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SOFTWARE

ORTEGA v1.0: an open-source Python 
package for context-aware interaction analysis 
using movement data
Rongxiang Su1*, Yifei Liu1 and Somayeh Dodge1 

Abstract 

Background Interaction analysis via movement in space and time contributes to understanding social relationships 
among individuals and their dynamics in ecological systems. While there is an exciting growth in research in com-
putational methods for interaction analysis using movement data, there remain challenges regarding reproducibility 
and replicability of the existing approaches. The current movement interaction analysis tools are often less accessible 
or tested for broader use in ecological research.

Results To address these challenges, this paper presents ORTEGA, an Object-oRiented TimE-Geographic Analytical 
tool, as an open-source Python package for analyzing potential interactions between pairs of moving entities based 
on the observation of their movement. ORTEGA is developed based on one of the newly emerged time-geographic 
approaches for quantifying space-time interaction patterns among animals. A case study is presented to demonstrate 
and evaluate the functionalities of ORTEGA in tracing dynamic interaction patterns in animal movement data. Besides 
making the analytical code and data freely available to the community, the developed package also offers an exten-
sion of the existing theoretical development of ORTEGA for incorporating a context-aware ability to inform interaction 
analysis.

Conclusions ORTEGA contributes two significant capabilities: (1) the functions to identify potential interactions (e.g., 
encounters, concurrent interactions, delayed interactions) from movement data of two or more entities using a time-
geographic-based approach; and (2) the capacity to compute attributes of potential interaction events including start 
time, end time, interaction duration, and difference in movement parameters such as speed and moving direction, 
and also contextualize the identified potential interaction events.

Keywords Animal interaction, GPS tracking data, Interaction analysis, Movement analysis, Movement data, Potential 
path area, Time geography, Telemetry data

Background
Increasing access to growing repositories of animal track-
ing data (e.g. Movebank [1, 2]) has created unprecedented 
opportunities to advance the science of movement 

ecology and substantially contributed to our under-
standing of animal behaviors of animals [3, 4]. While our 
movement data collection has become ubiquitous, meth-
ods to analyze and make sense of these complex data sets 
are not broadly available to researchers. For example, 
intuitive open-source tools to analyze and visualize the 
dynamic interactions or contacts between moving enti-
ties are lacking [5–7]. This study develops and assesses 
a new open-source Python package to analyze and map 
space-time interactions between two or more moving 
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entities. Python has become the most used programming 
language for spatial data analysis and has greater devel-
opment capabilities than other programming languages 
such as R, especially for large data sets. In this research, 
the term interaction refers to potential contacts between 
individuals in space and time. Such contact does not 
necessarily indicate the occurrence of physical or social 
interaction, but it may lead to exposure to risk factors or 
opportunities for social interaction.

Dynamic interaction [8, 9] between a pair of mov-
ing entities can be an encounter (i.e., a brief contact in 
space and time), or it can be either a concurrent interac-
tion (synchronous movement in proximity over a cer-
tain time interval) or delayed interaction (or indirect/
asynchronous, i.e., visiting the same location with a time 
lag). Traditional techniques to quantify dynamic interac-
tions primarily rely on the proximity between two mov-
ing entities, often determined by user-defined spatial and 
temporal thresholds [8, 10, 11]. However, the effective-
ness of the proximity-based approaches decreases when 
interacting individuals’ paths are not tracked simultane-
ously due to varied sampling rates, signal loss or imper-
fect tracking, or when the interactions are delayed (e.g., 
two animals visit the same location at different times) [4, 
9]. In contrast, the time-geographic-based approaches 
provide a more robust framework to identify potential 
encounters as well as concurrent and delayed interactions 
between individuals [6, 9, 12–15]. This is mainly because 
the time-geographic-based approaches incorporate the 
uncertainty of positioning and gaps in movement data by 
considering potential locations accessible to moving indi-
viduals between consecutive tracking points.

ORTEGA (Object-oRiented TimE-Geographic Ana-
lytical approach) is an emerging time-geographic-based 
approach which can be used to identify various types of 
interactions and their duration at a reasonable computa-
tion cost, as we demonstrate later in the “Results” section 
[6, 9, 15]. This paper implements and evaluates a new 
extension of the tool, ORTEGA version 1.0, as an open-
source Python package1 ,2 for analyzing, contextualizing, 
and mapping interactions between entities based on their 
movement observations (i.e., movement tracking data). 
The Python package ORTEGA v1.0 is built on top of the 
existing theoretical developments of ORTEGA, origi-
nally introduced in [6], and further extended in [9]. The 
developed package also offers an extension of ORTEGA 
for incorporating context-aware capacities to inform 
interaction analysis. By incorporating information on the 
context of movement, the outcomes can help us better 

distinguish between meaningful (or potentially inten-
tional) and non-meaningful (or incidental) interactions.

Currently, there is a limited number of tools that offers 
time geographic-based analytical functions for inter-
action analysis. One example is PySTPrism, a toolbox 
integrated into ArcGIS Pro Desktop designed for voxel-
based space-time prisms modeling [16]. Additionally, 
wildlifeDI [7] and STPtrajectories3 are two R packages 
capable of calculating and evaluating time-geographic 
elements. However, these tools are either rather limited 
in full open-source accessibility or may not be specifically 
tailored for utilizing time geography in the analysis of 
potential interactions based on movement tracking data. 
The ORTEGA v1.0 package contributes two significant 
capabilities: (1) the functions to identify potential inter-
actions (e.g., brief encounters, concurrent interactions, 
delayed interactions) from movement data of two or 
more entities using a time-geographic-based approach; 
and (2) the capacity to compute attributes of potential 
interaction events including start time, end time, inter-
action duration, and difference in movement parameters 
such as speed and moving direction, and also contextual-
ize the identified potential interaction events. To the best 
of our knowledge, the present ORTEGA is the first open-
source Python package that offers a time-geographic-
based interaction analytical tool for movement ecology 
research. To advance the reproducibility and replicability 
of this research, the developed package makes ORTEGA 
and its new extensions along with an example data set 
accessible to the community. To demonstrate the vari-
ous functions implemented in ORTEGA v1.0, this paper 
presents case studies using long-term movement track-
ing data of two migratory turkey vultures [17] to ana-
lyze their dynamic interactions. For simplicity, this case 
study uses only two birds to demonstrate the application 
of ORTEGA’s functions and is not intended as compre-
hensive research. It is important to note that ORTEGA 
is capable of handling interaction analysis for a larger 
number of individuals. ORTEGA is built upon existing 
Python’s matplotlib [18], numpy [19], shapely [20], and 
pandas [21] libraries.

Implementation
Input data
ORTEGA v1.0 (from here on ORTEGA refers to 
ORTEGA version 1) accepts conventional movement 
tracking data of a set of moving individuals, such as GPS 
or telemetry data, in the form of comma-separated values 
(CSV) files. The movement data should at least include 
a unique identifier for each individual (or entity), a set 

1 https:// github. com/ move- ucsb/ ORTEGA.
2 https:// pypi. org/ proje ct/ ortega. 3 https:// github. com/ markv regel/ STPtr aject ories/.

https://github.com/move-ucsb/ORTEGA
https://pypi.org/project/ortega
https://github.com/markvregel/STPtrajectories/


Page 3 of 14Su et al. Movement Ecology           (2024) 12:20  

of coordinates (geographic coordinates in floating-point 
format, provided in separate columns) representing 
the movement observations of each entity, and the cor-
responding timestamp of each observation (in Python 
“datetime” format).

ORTEGA’s algorithm description
In time geography, the activity space of a moving entity 
can be measured by a space-time prism which is shaped 
by a pair of origin and destination locations (denoted by 
Pi(xi, yi, ti) and Pj(xj , yj , tj) ), a time budget ( tj − ti ), and 
the maximum speed capacity ( vmax ), as shown in Fig.  1 
[22]. The projection of a space-time prism onto a two-
dimensional Euclidean space is called the Potential Path 
Area (PPA), which delimits accessible locations that a 
moving entity can potentially reach given two fixed loca-
tions, a time budget and its maximum speed [23, 24]. 
Readers are referred to [25] for the mathematical defini-
tions for various concepts in time geography. Using the 
time geography framework, the potential interactions 
between moving entities can be identified by intersecting 
their PPA ellipses along their trajectories [6, 9, 12–14].

Fig. 1 Illustration of the space–time prism and potential path area 
in a 3D space. Pi(xi , yi , ti) and Pj(xj , yj , tj) are the two consecutive 
tracking points. vmax is the maximum speed capacity of the moving 
entity at the time interval [ti , tj] given the two fixed locations Pi 
and Pj . PPAij denotes the potential path area in a 2D Euclidean space 
between Pi and Pj (modified from [25])

Fig. 2 Illustration of ORTEGA for identifying potential interaction between two moving entities (modified from [9]). Yellow-filled ellipses 
represent intersecting PPAs where potential interaction can occur. For each pair of intersecting PPAs, the following condition should be met, 
[t
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the corresponding GPS location. The two green dashed rectangles highlight two continuous interaction segments. The interaction duration can 
be computed by taking the difference between a continuous interaction segment’s start and end times. In Segment 1 of continuous interaction, 
the duration (x) exceeds the threshold value ( δt ), classifying it as a concurrent interaction. In contrast, Segment 2, with a duration (y) shorter than δt , 
is categorized as an encounter
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As shown in Fig.  2, ORTEGA identifies potential 
interactions by first judging if two PPAs of the two 
moving entities intersect spatially, and whether their 
time intervals overlap within a predefined allowable 
short time window τ . If so, a potential concurrent 
interaction is identified. The parameter τ is essential 
because, in reality, the movement tracking of two indi-
viduals is often unsynchronized or collected at differ-
ent sampling rates. The parameter is domain-specific 
and usually can be the same as the average temporal 
resolution of the input movement data. It can also be 
set to zero for a strict synchronous alignment, espe-
cially when high-resolution data are available. To 
detect delayed interactions, the user needs to specify 
a time interval [τa, τ b] so that interactions that occur 
with a time lag falling within the specified range of τa 
to τ b can be identified. Both τa and τ b should be greater 
than τ and can be determined according to the study’s 
objectives. Additionally, by traversing every pair of 
intersecting PPAs based on their sequential order (e.g., 
yellow-filled ellipses in Fig. 2), we can extract continu-
ous interaction segments (e.g., the portions highlighted 
with the green dashed rectangles) and compute their 
durations. The interaction duration is computed by 
taking the difference between a continuous interaction 
segment’s start and end times. Finally, if the duration 
of a continuous interaction segment is smaller than δt , 
the interaction event is classified as an encounter. Oth-
erwise, it is classified as a concurrent interaction of a 
duration equal to the difference between the start and 
end times of the continuous intersected PPA sequence. 
The concept of duration may not apply to delayed 
interactions, as individuals are present in the same 
space but at different times. The readers are referred 
to [6, 9] for further technical details of ORTEGA and 
the interaction analysis algorithms.

Contextualizing interaction analysis
ORTEGA v1.0 extends its existing implementation [6] 
by incorporating functions for context-aware inter-
action analytics. Context is considered as the cir-
cumstance of movement or any internal or external 
variables influencing movement. The goal is to under-
stand the relationships between identified potential 
interactions and the contexts when interactions occur. 
The fusion of large movement data and auxiliary envi-
ronmental and behavioral variables can help us make 
sense of complex patterns captured in movement 
observations and better understand animal behavior. 
In the current version, the contextual correlates are 
modeled as attributes of the PPAs in ORTEGA’s object-
oriented scheme. Examples of contextual attributes 
include behavioral states, land cover characteristics, 
vegetation, seasonality, temperature, etc. ORTEGA 
v1.0 supports as many numerical or categorical attrib-
utes as the user wishes to include. These attributes 
can directly be extracted from the original movement 
observations, if it is enriched with behavioral or envi-
ronmental variables, or they can be computed from the 
coordinates, for example, movement parameters such 
as speed and direction. Software packages such as Env-
DATA [26] can also be used to annotate movement 
observations with external environmental variables 
such as weather conditions, vegetation, etc. prior to 
interaction analysis.

ORTEGA v1.0 Python package
ORTEGA v1.0 is written in Python language. Table  1 
describes ORTEGA’s main functions. This section 
introduces the ORTEGA v1.0 Python package and pro-
vides step-by-step implementation instructions.

Table 1 Description of ORTEGA’s functions

Function Description

interaction_analysis() Identifies spatiotemporal intersecting PPAs after the user specifies the short time window (for identifying concur-
rent interaction) or time interval (for delayed interaction) during the initialization step; computes the difference 
in speeds and movement directions for each intersecting PPA pair; and extracts continuously intersecting PPA 
segments (i.e., interaction events) if any exists

compute_interaction_duration() Computes the duration of each concurrent interaction event. This function only applies to concurrent interaction

compute_ppa_perimeter() Descriptive statistics of PPA ellipse’s perimeter for each moving individual

compute_ppa_area() Descriptive statistics of PPA ellipse’s area for each moving individual

compute_ppa_interval() Descriptive statistics of PPA time interval for each moving individual

compute_ppa_speed() Descriptive statistics of PPA speed for each moving individual

attach_attributes() Attaches attributes such as contextual variables to the dataframe of intersecting PPAs (derived from the function 
interaction_analysis()) for further correlation analysis
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Setting up ORTEGA
As illustrated in Fig.  3, ORTEGA first imports trajecto-
ries of two individuals (i.e. a dyad), as provided by the 
user. To conduct interaction analysis for more than two 
individuals, the user will need to employ For loops, by 
considering a moving entity as a reference at each loop 
and running the analysis in conjunction with all other 
individuals in the data set.

As shown in the below code snippet in Fig.  4, in the 
first step when initializing an ORTEGA object, the user 
is required to specify the column names for the identifier, 
longitude and latitude coordinates, as well as the times-
tamp. As previously mentioned in “ORTEGA’s algorithm 
description” section, the user is also required to define 
a brief time window denoted as τ to detect concurrent 
interactions, or a time interval [τa, τ b] to identify desired 
delayed interactions. As an example, the code snippet 
in Fig.  4 provides instructions on initializing ORTEGA 
to identify concurrent interaction. When the user pro-
vides a short time window (in minutes) as the value 
of the minute_max_delay parameter (i.e., in this case, 
minute_max_delay is considered as τ ), ORTEGA returns 
the results of potential concurrent interaction within 
that given brief time window. Alternatively, when both 

Fig. 3 ORTEGA’s workflow for analyzing interactions between a pair 
of moving individuals using movement tracking data (dashed 
polygons indicate optional steps)

Fig. 4 Initialize ORTEGA and conduct descriptive statistics
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minute_min_delay and minute_max_delay are given 
(i.e., the user specifies a time interval [τa, τ b] ), ORTEGA 
detects delayed interactions that occur with a time lag 
within the specified interval (see the code in Fig. 6). Oth-
erwise, the program will raise an error to remind the user 
to specify at least the parameter minute_max_delay.

During the initialization phase, ORTEGA will check 
whether the temporal spans of the two movement tra-
jectories intersect. Should at least a partial overlap occur, 
the program will proceed to compute and generate PPAs 
along each individual’s trajectory; otherwise, it termi-
nates with an error message. The output of the initiali-
zation phase is an instance of the ORTEGA class, which 
includes the original movement data and two lists con-
taining the constructed PPAs of two moving individuals. 
Subsequently, the user can conduct descriptive statistics 
on PPA’s perimeter, area, speed, and time interval using 
ORTEGA’s descriptive statistics functions. Examples of 
implementing such statistics are shown in the same code 
snippet (see Fig. 4).

Identify concurrent interaction
Next, the user can identify segments of continuously 
intersecting PPAs as potential interaction events using 
the function interaction_analysis() , as demonstrated in 

the code snippet in Fig. 5. The outcome is a dataframe 
including the start and end times of each intersecting 
segment, along with the time difference between the 
two intersecting segments. The column of time differ-
ence indicates the time lag (if exists) between the two 
start points of the two intersecting trajectory segments. 
This information is especially helpful when the tracking 
of two individuals is not perfectly synchronized. It ena-
bles precisely pinpointing the location where the initial 
intersection or overlap of two trajectories occurred.

The user can use compute_interaction_duration() sub-
sequently to compute the duration of each interaction 
event, as presented in Fig. 5. Recall that in “ORTEGA’s 
algorithm description” section, it’s essential to consider 
the parameter δt for discerning between brief encoun-
ters and long-duration concurrent interactions. When 
the duration of an interaction event is shorter than δt , 
it signifies an encounter, whereas a duration exceed-
ing δt indicates a concurrent interaction. The outputs 
of interaction events are saved in a dataframe called 
df _interaction_events as an attribute of con_results . 
Each row in this dataframe indicates an interaction 
event. The user may take advantage of this dataframe 
to further interpret various types of identified inter-
actions. In the provided example, where movement 

Fig. 5 Implement concurrent interaction analysis

Fig. 6 Initialize ORTEGA and conduct descriptive statistics
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data is gathered every 60  min, a δt value of 60  min is 
sufficient to differentiate encounters from concurrent 
interactions.

Identify delayed interaction
Figure  6 illustrates an example of identifying delayed 
interactions that occur with a time lag between 120 and 
360  min. Similar to identifying concurrent interaction, 
the user needs to run interaction_analysis() after initial-
izing an ORTEGA object. The outcome of this step is the 
same as the concurrent interaction, namely a dataframe 
called df _interaction_events including the start and end 
times of each intersecting segment and the time differ-
ence between the two intersecting segments. In essence, 
the column of time difference in the case of delayed inter-
action shows the time lag of the delayed interaction event 
or the time lag between the two intersecting segments.

Contextualizing the identified interactions
Movement parameters such as speed and direction can 
be directly computed from GPS coordinates. Given a pair 
of consecutive GPS points, the speed of the correspond-
ing PPA can be easily computed by dividing the Euclid-
ean distance between the two given locations by the time 
interval. Subsequently, the ratio of the difference in speed 
(represented as rv ) between the two entities when poten-
tial interactions occur can be formalized as the absolute 
difference between the speeds of the two intersecting 
PPAs, divided by half of the sum of the speeds of the two 
intersecting PPAs. The value of rv ranges from 0 to 2, with 
0 indicating identical speeds and a larger value indicat-
ing greater disparities in speeds between two interacting 
entities. Movement direction ranges from −180 to 180 
degrees. Similarity of movement direction (represented as 
rθ ) can be measured by the cosine value of the difference 
between the movement directions of the two intersecting 

PPAs [11]. This value equals 1 when movement segments 
have the same orientation, 0 when they are perpendicu-
lar, and −1 when they move in opposite directions. The 
ratio of the difference in speed and similarity of move-
ment direction are automatically computed when run-
ning interaction_analysis() . The user can further use this 
information to examine the correlation between move-
ment parameters and potential interactions.

In circumstances when contextual variables are avail-
able in addition to movement data, the user may leverage 
ORTEGA’s context-aware functionality to further inform 
interaction analysis. As Fig. 7 shows, the user may specify 
which contextual variables they want to include in the 
ORTEGA object during the initialization stage by speci-
fying the attr_field parameter. Since each PPA consists of 
two GPS locations of an individual trajectory, each pair 
of intersecting PPAs includes contextual information of 
four GPS points of the corresponding PPAs of the two 
entities. ORTEGA offers a attach_attributes() function to 
aggregate these values at each potential interaction area 
(i.e. a PPA intersection). Currently, ORTEGA calculates 
the average of the values from the two GPS points that 
constitute each PPA. Subsequently, it computes either the 
average or the difference between the two mean values 
derived from the intersecting PPAs of the two individu-
als. This can be done by specifying the parameter method 
as ‘mean’ or ‘difference’. Ultimately, every pair of inter-
secting PPAs is associated with one value of a specific 
contextual variable. The user may correlate the identified 
potential interactions with movement parameters such 
as speed and movement direction, or with contextual 
factors. This correlation analysis can help us understand 
the relationships between potential interactions and indi-
viduals’ movement behaviors, as well as the surround-
ing environments where interactions occur. In the future 
extensions of ORTEGA package, the attach_attributes() 
function can be further advanced by incorporating more 

Fig. 7 Contextualize identified interactions
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sophisticated methods, beyond mean and difference, to 
provide a more comprehensive and detailed representa-
tion of contexts around overlapping PPAs. Additionally, 
exploring other spatial relationships between contextual-
ized PPAs in addition to ‘overlay’ can potentially offer a 
more comprehensive understanding of the influence of 
contexts on interactions between moving entities.

Mapping interactions
Lastly, ORTEGA can visualize the detected interaction 
events and their associated intersecting PPAs alongside 
the original movement data for better interpretation. 
As shown in Fig.  8, the tool provides two visualization 
choices: (1) plot_original_tracks() : This option allows 
the user to visualize the original movement trajecto-
ries of both individuals, with PPAs depicted in red and 
blue (by default) for each individual, respectively. (2) 
plot_interaction() : Selecting this option showcases the 
original trajectories while highlighting the overlapping 
segments in yellow by default, enhancing the clarity of 
the segments indicating potential interactions. The user 
may replace the parameter colors to customize the color 
code using common color names or hexadecimal color 
codes, especially if they wish to map the interaction 
between more than two individuals. Examples illustrat-
ing these visualization functions can be accessed at the 
provided example Jupyter notebook.4 Currently, the vis-
ualization offers a quick overview of the PPAs along the 
original movement trajectories of two moving individu-
als, with the intersecting PPAs highlighted. 

Results: case study
Data sets
The goal of this case study is to demonstrate the func-
tionality of ORTEGA v1.0 using GPS tracking data of two 
migratory turkey vultures (Cathartes aura). The tracking 
data, originally obtained from [27], has been continu-
ously collected through 2021 [28, 29]. Hawk Mountain 
Sanctuary in Pennsylvania, USA, provides this data, 

which is available through Movebank Data Repository 
[17, 30].

Turkey vultures are North America’s most abundant 
obligate avian scavengers, boasting the broadest distribu-
tion. This case study focuses on two specific turkey vul-
tures, “Leo” and “David”, both members of the interior 
North American population (meridionalis) [17]. This 
population is known for their migration from Canada 
to South America, across the central regions of North 
America. With a sampling rate of one hour per GPS 
fix, considering the low data quality of David’s tracking 
points after 2018, the common tracking period of the 
tracking dataset of David and Leo from 9 August 2013 to 
31 December 2017, encompasses a total of 48,453 track-
ing points. Leo’s tracking data contain 22,615 points, 
of which 5037 points are during migration, and 17,578 
points are during non-migration. David, on the other 
hand, covers 26,138 points in total, with 6,055 points 
captured during migration and 19,783 points during non-
migration. The departure time of David and Leo during 
fall and spring migration each year (Fig. 9) are evaluated 
by mapping trajectories using DynamoVis [31].5

A corresponding step-by-step Jupyter Notebook with 
instructions for this case study is available on GitHub 
(See Footnote 4). The GitHub repository contains the 
movement data of the two migrant turkey vultures. Users 
can fully replicate the analysis demonstrated in this 
section.

Descriptive statistics of movement parameter of PPA
We first illustrate the utility of ORTEGA with a case 
study between two migratory turkey vultures, “David” 
and “Leo” over the common observation period. After 
creating PPAs along their movement trajectories, 
descriptive statistics on the PPAs are computed, using 
the speed (meter per second) during migration and non-
migration as an example.

Figure  10 demonstrates a similar speed distribution 
of both vultures. Both birds displayed diverse move-
ment behaviors, combining long-distance travels and 
more restricted movement (foraging and resting) 

Fig. 8 Mapping interaction events

4 https:// github. com/ move- ucsb/ ORTEGA/ blob/ main/ examp les/ examp le_ 
turkey_ vultu res. ipynb. 5 https:// github. com/ move- ucsb/ Dynam oVis.

https://github.com/move-ucsb/ORTEGA/blob/main/examples/example_turkey_vultures.ipynb
https://github.com/move-ucsb/ORTEGA/blob/main/examples/example_turkey_vultures.ipynb
https://github.com/move-ucsb/DynamoVis
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during fall/spring migration. During migration, Leo 
averages approximately 4.5 m/s (std ≈ 6.2 m/s, median 
≈ 1.1 m/s, maximum ≈ 40.8 m/s). David’s speed, on 
the other hand, averages around 3.7 m/s (std ≈ 5.7 
m/s, median ≈ 0.3 m/s, maximum ≈ 36.3 m/s). Dur-
ing non-migration, Leo averages about 0.79 m/s, while 
David averages around 0.62 m/s. The broader speed 
spectrum, seen in both vultures, might point towards 
two dominant movement behaviors: instances of 
high-speed flight during migration, interspersed with 
slower movement or resting periods. Given that David 
and Leo usually undergo fall migration from Septem-
ber to November and spring migration from March to 
May [17], such patterns suggest high-speed flights dur-
ing migration and low-speed movements or feeding 

sessions during non-migratory periods. In addition, 
Leo’s larger median and maximum speeds suggest it 
generally moves faster than David.

Identifying concurrent and delayed interactions
Next, we demonstrate the utility of ORTEGA in identi-
fying concurrent interactions between David and Leo 
between 9 August 2013 and 31 December 2017. Given 
that the sampling interval is one hour per GPS fix, we set 
the brief time window parameter τ at one hour to identify 
concurrent interactions. This experiment takes around 
two hours to complete on a Microsoft Windows com-
puter equipped with a 2.5 GHz 8-Core Intel Core i9 pro-
cessor and 64 GB RAM.

Fig. 9 Spring and fall migration timeline of David in red and Leo in blue

Fig. 10 Distribution of PPA’s speed during migration (blue) and non-migration (orange) for David and Leo, both belonging to the same population. 
The dashed lines in each violin plot represents the first quartile, median, and the third quartile of the speed values
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Figure 11 displays the GPS tracking data for these two 
migratory vultures (Leo in red and David in blue) from 
August 2013 to December 2017 with red and blue PPA 
ellipses, respectively. Locations of breeding and non-
breeding grounds are labeled as stars. Potential concur-
rent interactions, indicated by intersecting PPAs, are 

highlighted with yellow ellipses. The sequence of inter-
secting PPAs identified around the Gulf of Mexico sug-
gests closely aligned movement paths and the potential 
for joint flights by the two vultures. The highlighted 
intersecting PPAs can be used to trace where and when 
the two birds flew together along their migration. The 

Fig. 11 Identified concurrent interactions between David and Leo using ORTEGA. The PPAs of the two migratory vultures are shown using red (Leo) 
and blue (David) ellipses. The intersecting PPAs are highlighted in yellow, with borders colored to match the corresponding vulture’s PPAs. Breeding 
and non-breeding grounds of Leo are labeled as stars in light blue (coordinate: 53.7627°N, 107.5038°W) and dark blue (7.3158°N, 69.8679°W), 
respectively. Breeding and non-breeding grounds of David are in light red (52.2169°N, 103.1147°W) and dark red (10.0143°N, 84.0623°W). The inset 
map zooms into part of the intersecting PPAs. The map is generated using ESRI ArcGIS Pro Desktop 3.0.2
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average monthly frequency is summarized in the last row 
of Fig. 12. The monthly duration (hour) of each interac-
tion event is calculated as well.

The results reveal 39 concurrent interaction events 
with an average duration of 5.2  h between these two 
migratory vultures over the five years. 80 percent of these 
migrations occurred in October. The outcomes show that 
the two birds are more likely to fly together during their 
fall migration as compared to the spring migration. Most 
of the interaction events seem to be located in the central 
parts of their migration path (latitudes between 13 and 
41°N, longitudes between 97 and 90°W), suggesting that 
although the two birds might not start their migration 
together, they often catch up later along their migration 
paths as described below.

David and Leo, despite their distinct breeding and 
non-breeding grounds, exhibit interesting patterns of 
concurrent interaction during their migration seasons, 
particularly in the fall. While their non-breeding grounds 
are different, in Nicaragua for David and in Venezuela 
for Leo, both vultures migrate north to Canada for 
breeding (see Fig.  11). Leo’s breeding ground is located 
in the northeast of David’s. As seen on the map, over-
all, Leo’s migration journey is longer than David’s. Most 
of the concurrent interactions between David and Leo 
occur during the fall migration, with four out of the five 
detected events taking place in this season. Even though 
David typically starts his journey 7.8 days earlier than 
Leo on average, his frequent stops allow Leo to catch up. 
This synchronization predominantly happens in October 
or November around the Gulf of Mexico’s coast.

Notably, in 2015 and 2017, their paths intersected 
within the central US region (latitudes between 36 and 

41°N). However, 2016 stands out as an exception: David’s 
swift and relatively uninterrupted migration seems to 
have prevented any joint flight that year. Leo’s consistent 
and faster journey to the same breeding ground each year 
implies that he may be more experienced in this migra-
tion route compared to David. In contrast, David’s initial 
wanderings, spanning two months in 2014 and approxi-
mately two weeks in 2015, before settling for a breeding 
ground, suggest his relative youth and inexperience. Doc-
uments from the field observations confirm that David 
was identified as a juvenile when he was captured for 
tagging in 2013 [28]. After 2015, David starts emulating 
Leo’s behavior by heading directly to a consistent breed-
ing location. Leo’s spring migration departure is notably 
consistent, generally around 13 March. David, on the 
other hand, exhibits variability (from 17 April, 2014 to 29 
March, 2017). While Leo sets off a month ahead of David 
in both 2014 and 2015, this difference narrowed to less 
than two weeks by 2017. Interestingly, 2017 is the only 
year when the two vultures show concurrent interactions 
during the spring migration.

Next, we demonstrate the application of ORTEGA in 
identifying delayed interactions between David and Leo. 
First, the time lag interval [τa, τ b] is decided by the depar-
ture time of David and Leo during fall and spring migra-
tion each year. The time lag intervals that are assessed 
for delayed interaction events include two hours to one 
day, one day to one week, one to two weeks, two to three 
weeks, three to four weeks, four to five weeks, and five 
to six weeks. A heat map showing the average monthly 
frequency of delayed interactions for different time lags 
is illustrated in Fig.  12. This can be interpreted as the 
average number of times within each month that one 

Fig. 12 Average monthly frequency of identified concurrent and delayed interactions between David and Leo for a time lag from one hour to six 
weeks. Darker blue represents higher interaction frequencies
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individual reaches the same location visited by another 
individual with a certain time lag, indicating a leader-fol-
lower behavior.

Figure  12 exhibits the average monthly frequency of 
identified concurrent and delayed interactions between 
David and Leo, which demonstrates a clear timeline of 
fall and spring migrations. October consistently exhibits 
higher interaction frequencies, which is a typical month 
for fall migrations, particularly for the delayed interaction 
with one-day, one-week, and two-week lag. In October, 
delayed interactions with one-day lag peak at an average 
monthly frequency of 35.3  h. April also shows moder-
ate interaction frequencies, which is a typical month for 
spring migrations, particularly for delayed interactions 
with two-week and four-week lag. Other months like Jan-
uary, June, July, and December show minimal to no inter-
actions across all delayed time lags as turkey vultures are 
located in separated breeding or non-breeding grounds 
in these months.

Delayed interactions with time lags of less than one 
week capture multiple migration events. Despite David’s 
earlier departures during the fall migrations of 2013 and 

2014, we still capture David following Leo within one-
week time lag. The delayed interactions with two and 
four-week time lags only capture the spring migration 
in 2016 and 2015, respectively, with David consistently 
departing 13–18 days later. The delayed interaction with 
a three-week time lag corresponds to the fall migration in 
2016, with David departing 16 days earlier. Although no 
joint flights occurred during these specific migratory sea-
sons, the presence of these delayed interactions provides 
compelling evidence of a shared migratory route between 
the two vultures.

Incorporating contextual correlates in interaction analyses
To further contextualize the identified interactions using 
the movement of the two individuals, we use ORTEGA 
to assess movement speed and direction along the inter-
sected PPAs. These additional variables are modeled as 
attributes of PPAs using ORTEGA’s context-aware func-
tionality. Although we only use two movement param-
eters, ORTEGA is flexible to incorporate any movement 
and contextual variables as attributes of PPAs.

Fig. 13 The ratio of the difference in movement speed during a concurrent and b delayed interactions and similarity of movement directions 
during c concurrent and d delayed interactions between intersecting PPAs of the two turkey vultures. The delayed interaction has a time lag interval 
from one day to one week
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Figure  13 illustrates the distributions of the ratio of 
the difference in speed and similarity of the movement 
direction for the intersecting PPAs of the two vultures. It 
can be observed that the distributions of the ratio of the 
difference in speed values ( rv ) show a skew towards 0 in 
concurrent interactions, suggesting similar speeds when 
flying together, and a skew towards 2 in delayed interac-
tions, suggesting substantially different speeds when the 
two birds follow each other paths. As for the distributions 
of the similarity of movement direction ( rθ ), we observe 
peaks near 1 and −1 in both concurrent and delayed 
interactions, signifying similar and opposite directions, 
respectively. In concurrent interactions, similar move-
ment speeds and similar movement directions are often 
observed when the two vultures migrate together, while 
opposite movement directions are more observed when 
the two vultures may forage or feed together. The larger 
speed differences and less skewness in movement direc-
tion differences detected in delayed interactions may 
suggest the presence of distinct migration and feeding 
patterns between the two vultures, separated by a time 
lag of up to one day. In general, the results underscore 
that vultures from the same population, when interact-
ing concurrently, exhibit similar movement patterns and 
are influenced by comparable contextual factors, possibly 
indicative of joint flight migration.

Conclusions
This application paper develops and evaluates a new 
open-source Python package for the analysis of dynamic 
interactions among moving entities, based on an 
extension of ORTEGA [6, 9]. Besides making the ana-
lytical code and example data set accessible to the com-
munity, the developed package also offers an extension 
of ORTEGA for incorporating context-aware abilities 
to inform interaction analysis. As a simple application 
example, using a case study of two migratory turkey 
vultures from the same population, we demonstrate 
the efficacy of ORTEGA in identifying and quantify-
ing potential interactions for a flexible time lag between 
moving individuals during their migration. Two move-
ment parameters, including speed and movement direc-
tion, are incorporated as the attributes of PPAs to further 
contextualize the identified interactions. The results indi-
cate that in general, individuals belonging to the same 
population may show similar movement behaviors dur-
ing concurrent interaction, which suggests potential col-
laborative or influenced behavior during their migratory 
patterns. Conversely, delayed interactions could indicate 
a more significant variance in terms of movement speed 
and direction. While only two birds are used in the case 
study, ORTEGA can be applied to analyze interaction 
among a group of individuals.

ORTEGA can be used to investigate dyadic, intraspe-
cific, and interspecific interactions among moving 
animals. For example, [6] analyzed interspecific inter-
action between tigers and leopards using movement 
tracking data collected in Thailand, showing that tigers 
and leopards exhibit awareness of each other, and their 
interactions are primarily indirect and delayed. Addi-
tionally, using data from 67 tracked tigers, [32] identi-
fied four types of interactions: following, encounter, 
latency, and avoidance among tigers. ORTEGA was 
used to demonstrate how these behaviors are mani-
fested in movements of interacting tigers and how 
their dynamics vary across gender and age. The newly 
added context-aware functions in ORTEGA opens up 
new possibilities for more sophisticated investigations 
into the relationship between contextual variables and 
potential interactions among moving animals. For 
instance, integrating variables such as land cover char-
acteristics, vegetation, seasonality, and temperature 
into the context-aware interaction analysis model can 
enhance the ability to predict and contextualize inter-
actions between moving individuals.

Availability and requirements
Project name: ORTEGA
Project home page: https:// github. com/ move- ucsb/ 
ORTEGA
Operating systems: Operating systems independent. The 
package was tested on Windows and MacOS.
Programming language: Python
Other requirements: Python 3.8 or higher.
License: MIT
Any restrictions to use by non-academics: None
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