes were also robustly indicated in both the SSEA and 

KDA portions of the analysis for both T2D and AD, and has been suggested to play a critical 

role in maintaining protein homeostasis and clearing away misfolded proteins and protein 

aggregates. It would be interesting to validate some shared key driver genes involved in ECM 

and proteosome processes such as PCOLCE2 and POSTN (found in the muscle), as well as 

SERPING1, CYP1B1, and CTGF (found in the brain). Knockdown and overexpression of these 

genes in mouse models of AD and T2D with matched controls could provide experimental 

insight into the roles of these key driver genes in terms of driving the two disease pathologies. 

 

Conclusions 

 In summary, through a comprehensive integrative genomics study incorporating genetic, 

transcriptome, functional genome, pathways, and molecular networks, we examined the shared 
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molecular mechanisms between two interconnected diseases, T2D and AD.  We provide 

compelling evidence supporting that genetic risks of these two diseases drive perturbations in a 

large number of pathways such as immune signaling, cell adhesion, ECM, PPAR signaling, cell 

cycle regulation, autophagy, and oxidative phosphorylation. Moreover, molecular processes 

downstream of T2D, such as NGF signaling, NK dynamin pathway, core matrisome function, 

calcineurin signaling pathways, and various immune pathways, were found to be putatively 

causal for AD, supporting a sequential role of T2D in driving AD onset. Finally, the ECM 

component appears to be a novel recurring pathway found in our analysis that is captured across 

multiple tissues, and could open up a new direction for researching the connection between 

different complex human diseases. With the emergence of systems biology, studying diseases in 

a more integrated and comprehensive way has yielded more possibilities for identifying causal 

genes underlying diseases, discovering drug targets for therapeutic interventions, and bringing us 

closer to the era of personalized medicine. With compelling evidence from our data-driven 

systems study supporting multiple shared pathways between T2D and AD, developing 

pharmacological therapies that can simultaneously treat both diseases serves as an important 

future direction in achieving effective reduction of the health burden imposed by these common 

complex diseases. 
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Tables 

 

Table 1. Network resources. Datasets from several studies were used to construct coexpression networks 

used in the analysis. The references and descriptions for the datasets are listed in the chart below. 

Tissue Species Dataset descriptions References 

Adipose tissue Human 1,675 individuals from two Icelandic cohorts Emillson, 
2008 

Mouse C57BL/6J x A/J mouse cross Derry, 2010 
Mouse C57BL/6J x C3H ApoE -/- mouse cross Wang, 2007 

Mouse C57BL/6J x C3H wildtype mouse cross Schadt, 2008 
Mouse C57BL/6J x BTBR Lepob mouse cross Tu, 2012 

Blood Human 1,675 individuals from two Icelandic cohorts Emilsson, 
2008 

Brain Mouse C57BL/6J x A/J mouse cross Derry, 2010 
Mouse C57BL/6J x C3H ApoE -/- mouse cross Wang, 2007 

Yang, 2006 
Mouse C57BL/6J x BTBR Lepob mouse cross Tu, 2012 

 Human 57 subjects ranging from 5.7 weeks post-conception to 
82 years; samples taken from 16 regions and from both 

hemispheres; 1,340 samples total 

Kang, 2011 

Heart Mouse C57BL/6J x A/J mouse cross Derry, 2010 
Islet cells Mouse C57BL/6J x BTBR Lepob mouse cross Tu, 2012 
Kidney Mouse C57BL/6J x A/J mouse cross Derry, 2010 
Liver Human 427 individuals Schadt, 2008 

Mouse C57BL/6J x A/J mouse cross Derry, 2010 
Mouse C57BL/6J x C3H ApoE -/- mouse cross Wang, 2007 

Yang, 2006 
Mouse C57BL/6J x C3H wildtype mouse cross Schadt, 2008 
Mouse C57BL/6J x BTBR Lepob mouse cross Tu, 2012 

Muscle Mouse C57BL/6J x A/J mouse cross Derry, 2010 
Mouse C57BL/6J x C3H ApoE -/- mouse cross Wang, 2007 

Yang, 2012 
Mouse C57BL/6J x C3H wildtype mouse cross Tu, 2012 
Mouse C57BL/6J x BTBR Lepob mouse cross Tu, 2012 
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Table 2. Top 20 representative functional categories showing significant enrichment for AD 

GWAS signals. Biological pathways or coexpression modules meeting a FDR cutoff <25% in our AD SSEA 

were taken and a gene ontology enrichment analysis was performed to identify the biological pathways represented 

by the modules. A total of 53 modules met the FDR cutoff and were determined to be significantly associated with 

AD disease genes as identified by GWAS. Only the top 20 most represented module annotations are shown. The 

ones shared with T2D in Table 3 are highlighted in bold. 

Annotations Modules Represented Tissues 
Represented 

 antigen processing cross 
presentation 

4386 muscle 

 calcineurin pathway M5940 N/A 

 cell-cell junction organization rctm0763 N/A 

 chemokine signaling pathway 5605, 4083, 26, 27 liver, kidney medulla 

 comp pathway 4386 muscle 

 cxcr4 pathway AD Positive N/A 

 cytokine signaling in immune 
system 

4351, 4139, 4351, 4139, 5605, 7123 liver, adipose 

 DNAPK pathway 4121 brain 

 ECM glycoproteins 4186 muscle 

 fc gamma r mediated 
phagocytosis 

4936 liver 

 HDL mediated li transport rctm0647, rctm0521 N/A 

 hematopoietic cell lineage 4568, AD Positive muscle 

 il12 2pathway 4416, 26, 5136, 87, 5405, 4998 kidney medulla, 
liver, gonadal white 
adipose tissue, 
kidney cortex, 
adipose 

 immune system 4080, 4344, 5054, 4911, 4483, 4416, 4080, 
4083, 5266, 4351, 4139, 4479, 5447, 4936, 
4911, 4289 

adipose, liver, 
muscle, kidney 
medulla 

 interferon signaling 7123, 4804 muscle, adipose 

 intestinal immune network for 
IGA production 

5266, 4479, 5532, 5136, 87, 5447, 5405, 
5315, 4998, 4833, 5366, 63, 5532, 5216, 
5366, 5656, 5315, 5659, 5330 

liver, brain, gonadal 
white adipose 
tissue, kidney 
cortex, kidney 
medulla, kidney 

 metabolism of lipids and 
lipoproteins 

rctm0647, 5354, rctm0239, rctm0521 adipose 

 metabolism of xenobiotics 
by cytochrome p450 

4148 islet 

ribosome rctm0493 N/A 

 TCR pathway 4483, 4568, 4344 muscle, adipose 
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Table 3. Top 20 representative functional categories showing significant enrichment for 

T2D GWAS signals. Biological pathways or coexpression modules meeting a FDR cutoff <25% in our T2D 

SSEA were taken and a gene ontology enrichment analysis was performed to identify the biological pathways 

represented by the modules. A total of 176 modules met the FDR cutoff and were determined to be significantly 

associated with T2D disease genes as identified by GWAS. Only the top 20 most represented functional categories 

are shown. The ones shared with AD in Table 2 are highlighted in bold. 

Annotation Pathways or Modules 
Represented 

Tissues 
Represented 

allograft rejection 5677, 7020, 7107, 183, 5348 adipose, liver 

Alzheimer's disease 4334, 7088 muscle 

antigen processing and 
presentation 

5016, 5768, 6919, 7040, 5459, 
4386, 5607 

brain, kidney medulla, 
liver, muscle, adipose 

cell cycle VFCturquoise, STCturquoise, 
ITCturquoise, 4091, 4230 

brain, liver 

complement and coagulation 
cascades 

4919, 4195, 4118, 4320, 4735, 
5014, 4750, CBCwhite, 4744 

brain, liver 

diabetes (maturity onset diabetes of 
the young, Type 1, Type 2) 

7136, 5768, 6919, 7040, 37, 5459, 
4820, rctm1011, M18312, rctm1014 

brain, kidney medulla, 
muscle 

drug metabolism cytochrome p450 4469, 4212, 4735, 4465, 5018, 
5014, 4750, 4744 

muscle, liver, brain 

extracellular matrix 4074, 5545 adipose, kidney 

fatty acid and cholesterol biosynthesis 4336, 4566, 4087, 7222, rctm0646, 
4308, 6675, 5428 

liver, adipose, muscle, 
kidney medulla 

GPCR signaling 4141, 4038, CBCyellow brain, adipose, islet 

HIV infection 4766, 4821, 4421, IPCorange, 4357 brain, liver 

immune system HIPlightyellow, STRdarkorange, 
5532, 5216, 6782, 5065, 4351, 
4139, 4083, 5266, 4139, 5447, 
4234, 6630, 110, 5266, S1Cblack, 
5656, 5136, 87, 5447  

brain, liver, kidney 
cortex, kidney 
medulla, adipose 

lectin pathway 5016, 4302, 37, 5212 brain, kidney medulla, 
adipose 

MAPK signaling M13191, M14631, M19888, M9670, 
52 

kidney cortex 

metabolism of lipids and 
lipoproteins 

5725, 4336, 4566, 4308, 4791, 
6675, rctm1380, rctm1381 

adipose, muscle, liver 

olfactory signaling pathway 5503, 5658 adipose, brain 

platelet activation signaling and 
aggregation 

4368, 4295 brain 

PPAR signaling pathways 5725, 7032, 4212, 4791 muscle 

respiratory electron transport/oxidative 
phosphorylation 

6649, IPCdarkgreen, 5498, 4683, 
4651, 4486, 4078, 7088, 4334 

brain, adipose, 
muscle, liver 

ribosome/translation 5671, 4124, 4457, 4452, 4026, 
5512, 4678, 4393, 4720 

adipose, brain, liver 
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Table 4. Top 20 representative functional categories of the merged supersets showing 

significant enrichment for both AD and T2D. The suggestive pathways or coexpression modules shared 

between AD and T2D were assessed for overlap, and those sharing at least 30% of genes were merged into 

relatively independent supersets. These supersets were then used to perform a second round of SSEA to confirm 

AD/T2D genetic enrichment. The top 20 functional categories over-represented in the 39 significant supersets 

shared between AD and T2D are listed. 

 
Annotation Modules Represented Tissues Represented 

 allograft rejection 7136, 7040,.., M12618 muscle, brain, adipose, kidney 

 antigen processing cross presentation M16005, 4386 muscle, adipose 

 apoptosis M9670,.. N/A 

 cell adhesion molecules rctm0567 N/A 

 cell cycle 5033, STCturquoise,.. brain 

 cholesterol biosynthesis 4932,.. liver 

 complement and coagulation cascades 4932,.. liver 

 core matrisome STCbrown brain 

 cytokine signaling in immune system M6910,.., 4634 blood 

 fatty acyl CoA biosynthesis 4212,.. muscle 

 GPCR downstream signaling 4487,.., 4770, 4866 adipose, brain 

 HIV life cycle 4723 liver 

 immune system HIPdarkgrey,.., 
S1Cblack, rctm0568 

brain 

 interferon signaling 26,.., 4634 kidney, liver, brain, adipose, 
blood 

 MAPK signaling pathway rctm0090, M9670,.. N/A 

 oxidative phosphorylation/respiratory 
transport chain 

IPCdarkgreen, 4683 brain, adipose 

 PPAR signaling pathway 4212,.., 5376 muscle, adipose 

 regulation of autophagy M16004 N/A 

 regulation of insulin like growth factor 
IGF activity by insulin like growth factor 
binding proteins IGFBPs 

STCbrown brain 

 type I diabetes mellitus 7040,.., M12617, 7136 muscle, adipose, kidney, brain 
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Table 5. Shared genetic supersets between AD and T2D that overlap with T2D 

transcriptome signatures. Of the merged supersets shared between T2D and AD, 25 supersets were found to 

be significantly overlap with T2D transcriptome signatures at a Bonferroni (BF)-corrected p-value < 0.05 based on 

Fisher’s exact test. Numbers in the T2D signature columns are BF p values. The colors correspond to the 

significance level of overlap, with red to green representing more significant to less significant.  

Superset 

Annotation Adipose 
T2D 
signature 

Brain T2D 
signature 

Islet T2D 
signature 

Liver T2D 
signature 

Muscle T2D 
signature 

4723 HIV life cycle 3.17E-46 --- 1.23E-126 --- 4.74E-14 

rctm0089 MAPK signaling 5.44E-11 --- 8.01E-35 --- 1.07E-17 

5033 Cell cycle 5.83E-09 --- 2.20E-19 --- 3.49E-02 

IPCred 
VEGF ligand 
receptor 1.85E-07 --- 1.87E-23 --- 3.72E-02 

rctm0116 Immune system 1.81E-06 --- 1.61E-05 --- 4.32E-03 

S1Cblack 
Interferon 
signaling 2.59E-06 --- 1.96E-07 --- 1.06E-02 

4457 
Peptide ligand 
receptors 1.30E-05 --- 9.32E-03 1.86E-05 1.53E-08 

STCturquoise,
.. 

Cell cycle 
3.66E-05 --- 9.54E-05 --- 7.73E-20 

4678 ribosome 6.15E-05 --- 8.65E-19 --- 2.68E-04 

4683 
Oxidative 
phosphorylation 1.46E-04 --- 1.34E-08 --- --- 

4212,.. PPAR signaling 7.13E-04 --- 5.01E-05 --- 7.90E-06 

4770 GPCR signaling 1.03E-03 --- 8.15E-05 --- 2.48E-08 

M16004 Autophagy 1.9E-02 --- 03.18E-02 --- 2.42E-03 

M9670,.. MAPK signaling 2.28E-02 --- --- --- 3.16E-02 

26,.. 
Interferon 
signaling 2.95E-02 --- --- --- 2.08E-07 

4393 ribosome 3.96E-02 --- 5.66E-03 --- --- 

4386 

Endosomal 
vacuolar 
pathway --- --- 3.08E-02 --- 1.41E-05 

5194 
Integrin 
interactions --- --- --- --- 3.33E-04 

STCbrown Core matrisome --- --- 4.33E-02 --- 8.78E-04 

4932,.. 
Cholesterol 
biosynthesis --- --- 5.13E-10 --- 9.52E-04 

4634 
Interferon 
signaling --- --- --- --- 6.44E-03 

HIPdarkgrey,.. Immune system --- --- --- --- 1.59E-02 

4715 Bile synthesis --- --- 4.21E-02 --- --- 

IPCdarkgreen 
Electron 
transport chain --- --- 1.53E-03 --- --- 

ITCgreenyello
w 

Transcription  
--- --- 1.05E-03 --- --- 
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Table 6. AD genetic pathways or coexpression modules that overlap with T2D 

transcriptome signatures. Using a Bonferroni-corrected (BF) p-value cutoff of 0.05, we found that 6 AD 

pathways or coexpression modules overlapped with transcriptome signatures defined as downstream to T2D. These 

AD-associated modules that are significantly enriched for T2D downstream signatures can be interpreted as 

molecular processes causal for AD and downstream of T2D that could be contributing to sequential development of 

AD after development of T2D. In other words, these causal AD genes, as identified by GWAS studies, could be 

perturbed by T2D and subsequently drive onset of AD. The colored label corresponds to how significantly enriched 

for T2D tissue-specific DEGs the supersets were (i.e. high or low Bonferroni-corrected p-value). 
 

Module 
Annotation Adipose T2D 

signature 
Brain T2D 
signature 

Islet T2D 
signature 

Liver T2D 
signature 

Muscle T2D 
signature 

rctm0493 
tRNA 

biosynthesis 2.05E-27 --- 5.12E-46 --- 1.63E-20 

4568 TCR pathway --- --- --- --- 2.33E-04 

4483 TCR pathway --- --- --- 2.74E-03 5.18E-03 

4344 TCR pathway --- --- --- 1.04E-02 5.76E-03 

rctm1111 NGF signaling --- --- 1.97E-04 --- 1.12E-02 

4936 phagocytosis --- --- --- --- 2.34E-02 

27 
Toll endogenous 

pathway --- --- --- 5.05E-03 --- 

M5940 
Calcineurin 

pathway --- --- 3.96E-02 --- --- 
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Figures 

 

Figure 1. Overall study design. We first delineate the molecular pathways and gene networks that are 

perturbed by genetic risks of AD and T2D separately. We then compare the genetically perturbed pathways and 

networks between T2D and AD to derive shared genetic mechanisms that may be causally linked to both diseases. 

To test whether molecular pathways downstream of T2D (i.e., non-causal for T2D) also pose predisposition to AD 

development, we will also extract tissue-specific transcriptomic profiles of T2D and compare their signatures with 

the AD causal processes derived from the genetic analysis of AD. 
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Figure 2. Conceptual framework for the Mergeomics pipeline. The first step of the Mergeomics 

pipeline is the SSEA, or SNP set enrichment analysis, which integrates disease GWAS, functional genomics from 

eQTL and ENCODE studies, biological pathways, gene regulatory networks, and returns gene sets that are 

significantly enriched for disease genes according to GWAS data. The next step of the pipeline is the module 

merging and trimming step, in which modules that share a high proportion of member genes are merged into non-

overlapping gene sets. The final step of the pipeline is the key driver analysis, in which Bayesian gene regulatory 

networks are used as frameworks to identify key driver genes in the gene sets. The subnetworks for these key driver 

genes are subsequently retrieved and visualized using a software such as Cytoscape. 
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Figure 3. AD and T2D key drivers in adipose tissue.  Figure 3. AD and T2D key drivers in 

adipose tissue.  A.) This panel depicts the adipose tissue subnetworks in AD. The adipose subnetworks depict 

the following key drivers—AIF1, GPM6B, RTP4, OAS2, and IFI44—and their interaction with their respective 

gene neighbors. After performing an enrichment analysis of the genes involved in each key driver subnetwork, we 

determined that the AIF1 subnetwork appeared to be mainly involved in immune system functions and FC gamma R 

mediated phagocytosis, the GMP6B subnetwork was involved with keratan sulfate biosynthesis and degradation, the 

OAS2 and RTP4 subnetworks were involved with interferon signaling, and the IFI44 subnetwork was involved in 

interferon an cytokine signaling in the immune system. Superset membership is represented by the color of each 

node (according to the legend), and magnitude of disease association for either T2D or AD according to GWAS p-

values is represented by the size of the node. B.) This panel depicts the adipose tissue subnetworks in T2D. 
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Figure 4. AD and T2D key drivers in brain tissue. A.) This panel depicts the brain subnetworks in AD. 
The brain subnetworks depict the following key drivers—SERPING1, CYP1B1, OMD, CTGF, and ADORA2A—

and their interaction with their respective gene neighbors. The SERPING1, CTGF, and CYP1B1 subnetworks are 

mainly involved in core matrisome and proteoglycan production, while the ADORA2A subnetwork is involved with 

G alpha S signaling events and nucleotide-like purinergic receptor function. The OMD subnetwork appears to be 

involved in keratan sulfate degradation and biosynthesis. B.) This panel depicts the brain subnetworks in T2D. 
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Figure 5. AD and T2D key drivers in liver tissue. A.) This panel shows the liver subnetworks in AD. 

The liver subnetworks depict the following key drivers—C1QC, CSF1R, HLA-F, IFIT1, and LILRB3—and their 

interaction with their respective gene neighbors. The C1QC subnetwork is mainly involved in the complement 

pathway of immune regulation, the HLA-F subnetwork is involved with endosomal vacuolar pathways as well as 

antigen processing and presentation, the CSF1R subnetwork is involved with FC gamma R mediated phagocytosis 

and natural killer cell-mediated cytotoxicity, the IFIT1 subnetwork is involved with interferon signaling, and the 

LILRB3 subnetwork is involved in adaptive immune system function and interactions between lymphoid and non-

lymphoid cells. B.) This panel shows the liver subnetworks in T2D. 
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Figure 6. AD and T2D key drivers in skeletal muscle tissue. A.) This panel shows the muscle 

subnetworks in AD. The muscle subnetworks depict the following key drivers—HLA-DRB1, MMT00074772, 

PCOLCE2, PLAC8, and POSTN—and their interaction with their respective gene neighbors. The HLA-DRB1 

subnetwork is involved with antigen processing and presentation as well as allograft rejection, the PCOLCE2 and 

MMT00074772 subnetworks are involved with matrisome and collagen formation, the POSTN subnetwork is 

involved with core matrisome and glycoprotein production, and the PLAC8 subnetwork is involved with chemokine 

signaling pathways as well as matrisome formation. B.) This panel shows the muscle subnetworks in T2D. 
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Figure 7. Overlap between AD/T2D-associated biological pathways and coexpression 

networks and T2D signatures. This figure depicts the overlap of AD and T2D associated biological 

pathways and gene coexpression networks identified by our computational analysis with the gene signatures 

identified from the T2D transcriptome profiles of previously performed studies. Of the 48 total AD modules and 314 

T2D modules found to be significantly enriched for disease GWAS genes, 27 AD modules and 70 T2D modules 

were found to be significantly enriched for T2D signatures, as identified from tissue-specific transcriptome profiles. 

16 AD modules in total are enriched for T2D signatures, and 59 T2D modules that were identified through analysis 

of GWAS studies were enriched for T2D DEGs. Representative unique AD-associated genetically-driven pathways 

and coexpression networks include cell-cell junctions, CSCR4 pathways, DNAPK pathways, and intestinal immune 

network. Representative T2D-specific genetically-driven pathways and coexpression networks include allograft 

rejection, diabetes, GPCR signaling, PPAR signaling, and MAPK signaling. Modules that are downstream of T2D 

based on transcriptome signature but are putatively causal for AD based on genetic evidence include annotations 

such as toll endogenous pathway, T cell receptor (TCR) pathway, aminoacyl tRNA biosynthesis, hematopoietic cell 

lineage, phagocytosis, NGF signaling, and calcineurin signaling. Representative modules enriched for both T2D 

signatures and T2D GWAS signals include cell cycle processes, citric acid cycle, focal adhesion, ribosome function, 

hemostasis, and Alzheimer’s disease. Modules detected in all analyses (T2D vs AD; genetic vs transcriptome) are 

involved in immune pathways such as interferon signaling, antigen processing, chemokine binding, and cytokine 

signaling, as well as extracellular matrix functions and oxidative phosphorylation. 
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