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ABSTRACT OF THE DISSERTATION 

Distributed Cooperative Spectrum Sensing for 

Overlay Self-organizing Dynamic Cognitive Radios 

Network Systems 

by 

Chih-Kai Chen 

Doctor of Philosophy in Electrical Engineering          

University of California, Los Angeles, 2012               

Professor Kung Yao, Chair 

Cognitive Radio Network (CRN) is an emerging technology to increase usages 

of the underutilized spectrum. Since cognitive radios (CR) join and leave CRN at will, 

as a dynamic secondary overlay network operating in the dynamic scenarios, CRN 

faces many new practical challenges. Spectrum sensing is a key functionality enabling 

dynamic spectrum management. Distributed cooperative spectrum sensing can 
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effectively overcome the hidden primary user issue. The performance of the 

distributed sensing scheme is affected by the number of collaborative CRs. In this 

dissertation, we analyze the performance of cooperative spectrum sensing for the 

dynamic CRN systems, which is a more realistic application scenario. Closed form 

exact expressions for the dynamic performance of distributed energy-based 

cooperative spectrum sensing over different fading channels are derived. These 

expressions enable the calculation of probability of detection and probability of false 

alarm efficiently tractable, and also provide a feasible approach for optimization of 

sensing performance. Quick performance evaluation is essential for CRN to achieve 

real-time adaptation to guarantee optimal system operations. We also study two 

promising applications for cognitive radio networks technologies: wireless cellular 

networks and public safety emergency networks. We analyze the performance of 

cooperative spectrum sensing in these two scenarios and the closed form expressions 

provide the framework to apply the cognitive radio networks technologies to perform 

online learning for self-organizing dynamic ad hoc cellular wireless system and public 

safety emergency networks system. 
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Chap 1 

Introduction 

 

 

The usage of radio spectrum resources and the regulation of radio emissions are 

coordinated by national regulatory bodies such as the Federal Communications Commission 

(FCC) in the U.S. The FCC assigns spectrum to licensed holders, also known as primary users, 

on a long-term basis for large geographical regions. However, a large portion of the assigned 

spectrum remains under utilized from many field measurements. The inefficient usage of the 

limited spectrum necessitates the development of dynamic spectrum access techniques, where 

users who have no spectrum licenses, also known as secondary users, are allowed to use the 

temporarily unused licensed spectrum. In recent years, the FCC has been considering more 

flexible and comprehensive uses of the available spectrum through the use of cognitive radio 

technology [1-1]. 

 

1.1 Standardization 

The underutilization of the radio spectrum resource is an issue not only for US but also 

for many other countries. [1-2] Because of the promises of the efficient spectrum utilization, 
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cognitive radio technologies have already drawn much attention these years. Many experts are 

dedicated to develop standards related to cognitive radio-based wireless technologies.  

 

1.1.1 IEEE 802.22 WG on Wireless Regional Area Networks [1-3] 

 

The IEEE 802.22 Working Group (WG), the first worldwide wireless air interface 

standard committee formed in 2004 November, is chartered with the development of a Cognitive 

Radio-based Wireless Regional Area Network (WRAN) Physical (PHY) and Medium Access 

Control (MAC) layers for use by license-exempt devices in the spectrum that is currently 

allocated to the Television (TV) service. Since 802.22 reuses the fallow TV spectrum without 

causing any harmful interference, cognitive radio techniques are of primary importance in order 

to sense and measure the spectrum and detect the presence/absence of incumbent signals. 

Meanwhile, other advanced techniques which facilitate the coexistence are also included in IEEE 

802.22 standards. 

 

1.1.2 IEEE Standards Coordinating Committee 41 (IEEE SCC41) 

[1-4] 
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IEEE Standards Coordinating Committee 41 (IEEE SCC41), which is formerly 

recognized as IEEE 1900 Standards Committee jointly established by IEEE Communications 

Society (ComSoc) and the IEEE Electromagnetic Compatibility (EMC) Society, is currently 

seeking proposals for standards projects in the areas of dynamic spectrum access, cognitive radio, 

interference management, coordination of wireless systems, advanced spectrum management, 

and policy languages for next generation radio systems. The focus is on development of new 

technologies and methods of dynamic spectrum access to improve use of spectrum. 

 

1.2 Cognitive Radio Concepts  

 

Cognitive radio network is viewed as an intelligent wireless communication system 

which can dynamically utilize valuable radio spectrum without sacrificing licensed primary users’ 

privileges. Since the primary users have the absolute rights to use licensed frequency bands at 

any time, cognitive radio networks should continuously monitor the radio spectrum utilization 

and vacate the frequency bands when the primary users arrive. By scanning the radio spectrum, 

cognitive radio networks can detect spectrum holes which are frequency bands assigned to 

primary users but not in use at particular times and geographic locations to construct a spectrum 

map. Then, based on this temporal-geographical spectrum map, the secondary users belong to the 
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cognitive radio networks opportunistically transmit data through those spectrum holes. Whenever 

a primary user resumes the service, the secondary users which may interfere with this primary 

user must be preempted immediately to guarantee primary users’ spectrum utilization privileges. 

Therefore, spectrum sensing and interference prevention for dynamic spectrum management are 

key functionalities for the realization of cognitive radio networks. 

 

1.2.1 Interference Control 

 

As we know, the primary users paid to use their licensed frequency bands. They have the 

absolute privileges to use those resources at any time, even during the idle periods. Hence, 

cognitive radio users have to guarantee incumbent protection and effective coexistence to be 

allowed to reutilize these frequency bands as the secondary users. Ideally, these secondary users 

must provide interference-free environment for primary users. However, this severe restriction 

won’t be able to be accomplished in practical scenarios. Meanwhile, in many cases, this severe 

restriction is not necessary and obstructs the development of cognitive radio networks to improve 

precious spectrum utilization efficiency. However, the tolerable interference duration and level 

have to be promised. 
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frequency

time

Spectrum holes

 

Figure 1-1  Dynamic Spectrum Utilization Map 

 

1.3 Spectrum Sensing  

 

Current wireless communication systems are operated in their own licensed frequency 

bands without concerns on out-of-the-band activities. However, because of the adaptation nature 

of cognitive radio networks, the temporal-geographical spectrum utilization map has to be 

constructed by detecting the spectrum holes [Figure 1-1]. This important functionality is called 

as spectrum sensing. Spectrum sensing is a key functionality in cognitive radio network to 

prevent from the interference to the licensed primary users and also to exploit the potential 

spectrum utilization to improve the spectrum efficiency [1-5]. Spectrum sensing can be classified 

into three different categorizes: 



6 

 

 

1.3.1 Matched Filter Detection 

  

This is done by correlator-based pilot detection. This method is shown as the optimal 

detection scheme for coherent communication systems [1-6]. The performance for this scheme is 

highly dependent of the synchronization. However, cognitive radio network has to monitor 

numerous different primary users which are not synchronized to each other. To pursue reliable 

spectrum sensing requires a corresponding synchronizer to each primary user. Thus, the 

hardware complexity increases dramatically because of good synchronization constraint and a 

large number of primary users. 

 

1.3.2 Energy Detection 

 

This is shown as an optimal detection scheme for non-coherent communication systems 

[1-7]. This method doesn’t require synchronization and seems as a good scheme for spectrum 

sensing. However, the actual noise doesn’t follow the theoretical stationary Gaussian assumption 

and the noise power varies in negative signal-to-noise ratio regime. Meanwhile, without loss of 

generality, the receiver cannot distinguish which part is signal and which part is noise in the 
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received signal. The above reasons make the threshold setting very challenging such that reliable 

spectrum sensing becomes impractical especially in negative SNR scenarios. 

 

1.3.3 Cyclostationary Feature Detection 

 

This method exploits cyclostationary characteristics of received signals. Considering the 

physical properties of the propagation loss in transmission channel, signals are in general 

modulated in the transmitter end and then demodulated in the receiver end. The signals are 

normally modulated by a sinusoidal carrier waveform, pulse trains, or spreading sequences. For 

OFDM communication systems, the cyclic prefixes are inserted in the transmitted signals. These 

above operations introduce the transmitted signals built-in periodicity. This embedded periodicity 

is usually exploited by a receiver to perform detection or parameter estimation [1-8], [1-9], 

[1-10], and [1-11]. Hence, the original data can be modeled as a wide-sense stationary process, 

but the modulated transmitted signal is characterized as a cyclostationary process. The 

cyclostationary feature detector exploits this observation and can provide more robust detection 

performance than energy-based detector under very low signal-to-noise ratio situations, which is 

one of the major challenges for cognitive radio networks design. 
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1.4 Cooperative Spectrum Sensing [1-12] 

 

 The performance of spectrum sensing is limited by noise uncertainty, shadowing, and 

multi-path fading effect. When the received primary SNR is too low, there exists a SNR wall, 

below which reliable spectrum detection is impossible even with a very long sensing time. If 

secondary users cannot detect the primary transmitter, while the primary receiver is within the 

secondary users’ transmission range, a hidden primary user problem will occur, and the primary 

user’s transmission will be interfered. 

 By taking advantage of the independent fading channels (i.e., spatial diversity) and 

multiuser diversity, cooperative spectrum sensing is proposed to improve the reliability of 

spectrum sensing, increase the detection probability to better protect a primary user from 

interference, and reduce false alarm to utilize the idle spectrum more efficiently. In centralized 

cooperative spectrum sensing, a central controller, e.g., a secondary base station, collects local 

observations from multiple secondary users, decides the available spectrum channels using some 

decision fusion rule, and informs the secondary users which channels to access. The theoretical 

analysis and empirical data in the literatures both demonstrate substantial improvement on the 

performance of spectrum sensing via exploring the spatial diversity. 
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1.5 Dynamic Cognitive Radio Networks 

 

Spatially distributed cooperative spectrum sensing schemes can effectively resolve the hidden 

primary user issue. However, the mobile users opportunistically turn on and off the CR 

functionalities at will to access the potential spectrum utilizations. Since CRs join and leave a 

CRN at will, the number of CRs in the cooperative spectrum sensing is indeed random. The 

probability of miss detection (Pm) is an important reliability metric in CRN. Higher Pm means 

CRN might cause more interference with the existing primary privileged spectrum utilization, 

which is not allowed. In this dissertation, we will analyze the performance of spatially distributed 

cooperative spectrum sensing for the dynamic cognitive radio networks and also study two 

promising cognitive radio network technology applications: cellular wireless networks and 

public safety emergency networks. 

 

References 

 

[1-1] “Facilitating opportunities for flexible, efficient and reliable spectrum use employing 

cognitive radio technologies: Notice of proposed rule making and order,” FCC Dec. 2003, 

FCC Doc. ET Docket No. 03-108. 



10 

 

[1-2] J. Walko, “Cognitive Radio,” IEE Review, Vol. 51, Issue 5, May 2005. 

[1-3] [Online]. Available: http://ieee802.org/22/ 

[1-4] [Online]. Available: http://www.ieeep1900.org/ 

[1-5] J. Ma, G. Y. Li, and B. H. Juang, “Signal Processing in Cognitive Radio,” Proceedings of 

the IEEE, Vol. 97, Issue 5, May 2009. 

[1-6] K. Yao, EE230A Estimation and Detection in Communication and Radar Engineering 

Lecture Notes, UCLA, Fall 2011. 

[1-7] J. Proakis, Digital Communications, 4th ed. Mc-Graw Hill, 2001. 

[1-8] A. V. Dandawate and G. B. Giannakis, “Statistical test for presence of cyclostationarity,” 

IEEE Transactions on Signal Processing, vol. 42, September 1994. 

[1-9] W. A. Gardner, “Spectral correlation of modulated signals: Part I – analog modulation,” 

IEEE Transactions on Communications, vol. 35, June 1987. 

[1-10] W. A. Gardner, W. A. Brown, and C. K. Chen, “Spectral correlation of modulated signals: 

Part II – digital modulation,” IEEE Transactions on Communications, vol. 35, June 1987. 

[1-11] W. A. Gardner, “Signal interception: A unifying theoretical framework for feature 

detection,” IEEE Transactions on Communications, vol. 36, August 1986. 

[1-12] Y. C. Liang, K. C. Chen, G. Y. Li, and P. Mähönen, “Cognitive radio networking and 

communications: an overview,” IEEE Trans. on Vehicular Tech., Vol. 60, Issue 7, 2011. 



11 

 

Chap 2 

Cooperative Spectrum Sensing 

 

 

In spectrum sensing, statistical hypothesis testing is typically used to test the sensing results 

for the binary decision on the presence/absence of primary users. To detect the primary signal, 

energy detection based on the sensed energy is the most popular sensing technology in 

cooperative sensing, due to its simplicity and no requirement on a priori knowledge of primary 

user signals. However, detection performance in practice is often compromised with multipath 

fading, shadowing and receiver uncertainty issues. To mitigate the impact of these problems, 

cooperative spectrum sensing has been proved to be an effective method to improve the detection 

performance.  

 

The aim of cooperative spectrum sensing is to enhance the sensing performance by 

exploiting the spatial diversity in the observations of spatially located CR users. Through sharing 

sensing information from each other by collaboration, CR users can make a more accurate global 

decision than individual local decisions [2-1]. 
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2.1 Multipath Fading and Receiver Uncertainty 

 

Tree

CR 1

CR 2

CR 3

PU TX

PU RX

Cognitive 

Radio 

Network

Primary 

Network

 

Figure 2-1. Multipath Fading and Receiver Uncertainty
 

 

Many factors such as multipath fading, shadowing, and receiver uncertainty problem make 

detection performance worse in spectrum sensing. In Figure 2-1, a scenario involved multipath 

fading, shadowing, and receiver uncertainty problem are illustrated. As shown in the figure, 

secondary users CR1 and CR2 are located inside the transmission range of primary transmitter 
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(PU TX) while CR3 is outside the range. It is obvious to know that only CR1 is able to 

accurately detect primary signal. Due to multiple attenuated copies of the PU’s signal and the 

blocking building, CR2 experiences multipath and shadow fading so that the PU’s signal may not 

be correctly detected. Since CR3 is outside the scope of primary network, thus unaware of the 

PU’s transmission and the presence of primary receiver (PU RX), it suffers from receiver 

uncertainty problem. Therefore, the transmission from CR3 may interfere with the reception of 

PU RX.  

 

In order to improve the performance of spectrum sensing, collaboration among secondary 

users have been proposed [2-1], [2-2], and [2-3]. If CR users, which can observe strong PU’s 

signal like CR1 in Figure. 2-1, can share the sensing results with other users, the combined 

cooperative decision derived from the spatially collected observations can overcome the 

deficiency of individual detection at each CR user. Therefore, the overall sensing performance 

greatly improves. It has been proved that cooperative spectrum sensing is an effective approach 

to resolve multipath fading, shadowing, and the receiver uncertainty problem in previous 

research [2-4], [2-5]. 
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2.2 Primary Signal Detection 

 

Local spectrum sensing is referred as spectrum sensing individually performed by each CR user. 

The local spectrum sensing for primary signal is formulated as a binary hypothesis problem as 

follows: 

 

                                     

        (2-1)                                               

 

where  is the received signal by CR user,  denotes the primary transmitted primary 

user signal,  represents the channel gain of fading channel and  is the zero-mean 

additive white Gaussian noise (AWGN),  and  respectively represent the hypotheses of 

absence and presence of primary user in the denoted frequency band.  

 

The detection performance is mainly evaluated by probability of false alarm  and 

probability of detection . Probability of false alarm  denotes the rate of a CR user 

declaring that a primary user is transmitting while the spectrum is actually available, and 

probability of detection , which denotes the probability of a CR user correctly claims that a 

x(t) =
n(t),

h(t) ⋅ s(t) + n(t),





H0

H1

x(t) s(t)

h(t) n(t)

H0 H1

Pf

P
d Pf

Pd
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primary user is actually present. These probabilities are defined as 

 

          (2-2) 

          (2-3) 

 

where Y is test statistic and  is the decision threshold. The value of  is set depending on 

the requirements of detection performance. Based on the definition above, the probability of miss 

detection is defined as  

 

                    (2-4) 

 

Since a miss in the detection will cause the interference with primary user and a false alarm 

will reduce the spectral efficiency, it is usually demanded for optimal detection performance of 

maximizing 
 
subject to the constraint of . The plot that shows 

 
versus 

 
is called 

the receiver operation characteristic (ROC) curve, which is the metric for performance 

evaluation of a detector. Theoretical deduction of  and  over non-fading and fading 

channels, and the impact of diversity analysis for fading channels will be discussed in the later 

content.  

Pd = P decision = H1 H1{ } = P Y{ > λ H1}

Pf = P decision = H1 H0} = P Y > λ H0}{{

λ λ

Pm = 1− Pd = P decision = H0 H1{ }

P
d Pf

P
d Pf

P
d Pf
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2.3 Elements of Cooperative Spectrum Sensing 

The cooperative spectrum sensing is roughly considered as a three-step process: local 

spectrum sensing, local test statistic reporting, and data fusion, see Fig. 2-2. In addition to these 

steps, there are other fundamental and essential components as the elements of cooperative 

spectrum sensing. The key elements are cooperation models, spectrum sensing techniques, 

hypothesis testing, control and reporting channel, data fusion rule, user selection, and knowledge 

base.  

 

 

 

Figure 2-2. Cooperation Model: Parallel Fusion Model
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• Cooperation model is primarily concerned with how CR users collaborate to perform 

spectrum sensing and achieve the optimal detection performance. The most popular and 

dominating method originated from the parallel fusion model in distributed detection and 

data fusion [2-6]. As can be seen in Figure 2-2, there is some similarity between the 

parallel fusion model and centralized cooperative spectrum sensing. In this scheme, 

cooperative model follows the same three-step process: local sensing, data reporting, and 

data fusion. All cooperating CR users are supposed to be synchronized to sense the 

primary user signal and report local statistics/decisions to the fusion center. All the fading 

channels between the collaborative CR users and the primary user are independent. Upon 

local statistics/decisions received by the fusion center, the fusion center combines the 

reported local sensing data to make a cooperating decision, then diffusing back. Recent 

studies provide a cooperation model by using game theory [2-7], [2-8]. Unlike the 

parallel fusion model aiming to improve overall detection performance by emphasizing 

sensing part, game theoretical models focus on analyzing the iterations and the 

cooperative or non-cooperative behaviors of CR users.  

 

• Sensing techniques are used to sense the radio frequency environment, take observation 

samples, and employ signal processing techniques for detecting a primary user signal or 
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the available spectrum. Similar to traditional spectrum sensing without cooperation, the 

objective of the local spectrum sensing is primary signal detection. Sensing techniques 

are critical in cooperative spectrum sensing; what kind of sensing techniques are chosen 

has a big effect on how CR users collaborate. Basically, sensing techniques can be 

classified as two broad types: coherent and non-coherent detection. In coherent detection, 

the primary signal can be coherently detected by comparing a received signal with a 

priori knowledge of primary signals. Instead, no priori knowledge is needed in 

non-coherent detection. One of the most popular sensing techniques in cooperative 

sensing is energy detection, a non-coherent detection method. The issue of energy 

detection of an unknown signal over a multipath channel will be described in detail in the 

later content.  

 

• Hypothesis testing is a statistic test to make a binary decision on the presence or absence 

of a primary user signal. The test can be taken solely by each cooperating CR user for 

local spectrum sensing or performed by the fusion center for a cooperative decision. The 

Neyman-Pearson criteria and the Bayes criteria are two basic hypothesis testing methods 

commonly used in spectrum sensing. The objective of a Neyman-Pearson test is to 

maximize probability of detection 
 
and insure that probability of false alarm 

 
is P

d Pf
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below a fixed value. In Bayes test, the objective is to minimize the expected cost called 

the Bayes Risk defined by , where 
 

is the cost of 

choosing 
 

when 
 

is true, 
 
denotes the probability of declaring 

 

when 
 

is true, and 
 

is the prior probability of hypothesis .  

 

• Control and reporting channel concerns with how local decisions sensed by cooperating 

CR users can be efficiently and accurately transmitted to the fusion center or shared with 

other CR users via control channel with limited bandwidth and fading problem. In 

cooperative spectrum sensing, a common control channel (CC) is commonly used by CR 

user to report local sensing data to the fusion center or share the sensing results with 

neighboring nodes. The control center can be implemented as a dedicated channel in 

licensed or unlicensed bands. For reporting sensing data, three major control channel 

requirements must be satisfied in cooperative spectrum sensing: bandwidth, reliability, 

and security.  

 

• Data Fusion is a process of combining local sensing data for hypothesis testing. 

According to the requirement of control channel, reported sensing information may be of 

different types, forms and sizes. In general, the sensing results reported to the fusion 

R = Σi=0

1 Σ j=0

1 CijP(H i H j )P(H j ) Cij

H i H j
P(H i H j ) H i

H j P(H j ) H j
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center or shared with neighboring users can be processed in three ways as (I) soft 

combining: CR users can transmit the entire local sensing samples or the complete local 

test statistics for soft decision; (II) quantized soft combining: CR user can quantize local 

sensing data, then only send quantized data for soft combining to alleviate control 

channel overhead; (III) hard combining: CR users make a local decision and transmit the 

one-bit decision for hard combining. Based on the schemes, it is obvious that using soft 

combining can achieve the best sensing performance because all the information is kept, 

while using the rest combining methods can save bandwidth of control channel at the risk 

of degraded sensing performance.  

 

• User selection concerns with how to optimally select the cooperating CR users and 

decide proper cooperation range to maximize the cooperative gain and minimize the 

cooperation overhead. The selection of CR users for cooperative spectrum sensing plays 

a key role in determining the quality of cooperative spectrum sensing because it can be 

utilized to improve cooperative gain and address the overhead issues.  

 

• Knowledge base stores the information and facilitates the cooperative sensing process to 

improve the detection performance. The performance of cooperative spectrum sensing 
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depends closely on the information of primary user’ characteristics such as traffic 

patterns, location, and transmit power. If the knowledge base has such information, it will 

greatly facilitate primary user detection. Since knowledge base can be used to assist, 

complement or even replace cooperative spectrum sensing for detecting primary user 

signal, it is a indispensable component in cooperative spectrum sensing.  

 

2.4 Local Spectrum Sensing 

 

2.4.1 AWGN channels 

 

Energy detectors have been extensively studied in the past. Early in 1967, Urkowitz [2-9] 

firstly addressed the issue of energy detection of an unknown deterministic signal over an 

additive white Gaussian noise (AWGN) channel. He proposes that the receiver is employed with 

an energy detector that measures the energy in the received waveform over an observation time 

window. In his work, the energy output y  follows the distributions, 

 

       y ~ 
χ2TW

2 ,

χ2TW

2 (2γ ),






      

H0

H1
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(2-5)                                       

 

where χ2TW

2  and χ2TW

2 (2γ )  denote central and non-central chi-square distributions 

respectively, each with 2TW degrees of freedom, and 2γ  is a non-centrality parameter. For 

simplicity, the time bandwidth TW  is assumed as an integer number denoted by m .  

 

Based on the statistics of y , the probability of detection Pd
 and the probability of false 

alarm Pf
, defined as Pd = P y > λ H1( )  and Pf = P(y > λ H0 )  respectively, where λ  is a 

decision threshold, can be evaluated as [2-10] 

 

                  

Pf =
Γ(m,λ / 2)

Γ(m)
,                         (2-6) 

                 
Pd = Qm ( 2γ , λ ),                       (2-7) 

 

where γ is the signal-to-noise ratio (SNR), Γ(.)  and Γ(.,.)  are complete and upper 

incomplete gamma functions respectively, and Qm  
is the generalized Marcum Q-function. 

Complete and upper incomplete gamma functions [2-11] are defined as  
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Γ(s) = t

s−1
e

−t
dt

0

∞

∫ ,                        (2-8) 

                 
Γ(s, x) = t

s−1
e

− t
dt

x

∞

∫ ,                       (2-9) 

 

respectively. The generalized Marcum Q-function [2-12] is defined as follows 

 

               
Qm (a, b) =

xm

a
m−1

e
−

x2 +a2

2 Im−1(ax)dx
b

∞

∫                   (2-10) 

 

where Im−1(.) is the modified Bessel function of (m-1)-th
 
order.  

 

The receiver operating characteristic (ROC) curves, a plot of Pd
 versus Pf  

is a primary 

criterion to quantify the sensing performance. Equivalently, we sometimes use complementary 

ROC curves (probability of miss detection Pm
 versus Pf

) for different situations of interest. 

The fundamental tradeoff between Pm
 and Pf

 has different implications in the case of 

spectrum sensing. A high Pm  
would cause miss the presence of primary user with high 

probability that in return increases interference to the licensed primary network. On the other 

hand, a high Pf  
would waste more opportunities of free spectrum that leads to inefficient 

spectrum utilization, which degrades the CRN throughput.  
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2.4.2 Rayleigh Fading Channels 

 

In mobile radio channels, the Rayleigh distribution is commonly used to describe the 

statistical time-varying nature of the received envelope of a flat fading signal, or the envelope of 

an individual multipath component. It is well known that the envelope of the sum of two 

quadrature Gaussian noise signals obeys a Rayleigh distribution [2-13]. The Rayleigh 

distribution has a probability density function (PDF) given by  

 

p(r) =

r

σ 2
exp −

r2

2σ 2







, (0 ≤ r ≤ ∞)

0, (r < 0)









                             (2-11) 

 

where r is the root-mean-squared value of the received voltage signal before envelope detection, 

and σ 2  is the time-averaged power of the received signal before envelope detection. The 

probability that the envelope of the received signal does not exceed a specified value R  is 

given by the corresponding cumulative distribution function (CDF) 

 

       

P(R) = Pr(r ≤ R) = p(r)dr = 1− exp −
R

2

2σ 2






0

∞

∫                 (2-12) 
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The mean value rmean
 of the Rayleigh distribution is given by 

 

            
rmean = E(r) = rp(r)dr = σ

π

20

∞

∫ = 1.2533σ ,               (2-13) 

 

and the variance of the Rayleigh distribution is given by σ r

2 , which represents the ac power in 

the signal envelope 

 

σ r

2 = E(r2 ) − E 2 (r) = r2 p(r)dr
0

∞

∫ −
σ 2π

2
= σ 2 2 −

π

2







= 0.4292σ 2      (2-14) 

 

Often, the gain and phase elements of a channel's distortion are conveniently represented as 

a complex number. In this case, Rayleigh fading is exhibited by the assumption that the real and 

imaginary parts of the response are modeled by independently and identically distributed (i.i.d.) 

zero-mean Gaussian process so that the amplitude of the response is the sum of two such 

processes. Rayleigh fading can be a useful model in heavily built-up city centers where there is 

no direct line-of-sight between the transmitter and receiver, and large number of buildings and 

other objects attenuate, reflect, refract, and diffract transmitted signals.  
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Under Rayleigh fading channel, the average detection probability Pd,Ray  
can be obtained as 

[2-10] 

 

      Pd,Ray = e
−

λ

2
1

k!k=0

m−2

∑
λ

2







k

+
1+ γ

γ








m−1

× e
−

λ

2(1+γ ) − e
−

λ

2
1

k!

λγ

2(1+ γ )






k=0

m−2

∑
k







           (2-15)  

 

where γ  is the average SNR. Notice that Pf
 in (2-6) is independent with SNR, thus Pf ,Ray

 

remains the same as Pf
. Rayleigh fading degrades spectrum sensing performance of energy 

detector significantly, compared to AWGN channel scenario. Therefore, cooperative spectrum 

sensing is crucial to improve the spectrum sensing performance in fading channel environments.  

 

2.5 Cooperative Spectrum Sensing over Fading Channels 

 

In this section, Square-law combining (SLC) and Square-law selection (SLS) diversity 

schemes are introduced. Here, the two diversity schemes are employed into parallel fusion model. 

In Chapter 4, we will use either fusion model to fuse the local CR statistics to perform the final 

spectrum sensing decisions. 

 



27 

 

2.5.1 Square-law Combining (SLC) 

 

In this scheme, each cooperating CR user experiences an independent Rayleigh fading 

channel, then simultaneously reported sensing data, also known as the output of energy detector 

yi{ }
i=1

L
, where L  is the number of cooperative CR users, to the fusion center. The fusion center 

combines the reported local sensing data to yield a fused decision statistic ySLC = yii=1

L

∑ , and 

then compares this fused data against with a testing threshold λ  to make final decisions.  

 

Under H0
 in AWGN channels, adding L i.i.d. central chi-square varieties, each with 2m  

degrees of freedom, will result in another chi-square varieties with 2Lm  degrees of freedom. 

Therefore, we have [2-10] 

 

P
f ,SLC

=
Γ(Lm,

λ

2
)

Γ(Lm)
,                     (2-16) 

 

which is similar to (2-6) for AWGN channel without cooperation. 

 

Likewise, under H1
, ySLC

will be a non-central chi-square variety with 2Lm  degrees of 
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freedom, non-centrality parameter 2γ ii=1

L

∑ , denoted by 2γ t
. Thus, Pd,SLC

 can be evaluated by 

analogy to (2-7) as 

   

Pd ,SLC = QLm 2γ t , λ( ).                    (2-17) 

 

2.5.2 Square-law Selection (SLS) 

 

In the SLS diversity scheme, instead of adding all the sensing results of cooperating CR 

users, the fusion center selects the maximum received local statistic, which denotes as 

ySLS = max yi{ }
i=1

L
. Under H0

, Pf ,SLS
 can be evaluated by using CDF of ySLS

 given H0
defined 

as FySLS
= y H0( ) , yielding as 

 

          Pf ,SLS = 1− FySLS
λ H0( ) = 1− 1−

Γ m, λ( )
Γ m( )








L

 .             (2-18) 

 

Similarly,  

 

        
Pd ,SLS =1− ∏

i=1

L

1− Qm 2γ i , λ( )( )  .                        (2-19) 
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Averaging this Pd,SLS
 over L  independent Rayleigh branches, we can have 

 

Pd,SLS,Ray = 1− ∏
i=1

L

(1− Pd,Ray (γ i, m)),                      (2-20) 

where Pd ,Ray
 is provided in (2-15). 

 

2.6 Summary 

 

Spatially distributed cooperative spectrum sensing methodology can significantly improves 

the performance of spectrum sensing [2-14]. As the number of CR users increases, the sensing 

results are more reliable. However, the number of CR users in cognitive radio networks is time 

varying. CR users come and go. Cognitive radio networks cannot hold the CR users when the CR 

users decide to leave. Therefore, in the following chapters, we will study the dynamic behaviors 

of CR users and the performance of cooperative spectrum sensing due to the dynamic behavior 

of CR users. 
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Chap 3 

User Dynamics 

 

 

Exploring the spatial diversity, the spectrum sensing can make more reliable decisions [3-1]. 

However, since the CR users can turn on/off the CR functionalities at will, CRN is not a static 

network but a dynamic network. Thus, the number of spatial diversity in the distributed spectrum 

sensing is not constant but time-varying. The dynamics of CRs impact the spectrum sensing 

performance. To guarantee not to violate the privileges of the licensed primary users and also to 

optimize CRN its own throughput, CRN has to adapt the system parameters to the dynamics of 

CR accordingly. Therefore, CRN cannot ignore the dynamics of CRs and the dynamics of CRs is 

an important topic for the CRN system operations. In this chapter, we study the dynamic 

behavior of the CR users and hence the dynamics of the collaborative CRs in the network. 

 

3.1 Dynamic Behaviors 

 

People use their mobile wireless devices at will. For example, people use their cell phones 
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to make calls to other people and hang up whenever they finish the conversations. People turn on 

the Wi-Fi functionality in the laptops to access the Internet and leave when they finish or when 

they need to go to the following schedules. Similarly, the CR users also turn on/off the CR 

functionalities embedded in their mobile devices to attempt to use the available wireless 

spectrum at will. Therefore, the CRN is not a static network but a dynamic network. The CRN 

network size is changing over time. Since the number of collaborative CRs in the PHY-layer 

cooperative spectrum sensing is time-varying, the number of available spatial diversity is also 

changing, see Fig. 3-1. The performance of cooperative spectrum sensing is hence fluctuating 

accordingly. 

 

 

Fig. 3-1 One Realization of {N(t)} 

 

3.2 Semi-Markov Processes 

When the CR users turn on the CR functionalities, the mobile devices equipped with the CR 

functionalities join the cooperative spectrum sensing immediately. These CRs form an ad hoc 
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cognitive radio network. They collaborate all together to monitor the primary users’ activities 

and seek for the spectrum opportunities. Suppose the CRs join this network by Poisson arrival 

random process with rate λ. After a certain amount of time, a CR will leave the network and thus 

leave the distributed cooperative spectrum sensing. Based on the different application scenarios 

and also different amount of information regarding the dynamic behaviors of the CR users, we 

can use different distributions to model this amount of time. For example, in the cellular systems 

application, several and significantly different probability distribution functions (e.g., 

exponential, Erlang, Gamma, uniform, deterministic, hyper-Erlang, sum of hyper-exponentials, 

log-normal, Pareto, Weibull, general phase-type distributions, generalized Pareto, and 

generalized Coxian) are proposed to model Cell Dwell Time (CDT) which is the amount of time 

a mobile device stays within a cell, see [3-2], [3-3], [3-4], and the references therein. These CDT 

distributions can be used to model the amount of time Ti(t) the i-th CR stays in the cooperation 

for the cognitive radio ad hoc cellular network systems. After this amount of time, the CR leaves 

the system and thus leaves the collaboration in spectrum sensing.  

The random departure process {D(t)} is formed by the given Poisson arrival process {A(t)} 

and the amount of time {T(t)} a CR stays in the network, see Fig. 3-2. Thus, the number of CRs 

in the network can be modeled by a semi-Markov stochastic process {N(t)} over infinity 

countable space {0, 1, 2, …} [3-5]. This semi-Markov process consists of Poisson arrival process 
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{Ai(t)}, cooperation time {Ti(t)}, and the associated random departure process 

{Di(t)}={Ai(t)+Ti(t)}. 

 

Time

Time

N(t)

A(t)

D(t)

A1 A2 A3 A4

D2 D1

T2

T1

T3

T4
 

Fig. 3-2 The Semi-Markov Random Process {N(t)} , Arrival/Departure Random Processes 

{A(t)}/{D(t)}, and Cooperation Times {Ti} 

 

This nonstationary random process can capture the number of CRs in the network at any 

time instance t by the time-varying probability mass function (PMF) of N(t) according to the 
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dynamic arrivals and departures of CRs. Therefore, based on different cognitive radio network 

technology application scenarios, we can derive the dynamic probability mass function 

accordingly as follows. 

 

3.2.1 Persistent Cognitive Radios 

 

CRs arrive in a CRN following the Poisson process with rate λ. They join the cooperative 

spectrum sensing immediately and they do not leave before PU stops transmitting. Therefore, 

during this PU busy period, the dynamic probability mass function of the number of CRs in the 

network, N(t), is 

 

( )
( ( ) ) ,    n = 0,1,2,....        (3-1)

!

n

t
t

P N t n e
n

λλ −= =
 

 

Since they don’t leave and thus there is no departure process, after a long period of time, 

there will have huge number of CRs in the system. For the cooperative spectrum sensing, this 

definitely enhance the detection performance. However, from the system operation point of view, 

too many CRs waiting for the potential spectrum opportunities is a huge burden for the network 
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because of the communications costs between the central controller to all these CRs and also the 

related fairness-related network management. 

 

3.2.2 Deterministic Cooperation Time with Parameter c > 0 

 

Given the PU is using its own licensed band, the CRs in the system are collaborating to 

monitor the possible frequency utilization opportunities, i.e. the PU leaves. CRs arrive in a CRN 

following the Poisson process with rate λ. They join the cooperative spectrum sensing 

immediately and wait for the opportunities. They lose the patience after a period of time c > 0 

and leave the system immediately. In this scenario, we can obtain the dynamic PMF of N(t) as 

 

( )

( )

1

1

! ,           0 t < c,
( ( ) )           (3-2)

! ,               t c.

n n t

n n c

n t e
P N t n

n c e

λ

λ

λ

λ

− −

− −

 ≤
= = 

≥  

 

This is a simplified scenario. There is no uncertainty for the amount of time a CR stays in 

the network. However, the arrival process is random and thus the departure process is still 

random. This model can give us a preliminary insight on how the performance of cooperative 

spectrum sensing varies with time. While we collect more information regarding the CR users’ 
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behavior, we can migrate to a more complete and sophisticated model to evaluate the spectrum 

sensing performance.  

 

3.2.3 Uniform Random Cooperation Time over (0, c]  

In the PU busy period, suppose the arrival process for CRs follows Poisson with rate λ. CRs 

immediately join the distributed spectrum sensing when they arrive. The amount of time a CR 

is willing to wait before the PU leaves is independent. Given the upper limit for the waiting 

time as c, while we don’t have any further information regarding how patient for each CR, we 

can use independent and identically distributed uniform waiting time to model the random 

amount of time a CR stays in the cooperation. The associated probability density function for 

uniform random cooperation time is given by: 

1
,    0

( )                             (3-3)

0,   otherwise

x c
f x c


< ≤

= 
  

 

They leave randomly after they lose the patience. Hence, the dynamic PMF of N(t) for this 

scenario can be obtained by 
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( ) ( )
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[1 2 ]1

1 2

( !) [1 2 ] ,0 t < c,
( ( ) )         (3-4)

(2 !) ,                           t c.

t t cn n n

cnn

n t t c e
P N t n

n c e

λ

λ

λ

λ

− −−

−−
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= = 
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In this scenario, not all CRs stay the same amount of time c which is the upper limit of the 

cooperation time information. Considering the probability of miss detection drops substantially 

faster than the linear relationship with respect to the number of spatial diversity, we know the 

spectrum sensing performance with the deterministic cooperation time is better than the spectrum 

sensing performance with the uniform random cooperation time under the same parameter value 

c. 

 

3.2.4 Pareto Random Cooperation Time with Parameters xm > 0 

and α > 0 

 

The associated probability density function for Pareto random cooperation time is given by 

 

1
,      

( )                      (3-5)

0,         otherwise

m
m

x
x x

f x x

α

α

α
+


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

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CRs arrive at the system following the Poisson process with rate λ. When a CR joins the 

cooperation to look for the potential spectrum opportunities, it is willing to wait at least xm 

amount of time, e.g. 10 seconds or 3 minutes, but, after that, it loses the patience 

α-exponentially and leaves the system. Thus, the dynamic PMF of N(t) can be obtained by, for 

0 ≤ t < xm, 

( )1( ( ) ) ( !) .                               (3-6)
n tP N t n n t e λλ− −= =  

For t ≥ xm, 

( ) ( ) ( )

( ){ }

1 1 1

1 1

( ( ) ) ! 1 1

                          exp 1 1 .

n nn n

m m

m m

P N t n n x x t

x x t

α α

α α

λ α

λ α

− −− − +

− − +

= = − − ×

− − −
     

(3-7) 

 

Fig. 3-3 Probability Mass Function of the Number of CRs in the Cooperation at Different Time 

Instants under Pareto Random Cooperation Time Scenario 
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Fig. 3-4 plots the probability mass functions of the number of CRs {N(t)} in the network at 

different time instants. We can see the probability mass function is changing and thus {N(t)} is 

not a stationary random process. The derived analytical expression for the probability mass 

function of the number of CRs can help us to evaluate the dynamic performance of the 

cooperative spectrum sensing in the next chapter. 

 

 

3.2.5 Gamma Random Cooperation Time with Parameters k > 0 

and θ > 0 

 

Suppose the arrival process for CRs follows Poisson with rate λ. CRs immediately join the 

distributed spectrum sensing when they arrive. The amount of time a CR is willing to wait before 

the PU leaves is independent. Gamma distribution is widely used to model the random amount of 

time a customer in a system and the associated probability density function is given by 

 

11
( ) ,    0.

( )

x

k

k
f x x e x

k
θ

θ

−
−= ≥

Γ         (3-8)
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If we use gamma distribution to model the random amount of time a CR stays in the 

collaboration, the random departure process is composed of the arrival random process and also 

this random amount of cooperation time. We can derive the dynamic probability mass function of 

the number of CRs in the network as 
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    (3-9)
 

3.2.5Weibull Random Cooperation Time with Parameters µ > 0 

and k > 0 

 

 

Given CRs’ arrivals follow the Poisson random process with rate λ. CRs join the 

cooperative spectrum sensing immediately when they arrive. Since some CRs are carried by 

more patient users and some are carried by impatient users, the amount of time a CR is willing to 

wait can be modeled by Weibull distribution and its associated probability density function is 

given by: 
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When a CR loses the patience, it leaves the system and spectrum sensing cooperation. 

Therefore, we can derive the dynamic PMF of N(t) as 
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3.2.7 Log-normal Random Cooperation Time with Parameters µ 

and σ2 ≥ 0 

Given CRs’ arrivals follow the Poisson process with rate λ. CRs join the cooperative 

spectrum sensing immediately when they arrive. Log-normal distribution is widely used to 

describe the random amount of time for each person stays and waits for services in many 

different scientific studies. Moreover, log-normal distribution has been used in the literatures to 

model cell dwell time (CDT), which is the amount of time a mobile terminal stays within a cell. 

The associated probability of log-normal distribution is given by 
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where log(x) is the logarithm function to the base e. Hence, the dynamic probability mass 

function of the number of CRs in the network can be derived as 
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where ( )
1

11

0

( , ) 1 .
yx

B x y t t dt
−−= −∫  is the beta function, ( )
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x

t
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Φ = ∫  is the cumulative 

distribution function of the Gaussian distribution with zero mean and unit variance, 

( ) 1, .s t

x

s x t e dt

∞
− −Γ = ∫ is the upper incomplete gamma function, and ( ) 1

0

.
s t

s t e dt

∞
− −Γ = ∫ is the gamma 

function. 
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3.3 Asymptotic Time-averaged Dynamic Behaviors 

The time-averaged probability mass function can be obtained by 

( ) 1

0

l i m ( ( ) ) .

T

N
T

P n T P N t n d t
−

→ ∞
= =∫  [3-6]. When we take T to infinity, the asymptotic 

long-term time-averaged probability distribution for the number of CRs in the network can be 

obtained as follows.  

 

3.3.1Deterministic Cooperation Time with Parameter c > 0 

CRs lose the patience after a period of time c and leave the system immediately. In this 

scenario, we can obtain the asymptotic probability mass function of the number of CRs in the 

network, N(t), as 

 

( )
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1
( ) lim ( ( ) )

!

n cT

N
T

c e
P n P N t n dt

T n

λλ −
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= = =∫

           (3-14) 

 

Hence, we can see that the probability of the number of CRs in the system in this deterministic 

cooperation time scenario depends on the parameter c value. If CRs are willing to stay longer in 

the network, it’s more probable to have more CRs in the network after a long period of time. This 

analytical result does agree with the engineer intuition. However, in a more practical setting, 
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cognitive radio network cannot hold the CR user in the system in order to achieve better 

spectrum sensing performance. 

 

3.3.2Uniform Random Cooperation Rime with Distribution over 

(0, c] 

 

Given the upper limit for the waiting time as c, while we don’t have any further information 

regarding how patient for each CR, we can use independent and identically distributed uniform 

waiting time to model the random amount of time a CR stays in the cooperation. After taking T 

to infinity, we can obtain the asymptotic long-term probability mass function for the number of 

CRs in the network as 
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= = =∫

         (3-15)

 

 

From the above result, we can also conclude that while the upper limit of the amount of time for 

a CR is willing to wait is larger, it’s more probable to have more CRs in the system after a long 

period of time, which is consistent with the result for the deterministic cooperation time scenario. 
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Moreover, if the upper limit c for the uniform random cooperation time scenario is twice of the 

amount of time a CR stays in the system for the deterministic cooperation time scenario, the 

asymptotic probability mass functions of the number of CRs in the system are the same for the 

both scenarios. 

 

3.3.3Pareto Random Cooperation Time with Parameters xm > 0 

and α > 0 

 

In this scenario, a CR is willing to wait at least xm amount of time, but, after that, it loses the 

patience α-exponentially and leaves the system. As T goes to infinity, the long-term 

time-averaged probability mass function for the number of CRs in the network can be obtained 

by 
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From the above equation, we can understand the parameter xm is more important than the other 

parameter α. While either xm and/or α is larger, it’s more probable to have large number of CRs in 
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the system. However, the increase in xm can move the peak of the probability mass function 

further to the right than the increase in α does. 

 

3.3.4 Gamma Random Cooperation Time with Parameters k > 0 

and θ > 0 

 

While the amount of time a CR stays in the network can be described by the Gamma 

distribution, if we take T to infinity to evaluate the long-term time-averaged probability 

mass function of the number of CRs in the network, we can obtain the following asymptotic 

probability mass function as 
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k e
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     (3-17) 

 

From the above result, we can understand the increase in either the parameter k or the parameter 

θ can move the asymptotic probability mass function of the number of CRs in the system to the 

right. They are equally important in determining the shape of the probability mass function. 

Furthermore, their effects are multiplicative. 
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3.3.5Weibull Random Cooperation Time with Parameters µ > 0 

and k > 0: 

 

With Weibull random cooperation time, the asymptotic time-averaged probability mass 

function of the number of CRs in the network can be obtained by 

 

( ) (1 1 )

0

(1 1 )1
( ) lim ( ( ) )

!

n kT

N
T

k e
P n P N t n dt

T n

λµλµ − Γ +
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Γ +
= = =∫

 (3-18) 

  

From the above equation, we know the shape parameter µ is much more important than the 

scaling parameter k for the asymptotic probability mass function of the number of CRs in the 

system. 

 

3.3.6 Log-normal Random Cooperation Time with Parameters µ 

and σ2 ≥ 0, 

 

When the CRs in the system behave log-normally, the long-term time-averaged 

probability mass function for the number of CRs in the network can be obtained by taking T 



50 

 

to infinity as follows. 
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Both parameters µ and σ
2
 are exponentially important in determining the shape of asymptotic 

probability mass function of the number of CRs in the system. Therefore, a small amount of 

increase in either µ or σ
2
 can lead to substantially increase in the average number of CRs in the 

system while T goes to infinity. 

 

3.4 System Capacity 

 

Due to many dynamic spectrum management reasons, such as Qualify-of-Service (QoS) 

constraints, collision avoidance, interference control, throughput controls, and etc, CRN usually 

can only keep up to L CRs in the pool waiting for the possible spectrum utilization opportunities 

[3-7] [3-8]. 
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3.4.1 Deterministic Cooperation Time with Parameter c > 0: 

 

CRs lose the patience after a period of time c and leave the system immediately. In this 

scenario, considering the CRN size limitation L, we can obtain the asymptotic probability mass 

function for the number of CRs in the network as follows, 
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( 1, ) !
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=
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where Γ(x,y) is the upper incomplete Gamma function as 
1( , ) x t

y

x y t e dt

∞
− −Γ = ∫  

 

3.4.2 Uniform Random Cooperation Time with Distribution over 

(0, c]: 

 

Given the upper limit for the waiting time as c, while we don’t have any further information 

regarding how patient for each CR, we thus use independent and identically distributed uniform 

waiting time to model the random amount of time a CR stays in the cooperation. In this scenario, 

considering the CRN size limitation L, we can obtain the asymptotic probability mass function 



52 

 

for the number of CRs in the network as follows, 
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3.4.3 Pareto Random Cooperation Time with Parameters xm > 0 

and α > 0: 

 

In this scenario, a CR is willing to wait at least xm amount of time, but, after that, it loses the 

patience α-exponentially and leaves the system. Considering the CRN size limitation L, we can 

obtain the asymptotic probability mass function for the number of CRs in the network as follows, 
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3.4.4 Gamma Random Cooperation Time with Parameters k > 0 

and θ > 0 

 

While the amount of time a CR stays in the network can be described by the Gamma 
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distribution, considering the CRN size limitation L, we can obtain the asymptotic probability 

mass function for the number of CRs in the network as follows, 
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3.4.5 Weibull Random Cooperation Time with Parameters µ > 0 

and k > 0: 

 

With Weibull random cooperation time, considering the CRN size limitation L, we can 

obtain the asymptotic probability mass function for the number of CRs in the network as follows, 
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3.4.6 Log-normal Random Cooperation Time with Parameters µ 

and σ2 ≥ 0, 
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When the CRs in the system behave log-normally, considering the CRN size limitation L, 

we can obtain the asymptotic probability mass function for the number of CRs in the network as 

follows, 

2 2
2 exp( 2)
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( 1, exp( 2)) !

n
L n n

N
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P n e

L n
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λ µ σ
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 (3-25) 

 

3.5 Summary 

 

In this chapter, we investigate the dynamics of CR users in the network and thus the 

dynamic number of spatial diversity in the cooperative spectrum sensing. Under different CR 

dynamics, we obtain different dynamic probability mass function of the number of CRs in 

system for any time instant t. Moreover, considering several network operation constraints, the 

dynamic probability mass function with the system size limitation is also studied for different 

cooperation time scenarios. The long-term time-averaged probability mass functions of the 

number of CRs in the system are also analyzed under different scenarios. With this information, 

we can analyze the performance of the cooperative spectrum sensing in the dynamic cognitive 

radio networks in the following chapter. 
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Chap 4 

Performance Analysis 

 

 

We formulate the spectrum sensing as a binary hypothesis testing problem. H1 means the PU 

is using its own licensed frequency band; H0 represents the PU is idle. Spectrum sensing makes 

the binary decisions, 
0Ĥ : the band is vacant and 

1Ĥ : the band is occupied. The probability of 

detection ( )1 1
ˆ |dP P H H=  represents the probability that the band occupancy can be correctly 

detected. The probability of miss detection ( ) ( )0 1 1 1
ˆ ˆ| 1 | 1

m d
P P H H P H H P= = − = −  is an important 

performance metric for controlling the interference to the primary user. Higher Pm means CRN 

might cause interference with the existing primary privileged spectrum utilization, which is not 

allowed. The probability of false alarm ( )1 0
ˆ |FAP P H H=  denotes the probability that CRN 

makes a false alarm on the primary user’s occupancy. This is another important performance 

metric for spectrum sensing because the larger PFA implies that CRN is more likely to miss the 

opportunities to exploit the available spectrum, which lead to the CRN throughput degradation. 

 

4.1 Energy-based Spectrum Sensing 
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Each CR monitors the primary user spectrum utilization by obtaining the energy statistic as 

in Fig. 4-1. The received signal waveform at a CR at each I/Q component is first passed through 

a band-pass filter (BPF) to remove out-of-band noises and then followed by the full-wave 

rectifier and the square–law circuit. Then M/2 samples are taken over a period of time T both at 

the I and Q components respectively. After summing over M/2 samples from both components, 

the output yields the energy statistic Y. Then, based on the output of a comparator device, the 

local CR sensing module could make the local decisions.  

 

T
λ

 

Fig. 4-1 Energy Detector Block Diagram 

  

If the energy statistic Y is greater than a threshold λT , 1
Ĥ  decision is reached; otherwise, 

0
Ĥ  decision is made.  Let γ be the instantaneous signal-to-noise ratio (SNR). Given H1, Y 

follows a noncentral chi-square distribution with noncentrality 2γ and M degrees of freedom; 
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under H0, Y has a central chi-square distribution with M degrees of freedom. With additive white 

Gaussian noise (AWGN) with variance σ
2
 and mean zero, the average probability of detection 

can be obtained as [4-1] 

 

( )2 2

, 1 1 /2
ˆ( | ) 2 , ,   (4-1)

d AWGN M T
P P H H Q γ σ λ σ= =  

 

where Qx(a,b) denotes the generalized Marcum Q-function. The average probability of false 

alarm is given by [4-1] 

 

, 1 0
ˆ( | ) ( , 2) ( ) ,          (4-2)FA AWGN TP P H H u uλ= = Γ Γ  

 

where Γ(x,y) is the upper incomplete gamma function, Γ(x) is the gamma function, and u = TW 

is the time bandwidth product with T as the observation time interval and W as the one-sided 

bandwidth. The threshold λT can be determined based on the overlay CRN design concerns. For 

example, the recent work [4-2] bounds the queue occupancy based on some statistical 

Quality-of-Service (QoS) constraints and interference constraint to dynamically adjust the 

threshold. After λT value is decided, Pd and PFA can be calculated by (4-1) and (4-2) respectively.
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However, the instantaneous SNR, γ, is random over a fading channel. Therefore, the 

probability of detection over a fading channel can be obtained by averaging over the probability 

density function of γ as follows: 

 

( )2 2

/ 2
0

2 , ( ) .                   (4-3)
d M T

P Q f dγγ σ λ σ γ γ
∞

= ∫
 

 

Since the probability of false alarm is independent of the instantaneous SNR, the probability of 

false alarm over a fading channel is still equal to (4-2). 

 

4.2 Dynamic Spectrum Sensing Performances 

 

Due to the wireless fading channel, a CR faces the hidden primary user issue in spectrum sensing. 

From the previous chapter, we know that through the collaboration among spatially distributed 

CRs, the hidden primary user issue can be effectively combated. The cooperative spectrum 

sensing performance is varying because of fading, shadowing, etc. On the other hand, since the 

number of CRs in CRN is also dynamically changing, the cooperative spectrum sensing 

performance is varying accordingly. We assume that there is a dedicated error-free channel for 

all spatially distributed CRs to send the collected energy statistics to the fusion center. The fusion 
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center performs the hypothesis testing based on the fused energy statistic, Z, from all concurrent 

n CRs against a testing threshold λT to reach the final decisions.  The dynamic probability of 

detection can be obtained by 

 

( )2 2

/2
0

1

( ) ( ( ) ) 2 , ( ) , (4-4)d M Z T Z Z

n

P t P N t n Q f dγγ σ λ σ γ γ
∞ ∞

=

= =∑ ∫  

 

where the probability density function of SNR for the fused energy statistic Z, ( )
Z

fγ γ , depends 

on the number of CRs, channel model, and the energy statistic fusion scheme. The dynamic 

probability of false alarm can be calculated by 

 

0

1

( ) ( ( ) ) ( | ),                      (4-5)
FA T

n

P t P N t n P Z Hλ
∞

=

= = >∑  

 

where Z is the fused energy statistic based on n CRs. Therefore, the probability of false alarm 

depends on the number of CRs, and also the energy statistic fusion scheme.  

 

4.2.1 AWGN Channels 

 

4.2.1.1 Square-law Combining 
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Suppose the arrival process follows Poisson with rate λ. All CRs join the cooperative 

spectrum sensing immediately when they arrive. The random amount of time a CR stays in the 

cooperation follows Pareto distribution with parameters  xm > 0 and α > 0. After this amount 

of time, it leaves immediately and thus leaves the collaboration. CRs collect the local energy 

statistics through the independent AWGN channels. Then, all these local energy statistics are 

transmitted via a dedicated error-free reporting channel to the fusion center. The fusion center 

combines the local statistics by summing over all energy statistics from all concurrent CRs in 

the network. Based on the fused statistic, the fusion center makes final sensing decisions. 

Therefore, we can obtain the dynamic probability of detection, for 0 ≤ t < xm, 
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For t ≥ xm, 
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The dynamic probability of false alarm of the distributed cooperative spectrum sensing is given 

by 
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4.2.1.2 Square-law Selection 

 

Suppose the arrival process follows Poisson with rate λ. All CRs join the cooperative 

spectrum sensing immediately when they arrive. The random amount of time a CR stays in the 

cooperation follows Pareto distribution with parameters  xm > 0 and α > 0. After this amount 

of time, it leaves immediately and thus leaves the collaboration. CRs collect the local energy 

statistics through the independent AWGN channels. Then, all these local energy statistics are 

transmitted via a dedicated error-free reporting channel to the fusion center. The fusion center 
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combines them by adopting the largest energy statistic among all received local statistics from 

concurrent CRs in the network. Based on this fused statistic, the fusion center makes final 

sensing decisions. Therefore, we can obtain the dynamic probability of detection, for 0≤ t< xm, 

 

( ){ }2 2

/2( ) 1 exp 1 2 , .
d M T

P t t Qλ γ σ λ σ = − − −
      (4-10)

 

 

For t ≥ xm, 

 

( ) ( ) ( ){ }1 1 2 2

/2( ) 1 exp 1 1 2 , 1 .
d m m M T

P t x x t Q
α αλ γ σ λ σ α− − +  = − − − − −

      (4-11)
 

 

On the other hand, the dynamic probability of false alarm, for 0 ≤ t < xm, can be obtained by 

 

[ ]( ) 1 exp ( , 2) ( ) .FA TP t t u uλ λ= − − Γ Γ
   (4-12)

 

 

and for t ≥ xm, the dynamic probability of false alarm can be obtained by 

 

( )1 1( ) 1 exp 1 ( , 2) ( ) .
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m
FA m T

x
P t x t u u

α αλ
λ

α
− − + 

= − − − Γ Γ −    (4-13)
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4.2.2Log-normal Shadowing Channel 

 

4.2.2.1 Dynamic Performances 

 

Suppose the local cognitive radio network is within a certain short distance and hence the 

deterministic path-loss is negligible. However, the surrounding environment clutter may be 

vastly different from the primary user to each CR. This leads to the fluctuation of the received 

signal power. The empirical measurements showed this fluctuation is random and distributed 

log-normally [4-3] for various outdoor and indoor environments. This phenomenon is termed as 

log-normal shadowing. Therefore, the dynamic probability of detection of the distributed 

cooperative spectrum sensing can be obtained by 

 

( )2 2

( ) /2
0

1

( ) ( , ) 2 , ( ) ,
L

d N t M T

n

P t P n t Q n f dγ σ λ σ γ γ
∞

=

= ×∑∫
  (4-14) 

 

where M is the number of samples taken over a period of time T, σ
2
 is the variance for zero-mean 

additive white Gaussian noise (AWGN), λT is the detection threshold, γ is the instantaneous fused 

energy statistic from local energy statistic affected by shadowing, and f(γ) is the probability 
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density function of the fused energy statistic. Suppose CRs arrive at CRN by a Poisson random 

process with parameter λ. CRs join the collaboration immediately while they arrive. The random 

amount of time they stay in the system follows Pareto distribution with parameters xm > 0 and α > 

0. After this amount of time, they leave the network and thus the cooperative spectrum sensing. 

Therefore, based on PN(t)(n) in the previous chapter and with the aid of [4-4], we can obtain the 

closed-form expression for the dynamic probability of detection as 
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If we only numerically calculate the first NB terms in the summation for the dummy variable n 

and also the first NM terms in the summation for the dummy variable m, by the Markov 

inequality and some mathematical manipulations, we can find the truncation error is upper 

bounded by 
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On the other hand, the dynamic probability of false alarm of the distributed cooperative spectrum 

sensing is given by 
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where Γ(x,y) is the upper incomplete gamma function, Γ(x) is the gamma function, and u = TW 

is the time bandwidth product with T as the observation time interval and W as the one-sided 

bandwidth.
 

 

4.2.2.2 Asymptotic Performances 
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The time-averaged asymptotic performance can be obtained by 1

0

lim ( ) .

T

T
P T P t dt

−
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= ∫  Therefore, 

the asymptotic time-averaged probability of detection is given by 
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Similarly, the asymptotic time-averaged probability of false alarm can be obtained by 
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4.2.3 Rayleigh Fading Channels 

 

4.2.3.1 IID Rayleigh Fading Channels 

Suppose CRs’ arrivals follow Poisson random process with rate λ. While CRs arrive at CRN, 

they immediately collaborate with the other CRs concurrently in the network to perform the 

cooperative spectrum sensing. Assume the time of CRs stays in the network follows Pareto 

distribution with parameters xm > 0 and α > 0 and CRs leave the network after this amount of 
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time. The channels between the primary user to each CR are independent and identically 

distributed (i.i.d.) Rayleigh fading channels. The fusion center calculates the fused energy 

statistic by summing the received energy statistics from all CRs currently in the network. With 

the aid of the conditional probability of detection in [4-5], after some mathematical 

manipulations, the dynamic probability of detection and the dynamic probability of false alarm 

can be obtained by, for 0≤ t< xm, 
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For  t ≥ xm, 
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4.2.3.2 Independent but Non-identical Rayleigh Fading Channels  

 

4.2.3.2.1 Dynamic Performances 

 

Since CR users are spatially located in different places in the network coverage area, the 

received primary user signals by cooperating CR users may experience a variety of fading 

conditions. The fading channels from the primary user to CRs are not necessary identical. 

Considering the cooperative spectrum sensing over independent but not identically distributed 

fading channels, with the help of the conditional probability of detection in [4-6] and the 
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log-normal random cooperation time, the dynamic probability of detection over independent 

non-identical Rayleigh fading channels can be obtained by 
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− −ϒ = Γ − Γ = ∫  is the lower incomplete gamma function and 

Mγ(s) can be obtained by 
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When we only numerically calculate the first NB terms in the summation for the dummy 

variable n in (4-26), by the Markov inequality and some mathematical manipulations, we can 

find the truncation error is upper bounded by 
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On the other hand, the dynamic probability of false alarm can be obtained by 
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If we only numerically compute the first NB terms in the above equation, similarly, by the 

Markov inequality and some mathematical manipulations, the upper bounded truncation error 

can be evaluated by 
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4.2.3.2.2 Asymptotic Performances 

 

The time-averaged probability of detection can be obtained by 1
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take T to infinity, the asymptotic long-term time-averaged probability of detection for distributed 

cooperative spectrum sensing with log-normal random cooperation time over independent 

non-identical distributed Rayleigh fading channels can be obtained by  
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If we only numerically evaluate (4-31) with the first NB terms, by using the Markov 

inequality, the associated truncation error can be upper-bounded by 
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Similarly, the asymptotic probability of false alarm can be obtained by 
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If we only numerically calculate the first NB finite terms for the above equation, with the aid 

of Markov inequality, after some mathematical manipulations, the upper bounded truncation 

error is given by 
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4.2.4 Nakagami-m Fading Channels 

 

Assume the sensing channels from the primary user to each CR are independent 

Nakagami-m fading channels. CRs form an ad-hoc network and randomly choose one of them as 

a leader to be the fusion center. Assume CRs arrive at CRN by Poisson random process with rate 

λ. When a CR joins the network, it immediately collaborates with the other CRs in the network 

until it leaves. The random amount of time a CR stays in cooperation follows Pareto distribution 
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with parameters xm > 0 and α > 0. After this amount of time, it leaves the system and thus leaves 

the cooperative spectrum sensing. Each CR collects the local energy statistic and transmits this 

energy statistic via a dedicated error-free channel to the fusion center. The fusion center 

combines all local energy statistics by summing them together to yield the fused energy statistic 

and then performs the binary hypothesis testing against a testing threshold λT for the spectrum 

sensing decisions. When the fused energy statistic is greater than or equal to λT, 1H
)

decision is 

reached; otherwise, 
0H

)

is claimed. With the aid of the conditional probabilities in [4-7], after 

routine mathematical manipulations, for 0 ≤ t < xm, the dynamic probability of miss detection can 

be obtained by 
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where M is the number of samples taken over a period of time T in each CR to yield the 

accumulated local energy statistic, λT is the binary hypothesis testing threshold for the fused 
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energy statistic, σ
2
 is the variance for the zero-mean additive noise, the integer m is the 

Nakagami-m parameter, i
γ

is the average SNR at the i-th Nakagami-m fading sensing channel, 

1F1(.;.;.) is the confluent hypergeometric function, and Li(.) is the Laguerre polynomial of degree 

i. On the other hand, the dynamic probability of false alarm, for 0 ≤ t < xm, can be obtained by 
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where u = TW is the time bandwidth product with T as the observation time interval and W as 

the one-sided bandwidth, Γ(x) is the gamma function, and Γ(x,y) is the upper incomplete Gamma 

function. For t ≥ xm, the dynamic probability of miss detection can be obtained by 
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and the dynamic probability of false alarm can be obtained by 
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If CRN has the system size limitation and can only keep up to L CRs in system at the same time, 

for 0 ≤ t < xm, the dynamic probability of miss detection can be obtained by 
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and the dynamic probability of false alarm can be obtained by 

 

( )
1

( , 2) !
( ) .                (4-40)

! ( ) ( 1, )

n tL
T

FA

n

t e nu L
P t

n nu L t

λλ λ

λ

−

=

Γ
=

Γ Γ +
∑  

For t ≥ xm, the dynamic probability of miss detection can be obtained by 

 

( )
( ) ( )

1 1

2

1
1

1 1 1 11

1

2/2 1

2
1 1 2

1

1
( ) 1 ( 1, 1 ) ! 1            (4-41)

1 ! 1

(1 )2
 ; 1;

! 2

m
m

T

nx Lx t
m m

m m m

n

i

T

Mn
m T

i

x x
P t e L x t L x t

n

A e F m i
i

α αλ
α α α αα

λ

σ

λ λ

α α

λ

λ βσ
β

σ

− − +
−−

−
− − + − − +−

=

−−

=

   
= − Γ + − × −  − −   

  
   −   × + +   

 

∑

∑

 

 



77 

 

and the dynamic false alarm probability can be obtained by 
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Fig. 4-2 Probability of Miss Detection under Different System Size Limitation 

 

When the system size is limited up to L=10, from Fig. 4-2, the system performance does 

degrade slightly. However, if this limit becomes too aggressive, i.e. L=5, there is significant 

performance loss in the distributed cooperative spectrum sensing. Hence, if CRN wants to split 
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CRs into several groups to monitor several primary users simultaneously, from Fig. 4-2, we can 

see a group of 10 only loses the sensing reliability slightly but a group of 5 might lead to too 

much harmful interference with the primary users, which is not allowed 

 

4.5 Shadowed Nakagami-m Fading Channels 

 

A composite shadowed fading wireless fading environment consists of multipath fading 

superimposed on shadowing. In this environment, the wireless receiver does not average out the 

envelope fading due to multipath but rather reacts to the instantaneous composite 

multipath/shadowed signal. This is often the scenario in congested downtown areas with slow 

pedestrians and vehicles [4-8]. When the CRs are carried by slow pedestrians and or people in 

slow vehicles in congested downtown areas, these CRs are only moving slowly or even almost 

stationary. Therefore, the wireless links for CRs in such areas can be described by a composited 

shadowed Nakagami-m channel model introduced by Ho and Stϋber [4-9]. The received 

signal-to-noise ratio for this composite shadowed fading channel has the Gamma-log-normal 

probability density function as follows: 
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where m is the Nakagami-m parameter and µΩ  and σ Ω  are the parameters for the log-normal 

shadowing. By [4-10], we can obtain the well approximated moment generating function for the 

Gamma-log-normal probability density function as 
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Therefore, after carrying out routine mathematical manipulations, the average probability of 

detection over the composite shadowed Nakagami-m fading channel can be obtained by 
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where xj are the zeros of the Np-order polynomial and Hxj are the weight factors of the Np-order 

Hermite polynomial [4-11].   
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 Suppose CRs’ arrivals follow Poisson random process with rate λ. While CRs arrive 

at CRN, they immediately collaborate with the other CRs concurrently in the network to 

perform the cooperative spectrum sensing. Assume the time of CRs stays in the network 

follows Pareto distribution with parameters xm > 0 and α > 0 and, after this amount of time, 

CRs leave the network and thus leave the collaboration for distributed spectrum sensing 

immediately. The channels between the primary user to each CR are independent and 

identically distributed shadowed Nakagami-m fading channels. The fusion center calculates the 

fused energy statistic by summing the received energy statistics from all CRs currently in the 

network. Therefore, the dynamic probability of false alarm can be obtained by, for 0 ≤ t < xm 

and n=0, 1, 2, …, 
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For t ≥ xm and n=0,1, 2, …, 
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Similarly, the dynamic probability of detection can be obtained by, for 0 ≤ t < xm and n = 0, 1, 

2, …, 
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Fig. 4-3. Receiver Operating Characteristic (ROC) Curves for Cooperative Spectrum Sensing 

over Shadowed Nakagami-m Fading Channels 
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Performance of a detector is often described through its receiver operating characteristic 

(ROC) curves (Pd versus PFA). In figure 4-3, the ROC curves for energy-based spectrum sensing 

over shadowed Nakagami-m fading channel are plotted with different combinations of 

Nakagami-m fading parameter, m, and log-normal shadowing parameters, µΩ
 and σ Ω

. Smaller 

m means more severe the fading effect, e.g., Nakagami-m fading degenerates to Rayleigh fading 

when m = 1. Since σ Ω  is typically observed between 5 to 12 dB in macrocellular applications 

and between 4 to 13 dB in microcellular applications, we useσ Ω
= 8 dB to generate the curves in 

Fig. 4. When the channels are more benign, the receiver yields better detection results. 
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Chap 5  

Applications in Cellular Wireless Systems 

 

Wireless technology has greatly influenced the human society. The demand for the wireless 

spectrum resources substantially increases with the growth of population. Especially, portable 

wireless devices, such as smart phones, have been very popular in people’s daily lives.  People 

use their smart phones taking pictures and uploading these pictures to the social network 

websites. People also can watch video streaming or have videoconferencing on their portable 

devices through the wireless communications. These popular wireless applications have posed 

great demand for the precious radio spectrum. Especially, there are usually a huge number of 

audiences in big events, such as superstar’s concerts, NFL football games, the Presidential 

candidate speech, and etc. If a certain percentage of these audiences take pictures and upload 

them to the social network websites at the same time, this will overwhelm the cellular wireless 

systems. Therefore, the cellular wireless systems urgently need new technologies to be able to 

explore extra spectrum utilization opportunities for this type of sudden bursty spectrum demand 

in certain local areas. 

On the other hand, a large portion of the licensed spectrum remains underutilized [5-1]. In 

recent years, the Federal Communications Commission (FCC) has been considering more 
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flexible and comprehensive usages of the available spectrum via the use of cognitive radio 

networks (CRN) technology [5-2]. The cognitive radio network technology is a promising 

solution for cellular wireless systems to seek for geographically temporal spectrum opportunities 

for bursty spectrum demand.  

As a secondary overlay network, CRN technologies have to guarantee not to cause harmful 

interference to the licensed primary users [5-3]. Spectrum sensing is one of key components in 

CRN to monitor the licensed primary users’ activities [5-4]. When the primary users are not 

using their licensed frequency bands, cellular cognitive radio networks (CCRN) is allowed to 

temporarily exploit these frequency bands.  Due to the fading and shadowing phenomena of the 

wireless channels, CCRN should explore the spatial diversity through the cooperation among 

CRs to overcome the hidden primary user issue [5-5]. Various spectrum sensing algorithms are 

proposed in the literatures [5-6]. They can be classified into the following categories: energy 

detection, matched filter coherent detection, feature-based detection, and eigenvalue-based 

detection [5-7], [5-8]. Among these existing spectrum sensing schemes, energy-based spectrum 

sensing is the most widely adopted one in the current CRN prototype systems due to the 

simplicity and relatively low computational costs [5-9]. Therefore, from the practical perspective, 

we focus on the energy-based cooperative spectrum sensing scheme in this chapter. 
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Exploring the spatial diversity, the spectrum sensing can make more reliable decisions 

[5-10]. However, since the cellular users can turn on/off the CR functionalities at will, the 

associated CCRN is not a static network but a dynamic network. Thus, the number of spatial 

diversity in the distributed spectrum sensing is not constant but time-varying. The dynamics of 

CRs impact the spectrum sensing performance. To guarantee not to violate the privileges of the 

licensed primary users and also to optimize CCRN its own throughput, CCRN has to adapt the 

system parameters to the dynamics of CR accordingly. Furthermore, since the surroundings for 

each CR in the collaboration might be different, the received primary user signals by spatially 

distributed CRs may experience a variety of random phenomena in the wireless transmissions 

[5-11]. Hence, in this chapter, considering a more appropriate and practical scenario, we 

investigate distributed spectrum sensing over non-identical distributed wireless channels.  

 

5.1 User Dynamics 

 

 

Fig. 5-1. Hidden Markov Model 
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People move based on their schedules and their needs. For example, there are more people 

around the dining facilities around the meal times than the other time. More students are on 

campus in the day time than night time. The high way traffic is congested in the morning and 

evening times when people go to work/return. Therefore, the number of people in a location is 

usually fluctuating. Thus, the number of CRs in any specific location is also time-varying. We 

can model the CRs’ arrivals by a Hidden-Markov Model (HMM) [5-12] which consists of 3 

hidden state nodes, S1, S2, and S3, and one observation node, O, see Fig. 5-1. State 1 represents 

CRs arrive at low rate; state 2 represents CRs’ arrivals are at regular rate; state 3 means CRs are 

at high arrival rate. The transition from state Si to state Sj is denoted by a directed edge {Si, Sj} 

and the associated transition probability P(Sj|Si) is short-handed by pij. The transition probability 

matrix is given by 
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p p
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                 (5-1) 

 

However, due to the weather and some other random factors, e.g. the traffic, social events, 

etc, CRs’ arrival rate is usually not a constant but randomly fluctuating. Hence, we can indeed 

model the CRs’ arrivals by a doubly stochastic process, called Cox process [5-13]. The 
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fluctuating arrival rate can be model by another random process {λ(t)}. Given any specific time 

instance t1 with the rate {λ(t1)=λ1}, the arrival process is the Poisson random process with rate λ1. 

Hence, Cox process can be viewed as a Poisson random process with fluctuating rate modeled by 

another stochastic process. 

After a person turns on the mobile device equipped with CR functionalities, the CR module 

immediately joins the ad hoc network formed by the other CRs to seek for the spectrum 

opportunities. However, people might lose the patience and leave before they are allowed to use 

the wireless spectrum. In current cellular wireless systems, Gamma distribution can well model 

Cell Dwell Time (CDT) which is the amount of time a mobile device stays within a cell, see 

[5-14], [5-15], [5-16], and the references therein. Suppose, in CCRN, the random amount of time 

a CR stays in cooperation and waits for the spectrum opportunities follows the Gamma 

distribution. After this random amount of time, the user loses the patience and turns off the CR. 

Thus, the equipped CR leaves the spectrum sensing collaboration. 

 

 

Fig. 5-2. One Realization of Semi-Markov Process 
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The number of CRs in a CCRN based on the above mentioned random arrivals and random 

departures is indeed a semi-Markov process, {N(t)} over infinitely countable space  {0,1,2,…} 

[5-17], see Fig. 5-2. Assume state 1 is associated with stationary arrival rate process {λ1(t)} 

uniformly distributed over (b1-∆1,b1+∆1]; state 2 has stationary arrival rate process {λ2(t)} 

uniformly distributed over (b2-∆2,b2+∆2]; state 3 is associated with stationary arrival rate process 

{λ3(t)} uniformly distributed over (b3-∆3,b3+∆3]. Suppose all CRs in the network join the 

cooperative spectrum sensing until they leave. Suppose the random amount of time for each CR 

stays in the collaboration for CCRN is independent and identically Gamma distributed with 

parameters, k > 0 and θ > 0. The probability density function of the Gamma distribution is given 

by 
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where Γ(.) is the gamma function. Hence, the dynamic probability mass function of the number 

of CRs in the network at any time t can be derived as follows: 
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Based on the above dynamic probability mass function, we can evaluate the time-varying 

probability of detection and time-varying probability of false alarm in the following section. 

 

5.2 Performance Analysis 

 



91 
 

We consider that spatially distributed CRs form a local CCRN to collaborate with each other in 

sensing the spectrum utilization to seek for the opportunities using available wireless channels to 

communicate. The base station of the cellular wireless system is the fusion center for this ad hoc 

CCRN to seek for extra spectrum opportunities. Each CR senses the spectrum and sends the 

collected local energy information through a dedicated error-free reporting channel to the fusion 

center. The fusion center makes final sensing decisions based on the collected local statistics. 

 

5.2.1 System Model 

 

Consider the received signal at the i-th CR is given by 
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: ( ) ( ),                  
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where xi(t) is the primary user’s complex-valued signal waveform received at the i-th CR, hi(t) is 

a slow fading channel, and ni(t) is the additive white Gaussian noise (AWGN). H1 is when the 

primary user is using its own licensed band; H0 means the licensed band is vacant. The i-th CR 

collects the energy by taking M/2 samples of the received waveform ri(t) both at the I and Q 
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components respectively over a period of time T, and then takes the absolute values, squares, and 

sums the samples to yield the corresponding collected received signal energy statistic 

/2
2

1

| ( ) | .
M

i i

k

y r k
=

=∑ Under H1, yi has a noncentral chi-square distribution with noncentrality 2γi and 

M degrees of freedom and, under H0, yi has a central chi-square distribution with M degrees of 

freedom. Then all N CRs transmit the encoded collected energy statistics through a dedicated 

error-free channel to the fusion center. The fused energy statistics Z is obtained by summing yi 

over all N CRs. To make a spectrum sensing decision, the fusion center compares the energy 

statistic Z to a threshold λZ, and then declares 
0

Ĥ  when Z < λZ and declares 
1

Ĥ  when Z ≥ λZ. 

The probability of false alarm, 
1 0

ˆ( | , )P H H γ , and probability of detection, 
1 1

ˆ( | , )P H H γ , conditioned 

on the Signal-to-Noise Ratio (SNR), γ, are given by [5-18] 
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where QM(a,b) is the generalized Marcum Q-function, Γ(x,y) is the upper incomplete gamma 

function, Γ(x) is the gamma function, u = TW is the time bandwidth product with T as the 

observation time interval and W as the one-sided bandwidth. From (5-5), we know the 
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conditional probability of false alarm is indeed independent of SNR, γ. Therefore, the average 

probability of false alarm over any fading channels is fully characterized by (5-5). The average 

probability of detection over a fading channel can be obtained by 
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∞

= ∫
       

 

The detection threshold λZ can be decided under the Neyman-Pearson criterion. Under the given 

desired probability of false alarm, PFA = α, λZ can be determined and the average probability of 

detection can be calculated by (5-7). 

 

 

5.2.2 Composite Fading/Shadowing Channels 

 

We consider the scenario in congested downtown areas with slow pedestrians and vehicles. The 

CRs are carried by the people who are only moving slowly or even almost stationary within an 

area. In this environment, the wireless receiver does not average out the envelope fading due to 

multipath but rather reacts to the instantaneous composite multipath/shadowed signal. Therefore, 

the wireless links for CRs in these areas can be modeled by a composited shadowed Nakagami-m 
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fading channel model introduced by Ho and Stϋber [5-19]. A composite shadowed fading 

wireless environment consists of multipath fading superimposed on shadowing. This composite 

shadowed fading channel has the Gamma-log-normal probability density function as follows: 
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where m is the Nakagami-m parameter and µΩ  and σ Ω  are the parameters for the log-normal 

shadowing. By [5-20], we can obtain the well approximated moment generating function for the 

Gamma-log-normal probability density function as 
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Therefore, after carrying out routine mathematical manipulations, the average probability of 

detection over the composite shadowed Nakagami-m fading channel can be derived as 
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where xj are the zeros of the Np-order polynomial and Hxj are the weight factors of the Np-order 

Hermite polynomial [5-21].  

 

5.2.3 Dynamic Performance Analysis 

 

The cooperative spectrum sensing performance is varying because of fading, shadowing, etc. On 

the other hand, since the number of CRs in CRN is also dynamically changing, the cooperative 

spectrum sensing performance is varying accordingly. The average probability of false alarm and 

the average probability of detection in the above subsections are under some fixed number of 

CRs in the cooperation. In this subsection, we consider the dynamic of the number of CRs in the 

network to analyze the dynamic performances. We consider the case that the primary user is 

using its own licensed frequency band (H1 is true) and the CRs have to collaborate to perform 

spectrum sensing to wait for the spectrum opportunities. Hence, the dynamic probability of 

detection, 
1 1

ˆ( | )P H H , can be obtained by 
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Similarly, the dynamic probability of false alarm is given by 
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Fig. 5-3 shows the time-varying probability mass function of the number of CRs in the system. 

When the time increases, the most probable number of CRs in the network also increases. We 

can also understand the probability mass function spreads wider with the time. This reflects the 

randomness of N(t), i.e. entropy, increases with time. By using (5-10), Fig. 5-4 demonstrates the 

probability of miss detection Pm (= 1 - Pd) is indeed a function of the number of collaborative 

CRs. Pm substantially drops from 10
-4

 to 10
-7

 when the number of CRs increases from 7 to 10. If 
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CRN ignores the dynamics of CRs and does not adapt the sensing parameters, the uncertainty of 

the reliability of spectrum sensing has very broad dynamic range. For example, when N(t=1)=5, 

N(t=2)=10, and N(t=3)=8, then the corresponding probabilities of miss detection at these three 

time instances are 10
-3

, 10
-7

, and 10
-5

. Therefore, CRN cannot neglect the impacts of dynamic 

activities of CRs and should adapt the system parameters to meet the network operation 

requirements, e.g. the interference to the primary user constraint. The receiver operating 

characteristic (ROC) curve is an important performance evaluation for a detector. The ROC 

curves, by (5-11) and (5-12), for the energy-based cooperative spectrum sensing over the 

shadowed Nakagami-m fading channels are provided in Fig. 5-5. When the channel is better, e.g. 

smaller m or larger µΩ, the spectrum sensing yields more reliable decisions. By using (5-11) and 

(5-12), Fig. 5-6 shows the ROC curve for the spectrum sensing is not fixed but time-varying. 

This is because CRs join and leave the cooperation randomly. Thus, the performance of the 

cooperative spectrum sensing is also dynamically changing. 

In order to seek for the spectrum opportunities without interfering to the licensed primary user, 

CRN not only has to intelligently learn the environments and adapt to the wireless transmission 

channels but also has to detect the primary users’ activities and simultaneously combat the 

potential interferers. Furthermore, CRN its own network is dynamically changing because of the 

dynamic behaviors of the CR users. Therefore, CRN also has to adapt the system parameters 
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accordingly to guarantee the privileges of the primary users and also to optimize CRN its own 

system performance. The closed form expressions derived in this manuscript are analytically 

tractable. Thus, CRN can efficiently evaluate the performance metrics to adjust system 

parameters accordingly to achieve the goal as a self-learning, self-organizing, and self-healing 

overlay secondary network. 

 

 

Fig. 5-3. Dynamic Probability Mass Function of the Number of CRs 
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Fig. 5-4. Probability of Miss Detection is a Function of the Number of CRs 

 

Fig. 5-5. ROC Curves for Shadowed Nakagami-m Fading Channels 
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Fig. 5-6. Dynamic Receiver Operating Characteristic Curves 

 

5.3 Summary 

 

We study the dynamic activity effects on spatially distributed energy-based cooperative 

spectrum sensing in cognitive radio networks. We model the CR users’ dynamics by a 

semi-Markov process with Cox arrival process and random departures.  The associated 

probability mass function of the dynamic number of CRs in the system is derived. We also 

derive the probability of detection for the energy-based cooperative spectrum sensing in 

shadowed Nakagami-m fading channels by the well-approximated moment generating function 



102 
 

of Gamma-log-normal probability density function. Furthermore, the closed form expressions of 

the dynamic performance metrics, probability of detection and probability of false alarm, are also 

obtained. These analytical closed form expressions provide the framework to apply analytical 

optimization and numerical optimization techniques to efficiently guarantee the global optimality 

for the system design parameters without exhaustive search. This is essential for cognitive radio 

networks to real-time adapt the system parameters in the challenging dynamic scenarios which 

consist of the wireless links, dynamic activities of the primary users, and also the dynamic 

behaviors of CRs. 
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Chap 6 

Applications in Public Safety Networks 

 

 

The success of wireless communication technology has deeply influenced the human society. 

Emergency responders, such as policemen, fire fighters, and emergency medical service 

personnel, are extensively equipped with wireless laptops, handheld computers, mobile video 

cameras, smart phones, and etc. to improve their efficiency, visibility, and ability to immediately 

collaborate with central command, coworkers, and other agencies to prevent or respond to 

incidents. The wireless communication demands for public safety range from data 

communication, including messaging, email, web browsing, and database access, to multimedia 

wideband communications, such as voice, picture transfer, and video streaming. Hence, the high 

priority, reliability, security, data throughput rate, smooth streaming, etc requirements have to be 

satisfied [6-1], [6-2], and [6-3].  

 Video surveillance cameras are becoming important effective devices to extend the eyes and 

ears of public safety agencies. Examples include monitoring disaster conditions and telemedicine 

for emergency medical services. However, the allocated radio frequency spectrum for public 

safety use has become highly congested in many urban areas. Furthermore, the first responders 
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from different public safety agencies and cities often cannot communicate during the 

emergencies. This is primarily caused by incompatible wireless interfaces among different 

emergency responders from different jurisdictions. The high demands on interoperability, 

priority delivery, reliability, and low-latency with least interruptions pose great challenges in the 

public safety wireless network [6-4], [6-5]. 

On the other hand, the fixed spectrum allocation regulations have been shown to lead to the 

spectrum underutilization. Cognitive Radio (CR) is a promising candidate to the solution to the 

spectral congestion problem [6-6], [6-7]. Federal Communications Commission (FCC) defines 

CR as “Cognitive Radio: A radio or system that senses its operational electromagnetic 

environment and can dynamically and autonomously adjust its radio operating parameters to 

modify system operation, such as maximize throughput, mitigate interference, facilitate 

interoperability, and access secondary markets.” Meanwhile, more available wireless spectrum 

opportunities, hence larger effective transmit bandwidth by aggregation techniques, can supply 

the high throughput demand by the multimedia information streaming and also can provide the 

diversities for multicasting to prevent time-sensitive life-saving information from loss or delay. 

Therefore, cognitive radio network technologies can provide the physical foundation for public 

safety emergency networks through larger effective spectrum bandwidth to meet interoperability, 

priority delivery, reliability, low-latency with least interruptions, and etc requirements. 
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Spectrum sensing is one of the most challenging and crucial components in CR [6-8]. Several 

spectrum sensing schemes have been proposed. They can be classified into the following 

categories: energy detection, matched filter coherent detection, feature-based detection, and 

eigenvalue-based detection [6-9], [6-10]. Several literatures also provide sequential detection 

algorithms based on the Hidden Markov Models for the dynamic access networks [6-11], [6-12]. 

Among these spectrum sensing schemes, energy-based detection is most widely adopted in 

current CRN prototype system due to the simplicity and low computation cost [6-9]. Therefore, 

from the practical point of view, in this Chapter, we will focus on the energy-based detection 

scheme. In order to resolve the hidden primary user issue in fading and shadowing environments, 

the spatially distributed cooperative spectrum sensing methodologies have been proposed [6-13]. 

Through the spatially distributed cooperation, the spectrum sensing performance becomes more 

reliable. However, due to the dynamic number of CRs in a public safety network, the 

performance metrics, such as probability of detection and probability of false alarm, for spectrum 

sensing are correspondingly time varying.  
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6.1 User Dynamic 

 

In the Public Safety community, the mobile terminals, such as the police cars, fire trucks, 

ambulances, and etc, will rush to the incident location when an incident occurs. Due to the 

geographical deployment of the police stations, fire departments, and hospitals, the mobile 

terminals arrive at the incident location at different times. Depending on the kind and severity of 

the incident and also the degree of severity of the event, the mobile terminals might not only 

come from the local corresponding facilities, but also come from the organizations in the 

neighbor cities or counties, see Fig. 6-1. If the level of the damage is extreme, such as 

unfortunate attacks of 9/11, Hurricane Katrina, the 2010 Haiti Earthquake, or Higashi Nihon 

Daishinsa (2011 March Japan Earthquake), the rescue teams from the other countries will also do 

their best to join as soon as possible. However, due to the physical distances, traffic conditions, 

preparation times, transportation times, and so on, the cognitive mobile terminals will appear in 

the incident location intermittently. The cognitive mobile terminals in the city which the incident 

happens will come first within a certain period of time and the cognitive mobile terminals from a 

neighbor city will come after within some following period of time.  
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Fig. 6-1 Illustration of the Physical Distances between the Incident Place and Mobile Terminals 

in a Public Safety Network 

 

 

Fig. 6-2 Intermittent Bursty Arrivals 

 

Due to the city/county/country physical distance, the cognitive mobile terminals arrive with 

alternating high arrival rate and low arrival rate, see Fig. 6-2. Therefore, we can model the arrival 
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process by a Hidden Markov Model (HMM) with two states, SH and SL, which are corresponding 

to a high arrival rate period and a low arrival rate period respectively. When they arrive, the 

rescue team members turn on the CR functionalities and hope to search for the available 

spectrum holes to communicate with each other. They will stay in the incident location for a 

certain period of time and then leave when they finish their tasks. For example, the persons 

coming from the ambulances will find the victims first, perform the immediate medical 

treatments if necessary, and carry the victims to the ER as soon as possible. Hence, the CRs 

carried by them will stay in the network for a certain period of time and then leave. We can 

model this behavior by a Pareto distribution [6-15], with two parameters xm and αm, where xm 

models the time that they spend to find the victims and to perform the necessary immediate 

emergency medical treatments and αm value is to model the urgency to leave. After they finish, 

they leave the place as soon as possible to carry the victims to the hospitals. For the police 

officers, they will arrive and stay to perform their duties, such as directing traffic in chaotic areas, 

maintaining the order, and so on. They do not leave like the ambulance people. Therefore, we 

can model their CRs as persistent CRs which stay in the network without leaving. Therefore, we 

can categorize the rescue teams into two types of CRs: (I) those that stay in the network without 

leaving are denoted as in the persistent mode; (II) those that stay in the network for a certain 

period of time and then leave as soon as possible are denoted as in the dynamic mode.  
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We can model the emergent dynamic behaviors of CRs and the dynamic number of cognitive 

mobile terminals at each time instance t, {N(t)}, as a hyper-semi-Markov process over infinitely 

countable state space as follows:                                                                                  

{ }( ) | ,  n {0, 1, 2, } .N t n t R= ∈ ∈ K

            (6-1)
 

{N(t)} can be viewed as a composite semi-Markov processes [6-14], as {N(t)}={NI(t)}+{NII(t)}, 

where {NI(t)} is to model the dynamic number of type I CRs; {NII(t)} models the dynamic 

number of type II CRs. We will discuss {NI(t)} and {NII(t)} in the following subsections. 

 

6.1.1 Type I: Persistent CRs 

 

Due to the geographical deployment, the type I CRs intermittent arrivals can be modeled by a 

Hidden-Markov Model (HMM) with two states, Sp,1 and Sp,2 and the associated transition 

probabilities αp,1 and αp,2 as follows: 
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Fig. 6-3. Hidden Markov Model for Persistent CRs 
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At the low arrival rate periods, CRs join the network follows a Poisson process with rate λp,1. 

During the high arrival rate periods, the arrival process can be modeled as a Poisson process with 

arrival rate λp,2. Hence, the dynamic probability mass function for the number of Type I CRs can 

be derived as 
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6.1.2 Type II: Dynamic CRs 

 

Similarly, because of the physical distance from the home department locations to the incident 

location, the type II CRs’ arrival process can also be modeled by a HMM with two states, Sd,1 

and Sd,2, which are associated with a high arrival rate, λd,1, and a low arrival rate, λd,2 respectively 

and with transition probabilities, αd,1 and αd,2 as illustrated in Fig. 6-4. 
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Fig. 6-4. Hidden Markov Model for Dynamic CRs 

 

Given the time for Type II CRs staying in the cooperation following the Pareto distribution 

with two parameters, xm > 0 and αm > 0, the  time-varying probability mass function for the 

number of Type II CRs in the networks is given by, for 0 ≤ t < xm and n=0, 1, 2, …, 
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 For t ≥ xm and n=0,1, 2, …, 
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6.1.3 Total Number of CRs 

 

Therefore, we can obtain the dynamic probability mass function for the total number of CRs 

N(t) in the network as follows. For 0 ≤ t < xm and n=0, 1, 2, …, 
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For t ≥ xm and n=0,1, 2, …, 
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Since the performance of spatially distributed cooperative spectrum sensing depends on the 

number of CRs in the network, we can obtain the dynamic performances in the following section 

based on the above time-varying probability mass function for the total number of CRs in the 

network. 

 

6.2 Performance Analysis for Shadowed Nakagami-m 

Fading Channels 

 

We consider that spatially distributed CRs form a local Public Safety Network to collaborate in 

sensing the spectrum utilization to seek the opportunities using available wireless channels to 

communicate in the disaster area. They randomly select one as the leader of the CRs as the 

fusion center. Each CR senses the spectrum and sends the collected local energy information 

through a dedicated error free channel, i.e., 700 MHz Public Safety frequency band, to the fusion 

center. 

 

6.2.1 System Model 

 

Consider the received signal at the i-th CR given by 
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where xi(t) is the primary complex-valued signal waveform received at the i-th CR, hi(t) is a slow 

fading channel, and ni(t) is the additive white Gaussian noise (AWGN). H1 is when the primary 

is using its own licensed band; H0 means the licensed band is vacant. The i-th CR collects the 

energy by taking M/2 samples of the received waveform ri(t) both at the I and Q components 

respectively over a period of time T, and then takes the absolute values, squares, and sums the 

samples to yield the corresponding collected received signal energy statistic given by 
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Therefore, the collected energy statistic yi is given by 
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where, under H1, yi has a noncentral chi-square distribution with noncentrality 2γi and M degrees 

of freedom and, under H0, yi has a central chi-square distribution with M degrees of freedom. 

Then all N CRs transmit the encoded collected energy statistics through a dedicated channel to 

the fusion center. The fused energy statistics is given by  

 

1

.                                         (6-10)
N
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Z y
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To make a spectrum sensing decision, the fusion center compares the energy statistic Z to a 

threshold λZ, and then declares 
0

Ĥ  when Z < λZ and declares 
1Ĥ  when Z ≥ λZ. The probability 

of false alarm, 
1 0

ˆ( | , )P H H γ , and probability of detection, 
1 1

ˆ( | , )P H H γ , conditioned on the 

Signal-to-Noise Ratio (SNR), γ, are given by [6-16] 

 

           ( )

|

|

( , 2)
,                                    (6-11)

( )

2 , ,                                (6-12)

Z

FA

d Nu Z

Nu
P

Nu

P Q

γ

γ

λ

γ λ

Γ
=

Γ

=
 

 

where QM(a,b) is the generalized Marcum Q-function, Γ(x,y) is the upper incomplete gamma 

function, Γ(x) is the gamma function, u = TW is the time bandwidth product with T as the 
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observation time interval and W as the one-sided bandwidth. From (6-12), we know the 

conditional probability of false alarm is indeed independent of SNR, γ. Therefore, the average 

probability of false alarm over any fading channels is fully characterized by (6-12). The average 

probability of detection over a fading channel can be obtained by 
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∞
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The detection threshold λZ can be decided under the Neyman-Pearson criterion. Under the 

given desired probability of false alarm, PFA = α, λZ can be determined and the average 

probability of detection can be calculated by (6-13). 

 

6.2.2 Shadowed Nakagami-m Fading Channels 

 

A composite shadowed fading wireless fading environment consists of multipath fading 

superimposed on shadowing. In this environment, the wireless receiver does not average out the 

envelope fading due to multipath but rather reacts to the instantaneous composite 

multipath/shadowed signal. This is often the scenario in congested downtown areas with slow 

pedestrians and vehicles [6-17]. In the Public Safety Networks, the CRs are carried by public 
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safety agencies and only moving slowly or even almost stationary around the disaster area. 

Therefore, we propose to model the wireless links for CRs in the Public Safety Networks by a 

composited shadowed Nakagami-m channel model introduced by Ho and Stϋber [6-18]. This 

composite shadowed fading channel has the Gamma-log-normal probability density function as 

follows: 
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where m is the Nakagami-m parameter and µΩ  and σ Ω  are the parameters for the log-normal 

shadowing. By [6-19], we can obtain the well approximated moment generating function for the 

Gamma-log-normal probability density function as 
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Therefore, after carrying out routine mathematical manipulations, the average probability of 

detection over the composite shadowed Nakagami-m fading channel can be obtained by 
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where xj are the zeros of the Np-order polynomial and Hxj are the weight factors of the Np-order 

Hermite polynomial [6-20].   

 

6.2.3 Dynamic Performance Analysis 

 

The cooperative spectrum sensing performance is varying because of fading, shadowing, etc. On 

the other hand, since the number of CRs in CRN is also dynamically changing, the cooperative 

spectrum sensing performance is varying accordingly. The average probability of false alarm and 

the average probability of detection in the above subsections are under some fixed number of 

CRs in the cooperation. In this subsection, we consider the dynamic of the number of CRs in the 

network to analyze the dynamic performances. The dynamic probability of false alarm can be 

obtained by, for 0 ≤ t < xm and n=0, 1, 2, …, 
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For t ≥ xm and n=0,1, 2, …, 
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Similarly, the dynamic probability of detection can be obtained by, for 0 ≤ t < xm and n=0, 1, 

2, …, 
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For t ≥ xm and n=0,1, 2, …, 
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The number of CRs is dynamic as we can understand in Fig. 6-5. As time goes by, the 

average number of CRs in the system increases. However, the associated probability mass 

function also spreads wider when the time increases. Therefore, the dynamic range of possible 

number of CRs in the system becomes larger such that the dynamic performance of the 
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cooperative spectrum sensing also has larger dynamic range. This means the PHY-layer 

spectrum sensing decisions might be reached with high reliability by many CRs or with low 

reliability by few CRs. Thus, there is the issue of how CRN should dynamically adapt the 

management protocols in the spectrum sensing level. The shadowed fading channels affect the 

spectrum sensing performances. In Fig. 6-6, we plots the the receiver operating characteristic 

(ROC) curves (Pd versus PFA) for different combinations of Nakagami-m fading parameter, m, 

and log-normal shadowing parameters, µΩ
 and σ Ω

. Smaller m means more severe the fading 

effect, i.e., Nakagami-m fading degenerates to Rayleigh fading when m = 1. Since σ Ω  is 

typically observed between 5 to 12 dB in macrocellular applications and between 4 to 13 dB in 

microcellular applications, we useσ Ω
= 8 dB to generate the curves in Fig. 6-6. When the 

channels are more benign, the receiver yields better detection results. Fig. 6-7 shows the dynamic 

probability of false alarm under different αp,2 and αd,2. When time goes by, the more CRs are in 

the network to collaborate and the probability of false alarm drops significantly. As we can see, 

when both type I and type II CRs are more likely staying in the high arrival periods, the 

probability of false alarm becomes smaller and thus CRN is less probable to miss the 

opportunities to exploit the vacant band to enhance its own throughput. The red curve is the case 

when only type I CRs stay longer in high arrival rate periods; the green curve represents the case 

when only type II CRs stay longer in high arrival rate periods. When only one of the two types of 
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CRs stay longer in the high arrival rate periods, the red curve  outperforms the green curve. 

Hence, the type I CRs are more influential compared to type II CRs. This is because type I CRs 

stay in the network but type II CRs would leave the cooperation after their jobs in the incident 

location are done. 

 

 

Fig. 6-5. PN(t)(n, t) at t = 2, 5, and 10. 
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Fig. 6-6. Receiver Operating Characteristic Curves for Shadowed Nakagami-m Fading Channels 

 

Fig. 6-7. Dynamic Probability of False Alarm with Different αp,2 and αd,2 
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6.3 Summary 

 

In this Chapter, we modeled the emergent behaviors of CRs by a hyper-semi-Markov process 

and the performances for energy-based spectrum sensing over shadowed Nakagami-m fading 

channels were derived. The close forms of dynamic probability of false alarm and dynamic 

probability of detection were derived. These close-form expressions can provide the framework 

for the cognitive radio public safety network system to perform the online adaptation/learning. 
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Chap 7 

Conclusions 

 

 

 In this dissertation, we study the cooperative spectrum sensing for the self-organizing 

dynamic overlay cognitive radio networks system. Dynamic spatial diversity is analyzed for 

when the number of CR users in the network is random. We derive the exact closed form 

expressions for dynamic probability of detection and dynamic probability of false alarm for 

cooperative spectrum sensing over different wireless links conditions. The long-term asymptotic 

performance metrics, probabilities of detection and false alarm, are also analyzed under these 

different scenarios.  

We also investigate two promising CRN technologies applications: cellular wireless 

systems and public safety emergency network systems and derive the explicit performance 

expressions of cooperative spectrum sensing in these two application scenarios over practical 

composite Nakagami-m fading and log-normal shadowing channels in the dense-populated urban 

areas. These analytically tractable expressions enable the efficient optimization of system 

performance without costly exhaustive search. This capability is critical for CRN to operate in 

harsh dynamic application scenarios with the wireless links, the primary users’ dynamics, and 
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the CRs’ dynamics such that CRN can self-organize its own network and guarantee the 

privileges of the licensed primary users.  




