
UC Irvine
ICS Technical Reports

Title
An evaluation of software fault tolerance techniques in real-time safety-critical
applications

Permalink
https://escholarship.org/uc/item/1zj8x8w8

Authors
Leveson, Nancy G.
Yemini, Shaula

Publication Date
1982

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1zj8x8w8
https://escholarship.org
http://www.cdlib.org/

Notice: This Materiai
may be protected
by Copyright Law
(Titie 17 U.S.G.)

AN ETALUATI.ON OF SOFTWARK FAULT TOLERANCE.

TECHNIQUES IN REAL-TIME SAFETT-CRITIGAL.

APPLICATION^

-f"

Nancy "G... Leveson

Information, and Computer- Science
University of California, Irvine

Shaula. Yemini.

IBM T.J. Watson. Research Lab

Yorktown Heights, New York

Technical Report 1.92

Department of Information and Computer Science
University of California Irvine

Irvine, California.^ 92717

November 1982

•'}
-1' ^

/ •"

V M !

/

AN EVALUATION OF SOFTWARE FAULT TOLERANCE. TECHNIQUES
IN REAL-TIME SAFETY-CRITICAL APPLICATIONS'

Nancy G. Leveson

Information and Computer Science
UniversLty of California, Ir.vine.

Lrvine, California. 9 2717

Shaula Yemini

IBM T",J. Watson Research. Lab

Yorktown Heights, New- York 1.0 5 9 8

Ab s t rac t

The usefulness of three software fault tolerance tech

niques — n-version programming, recovery blocks, and excep
tion. handling is examined within the context. of real—time
saf ety —cr itical. environments. The general requirements of
such, application, systems are presented and. the techniques
evaluated with regard, to how well. they satisfy these-
requirement s.

Introduction

In real—time environments requiring continuous service,
e-. g . air traffic control systems, hospital, pa.tient monitor
ing systems, public, transportation, systems, nuclear power
plants, and space craft, the "cost" of a failure is kigh and
may involve loss of life. In this case, the- use of. faul.t—
tolerance techniques becomes critical.

Several approaches have been suggested for software
fault tolerance.. These include recovery blocks [12], n—
version (or design diversity) programming. [2,5], and. excep —•
tion handling techniques [8,11,12,16,22,23]. This paper
presents a framework for evalua.ting software fault tolerance
techniques with respect, to real—time, s af e ty-cr i t ical appli
es t lo ns . The framework is t"hen used, to evaluate- the usefuTr^

aes s 0F "h^TeYsYToTi programming'T'" recovery bTdcks , and prtf^^
grammed exception handling fo7~£"iris typ"! oY 'a'p'pY.'trc'aY'rQrnt

/V-2'

- 2 -

Basic Requirements

In order- to evaluate 'any programming technique, it. is
necessary to define the requirements of the environment in
•which it is to be used. Only then can. tha technique be
evaluated as to how well it satisfies these requirements.

Relevant requirements of real-time, safety-critical-
systems include the following:

Time Cons traint s: Since we are assuming real —time systems,
responses must be received within a limited period to be
useful. Usually this required, response time is relatively
short. For example, aircraft which are ten miles apart, and
flying at 600 mph could, collide: in just 30 seconds. One
design criterion. for the present U.S. air. traffic control
system, called the National Airspace System (NAS.) , is that
computer response time should be less than two seconds.

Saf etv : The ap p 1 ica t io n. may have safety aspects, that is,
run-time failures on errors can result in loss of life- or
property. There- are three aspects of software fault toler
ance. When the softwa.re function is 1 i f e—s us t aining ,
fault-to1erance providing full functionality ("fail-
operational") behavior is required. In. situations where
full fault tolerance. is not possible or fails itself,
"fail-soft" procedures must be employed. A fail—soft system:
continues operation but provides only degraded. performance
or reduced functional capabilities until the fault, is
removed. As opposed to the. fail-operational. and. fail—soft
systems, the goal of a fail—passive or fail—safe system is
to limit- the amount of damage caused by a failure. No
attempt is made to satisfy the functional specifications
except where necessary to ensure safety.

Software fault, tolerance techniques have primarily con
centrated on full. fault tolerance or f ail—operationaL
behavior. However, in environments where safety is impor—
tant, . fail—soft and. fail—safe facilities may be required..
Furthermore, there may be a set of acceptable degraded modes
and a priority of failures and failure—handling procedures.
For example, it may be necessary to ensure containment: of
any possible radiation, leakage before- attempting other
recovery procedures.

Sarlv Detection o f Fan 11 s: In most cases, the earlier faults
are detected, the better. It makes no sense to try to detect
and recover from faults at run—time which could have been,
removed prior to operational use of the system. Therefore
we will assume that verification and validation techniques,
have been used.. This includes verification of correctness

[9] and safety [13] . Although it can be argued that. formal
verification is costly [4] and not foolproof [7], the same-
can be said for software fault tolerance techniques.

- 3 :. -

Even at run-time, it is usually preferable; to- detect,
faults as early- as possible.. The more processing that is
done, after the fau.lt has. occurred, the harder it may be- to
detect, isolate, and. identify the fanlt, and the more likely
that. information will be. lost which is necessary for
recovery. Furthermore-, in a heavily loaded real-time
environment, resources should not be wasted on incorrect
processing. Finally, from, a system, v-iewpoint, an unsafe
state may need to be detected quickly to allow- for recovery
to a safe state- before a. catastrophe occurs, e'.g^. when two
aircraft are on a collision course, or to contain, any possi
ble damage or dangerous, conditions, e.g. radiation leakage.

Flexible Recovery- Respons es : Once, an error has been,

detected, the. techniques must, be able to support any reason
able r ec overy r e s pons e . Software f au.lt-to 1 erance techniques
which provide only backward, recovery are useful under some
circumstances, but. w.ill. not. be adequa.te. in many real-time
systems. Thus,^ backward and forward error—handling facili
ties are both, necessary.. For example, because it is impos
sible to roll back a system:, state which includes time, bach-
ward. error recovery may just, not; be. feasible. Also, forward
error-handling may be- preferred when, feasible because of
time considerations. Consider a. sailboat with a. computer
ized- navigation system. If; the boat is off its intended
course,, it is clearly more practical to recompute a. Course
from the present location (perhaps using an alternate^ algo
rithm) than to require it to return to its starting point
and begin again.

Recovery responses must; also allow; for dynamically
changing flow of control. Some components of a system are
less critical, than others, and thus may be temporarily elim
inated or suspended, if necessary. Furthermore, the criti
cal ity of components may vary during^. processing and may
depend upon run—time environmental conditions. Thus, run
time reconfiguration facilities may be required, in order to
reconfigure out an erroneous but noncritical component or to
temporarily reconfigure out a noncritical component because
system overload is increasing the response time of the- sys
tem above a. critical point. Following reconfiguration, the
system must, be able- to resume its processing.. As an. exam
ple, when during peak load the response- time- of the NAS is
over the two second, limit, noncritical functions- are delayed
for later processing.

A S vs t em Model

In evaluating software- fault tolerance techniques-, it
is necessary to determine the types of faults which, can be
"tolerated" by each technique. Figure 1 shows the simpli
fied model of an application system, life cycle, which we will
use.

- 4- -

When building a. computer model of a real, world. system,
the essential, properties of the real world, system; are first
abstracted into a. specification or model.. The specification
is then. implemented in software and. hardware. Following
testing and validation, the system can. be put into- opera
tional use. Figure 1 is a simplification since a computer
system is actually made up of a. layers of interconnected
hardware and software components, but this simplified modeL
is adequate for our purposes..

Using figure 1, there are three times in th.e system,
life cycle when faults can be introduced:

1. when, the system, specification, is. formulated.. These-
modelling or specification errors are denoted, by- the
mapping marked "a," Studies have shown that, more than
half. the faults in a software system can. be- traced to
specification errors [15]

2,. when the model is implemented in, hardware and software-,,
denoted by the mapping marked "b . Errors occurring at
this stage we will, call implementation or consistency
errors.

3. when, the system, is in operational use, denoted by the
mapping marked "c." Faults here. involve machine-
failures .

The focus in this paper will be on specification, and
implementation errors. Although software fault tolerance-
techniques may also be able to detect hardware faults, it is
not clear that the application, system level is- the right
level for their detection, and handling.

N-Vers ion Programming

In n—version programming, multiple; versions of an. algo —
rithm are executed simultaneously and their resuLts com.—
pared. If the results differ, voting or other strategies
can be used to select one result.

If only one specification, is used, then figure Z models
the result. Obviously the only faults which could possibly
be detected are those caused by implementation errors since
the implementation is the only place where redundancy
occurs. It is. important to note that because of the possi
bility of common faults, majority voting may not result in a
correct answer. European experience seems to indicate com
mon errors in about half of the redundant software systems
developed to date [20]. Furthermore, voting causes an addi
tional mapping to occur at run-time which introduces the
possibility of additional faults. For example, the voting
procedure must also be duplicated or in some way made

- 5 -

f aui t-1 o 1 er ant. The resulting, complexity may Itself- be- the
cause of failures, e.g. the the synchronization, problem
caused by back.—up redundancy- on the. fLrst Space Shuttle
flight[6].

In order to have any chance of detecting specification
errors with n-version programming, multiple specifications
must be used, (see- figure 3). This requires building., multi
ple models of the real world, system, implementing, them, and.
then voting on the results, hoping that a. majority- are
c o r rec t .

Experimental, studies, are; needed to determine how effec
tive n—version, prrogramming. is in detecting specification
errors at run—time,. Toting, systems are effective onl.y if:
the versions are independent, and it is not clear, at this
time whether an adequate level of independence is achievable,
or practical in terms of cost..

Two advantages of n—version programming are its concep
tual. simplicity and timeliness of results. Since al.L- ver—
sions are run. concurrently, there are no time' delays for
rollback and recovery.

One major weakness of n-versi.on programming Is that, it
does not make use of. the programmabillty- of software for
introducing intelligent decision, making. into the- output
acceptance process. Majority vote is a. weak. test for
correctness of. results. Thus, n—version programming makes
better sense if: the simple voting algorithm- is. expanded to
include other types of checks- on the: results- of. the a—
versions such as reasonableness checks oir comparison with
run—time external information. In order to detect specifi
cation errors, either multiple: specifications and. implemen
tations must be used., or run—time checks, must: use- informa
tion which. is independent of the- specification, e-. g. radar
information, or human, monitors .

Another deficiency of n—version programming as proposed
is that when there is no agreement on results (no majority
exists), there is no provision for fall—soft or fail-safe
facilities. This remains true, even when if voting is
replaced or supplemented, by reasonableness checks or checks
against external information. This is unacceptable for
safety-critleal systems.

Recovery Blocks

A: second method of providing software- fault tolerance
uses recovery blocks [Randell].. A. recovery block- consists
of a regular programming, language block, (called the primary,
block), an acceptance test, and a sequence of alternate
blocks. .

i. i;

:=i'

1
-:5i;

•

;;;

i'

1

- 6 -

The acceptance; test is- a Logical expression which is-
evaluated. to deterTa.ine if the- result of a. block., is accept
able. If a primary or' alternate block does not complete,
(because of an erroir or expiration of time limit) or fails
the acceptance, test, the. state is. restoreh to just pirior to
entering the recovery block, and. the next alternate (i-f.
there is one) is entered.. If' all. alternates fail to pass
the acceptance test,, recovery is- attempted at. the Level of
the next enclosing recovery bLock.. If. the. acceptance test,
is passed, control passes to the. statement after the
recovery block. Prior states to be used for roLlback. are-
stored in a "recovery cache."

The acceptance- test of recovery blocks can potentially
be used to detect faults resulting from- both implementation
errors and specification errors (by using run—time-
spec if i ca t io n—indep endent information). This statement, must
however be carefully examined. The technique. can de.tec.t
only those faul.ts, that cause the acceptance test, to. fail.
But acceptance tests can capture, only part of. the intended
functionality if the complexity and the performance of; a
system are to be kept at: an acceptable, level. Thu.s the pos
sibility exists of accepting erroneous results.

.

An advantage of. the recovery block is its simple- con
trol structure, although structuring, systems of communicat
ing processes adds complications and. "domino effects" may be
created when, restoring the state of a. process which communi
cates with other processes [19].

Another advantage. is that fail-soft and fail-safe
can be supported by the recovery block, structure

since- the alternates need not be identical to the primary-
block.., though all use an identical acceptance test, and thus
variability is somewhat Limited. Furthermore-, unlike n—
version programming, the acceptance test provides that: an
acceptable result can be found, even, if a majority of. the
algorithms give unacceptable, results.

The primary disadvantage of the recovery block struc
ture is in real-time applications. Time requirements may be
such that backward, recovery means that: results will. arri.ve
too late to be useful.. This can. be overcome by running, the
several alternates in parallel and providing a selection,
scheme to decide on a result, e.g. using the results of the
first alternate to pass the acceptance test. More impor
tant, in some situations, backup to a. prior state may be-
impossible. But the recovery block structure allows for." no
forward, error-handling.

The recovery block structure also lacks the ability to
differentiate between erroneous states and to provide for
differential handling depending upon run—time information. A
proposal to add safety assertions to recovery blocks- in

order to allow this can be found in Leveson and Shimeall.

[14] . Thus the processing after a failure ot an- acceptance
test cannot be decided dynamically to allow different
responses under different. conditions. In particular,
dynamic reconfiguration as a response to run—time condi.tions.
is not supported. Moreover, all the decision making is per
formed in. the context of the failed block, which may not.
have- enough information, to. make the requfred, recovery deci
sions.

Excep t ion Handling

Exception handling consists of identifying exceptional
conditions which require special processing., detecting, those
conditions- at run. time,, and providing facilities . for the
program to respond, i.e. handle exception conditions. Thus-,
effectively, the detection, of. an exception, condition-
corresponds to a. failure, of an acceptance test, in the
recovery block model...

Several proposals for and. implementations of" exception
handling exist. These include the mechanisms of PL/I [11],
-ida [12], GLU [16] and. Mesa. [22], and the proposal of
Goodenough [8] . The. mechanisms differ basically in the han
dling responses they support..

The replacement: model, of exception: handling [23] s.up—
ports all the responses of.: termination, (doing something and
then terminating the operation detecting the exception or
terminating a. closed /program construct. containing the
operation's invocation); resumption. (doing something and
then resuming the operation that detected the exception);
retry (doing something and. then retrying the operation); and.
propagation (doing something and then propagating the excep
tion to higher layers of: the system., uniformly and in. a
modular fashion). Since it supports more flexible responses
and compile time checking than, other mechanisms,. the
replacement, model will be used, in this paper.

Like recovery blocks, exception handling can detect
faults arising from implementation and specification errors.
In. fact, it is possible to define the- exception condition as-
the negation of the reco-very block, acceptance-, test and to
test it at the end. of the module exactly as in recovery
blocks. Thus there is no. distinction between, the types, of
errors which can be detected and handled by recovery blocks
and exception handling. However, unlike recovery blocks, an.
exception can be detected at any point: in., a program., This
supports both early detection of input errors, as well as
checking the correctness of the obtained results at. the end,
of a program- block. Of course, bad input data could be
caught by waiting until (hopefully) unreasonable answers
occur. This makes little sense in a time-constrained
environment and. also increases the Likelihood of bad data.

-.8 -

polluting the eatire system. Thus exception handling's
ability to check, input assertions is very useful in the con—
tex.t of software fault toler-ance...

The major- advantage exception handling has. over
recovery blocks is that, the flexible handler responses allow
a handler to perform forward, recovery actions in addition to
backward recovery.. This provides, for- better real time- per
formance as discussed in the section on requirements... It.
also allows higher layers of the- system, to participate in a.
recovery action, after which the operation., can. resume where
it left, off, provided recovery was successful..

Since the replacement model, supports exception handLing^
in expressions as well as statements, it is possible to have
hand-lers compute substitute, values when, the operation is
value returning (such as an arithmetic function). The abil
ity to substitute values for operations supports., returning a.
safe but incorrect value- as the- result of a noncritical.

operation, e.g. a zero in the- case; of averaging, a. large-
number of. values.

Resumption handling allows the handler to take. correc
tive action, after which, the operation, resumes. The ability
to take corrective action without losing current state,
information supports fast. recovery. In the termination
case, the operation must be-, completely restarted. Thus, any
correct. processing which has completed must be redone-. As
an example, in. the: case of a. temporary system overload, if
the response time for critical outputs has been degraded
because of unusually heavy demands on the system, noncriti
cal tasks can be temporarily reconf igured out. of the system,
by the exception handler and later resumed. Thus the
resumption response is particularly useful in the- case where
the system is in an unsafe: but correct state, (in the sense-
that there is not an. algorithmic error)..

Exception handling can support flexible fail—soft and.
fail—safe facilities. This can be done because of two
features of exception handling. First, errors can be dif
ferentiated and can result. in different exceptions being-
raised. Second, the invoking layer may select, different
handlers for the same exception, raised in different: invoca
tions. In [17] it is argued that exception, handling forces
enumerating the possible failure modes of. an operation and
that this is a disadvantage. This is a misconception since
it is always possible to distinguish only one exception,
i.e. failure to meet some acceptance test.. However, dif
ferentiating between different exception conditions is in
many cases essential for selecting the appropriate recovery
action.

Another important difference between exception handling
and. recovery blocks involves the context in which, recovery

- 9 -

decisions are made. In the recovery block. model, all
recovery decisions are made within, the block, in- which the.
error is detected.. In the exception handling model, the
basic procedure involves passing information. about the
erroneous state, via the exception name. and. parameters, to
the context. invoking the operation, al.lowing. the- handling
decision to be made within this context.

If. the handling of the error is fully decided., within
the operation, there is no way in which the invoker can
influence the handling, and therefore each different
response will require programming a separate- slightly dif
ferent operation. Exception handling, ailow-s more- flexibil
ity. The normal, case- can. be encapsulated, and the applies.—
tion allowed to use different handlings in special cases..
For example, if the operation is noncritical in this con
text, it can be skipped. There may also be a set. of accept
able degraded modes which can be selected depending on, the
state of the syst em, etc.

Using the recovery block, there is only one predefined
response for every exception. Using exception handling
techniques it is still possible for the designer of the
module to supply (within the module-) one or more handlings
for any of the exceptions raised, by the- operations of. the
module, e.g. alternate a.lgorithms ma.y be provided within the
module implementing the operation. These are exported by
the module to the. invoker. The invoker- can then sel.ect any
of these handlers for a. specific detection of an error.
Thus exception handling procedures can deal with cases where
some typical response is, anticipated (e.g. trying an alter
nate algorithm) or cases where a. response requires knowledge
of information not available within the operation.

Another advantage of exception handling is that it. pro
vides one unified. mechanism, for both forward and. backward,
recovery.

A disadvantage of exception handling is that the- flexi
bility of response introduces more complexity into the
language than the simple recovery block, structure. This is
partially offset by the ability to verify the exception, han
dling code together with the rest of the- program [24] .

S ummarV

The usefulness of n-version. programming, recovery-
blocks, and exception handling have- been examined within the
context of real-time safety-critical environments. Although
exception handling provides the most flexible and complete
facilities, no software fault tolerance technique is always
effective. Therefore, program verification and other fault
avoidance techniques should be used and facilities provided
in the system to handle residua-1, "unt o 1 e rat ed" failures.

- 10 -

t e t o Reviewers

The final version of this paper will include program-
examples illustrating the techniques and the: differences
between them.

References

[1] Anderson, T. and P'.A- Lee. Fault Tolerance- Princip 1 es
and Practice." Prentice Hall, 1981.

[2] Chen, L. and A. Aviz.ienis . "H-Version Programming: A
Fault—To 1 erance Approach to Reliability of Software-
Operation," Jn^. Conf. on Fault-Tolerant Comput
ing . Toulouse,, France (June- 1 97 8).

[3] Gristian, F. "Exception. Handling and Software- Fault
Tolerance," Pr o c . Sympos ium on Fau11 Tolerant Compu t ing
Sys t ems . (June 1980), pp.. 97—103.

[4-] De Millo, R.A. , L.ipton, R.J.., and. A.J. Perils. "Social
Processes and Proofs of Theorems and. Programs." GACM.
vol. 22, no. 5 (May 1979), pp. 271-280.

[5] Elmendorf, W.R, ""Fau11—To 1erant Programming," Digest
of 19 7 2 Int. Symp. on Fau11—Tolerant Computing.- 1 97 2,
pp. 79-83.

[6] Garman, J.R. "The Bug Heard 'Round, the World," Software-
Engineering Notes, vol. 6, no. 5 (October 1981).

[7] Gerhart, S.L. and L.. Yel.owitz. "Observations on the
Fallibility in Applications of Modern Programming
Methodologies," IEEE Trans. on So f twar e Sng ineer ing.
vol. SE-2,, (March 1976), pp. 1 95-207.

[8] Goodenough, J..B. "Exception Handling: Issues and. a.
Proposed Notation." GACM, 18, 2 (December 1975).

[9] Hoare, G.A.R. "An Axiomatic Basis for Computer Pro
gramming," GAGM. 12, 10 (October 1969)

[10] Horning, J.J. "Programming Languages," in T'. Anderson
and B. Randell (eds.) Computing Systems Reliability.
Cambridge University Press, 1979.

[11] IBM -OS PL/1 Checkout and Optimizing Compilers: Language
Reference Manual.

[12] Ichbiah, J. _e_t_. a 1. "Rationale for the Design of the
Ada Programming Language," SIGPLAN Notices. 14, 6 (June
1 97 9).

- 11 -

[13] Leveson, N.G. and. Harvey, P. "Software Fault Tree
Analys is," Journa1 o f Sys terns and So f twar e, vo1. 3, in
press.

[14] Leveson, N.G. and Shimeall, T. "Safe Recovery Blocks,"
Technical Report, University of Ca.lifornia Irvine-,
1 982.

[15] Lipow, M. "Prediction of Software Errors," Journa1 of
5 Vs t ems and S o f twar e, vol.1, 1979, pp. 71-75.

[16] Liskov, B.H. and A. Snyder. "Exception Handling in
CLU", IEEE Transactions on Software Engineering. SE—5,
6 (November 1979).

[17] Mel 1 iar-Smi fh, P.M. and. B. Randell. "Software Reliabil.—
ity: The Role of Programmed Exception Handling," Proc.
Int. Conf . on Reliable Software, SIGPLAN Notices , vol..
10,no.6(Junel975).

[1 8] • Ramamo or t hy , C.V.., Bastiani., F.B., Favaro, J.M.., Mok,
Y.R. , Nam, G.tf. , and K'. Suzuki. "A Systematic Approach
to the Development and Validation of Critical Software
for Nuclear- Power Plants," Proc. Fourth Int . Conf. on
Software Engineering. 1 97 9 ..

[19] Randell, B. "System. Structure for Software Fault Toler
ance," Proc, Int. Conf. on Reliable Software, SIGPLAN
No tic es , vol.. 10, no. 6 (June. 1 97 5), pp.. 43 7—449.

[20] Taylor, B. "Letter- from the editor," So f twar e Eng ineer —
ing Notes, vol. 6, no. L (January 1981).

[21] Wensley, J.H. at. al . , "SIFT': Design, and Analysis of a
F au 11—t 0 1 er an t Computer for Aircraft. Control," Pr o c .
IEEE, vol. 66, no. 10 (October 1 97 8) ,, pp 1240-125 5 ..

[22] XEROX PARC Mesa Language Manual, March 1979.

[23] Yemini., S. "The, Replacement Model for Modular Verifi
able Exception Handling," Ph.D. Dissertation, UCLA,
1 980 .

[24] Yemini, S. "An Axiomatic Treatment of Exception Han
dling, " Proc. 9th S vmn. on Princin1es o f Programming
Languages . January 1.9 82 .

SPECIFICATION

(MODEL)

REAL-WORLD COMPUTER-

SYSTEM CONTROLLED

SYSTEM

Figure 1.

SPECIFICATION

REAL-WORLD COMPUTER COMPUTER COMPUTER

SYSTEM SYSTEM 1 SYSTEM 2 SYSTEM N

VOTER

Figure 2.

SPECIFICATION 1 SPECIFICATION N

REAL-WORLD COMPUTER COMPUTER

SYSTEM SYSTEM 1 SYSTEM N

VOTER

Figure 3.,

