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Abstract

Robust Estimation in Linear Models With Many Instruments

by

Mikkel Soelvsten

Doctor of Philosophy in Economics

University of California, Berkeley

Professor Michael Jansson, Chair

The first chapter of this dissertation considers a new class of robust estimators in a
linear instrumental variables (IV) model with many instruments. The estimators are
generalized method of moments (GMM) estimators, and the class includes the limited
maximum likelihood estimator (LIML) as a special case. Each estimator in the class is
consistent and asymptotically normal under many instruments asymptotics, and this
chapter provides consistent variance estimators that are of the “sandwich” type and
can be used to conduct asymptotically correct inference. Furthermore, this chapter
characterizes an optimal robust estimator among the members of the class. Compared
to LIML, the optimal robust estimator is less influenced by outliers and more efficient
under thick-tailed error distributions. In an empirical example (Angrist and Krueger,
1991), the optimal robust estimator is approximately 80% more efficient than LIML.

The second chapter of this dissertation provides a central limit theorem based on
Stein’s method (Stein, 1972) which is an integral component in the proof of the main
theorem in the first chapter. It also appears to be general enough in its scope that it
can be applied to a variety of other problems.
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Chapter 1

Robust Estimation Under Many
Instruments Asymptotics

1.1 Introduction
The focus of this chapter is robust estimation of the structural coefficient in a linear
IV model with many instruments. Models with many instrumental variables have
received considerable attention in recent years as estimators using a large number of
instruments can be more accurate than estimators using a small number of instru-
ments. It is well understood that inference based on standard asymptotics may lead
to incorrect confidence intervals when an estimator uses multiple instruments. Infer-
ence based on many instruments asymptotics—where the number of instruments and
the sample size grow at the same rate—tends to correct this problem. Under many in-
struments asymptotics, the two-stage least squares estimator (2SLS) is inconsistent,
whereas LIML is consistent and asymptotically normal (see, e.g., Kunitomo, 1980;
Morimune, 1983; Bekker, 1994).

LIML is essentially an optimal estimator when the structural and reduced form
errors have a joint normal distribution (Chioda and Jansson, 2009), but normality
may not be a good approximation to all economic data. To illustrate, this chap-
ter takes the model and data from Angrist and Krueger (1991) and documents that
the structural error distribution is well-approximated by a normal distribution that
has been contaminated with gross outliers. The accuracy of LIML could be nega-
tively affected by the presence of outliers, which makes it important to understand if
alternative estimators can be more efficient when the errors are nonnormal.
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The first contribution of this chapter is to propose a new class of estimators of the
structural coefficient in a linear IV model and to show that each member of the class
is consistent and asymptotically normal at the usual parametric rate under many
instruments asymptotics. Additionally, this chapter characterizes both an optimal
and an optimal robust estimator within this class. The optimal estimator minimizes
asymptotic variance when the shape of the joint error distribution is known (e.g.,
normal), whereas the optimal robust estimator minimizes the maximal asymptotic
variance over a neighborhood of contaminated normal distributions, i.e., a mixture
between the standard normal distribution (with high probability) and some unknown
contaminating distribution (with low probability). Each estimator of the structural
coefficient is an element of a just-identified GMM estimator which corresponds to a
vector of sample moments indexed by two functions of the structural residuals. When
both functions are linear, the ensuing estimator is LIML. When the first function is
proportional to the score of the structural errors and the second is proportional to
the conditional mean of the reduced form error given the structural error, either of
which may be nonlinear, then the ensuing estimator is optimal. When both functions
censor the structural residuals at some data-dependent level, the ensuing estimator
is optimal robust.

These contributions add to a growing literature on many instruments asymptotics
that started with Kunitomo (1980) and Morimune (1983), who derived asymptotic
variances that are larger than the usual IV formulas and depend on the number of
instruments. Bekker (1994) provided consistent estimators of these larger variances
under normal errors and Hansen, Hausman, and Newey (2008) extended the variance
formulas and estimators to allow for nonnormal errors.1 This chapter expands the
class of asymptotically normal estimators to include robust alternatives to LIML and
provides formulas for their asymptotic variances that are natural extensions of the
existing formulas. In addition, this chapter provides consistent variance estimators
that are of the “sandwich” type, where the outer matrix is the inverse Jacobian of
the sample moments and the inner matrix is a sample average of outer products of
some moment function.

1Some additional chapters that consider estimation and inference with many or many weak
instruments are Hahn (2002); Hahn and Hausman (2002); Chamberlain and Imbens (2004); Chao
and Swanson (2005); Chao, Swanson, Hausman, Newey, and Woutersen (2012); Hausman, Newey,
Woutersen, Chao, and Swanson (2012); Hansen and Kozbur (2014); Kolesár (2015); Wang and Kaffo
(2016). See also Newey (1990); Belloni, Chen, Chernozhukov, and Hansen (2012) and Kolesár (2013)
for estimation in related models.
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This chapter also adds to the literature on optimal and robust estimation in the
linear IV model. Anderson, Kunitomo, and Matsushita (2010) showed optimality of
LIML among estimators that are functions of the sufficient statistics from the nor-
mal model, and under normality of the errors, Chioda and Jansson (2009) showed
optimality of LIML among estimators that are invariant to rotations of the sufficient
statistics from the normal model. The optimality results of this chapter are comple-
mentary to the existing literature, as they imply optimality of LIML under normal
errors, but for a different class of estimators than previously considered. However,
they also bring a new perspective to these results by presenting estimators that are
robust and more efficient than LIML under nonnormal errors and many instruments.
In models with a fixed number of instruments, the two-stage least absolute devia-
tions estimator (Amemiya, 1982; Powell, 1983), the resistant esimator of Krasker and
Welsch (1985), the two-stage quantiles and two-stage trimmed least squares estima-
tors (Chen and Portnoy, 1996), the IV quantile regression estimator (Chernozhukov
and Hansen, 2006), the robust estimators of Honoré and Hu (2004), the nonlinear
IV estimators of Hansen, McDonald, and Newey (2010), and the adaptive estimator
of Cattaneo, Crump, and Jansson (2012) are also examples of robust estimators or
estimators that can be more efficient than LIML under nonnormal errors. However,
I am unaware of papers that establish consistency or asymptotic normality of these
estimators under many instruments asymptotics.

The notion of robustness this chapter adopts is similar to the one used by Huber
(1964), and defines an estimator as robust if its asymptotic variance remains finite
when the distribution of the structural errors ranges over a neighborhood of con-
taminated normal distributions. The optimal robust estimator derived here treats
the structural residuals of the IV model the same way as Huber’s most robust (or
minimax) estimator treats the residuals of the regression model (Huber, 1964, 1973,
1981).

Finally, this chapter makes an additional contribution of potential independent
interest. The contribution is to give high-level conditions for asymptotic normality
of a single element of a just-identified GMM estimator whose dimension grows at the
same rate as the sample size. Following Huber (1967), there have been numerous
papers giving high-level conditions in GMM setups. See, e.g., Hansen (1982); Pakes
and Pollard (1989); Andrews (1994); Newey (1994); Newey and McFadden (1994); Ai
and Chen (2003); Chen, Linton, and Van Keilegom (2003); Chen (2007); Newey and
Windmeijer (2009). These papers cover cases of smooth and non-smooth objective
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functions and parametric and semi-parametric estimators, but all of them rely on an
intermediate result of consistency of the estimator for some pseudo-true, non-random
value. In contrast, this chapter allows for the estimator to have a random, sample-
dependent “limit.” This is a necessary extension, as the reduced form parameters in
this setup do not settle down around some non-random value under many instruments
asymptotics. This chapter presents results for smooth and non-smooth objective
functions, and verifies the high-level conditions for examples that are differentiable
or Lipschitz continuous.

The remainder of this chapter is organized as follows. Section 1.2 defines the
model and describes the class of estimators and the associated asymptotic variance
estimators for a simplified version of the model. Section 1.3 gives high-level conditions
for asymptotic normality of a single element of a GMM estimator whose dimension
grows at the same rate as the sample size. Section 1.4 shows that each estimator in
the class is asymptotically normal and characterizes optimal and robust estimators.
Section 1.5 describes the class of estimators in the generality of the full model. Section
1.6 presents simulation results, and section 1.7 applies some of the estimators to the
empirical example provided by Angrist and Krueger (1991). Section 1.8 concludes.
Proofs are in the appendices.

Notation

For a vector v, let ‖v‖ =
√
v′v be the Euclidean norm. For a symmetric matrix A,

let λmin(A) and λmax(A) be the smallest and largest eigenvalues of A. For any matrix
A, let ‖A‖ = λmax(A′A)1/2 be the largest singular value of A, and let σmin(A) =
λmin(A′A)1/2 be the smallest singular value of A. ‖A‖ is an operator norm (induced
by Euclidean norms) and σmin(A) > 0 if and only if A′A is invertible. For any
absolutely continuous function f : R → R, let f ′ be a derivative of f when it exists
and zero otherwise. Let {ani}i,n be shorthand for {ani : i ∈ {1, · · · , n}, n ∈ N}, and
let {ani}i be shorthand for {ani : i ∈ {1, · · · , n}}. Let Φ be the distribution function
of the standard normal distribution. Limits are considered as n→∞ unless otherwise
noted.
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1.2 Model and Estimators
This chapter considers a linear model with two endogenous variables and kn instru-
mental variables. The model consists of a structural and a reduced form equation
given by

yin = xinβ0 + w′iδ0 + εi (1.1a)
xin = z′inπ0n + w′iη0 + ui (i = 1, · · · , n) (1.1b)

where n is the sample size, yin, xin ∈ R are endogenous variables, wi ∈ RG is a vector
of included exogenous variables that includes a constant term, zin ∈ Rkn is a vector
of instruments, εi, ui ∈ R are unobserved stochastic errors, β0 ∈ R is the parameter
of interest, and (π0n, δ0, η0) ∈ Rkn+2G is a nuisance parameter. The model involves
potentially many instruments as

lim
n→∞

kn
n

= α ∈ [0, 1).

The special case α = 0 includes standard asymptotics where kn is fixed as n → ∞.
To simplify notation, drop the subscript n on yi, xi, zi, k, and π0.

Let the matrices Z and W denote the stacked observations of z′i and w′i, and
assume that (Z,W ) has full rank. Residualize and normalize Z so that n−1Z ′Z =
Ik and n−1Z ′W = 0.2 This transformation of (Z,W ) simplifies some definitions
and proofs and does not affect the asymptotic distribution of the estimators of β0

considered in this chapter. The errors (εi, ui) are assumed i.i.d. and independent
of (Z,W ). The reduced form error, ui, has finite variance, the intercept in (1.1b)
is normalized so that E[ui] = 0, and the structural error, εi, has a bounded and
absolutely continuous density f with nonzero and finite Fisher information, If =
E[(f ′/f)2(εi)]. The instruments are jointly strong in the sense that the conditional
covariance between xi and z′iπ0 is bounded away from zero, i.e.,

σxz = 1
n

∑
i

E
[
xiz
′
iπ0 | Z

]
= 1

n
π′0Z

′Zπ0 = ‖π0‖2 > c+ op(1) for some c > 0.

To simplify the exposition, the rest of this section presents the class of estimators
when the nuisance parameters (δ0, η0) are known and normalized to equal zero, while
section 1.5 treats the case where (δ0, η0) are unknown.

2The residualization replaces Z with Z̄ = (I−PW )Z where PW is the projection ontoW , and the
normalization replaces Z̄ with Z̃ = Z̄(n−1Z̄ ′Z̄)−1/2. Thus, xi = z̃′iπ̃0 + w′iη̃1 + ui for some (π̃0, η̃1),
and I remove the tildes to keep the notation simple.
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The class of estimators this chapter considers is indexed by two Lipschitz continu-
ous functions φ and ψ, and the estimators take values in a parameter space Θn ⊂ Rk+2

with a quickly growing dimension. Each estimand is a vector θ0 = (β0, γ0, π0) where
the additional nuisance parameter γ0 is defined as

γ0 = E [φ(εi)ui]
E [φ(εi)ψ(εi)]

,

i.e., γ0 makes φ(εi) uncorrelated with ui − ψ(εi)γ0. The functions φ and ψ, the
parameter space, Θn, and the nuisance parameter, γ0, will be discussed further after
the definition of the estimators. Each estimator θ̂ = (β̂, γ̂, π̂) is an approximate
minimizer of an objective function, i.e.,

‖mn(θ̂)‖ ≤ inf
θ∈Θn
‖mn(θ)‖+ op

(
n−1/2

)
,

where mn(θ) = 1
n

∑
imni(θ),

mni(θ) =


z′iπφi(β)
φi(β) (xi − ψi(β)γ)
zi
(
xi − ψi(β)γ − z′iπ

)
 ,

φi(β) = φ(εi(β)), ψi(β) = ψ(εi(β)), and εi(β) = yi − xiβ. Note that the estimators,
θ̂, the additional nuisance parameter, γ0, the objective functions, mn, and the asymp-
totic variances and their estimators (defined below) are all indexed by φ and ψ. For
simplicity, I do not make that explicit in the notation.

To motivate mn as a moment function, I relate it to LIML. A standard way to
define LIML is as an extremum estimator that minimizes a variance ratio

β̂LIML = arg min
β∈R

ε(β)′Pε(β)
ε(β)′ε(β)

where ε(β) denotes the stacked observations of εi(β) and P = n−1ZZ ′ denotes the
projection onto Z. From this definition it follows that θ̂LIML = (β̂LIML, γ̂LIML, π̂LIML)
solves the nonlinear first order conditions (see appendix C for a derivation)

1
n

∑
i


z′iπεi(β)
εi(β) (xi − εi(β)γ)
z′i
(
xi − εi(β)γ − z′iπ

)
 = 0, (1.2)

and the left hand side is mn(θ) when φ(ε) = ψ(ε) = ε. Thus, it follows that this class
of estimators is a generalization of LIML.
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A natural interpretation of mn is that its first entry is the first order condition
for a robust IV-regression of yi on xi using z′iπ as an instrument for xi and that the
remaining entries are the first order conditions for an IV-regression of xi on ψi(β)
and zi using φi(β) as an instrument for ψi(β). For this interpretation ones needs
to subtract the first entry of mn from the second, but doing so does not affect the
asymptotic distribution of β̂. The effect of including ψi(β) in the regression of xi
on zi is a rotation of the errors which makes φ(εi) uncorrelated with ui − ψ(εi)γ0.
To understand the importance of this rotation, one can consider (1.2) for γ = 0 and
without the second equation. Solving that for β yields 2SLS which is not consistent
under many instruments asymptotics.

Section 1.4 shows, under regularity conditions, that an optimal choice of φ is
proportional to the score function for εi, f

′(ε)
f(ε) , and that an optimal choice of ψ is

proportional to the conditional mean of ui given εi, E[ui | εi = ε]. These optimal
functions are usually unknown, but a feasible approach would be to let φ and ψ be
the optimal functions for some fixed distribution, e.g., to let φ and ψ be one of the
Huber score, min{1,max{ε,−1}}, the Cauchy score, ε/(ε2 +1), or the Gauss score, ε.
See (Hansen et al., 2010) for a version of this approach under standard asymptotics
and for a different class of estimators. An alternative approach, introduced by Huber
(1964) in the regression model, is to fix some error distribution (e.g. normal) and use
an estimator that minimizes the maximal asymptotic variance over a neighborhood
of the fixed error distribution. Section 1.4 applies this approach to the current model
and derives that the ensuing optimal robust (minimax) estimator is indexed by φ and
ψ that are equal to φν0(ε) = min{ν0,max{ε,−ν0}} for some value of ν0, i.e., φν0 is
linear around zero and censors extreme values of εi at±ν0. Section 1.5 proposes a data
driven censoring level ν̂ which also serves to make the estimator scale invariant. For
this censoring level the optimal robust estimator is approximately 5% less efficient
than LIML when (εi, ui) has a joint normal distribution. On the other hand, the
optimal robust estimator is approximately 80% more efficient than LIML for certain
thick-tailed error distributions (and in the empirical example), in the sense that for
such error distributions, LIML needs an 80% larger sample to achieve the same level
of precision as the optimal robust estimator.

The main conditions on the functions φ and ψ are (i) that for each φ there exist
a unique δ∗ ∈ R such that E[φ(εi + δ∗)] = 0, and (ii) that

E[φ′(εi + δ∗)] 6= 0 and E [φ(εi + δ∗)ψ(εi + δ∗)] 6= 0. (1.3)

These conditions will, in general, be satisfied when φ and ψ equals one of the Huber,
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Cauchy, or Gauss scores. For example, if φ and ψ equal the Gauss score, then δ∗ =
−E[εi] and (1.3) is satisfied when the variance of εi is nonzero (and finite). Similarly,
if φ and ψ equal the Huber score, then there exist a unique δ∗ ∈ R such that E[φ(εi+
δ∗)] = 0 and (1.3) is satisfied when εi + δ∗ puts positive mass on [−1, 1]. To simplify
the notation, I normalize the intercept in (1.1a) so that δ∗ = 0. Furthermore, I
normalize the function ψ such that E[ψ(εi)] = 0. The latter normalization implies
that the asymptotic results depends on ψ(εi) instead of ψ(εi)− E[ψ(εi)].

A necessary condition for consistency of β̂ is that mn uniquely identifies β0 over
the parameter space Θn, but this is not the case if Θn = Rk+2. To see this, consider
the special case where φ(ε) = ψ(ε) = ε. In this case, it follows that the first order con-
ditions in (1.2) have a second solution where β̃ = arg max β∈R ε(β)′Pε(β)/ε(β)′ε(β),
and this solution is not consistent for β0 in general (see appendix C for a derivation).
To ensure consistency of β̂, I let the parameter space Θn =

[
β̂init ± bn

]
×Rk+1 where

β̂init is an initial consistent estimator of β0 and bn is a bandwidth that slowly shrinks
to zero. This can be thought of as using an initial estimator to select the consistent
root of mn, and section 1.4 shows that the asymptotic distribution of β̂ does not de-
pend on the initial estimator or the bandwidth. A natural choice of initial estimator
is LIML, which is consistent when εi has finite variance.3

Section 1.4 shows, under regularity conditions, that
√
nΣ̂−1/2

n (β̂ − β0) d−→ N (0, 1)
for some sequence of asymptotic variance estimators Σ̂n. This implies that confidence
intervals or hypothesis tests for β0 can be constructed using standard methods. In
order to describe Σ̂n, let Jn be a Jacobian of mn and suppose that Jn(θ) is invertible
at θ̂. Then, Σ̂n is the upper left entry of a sandwich estimator, i.e.,

Σ̂n =
(
J−1
n (θ̂) 1

n

∑
i

ms
ni(θ̂)ms

ni(θ̂)′J−1
n (θ̂)′

)
11

(1.4)

where

ms
ni(θ) =


z′iπφi(β)
φi(β) (xi − ψi(β)γ)
0k

 .
The estimator Σ̂n differs from a straightforward application of GMM formulas, as it
uses ms

ni(θ̂) rather than mni(θ̂) to form the inner matrix. This difference is related to
the quickly growing number of parameters and sample moments in mn(θ) and section
1.4 provides a further discussion of this difference.

3Without an initial consistent estimator for β0, one could still use mn(θ) to create a test statistic
for hypotheses about β0. Such an approach would be closely related to Kleibergen (2002)
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When β̂ is LIML, it is instructive to compare Σ̂n to the variance estimator adopted
by Hansen et al. (2008). That paper proposes an asymptotic variance estimator that
separately estimates four different terms, and these terms are the standard variance
estimator, the correction term proposed by Bekker (1994), and two additional terms
that are present under some forms of nonnormality. The variance estimator con-
sidered here is numerically different from the Hansen et al. (2008) estimator, but
asymptotically equivalent, i.e., Σ̂n automatically accounts for all four terms.

1.3 High-level Conditions for Asymptotic Normal-
ity

This section gives high-level conditions for asymptotic normality of a single element
of a GMM estimator whose dimension grows at the same rate as the sample size,
and section 1.4 verifies these high-level conditions for the estimators of the IV model.
I discuss some of the high-level conditions in the context of the IV model, but the
results apply to just-identified GMM estimators θ̂ of θ0 ∈ Rp, where p/n→ α ∈ [0, 1),

‖mn(θ̂)‖ ≤ inf
θ∈Θn⊂R

p
‖mn(θ)‖+ op

(
n−1/2

)
, (1.5)

and the first entry of θ0, say β0, is the object of interest. The results can be seen
as extensions of Pakes and Pollard (1989, theorem 3.1) and Newey and McFadden
(1994, theorems 3.2 and 7.2) to a setup where the dimension of the parameter space
grows as quickly as n.

The proofs rely on expansions of mn(θ̂) around some “limit” of θ̂ which I denote θ̄.
This is quite standard, but differs from the classical theorems since θ̄ is different from
θ0 and random. This approach generalizes the one taken by El Karoui, Bean, Bickel,
Lim, and Yu (2013) who study robust regression when the number of covariates is
of the same order as the sample size (as in the first stage equation). Furthermore,
the approach has some similarities with the analysis of two-step estimators in Newey
and McFadden (1994, section 6), although in their setup the first step estimator has
a non-random limit.

1.3.1 The “limit” of θ̂

The definition of θ̄ is constructed to satisfy two requirements. First, ‖θ̂ − θ̄‖ should
be small enough that a Taylor expansion of mn yields good approximations to the
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asymptotic behavior of the object of interest, β̂ − β0. Second, θ̄ should be simple
enough that one can characterize the limiting behavior of mn(θ̄). To accommodate
this, assume that the first entry of θ̄ is β0, that θ̄ sets all but a fixed number of entries
in mn(θ̄) equal to zero, and that θ̄ is unique.

In the context of the IV model, define θ̄ = (β0, γ0, π̄) where π̄ is the unique solution
to

0 = 1
n

∑
i

zi
(
xi − ψ(εi)γ0 − z′iπ̄

)
.

This definition of θ̄ sets the last k entries ofmn(θ̄) equal to zero. Furthermore, the two
nonzero entries ofmn(θ̄) have mean zero, and this is (almost) a necessary condition for
some of the high-level conditions of this section. One can think of π̄ as an infeasible
estimator of π0, since it depends on the unknown parameters (β0, γ0). Note also that
‖θ̄−θ0‖ is, in general, bounded away from zero under many instruments asymptotics,
i.e., ‖θ̄ − θ0‖ > c+ op(1) for some c > 0 when α > 0.

Lemma 1.3.1. Suppose that P
(
θ̄ ∈ Θn

)
→ 1. If

(i) ‖mn(θ̄)‖ = op(1);

(ii) for every δ > 0, there exists a c > 0, such that

inf
θ∈Θn,
‖θ−θ̄‖>δ

‖mn(θ)‖ > c+ op(1);

then ‖θ̂ − θ̄‖ p−→ 0.

The two details of this lemma that sets it apart from Pakes and Pollard (1989,
theorem 3.1, hereafter PP3.1) are that the dimensions of θ̄ and mn grow quickly with
n and that the random vector θ̄ plays the role the parameter θ0 does in PP3.1. These
details have a limited impact on the proof of lemma 1.3.1, which is along the same
lines as the proof of PP3.1, but they have a larger impact on the methods that can
be used to verify the high-level conditions (i) and (ii). In the context of PP3.1, the
usual way to verify (i) and (ii) is to establish a uniform law of large numbers for mn,
i.e., to show that

sup
θ∈Θn
‖mn(θ)−Mn(θ)‖ = op(1)

10



for some non-randomMn which satisfies (i) and (ii) with θ0 in the place of θ̄ (see, e.g.,
Pakes and Pollard, 1989, corollary 3.2). In the current context, where the dimension
of θ̄ and mn grows quickly with n, it appears that the usual approach is infeasible.
However, the definition of θ̄ implies that only a fixed number of entries in mn(θ̄)
are nonzero, so (i) will be satisfied if a law of large numbers holds for each of the
remaining entries in mn(θ̄). Furthermore, if mn is sufficiently smooth, (ii) can be
verified directly.

For the IV model, the nonzero entries ofmn(θ̄) are quadratic forms with mean zero
and I use the Efron-Stein inequality (see appendix 2.1 for a discussion and references)
to verify (i). Furthermore, mn is linear in π which simplifies the verification of (ii).

1.3.2 Rate of convergence of θ̂ and asymptotic normality of
β̂

This subsection gives conditions that lead to ‖θ̂ − θ̄‖ = Op(n−1/2) and asymptotic
normality of β̂. Theorem 1.3.2 below treats the case where mn is continuously differ-
entiable, and proposition 1.3.3 relaxes this smoothness condition. Both results use the
following notation. Let Jn be a Jacobian (of mn), and let the vector θ∗ = (β∗, γ∗, π∗)
solve

0 = mn(θ̄) + Jn(θ̄)
(
θ∗ − θ̄

)
.

When Jn(θ̄) is invertible it follows that

β∗ − β0 = −J1
n(θ̄)mn(θ̄),

where J1
n(θ̄) is the first row of J−1

n (θ̄). The conditions of theorem 1.3.2 imply that β∗

is asymptotically normal and that the same conclusion can be transferred to β̂.

Theorem 1.3.2. Suppose that ‖θ̂ − θ̄‖ p−→ 0, P
(
θ̄ ∈ Θn

)
→ 1 and

√
n infθ∈∂Θn‖θ −

θ̄‖ p−→∞ where ∂Θn is the boundary of Θn. If

(i) mn is continuously differentiable with Jacobian Jn;

(ii) there exists a c > 0 such that σmin

(
Jn(θ̄)

)
> c+ op(1);

(iii) for any sequence {δn} of positive numbers converging to zero,

sup
‖θ−θ̄‖<δn

‖Jn(θ)− Jn(θ̄)‖ = op(1);

11



(iv) ‖mn(θ̄)‖ = Op(n−1/2) and
√
nΣ−1/2

n J1
n(θ̄)mn(θ̄) d−→ N (0, 1) for some Σn with

Σ−1
n = Op(1);

then ‖θ̂ − θ̄‖ = Op

(
n−1/2

)
and
√
nΣ−1/2

n

(
β̂ − β0

)
d−→ N (0, 1).

If, additionally, Σn
p−→ Σ then

√
n(β̂ − β0) d−→ N (0, Σ).

Condition (i) states that mn is continuously differentiable, so it is natural to
compare the conditions of theorem 1.3.2 to those of Newey and McFadden (1994,
theorem 3.2, hereafter NM3.2). The main differences are that in theorem 1.3.2 the
dimensions of θ, mn, and Jn can grow as quickly as n, that the “limiting” object, θ̄
is a random vector, and that the conclusion only gives a limiting distribution for a
single element of θ̂. In NM3.2 these dimensions are fixed, the limiting object, θ0, is
nonrandom, and the conclusion is a limiting distribution of θ̂. A further difference is
that NM3.2 allows for overidentification in the sense that the dimension of mn can
be larger than that of θ.

NM3.2 requires that the Jacobian converges in probability to a matrix of full rank,
which in turn implies the bound on the singular values in (ii). Here, the dimension of
Jn(θ̄) grows quickly with n so it will, generally, not converge in probability. However,
(ii) is sufficient for the desired result. Similarly, NM3.2 imposes continuity on the
limit of the Jacobian, but Jn may not have a limit. Instead, (iii) imposes a stochastic
equicontinuity condition on Jn.

NM3.2 assumes that mn(θ0) satisfies a central limit theorem (CLT), whereas the
essence of (iv) is that the (fixed number of) nonzero entries of mn(θ̄) satisfy a CLT.
The presence of the random θ̄ makes mn(θ̄) a sample average of dependent observa-
tions, and there are multiple specialized tools to deal with such averages. Chapter 2
gives a CLT inspired by Chatterjee (2008) which can be used to establish (iv), and
section 1.4 applies the CLT to the IV model. The final condition of NM3.2 is that
the limiting object, θ0, is an interior point of the parameter space, and theorem 1.3.2
places a similar condition on θ̄, but accommodates that θ̄ and Θn are random.

It is possible to get rid of the assumption that mn is continuously differentiable,
provided that mn is well-approximated by a continuously differentiable random func-
tion Mn. The following proposition outlines what is meant by well-approximated.

Proposition 1.3.3. Suppose that ‖θ̂− θ̄‖ p−→ 0, P
(
θ̄ ∈ Θn

)
→ 1 and

√
n infθ∈∂Θn‖θ−

θ̄‖ p−→∞ where ∂Θn is the boundary of Θn. If

12



(i) for any sequence {δn} of positive numbers converging to zero,

sup
θ∈Θn,
‖θ−θ̄‖<δn

√
n‖mn(θ)−mn(θ̄)− (Mn(θ)−Mn(θ̄))‖

1 +
√
n‖θ − θ̄‖

= op (1) ;

(ii) Mn is continuously differentiable with Jacobian Jn;

(iii) Jn satisfies theorem 1.3.2(ii) and (iii) and mn satisfies theorem 1.3.2(iv);

then
√
nΣ−1/2

n

(
β̂ − β0

)
d−→ N (0, 1).

The conditions of this proposition are similar to the conditions of Newey and
McFadden (1994, theorem 7.2), and the discussion following theorem 1.3.2 about
differences and similarities applies here as well. I have verified the conditions of
proposition 1.3.3 for mn with discontinuous derivatives (e.g., when φ or ψ is the
Huber score), but not when mn is discontinuous (e.g., when φ or ψ are the sign
function). The conditions of Newey and McFadden (1994, theorem 7.2) have been
verified in cases with a discontinuous mn (see, e.g., Andrews, 1994), but I leave it to
future work to establish whether the conditions of proposition 1.3.3 can be verified
for a discontinuous mn.

1.4 Primitive Conditions for Asymptotic Normal-
ity

This section presents three results. First, it gives primitive conditions on the model
and estimators of section 1.2 that are sufficient for the high-level conditions of section
1.3 and therefore sufficient for asymptotic normality. Second, it presents a consistency
result for the asymptotic variance estimators. Third, it characterizes the functions φ
and ψ that lead to an optimal estimator or to an optimal robust estimator.

1.4.1 Asymptotic Normality of β̂

In order to show asymptotic normality of β̂, this section imposes the following regu-
larity conditions in addition to the assumptions stated together with the model.

Assumption 1. (i) {(z′iπ0)2}i,n is uniformly integrable and one of the following is
satisfied:

13



(a) φ and ψ are bounded and E[u4
i ] <∞; or

(b) E[φ6(εi) + ψ6(εi) + u6
i ] <∞.

(ii) Θn =
[
β̂init ± bn

]
× Rk+1, where bn = op(1) and n−1/2 + |β̂init − β0| = op(bn).

(iii) There exists a finite set A ⊆ R such that φ′ and ψ′ are Lipschitz continuous on
each connected set in R \ A.

The uniform integrability assumption on z′iπ0 and existence of various moments
are sufficient for the the law of large numbers and central limit theorem in chapter 2.
The conditions on the bandwidth, bn, satisfy two requirements. First, bn approaches
zero, which ensures consistency of β̂. Second, bn approaches zero slowly, which implies
that the asymptotic distribution of β̂ neither depends on the bandwidth nor on the
initial estimator, β̂init. When β̂init is consistent for β0 there will always exist a bn that
satisfies (ii), and if the initial estimator is LIML and bn =

√
Σ̂n,LIML/n

1/4, then (ii)
is satisfied when (i) is satisfied for φ(ε) = ψ(ε) = ε. Here, Σ̂n,LIML is as defined in
(1.4) for φ(ε) = ψ(ε) = ε. The smoothness condition in (iii) implies that mn can be
approximated by a continuously differentiable Mn as in proposition 1.3.3, and that
the stochastic equicontinuity condition on the Jacobian of Mn, theorem 1.3.2(iii), is
satisfied. The smoothness condition is satisfied by the Huber, Cauchy and Gauss
scores, where the Cauchy and Gauss scores satisfy that the derivatives are continuous
everywhere.

The following result verifies that assumption 1 is sufficient for the high-level con-
ditions of lemma 1.3.1.

Lemma 1.4.1 (Consistency). If θ̂ is indexed by φ and ψ that satisfy assumption 1,
then ‖θ̂ − θ̄‖ p−→ 0.

I now turn to the main result of the chapter, which shows that assumption 1 is
sufficient for the conditions of theorem 1.3.3 and therefore for asymptotic normality
of β̂. The asymptotic variance, Σn, of β̂ takes on a sandwich form, Σn = D−1

n ΩnD
−1
n ,

where

Ωn = (1− α)2σxzE
[
φ(εi)2

]
+ α(1− α)E

[
φ(εi)2

]
E
[
(ui − ψ(εi)γ0)2

]
+ 2(1− α) 1

n

∑
i

(Pii − α)z′iπ0E
[
φ(εi)2(ui − ψ(εi)γ0)

]
+ 1

n

∑
i

(Pii − α)2cov
(
φ(εi)2, (ui − ψ(εi)γ0)2

)
,
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and Pii is the i’th diagonal element of the projection matrix P . Furthermore,

Dn = (1− α)σxzE
[
φ′(εi)

]
+ 1

n

∑
i

(Pii − α)z′iπ0E
[
φ′(εi)(ui − ψ(εi)γ0)− γ0φ(εi)ψ′(εi)

]
.

Theorem 1.4.2 (Asymptotic Normality). If θ̂ is indexed by φ and ψ that satisfy
assumption 1 and there exists a c > 0 such that |Dn| > c+ op(1) and Ωn > c+ op(1),
then

√
nΣ−1/2

n

(
β̂ − β0

)
d−→ N (0, 1).

In the case where β̂ is LIML, this theorem is a special case of Hansen et al. (2008,
theorem 3). In this case, the first term of Σn is the variance of LIML under standard
asymptotics, the second term of Σn is a “many instruments penalty” characterized
by Bekker (1994, eq. (4.7)) under joint normality of (εi, ui), and the third and fourth
terms of Ωn are the terms named A+A′ and B in Hansen et al. (2008). In the cases
where the number of instruments is fixed or grows slowly (α = 0), the asymptotic
variances in theorem 1.4.2 are the same as the asymptotic variances for the class of
nonlinear IV (NLIV) estimators studied in Hansen et al. (2010). For the remaining
cases, i.e., when φ or ψ are nonlinear and α > 0, theorem 1.4.2 has no antecedents
(to the best of my knowledge).

In order to make further comparisons between the NLIV estimators and the ro-
bust estimators of this chapter, one could consider the large sample properties of the
NLIV estimators under many instruments asymptotics. However, a heuristic appli-
cation of the argument in Hausman et al. (2012, section 3, see also Han and Phillips
(2006)) suggest that the NLIV estimators are inconsistent under many instruments
asymptotics. A potential conclusion from this is that the relationship between the
NLIV estimators and the robust estimators of this chapter is similar to the relation-
ship between 2SLS and LIML, i.e., under standard asymptotics, the estimators of the
two classes are asymptotically equivalent, and under many instruments asymptotics,
the NLIV estimators are inconsistent whereas the robust estimators of this chapter
are consistent and asymptotically normal.

1.4.2 Consistency of the Asymptotic Variance Estimator

The assumptions that are sufficient for asymptotic normality are also sufficient for
consistency of the asymptotic variance estimator.
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Lemma 1.4.3 (Variance Estimation). If θ̂ is indexed by φ and ψ that satisfy as-
sumption 1 and there exists a c > 0 such that |Dn| > c + op(1) and Ωn > c + op(1),
then

√
nΣ̂−1/2

n

(
β̂ − β0

)
d−→ N (0, 1).

The underlying observations leading to lemma 1.4.3 are that the last k elements
of mn(θ̄) are zero, and that the first two elements of mni(θ̄) are uncorrelated across
observations. This implies that

Σn =
(
E
[
J−1
n (θ̄)

]
nE

[
mn(θ̄)mn(θ̄)′ | Z

]
E
[
J−1
n (θ̄)

]′ )
11

=
(
E
[
J−1
n (θ̄)

]
1
n

∑
i

E
[
ms
ni(θ̄)ms

ni(θ̄)′ | Z
]
E
[
J−1
n (θ̄)

]′ )
11
, (1.6)

where

ms
ni(θ) =


z′iπφi(β)
φi(β) (xi − ψi(β)γ)
0k

 .
The variance estimator is Σ̂n = (J−1

n (θ̂) 1
n

∑
im

s
ni(θ̂)ms

ni(θ̂)′J−1
n (θ̂)′)11, and in the light

of (1.6), Σ̂n is an analog estimator.
Under standard asymptotics, one natural variance estimator that would emerge

from GMM (see, e.g., Newey and McFadden, 1994, section 4) would be

Σ̃n =
(
J−1
n (θ̂) 1

n

∑
i

mni(θ̂)mni(θ̂)′J−1
n (θ̂)′

)
11

where

mni(θ) =


z′iπφi(β)
φi(β) (xi − ψi(β)γ)
zi
(
xi − ψi(β)γ − z′iπ

)
 .

I demonstrate, in simulations, that Σ̃n overestimates Σn when there are many instru-
ments.

1.4.3 Optimal and Optimal Robust Estimators

Corollary 1.4.4 below presents conditions under which the asymptotic variance of
theorem 1.4.2 simplifies, and the efficiency results in lemma 1.4.5 and proposition 1.4.6
further below provides lower bounds for this simplified asymptotic variance.
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Corollary 1.4.4 (Simplified Variance). Suppose θ̂ is indexed by φ and ψ that satisfy
assumption 1. If one of the following is satisfied:

(i) 1
n

∑
i(Pii − α)2 = op(1); or

(ii) ui = ψ(εi)γ0 + ηi where ηi is independent of εi, and E[φ(εi)ψ′(εi)] = 0;

then
√
nΣ∗n(φ, ψ)−1/2

(
β̂ − β0

)
d−→ N (0, 1) where

Σ∗n(φ, ψ) =
E
[
φ(εi)2

]
E [φ(εi)s(εi)]2 σxz

+ α

1− α
E
[
φ(εi)2

]
E [φ(εi)s(εi)]2 σxz

E
[
(ui − ψ(εi)γ0)2

]
σxz

,

s = f ′/f is the score function for εi and the notation makes it explicit that Σ∗n depends
on φ and ψ.

There are a variety of primitive conditions on zi that imply 1
n

∑
i(Pii−α)2 = op(1)

(see, e.g., Anatolyev and Yaskov, 2016), and one of the simplest is that zi indicate
group membership and that all groups have equal sizes (Bekker and van der Ploeg,
2005). An example of a primitive condition that leads to (ii) is that (εi, ui) are jointly
normal and ψ is linear. This corollary follows from theorem 1.4.2 upon observing that
(i) or (ii) yields that the last two terms of Ωn and the second term of Dn are op(1). A
continuity argument would imply that these terms are small whenever the conditions
of corollary 1.4.4 are almost satisfied. Thus, the efficiency results below can be seen
as focusing on the most relevant terms of the asymptotic variance.

For a fixed joint distribution of the errors, (εi, ui), the following lemma character-
izes the efficiency bound for estimators indexed by φ and ψ satisfying that

E[φ(εi)2] <∞, E[ψ(εi)2] <∞, and E[φ(εi)ψ(εi)] 6= 0.

Furthermore, the result gives conditions under which the bound is attained by a
specific estimator in the class. The result is a consequence of the following well-
known inequalities,

E
[
φ(εi)2

]
E [φ(εi)s(εi)]2

≥ 1
If

and E
[
(ui − ψ(εi)γ0)2

]
≥ E

[
(ui − E[ui | εi])2

]
.

Lemma 1.4.5 (Efficiency Bound). The largest lower bound on Σ∗n(φ, ψ) is

inf
φ,ψ

Σ∗n(φ, ψ) = 1
Ifσxz

+ α

1− α
1
Ifσxz

E
[
(ui − E[ui | εi])2

]
σxz

.

If E[s(εi)ui] 6= 0, then the bound is attained by (φ(ε), ψ(ε)) = (s(ε),E[ui | εi = ε]).
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If E[s(εi)ui] 6= 0, then this result bounds any asymptotic variance, Σ∗n(φ, ψ), from
below by an asymptotic variance that lets φ(ε) = s(ε) and ψ(ε) = E[ui | εi = ε].
As Σ∗n(φ, ψ) is homogeneous of degree zero, it follows that any φ proportional to
s = f ′/f combined with any ψ proportional to E[ui | εi = ·], leads to a minimal
Σ∗n(φ, ψ). If E[s(εi)ui] = 0, then the bound may not be attainable, but the bound
is attainable in the special case where E[ui | εi] = 0. This case can be thought of
as no endogeneity and implies that any feasible choice (s, ψ) reaches the efficiency
bound. An interpretation of this is that the choice of ψ is irrelevant, when there is
no endogeneity, and a continuity argument would imply that the choice of ψ is less
important than the choice of φ, when there is weak endogeneity. I demonstrate, in
simulations, that the choice of ψ tends to affect the sampling variance less than the
choice of φ.

If the joint distribution of (εi, ui) is such that the optimal φ or ψ is unbounded,
then it follows that there exists a small perturbation to the distribution of εi such
that the previous optimal choice of φ and ψ leads to an infinite asymptotic variance.
In the context of the regression model (which has a univariate error term), Huber
(1964) characterized such an issue as nonrobustness, and introduced the idea of a
contamination model in order to derive new robust estimators. The following ex-
tends Huber’s contamination model to the setup of the linear IV model (which has
a bivariate error term). Given the importance of the joint normal distribution (and
LIML), I focus on the case of a contaminated normal distribution, but more generally
one could consider any contaminated distribution (see, Huber, 1964, theorem 1).

Assume that the absolutely continuous density of εi is

f = (1− δ)Φ′ + δh

where δ ∈ [0, 1) is a fixed, small level of contamination and h is an unknown absolutely
continuous (contamination) density. Restrict the possible contamination densities
such that the Fischer information, If , is bounded by one, i.e., If = Ef [s(εi)2] ≤ 1,
where Ef denotes expectation when εi has density f . Furthermore, let ui be generated
from the model

ui = s(εi) + ηi
√

2− If

where ηi has a standard normal distribution and is independent of εi. The contam-
ination model for εi is the same as Huber’s. The choice of contamination model for
ui is guided by two principles. First, the joint distribution of (εi, ui) should be nor-
mal under no contamination (δ = 0), and this is achieved since δ = 0 implies that
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s(εi) = −εi, If = 1, and ui | εi = ε ∼ N (−ε, 1). Second, the variance of ui should
stay bounded under contamination (δ > 0), as the estimators are not robust with
respect to outliers in ui.4 The model for ui achieves this, since var(ui) = 2 for any
contamination density h.

For the above contamination model, the following proposition characterizes the
minimax efficiency bound for estimators indexed by φ and ψ satisfying that

sup
f

Ef [φ(εi)2] <∞, sup
f

Ef [ψ(εi)2] <∞, and inf
f
Ef [φ(εi)ψ(εi)]2 > 0.

Th optimal robust estimator is the estimator that achieves the bound.

Proposition 1.4.6 (Minimax Efficiency Bound). Index the asymptotic variance by f ,
i.e, write Σ∗n(φ, ψ, f) instead of Σ∗n(φ, ψ). The largest lower bound on supf Σ∗n(φ, ψ, f)
is

min
ψ,φ

sup
f
Σ∗n(φ, ψ, f) = Σ∗n(φν0 , φν0 , f0)

where φν0(ε) = min{ν0,max{ε,−ν0}}, ν0 solves δ
1−δ = 2Φ′(ν0)

ν0
− 2Φ(−ν0), and

f0(ε) =


1−δ√

2πe
−ε2

/2, if |ε| ≤ ν0,

1−δ√
2πe

ν
2
0/2−|ε|ν0 , if |ε| ≥ ν0.

This result is a consequence of the following saddle point property

min
φ

Ef0 [φ(εi)2]
Ef0 [φ(εi)s0(εi)]2

≥
Ef0 [φν0(εi)2]

Ef0 [φν0(εi)s0(εi)]2
≥ sup

f

Ef [φν0(εi)2]
Ef [φν0(εi)s(εi)]2

where s0 = f ′0/f0, which Huber (1964, 1973) used to characterize an optimal robust
estimator in the regression model. As in the regression model, proposition 1.4.6 shows
that the bound is achieved by the estimator that is indexed by φ and ψ equal to φν0(ε).

4One could potentially take the estimators of this chapter and generalize them to also consider
robustness with respect to ui, e.g., by introducing nonlinearities in the latter entries of the moment
function mn. Although an interesting extension, I do not consider it in this chapter for the following
two reasons. First, such an extension would (in general) have less influence on the asymptotic
variance than robustness with respect to εi (for reasons analogous to ψ influencing the asymptotic
variance less than φ, but also for reasons related to the number of instruments (see Bean, Bickel,
El Karoui, and Yu, 2013)). Second, such an extension may require stronger assumptions on the
instruments (see El Karoui, 2013, for further details on this in the context of high dimensional
regression).

19



The function φν0(ε) censors ε at ±ν0, where the level of censoring depends on the
amount of contamination δ. A common way to choose the level of censoring in robust
estimation of the regression model is to pick ν0 as the solution to

0.95 = σ2
ε

E
[
φ′ν0(εi)

]2
E
[
φν0(εi)2

] when εi ∼ N (0, σ2
ε). (1.7)

This can be thought of as losing 5% efficiency due to the choice of φ when there is no
contamination, it leads to ν0 = 1.345σε, and it is optimal for a contamination level of
δ ≈ 0.058. The next section outlines a method that uses (1.7) to estimate ν0 and the
remaining parameters jointly.

1.5 Scale Invariance and Included Exogenous Co-
variates

This section presents two extensions of the estimation strategy covered in the previous
sections. Both extensions involve additional nuisance parameters that are estimated
jointly with the remaining parameters in a GMM framework similar to the one pre-
sented in section 1.2. The first extension involves a scale parameter which both serves
as a way to estimate the level of censoring for the optimal robust estimator and as
a way to make β̂ asymptotically scale invariant. Scale invariance of an estimator is
desirable since it makes the estimator independent of the unit of measurement. The
second extension considers the model in (1.1) without the simplification that (δ0, η0)
are known, i.e., with additional exogenous covariates that are included in both equa-
tions of the model. Under the assumptions of corollary 1.4.4, these extensions do not
affect the asymptotic variance of β̂ or the optimality results of section 1.4. However,
this section also presents natural extensions of the asymptotic variance estimators
that are consistent without the simplifying assumptions of corollary 1.4.4.

1.5.1 Scale Invariance of β̂

The following estimation procedure adapts Huber’s “proposal 2” to the current setup
(Huber, 1964, p. 96). Each estimand is a vector θ0 = (β0, ν0, γ0, π0) where the
additional nuisance parameter ν0 solves

E
[
φ(εi/ν0)2

]
= c0

20



for some known c0 > 0. When φ is the Gauss score, the value of c0 is irrelevant, so
a natural choice is to let c0 = 1. Otherwise, a way to choose c0, which is similar to
(1.7), is to pick (c0, ν1) as the solution to

0.95 =
E
[
φ′(εi/ν1)/ν1

]2
E
[
φ(εi/ν1)2

] and c0 = E
[
φ(εi/ν1)2

]
when εi ∼ N (0, 1).

If φ is the Huber score or the Cauchy score, this yields (c0, ν1) = (0.393, 1.345) or
(c0, ν1) = (0.09, 2.384), respectively. Each estimator θ̂ = (β̂, ν̂, γ̂, π̂) ∈ Θn ⊂ Rk+3 is
an approximate minimizer of an objective function, i.e.,

‖mn(θ̂)‖ ≤ inf
θ∈Θn
‖mn(θ)‖+ op

(
n−1/2

)
where mn(θ) = 1

n

∑
imni(θ),

mni(θ) =


z′iπφi(θ)
φi(θ)2 − c0

φi(θ) (xi − ψi(θ)γ)
zi
(
xi − ψi(θ)γ − z′iπ

)

 ,

φi(θ) = φ(εi(θ)), ψi(θ) = ψ(εi(θ)), εi(θ) = (yi − xiβ)/ν, and Θn =
[
β̂init ± bn

]
× V ×

Rk+1. Furthermore, let Σ̂n be defined as in (1.4) with

ms
ni(θ) =


z′iπφi(θ)
φi(θ)2 − nc0

φi(θ) (xi − ψi(θ)γ)
0k

 .

Assumption 2. (i) There exist a ν1 ≥ 0 such that E[φ(εi/ν)2] is strictly decreasing
(as a function of ν) on (ν1,∞), and ν0 ∈ int(V) where V ⊂ (ν1,∞) is compact
and int(V) is the interior of V .

(ii) There exist a K > 0 such that |εφ′(ε)| ≤ K|φ(ε)| and |εψ′(ε)| ≤ K|ψ(ε)|.

Condition (i) is a global identification condition on ν0 and (ii) (together with as-
sumption 1) implies existence of sufficiently many moments for a law of large numbers
and a central limit theorem to apply. If φ and ψ are the Huber score, then assumption
2 is satisfied with ν1 = 0 provided that f(0) > 0.

One can show, using the arguments from the proofs of lemma 1.4.1, theorem 1.4.2,
and lemma 1.4.3, that if θ̂ is indexed by φ and ψ that satisfy the conditions of
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theorem 1.4.2 and assumption 2, then
√
nΣ̂−1/2

n (β̂ − β0) d−→ N (0, 1). If, in addition,
corollary 1.4.4(ii) is satisfied, then one can show that

√
nΣ∗n(φ∗, ψ∗)−1/2(β̂ − β0) d−→

N (0, 1) where (φ∗(ε), ψ∗(ε)) = (φ(ε/ν0), ψ(ε/ν0)).

1.5.2 Included Exogenous Variables

This subsection considers a class of estimators of θ0 = (β0, δ0, γ0, π0, η0) where the
additional nuisance parameters δ0, η0 were introduced in (1.1). Each estimator θ̂ =
(β̂, δ̂, γ̂, π̂, η̂) ∈ Θn ⊂ Rk+2G+2 is an approximate minimizer of an objective function,
i.e.,

‖mn(θ̂)‖ ≤ inf
θ∈Θn
‖mn(θ)‖+ op

(
n−1/2

)
where mn(θ) = 1

n

∑
imni(θ),

mn(θ) =


z′iπφi(θ)
wiφi(θ)
φi(θ) (xi − ψi(θ)γ)
(z′i, w′i)′(xi − ψi(θ)γ − z′iπ − w′iη)

 ,

φi(θ) = φ(εi(θ)), ψi(θ) = ψ(εi(θ)), εi(θ) = yi − xiβ − w′iδ, and Θn =
[
β̂init ± bn

]
×

D × Rk+1+G. Furthermore, let Σ̂n be defined as in (1.4) with

ms
ni(θ) =


z′iπφi(θ)
wiφi(θ)
φi(θ) (xi − ψi(θ)γ)
0k+G

 .

Assumption 3. (i) For any ε > 0

sup
δ∈D,

‖δ0−δ‖>ε

∥∥∥∥∥ 1
n

∑
i

wiE
[
φ(εi + w′i(δ0 − δ)) | wi

]∥∥∥∥∥
−1

= Op(1),

where δ0 ∈ int(D), D ⊂ RG is compact, and λmin( 1
n
W ′W )−1 = Op(1).

(ii) {‖wi‖2}i is uniformly integrable

Condition (i) is a global identification condition on (δ0, η0). When φ is the Gauss
score, the first part is satisfied provided that λmin( 1

n
W ′W )−1 = Op(1), which is the

identification condition for η0.
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One can show, using the argument from the proofs of lemma 1.4.1, theorem 1.4.2,
and lemma 1.4.3, that if θ̂ is indexed by φ and ψ that satisfy the conditions of
theorem 1.4.2 and assumption 3, then

√
nΣ̂−1/2

n (β̂ − β0) d−→ N (0, 1). If, in addition,
corollary 1.4.4(i) is satisfied, then one can show that

√
nΣ∗n(φ, ψ)−1/2(β̂ − β0) d−→

N (0, 1).

1.6 Simulations
This section presents the results of a simulation study which shows that the asymp-
totic results give good approximations to the finite sample behavior of the estimators
considered in this chapter. The simulations consider eight estimators which are the
optimal robust estimator, LIML, 2SLS and five other combinations of φ and ψ as one
of the Huber, Cauchy, or Gauss scores. The estimators incorporate both of the ex-
tensions described in section 1.5, and are implemented using a quasi-Newton method
using LIML as the initial value.5 2SLS is mainly considered here in order to give
an example of an estimator that leads to incorrect inference in the context of many
instruments.

The simulations generate data from the model

yi = xiβ0 + δ0 + εi

xi = z′iπ0 + η0 + ui (i = 1, · · · , 500)

where δ0 = η0 = 0, β0 = 1, zi ∼ N (0, Ik), π0 = (√σxz, 0′k−1)′, k = 50, and (εi, ui) are
i.i.d. with mean zero and covariance matrix

Ω =
 1 ρ

√
10

ρ
√

10 10

 where ρ ∈ [−1, 1] . (1.8)

The simulations consider three levels for the strength of the instruments, σxz. The
levels are σxz = 1 in Tables 1.1 and 1.2, σxz = .5 in Table 1.3 (left), and σxz = .2 in
Table 1.3 (right). Additionally, the simulations consider two levels for the strength
of endogeneity which is measured in terms of ρ (the correlation between εi and ui).
The levels are ρ = −.7 in Table 1.1 (right) and ρ = −.3 elsewhere. Finally, the errors
are generated such that aεi has density f , ui = b(f ′/f)(εi) + cηi, and ηi is standard
normal and independent of εi. The density f is the density of a standard normal in

5The code, implemented in the statistical software R, is available on request.
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Table 1.1 (in which case (εi, ui) is joint normal), the density of a Huber distribution
with parameter 1.345 in Table 1.2 (left), and the density of a t(3) distribution in
Table 1.2 (right) and Table 1.3. In each case the constants (a, b, c) are chosen such
that (1.8) holds.

Table 1.1: Simulation results, Normal errors
ρ = −.3 ρ = −.7

Estimator Bias Size, Σ̂n Size, Σ̃n RE Bias Size, Σ̂n Size, Σ̃n RE

LIML −0.02 4.49 2.21 1.00 0.00 5.32 3.62 1.00
φ, ψ

Gauss, Huber −0.02 4.29 2.25 1.00 −0.01 5.22 3.63 0.96
Huber, Gauss −0.01 4.49 2.25 0.94 0.00 5.20 3.57 0.93
Optimal Robust −0.01 4.50 2.29 0.94 0.00 5.21 3.69 0.93

Gauss, Cauchy −0.02 4.32 2.17 0.99 −0.01 5.85 4.11 0.89
Cauchy, Gauss −0.01 4.33 2.20 0.96 0.00 5.18 3.64 0.93
Cauchy, Cauchy −0.01 4.44 2.25 0.95 −0.05 5.39 3.74 0.94

2SLS −1.54 33.55 −4.24 96.86

NOTE: 20, 000 replications, 500 observations, 50 instruments. Bias is med(β̂ − β0)/(1.48 · mad(β̂)), Size Σ̂n
uses Σ̂n to estimate the asymptotic variance, Size Σ̃n uses the classical GMM variance estimator Σ̃n, and RE is
mad(β̂LIML)2

/mad(β̂)2.

The strength of the instruments (together with the number of observations and
the variance of ui) implies that the value of the concentration parameter (Rothenberg,
1984) equals 50 in Tables 1.1 and 1.2, 25 in Table 1.3 (left), and 10 in Table 1.3 (right).
It is well-known that the value of the concentration parameter tends to influence the
quality of the asymptotic approximations based on many instruments asymptotics,
so the simulations should reflect the values of the concentration parameter that tend
to occur in empirical research. Hansen et al. (2008) conducted a survey (n = 28)
of microeconomic studies published in AER, JPE, and QJE and found that 80% of
the papers had a value of the concentration parameter between 8.95 and 588 with a
median of 23.6. Thus, the range of the concentration parameter considered here is
relevant for empirical research. The survey also found a median value for |ρ| of .279,
so the value ρ = −.3 used here is relevant as well. Finally, the probability limit of the
first stage F -statistic is 1 + σxz, i.e., 2 in Tables 1.1 and 1.2, 1.5 in Table 1.3 (left),
and 1.2 in Table 1.3 (right). Thus, the designs considered here involves instruments
that are quite weak when measured by the F -statistic.
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Table 1.2: Simulation results, Huber and t(3) errors
Huber errors t(3) errors

Estimator Bias Size, Σ̂n Size, Σ̃n RE Bias Size, Σ̂n Size, Σ̃n RE

LIML 0.00 4.42 1.91 1.00 −0.01 4.12 1.47 1.00
φ, ψ

Gauss, Huber 0.00 4.37 1.99 1.00 0.00 4.17 1.70 1.01
Huber, Gauss −0.01 4.32 2.15 1.14 0.00 3.67 1.72 1.69
Optimal Robust −0.01 4.35 2.27 1.16 −0.01 3.93 1.77 1.74

Gauss, Cauchy 0.00 4.33 1.87 0.99 −0.01 4.21 1.70 1.00
Cauchy, Gauss 0.00 4.28 2.15 1.14 0.00 3.54 1.77 1.74
Cauchy, Cauchy −0.01 4.32 2.14 1.16 −0.01 3.81 1.71 1.81

2SLS −1.45 31.18 −1.22 24.52

NOTE: 20, 000 replications, 500 observations, 50 instruments. Bias is med(β̂ − β0)/(1.48 · mad(β̂)), Size Σ̂n
uses Σ̂n to estimate the asymptotic variance, Size Σ̃n uses the naive GMM variance estimator Σ̃n, and RE is
mad(β̂LIML)2

/mad(β̂)2.

Tables 1.1-1.3 report four summary statistics from the study. The first statistic
is the median bias of β̂ standardized by 1.48 times the median absolute deviation
(mad) of β̂. 1.48 × mad(β̂) is a robust estimate of the standard deviation of β̂, so
the bias is reported at the appropriate scale, and according to theorem 1.4.2, β̂ has
no asymptotic bias. The second statistic is a rejection percentage of the testing pro-
cedure that rejects the hypothesis that β0 = 1 when |β̂ − 1|/

√
Σ̂n/n > 1.96, and

according to lemma 1.4.3, this test has asymptotic size of 5%. The third statistic
is the same as the second except that it uses the classical GMM variance estimator,
Σ̃n, instead of Σ̂n, and the disccusion following lemma 1.4.3 suggest that this testing
procedure will have asymptotic size less than 5%. The fourth statistic is the square
of mad(β̂LIML)/mad(β̂). This is a robust estimate of the relative efficiency (RE) of β̂
and LIML. According to the discussion after proposition 1.4.6, the asymptotic relative
efficiency of the optimal robust estimator and LIML under normal errors is (approx-
imately) 0.95, i.e., an efficiency loss of 5%. Under the heavier tailed distributions in
Tables 1.2 and 1.3, the asymptotic relative efficiency of the optimal robust estimator
and LIML is greater than 1.

The “Bias” columns of Tables 1.1-1.3 show that all the estimators considered, ex-
cept for 2SLS, are essentially median unbiased, and a comparison across Table 1.2 and
Table 1.3 indicates that a small bias emerges when the strength of the instruments
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Table 1.3: Simulation results, t(3) errors
σxz = .5 σxz = .2

Estimator Bias Size, Σ̂n Size, Σ̃n RE Bias Size, Σ̂n Size, Σ̃n RE

LIML −0.01 3.94 1.21 1.00 −0.07 4.31 1.20 1.00
φ, ψ

Gauss, Huber −0.01 4.09 1.44 1.02 −0.08 4.95 1.76 1.07
Huber, Gauss −0.04 3.67 1.62 1.75 −0.12 3.98 1.69 1.73
Optimal Robust −0.04 4.00 1.69 1.77 −0.13 4.70 1.97 1.76

Gauss, Cauchy −0.03 4.27 1.61 1.05 −0.12 5.73 2.21 1.34
Cauchy, Gauss −0.04 3.45 1.52 1.80 −0.12 3.62 1.59 1.75
Cauchy, Cauchy −0.05 3.73 1.60 1.88 −0.15 4.40 1.87 2.12

2SLS −1.41 30.96 −1.64 37.51

NOTE: 20, 000 replications, 500 observations, 50 instruments. Bias is med(β̂ − β0)/(1.48 · mad(β̂)), Size Σ̂n
uses Σ̂n to estimate the asymptotic variance, Size Σ̃n uses the naive GMM variance estimator Σ̃n, and RE is
mad(β̂LIML)2

/mad(β̂)2.

approaches zero. The “Size, Σ̂n” columns show that the testing procedure based on
Σ̂n has good size properties for all the parameter values considered, so the small bias
that emerges in Table 1.3 does not seem to affect its size. A comparison within Ta-
ble 1.1 reveals that the size properties are somewhat affected by the strength of the
endogeneity, something which is not captured by the asymptotic analysis. The “Size,
Σ̃n” columns illustrate that the testing procedure based on Σ̃n is conservative (rejec-
tion percentages are too low) for the sample sizes considered here, and a comparison
across Table 1.2 and Table 1.3 suggests that the rejection percentage diverges further
towards zero when the strength of the instruments approaches zero.

The “RE” columns of Table 1.1 show that when the errors are jointly normal,
there is about a 5% efficiency loss (relative to LIML) from letting φ be the Huber
or Gauss scores. On the other hand, there is a 0 − 11% efficiency loss from letting
ψ be the Huber or Gauss scores. This latter finding conforms with the observation
made after lemma 1.4.5, that the efficiency loss from a suboptimal ψ depends on the
strength of the endogeneity. The “RE” columns of Tables 1.2 and 1.3 show that the
robust estimators are substantially more efficient than LIML under the thick-tailed
distributions, e.g., the optimal robust estimator is roughly 75% more efficient than
LIML in the case of t(3) errors (Table 1.2 (right)). Furthermore, a comparison of the
rows in Table 1.3 show that the efficiency gains relative to LIML from letting φ be
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the Huber or Gauss scores are generally larger than the efficiency gains from letting
ψ be the Huber or Gauss scores.

1.7 Quarter of Birth and Returns to Schooling
This section considers the empirical example provided by the Angrist and Krueger
(1991) study of the returns to schooling using quarter of birth as an instrument. The
data comes from the 1980 U.S. Census and includes 329,509 males born 1930–1939.
The structural equation includes a constant, year, and state dummies, and the reduced
form equation includes 180 instruments which are quarter of birth times year or state
of birth. This model corresponds to table 7 of Angrist and Krueger (1991). In this
example, the estimated concentration parameter is 257 and the correlation between
εi and ui is estimated at −0.2. These observations and the simulations suggest that
the asymptotic approximations should work well for this example.

Table 1.4: Returns to Schooling
Estimator Estimate Standard error Variance ratio

LIML 0.1064 0.014 88 1.00
φ, ψ

Gauss, Huber 0.1051 0.014 41 1.07
Huber, Gauss 0.0891 0.010 85 1.88
Optimal Robust 0.0894 0.010 99 1.83

Gauss, Cauchy 0.1043 0.014 01 1.13
Cauchy, Gauss 0.0869 0.010 40 2.05
Cauchy, Cauchy 0.0874 0.010 63 1.96

2SLS 0.0928 0.009 30
OLS 0.0673 0.000 35

NOTE: Males born 1930–1939, 1980 IPUMS, n = 329, 509. Variance ratio is Σ̂n(β̂LIML)/Σ̂n(β̂).

Table 1.4 presents the OLS estimate and the estimates from the eight estimators
considered in the simulation study. Additionally, Table 1.4 reports standard error
estimates based on Σ̂n for the estimators analyzed in this chapter and classical stan-
dard error estimates for OLS and 2SLS. The latter two are only included for easy
reference as they lead to confidence intervals with incorrect coverage. Finally, Table
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Figure 1.1: Estimates of fεi(ε) using LIML residuals

1.4 includes the variance ratios Σ̂n(β̂LIML)/Σ̂n(β̂) for each estimator, which provides
an estimate of the efficiency gains relative to LIML.

Table 1.4 shows that the robust estimators deliver point estimates that are similar
to either LIML or 2SLS. Furthermore, the table indicates that the robust estimators
can be substantially more efficient than LIML, e.g., the optimal robust estimator
is estimated to be 83% more efficient than LIML. These efficiency gains are similar
in size to the gains in the simulation study with t(3) errors in Table 1.2 (right).
Furthermore, these gains are similar in size to the gains achieved by some of the
nonlinear IV estimators proposed by Hansen et al. (2010) in a similar model using
three instruments.

To further illustrate why the robust estimators are more efficient than LIML in this
example, this section presents two figures that describe the distribution of the errors.
Figure 1.1 presents a nonparametric estimate of the density of εi along with a normal
and t(3) density where the location and scale parameters are based on the median
and mad of the LIML residuals. From this figure it is evident that the t(3) density
provides a better fit than the normal, although the normal provides a reasonable fit
in the center of the distribution. Figure 1.2 depict nonparametric estimates of the
optimal φ and ψ (f ′/f and E[ui | εi = ·]) together with the appropriately scaled
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Figure 1.2: Estimates of f ′/f and E[ui | εi] using LIML residuals

estimates of these functions implied by the estimators that sets both of φ and ψ equal
to one of the Gauss (LIML), Huber (optimal robust), or Cauchy scores. From this
figure it is clear that the Huber and Cauchy scores provide a better fit to the unknown
optimal φ and ψ than the Gauss score does.

1.8 Conclusion
This chapter introduced a new class of robust estimators in a linear IV model with
many instruments. Each estimator in the class was shown to be consistent and asymp-
totically normal under many instruments asymptotics, and the chapter proposed con-
sistent variance estimators that are of the “sandwich” type and can be used to conduct
asymptotically correct inference. Furthermore, this chapter characterized an optimal
robust estimator among the members of the class. In the empirical example, the
optimal robust estimator was approximately 80% more efficient than LIML.

Since the class of estimators introduced in this chapter are generalizations of
LIML, it is plausible that they can be generalized to accommodate conditional het-
eroskedasticity using leave-one-out ideas as in JIVE (Chao et al., 2012) and HLIM
(Hausman et al., 2012). One approach that could achieve this and combines the

29



estimators of this chapter with the ideas behind HLIM is to let

(β̂, γ̂) = arg min
β,γ

‖mn(β, γ)‖,

where mn(β, γ) = 1
n

∑
imni(β, γ) and

mni(β, γ) =


∑
j 6=i

Pij(xj − ψi(β)γ)φi(β)

φi(β) (xi − ψi(β)γ)

 .
With this formulation (β̂, γ̂) is essentially a zero of a U-process, and its asymptotic
properties could potentially be analyzed using a suitable generalization of the theo-
rems presented in Honoré and Powell (1994).
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Chapter 2

A Normal Central Limit Theorem
for Nonlinear Forms

2.1 Central Limit Theorem
This chapter presents a central limit theorem for random variables Wn = Wn(Vn)
where the elements of Vn = (vn1, · · · , vnn) are mutually independent and Wn has
mean zero and variance one. To simplify the presentation, I drop the subscript n on
vni.

Let Ṽn = (ṽ1, · · · , ṽn) be an independent copy of Vn. For each i ∈ {1, · · · , n}, let
[i] = {1, · · · , i} and define

V [i]
n = (ṽ1, · · · , ṽi, vi+1, · · · , vn)

and
V i
n = (v1, · · · , vi−1, ṽi, vi+1, · · · , vn).

For each i ∈ [n] and measurable function g of Vn, define the following randomized
derivatives of g along the ith coordinate as

∆ig = g(Vn)− g(V i
n) and ∆ig

[i−1] = g(V [i−1]
n )− g(V [i]

n ).

Define Tn = 1
2
∑
i(∆iWn)(∆iW

[i−1]
n ) and note that E[Tn] = E[W 2

n ] = 1 (see, e.g.,
lemma D.0.2).

Lemma 2.1.1. Let all terms be defined as above. If

(i) E[Tn | Vn]→ 1 in L1;
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(ii) ∑i E
[
(∆iWn)2

]
= O(1);

(iii) ∑i E
[
(∆iWn)21{|∆iWn|>ε}

]
→ 0 for any ε > 0;

then Wn
d−→ N (0, 1).

Comments. 1. It is sufficient to verify (ii) and (iii) for ∆0
iWn, where

∆0
iWn = Wn(Vn)−Wn(v1, · · · , vi−1, 0, vi+1, · · · , vn).

A sufficient condition for (iii) is ∑i E
[
(∆iWn)2+δ

]
→ 0 for some δ > 0, and a

sufficient condition for (ii) and (iii) is uniform integrability of {n(∆iWn)2}i,n.
Lemma 2.1.2 provides a method to show that (i) is satisfied.

2. The proof of this lemma uses Stein’s method (Stein, 1972, 1986) in the partic-
ular version given by Chen (1978), and combines it with the main ideas from
Chatterjee (2008). (Chatterjee, 2008, theorem 2.2) imposes that E[Tn | V ] con-
verges in L2 and that ∑i E

[
(∆iWn)3

]
→ 0. For the applications of lemma 2.1.1

in this chapter, the “conditional variance” Tn, as defined here, is simpler to work
with than the Tn in Chatterjee (2008).

Let Sn = Sn(Vn) be random variables such that E|Sn| <∞ for all n.

Lemma 2.1.2. If one of the following is satisfied

(i) ∑i E [|∆iSn|] = O(1) and ∑i E
[
|∆iSn|1{|∆iSn|>ε}

]
→ 0 for any ε > 0;

(ii) ∑i E
[
|∆iSn|1+δ

]
→ 0 for some δ ∈ (0, 1];

then Sn − E [Sn]→ 0 in L1.

Comments. 1. As in lemma 2.1.1, it is sufficient to verify the conditions for ∆0
iSn.

2. The proof of this lemma combines the proof of the Efron-Stein inequality (see
Efron and Stein, 1981; Boucheron, Lugosi, and Massart, 2013) with a truncation
argument. Without the truncation argument, the sufficient condition becomes∑
i E[(∆iSn)2]→ 0, which is the Efron-Stein inequality and implies convergence

in L2. Corollary 2.2.1 gives a simple example where lemma 2.1.2 leads to weaker
conditions than the Efron-Stein inequality.
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2.2 Applications of lemmas 2.1.1 and 2.1.2
The following sequence of corollaries applies lemmas 2.1.1 and 2.1.2 to weighted av-
erages, bi-linear, and tri-linear forms. Most (potentially all) of the results are known,
but I present them here for easy reference. All of these corollaries are applied in the
proofs of theorem 1.4.2 and lemma 1.4.3.

Suppose that {vi}i is an i.i.d. sequence with E[v1] = 0, {wni}i,n are non-random
weights,Mn = (Mnij) is a symmetric, non-random matrix with zeroes on the diagonal,
and {Mnijk}i,j,k,n is a non-random array with Mnijk = Mnikj. For simplicity, I drop
the subscript n on Mij and Mijk.

Corollary 2.2.1. Suppose that Sn = ∑
iwnivi. If one of the following is satisfied:

(i) E|v1| <∞, maxiwni → 0, ∑iwni = 1, and wni ≥ 0; or

(ii) E[|v1|1+δ] <∞ and ∑i|wni|
1+δ → 0 for some δ ∈ (0, 1];

then Sn → 0 in L1.

For this corollary, ∆0
iSn = wnivi. It follows from (i) that ∑i E

[
|∆0

iSn|
]

= E|vi|
and∑

i

E
[
|∆̃iSn|1{|∆̃iSn|>ε}

]
≤
∑
i

wniE
[
|vi|1{wni|vi|>ε}

]
≤ max

i
E
[
|vi|1{|vi|>Cnε}

]
→ 0

where Cn = (maxiwni)−1 →∞. From (ii) it follows that ∑i E
[
|∆0

iSn|1+δ
]
→ 0.

Corollary 2.2.2. Suppose that Sn = ∑
i

∑
j 6=iMijvi1vj2 where vi = (vi1, vi2). If one

of the following is satisfied:

(i) E[‖v1‖1+δ] < ∞ for some δ > 0, maxi
∑
j 6=iMij → 0, ∑i

∑
j 6=iMij = 1, and

Mij ≥ 0; or

(ii) E[‖v1‖2] <∞, and ∑i

∑
j 6=iM

2
ij → 0;

then Sn → 0 in L1. Under (i) and without E[vi] = 0, it follows that Sn − E[Sn] → 0
in L1.

For this corollary, ∆0
iSn = vi1

∑
j 6=iMijvj2 + vi2

∑
j 6=iMijvj1 and I only treat the

first of these. Condition (i), Jensen’s inequality, and convexity of |·|1+δ implies that
for Cn = maxi

∑
j 6=iMij → 0

∑
i

E


∣∣∣∣∣∣vi1

∑
j 6=i

Mijvj2

∣∣∣∣∣∣
1+δ
 ≤ E

[
|v11|1+δ

]
E
[
|v12|1+δ

]
Cδ
n

∑
i

∑
j 6=i

Mij → 0.
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Condition (ii) implies that

∑
i

E


vi1∑

j 6=i
Mijvj2

2
 = E[v2

11]E[v2
12]
∑
i

∑
j 6=i

M2
ij → 0.

Corollary 2.2.3. Suppose that Sn = ∑
i,j 6=i,k 6=i,jMijkvi1vj2vk3 where vi = (vi1, vi2, vi3).

If

E[‖v1‖2] <∞, ∑i

∑
j 6=i

∑
k 6=i,jM

2
ijk → 0, and ∑i

∑
j 6=i

∑
k 6=i,jMjikMkij → 0,

then Sn → 0 in L1.

For this corollary,

∆0
iSn = vi1

∑
j 6=i

∑
k 6=i,j

Mijkvj2vk3 + vi2
∑
j 6=i

∑
k 6=i,j

Mjikvj1vk3 + vi3
∑
j 6=i

∑
k 6=i,j

Mjikvj1vk2.

It follows that

∑
i

E


vi1∑

j 6=i

∑
k 6=i,j

Mijkvj2vk3

2
 = E[v2

11]E[v2
12]E[v2

13]
∑
i

∑
j 6=i

∑
k 6=i,j

2M2
ijk → 0,

∑
i

E


vi2∑

j 6=i

∑
k 6=i,j

Mjikvj1vk3

2
 = E[v2

11]E[v2
12]E[v2

13]
∑
i

∑
j 6=i

∑
k 6=i,j

(M2
jik +MjikMkij)

→ 0

and the third term is similar to the second.

Corollary 2.2.4. Suppose that Wn = ∑
iw
′
nivi. If

E[v1v
′
1] = Ω, ∑iw

′
niΩwni = 1, and maxi‖wni‖2 → 0,

then Wn
d−→ N (0, 1).

For this corollary, ∆iWn = w′ni(vi − ṽi). Condition (ii) is satisfied because∑
i E[(∆0

iWn)2] = 1 and condition (iii) follows from the argument employed in corol-
lary 2.2.1(i) applied to ‖wni‖2‖vi‖2.

For condition (i), note that ∆iW
[i−1]
n = w′ni(vi − ṽi). Thus it follows that

Tn = 1
2

∑
i

∆iW∆iW
[i−1] = 1

2

∑
i

(
w′ni(vi − ṽi)

)2

and
E [Tn | Vn] = 1

2

∑
i

w′ni
(
viv
′
i +Ω

)
wni = 1 + 1

2

∑
i

w′ni
(
viv
′
i −Ω

)
wni.

It follows from corollary 2.2.1 that E [Tn | Vn]→ 1 in L1.
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Corollary 2.2.5. Suppose that Wn = ∑
i

∑
j 6=iMijvi1vj2 where vi = (vi1, vi2). Let

M̄ = M2. If

E[‖v1‖4] <∞, ∑i

∑
j 6=iM

2
ij = 1, maxi

∑
j 6=iM

2
ij → 0, and ∑i

∑
j 6=i M̄

2
ij → 0,

then Wn/σ
d−→ N (0, 1) where σ2 = E[v2

11]E[v2
12] + E[v11v12]2.

I first treat the special case where vi1 = vi2 := vi. It follows that ∆iWn =
2(vi − ṽi)

∑
j 6=iMijvj. Condition (ii) follows from the argument employed in corol-

lary 2.2.2(ii), and (iii) follows from

∑
i

E
[
|∆0

iWn|2+2δ
]
≤ 23+2δE[|v1|2+2δ]2 max

i

∑
j 6=i

M2
ij

δ → 0 for any δ ∈ (0, 1].

For condition (i), note that ∆iW
[i−1]
n = 2(vi− ṽi)(

∑
j<iMij ṽj +∑

j>iMijvj). Thus,
it follows that

E
[
∆iWn∆iW

[i−1]
n | Vn

]
= 4(v2

i + E[v2
i ])
∑
j>i

Mijvj

∑
j 6=i

Mijvj

 ,
and therefore that

E [Tn | Vn] = 2
∑
i

(v2
i + E[v2

i ])
∑
j>i

Mijvj

∑
j 6=i

Mijvj


=
∑
i

∑
j 6=i

∑
k 6=i

(v2
i + E[v2

i ])MijvjMikvk.

Split E [Tn | Vn] into three different terms

an =
∑
i

∑
j 6=i

(v2
i + E[v2

i ])M2
ijv

2
j ,

bn = 2
∑
i

∑
j 6=i

∑
k 6=i,j

E[v2
i ]MijvjMikvk = 2E[v2

1]
∑
j

∑
k 6=j

M̄jkvjvk,

cn =
∑
i

∑
j 6=i

∑
k 6=i,j

(v2
i − E[v2

i ])MijvjMikvk.

Corollary 2.2.1(i) and corollary 2.2.2(i) implies that an − 2E[v2
1]2 L1

−→ 0. Corollary
2.2.2(ii) together with ∑

i

∑
j 6=i M̄

2
ij → 0 leads to bn

L1

−→ 0. Corollary 2.2.3 yields
cn
L1

−→ 0 since ∑
i

∑
j 6=i

∑
k 6=i,j

M2
ijM

2
ik ≤ max

i

∑
j 6=i

M2
ij → 0
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and ∑
i

∑
j 6=i

∑
k 6=i,j

MijM
2
jkMik =

∑
j

∑
k 6=j

M̄jkM
2
jk ≤ max

i 6=j
|M̄ij| → 0

When vi1 6= vi2, then E [Tn | Vn] is instead composed of six terms. One converges to
E[v2

11]E[v2
12], one converges to E[v11v12]2, and the rest converges to zero.

Corollary 2.2.6. Suppose that Wn = ∑
iw
′
nivi1 + ∑

i

∑
j 6=iMijvi2vj3 where vi =

(v′i1, vi2, vi3). Let M̄ = M2. If

(i) σ2
n = ∑

iw
′
niΩwni +∑

i

∑
j 6=iM

2
ij

(
E[v2

12]E[v2
13] + E[v12v13]2

)
> c > 0;

(ii) E[v11v
′
11] = Ω, ∑iw

′
niΩwni ≤ 1, and maxi‖wni‖2 → 0;

(iii) E[v4
12 + v4

13] <∞, ∑i

∑
j 6=iM

2
ij ≤ 1, maxi

∑
j 6=iM

2
ij → 0, and ∑i

∑
j 6=i M̄

2
ij → 0;

(iv) E[‖v11‖2(v2
12 + v2

13)] <∞;

then Wn/σn
d−→ N (0, 1).

This corollary combines the two previous ones. The only thing to verify is that
E[Tn | Vn] converges, and I do so for the case where vi2 = vi3 and vi1 ∈ R. The general
case follows analogously. For this corollary,

∆iWn = wni(vi1 − ṽi1) + 2(vi2 − ṽi2)
∑
j 6=i

Mijvj2,

so it follows that

E[Tn | Vn] = 1
2

∑
i

w2
ni

(
v2
i1 + E[v2

i1]
)

+
∑
i

∑
j 6=i

∑
k 6=i

(v2
i2 + Ev2

i2)Mijvj2Mikvk2

+ 3
∑
i

∑
j 6=i

(vi1vi2 + E[vi1vi2])wniMijvj2.

The first two terms were treated in the previous two corollaries. The third term can
be split into two parts

an = 6E[v11v12]
∑
i

∑
j 6=i

wnjMijvi2

bn = 3
∑
i

∑
j 6=i

(vi1vi2 − E[vi1vi2])wniMijvj2.

Corollary 2.2.1(ii) implies that an
L1

−→ 0, since∑
i

(
∑
j 6=i

wnjMij)2 =
∑
i

∑
j 6=i

M̄ijwniwnj +
∑
i

∑
j 6=i

M2
ijw

2
nj,
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∑
i

∑
j 6=iM

2
ijw

2
nj → 0, and∑

i

∑
j 6=i

M̄ijwniwnj ≤
∑
i

|wni|
√∑
j 6=i

M̄2
ij

√∑
j 6=i

w2
nj ≤

∑
i

w2
ni

√∑
i

∑
j 6=i

M̄2
ij → 0.

Furthermore, it follows from corollary 2.2.2(ii) and∑i

∑
j 6=iw

2
niM

2
ij → 0, that bn

L1

−→ 0.
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Appendix A

Proofs of Results in Section 1.3

This section presents the proofs of lemma 1.3.1, theorem 1.3.2, and proposition 1.3.3.
The proofs are somewhat modified versions of the proofs of theorems 3.1 and 3.3 in
Pakes and Pollard (1989).

Proof of lemma 1.3.1. Fix a δ > 0. ‖θ̂ − θ̄‖ > δ and (1.5) implies that

inf
θ∈Θn,
‖θ−θ̄‖>δ

‖mn(θ)‖ ≤ inf
θ∈Θn,
‖θ−θ̄‖≤δ

‖mn(θ)‖+ op
(
n−1/2

)
. (A.1)

Let 1n = 1{θ̄ ∈ Θn}, and note that P(1n = 1)→ 1. When 1n = 1, (A.1) and (i) yields

inf
θ∈Θn,
‖θ−θ̄‖>δ

‖mn(θ)‖ ≤ ‖mn(θ̄)‖+ op
(
n−1/2

)
= op(1). (A.2)

It follows from (ii) that there exist a c > 0 such that

inf
θ∈Θn,
‖θ−θ̄‖>δ

‖mn(θ)‖ > c+ op(1),

so (A.2) implies that c+ op(1) < op(1), which happens with probability approaching
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zero. This line of reasoning can also be expressed as

P
(
‖θ̂ − θ̄‖ > δ

)
≤ P

 inf
θ∈Θn,
‖θ−θ̄‖>δ

‖mn(θ)‖ ≤ inf
θ∈Θn,
‖θ−θ̄‖≤δ

‖mn(θ)‖

+ o(1)

≤ P

 inf
θ∈Θn,
‖θ−θ̄‖>δ

‖mn(θ)‖ ≤ ‖mn(θ̄)‖, 1n = 1

+ P(1n = 0) + o(1)

≤ P

 inf
θ∈Θn,
‖θ−θ̄‖>δ

‖mn(θ)‖ ≤ δn

+ P(‖mn(θ̄)‖ > δn) + o(1)

= o(1),

where δn ↓ 0 satisfies that P(‖mn(θ̄)‖ > δn)→ 0.

Proof of theorem 1.3.2. Condition (iv) implies that
√
nΣ−1/2

n (β∗−β) d−→ N (0, 1), and
since Σn > c + op(1) for some c > 0 it follows that

√
n(β̂ − β∗) = op(1) is sufficient

for the conclusions that
√
nΣ−1/2

n (β̂ − β) d−→ N (0, 1) and that
√
n(β̂ − β) d−→ N (0, Σ)

when Σn
p−→ Σ. The latter follows from the Cramér-Wold device. The rest of this

proof shows that
√
n‖θ̂ − θ∗‖ = op(1).

The definition of θ∗ implies that

‖mn(θ̄)‖ ≥ σmin

(
Jn(θ̄)

)
‖θ∗ − θ̄‖,

so (ii) and (iv) leads to ‖θ∗ − θ̄‖ = Op

(
n−1/2

)
.

Let 1n = 1{θ̄ ∈ Θn}, and note that P(1n = 1)→ 1 by assumption. When 1n = 1,
it follows from (1.5) and (iv) that

‖mn(θ̂)‖ ≤ inf
θ∈Θn
‖mn(θ)‖+ op

(
n−1/2

)
≤ ‖mn(θ̄)‖+ op

(
n−1/2

)
= Op

(
n−1/2

)
.(A.3)

The integral form of the mean value theorem and (i) yields

mn(θ) = mn(θ̄) +
∫ 1

0
Jn
(
θ̄ + t(θ − θ̄)

)
dt× (θ − θ̄), (A.4)

which in turn implies that

‖mn(θ̂)‖+ ‖mn(θ̄)‖+ σmax

(∫ 1

0
Jn
(
θ̄ + t(θ̂ − θ̄)

)
− Jn(θ̄) dt

)
‖θ̂ − θ̄‖ (A.5)

≥ σmin

(
Jn(θ̄)

)
‖θ̂ − θ̄‖.
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The assumption that ‖θ̂ − θ̄‖ = op(1) implies that there exist some sequence δn ↓ 0
such that P(‖θ̂− θ̄‖ ≥ δn)→ 0. Redefine 1n to also include the event that ‖θ̂− θ̄‖ < δn

and note that P(1n = 1) → 1. When 1n = 1, it follows from Jensen’s inequality and
monotonicity of the integral that

σmax

(∫ 1

0
Jn
(
θ̄ + t(θ̂ − θ̄)

)
− Jn(θ̄) dt

)
≤ sup
‖θ−θ̄‖<δn

σmax

(
Jn (θ)− Jn(θ̄)

)
, (A.6)

which together with (A.3), (A.5), (iii), and (iv) leads to

Op

(
n−1/2

)
= ‖mn(θ̂)‖+ ‖mn(θ̄)‖ ≥

(
σmin

(
Jn(θ̄)

)
− op(1)

)
‖θ̂ − θ̄‖.

Therefore ‖θ̂ − θ̄‖ = Op(n−1/2) by (ii).
The result that ‖θ∗−θ̄‖ = op(1) implies that the sequence δn ↓ 0 can be chosen such

that P(‖θ∗ − θ̄‖ ≥ δn)→ 0. Redefine 1n to also include the event that ‖θ∗ − θ̄‖ < δn

and note that P(1n = 1)→ 1. Define Ln(θ) = mn(θ̄) + Jn(θ̄)(θ− θ̄) and observe that
Ln(θ∗) = 0. By (A.4), (A.6), and (iii) it follows that

‖mn(θ)− Ln(θ)‖ ≤ sup
‖θ−θ̄‖<δn

σmax

(
Jn(θ)− Jn(θ̄)

)
‖θ − θ̄‖ = op

(
‖θ − θ̄‖

)
, (A.7)

when θ equals θ̂ or θ∗ and 1n = 1. Thus, it follows from ‖θ∗ − θ̄‖ = Op(n−1/2) and
‖θ̂ − θ̄‖ = Op(n−1/2) that ‖mn(θ̂)− Ln(θ̂)‖ = op(n−1/2) and ‖mn(θ∗)‖ = op(n−1/2).

For the last time, redefine 1n to also include the event that θ∗ ∈ Θn. Since
‖θ∗ − θ̄‖ = Op(n−1/2), P

(
θ̄ ∈ Θn

)
→ 1, and

√
n infθ∈∂Θn‖θ− θ̄‖

p−→∞, it follows that
P(1n = 1) → 1. When 1n = 1, it follows from ‖mn(θ̂) − Ln(θ̂)‖ = op

(
n−1/2

)
, (1.5),

θ∗ ∈ Θn, and ‖mn(θ∗)‖ = op
(
n−1/2

)
that

‖Ln(θ̂)‖ − op
(
n−1/2

)
≤ ‖mn(θ̂)‖ ≤ ‖mn(θ∗)‖+ op

(
n−1/2

)
= op

(
n−1/2

)
,

and since Ln(θ̂) = Jn(θ̄)(θ̂ − θ∗) that

op
(
n−1/2

)
= ‖Ln(θ̂)‖ ≥ σmin

(
Jn(θ̄)

)
‖θ̂ − θ∗‖.

Thus it follows from (ii) and P(1n = 1)→ 1 that
√
n‖θ̂ − θ∗‖ = op(1).

Proof of proposition 1.3.3. The proof is essentially the same as the proof of theo-
rem 1.3.2, but the integral form of the mean value theorem is applied to Mn rather
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than mn which leads to two minor differences. The first difference is that (A.5)
becomes

‖mn(θ̂)‖+ ‖mn(θ̄)‖+ σmax

(∫ 1

0
Jn
(
θ̄ + t(θ̂ − θ̄)

)
− Jn(θ̄) dt

)
‖θ̂ − θ̄‖

+ ‖mn(θ̂)−mn(θ̄)− (Mn(θ̂)−Mn(θ̄))‖
≥ σmin

(
Jn(θ̄)

)
‖θ̂ − θ̄‖,

which by (i) and (ii) implies that

‖mn(θ̂)‖+ ‖mn(θ̄)‖ − op
(
n−1/2

)
≥
(
σmin

(
Jn(θ̄)

)
− op(1)

)
‖θ̂ − θ̄‖

when 1n = 1 and therefore that ‖θ̂ − θ̄‖ = Op(n−1/2).
The second difference is that (A.7) becomes

‖mn(θ)− Ln(θ)‖ ≤ sup
‖θ−θ̄‖<δn

σmax

(
Jn(θ)− Jn(θ̄)

)
‖θ − θ̄‖

+ ‖mn(θ)−mn(θ̄)− (Mn(θ)−Mn(θ̄))‖
= op

(
n−1/2 + ‖θ − θ̄‖

)
when θ equals θ̂ or θ∗ and 1n = 1. Following the argument in the proof of theo-
rem 1.3.2, it then follows from (i) and (ii) that ‖θ̂ − θ∗‖ = op(n−1/2).
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Appendix B

Proofs of Results in Section 1.4

For simplicity, I introduce the following notation. Let Y, X, ε, u, φ(ε(β)), and ψ(ε(β))
denote the stacked observations of yi, xi, εi, ui, φi(β), and ψi(β). Additionally, let
X̄(θ) = X − ψ(ε(β))γ and ū = u − ψ(ε)γ0. For two matrices A and B of the same
dimensions, let A◦B be the Hadamard (entrywise) product of A and B. Furthermore,
let c be some positive and finite constant that varies for each use. I repeatedly use
that P = Z(Z ′Z)−1Z ′ = n−1ZZ ′ as n−1Z ′Z = Ik.

The proof of lemma 1.4.1 verifies the conditions of lemma 1.3.1.

Proof of lemma 1.4.1. Assumption 1(ii) implies that P(θ̄ ∈ Θn) = P(|β̂init − β0| ≤
bn)→ 1.

Note that

π̄ = (Z ′Z)−1Z ′(X − ψ(ε)γ0) = n−1Z ′(X − ψ(ε)γ0),

which implies that the first two elements of mn(θ̄) equals

1
n

∑
i

φ(εi)z′iπ0 + Piiφ(εi)ūi +
∑
j 6=i

Pijφ(εi)ūj

φ(εi)z′iπ0 + φ(εi)ūi

 .
This has mean zero conditional on Z, and a variance calculation yields

var
(

1
n

∑
i

φ(εi)z′iπ0 | Z
)

= 1
n
E[φ(εi)2]σxz

var
(

1
n

∑
i

φ(εi)ūi | Z
)

= 1
n
E[φ(εi)2ū2

i ]

var
 1
n

∑
i

∑
j 6=i

Pijφ(εi)ūj | Z
 = 1

n
2

∑
i

∑
j 6=i

P 2
ijE[φ(εi)2]E[ū2

j ] ≤ 1
n
E[φ(εi)2]E[ū2

i ]
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As each of these terms is Op(n−1), it follows that ‖mn(θ̄)‖ = Op(n−1/2). Thus,
lemma 1.3.1(i) (and the first part of theorem 1.3.2(iv)) is satisfied.

Let δ > 0 and {θn}n be a sequence of (random) vectors such that θn ∈ Θn ⊂ Rk+2

and ‖θn − θ̄‖ > δ for all n. From bn = op(1) and P(θ̄ ∈ Θn) → 1 it follows that
βn − β0 = op(1). Thus, I can choose δn ↓ 0 such that P(|βn − β0| < δn) → 1,
which implies that I can assume for the rest of the proof that |βn − β0| < δn, as
the probability of the complement goes to zero. Furthermore, I note that Lipschitz
continuity of φ and ψ, Cauchy-Schwarz’ inequality, and existence of various second
moments implies that∣∣∣ 1

n
X ′(φ(ε(βn))− φ(ε))

∣∣∣2 +
∣∣∣ 1
n
φ(ε(βn))′ψ(ε(βn))− 1

n
φ(ε)′ψ(ε)

∣∣∣2
+
∥∥∥ 1
n
Z ′(ψ(ε(βn))− ψ(ε))

∥∥∥2

≤ δ2
n
c
n
‖X‖2 1

n

(
‖X‖2 + ‖φ(ε)‖2 + ‖ψ(ε)‖2 + n

)
= Op(δ2

n). (B.1)

Let m̄n be the last k + 1 entries of mn and note that for any θ ∈ Θn

‖mn(θ)‖ ≥ ‖mn(θ)−mn(θ̄)‖ − ‖mn(θ̄)‖ ≥ ‖m̄n(θ)− m̄n(θ̄)‖ − op(1),

where ‖mn(θ̄)‖ = op(1) by lemma 1.3.1(i). From the definition of mn, it follows that

‖m̄n(θ)− m̄n(θ̄)‖2 =
∣∣∣ 1
n
φ(ε(β))′(X − ψ(ε(β))γ)− 1

n
φ(ε)′(X − ψ(ε)γ0)

∣∣∣2
+
∥∥∥ 1
n
Z ′(X − ψ(ε(β))γ − Zπ)− 1

n
Z ′(X − ψ(ε)γ0 − Zπ̄)

∥∥∥2

≥ (γ − γ0)2
∣∣∣ 1
n
φ(ε)′ψ(ε)

∣∣∣2
+
∥∥∥π̄ − π + 1

n
Z ′ψ(ε)(γ − γ0)

∥∥∥2
− rn(β, γ),

where

rn(β, γ) =
∣∣∣ 1
n
X ′ (φ(ε(β))− φ(ε))

∣∣∣2
+ ((γ − γ0)2 + γ2

0)
(∣∣∣ 1

n
φ(ε(β))′ψ(ε(β))− 1

n
φ(ε)′ψ(ε)

∣∣∣2
+
∥∥∥ 1
n
Z ′(ψ(ε(β))− ψ(ε))

∥∥∥2
)

and (B.1) yields rn(βn, γn) =
(
(γn − γ0)2 + 1

)
Op(δ2

n).
Define ε = δ2/(4 max{1,E[ψ(εi)2]}). When (γn − γ0)2 > ε, it follows from

( 1
n
φ(ε)′ψ(ε))2 = E[φ(εi)ψ(εi)]2 + op(1), that

‖m̄n(θn)− m̄n(θ̄)‖2 ≥ (γn − γ0)2
(
E[φ(εi)ψ(εi)]2 − op(1)−Op(δ2

n)
)
−Op(δ2

n)

≥ εE[φ(εi)ψ(εi)]2 − op(1).
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When (γn− γ0)2 ≤ ε, it follows from ‖ 1
n
Z ′ψ(ε)‖2 ≤ 1

n
‖ψ(ε)‖2 = E[ψ(εi)2] + op(1) and

‖πn − π̄‖2 = ‖θn − θ̄‖2 − (γn − γ0)2 − (βn − β0)2 > δ2 − δ2/4− δ2
n,

that
‖m̄n(θn)− m̄n(θ̄)‖2 ≥ ‖πn − π̄‖2 − (γn − γ0)2

(
E[ψ(εi)2] + op(1)

)
− op(1)

≥ δ2/2− op(1).

As E[φ(εi)ψ(εi)] 6= 0, it follows from these bounds that

‖mn(θn)‖2 ≥ min{εE[φ(εi)ψ(εi)]2, δ2/2} − op(1) > c− op(1).

Lemma 1.3.1(ii) follows, since {θn}n was arbitrary.

I split the proof of theorem 1.4.2 into two parts. The first part of the proof
treats the case where φ and ψ are continuously differentiable (theorem 1.3.2), and the
second part covers the complications introduced when φ or ψ are Lipschitz continuous
(proposition 1.3.3).

Proof of theorem 1.4.2, part 1. First, note that
√
n inf
θ∈∂Θn

‖θ − θ̄‖ =
√
n inf
β∈±bn

|β + β̂init − β0| ≥
√
nbn(1− op(1)) p−→∞,

by assumption 1(ii).
Suppose that φ and ψ are continuously differentiable, and note that this makes

mn continuously differentiable. Differentiation yields

−Jn(θ) =
An(θ) Bn(θ)
C ′n(θ) Ik

 ,
where

An(θ)
2×2

= 1
n

 (
X ◦ φ′(ε(β))

)′
Zπ 0(

X ◦ φ′(ε(β))
)′
X̄(θ)− γφ(ε(β))′

(
X ◦ ψ′(ε(β))

)
φ(ε(β))′ψ(ε(β))

 ,
Bn(θ)

2×k
= 1

n

 −φ(ε(β))′Z
0

 ,
Cn(θ)

2×k
= 1

n

 −γ (X ◦ ψ′(ε(β))
)′
Z

ψ(ε(β))′Z

 .
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Let An = An(θ̄), Bn = Bn(θ̄), Cn = Cn(θ̄), and note that the singular values of
−Jn(θ̄) are unchanged under multiplication with the matrices

Ul =
I2 −Bn

0 Ik

 and Ur =
 I2 0
−C ′n Ik

 ,
as these matrices have all eigenvalues equal to one. Multiplication leads to

−UlJn(θ̄)Ur =
An −BnC

′
n 0

0 Ik

 .
Thus, it can be shown that σmin(Jn(θ̄)) > c+ op(1), provided that

trace
((
An −BnC

′
n

)′ (
An −BnC

′
n

))
= Op(1) and |det(An −BnC

′
n)| > c+ op(1).

Multiplication yields

An −BnC
′
n = 1

n

(X ◦ φ′(ε))′ Zπ̄ − γ0φ(ε)′P
(
X ◦ ψ′(ε)

)
φ(ε)′Pψ(ε)(

X ◦ φ′(ε)
)′
X̄(θ̄)− γ0φ(ε)′

(
X ◦ ψ′(ε)

)
φ(ε)′ψ(ε)

 .
Cauchy-Schwarz’ inequality, 1

n
‖Zπ̄‖2 ≤ 1

n
‖X̄(θ̄)‖2, and

1
n

(
‖φ(ε)‖2 + ‖ψ(ε)‖2 + 1

n
‖X ◦ φ′(ε)‖2 + ‖X ◦ ψ′(ε)‖2 + ‖X̄(θ̄)‖2

)
= Op(1),(B.2)

implies that each entry of An−BnC
′
n is Op(1) and therefore that the trace condition

is satisfied.
If |det(A − BC)/(φ(ε)′ψ(ε)/n)| > c + op(1), then |det(An − BnC

′
n)| > c + op(1),

since | 1
n
φ(ε)′ψ(ε)| > c+ op(1).

A calculation gives

det(A−BC)
1
n
φ(ε)′ψ(ε) = 1

n

(
X ◦ φ′(ε)

)′
Zπ̄ − φ(ε)′Pψ(ε)

φ(ε)′ψ(ε)
1
n

(
X ◦ φ′(ε)

)′
X̄(θ̄)

− γ0
n

(
φ(ε)′P

(
X ◦ ψ′(ε)

)
− φ(ε)′Pψ(ε)

φ(ε)′ψ(ε) φ(ε)′
(
X ◦ ψ′(ε)

))
.

It follows from corollary 2.2.2 that φ(ε)′Pψ(ε)
φ(ε)′ψ(ε) = α + op(1), and therefore from (B.2)
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that
det(A−BC)

1
n
φ(ε)′ψ(ε) = (1− α) 1

n

∑
i

φ′(εi)xiz′iπ0

+ 1
n

∑
i

(Pii − α)
(
φ′(εi)xiūi − γ0φ(εi)xiψ′(εi)

)
+ 1

n

∑
i

∑
j 6=i

Pij
(
E[xjφ′(εj) | zj]ūi − γ0φ(εi)E[xjψ′(εj) | zj]

)
+ 1

n

∑
i

∑
j 6=i

Pij
(
xjφ

′(εj)− E[xjφ′(εj) | zj]
)
ūi

− γ0
n

∑
i

∑
j 6=i

Pijφ(εi)
(
xjψ

′(εj)− E[xjψ′(εj) | zj]
)

+ op(1).

When the conditions of corollarys 2.2.1 and 2.2.2 are satisfied it follows that
det(A−BC)

1
n
φ(ε)′ψ(ε) = (1− α) 1

n

∑
i

E
[
φ′(εi)xiz′iπ0 | zi

]
+ 1

n

∑
i

(Pii − α)z′iπ0E
[
φ′(εi)ūi − γ0φ(εi)ψ′(εi)

]
+ op(1)

= Dn + op(1),

where the second equality follows from 1
n

∑
i z
′
iπ0 = 0. To see that the conditions of

the corollaries are satisfied, note that

max
i

|z′iπ0|√
n

p−→ 0,

1
n

2

∑
i

∑
j 6=i

PijE[xjφ′(εj) | zj]
2

≤ E[uiφ
′(εi)]

2

n
+ 1

n
2

∑
i

(z′iπ0)2E[φ′(εi)]2
p−→ 0,

1
n

2

∑
i

∑
j 6=i

P 2
ij

(
1 + (z′jπ0)2

)
≤ max

i

1+(z′iπ0)2

n

p−→ 0.

Thus, theorem 1.3.2(ii) follows from |Dn| > c+ op(1).
Let {δn} be a sequence of positive numbers converging to zero and let θn be such

that ‖θn − θ̄‖ ≤ δn. In order to show that ‖Jn(θ̄) − Jn(θn)‖ = op(1), it is enough to
show that

‖An(θn)− An‖+ ‖Bn(θn)−Bn‖+ ‖Cn(θn)− Cn‖ = op(1),

which, in turn, follows from
1
n

(
‖φ(ε)‖2 + ‖ψ(ε)‖2 + ‖X ◦ φ′(ε)‖2 + ‖X ◦ ψ′(ε)‖2 + ‖X̄(θ̄)‖2

)
= Op(1),

1
n
‖φ(ε(βn))− φ(ε)‖2 + 1

n
‖ψ(ε(βn))− ψ(ε)‖2 = op(1),

1
n

∥∥∥X ◦ (φ′(ε(βn))− φ′(ε)
)∥∥∥2

+ 1
n

∥∥∥X ◦ (ψ′(ε(βn))− ψ′(ε)
)∥∥∥2

= op(1).
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The first line follows (B.2) and the second follows in the same way as (B.1). Bound-
edness and Lipschitz continuity of ψ′ and φ′ yields that each term in the third line
can be bounded by

c
n

∑
i

x2
i 1{x2

i>K}
+K2δ2

n.

It follows from assumption 1(i), that c
n

∑
i x

2
i 1{x2

i>K}
= op(1) for any K → ∞. Thus

I can choose K →∞ such that Kδn → 0.
When det(A − BC) is nonzero, it follows from the partitioned inverse formula

and the argument leading to theorem 1.3.2(ii), that the first two elements of −J1
n(θ̄)

equals

D−1
n (1,−α) + op(1).

The first two elements of
√
nmn(θ̄) times (1,−α) is

Wn = 1√
n

∑
i

(
(1− α)φ(εi)z′iπ0 + (Pii − α)φ(εi)ūi

)
+ 1√

n

∑
i

∑
j 6=i

Pijφ(εi)ūj.

When the conditions of corollary 2.2.6 are satisfied it follows thatWn/
√
Ωn

d−→ N (0, 1)
where

Ωn = (1− α)2σxzE
[
φ(εi)2

]
+ 1

n

∑
i

(Pii − α)2E
[
φ(εi)2ū2

i

]
+ 2(1− α) 1

n

∑
i

(Pii − α)z′iπ0E
[
φ(εi)2ūi

]
+ 1

n

∑
i

∑
j 6=i

P 2
ijE[φ(εi)2]E[ū2

j ]

= (1− α)2σxzE
[
φ(εi)2

]
+ α(1− α)E

[
φ(εi)2

]
E
[
ū2
i

]
+ 2(1− α) 1

n

∑
i

(Pii − α)z′iπ0E
[
φ(εi)2ūi

]
+ 1

n

∑
i

(Pii − α)2cov
(
φ(εi)2, ū2

i

)
> c+ op(1).

To see that the conditions of the corollary are satisfied, note that we have P̄ij =
1
n

∑
k 6=i,j PikPkj,

max
i

(Pii−α)2+(ziπ0)2

n

p−→ 0, and∑
i

∑
j 6=i

P̄ 2
ij ≤ c

n
2

∑
i

∑
j 6=i

P 2
ij ≤ c

n
→ 0.
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It follows that −J1
n(θ̄)
√
nmn(θ̄) = D−1

n Wn + op(1) and therefore that

−J1
n(θ̄)
√
nmn(θ̄)/

√
D−1
n ΩnD

−1
n

d−→ N (0, 1).

theorem 1.3.2(iv) follows from this.

For the second part of the proof, I define the functionMn used in proposition 1.3.3.

Definition 1. For ω ∈ {φ, ψ}, let ωσn(ε) =
∫
R ω(ε + σnv)Φ′(v) dv where σn is a

sequence of positive numbers converging to zero. Let Mn be as mn except with φ and
ψ replaced by φσn and ψσn .

The proof of the following lemma is at the end of this section.

Lemma B.0.1. Under assumption 1 it follows that

(i) φσn and ψσn are continuously differentiable with bounded derivatives.

(ii) For ω ∈ {φ, ψ, φ′, ψ′}, |ωσn(εi)− ω(εi)|
a.s.−−→ 0 and supi,n|ωσn(εi)− ω(εi)| ≤ c.

(iii) For ω ∈ {φ, ψ} and any sequence {δn} of positive numbers converging to zero,

E
[

sup
|τ |≤δn

(
ω′σn(εi + τ)− ω′σn(εi)

)2
]
≤ c(δn +√σn).

(iv) For ω ∈ {φ, ψ} and any sequence {δn} of positive numbers converging to zero,

sup
|β−β0|≤δn

1
n

∥∥∥ω(ε(β))− ωσn(ε(β))−
(
ω(ε)− ωσn(ε)

)∥∥∥2
= op(1) sup

|β−β0|≤δn
|β − β0|2.

Proof of theorem 1.4.2, part 2. It follows from lemma B.0.1(i),(ii), dominated con-
vergence, and the first part of the proof that Mn satisfies theorem 1.3.2(i),(ii), and
that the first two elements of −J1

n(θ̄) equals D−1
n (1,−α) + op(1). Furthermore, theo-

rem 1.3.2(iv)does not depend on smoothness of mn.
In order to show that Mn satisfies theorem 1.3.2(iii), I only need to redo the part

of the argument that depends on Lipschitz continuity of φ′ and ψ′. Thus, I will show
that

1
n

∥∥∥X ◦ (φ′σn(ε(βn))− φ′σn(ε)
)∥∥∥2

+ 1
n

∥∥∥X ◦ (ψ′σn(ε(βn))− ψ′σn(ε)
)∥∥∥2

= op(1)
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where |βn − β0| ≤ δn ↓ 0. The first of these terms is bounded by
c
n

∑
i

x2
i 1{x2

i>K}
+K sup

|τ |≤Kδn

1
n

∑
i

(
φ′σn(εi + τ)− φ′σn(εi)

)2
,

where the last of these terms have an expectation that is bounded by c(K2δn+K√σn)
(see lemma B.0.1(iii)). It follows from assumption 1(i), that c

n

∑
i x

2
i 1{x2

i>K}
= op(1)

for any K → ∞. Thus, I choose K → ∞ such that K2δn + K
√
σn → 0. The term

involving ψ follows analogously.
Finally, I verify proposition 1.3.3(i). Let {δn} be a sequence of positive numbers

converging to zero, and let θn be such that ‖θn − θ̄‖ ≤ δn. I show that
√
n‖mn(θn)−mn(θ̄)− (Mn(θn)−Mn(θ̄))‖

1 +
√
n
∥∥∥θn − θ̄∥∥∥ ≤ op (1)

√
n
∥∥∥θn − θ̄∥∥∥

1 +
√
n
∥∥∥θn − θ̄∥∥∥ , (B.3)

which leads to proposition 1.3.3(i). The definition of mn and Mn yields

‖mn(θ)−mn(θ̄)− (Mn(θ)−Mn(θ̄))‖2

≤
∣∣∣∣ 1
n

(
φ(ε(β))− φσn(ε(β))

)′
Z ′π − 1

n

(
φ(ε)− φσn(ε)

)′
Z ′π̄

∣∣∣∣2
+ 2

∣∣∣∣ 1
n

(
φ(ε(β))− φσn(ε(β))− φ(ε)− φσn(ε)

)′
X
∣∣∣∣2

+ 2
∣∣∣∣∣ γn (φ(ε(β))′ψ(ε(β))− φσn(ε(β))′ψσn(ε(β))

)

− γ0
n

(
φ(ε)′ψ(ε)− φσn(ε)′ψσn(ε)

) ∣∣∣∣∣
2

+
∥∥∥ γ
n
Z ′
(
ψ(ε(β)))− ψσn(ε(β))

)
− γ0

n
Z ′
(
ψ(ε))− ψσn(ε)

)∥∥∥2
.

And repeated applications of Cauchy-Schwarz inequality makes the following sufficient
for (B.3). For ω ∈ {φ, ψ},

1
n
‖Zπn‖2 + 1

n
‖X‖2 + 1

n
‖ω(ε(βn))‖2 = Op(1)

1
n

∥∥∥ω(ε)− ωσn(ε)
∥∥∥2

= op(1),
1
n

∥∥∥ωσn(ε(βn))− ωσn(ε)
∥∥∥2

= Op(1)|βn − β0|2,
1
n

∥∥∥ω(ε(βn))− ωσn(ε(βn))−
(
ω(ε)− ωσn(ε)

)∥∥∥2
= op(1)|βn − β0|2.

The first line follows from previously made arguments (see (B.2)) and ‖θn− θ̄‖ ≤ δn,
the second line from lemma B.0.1(ii) and monotone convergence, the third line from
lemma B.0.1(i) and 1

n
‖X‖2 = Op(1), and the fourth line follows from lemma B.0.1(iii).

54



Proof of lemma 1.4.3. The variance estimator only depends on the first two elements
of J1

n and mn. Let J12
n be the first two elements of J1

n, and overload notation by
letting ms

ni be the first two elements of mni.1 From theorem 1.3.2 (ii),(iii) it follows
that J12

n (θ̂) = D−1
n (1,−α) + op(1). To see this note that

‖Jn(θ̂)−1 − Jn(θ̄)−1‖ = ‖Jn(θ̂)−1
(
Jn(θ̄)− Jn(θ̂)

)
Jn(θ̄)−1‖

≤ σmin

(
Jn(θ̂)

)−1
σmin

(
Jn(θ̄)

)−1
‖Jn(θ̄)− Jn(θ̂)‖.

theorem 1.3.2 (ii),(iii) and ‖θ̂ − θ̄‖ = op(1) implies that this is op(1), and therefore
that J12

n (θ̂)− J12
n (θ̄) = op(1). Let Ω̃ be the following infeasible estimator of Ωn

Ω̃ = 1
n

∑
i

(
(1,−α)ms

ni(θ̄)
)2

= 1
n

∑
i

((1− α)φ(εi)z′iπ0 + (Pii − α)φ(εi)ūi
)

+
∑
j 6=i

Pijφ(εi)ūj

2

= 1
n

∑
i

(
(1− α)φ(εi)z′iπ0 + (Pii − α)φ(εi)ūi

)2

+ 2
n

∑
j

∑
i 6=j

(
(1− α)E[φ(εi)2]z′iπ0 + (Pii − α)E[φ(εi)2ūi]

)
Pij

 ūj
+ 1

n

∑
i

∑
j 6=i

P 2
ijφ(εi)2ū2

j

+ 1
n
E[φ(εi)2]

∑
i

∑
j 6=i

P̄ijūiūj

+ 2
n

∑
i,j 6=i

(
(1− α)

(
φ(εi)2 − E[φ(εi)2]

)
z′iπ0 + (Pii − α)

(
φ(εi)2ūi − E[φ(εi)2ūi]

))
Pijūj

+ 1
n

∑
i

∑
j 6=i

∑
k 6=i,j

PijPik
(
φ(εi)2 − E[φ(εi)2]

)
ūjūk

where P̄ij = ∑
k 6=i,j PikPkj. These terms are all in a form that corollarys 2.2.1, 2.2.2,

and 2.2.3 can be applied to. Thus Ω̃ −Ωn
p−→ 0.

1In the main text ms
ni(θ̄) has the same dimension as mni(θ̄), but there the last k entries of ms

ni(θ̄)
are all zero.
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Finally, ∥∥∥∥∥ 1
n

∑
i

ms
ni(θ̄)ms

ni(θ̄)′ −ms
ni(θ̂)ms

ni(θ̂)′
∥∥∥∥∥

≤
∣∣∣∣∣ 1
n

∑
i

φ2(εi)(Z ′iπ̄)2 − φ2(εi(β̂))(Z ′iπ̂)2
∣∣∣∣∣

+
∣∣∣∣∣ 1
n

∑
i

φ2(εi)(X − γ0ψ(εi))2 − φ2(εi(β̂))(X − γ̂ψ(εi(β̂)))2
∣∣∣∣∣.

This will be op(1), provided that(
‖π̄ − π̂‖2 + 1

n
‖γ0φ(εi)ψ(εi)− γ̂φ(εi(β̂))ψ(εi(β̂))‖2

)
max
i
φ(εi(β̂))2

+
(
‖π̄‖2 + ‖X̄(θ̄‖

)
max
i

(
φ(εi)− φ(εi(β̂))

)2

is op(1). For the first of these terms, observe that maxi φ(εi(β̂))2 = op(n) and is
multiplied by an Op(n−1)-term (as ‖θ̂ − θ̄‖ = Op(n−1)). For the second of these
terms, observe that maxi

(
φ(εi)− φ(εi(β̂))

)2
= op(1) (as ‖θ̂ − θ̄‖ = Op(n−1)) and is

multiplied by an Op(1)-term.
Combining these observations leads to Σ̂−1

n Σn
p−→ 1. From theorem 1.4.2 we thus

have
√
n
(
β̂ − β0

)
√
Σ̂n

d−→ N (0, 1),

by the continuous mapping theorem.

Proof of corollary 1.4.4. Under (i), it follows from Cauchy-Schwarz’ inequality that

Ωn = (1− α)2σxzE
[
φ(εi)2

]
+ α(1− α)E

[
φ(εi)2

]
E
[
(ui − ψ(εi)γ0)2

]
+ op(1),(B.4a)

Dn = (1− α)σxzE
[
φ′(εi)

]
+ op(1). (B.4b)

Thus it follows from σxz > c+op(1), α ∈ [0, 1) and E[φ′(εi)] 6= 0, that |Dn| > c+op(1).
Similarly, it follows from E[φ′(εi)] 6= 0 and E[(f ′/f)2(εi)] < ∞ that E[φ(εi)2] > 0,
and therefore that Ωn > c+ op(1). This leads to Σn = Σ∗n + op(1) > c+ op(1), which
together with theorem 1.4.2 yields the conclusion.

Under (ii), it follows from integration that

E
[
φ(εi)2(ui − ψ(εi)γ0)

]
= 0

cov
(
φ(εi)2, (ui − ψ(εi)γ0)2

)
= 0

E
[
φ′(εi)(ui − ψ(εi)γ0)− γ0φ(εi)ψ′(εi)

]
= 0,
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which yields (B.4a) and (B.4b) and a repetition of the rest of the proof.

Proof of lemma 1.4.5. The inequality that

inf
φ,ψ

Σ∗n(φ, ψ) ≥ 1
Ifσxz

+ α

1− α
1
Ifσxz

E
[
(ui − E[ui | εi])2

]
σxz

, (B.5)

follows immediately from the inequalities mentioned in the main text. Thus, it re-
mains to be shown that the inequality binds.

When E[s(εi)ui] 6= 0, it follows that (φ0, ψ0) = (s,E[ui | εi = ·]) satisfies that

E[φ0(εi)2] = If <∞, E[ψ0(εi)2] ≤ E[u2
i ] <∞, and E[φ0(εi)ψ0(εi)] = E[s(εi)ui] 6= 0.

Furthermore,

γ0 = E[uiφ0(εi)]
E[ψ0(εi)φ0(εi)]

= E[ψ0(εi)φ0(εi)]
E[ψ0(εi)φ0(εi)]

= 1,

which implies that Σ∗n(φ0, ψ0) equals the right side of (B.5). When E[ui | εi] = 0 a.s.,
it similarly follows that (φ0, ψ0) = (s, s) satisfies that

E[φ0(εi)2] = If <∞ and E[φ0(εi)ψ0(εi)] = If 6= 0.

Furthermore, E[ui | εi] = 0 implies that γ0 = 0, so Σ∗n(φ0, ψ0) equals the right side of
(B.5).

Now assume that E[s(εi)ui] = 0 and P(E[ui | εi] 6= 0) > 0. For t ∈ R, let

φt = s+ tE[ui | εi = ·] and ψ0 = E[ui | εi = ·],

and observe that for any t 6= 0, (φt, ψ0) satisfies that

E[φt(εi)2] = If + t2E[E[ui | εi]2] <∞, E[ψ0(εi)2] ≤ E[u2
i ] <∞, and

E[φt(εi)ψ0(εi)] = tE[E[ui | εi]2] 6= 0.
Furthermore,

γ0 = E[uiφt(εi)]
E[ψ0(εi)φt(εi)]

= E[ψ0(εi)φt(εi)]
E[ψ0(εi)φt(εi)]

= 1

for any t. This implies that

Σ∗n(φt, ψ0) =
E
[
φt(εi)2

]
I2
fσxz

+ α

1− α
E
[
φt(εi)2

]
I2
fσxz

E
[
(ui − E[ui | εi])2

]
σxz

,

and limt→0 E
[
φt(εi)2

]
= If implies that limt→0Σ

∗
n(φt, ψ0) equals the right side of

(B.5).
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Proof of proposition 1.4.6. Let a = 1
σxz

and b = α

(1−α)σ2
xz

be constants that do not
depend on f , φ, or ψ. Define the feasible sets as

F =
{
f : f = (1− δ)Φ′ + h, h is absolutely continuous , Ef [s(εi)2] ≤ 1

}
, and

E =
{

(φ, ψ) : sup
f∈F

E[φ(εi)2] <∞, sup
f∈F

E[ψ(εi)2] <∞, inf
f∈F

E[φ(εi)ψ(εi)]2 > 0
}
.

For any (φ, ψ) ∈ E and ω ∈ {φ, ψ}, let

J(ω, f) = Ef [ω(εi)2]
Ef [ω(εi)s(εi)]2

, and

Σ̃n(φ, ψ, f) = J(φ, f)
(
a+ b

(
2− J(ψ, f)−1

))
.

If the following four statements are correct, then the proposition follows immediately.
(i) For any (φ, ψ) ∈ E and f ∈ F , Σ∗n(φ, ψ, f) ≥ Σ̃n(φ, ψ, f). (ii) For any (φ, ψ) ∈ E ,

sup
f∈F

Σ̃n(φ, ψ, f) ≥ Σ̃n(φ, ψ, f0) ≥ Σ̃n(φν0 , φν0 , f0) = sup
f∈F

Σ̃n(φν0 , φν0 , f).

(iii) For any f ∈ F , Σ∗n(φν0 , φν0 , f) = Σ̃n(φν0 , φν0 , f). (iv) (φν0 , φν0) ∈ E .
First, note that (iv) is satisfied since 2ν2

0Φ(−ν0) ≤ Ef [φν0(εi)2] ≤ 1 + δν2
0 . For (i),

note that a simple calculation and Ef [ui | εi] = s(εi) yields

Ef [(ui − ψ(εi)γ0)2] = Ef [(ui − ψ(εi)γ1)2] + (γ0 − γ1)2Ef [ψ(εi)2]
= 2− J(ψ, f)−1 + (γ0 − γ1)2Ef [ψ(εi)2],

where
γ1 = Ef [uiψ(εi)]

Ef [ψ(εi)2]
= Ef [s(εi)ψ(εi)]

Ef [ψ(εi)2]
.

(i) follows from positivity of (γ0 − γ1)2Ef [ψ(εi)2] and (iii) from the observation that
γ0 = γ1 when φ = ψ. The first inequality of (ii) follows if f0 ∈ F . To see that this is
the case observe that∫

R
f0(ε) dε = (1− δ)

[
1− 2Φ(−ν0) + 2Φ′(ν0)

ν0

]
= 1,

Ef0 [s(εi)2] = Ef0 [1{|εi| ≤ ν0}] = (1− δ) (Φ(ν0)− Φ(−ν0)) ≤ 1,

and f0(ε) ≥ (1−δ)Φ′(ε). The last two parts of (ii) follows from (Huber, 1964, theorem
1) or at this stage from the observation that φν0 = f ′0/f0 and that for any f ∈ F ,

J(φν0 , f) ≤
(1− δ)EΦ′ [φν0(εi)2] + δν2

0

EΦ′ [φnu0(εi)s(εi)]2
= J(φν0 , f0).
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This implies that

sup
f∈F

J(φnu0 , f) = J(φnu0 , f0) = inf
(φ,ψ)∈E

J(φ, f0) = inf
(φ,ψ)∈E

J(ψ, f0),

which is a saddle point result that implies the last two parts of (ii).

Proof of lemma B.0.1. I only perform the proof for statements about φ as statements
about ψ follow analogously. The set A refers to the finite number of points of non-
differentiability of φ and ψ.

(i) A change of variables, differentiation of ϕ, and
∫
R vϕ(v) dv = 0 leads to

φ′σn(ε) =
∫
R

φ(ε+ σnv)− φ(ε)
σnv

v2ϕ(v) dv, (B.6)

and Lipschitz continuity of φ leads to boundedness and continuity of φ′σn .

(ii)
∫
R ϕ(v) dv = 1 and

∫
R v

2ϕ(v) dv = 1 yields

|φσn(ε)− φ(ε)| =
∣∣∣∣∫

R
(φ(ε+ σnv)− φ(ε))ϕ(v) dv

∣∣∣∣ ≤ cσn,

and

|φ′σn(ε)− φ′(ε)| =
∣∣∣∣∣
∫
R

(
φ(ε+ σnv)− φ(ε)

σnv
− φ′(ε)

)
v2ϕ(v) dv

∣∣∣∣∣.
Lipschitz continuity of φ implies that |φ(ε+σnv)−φ(ε)

σnv
−φ′(ε)| < c and for any ε /∈ A

and v ∈ R it follows from differentiability of φ that |φ(ε+σnv)−φ(ε)
σnv

− φ′(ε)| → 0.
Dominated convergence leads to |φ′σn(ε)− φ′(ε)| → 0 for any ε /∈ A.

(iii) Fix δn ↓ 0, let Aδn = {x ∈ R : mina∈A |x− a| ≤ δn}, dδn,ε = mina∈Aδn |ε− a|,
and consider ε with dδn,ε ≥ δn+√σn. From (B.6),

∫
R vϕ(v) dv = 0, and Lipschitz

continuity of φ it follows that

φ′σn(ε+ τ)− φ′σn(ε) =
∫
R

φ(ε+ σnv + τ)− φ(ε+ σnv)
σnv

v2ϕ(v) dv (B.7a)

=
∫
R

∫ τ

0

φ′(ε+ t+ σnv)− φ′(ε+ t)
σnv

dt v2ϕ(v) dv.(B.7b)

Use (B.7b) when |σnv| ≤ dδn,ε and (B.7a) when |σnv| > dδn,ε to write
∣∣∣φ′σn(ε+ τ)− φ′σn(ε)

∣∣∣ ≤ cτ + c
∫
|v|>dδn,ε/σn

v2ϕ(v) dv ≤ cδn + c
σn
e−c/σn .
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As
∣∣∣φ′σn(ε+ τ)− φ′σn(ε)

∣∣∣ is bounded it follows that

E
[

sup
|τ |≤δn

(
φ′σn(εi + τ)− φ′σn(εi)

)2
]
≤ cδ2

n + c

σ
2
n

e−c/σn + cP
(
dδn,εi < δn +√σn

)
.

Furthermore,

P
(
dδn,εi < δn +√σn

)
≤
∑
a∈A

P (|εi − a| ≤ 2δn +√σn)

≤ 2 sup
ε∈R

f(ε)
∑
a∈A

(2δn +√σn)

≤ c (δn +√σn) .

This leads to a bound on the expectation of c(δn +√σn) as δn and σn goes to
zero.

(iv) Fix δn ↓ 0 and let |βn − β0| ≤ δn. Lipschitz continuity of φ and φσn leads to

φ(εi(β))− φσn(εi(β))−
(
φ(εi)− φσn(εi)

)
= xi

∫ β−β0

0
φ′(εi − τxi)− φ′σn(εi − τxi) dτ,

so boundedness of φ′ and φ′σn yields

1
n

∥∥∥φ(ε(βn))− φσn(ε(βn))−
(
φ(ε)− φσn(ε)

)∥∥∥2

≤ |βn − β0|
(
c
n

∑
i

x2
i 1{x2

i>K}
+K2 sup

|τ |≤Kδn

1
n

∑
i

|φ′(εi + τ)− φ′σn(εi + τ)|2
)
.

Assumption 1(i) implies that c
n

∑
i x

2
i 1{x2

i>K}
= op(1) provided that K → ∞.

As in (iii), let δ̃n = Kδn, Aδ̃n = {x ∈ R : mina∈A |x− a| ≤ δ̃n}, dδ̃n,ε =
mina∈Aδn |ε− a|, and consider ε with dδn,ε ≥

√
σn and τ ≤ δn.

From (B.6),
∫
R v

2ϕ(v) dv = 1, and Lipschitz continuity of φ it follows that

φ′(ε+ τ)− φ′σn(ε+ τ) =
∫
R

∫ σnv

0

φ′(ε+ τ)− φ′(ε+ τ + s)
σnv

v2ϕ(v) dv.

Use Lipschitz continuity of φ′ when |σnv| ≤ dδ̃n,ε and boundedness of φ′ when
|σnv| > dδn,ε to write

|φ′(ε+ τ)− φ′σn(ε+ τ)| ≤ cσn + c
∫
|v|>dδ̃n,ε/σn

v2ϕ(v) dv ≤ cσn + c
σn
e−c/σn .
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As in (iii), it follows from boundedness of
∣∣∣φ′(ε+ τ)− φ′σn(ε+ τ)

∣∣∣ that
E
[

sup
|τ |≤δn

(
φ′(εi + τ)− φ′σn(εi + τ)

)2
]
≤ cσ2

n + c

σ
2
n

e−c/σn + cP
(
dδ̃n,εi <

√
σn
)

≤ c(Kδn +√σn).

Choosing K →∞ such that K2(Kδn +√σn)→ 0 yields the desired conclusion.
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Appendix C

Interpretation of LIML as a GMM
Estimator

This section verifies two claims made in section 1.2. The first claim is that the
minimizer and maximizer ofQn(β) = ε(β)′Pε(β)/ε(β)′ε(β) are minimizers of ‖mn(θ)‖
when φ(ε) = ψ(ε) = ε. The second claim is that under certain conditions, the
maximizer of Qn(β) does not converge to β0.

For the first claim let β̂ be the minimizer or maximizer of Qn(β) and define

γ̂ = ε(β̂)′X
ε(β̂)′ε(β̂)

and π̂ = (Z ′Z)−1Z ′(X − γ̂ε(β̂)),

then ‖mn(θ)‖ = 0 if ε(β̂)′Z ′π̂ = 0. However, ε(β̂)′Z ′π̂ = ε(β̂)′PX − Qn(β̂)ε(β̂)′X,
which is proportional to the derivative of Qn(β) and therefore zero at β̂.

For the second claim suppose that the sample is i.i.d., σxz is constant in n,
E[ε2

i ] + E[u2
i ] < ∞, σ2

ε 6= 0, and σuε 6= 0. One can show that under these condi-
tions supβ|Qn(β)−Q(β)| = op(1) where

Q(β) =
(β − β0)2σxz + αE

[
(εi − (β − β0)ui)2

]
(β − β0)2σxz + E

[
(εi − (β − β0)ui)2

] ,
and some calculus shows that Q(β) is maximized at β0 + σ

2
ε

σuε
(also Q(β) is minimized

at β0). Finally,

lim
|β|→∞

Q(β) = σxz + ασ2
u

σxz + σ2
u

<
σxz + ασ2

u(1− ρ2)
σxz + σ2

u(1− ρ2)
= Q

(
β0 + σ2

ε

σuε

)
where ρ is the correlation between ε and u. Thus, the maximizer of Qn(β) converges
in probability to β0 + σ

2
ε

σuε
.
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Appendix D

Proofs of Results in Section 2.1

The proof of lemma 2.1.1 makes use of the following two lemmas. The first lemma
reuses an idea of (Chen, 1978, lemma 2).

Lemma D.0.1. Suppose that {Wn}n is a sequence of random variables with variance
one. If there exist a sequence {Tn}n of random variables such that

(i) E[Tn | Wn]→ 1 in L1;

(ii) E
[
Wne

isWn − isTneisWn

]
→ 0 for any s ∈ R;

then Wn
d−→ N (0, 1).

Proof of lemma D.0.1. Fix an s ∈ R and note that (i) and (ii) implies that

E
[
Wne

isWn − iseisWn

]
+ isE

[
(1− Tn)eisWn

]
→ 0,

Uniform integrability of {Wn}n implies that every sub-sequence {k}, has a further sub-
sequence {m}, along which {Wm}m converges in distribution. Let W be distributed
according to the limit distribution and note that uniform integrability of {Wm}m
implies that E|W | <∞, and since s was arbitrary that

E
[
WeisW − iseisW

]
= 0 for all s ∈ R. (D.1)

It follows from (D.1) thatW ∼ N (0, 1) (see, e.g., Chen, 1978, lemma 2), and therefore
that Wn

d−→ N (0, 1).

The next lemma reuses an idea of Chatterjee (2008, lemma 2.3).

63



Lemma D.0.2. For any measurable functions f, g of Vn with E[f 2(Vn)+g2(Vn)] <∞,
we have

cov(g(Vn), f(Vn)) = 1
2

∑
i

E
[
∆ig∆if

[i−1]
]

Proof. Observe that

f(Vn)− f(V ′n) =
∑
i

∆if
[i−1]

and that
g(V )∆if

[i−1] ∼ −g(V i
n)∆if

[i−1].

This implies that

cov(g(Vn), f(Vn)) = E[g(Vn)(f(Vn)− f(V ′n)] =
∑
i

E[g(Vn)∆if
[i−1]]

= 1
2

∑
i

E
[
∆ig∆if

[i−1]
]
.

Proof of lemma 2.1.1. The conclusion of the lemma follows from lemma D.0.1, if

E
[
Wne

isWn − isTneisWn

]
→ 0

for any s ∈ R. Lemma D.0.2 with Wn = f(Vn) and g(Vn) = eisWn and the definition
of Tn implies that

E
[
Wne

isWn − isTneisWn

]
= 1

2

∑
j

E
[(
eisWn − eisWn(V jn )

)
∆jW

[j−1]
n − is

(
∆jWn

) (
∆jW

[j−1]
n

)
eisWn

]
= −1

2

∑
j

E
[(
e−is∆jWn − 1 + is∆jWn

)
eisWn∆jW

[j−1]
n

]
.

A mean value expansion yields

∣∣∣e−isx − 1 + isx
∣∣∣ ≤ min

{
2|s||x|, |s|

2

2 |x|
2
}
.
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Thus, it follows for any δ > 0 that (ignoring |s| and s2)∣∣∣E [Wne
isWn − isTneisWn

]∣∣∣
≤
∑
j

E

∣∣∣∆jW
[j−1]
n

∣∣∣1{∣∣∣∆jW
[j−1]
n

∣∣∣>δ}|∆jWn|+ δ(∆jWn)2


≤

∑
j

E
[
(∆jWn)21{|∆jWn|>δ}

]1/2∑
j

E
[
(∆jWn)2

]1/2

+ δ
∑
j

E
[
(∆jWn)2

]
.

This converges to zero for δ converging slowly to zero by (ii) and (iii).

Proof of lemma 2.1.2. The expectation of Sn exist so all expectations in the theorem
and the proof are well defined and the law of iterated expectations can be applied.
Let F0 be the trivial σ-algebra and for each i ∈ [n], let F i = σ({vj}j≤i).

A martingale decomposition yields

Sn − E [Sn] =
∑
i

E
[
Sn | F i

]
− E

[
Sn | F i−1

]
=
∑
i

E
[
∆iSn | F i

]
.

Fix an ε > 0, define ∆̄i = ∆iSn1{|∆iSn|≤ε} and use E
[
∆iSn | F i−1

]
= 0 to write∑

i

E
[
∆iSn | F i

]
=
∑
i

E
[
∆̄i | F i

]
− E

[
∆̄i | F i−1

]
︸ ︷︷ ︸

=an

+
∑
i

E
[
∆iSn − ∆̄i | F i

]
︸ ︷︷ ︸

=bn

−
∑
i

E
[
∆iSn − ∆̄i | F i−1

]
︸ ︷︷ ︸

=cn

.

The summands of an are mean zero and uncorrelated so

E[a2
n] =

∑
i

E
(
E
[
∆̄i | F i

]
− E

[
∆̄i | F i−1

])2
≤
∑
i

E[∆̄2
i ] ≤ ε1−δ

∑
i

E
[
|∆iSn|1+δ

]
,

where δ is given in the first condition of the lemma, or is zero under the second
condition. For bn and cn, it follows that

E[|bn|+ E|cn|] ≤ 2
∑
i

E|∆iSn − ∆̄i| ≤ 2
∑
i

E
[
|∆iSn|1{|∆iSn|>ε}

]
.

The first condition of the lemma implies that E[a2
n+ |bn|+ |cn|]→ 0 for any ε > 0,

and the second condition implies that E[a2
n + |bn| + |cn|] → 0 for ε going slowly to

zero. Thus, it follows that Sn − E [Sn]→ 0 in L1.
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