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ABSTRACT OF THE DISSERTATION

Essays on Treatment Effect Estimation

and Treatment Choice Learning

by

Liqiang Shi

Doctor of Philosophy in Economics

University of California, Los Angeles, 2022

Professor Andres Santos, Chair

This dissertation consists of three chapters that study treatment effect estimation and treat-

ment choice learning under the potential outcome framework (Neyman, 1923; Rubin, 1974).

The first two chapters study how to efficiently combine an experimental sample with an aux-

iliary observational sample when estimating treatment effects. In chapter 1, I derive a new

semiparametric efficiency bound under the two-sample setup for estimating ATE and other

functions of the average potential outcomes. The efficiency bound for estimating ATE with

an experimental sample alone is derived in Hahn (1998), and has since become an important

reference point for studies that aim at improving the ATE estimation. This chapter answers

how an auxiliary sample containing only observable characteristics (covariates, or features)

can lower this efficiency bound. The newly obtained bound has an intuitive expression and

shows that the (maximum possible) amount of variance reduction depends positively on two

factors: 1) the size of the auxiliary sample, and 2) how well the covariates predict the indi-

vidual treatment effect. The latter naturally motivates having high dimensional covariates

and the adoption of modern machine learning methods to avoid over-fitting.
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In chapter 2, under the same setup, I propose a two-stage machine learning (ML) im-

putation estimator that achieves the efficiency bound derived in chapter 1, so that no other

regular estimators for ATE can have lower asymptotic variance in the same setting. This es-

timator involves two steps. In the first step, conditional average potential outcome functions

are estimated nonparametrically via ML, which are then used to impute the unobserved po-

tential outcomes for every units in both samples. In the second step, the imputed potential

outcomes are aggregated together in a robust way to produce the final estimate. Adopting

the cross-fitting technique proposed in Chernozhukov et al. (2018), our two-step estimator

can use a wide range of supervised ML tools in its first step, while maintaining valid infer-

ence to construct confidence intervals and perform hypothesis tests. In fact, any method

that estimates the relevant conditional mean functions consistently in L2(P ) norm, with no

rate requirement, will lead to efficiency through the proposed two-step procedure. I also

show that cross-fitting is not necessary when the first step is implemented via LASSO or

post-LASSO. Furthermore, our estimator is robust in the sense that it remains consistent

and
√
n normal (no longer efficient) even if the first step estimators are inconsistent.

Chapter 3 (coauthored with Kirill Ponomarev) studies model selection in treatment choice

learning. When treatment effects are heterogeneous, a decision maker, given either experi-

ment or quasi-experiment data, can attempt to find a policy function that maps observable

characteristics to treatment choices, aiming at maximizing utilitarian welfare. When doing

so, one often has to pick a constrained class of functions as candidates for the policy function.

The choice of this function class poses a model selection problem. Following Mbakop and

Tabord-Meehan (2021) we propose a policy learning algorithm that incorporates data-driven

model selection. Our method also leverages doubly robust estimation (Athey and Wager,

2021) so that it could retain the optimal n−1/2 rate in expected regret in general setups

including quasi-experiments where propensity scores are unknown. We also refined some

related results in the literature and derived a new finite sample lower bound on expected

regret to show that the n−1/2 rate is indeed optimal.
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CHAPTER 1

Efficiency Bound for ATE under Sample Combination

1.1 Introduction

Randomized controlled trials (RCTs) have long been a common tool in biomedical sciences

and pharmaceutical industry, and are increasingly popular in social sciences and business as

well (Mason et al., 2003; Box et al., 2005; Imbens and Rubin, 2015; Rosenberger and Lachin,

2015; Kohavi and Longbotham, 2017). For example, in the field of development economics,

the research center J-PAL alone has conducted more than 1000 randomized experiments

in more than 90 countries to date.1 In business, data-driven decision-making is becoming a

culture and experimentation (often referred as A/B tests) is practically a mantra (Tang et al.,

2010). Large technology companies like Amazon and Microsoft conduct tens of thousands of

RCTs each year (Kohavi and Thomke, 2017). This wide popularity of RCTs is mainly due

to their ability to provide clean identification and unbiased estimates on causal effects.

In RCTs, one of the most important parameter to estimate is the average treatment

effect (ATE). Although the identification is no problem, the accuracy of its estimation and

the power of the relevant statistical tests are limited by the experimental sample size, which

itself is typically subject to a number of practical constraints. For example, in certain field

experiments, administering the treatment can be costly, as can be the extensive follow-ups

on the test subjects for measuring outcomes. In such cases, improving estimation efficiency

becomes important as it allows us to work with smaller sized samples, reducing the costs

1https://www.povertyactionlab.org/evaluations
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of running the experiment. One way to improve estimation efficiency is to combine the

experimental sample with an auxiliary observational sample. The latter is often readily

available or much cheaper to collect. In this chapter, I will study how the additional auxiliary

sample contributes to estimation efficiency by deriving a semiparametric effciency bound on

the ATE parameter under the two-sample setup. In the next chapter, I will propose an

estimator that acheives such efficiency bound. Before more details, let me provide some

further motivation for improving estimation efficiency.

As more efficient estimators have lower asymptotic variances, the problem of improving

estimation efficiency is also sometimes called variance reduction, especially in the context

of online A/B tests. In this context, even though experiments seem relatively cheap and

easy to carry out at large scales, variance reduction can still be very important. This is

due to multiple reasons. First, the treatment effect could be simply small and hard to

distinguish from zero. Lewis and Rao (2015), for example, document that some advertising

experiments require more than 10 million person-weeks to accurately measure the return

to advertising. Second, businesses may want to do more experiments with more treatment

arms at the same time, which splits up their traffic and reduces sample size. Third, as is

often the case, the sample is only collected as users visit the website over time. Therefore,

more efficient estimator allows decisions to be made faster as less units are required for the

experiment to yield statistical significance results. Fourth, some experiments are disruptive

to user experience and are better limited at a small scale. Google has made clear that they

are not satisfied with the amount of traffic they have (Tang et al., 2010), and researchers

at Microsoft, Facebook and Netflix all have been developing ways to improve estimation

efficiency for their online experiments (Deng et al., 2013; Xie and Aurisset, 2016; Liou and

Taylor, 2020).

As mentioned earlier, this chapter and the following one study how to improve estimation

efficiency by combining the experimental sample with an auxiliary observational sample. I

assume that the auxiliary sample only contains observable characteristics/features and is

2



sampled from the same target population as the experimental sample. Depending on the

application, such auxiliary samples could be readily available in large size. For instance,

a common assumption for A/B tests (and also online bandit problems) is that the vistors

coming to the website are i.i.d. draws from a large stable population. Under this assumption,

traffic prior and after the experiment period, as well as traffic split into other experiments, are

all sources of our auxiliary sample. In field RCTs, an experiment may have its participants

drawn from a large database (e.g. administrative record) of individuals. This database

would then likely also contain observable characteristics of people who are not participants

of the experiment (Gagnon-Bartsch et al., 2021). Furthermore, researchers could potentially

collect the auxiliary samples on purpose. Since no intervention or extensive follow-ups are

required (essentially a baseline survey), collecting the auxiliary sample could be a cheaper

and easier way to increase power than including more subjects into the experiment.

Deriving a new semiparametric efficiency bound2 under the two-sample setup for esti-

mating average treatment effects (ATE) is an important first step to understand how the

auxiliary sample can be best utilized to improved estimation efficiency. The efficiency bound

for estimating ATE with an experimental sample alone is derived in Hahn (1998), and has

since become an important reference point for methods and techniques that aim at improving

the ATE estimation. This chapter answers how an auxiliary sample can lower this efficiency

bound. The obtained bound has an intuitive expression and shows that the (maximum

possible) amount of variance reduction through incorporating the auxiliary sample depends

positively on two factors: 1) the size of the auxiliary sample, and 2) how well the observable

characteristics (covariates) predict the individual treatment effects.

A vast literature explores efficient estimation and covariate adjustments in RCT related

setups without auxiliary data. Results are abundant under both low dimensional asymp-

2Semiparametric efficiency bounds are of fundamental importance for semiparametric models (Newey,
1990). The bounds provide a guide to estimation methods. They give a standard against which the asymp-
totic efficiency of any particular estimator can be measured. Intuitively, they characterizes the lowest asymp-
totic variance that regular estimators can attain.
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totics, where the model is fixed and sample size goes to infinity (Hahn, 1998; Rosenbaum,

2002; Hirano et al., 2003; Freedman, 2008; Imbens and Wooldridge, 2009; Berk et al., 2013;

Lin, 2013; Athey and Imbens, 2017; Ding et al., 2019), and more recently high-dimensional

asymptotics, where number of covariates in the model grows with sample size (Belloni et al.,

2014, 2015; Farrell, 2015; Athey et al., 2016; Wager et al., 2016; Bloniarz et al., 2016; Cher-

nozhukov et al., 2018). My study extend these results by including the auxiliary sample into

consideration.

Some recent efforts also study how to improve estimation efficiency in RCTs by incorpo-

rating additional data, but differ from this paper in various ways. Deng et al. (2013) propose

a method (CUPED) that uses pre-experiment outcomes as an additional covariate in the co-

variate adjustments. Their method requires repeatedly observing the same units before and

during the experiment. Gui (2020) considers an auxiliary sample sampled from the same

target population as the experimental sample (same as this paper). He assumes that an en-

dogenous outcome is observed in the auxiliary sample and adopts a linear causal model with

IV-like structure to study efficiency gain. Gagnon-Bartsch et al. (2021) propose a method

named reLOOP that combines two former methods LOOP (Wu and Gagnon-Bartsch, 2021)

and rebar (Sales et al., 2018). The reLOOP method trains a predictor for outcome from

the auxiliary data, and then use it to impute outcomes for the experimental units as an

additional covariate. The inference in their paper is design-based, as opposed to under the

large population model.

Studies on combining experimental data with observational data for reasons other than

variance reduction (e.g. external validity, estimating long-run effects) include Hartman et al.

(2015), Peysakhovich and Lada (2016) Rosenman et al. (2018), Athey et al. (2020), among

others.

The rest of this chapter proceeds as follows. Section 1.2 formally states the treatment

effect model and the statistical inference problem. Section 1.3 derives a result on semi-

parametric efficiency bound in a more general two-sample problem that encompasses our
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treatment effect model as a special case. Section 1.4 presents efficiency bound on ATE and

other functionals of the average potential outcomes, and Section 1.5 concludes. Proofs are

all collected in the appendix that forms Section 1.6.

1.2 Model

We consider two i.i.d. random samples {(Yi, Ti, Zi)}ni=1 and {Xi}mi=n+1 sampled separately

from the same large population. The first sample is an experimental sample from the canoni-

cal potential outcome model (Neyman, 1923; Rubin, 1974) where Yi ∈ Y ⊂ R is the outcome

variable of interest, Zi ∈ Z ⊂ RdZ is a dZ-dimensional vector of covariates (features), and

Ti ∈ {0, 1, ..., T} is a treatment indicator, with Ti = t if unit i receives treatment t. We do

not impose any order among the treatment arms and T = 0 is reserved for the control group.

Each unit has a set of potential outcomes {Yi(t)}Tt=0 so that

Yi = Yi(Ti) =
T∑
t=1

Yi(t)1{Ti = t}, 1 ≤ i ≤ n. (1.1)

Treatment Ti is randomly assigned to each unit i by the experimenter. The assignment

probabilities can depend on the vector of covariates. Denote P (T = t|Z = z) = πt(z), these

functions (propensity scores) are chosen by the researcher and are hence known functions

in the statistical problem.3 The second sample {Xi}mi=n+1 is an auxiliary sample on the

covariates from the same target population. We assume Xi is a subvector of Zi, hence

we can write Zi = (XE
i , Xi), where XE

i is the subvector of the covariates in Zi that are

only observed in the experimental sample. Since the auxiliary sample is sampled from the

same target population as the experimental sample, all Xi, 1 ≤ i ≤ m, follow the same

distribution. The auxiliary sample can be collected before, after or simultaneously with the

experimental sample. Since no experiment is conducted on units in the auxiliary sample, we

3To focus on studying the efficiency gain from auxiliary data, we assume known propensity scores here for
simplicity. An extension to unknown propensity score, e.g. observational data under conditional ignorability,
is possible.
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do not observe Ti nor Yi for units i > n. All modeling assumptions are summarized below.

Assumption 1.2.1. i) Independent random samples: {(Yi, Ti, Zi)}ni=1 and {Xi}mi=n+1 are

both i.i.d. samples and are also independent from each other. ii) Conditional random as-

signment: Ti is independent from {Yi(t)}Tt=0 conditional on Zi = (XE
i , Xi) for all i ≤ n. iii)

Propensity score: For all t ∈ {0, 1, ..., T}, P (Ti = t|Zi) = πt(Zi) is known and πt(z) ≥ πmin >

0 almost surely. iv) Common population: Xi in both samples follow the same distribution.

The parameters of interests are the average potential outcomes µt = E[Y (t)] or any

differentiable functions of them including the average treatment effects τt,t′ = µt − µt′ , t 6=

t′. These parameters are identified in the first sample alone by the standard identification

Assumption 1.2.1 (ii) and (iii). In particular,

µt = E[E[Y |Z, T = t]]. (1.2)

From now on, we focus on efficient estimation of the response vector µ = (µ0, ..., µT)
′

as the efficiency bound for any known differentiable function of µ, including the average

treatment effects, would easily follow if we find the efficiency bound for µ.

Remark 1.2.1. The assumption that Xi is a subvector of Zi is not substantial. A more

general set up is to consider two samples {(Yi, Ti, Xi, X
E
i )}ni=1 and {(Xi, X

A
i )}mi=n+1, where

XA is only observed in the auxiliary sample. One can show that the efficiency bounds for µt

and τt,t′ remain unchanged after adding XA. In other words, {XA
i }mi=n+1 does not provide

any extra useful information.

Remark 1.2.2. The efficiency bound result in this paper can be easily extended to the prob-

lem of estimating parameter φ(E[g(W, W̃ )]) from two independent i.i.d. samples {(Wi, W̃i)}ni=1

and {W̃i}mi=n+1, collected separately from the same large population, for any known vector-

valued function g and continuously differentiable function φ : Rdg → Rdφ .

Remark 1.2.3. An alternative way to study sample combination problem is to assume

multinomial sampling/missing data model. For our problem, this requires to model the data
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as one single i.i.d. sample {Yi∆i, Ti∆i, X
E
i ∆i,∆i, Xi}mi=1, where ∆i is a “sample indicator”

that follows a known Bernoulli distribution with P (∆ = 1) = n
m

, independent from all other

variables.4 This is a somewhat unnatural model for the sampling process that might arise in

applications, especially when the two samples are collected separately with predetermined

sample sizes. Certain statistics share the same asymptotic distributions under this set up

and the two-sample set up considered in this paper. However, to what extent the two models

are “equivalent” remains unclear. In particular, variable ∆i does not exist in the two-sample

set up. Whether the extra randomness it brings affects semiparametric efficiency bounds

needs to be examined.

Next, we derive the asymptotic variance bounds for all regular estimators of µ under

the two-sample set up specified in Assumption 1.2.1. To this aim, we first derive a result

on semiparametric efficiency bound in a more general two-sample problem that encompasses

our treatment effect model as a special case, then we calculate the bounds for µ and τt,t′ from

there. We follow the semiparametric efficiency bound theory. For a detailed introduction to

this topic, please refer to textbooks Van der Vaart (2000) and Bickel et al. (1993).

1.3 General Two-sample Problem

In this section, we study the semiparametric efficiency theory in a general two-sample set up.

Suppose we have two independent i.i.d. samples {Wi}ni=1 and {W̃i}mi=n+1. For the asymptotic

analysis, we think of m as a sequence mn indexed by n and that mn
n
→ γ as n → ∞. This

allows us to think of the statistical experiment (Van der Vaart, 2000) as only indexed by

n. All definitions and theorems hereon are implicitly under this asymptotic framework. We

choose n as the index for asymptotic analysis because we consider {Wi}ni=1 as the primary

4Under this alternative model, the size of the experimental sample, i.e.
∑m
i=1 ∆i, is random and only

equals to n in expectation. One way to address this is to assume ∆i are block randomized so that
∑m
i=1 ∆i = n

with probability one, but the sample would no longer be i.i.d., creating difficulties for studying semiparametric
efficiency.
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sample and {W̃i}mi=n+1 as an auxiliary sample. The asymptotic distributions of estimators

will also be obtained by scaling with
√
n, so that the asymptotic variances are directly

comparable with those of estimators that don’t utilize the auxiliary sample. In appendix

1.6.2, we provide a simple example to show that the mn
n
→ γ asymptotics is sensible in the

two-sample set up when γ is naturally replaced by m
n

in the variance estimation.

We assume W ∼ P ∈ P and W̃ ∼ Q ∈ Q. In other words, P and Q are the true

distributions for random variables W and W̃ , and they respectively belong to sets of distri-

butions P and Q. The sets P and Q are known and are restricted by modeling assumptions.

{Wi}ni=1 and {W̃i}mi=n+1 are two independent i.i.d. samples that follow the product measure

P n ⊗ Qm−n. The two distributions P and Q are potentially related, which means that the

pair (P,Q) could belong to a restricted subset M ⊂ P×Q , instead of the whole Cartesian

product P×Q. The restrictions that characterize M are also known modeling assumptions.

The set M can be interpreted as the statistical model.

Remark 1.3.1. To map our treatment effect model into here as an example, W =

(Y, T,XE, X) ∼ P ∈ P and W̃ = X̃ ∼ Q ∈ Q. 5 P is restricted by Assumption 1.2.1

(iii), the known propensity score6, and Q is not restricted. Moreover, M is further restricted

by Assumption 1.2.1 (iv), which requires that the distribution Q of X̃ is the same as the

marginal distribution of X under P . Interestingly, the crucial identification Assumption

1.2.1 (ii) does not put any restriction on the observable distribution. The role it plays here is

to give the otherwise rather arbitrary parameter EP [EP [Y |T = t, Z]] a causal interpretation

through the latent potential outcomes, namely EP [Y (t)].

The semiparametric efficiency bound can be heuristically understood as the lowest achiev-

5We added the “tilde” here to distinguish X̃ from X. X̃ represents the random variables from the second
sample. We were able to avoid using this notation in previous sections because X̃ and X has the same
distribution under our model and the second sample is indexed from n+ 1 instead of 1 (which we still do in
this section for consistency).

6P can be understood as a conditional moment restriction model, as the set of distributions such that
EP [1{T = t} − πt(Z)|Z] = 0 for all t ∈ (0, ..., T) and Z = (XE , X).
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able asymptotic variance under the hardest parametric specification of the nonparametric

model. Following this literature to characterize efficiency, we introduce local one-dimentional

smooth parametric submodels, defined as follow.

Definition 1.3.1. A local smooth submodel ι 7→ (Pg,ι, Qh,ι) is a function defined on [0, 1]

such that for every ι ∈ [0, 1], (Pg,ι, Qh,ι) belongs to the restricted set M and Pg,ι ⊗ Qh,ι is a

measure for (W, W̃ ). Moreover, (Pg,0, Qh,0) = (P,Q) and as ι→ 0,∫
(
dP

1
2
g,ι − dP

1
2

ι
− 1

2
gdP

1
2 )2 → 0, (1.3)∫

(
dQ

1
2
h,ι − dQ

1
2

ι
− 1

2
hdQ

1
2 )2 → 0, (1.4)

for functions g(W ) ∈ L2(P ) and h(W̃ ) ∈ L2(Q).

Under this definition, we can show that the likelihood ratio process ((1.5) below) of this

model converges to a Gaussian limit as is stated by the following lemma.

Lemma 1.3.1. If the submodel ι 7→ (Pg,ι, Qh,ι) in M satisfies (1.3) and (1.4), then EP [g] =

0, EP [g2] <∞, EQ[h] = 0, EQ[h2] <∞ and as n→∞, m
n
→ γ,

log
n∏
i=1

dPg, 1√
n

dP
(Wi)

m∏
i=n+1

dQh, 1√
n

dQ
(W̃i) (1.5)

=
1√
n

n∑
i=1

g(Wi)−
1

2
EP [g2] +

1√
m− n

m∑
i=n+1

√
γ − 1h(W̃i)−

1

2
(γ − 1)EQ[h2] + oP (1). (1.6)

The proof is collected in appendix 1.6.1. The display in line (1.6) converges in distribution

to

N(−1

2
E[g̃2], E[g̃2]), (1.7)

where g̃(W, W̃ ) = g(W ) +
√
γ − 1h(W̃ ) and the expectation is taken under the product

measure P ⊗ Q. This Gaussian limit is the key to apply the asymptotic representation

theorem, through which we can derive an asymptotic variance bound that depends on (in

addition to the parameter of interest itself) the set of such g̃ functions that could arise with

9



different submodels. As the submodel ι 7→ (Pg,ι, Qh,ι) ∈M varies, the function g̃ varies and

we can get a collection of such functions. We call this collection of functions the tangent set

T (P,Q) and its elements score functions of the submodels.

T (P,Q) = {g̃ = g +
√
γ − 1h : (1.3) and (1.4) holds for some ι 7→ (Pg,ι, Qh,ι) ∈M}. (1.8)

Similar tangent set is considered in the original one-sample problem. Suppose we only

observe one i.i.d. sample {Wi}ni=1 of W ∼ P ∈ P and that the model is P, then we have the

following tangent set,

T (P ) = {g ∈ L2(P ) : (1.3) holds for some ι 7→ Pg,ι ∈ P}.

We assume that the closure of these tangent sets under L2 norms are linear subspaces. In

particular, T (P,Q) is the closure of T (P,Q) under ‖·‖L2(P⊗Q) and is a subspace of L2(P⊗Q).

Next, we impose the following assumptions on the parameter of interest φ, which encom-

passes the treatment effect applications we see in this paper.

Assumption 1.3.1. The parameter φ ∈ Rdφ is i) identified in the first sample, i.e. φ(P,Q) =

φ(P ), and ii) differentiable relative to the tangent set T (P,Q), that is for every smooth

submodel ι 7→ (Pg,ι, Qh,ι) ∈M with score function g̃ = g +
√
γ − 1h ∈ T (P,Q),

d

dι

∣∣∣∣
ι=0

φ(Pg,ι) =: φ̇P (g), (1.9)

where φ̇P is a continuous linear map from L2(P ) to Rdφ.

Assumption 1.3.1 requires that φ is a differentiable parameter that only depends on P .

Since M is a subset of P ×Q, and φ only depends on P , differentiability relative to T (P )

is sufficient for differnetiability relative to T (P,Q). Indeed, the first component of every

submodel ι 7→ (Pg,ι, Qh,ι) ∈M is a submodel ι 7→ Pg,ι ∈ P. Moreover, let φ̃ be the influence

function under the one-sample problem, so that φ̃ ∈ T (P ) and7

d

dι

∣∣∣∣
ι=0

φ(Pg,ι) = EP [φ̃(W )g(W )], for every ι 7→ Pg,ι ∈ P with g ∈ T (P ), (1.10)

7The influence function φ̃ is a dφ×1 vector-valued function, same with the φ̄ defined later. When dφ > 1,

we abuse the notation φ̃ ∈ T (P ) and φ̄ ∈ T (P,Q) to mean element-wise belonging.

10



we can immediately get that for every ι 7→ (Pg,ι, Qh,ι) ∈M with g̃ = g +
√
γ − 1h,

d

dι

∣∣∣∣
ι=0

φ(Pg,ι) =EP [φ̃(W )g(W )]

=E[φ̃(W )(g(W ) +
√
γ − 1h(W̃ ))] = E[φ̃(W )g̃(W, W̃ )],

where the plain expectation E is taken with the product measure P⊗Q. The second equality

follows because W and W̃ are independent under the product measure and E[h(W̃ )] = 0.

Define a vector-valued function φ̄ as the projection (element-wise) of φ̃ onto T (P,Q), i.e.

φ̄ ∈ T (P,Q) such that E[(φ̃− φ̄)g̃] = 0 for any g̃ ∈ T (P,Q). (1.11)

Then we have for every ι 7→ (Pg,ι, Qh,ι) ∈M with g̃ ∈ T (P,Q),

d

dι

∣∣∣∣
ι=0

φ(Pg,ι) = E[φ̄(W, W̃ )g̃(W, W̃ )]. (1.12)

Expression (1.12) is analogous to (1.10), with g replaced by the score function g̃ of the two-

sample problem. This suggests that φ̄ is the new efficient influence function. At last, we

restrict the set of estimators we consider to regular estimators. An estimator φ̂n is regular

if along any local submodel (Pg, 1√
n
, Qh, 1√

n
), we have

√
n(φ̂n − φ(Pg, 1√

n
))

g̃
 L, (1.13)

where the converge in distribution is along the particular submodel (Pg, 1√
n
, Qh, 1√

n
) but the

limiting distribution L is invariant to the choice of the submodel. This means that the

estimator is robust to local perturbations of the model. In other words, the scaled and

centered limiting distribution of the estimator is invariant to the local model (Pg, 1√
n
, Qh, 1√

n
).

The motivation of such restriction is to rule out super-efficient estimators like the Hodges-Le

Cam estimator, although it also rule out useful estimators like certain shrinkage estimators.

Best regular is also local asym minimax over all estimators if the parameter is difirentiable

The following lemma states that the lower bound on asymptotic variance of all regular

estimators of parameter φ is E[φ̄φ̄′].

11



Lemma 1.3.2. Suppose T (P,Q) ⊆ L2(P × Q) is a linear space, parameter φ satisfies As-

sumption 1.3.1, then the asymptotic covariance matrix of every regular sequence of estimators

is bounded below by E[φ̄φ̄′], where φ̄ is defined by (1.11).

The proof is collected in Section 1.6.1.

Remark 1.3.2. Suppose φ is a scalar parameter, since the new efficient influence function

φ̄ is a projection of the original influence function φ̃, by pythagorean theorem, we have

E[φ̄φ̄′] = ‖φ̄‖2 ≤ ‖φ̃‖2 = E[φ̃φ̃′]. This says that the new efficiency bound is always smaller

or equal to the original bound. This is intuitive as the second sample can only provide more

information for estimating φ and hence improving efficiency. Similarly, if φ is a vector, we

can show that E[φ̃φ̃′]− E[φ̄φ̄′] is always positive semidefinite.

Remark 1.3.3. We can also see that for the efficiency bound to improve, the two dis-

tributions P and Q must be related. Otherwise, we have (P,Q) ∈ M = P × Q and

T (P,Q) = {g +
√
γ − 1h : g ∈ T (P ), h ∈ T (Q)}, where T (Q) here is a collection of

score functions h with corresponding submodels ι → Qh,ι ∈ Q that satisfies (1.4). This

means that g and h are not related. In particular, h can be the zero function, so that

φ̃ = φ̃+
√
γ − 1 · 0 ∈ T (P,Q). As a result, the projection of φ̃ on T (P,Q) is φ̃ itself, i.e. the

efficient influence function remains the same. This is expected. If the second distribution Q

has no relation at all with the first distribution P , the second sample generated by Q will

not provide any information in estimating the parameter φ(P ) that only depends on the first

distribution.

If the parameter of interest is instead θ(φ), where θ : Rdφ → Rdθ is a known fully differ-

entiable function with Jacobian matrix J , then the efficiency bound for θ(φ) is JE[φ̄φ̄′]J ′,

as stated in the following corollary.

Corollary 1.3.1. Under the conditions of Lemma 1.3.2. If θ : Rdφ → Rdθ is a known fully

differentiable function with Jacobian matrix J , then the asymptotic covariance matrix of

every regular sequence of estimators θ̂n for parameter θ(φ(P )) is bounded below by JE[φ̄φ̄′]J ′.
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1.4 Efficiency Bound for the Treatment Effect Parameters

In this section, we present the semiparametric efficiency bound for the causal parameters µ

in the two-sample set up. As for τt,t′ , we view it as a differentiable function of µ so that the

efficiency bound for it follows from corollary 1.3.1. Following our discussion in the previous

section, the calculation of the efficiency bounds consists of two steps: i) characterize the two-

sample tangent set T (P,Q) and ii) project the original efficient influence functions onto the

new tangent space. The original efficient influence functions refer to the ones when only the

first sample is available. In our case, the first sample is the canonical experimental sample

as studied in Hahn (1998), so we know these influence functions are

µ̃t(Y, T, Z) =
1{T = t}(Y − ηt(Z))

πt(Z)
+ ηt(Z)− µt (1.14)

for µt, t ∈ {0, ..., T}, where ηt(z) denotes a conditional mean function

ηt(z) = E[Y (t)|Z = z].

We also use ζt(x) to denote a similar conditional mean function

ζt(x) = E[Y (t)|X = x].

The characterization of the two-sample tangent space and the projection of (1.14) onto it are

included in the proof of Theorem 1.4.1, which states the semiparametric efficiency bounds

for µ.

Theorem 1.4.1. Under Assumption 1.2.1, the asymptoticvariance (n → ∞, m/n → γ) of

any regular sequence of estimators for µ is bounded below by V , which is a (T+1) dimensional

square matrix defined by

Vt,t′ = E[(ηt(Z)− ζt(X))(ηt′(Z)− ζt′(X))] +
1

γ
E[(ζt(X)− µt)(ζt′(X)− µt′)], for t 6= t′,

(1.15)

Vt,t = E[
σ2
t (Z)

πt(Z)
] + E[(ηt(Z)− ζt(X))2] +

1

γ
E[(ζt(X)− µt)2], (1.16)

where σ2
t (Z) = V ar(Y (t)|Z).
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To see the variance reduction, we compare (1.16) with the semiparametric efficiency

bound for µt when only the experimental sample is used. This bound is derived in Hahn

(1998) which equals to

E[
σ2
t (Z)

πt(Z)
] + E[(ηt(Z)− µt)2] = E[

σ2
t (Z)

πt(Z)
] + E[(ηt(Z)− ζt(X))2] + E[(ζt(X)− µt)2].

We see that (1.16) reduces this variance by multiplying the last term with the factor 1
γ
<

1, where γ is the limit of m
n

. The amount of variance reduced depends on two factors.

First, E[(ζt(X) − µt)
2], which is directly related to the explanation power of X on Y (t),

as V ar(Y (t)) = E[(ζt(X) − µt)
2] + E[V ar(Y (t)|X)]. The more covariates X explain the

variation of Y (t), the larger the reduction.8 Put differently, the variance reduction is most

pronounced when X consists of good predictors of Y (t). In fact, E[(ζt(X)− µt)2] is weakly

increasing in the dimension of X. This motivates using high-dimensional covariates, hence

calling for ML methods to avoid over-fitting/curse of dimensionality. Second, provided that

E[(ζt(X) − µt)
2] 6= 0, the larger the size of the auxiliary sample, the larger the variance

reduction, as 1
γ

is close to zero if m
n

is large.

Intuitively speaking, we can learn µt = E[Y (t)] by learning the conditional distribution

Y (t)|X and the marginal distribution of X. The former can only be learned from the

experimental data while the latter can also be learned from the auxiliary data. Our efficiency

bound results suggests that there should be a way to make use of the information on marginal

distribution of X contained in the auxiliary data to improve estimation efficiency. That is

indeed true as we will show in the next chapter.

One can also show that if the auxiliary sample takes the form of {(Xi, X
A
i )}mi=n+1, i.e. each

observation contains an additional vector of covariates XA
i not observed in the experimental

sample, the efficiency bound remains unchanged.

Proposition 1.4.1. Replace the sample {Xi}mi=n+1 with {(Xi, X
A
i )}mi=n+1 in Assumption

1.2.1 (i), where the conditional distribution of XA
i on Xi is unrestricted, keep the rest of

8To be precise, holding V ar(Y (t)) constant, larger E[(ζt(X) − µt)
2]/V ar(Y (t)), which is a measure

analogues to the usualR2 in regressions, means larger E[(ζt(X)−µt)2] and therefore larger variance reduction.
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Assumption 1.2.1, the asymptotic variance of any regular sequence of estimators for µ is

bounded below by V .

This is to say that our assumption of X being a subvector of Z in the baseline model is

not substantial.

1.5 Conclusion

In this chapter, we derived new semiparametric efficiency bounds of estimating the average

treatment effect and other functions of the average potential outcomes under the two sample

setup. We focused on the case where the auxiliary sample only contains observable charac-

teristics and is sampled from the same target population as the experimental sample. The

result shed light on how to efficiently combine the two samples for efficient estimation. The

newly obtained bound on ATE has an intuitive expression and shows that the (maximum

possible) amount of variance reduction depends positively on two factors: 1) the size of the

auxiliary sample, and 2) how well the covariates predict the individual treatment effects.

The latter naturally motivates having high dimensional covariates.

1.6 Appendix

1.6.1 Proofs

1.6.1.1 Proof of Lemma 1.3.1

This proof closely follows the proof of Theorem 7.2 in Van der Vaart (2000). Throughout

this proof, we denote the densities dPg, 1√
n

and dQh, 1√
n

by pn and qn, and their dominating

measure by dµ. Condition (1.4) implies
√
n(
√
qn −

√
q) converges to 1

2
h
√
q in L2(µ), which
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in turn implies that
√
qn −

√
q converges to zero in L2(µ). By continuity of inner product,

EQ[h] =

∫
hqdµ =

∫
1

2
h
√
q · 2√qdµ

= lim
n→∞

∫ √
n(
√
qn −

√
q)(
√
qn +

√
q)dµ

= lim
n→∞

∫ √
n(qn − q)dµ

= lim
n→∞

√
n(1− 1) = 0.

Similarly, condition (1.3) implies that EP [g] = 0. Note that in L2(µ),

√
m− n(

√
qn −

√
q) =

√
m− n
n

√
n(
√
qn −

√
q)→ 1

2

√
γ − 1h

√
q. (1.17)

Now we apply the Taylor expansion log(1 + x) = x − 1
2
x2 + x2R(2x) to the log likelihood

process, where R(x)→ 0 as x→ 0. Define Hn,i = 2(
√
qn√
q
− 1),

log
m∏

i=n+1

qn
q

(W̃i) =2
m∑

i=n+1

log(1 +
1

2
· 2(

√
qn√
q
− 1))

=2
m∑

i=n+1

log(1 +
1

2
Hn,i)

=
m∑

i=n+1

Hn,i −
1

4

m∑
i=n+1

H2
n,i +

1

2

m∑
i=n+1

H2
n,iR(Hn,i). (1.18)

We proceed with analyzing the three terms in (1.18) one by one, starting with
∑m

i=n+1 Hn,i.

V ar(
m∑

i=n+1

Hn,i −
1√

m− n

m∑
i=n+1

√
γ − 1h(W̃i)) ≤E[(

√
m− nHn,i −

√
γ − 1h(W̃i))

2]

=
√

2

∫ √
m− n(

√
qn −

√
q) (1.19)

− 1

2

√
γ − 1h

√
q)2dµ

→0, (1.20)
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where the convergence follows from (1.17). Next,

E[
m∑

i=n+1

Hn,i] =2(m− n)

∫
(

√
qn√
q
− 1)qdµ = 2(m− n)(

∫
√
qn
√
qdµ− 1)

=− (m− n)

∫
(
√
qn −

√
q)2dµ = −

∫
(
√
m− n(

√
qn −

√
q))2dµ

→− 1

4
(γ − 1)EQ[h2]. (1.21)

(1.20), (1.21) and Chebyshev’s inequality implies

m∑
i=n+1

Hn,i =
1√

m− n

m∑
i=n+1

√
γ − 1h(W̃i)−

1

4
(γ − 1)EQ[h2] + op(1) (1.22)

Next we analyze the second term in (1.18). Define An,i = (m− n)H2
n,i − (γ − 1)h2(W̃i). As

shown in (1.20), E[(
√
m− nHn,i −

√
γ − 1h(W̃i))

2] → 0, we can prove9 that E[|An,i|] → 0.

Which implies 1
m−n

∑m
i=n+1An,i = op(1) by Markov inequality. Then apply law of large

number,
m∑

i=n+1

H2
n,i =

1

m− n

m∑
i=n+1

(γ − 1)h2(W̃i) +
1

m− n

m∑
i=n+1

An,i

=(γ − 1)EQ[h2] + op(1). (1.23)

Now for the last term in (1.18), by union bound and Markov inequality, we have for any

ε > 0,

P ( max
n+1≤i≤m

|Hn,i| >
√

2ε) ≤(m− n)P (|Hn,i| >
√

2ε)

=(m− n)P (|(γ − 1)h2(W̃i) + An,i| > 2(m− n)ε2)

≤(m− n)P ((γ − 1)h2(W̃i) > (m− n)ε2)

+ (m− n)P (|An,i| > (m− n)ε2)

≤ 1

ε2
E[(γ − 1)h2(W̃i)1{(γ − 1)h2(W̃i) > (m− n)ε2}] +

1

ε2
E[|An,i|]

→0

9If Xn converge to X in L2 (i.e. E[(Xn − X)2]
1
2 → 0) then E[|X2

n − X2|] → 0. Indeed, E[|X2
n −

X2|] = E[|(Xn + X)(Xn − X)|] ≤ E[(Xn + X)2]
1
2E[(Xn − X)2]

1
2 , where E[(Xn + X)2]

1
2 is bounded by

2E[X2]
1
2 + E[(Xn −X)2]

1
2 through triangular inequality.

17



Since R(x)→ 0 as x→ 0, we have

m∑
i=n+1

H2
n,iR(Hn,i) ≤ max

n+1≤i≤m
|R(Hn,i)|

m∑
i=n+1

H2
n,i = op(1) ·Op(1) = op(1). (1.24)

Plug (1.22), (1.23) and (1.24) into (1.18) we get

log
m∏

i=n+1

qn
q

(W̃i) =
1√

m− n

m∑
i=n+1

√
γ − 1h(W̃i)−

1

2
(γ − 1)EQ[h2] + op(1).

Similarly, we can prove that

log
n∏
i=1

pn
p

(Wi) =
1√
n

n∑
i=1

g(Wi)−
1

2
EP [g2] + op(1).

The lemma follows as logarithm of the product equals the sum of logarithms.

1.6.1.2 Proof of Lemma 1.3.2

Before we prove Lemma 1.3.2, we state a version of the asymptotic representation theorem

as below.

Theorem 1.6.1. (Asymptotic Representation Theorem) Let {Qh,n : h ∈ Rk} and Pn be

sequences of probability measures on measurable spaces (Ωn,An), and let Tn : Ωn → Rd be a

sequence of random vectors that converge in distribution to Sh under Qh,n. Suppose

(Tn,
dQh,n

dPn
)
Pn (S0, exp(h′∆− 1

2
h′Jh)) (1.25)

where ∆ ∼ N(0, J), then there exists a randomized statistic T in the experiment (N(h, J−1) :

h ∈ Rk) such that Sh ∼ T for every h.

The above theorem can be proved using the general version of Le Cam’s third lemma

(Theorem 6.6 in Van der Vaart (2000)) and follow the steps in the proof of theorem 7.10 in

Van der Vaart (2000). By saying T is a randomized statistic in the experiment (N(h, J−1) :

h ∈ Rk), we mean that T is a measurable function of (X,U) where X ∼ N(h, J−1), and U

independent of X. h is understood as the unknown parameter.
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Now we prove Lemma 1.3.2. This proof follows the steps in the proof of Theorem 25.20

(Convolution) in Van der Vaart (2000). Pick an orthonormal base gp = (g1, g2, ..., gp) in

T (P,Q), for any p × 1 vector a we find a score function a′gp. Denote the submodel with

score function a′gp as ι→ (Pa,ι, Qa,ι), By Lemma 1.3.1 and (1.7), we have

log
n∏
i=1

dPa, 1√
n

dP
(Wi)

m∏
i=n+1

dQa, 1√
n

dQ
(W̃i)

0
 N(−1

2
E[a′gpg

′
pa], E[a′gpg

′
pa]). (1.26)

Since E[a′gpg
′
pa] = a′Ipa, the right-hand side of (1.26) can be written as a′∆− 1

2
a′Ipa, where

∆ follows standard normal distribution N(0, Ip). Next, take any regular estimator φ̂n, by

(1.12),

√
n(φ̂n − φ(Pa, 1√

n
)) =
√
n(φ̂n − φ(P ))−

√
n(φ(Pa, 1√

n
)− φ(P ))

=
√
n(φ̂n − φ(P ))− E[φ̄g′pa] + o(1)

=
√
n(φ̂n − φ(P ))− Aa+ o(1), (1.27)

where A := E[φ̄g′p]. Denote the limiting distribution of
√
n(φ̂n−φ(P )) under (P0, Q0) by S0

and its limiting distribution under (Pa, 1√
n
, Qa, 1√

n
) by Sa. S0 and Sa exist by the regularity

condition (1.13) and (1.27). We have

(
√
n(φ̂n − φ(P )),

n∏
i=1

dPa, 1√
n

dP
(Wi)

m∏
i=n+1

dQa, 1√
n

dQ
(W̃i))

0
 (S0, exp(a′∆− 1

2
a′Ipa)). (1.28)

This gives us condition (1.25) in theorem 1.6.1. Hence, there exists a randomized statistic

T in the experiment (N(a, Ip) : a ∈ Rp) such that T ∼ Sa for every a. This is to say

that the limiting distribution of
√
n(φ̂n − φ(Pa, 1√

n
)) under (Pa, 1√

n
, Qa, 1√

n
) is matched by the

distribution of T − Aa. Since φ̂n is regular, the distribution of T − Aa doesn’t depend on

a, meaning T is an equivariant estimator for Aa in the simple normal experiment. We can

write

√
n(φ̂n − φ(Pa, 1√

n
))

a
 (T − Aa) ∼ L, for any a ∈ Rp. (1.29)
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By Proposition 8.4 in Van der Vaart (2000), the lower bound on the variance for such

equivariant estimators is AA′. As a result, the lower bound for the asymptotic variance of

φ̂n is also AA′. Note that

AA′ = AE[gpg
′
p]A
′ = E[Agpg

′
pA
′],

where Agp = E[φ̄g′p]gp = E[φ̄g′p]E[gpg
′
p]
−1gp is the projection (component-wise) of φ̄ onto

the linear span of gp. Since φ̄ is by definition in the closed linear span of T (P,Q), we can

choose gp to make Agp arbitrarily close to φ̄ and hence AA′ is arbitrarily close to E[φ̄φ̄′].

Therefore, the asymptotic variance of φ̂n is bounded below by E[φ̄φ̄′].

1.6.1.3 Proof of Theorem 1.4.1

The proof consists of two steps. In the first step, we characterize the two-sample tangent

space described in Section 1.3. In the second step, we project the original influence functions

onto the tangent space. Assumption 1.3.1 are satisfied as shown in Hahn (1998), the result

would then follow from Lemma 1.3.2.

STEP ONE. We follow the same method as in Hahn (1998) to characterize the tangent

space. We need to consider smooth parametric submodels ι 7→ (Pι, Qι), where P is the

distribution for (Yi, Ti, Xi, X
E
i ), i ≤ n, in the first sample and Q is the distribution for Xi,

n < i ≤ m in the second sample. We use (Y, T,X,XE) to denote the random variables under

distribution P and X̃ under Q.

Start with distribution P . Denote πt(x, x
E) = P (T = t|X = x,XE = xE) and fX(x) the

density function of X. Let ft(y|x, xE) denote the conditional density of Y on (X,XE) and

T = t, fE(xE|x) the conditional density of XE on X. The density of (Y, T,X,XE) under

distribution P is then equal to

T∏
j=0

(fj(y|x, xE)πj(x, x
E))1{t=j} · fE(xE|x)fX(x). (1.30)

For distributionQ, by Assumption 1.2.1 iv), the density function for X̃ should be the same
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as X, hence it is fX(x̃). Then a regular one-dimensional parametric submodel ι 7→ (Pι, Qι)

is

(
T∏
j=0

(fj(y|x, xE; ι)πj(x, x
E))1{t=j} · fE(xE|x; ι)fX(x; ι), fX(x̃; ι)),

which equals to

(
T∏
j=0

(fj(y|x, xE)πj(x, x
E))1{t=j} · fE(xE|x)fX(x), fX(x̃))

when ι = 0. Note that the propensity score πj(x, x
E) is not parametrized as it is known in

the statistical problem. Also note that the density functions of X and X̃ are the same for

every ι. Taking derivatives to the log densities gives us the two components of our score

function that satisfies (1.3) and (1.4) respectively.

T∑
j=0

1{t = j}sj(y|x, xE) + tE(xE|x) + tX(x), and tX(x̃), (1.31)

where

sj(y|x, xE) =
∂

∂ι

∣∣∣∣
ι=0

log fj(y|x, xE; ι),

tE(xE|x) =
∂

∂ι

∣∣∣∣
ι=0

log fE(xE|x; ι),

tX(x) =
∂

∂ι

∣∣∣∣
ι=0

log fX(x; ι).

We note that the first component in (1.31) is the same as the original score function in the

one-sample problem studied in Hahn (1998). Next, by (1.8), we obtain a tangent space for

the two-sample problem as

T (P,Q) = {
T∑
j=0

1{t = j}sj(y|x, xE) + tE(xE|x) + tX(x) +
√
γ − 1tX(x̃) : “conditions”}

where the “conditions” are∫
sj(y|x, xE)fj(y|x, xE)dy = 0, ∀(x, xE), j ∈ {0, .., T}, (1.32)∫
tE(xE|x)fE(xE|x)dxE = 0, ∀x, (1.33)∫
tX(x)fX(x)dx = 0. (1.34)
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STEP TWO. The original influence function is (1.14), we now find its projection on

T (P,Q). We can check that the following function is indeed the projection,

µ̄t =
1{T = t}(Y − ηt(X,XE))

πt(X,XE)
+(ηt(X,X

E)− ζt(X))

+
1

γ
(ζt(X)− µt) +

√
γ − 1

γ
(ζt(X̃)− µt).

To see this, we check that the projection error is orthogonal to all the elements in T (P,Q),

namely E[(µ̃− µ̄)g̃] = 0 for any g̃ ∈ T (P,Q). Note that the expectation here and onward in

this proof are all taken with respect to the product measure P ⊗Q. We have

µ̃− µ̄ =
γ − 1

γ
(ζt(X)− µt)−

√
γ − 1

γ
(ζt(X̃)− µt),

and consider any generic score function

g̃ =
T∑
j=0

1{T = j}sj(Y |X,XE) + tE(XE|X) + tX(X) +
√
γ − 1tX(X̃).

By condition (1.32) to (1.34) and that X̃ are independent from (Y, T,X,XE), we get that

E[(µ̃− µ̄)g̃] =
γ − 1

γ
E[(ζt(X)− µt)tX(X)]− γ − 1

γ
E[(ζt(X̃)− µt)tX(X̃)] = 0,

the second equality is due to X and X̃ having the same marginal distribution under P ⊗Q.

The vector-valued efficient influence function µ̄ is obtained by stacking all the projections

µ̄t, t ∈ {0, ..., T} together. Then we get efficient bound E[µ̄µ̄′] by Lemma 1.3.2, which equals

to V as defined in theorem 1.4.1.

1.6.2 Limit of the Two Sample Sizes

In this subsection we provide a simple example to show that the m
n
→ γ asymptotic frame-

work is sensible in the two-sample set up, when γ is naturally replaced by m
n

in the variance

estimation. Recall that the goal of asymptotic analysis is primarily to provide approxima-

tions to the finite-sample distributions of statistics.
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Consider two i.i.d. samples {Wi}ni=1 and {W̃i}mi=n+1. Note that the size of the second

sample is m− n. Assume central limit theorem applies, we have

√
n(

1

n

n∑
i=1

Wi − E[W ]) N(0, V ar(W )), as n→∞, (1.35)

√
m− n(

1

m− n

m∑
i=n+1

W̃i − E[W̃ ]) N(0, V ar(W̃ )), as m− n→∞. (1.36)

These results justify the following asymptotic approximations for the finite sample distribu-

tions of the sample means

1

n

n∑
i=1

Wi ∼ N(E[W ],
V ar(W )

n
), (1.37)

1

m− n

m∑
i=n+1

W̃i ∼ N(E[W̃ ],
V ar(W̃ )

m− n
). (1.38)

So far, we have let the two sample sizes go to infinity separately without specifying the

limiting ratio between them. Now suppose we choose to index the statistical experiment by

n only, hence thinking of m as a sequence mn indexed by n. Let m
n
→ γ, we have similar to

(1.36)

√
n(

1

m− n

m∑
i=n+1

W̃i − E[W̃ ])

=

√
n√

m− n
√
m− n(

1

m− n

m∑
i=n+1

W̃i − E[W̃ ])

 N(0,
1

γ − 1
V ar(W̃ )), as n→∞.

This limiting distribution would provide the following approximation for the finite sample

distribution of the sample mean

1

m− n

m∑
i=n+1

W̃i ∼ N(E[W̃ ],
V ar(W̃ )

(γ − 1)n
).

If we set γ = m
n

, as we would when we estimate the asymptotic variance, then this approx-

imated distribution is identical to the one in (1.38). Also note that the variances of these

approximations are actually exact.
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CHAPTER 2

Efficient Machine Learning Imputation for Estimating

ATE with a Combined Sample

2.1 Introduction

In this chapter, I study how to use modern debiased machine learning techniques (Cher-

nozhukov et al., 2018) to efficiently estimate the average treatment effect (ATE) with a

combined sample. Specifically, I continue with the setup discussed in the previous chapter,

where a canonical experimental sample is combined with an auxiliary observational sample

that only contains observable characteristics (features or covariates). As suggested by the

semiparametric efficiency bound derived in the previous chapter, the (maximum possible)

amount of variance reduction through incorporating the auxiliary sample depends positively

on two factors: 1) the size of the auxiliary sample, and 2) how well the observable char-

acteristics predict the individual treatment effects. The latter naturally motivates having

high dimensional covariates. Therefore, ML tools are called for to avoid over-fitting/curse

of dimensionality.

I propose a two-stage machine learning (ML) imputation estimator that achieves the

efficiency bound derived in chapter 1, so that no other regular estimators for ATE can have

lower asymptotic variance in the same setting. This estimator involves two steps. In the

first step, conditional average potential outcome functions are estimated nonparametrically

via ML, which are then used to impute the unobserved potential outcomes for every unit in

both samples. In the second step, the imputed potential outcomes are aggregated together
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in a robust way to produce the final estimate. Adopting the cross-fitting technique proposed

in Chernozhukov et al. (2018), our two-step estimator can use a wide range of supervised

ML tools as the first-step, while maintaining valid inference to construct confidence intervals

and perform hypothesis tests. These ML tools include LASSO and post-LASSO, elastic

nets, neural nets, regression trees and random forests, or ensemble/aggregated methods of

the above. In fact, any method that estimates the relevant conditional mean functions

consistently in L2(P ) norm, with no rate requirement1, will lead to efficiency through our

two-step procedure. I also show that cross-fitting is not necessary when the first-step is

done via LASSO or post-LASSO. Furthermore, our estimator is robust in the sense that it

remains consistent and
√
n normal (no longer efficient) even if the first step ML estimator

is inconsistent.

A brief discussion on related literature and the motivation for improving estimation

efficiency can be found in Section 1.1 in the previous chapter. The rest of this chapter

proceeds as follows. In Section 2.2, I briefly restate the model for completeness. In the next

two sections, I introduce two efficient imputation estimators and derive their asymptotic

distributions: Section 2.3 adopts the cross-fitting technique proposed in Chernozhukov et al.

(2018), which allows us to use general first-step ML methods that satisfy weak high-level

conditions; Section 2.4 focuses on using LASSO/post-LASSO in the first-step, in which

case cross-fitting is not necessary. Section 2.5 presents simulation results and Section 2.6

concludes. All proofs are collected in the appendix which forms Section 2.7.

2.2 Model

We consider two i.i.d. random samples {(Yi, Ti, Zi)}ni=1 and {Xi}mi=n+1 sampled separately

from the same large population. The first sample is an experimental sample from the canon-

ical potential outcome model (Neyman, 1923; Rubin, 1974) and the second sample is an

1Due to propensity score being a known function in the experimental setup.
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auxiliary sample on the covariates from the same target population. Xi is a subvector of Zi

and all Xi, 1 ≤ i ≤ m, follow the same distribution. More details on the model can be found

in Section 1.2, where all modeling assumptions are summarized in Assumption 1.2.1.

We are interested in estimating the average potential outcomes µt = E[Y (t)] or any

differentiable functions of them including the average treatment effects τt,t′ = µt − µt′ , t 6=

t′. These parameters are identified in the first sample alone by the standard identification

Assumptions 1.2.1 (ii) and (iii). In particular,

µt = E[E[Y |Z, T = t]]. (2.1)

This chapter shows an efficient way of combining the two samples to estimate these param-

eters. We allow both Z and X to be high-dimensional to incorporate the cases when the

number of covariates in the data is very large (even larger than n) or that these vectors

contain many flexible transformations (series base functions, e.g. polynomials, regression

splines) of the original covariates.2 Using high-dimensional covariates here is well-motivated

as we have shown earlier that the asymptotic variances (and efficiency bounds) are most

reduced when X consists of good predictors of the potential outcomes.

As in the previous chapter, we focus on estimating the response vector µ = (µ0, ..., µT)
′

with µ̂ = (µ̂0, ..., µ̂T)
′. The efficient estimator for any known differentiable function of µ can

be obtained by plugging in µ̂. For example, treatment effect τt,t′ can be efficiently estimated

by τ̂t,t′ = µ̂t − µ̂t′ .

Recall that we denote the conditional mean functions by

ζt(x) = E[Y (t)|X = x],

ηt(z) = E[Y (t)|Z = z].

The first step our proposed estimator is to estimate these condtional mean functions.

2Many estimation results in high-dimensional literature are established under the asymptotic framework
where the dimension of the covariates increases with sample size n. Our estimation results in this chapter
remains valid under this asymptotic framework. However, for discussions on semiparametric efficiency and
results in the previous chapter, the dimension of the (original) covariates should be fixed.
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2.3 General ML First Step with Cross-fitting

n m

experimental sample

∪3k=1Ik = {1, ..., n}
auxiliary sample

∪3k=1Ĩk = {n+ 1, ...,m}

I1 I2 I3 Ĩ1 Ĩ2 Ĩ3

K = 3Ic1

Figure 2.1: Illustration of the sample partitions for cross-fitting when K = 3.

Assume sample size n and m are divisible by K in order to simplify the notation. Let

{Ik}Kk=1 be a K-fold equal-sized random3 partition of the indices {1, ..., n} and {Ĩk}Kk=1 of

{n+ 1, ...,m}. Define Ick = {1, ..., n} \ Ik. See figure 2.1 for an illustration when K = 3. For

each fold k ∈ {1, ..., K}, construct ML estimator ζ̂t,k for ζt(x) = E[Y (t)|X = x] and η̂t,k for

ηt(z) = E[Y (t)|Z = z], using only the data from Ick (which is a subset of the experimental

sample). Under Assumption 1.2.1, we have

ηt(z) =E[Y (t)|Z = z] = E[Y |T = t, Z = z], (2.2)

ζt(x) =E[Y (t)|X = x] = E[
Y 1{T = t}
πt(Z)

|X = x]. (2.3)

Hence, to obtain η̂t,k, we use the T = t subsample in Ick, namely {i ∈ Ick : Ti = t}, and

adopt supervised ML methods that predicts Y with Z. For ζ̂t,k, we use the complete Ick

and adopt supervised ML methods that predicts Y 1{T=t}
πt(Z)

with X.4 Different structured

assumptions on ζt and ηt calls for the use of different machine learning tools. These tools

include LASSO, neural nets, regression trees and random forests, or ensemble/aggregated

3We have assumed i.i.d. sample, so randomization in this partition process is technically unnecessary.
The statistical model we consider does not reflect this randomization. Random partition is often advised in
practice in case the data has been sorted by value.

4If we have Ti ⊥⊥ {Yi(t)}Tt=0|X, then ζt can be estimated similarly as ηt from the T = t subsample in Ick.

This is recommended over working with Y 1{T=t}
πt(Z) as the latter adds noise to the estimation.
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methods of the above. There are performance guarantees for most of these ML methods that

make it possible to satisfy the following condition.

Assumption 2.3.1. For every t ∈ {0, ..., T} and k ∈ {1, ..., K}, as n → ∞, EZ [(η̂t,k(Z) −

ηt(Z))2] = op(1) and EX [(ζ̂t,k(X)− ζt(X))2] = op(1).

This assumption requires that the first step estimators are consistent for the conditional

mean functions ηt and ζt in L2-norm, with arbitrary rate of convergence. The consistency

of the first-step estimators are needed for efficiency. We will also show that if the limiting

functions ηt and ζt in Assumption 2.3.1 are replaced by any other square integrable func-

tions, the proposed two-step estimator is still consistent for µ and
√
n-normal, but without

achieving the efficiency bound.

To construct the two-step estimator, for each k ∈ {1, ..., K}, we use {ζ̂t,k}Tt=0 and {η̂t,k}Tt=0

to impute {Yi(t)}Tt=0 for observations i ∈ Ik ∪ Ĩk. Use the notation k[i] to denote the data

fold in which observation i belongs. The two-step estimator µ̂t is then given by

µ̂t =
1

m

m∑
i=1

ζ̂t,k[i](Xi) +
1

n

n∑
i=1

(
1{Ti = t}(Yi − η̂t,k[i](Zi))

πt(Zi)
+ η̂t,k[i](Zi)− ζ̂t,k[i](Xi)). (2.4)

The estimator for the vector µ = (µ0, ..., µT)
′ is then obtained by stacking µ̂t, t ∈ {0, ..., T},

together, i.e. µ̂ = (µ̂0, ..., µ̂T)
′. The structure in (2.4) makes the estimator robust to the bias

from the first-step ML estimation. To heuristically illustrate this, we can write

µ̂t =E[ζt(Xi)] + E[
1{Ti = t}(Yi − ηt(Zi))

πt(Zi)
+ ηt(Zi)− ζt(Xi)] + op(1) (2.5)

=E[
1{Ti = t}(Yi − ηt(Zi))

πt(Zi)
+ ηt(Zi)] + op(1) (2.6)

=E[Y (t)] + op(1). (2.7)

The moment in (2.6) is the well-known doubly robust score. (2.7) is obtained by law of

iterated expectation on Zi and Assumption 1.2.1 (ii). We see that (2.5) to (2.7) would still

follow through for any other integrable functions in place of ζt and ηt. This suggests that the
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estimator µ̂t is consistent even when the first-step estimators are not consistent but converge

to some other limiting functions than ζt and ηt. (e.g. estimated using simple OLS regressions

or under other mis-specified functional forms.) Furthermore, as shown in Chernozhukov et al.

(2018), this type of robustness property (more generally, Neyman orthogonality) makes the

second-step estimator insensitive to the bias of the first-step non-parametric estimators,

allowing the adoption of machine learning methods.

The following theorem state the asymptotic distribution of µ̂ = (µ̂0, ..., µ̂T)
′.

Theorem 2.3.1 (Cross-fitting with General ML First Step). Under Assumptions 1.2.1 and

2.3.1, consider the estimator µ̂ = (µ̂0, ..., µ̂T)
′, where µ̂t, t ∈ {0, ..., T}, are defined by (2.4).

Furthermore, assume that for every t, Y (t), ηt(Z) and ζt(X) all have finite second moment,

then as n→∞ and m
n
→ γ,

V −
1
2
√
n(µ̂− µ)→ N(0, IT+1).

V is a (T + 1) dimensional square matrix defined by

Vt,t′ = E[(ηt(Z)− ζt(X))(ηt′(Z)− ζt′(X))] +
1

γ
E[(ζt(X)− µt)(ζt′(X)− µt′)], for t 6= t′,

(2.8)

Vt,t = E[
σ2
t (Z)

πt(Z)
] + E[(ηt(Z)− ζt(X))2] +

1

γ
E[(ζt(X)− µt)2], (2.9)

where σ2
t (Z) = V ar(Y (t)|Z).

Proof is collected in appendix 2.7.2.

We see that the asymptotic variance is identical to the semiparametric efficiency bound in

theorem 1.4.1, hence our proposed estimator is efficient. In other words, there is no regular

estimator that can have lower5 asymptotic variance than V .

Corollary 2.3.1. Under Assumptions 1.2.1 and 2.3.1, the estimator µ̂ = (µ̂0, ..., µ̂T)
′, where

µ̂t, t ∈ {0, ..., T} are defined by (2.4), is semiparametric efficient.

5As V is a matrix, we say Ṽ is lower than V if V − Ṽ is positive definite.
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To estimate the variance matrix, we use the sample counterparts of (2.8) and (2.9). Define

the (T + 1) × (T + 1) dimensional variance estimator V̂ element-wise as the following. For

t 6= t′,

V̂t,t′ =
1

n

n∑
i=1

[(η̂t,k[i](Zi)− ζ̂t,k[i](Xi))(η̂t′,k[i](Zi)− ζ̂t′,k[i](Xi))]

+
n

m2

m∑
i=1

[(ζ̂t,k[i](Xi)− µ̂t)(ζ̂t′,k[i](Xi)− µ̂t′)], (2.10)

and for the diagonal elements,

V̂t,t =
1

n

n∑
i=1

[
1{Ti = t}(Yi − η̂t,k[i](Zi))

2

πt(Zi)2
] +

1

n

n∑
i=1

[(η̂t,k[i](Zi)− ζ̂t,k[i](Xi))
2]

+
n

m2

m∑
i=1

[(ζ̂t,k[i](Xi)− µ̂t)2]. (2.11)

The following theorem states that the variance estimator is consistent.

Theorem 2.3.2 (Variance Estimation). Under the conditions of theorem 2.3.1, further as-

sumes that for some δ > 0 and every t ∈ {0, ..., T}, E[(Y (t)−ηt(Z))2+δ], E[(ηt(Z)−ζt(X))2+δ]

and E[(ζt(X)− µt)2+δ] are all bounded, then V̂
p→ V .

The proof is collected in appendix 2.7.2.

Theorems 2.3.1 and 2.3.2 can be used for standard construction of confidence intervals

for treatment effects τt,t′ = µt − µt′ .

Corollary 2.3.2. Under the conditions of theorems 2.3.1 and 2.3.2, suppose we are interested

in the parameter `′µ for some (T + 1)× 1 vector `, then

|P (`′µ ∈ [`′µ̂± Φ−1(1− α

2
)

√
`′V̂ `/n])− (1− α)| → 0.

At last, we state that the estimator µ remains consistent and asymptotically normal

when the first-step estimators are inconsistent. We relax Assumption 2.3.1 by changing the

limiting functions ζt and ηt to some arbitrary square integrable functions ζ̃t and η̃t.
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Assumption 2.3.2. For every t ∈ {0, ..., T} and k ∈ {1, ..., K}, as n → ∞, EZ [(η̂t,k(Z) −

η̃t(Z))2] = op(1) and EX [(ζ̂t,k(X) − ζ̃t(X))2] = op(1), where ζ̃t and η̃t are some arbitrary

square integrable functions.

Proposition 2.3.1. Under Assumptions 1.2.1 and 2.3.2, consider the estimator µ̂ =

(µ̂0, ..., µ̂T)
′, where µ̂t, t ∈ {0, ..., T}, are defined by (2.4). Furthermore, assume that for

every t, E[Y (t)2] is bounded, then as n→∞ and m
n
→ γ,

Ṽ −
1
2
√
n(µ̂− µ)→ N(0, IT+1),

where Ṽ is a (T + 1) dimensional square matrix defined by (2.28) in appendix 2.7.2.4.

The proof is collected in appendix 2.7.2.

2.4 LASSO/post-LASSO First Step

In this subsection, we focus on using LASSO/post-LASSO in the first-step estimation of ηt

and ζt. In this case, cross-fitting is not necessary under a couple of additional assumptions.

LASSO/post-LASSO methods are suited when the conditional mean functions are believed

to be approximately sparse, which is made precise by the following assumption. For a p

dimensional vector δ, define the norm ‖δ‖0 =
∑p

j=1 1{|δj| > 0}.

Assumption 2.4.1 (Approximated Sparsity). For every t ∈ {0, 1, ..., T}, ζt(x) and ηt(z)

are well-approximated by sparse linear (in coefficients) functions, i.e. for some pζ and pη

dimensional vector coefficients βζ,t and βη,t,

ζt(x) = fζ(x)′βζ,t + rζ,t(x), ηt(z) = fη(z)′βη,t + rη,t(z),

max{max
0≤t≤T

‖βζ,t‖0, max
0≤t≤T

‖βη,t‖0} ≤ s = o(n),

max{max
0≤t≤T

E[rζ,t(X)2]
1
2 , max

0≤t≤T
E[rη,t(Z)2]

1
2} = O(

√
s

n
),

where fζ(x) := (fζ,1(x), ..., fζ,pζ(x))′ and fη(z) := (fη,1(z), ..., fη,pη(z))′ are the vectors of

regressors.
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The vectors of regressors fη and fζ could be composed of polynomials, dummies, B-splines

and various other series terms, or only of the original covariate themselves in high-dimensional

settings. This assumption requires that at most s among all pη (or pζ) of the regressor terms

should be enough to approximate the conditional mean functions well, while the identities of

these s terms can remain unknown. For more discussion on the sparsity assumption, please

see Belloni and Chernozhukov (2011); Belloni et al. (2012).

Recall that ηt and ζt are identified by Equations (2.2) and (2.3). Hence, to estimate ηt,

we can run LASSO regression of Y on fη(Z) in the subsample {i : 1 ≤ i ≤ n, Ti = t}. Denote

nt =
∑n

i=1 1{T = t},

β̂LSη,t = arg min
b∈Rpη

1

nt

n∑
i=1

1{T = t}(Yi − fη(Zi)′b)2 +
λη
nt
‖Λ̂η,tb‖1, (2.12)

where λη is the penalty level and Λ̂η,t is a diagonal matrix specifying penalty loadings.

Proposed in Belloni et al. (2012), the penalty loadings allow the regression error Ut :=

Y (t) − ηt(Z) to be heteroskedastistic and non-Gaussian. Details on the choice of λη,t and

Λ̂η,t are included in Appendix 2.7.1 for completeness, which closely follows Belloni et al.

(2012). The post-LASSO is defined as the OLS regression applied to regressors selected by

LASSO. Denote

B̂η,t = {b ∈ Rpη : bj = 0 if |β̂LSη,t,j| = 0, j = 1, ..., pη.}.

The post-LASSO estimator β̂PLη,t is

β̂PLη,t = arg min
b∈B̂η,t

1

nt

n∑
i=1

1{T = t}(Yi − fη(Zi)′b)2. (2.13)

To estimate ζt, we run LASSO regression of Y 1{T=t}
πt(Z)

on fζ(X) in the whole experimental
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sample {i : 1 ≤ i ≤ n},6

β̂LSζ,t = arg min
b∈Rpζ

1

n

n∑
i=1

(
Yi1{Ti = t}
πt(Zi)

− fζ(Xi)
′b)2 +

λζ
n
‖Λ̂ζ,tb‖1.

The choice of penalty level λζ and penalty loadings Λ̂ζ,t are also collected in appendix 2.7.1.

The post-LASSO estimator β̂PLζ,t is defined as the OLS regression applied to regressors selected

by LASSO similar to β̂PLη,t and we omit the details. For L ∈ {LS, PL}, denote η̂Lt (z) =

fη(z)′β̂Lη,t and ζ̂Lt (x) = fζ(x)′β̂Lζ,t, we can then define the two-step estimator as

µ̂Lt =
1

m

m∑
i=1

ζ̂Lt (Xi) +
1

n

n∑
i=1

(
1{Ti = t}(Yi − η̂Lt (Zi))

πt(Zi)
+ η̂Lt (Zi)− ζ̂Lt (Xi)), (2.14)

which is very similar to (2.4) only without cross-fitting. To derive the asymptotic distribu-

tion, we use the LASSO/post-LASSO rate results from the literature. For a scalar random

variable Wi, define the norms ‖Wi‖2
2,n = 1

n

∑n
i=1W

2
i and ‖Wi‖2

2,nt = 1
nt

∑n
i=1 1{Ti = t}W 2

i ,

so that ‖fη(Zi)′(β̂Lη,t − βη,t)‖2,nt and ‖fζ(Xi)
′(β̂Lζ,t − βζ,t)‖2,n are the prediction norms.

Assumption 2.4.2. For L ∈ {LS, PS} and every t ∈ {0, ..., T}, as n→∞,

‖β̂Lη,t − βη,t‖1 = Op(

√
s2 log(pη ∨ n)

n
), ‖fη(Zi)′(β̂Lη,t − βη,t)‖2,nt = Op(

√
s log(pη ∨ n)

n
),

‖β̂Lζ,t − βζ,t‖1 = Op(

√
s2 log(pζ ∨ n)

n
), ‖fζ(Xi)

′(β̂Lζ,t − βζ,t)‖2,n = Op(

√
s log(pζ ∨ n)

n
).

These rates can be found in corollary 1 from Belloni et al. (2012), which also provides

the sufficient primitive conditions. In our application, ηt is estimated from the nt sized

subsample instead of the size n sample, however, since nt and n are at the same rate and the

asymptotic rate results for LASSO/post-LASSO are derived from finite sample bounds, we

could assume that the primitive conditions in Belloni et al. (2012) holds for the subsamples

with probability approaching 1. At last, we also impose that all the regressors have bounded

support, i.e. ‖fζ‖∞ ∨ ‖fη‖∞ ≤ KB, and that s log(pη ∨ pζ)/
√
n→ 0.

6As noted in a previous footnote, if we have Ti ⊥⊥ {Yi(t)}Tt=0|X, then ζt can be estimated similarly as ηt
from the T = t subsample in Ick. This is recommended over working with Y 1{T=t}

πt(Z) as the latter adds noise

to the estimation.
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Assumption 2.4.3. i) The regressors are bounded, i.e. ‖fζ‖∞∨‖fη‖∞ ≤ KB with probability

1, uniformly in n. ii) s log(pη ∨ pζ) = o(
√
n).

The following theorem states the asymptotic distribution of the two-step estimator with

LASSO/post-LASSO first step and without cross-fitting. The asymptotic variance matrix

V is the same as in theorem 2.3.1.

Theorem 2.4.1 (LASSO/post-LASSO First Step). Under Assumptions 1.2.1, 2.4.1, 2.4.2

and 2.4.3, for L ∈ {LS, PL}, consider the estimator µ̂L = (µ̂L0 , ..., µ̂
L
T )′, where µ̂Lt , t ∈

{0, ..., T}, are defined by (2.14). Furthermore, assume that for every t, Y (t), ηt(Z) and

ζt(X) all have finite second moment, then as n→∞ and m
n
→ γ,

V −
1
2
√
n(µ̂L − µ)→ N(0, IT+1).

The proof is collected in appendix 2.7.2.

The asymptotic variance V can also be consistently estimated with the LASSO/post-

LASSO first-step and without cross-fitting. For L ∈ {LS, PL}, define variance estimator V̂ L

by changing η̂t,k[i](Zi) and ζ̂t,k[i](Xi) to η̂Lt (Zi) and ζ̂Lt (Xi) in Equation (2.10) and (2.11).

Theorem 2.4.2 (Variance Estimation with LASSO/post-LASSO First Step). Under the

conditions of theorem 2.4.1, further assumes that for some δ > 0 and every t ∈ {0, ..., T},

E[(Y (t)−ηt(Z))2+δ], E[(ηt(Z)−ζt(X))2+δ] and E[(ζt(X)−µt)2+δ] are all bounded, s2(log pη∨

pζ) = o(n), then for L ∈ {LS, PS}, V̂ L p→ V .

The proof is collected in appendix 2.7.2.

2.5 Simulation Exercise

In this section, we analyze the finite sample behavior of our method via a simulation study,

and in particular examine the variance reduction property and robustness under different

first-stage performances.
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We generate an i.i.d. experimental sample {Yi, Ti, Xi}ni=1, where Ti ∈ {0, 1}, and an

independent i.i.d. auxiliary sample {Xi}mi=n+1 with the data generating process specified as

follow. The potential outcomes follow sparse linear models,

Yi(0) =α0(X ′iβ0) + ε0,i, (2.15)

Yi(1) =5 + α1(X ′iβ1) + ε1,i, (2.16)

where Xi has dimension dx and follows joint normal distribution N(0, Idx). ε0,i and ε1,i are

i.i.d. N(0, 1). The coefficients in β0 and β1 are set to decay at a polynomial rate controlled

by sparsity parameter δ, with

β0 =(−1,−1,−1,−1, 1, 1, (
1

2
)δ,−(

1

3
)δ, (

1

4
)δ, ...),

β1 =(1, 1, 1, 1, ...(
1

4
)δ,−(

1

3
)δ, (

1

2
)δ, 1, 1).

Most elements in β0 and β1 are set to have opposite signs so that the covariates Xi can

explain the individual treatment effect [Yi(1) − Yi(0)], i.e. Xi explains the heterogeneous

treatment effect. The parameter of interest is the average treatment effect E[Yi(1) − Yi(0)]

which equals 5. Treatment Ti are generated with a propensity score function π(X) = E[T |X],

set to depend on the leading covariates (those that do not decay based on sparsity), namely

π(X) =
1

3
+

1

3
1{

6∑
j=1

Xj +Xdx +Xdx−1 > 0}.

Finally, we get Yi = Yi(1)Ti + Yi(0)(1 − Ti). Throughout the simulation, we will have

n = 500, m = 5000, and dx = 200. In the first-step estimations, the treated and the

untreated subsamples are used separately, and we adopt a five fold cross-fitting. As a result,

the number of observations used in estimating the conditional mean functions is equal (in

expectation) to the dimension of covariates (500× 1
2
× 4

5
= 200).

Beside the sparsity parameter δ, the parameters α0 and α1 are of particular interest as

they determine how much the variation of the potential outcomes, as well as the individual

treatment effect, can be explained by the covariates. In the baseline specification, we let
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δ = 2, so that the model (2.15) and (2.16) are approximately sparse. We then set the values

of α0 and α1 to be such that the populationR2 of (2.15) and (2.16) equal 0.8. According to our

theory, this is a very favorable specification and we should expect large variance reduction.

In specification II, we set δ = 0, so that the sparsity assumption fails (all coefficients in

β0 and β1 are 1). In specification III, we reduce α0 and α1 such that the population R2

of model (2.15) and (2.16) is 0.1. We compare four estimators: 1) the inverse propensity

score weighting estimator, which only uses the experimental sample; 2) Our ML imputation

estimator without incorporating the auxiliary sample. This estimator is similar to the ones

appeared in Chernozhukov et al. (2018) and Farrell (2015); 3) An infeasible version of our

imputation estimator where the first-step estimates are replaced by the true conditional

mean function; 4) Our ML imputation estimator. We use the post-LASSO estimator from

the hdm package in R for the first-step estimations, which implement Belloni et al. (2012).

The results are summerized in the table 2.1.

We see that the variance is reduced by 66% due to the inclusion of the auxiliary data under

the favorable baseline specification. Under specification II, where the sparsity assumption

fails, the first-stage post-LASSO estimates have a goodness of fit at around 20%, as opposed

to the 80% from the true conditional mean function. As a result, the variance reduction is

much less pronounced at around 26%. In specification III, due to very low population R2 in

the data generating process (high noise to signal ratio), the post-LASSO first stage estimates

have virtually zero goodness of fit, hence there is no variance reduction as we would have

expected. Noticeably though, in the latter two specifications where the first-stage estimates

behave poorly, the ML imputation estimator is still consistent, and the variance is not

drastically increased compared to the infeasible estimator or the IPW estimator. On top of

that, the coverage remained good. This demonstrates the robustness of our estimator with

respect to the performance of the first-stage estimation.
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Table 2.1: Monte Carlo Simulation Results.

Estimate MC Var Asym. Var Coverage GoF

Baseline Specification

IPW 4.995 52.014 50.744 0.948 N/A

Exp. Only 4.998 18.374 19.262 0.951 0.778

Infeasible 5.000 5.687 6.958 0.971 0.797

ML Imputation 5.000 6.113 7.492 0.971 0.778

Specification II (Sparsity fails)

IPW 5.000 54.543 53.563 0.950 N/A

Exp. Only 5.002 25.562 29.773 0.968 0.201

Infeasible 5.000 6.224 7.223 0.972 0.799

ML Imputation 4.998 18.843 23.124 0.973 0.201

Specification III (R2 = 0.1)

IPW 4.997 35.798 35.730 0.943 N/A

Exp. Only 4.999 5.257 6.187 0.965 0.007

Infeasible 4.999 4.672 5.666 0.971 0.089

ML Imputation 4.999 5.281 6.230 0.965 0.007

Note: The columns are: point estimate, Monte Carlo variance, estimated asymptotic variance,

coverage of 95% confidence interval, out of sample goodness of fit of the first-step estimation. The

number of simulations is 1000.

2.6 Conclusion

In this chapter, I proposed a two-stage machine learning (ML) imputation estimator for

average treatment effect (ATE) that achieves the efficiency bound derived in the previous
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chapter. This method is efficient in the sense that no other regular estimators for ATE can

have lower asymptotic variance in the same setting. The efficiency is gained by aggregating

imputed potential outcomes for every unit in both samples, hence fully utilizing the infor-

mation on the marginal distribution of covariates in the auxiliary sample. Adopting the

cross-fitting technique proposed in Chernozhukov et al. (2018), our two-step estimator can

use a wide range of supervised ML tools as the first-step, while maintaining valid inference

to construct confidence intervals and perform hypothesis tests. In fact, any method that

estimates the relevant conditional mean functions consistently in L2(P ) norm, with no rate

requirement, will lead to efficiency through the proposed two-step procedure. I also show

that cross-fitting is not necessary when the first-step is done via LASSO or post-LASSO.

Furthermore, our estimator is robust in the sense that it remains consistent and
√
n normal

(no longer efficient) even if the first step estimators are inconsistent.

2.7 Appendix

2.7.1 Details on LASSO/post-LASSO First Step

In this subsection, for completeness, we provide the details on the choice of penalty levels and

penalty loadings for the LASSO/post-LASSO estimators, which completely follows Belloni

et al. (2012).

2.7.1.1 Estimating ηt

Recall that our conditional mean models are

Yi(t) = ηt(Zi) + Ut,i, E[Ut,i|Zi] = 0, t ∈ {1, ..., T},

Since Yi(t) is only observed in the T = t subsample, we treat each t ∈ {1, ..., T} separately

and estimate ηt only using the T = t subsample. This is viable because under Assumption
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1.2.1 we have

E[Yi|T = t, Zi] = E[Yi(t)|T = t, Zi] = E[Yi(t)|Zi] = ηt(Zi).

Denote nt =
∑n

i=1 1{T = t}, the LASSO estimator is given by

β̂LSη,t = arg min
b∈Rpη

1

nt

n∑
i=1

1{T = t}(Yi − fη(Zi)′b)2 +
λη
nt
‖Λ̂η,tb‖1,

For the penalty parameter λη, we set

λη = 2c
√
nΦ−1(1− τη/2pη), (2.17)

where c > 1 is a constant, τη ∈ (0, 1), τη → 0, and log( 1
τη

) = O(log(pη ∨ n)). Φ is the

CDF of the standard normal distribution. Belloni et al. (2012) recommends c = 1.1 and

τη = 0.1/ log(pη ∨ n). The penalty loadings Λ̂η,t is a diagonal matrix computed from the

following iteration procedure.

Denote the diagonal elements of Λ̂η,t by γ̂η,t,j, j ∈ {1, ..., pη}. Denote Ȳ (t) = 1
nt

∑n
i=1 1{T =

t}Yi. (a) Set the value of λη according to (2.17), and set the initial value of Λ̂η,t by

γ̂η,t,j =

√√√√ 1

nt

n∑
i=1

1{Ti = t}fη,j(Zi)2(Yi − Ȳ (t))2.

Then compute the LASSO or post-LASSO estimator β̂Lη,t and calculate the residues Ût,i =

Yi − fη(Zi)′β̂Lη,t for i ∈ {1 ≤ i ≤ n : Ti = t}. (b) Update the penalty loadings by

γ̂η,t,j =

√√√√ 1

nt

n∑
i=1

1{Ti = t}fη,j(Zi)2Û2
t,i,

update the LASSO/post-LASSO estimator β̂Lη,t and compute a new set of residues. (c)

Repeat the previous step K times.

The preferred approach in Belloni et al. (2012) is to use post-LASSO in every step and

set K = 15.
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2.7.1.2 Estimating ζt

As mentioned in the footnotes earlier, if we have Yi ⊥⊥ {Yi(t)}Tt=1|Xi, we recommend estimat-

ing ζt separately for each t using only the T = t subsample in the same way as estimating

ηt. Otherwise, we can run LASSO/post-LASSO regression of 1{Ti=t}Yi
πt(Zi)

on Xi in the whole

experimental sample. This is viable because by Assumption 1.2.1,

E[
1{Ti = t}Yi
πt(Zi)

|Xi] = E[E[
1{Ti = t}Yi
πt(Zi)

|Zi]|Xi] = E[Yi(t)|Xi] = ζt(Xi).

Hence, our conditional mean models for ζt are

1{Ti = t}Yi
πt(Zi)

= ζt(Xi) + vt,i, E[vt,i|Xi] = 0, t ∈ {1, ..., T},

The LASSO estimator is given by

β̂LSζ,t = arg min
b∈Rpζ

1

n

n∑
i=1

(
Yi1{Ti = t}
πt(Zi)

− fζ(Xi)
′b)2 +

λζ
n
‖Λ̂ζ,tb‖1.

For the penalty parameter λζ , we set

λζ = 2c
√
nΦ−1(1− τζ/(2pζ · T)), (2.18)

where c > 1 is a constant, τζ ∈ (0, 1), τζ → 0, and log( 1
τζ

) = O(log(pζ ∨ n)). Φ is the

CDF of the standard normal distribution. Belloni et al. (2012) recommends c = 1.1 and

τζ = 0.1/ log(pζ ∨ n). The penalty loadings Λ̂ζ,t is a diagonal matrix computed from the

following iteration procedure.

Denote the diagonal elements of Λ̂ζ,t by γ̂ζ,t,j, j ∈ {1, ..., pζ}. Denote Ỹ (t) = 1
n

∑n
i=1

1{T=t}Yi
πt(Zi)

.

(a) Set the value of λζ according to (2.18), and set the initial value of Λ̂ζ,t by

γ̂ζ,t,j =

√√√√ 1

n

n∑
i=1

fζ,j(Zi)2(
1{T = t}Yi
πt(Zi)

− Ỹ (t))2.

Then compute the LASSO or post-LASSO estimator β̂Lζ,t and calculate the residues v̂t,i =

1{T=t}Yi
πt(Zi)

− fζ(Zi)′β̂Lζ,t for i ∈ {1, ..., n}. (b) Update the penalty loadings by

γ̂ζ,t,j =

√√√√ 1

n

n∑
i=1

fζ,j(Zi)2v̂2
t,i,
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update the LASSO/post-LASSO estimator β̂Lζ,t and compute a new set of residues. (c)

Repeat the previous step K times.

The preferred approach in Belloni et al. (2012) is to use post-LASSO in every step and

set K = 15.

2.7.2 Proofs

2.7.2.1 Additional Lemmas

The following lemma states that conditional convergence in probability implies unconditional

convergence in probability, which becomes useful when the cross-fitting technique is applied.

Lemma 2.7.1. Let Xn and Yn be two sequences of random variables indexed by n, if

E[|Xn|δ|Yn] = op(1) for some δ > 0, then Xn = op(1).

Proof. For any ε > 0, by Markov inequality P (|Xn| > ε|Yn) ≤ E[|Xn|δ|Yn]
εδ

= op(1). Hence we

have for any η̃ > 0,

P (P (|Xn| > ε|Yn) > η̃) = o(1). (2.19)

We want to show that for n large enough, for any ε > 0 and η > 0, P (|Xn| > ε) < η. Note

that for some η̃ < η/2,

P (|Xn| > ε) =E[1{|Xn| > ε}]

=E[E[1{|Xn| > ε}|Yn]]

=E[P (|Xn| > ε|Yn)1{P (|Xn| > ε|Yn) > η̃}]

+ E[P (|Xn| > ε|Yn)1{P (|Xn| > ε|Yn) ≤ η̃}]

≤E[1{P (|Xn| > ε|Yn) > η̃}] + η̃.

The first term in the last line is smaller than η̃ for large n by (2.19), hence we have P (|Xn| >

ε) ≤ 2η̃ < η. �
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The following lemma is useful for proving the consistency of variance estimators.

Lemma 2.7.2. Let {(Ψ̂t,i, Ψ̂t′,i,Ψt,i,Ψt′,i)}ni=1 be a sequence of random vectors, suppose that

i) {(Ψt,i,Ψt′,i)}ni=1 are i.i.d., ii) for some δ > 0, E[Ψ2+δ
t,i ] and E[Ψ2+δ

t′,i ] are bounded, iii)

1
n

∑n
i=1(Ψ̂t,i −Ψt,i)

2 = op(1) and 1
n

∑n
i=1(Ψ̂t′,i −Ψt′,i)

2 = op(1), then

1

n

n∑
i=1

(Ψ̂t,iΨ̂t′,i − E[Ψt,iΨt′,i]) = op(1). (2.20)

Proof.

1

n

n∑
i=1

(Ψ̂t,iΨ̂t′,i − E[Ψt,iΨt′,i])

=
1

n

n∑
i=1

(Ψ̂t,iΨ̂t′,i −Ψt,iΨt′,i) +
1

n

n∑
i=1

(Ψt,iΨt′,i − E[Ψt,iΨt′,i]) (2.21)

We will show each of the two terms in (2.21) is op(1), starting with the first term. Note

that for any numbers a, b, ã and b̃ such that |a| ∨ |b| ≤ c and |ã| ∨ |b̃| ≤ r, we have

|(a+ ã)(b+ b̃)− ab| ≤ 2r(c+ r). (2.22)

Apply (2.22) below, with a = Ψt,i, b = Ψt′,i, ã = Ψ̂t,i −Ψt,i and b̃ = Ψ̂t′,i −Ψt′,i, we get

| 1
n

n∑
i=1

(Ψ̂t,iΨ̂t′,i −Ψt,iΨt′,i)|

≤ 1

n

n∑
i=1

|(Ψ̂t,iΨ̂t′,i −Ψt,iΨt′,i)|

≤ 1

n

n∑
i=1

2|Ψ̂t,i −Ψt,i| ∨ |Ψ̂t′,i −Ψt′,i| × (|Ψt,i| ∨ |Ψt′,i|+ |Ψ̂t,i −Ψt,i| ∨ |Ψ̂t′,i −Ψt′,i|)

≤2 · ( 1

n

n∑
i=1

(|Ψ̂t,i −Ψt,i| ∨ |Ψ̂t′,i −Ψt′,i|)2)
1
2

× ((
1

n

n∑
i=1

(|Ψt,i| ∨ |Ψt′,i|)2)
1
2 + (

1

n

n∑
i=1

(|Ψ̂t,i −Ψt,i| ∨ |Ψ̂t′,i −Ψt′,i|)2)
1
2 ),
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where the last inequality follows from Cauchy-Schwarz and triangular inequality. Define

R2
1,n =

1

n

n∑
i=1

(|Ψt,i| ∨ |Ψt′,i|)2,

R2
2,n =

1

n

n∑
i=1

(|Ψ̂t,i −Ψt,i| ∨ |Ψ̂t′,i −Ψt′,i|)2.

We have bounded the first term in (2.21) by 2R2,n(R1,n +R2,n). Next,

R2
1,n ≤

1

n

n∑
i=1

Ψ2
t,i +

1

n

n∑
i=1

Ψ2
t′,i,

so that E[R2
1] = E[Ψ2

t,i] + E[Ψ2
t′,i] ≤ ∞ under conditions (i) and (ii) of this lemma. Hence

R1 = Op(1) by Markov inequality. Next,

R2,n ≤(
1

n

n∑
i=1

(Ψ̂t,i −Ψt,i)
2)

1
2 + (

1

n

n∑
i=1

(Ψ̂t′,i −Ψt′,i)
2)

1
2 = op(1),

where the equality is by condition (iii) of this lemma. Put together, 2R2,n(R1,n+R2,n) = op(1)

and hence the first term in (2.21) is op(1).

Next we show that the second term in (2.21) is also op(1). Under condition (ii) of this

theorem, if δ ≥ 2, we have

E[(
1

n

n∑
i=1

(Ψt,iΨt′,i − E[Ψt,iΨt′,i]))
2]

≤ 1

n
E[Ψ2

t,iΨ
2
t′,i]

≤ 1

n
E[Ψ4

t,i]
1
2E[Ψ4

t′,i]
1
2 = O(n−1).
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If δ ∈ (0, 2) we use the Bahr-Esseen inequality7 with p = (2 + δ)/2, so that

E[| 1
n

n∑
i=1

(Ψt,iΨt′,i − E[Ψt,iΨt′,i])|
2+δ
2 ]

.n−
2+δ
2 · n · E[Ψ2+δ

t,i ]
1
2E[Ψ2+δ

t′,i ]
1
2 = O(n−

δ
2 ).

Follow by Markov inequality, the second term in (2.21) is op(1), which completes the proof

of this lemma.

�

Next, we state two maximal inequalities.

Lemma 2.7.3. Let Xi be bounded p× 1 vectors with mean µ, |Xi,j − µj| ≤ B almost surely

for all i, j, then as n→∞ and p→∞,

P ( max
1≤j≤p

| 1
n

n∑
i=1

Xi,j − µj| ≥ 2B

√
log p

n
) ≤ 2

p
→ 0,

so that ‖ 1
n

∑n
i=1 Xi − E[Xi]‖∞ = Op(

√
log p
n

).

The following version is slightly different and works for matrices.

Lemma 2.7.4. Let Xi be bounded p × p matrices with mean µ, |Xi,j,k − µj,k| ≤ B almost

surely for all i, j, k, then as n→∞ and p→∞,

P ( max
1≤j≤p

max
1≤k≤p

| 1
n

n∑
i=1

Xi,j,k − µj,k| ≥ 2B

√
log p

n
) ≤ 2

p2
→ 0,

so that ‖ 1
n

∑n
i=1 Xi − E[Xi]‖∞ = Op(

√
log p
n

).

Both Lemma 2.7.3 and 2.7.4 can be proved by applying the union bound and Hoeffding’s

inequality. The proofs are standard and omitted here.

7Let 1 ≤ p ≤ 2, and let Xi, i = 1, 2, ..., be a sequence of independent random variables with finite p-th
moment and mean zero (i.e. E[|Xi|p] <∞, E[Xi] = 0 for all i = 1, 2, ...). Then

E[|
n∑
i=1

Xi|p] ≤ (2− n−1)

n∑
i=1

E[|Xi|p].
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2.7.2.2 Proof of Theorem 2.3.1

Recall our estimator µ̂t is defined as

µ̂t =
1

m

m∑
i=1

ζ̂t,k[i](Xi) +
1

n

n∑
i=1

(
1{Ti = t}(Yi − η̂t,k[i](Zi))

πt(Zi)
+ η̂t,k[i](Zi)− ζ̂t,k[i](Xi)).

Add and subtract the true conditional mean functions ζt(Xi) and ηt(Zi), the scaled and

centered distribution of µ̂t can be written into the sum of two terms,

√
n(µ̂t − µt) =I1 + I2,

I1 =
√
n(

1

m

m∑
i=1

ζt(Xi)− µt +
1

n

n∑
i=1

(
1{Ti = t}U t

i

πt(Zi)
+ ηt(Zi)− ζt(Xi))),

I2 =
√
n

K∑
k=1

(
1

m

∑
i∈Ik∪Ĩk

(ζ̂t,k(Xi)− ζt(Xi))

+
1

n

∑
i∈Ik

((1− 1{Ti = t}
πt(Zi)

)(η̂t,k(Zi)− ηt(Zi))− (ζ̂t,k(Xi)− ζt(Xi)))),

where U t
i = Yi(t)− ηt(Zi). The first term will have the normal limiting distribution and the

second term is an op(1). To see the latter, we can further rearrange the second term into

I2 =
K∑
k=1

(I3,k + I4,k),

I3,k =
√
n

1

m

∑
i∈Ik∪Ĩk

(ζ̂t,k(Xi)− ζt(Xi)− E[ζ̂t,k(Xi)− ζt(Xi)|Ick]),

I4,k =
1√
n

∑
i∈Ik

((1− 1{Ti = t}
πt(Zi)

)(η̂t,k(Zi)− ηt(Xi))− (ζ̂t,k(Xi)− ζt(Xi))

+ E[ζ̂t,k(Xi)− ζt(Xi)|Ick]).

To get the above expressions, we added and subtracted E[ζ̂t,k(Xi)− ζt(Xi)|Ick] inside the

summations. They will cancel as |Ik∪Ĩk|
m

= |Ik|
n

= 1
K

. Note that both I3,k and I4,k are mean

zero conditional on Ick. Next, we make use of the cross-fitting technique and bound E[I2
3,k|Ick]

and E[I2
4,k|Ick] by Assumption 2.3.1. Since all the randomness in ζ̂t,k(x) and η̂t,k(z) is from Ick,
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we have E[(ζ̂t,k(Xi)− ζt(Xi))
2|Ick] = EX [(ζ̂t,k(X)− ζt(X))2] and E[(η̂t,k(Zi)− ηt(Zi))2|Ick] =

EZ [(η̂t,k(Z)− ηt(Z))2]. Therefore,

E[I2
3,k|Ick] =

n

m2
E[(

∑
i∈Ik∪Ĩk

(ζ̂t,k(Xi)− ζt(Xi)− E[ζ̂t,k(Xi)− ζt(Xi)|Ick]))2|Ick]

=
n

mK
E[(ζ̂t,k(Xi)− ζt(Xi)− E[ζ̂t,k(Xi)− ζt(Xi)|Ick])2|Ick]

≤ n

mK
E[(ζ̂t,k(Xi)− ζt(Xi))

2|Ick] = op(1),

and

E[I2
4,k|Ick] =

1

K
E[(1− 1{Ti = t}

πt(Zi)
)2(η̂t,k(Zi)− ηt(Zi))2|Ick]

+
1

K
E[(ζ̂t,k(Xi)− ζt(Xi)− E[ζ̂t,k(Xi)− ζt(Xi)|Ick])2|Ick]

≤ 1

Kπ2
min

E[(η̂t,k(Zi)− ηt(Zi))2|Ick]

+
1

K
E[(ζ̂t,k(Xi)− ζt(Xi))

2|Ick] = op(1),

by Assumption 1.2.1 (i), (iii) and Assumption 2.3.1. Therefore by Lemma 2.7.1, I3,k and

I4,k are op(1) for every k. Since K is fixed and finite, I2 = op(1). Next we analyze the first

term I1. Since Y (t), ζ(Xi) and η(Zi) all have finite second moment under the condition of

this theorem and that m
n
→ γ,

I1 =
1√
n

n∑
i=1

(
n

m
(ζt(Xi)− µt) +

1{Ti = t}
πt(Zi)

U t
i + ηt(Zi)− ζt(Xi))

+

√
n(m− n)

m2

1√
m− n

m∑
i=n+1

(ζt(Xi)− µt)

=
1√
n

n∑
i=1

(
1

γ
(ζt(Xi)− µt) +

1{Ti = t}
πt(Zi)

U t
i + ηt(Zi)− ζt(Xi))

+

√
γ − 1

γ2

1√
m− n

m∑
i=n+1

(ζt(Xi)− µt) + op(1).

Let µ = (µ0, ..., µT)
′ and µ̂ = (µ̂0, ..., µ̂T)

′, denote

ϕt(Yi, Ti, Zi) =
1

γ
(ζt(Xi)− µt) +

1{Ti = t}
πt(Zi)

U t
i + ηt(Zi)− ζt(Xi),
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we then have

√
n(µ̂− µ) =

1√
n

n∑
i=1


ϕ0(Yi, Ti, Zi)

...

ϕT(Yi, Ti, Zi)

+

√
γ − 1

γ2

1√
m− n

m∑
i=n+1


ζ0(Xi)− µ0

...

ζT(Xi)− µT

+ op(1).

Since Y (t), ζ(Xi) and η(Zi) all have finite second moment, and that the two samples are

independent, by central limit theorem, the above expression converges in distribution to

N(0, V ) where

Vt,t′ =1{t = t′}E[
σ2
t (Zi)

πt(Zi)
] + E[(ηt(Zi)− ζt(Xi))(ηt′(Zi)− ζt′(Xi))]

+
1

γ
E[(ζt(Xi)− µt)(ζt′(Xi)− µt′)].

This completes the proof of theorem 2.3.1.

2.7.2.3 Proof of Theorem 2.3.2

to prove this theorem, it suffices to show that for any t, t′ ∈ {0, ..., T},

1

n

n∑
i=1

(η̂t,k[i](Zi)− ζ̂t,k[i](Xi))(η̂t′,k[i](Zi)− ζ̂t′,k[i](Xi))

− E[(ηt(Zi)− ζt(Xi))(ηt′(Zi)− ζt′(Xi))] = op(1), (2.23)

1

m

m∑
i=1

(ζ̂t,k[i](Xi)− µ̂t)(ζ̂t′,k[i](Xi)− µ̂t′)− E[(ζt(Xi)− µt)(ζt′(Xi)− µt′)] = op(1), (2.24)

1

n

n∑
i=1

1{Ti = t}(Yi − η̂t,k[i](Zi))
2

πt(Zi)2
− E[

σ2
t (Zi)

πt(Zi)
] = op(1). (2.25)
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Starting with (2.23),

1

n

n∑
i=1

[(η̂t,k[i](Zi)− ζ̂t,k[i](Xi))(η̂t′,k[i](Zi)− ζ̂t′,k[i](Xi))] (2.26)

− E[(ηt(Zi)− ζt(Xi))(ηt′(Zi)− ζt′(Xi))]

=
1

K

K∑
k=1

1

|Ik|
∑
i∈Ik

((η̂t,k(Zi)− ζ̂t,k(Xi))(η̂t′,k(Zi)− ζ̂t′,k(Xi)) (2.27)

− E[(ηt(Zi)− ζt(Xi))(ηt′(Zi)− ζt′(Xi))]).

We apply Lemma 2.7.2 to each fold k. Here, Ψt,i = ηt(Zi)− ζt(Xi), Ψ̂t,i = η̂t,k(Zi)− ζ̂t,k(Xi),

Ψt′,i = ηt′(Zi) − ζt′(Xi), and Ψ̂t′,i = η̂t′,k(Zi) − ζ̂t′,k(Xi). Condition (i) and (ii) in Lemma

2.7.2 are directly satisfied by Assumption 1.2.1 and the conditions of this theorem. To see

(iii), for any t, by triangular inequality,

(
1

|Ik|
∑
i∈Ik

(Ψ̂t,i −Ψt,i)
2)

1
2 =(

1

|Ik|
∑
i∈Ik

(η̂t,k(Zi)− ζ̂t,k(Xi)− ηt(Zi) + ζt(Xi))
2)

1
2

≤(
1

|Ik|
∑
i∈Ik

(η̂t,k(Zi)− ηt(Zi))2)
1
2 + (

1

|Ik|
∑
i∈Ik

(ζ̂t,k(Xi)− ζt(Xi))
2)

1
2 .

As a result of cross-fitting, by Assumption 2.3.1, we have

E[
1

|Ik|
∑
i∈Ik

(η̂t,k(Zi)− ηt(Zi))2|Ick] = EZ [(η̂t,k(Zi)− ηt(Zi))2] = op(1),

E[
1

|Ik|
∑
i∈Ik

(ζ̂t,k(Xi)− ζt(Xi))
2|Ick] = EZ [(ζ̂t,k(Xi)− ζt(Xi))

2] = op(1).

Hence, by Lemma 2.7.1 (conditional convergence implies unconditional), condition (iii) for

Lemma 2.7.2 is satisfied for both t and t′. Apply Lemma 2.7.2, we get for every k ∈ {1, ..., K},

1

|Ik|
∑
i∈Ik

((η̂t,k(Zi)− ζ̂t,k(Xi))(η̂t′,k(Zi)− ζ̂t′,k(Xi))− E[(ηt(Zi)− ζt(Xi))(ηt′(Zi)− ζt′(Xi))])

= op(1)

Since K is finite and fixed, we have finished the proof of (2.23).
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Next we move on to (2.24).

1

m

m∑
i=1

(ζ̂t,k[i](Xi)− µ̂t)(ζ̂t′,k[i](Xi)− µ̂t′)− E[(ζt(Xi)− µt)(ζt′(Xi)− µt′)]

=
1

K

K∑
k=1

1

|Ik ∪ Ĩk|

∑
i∈Ik∪Ĩk

(ζ̂t,k(Xi)− µ̂t)(ζ̂t′,k(Xi)− µ̂t′)− E[(ζt(Xi)− µt)(ζt′(Xi)− µt′)]

We again apply Lemma 2.7.2 to each fold k. This time Ψt,i = ζt(Xi)−µt, Ψ̂t,i = ζ̂t,k(Xi)− µ̂t,

Ψt′,i = ζt′(Xi) − µt′ , and Ψ̂t′,i = ζ̂t′,k(Xi) − µ̂t′ . Condition (i) and (ii) in Lemma 2.7.2 are

directly satisfied by Assumption 1.2.1 and the condition of this theorem. To check (iii), for

any t, by triangular inequality,

(
1

|Ik ∪ Ĩk|

∑
i∈Ik∪Ĩk

(Ψ̂t,i −Ψt,i)
2)

1
2 =(

1

|Ik ∪ Ĩk|

∑
i∈Ik∪Ĩk

(ζ̂t,k(Xi)− µ̂t − ζt(Xi)− µt)2)
1
2

≤(
1

|Ik ∪ Ĩk|

∑
i∈Ik∪Ĩk

(ζ̂t,k(Xi)− ζt(Xi))
2)

1
2

+ (
1

|Ik ∪ Ĩk|

∑
i∈Ik∪Ĩk

(µ̂t − µt)2)
1
2 .

The first term in the upper bound can be shown to be op(1) via the cross-fitting technique

in the same way as in proving (2.23), the second term equals µ̂t − µt which is Op(n
− 1

2 ) by

theorem 2.3.1. Then by Lemma 2.7.2 and the fact that K is finite and fixed, (2.24) is proved.

At last, we prove (2.25).

1

n

n∑
i=1

1{Ti = t}(Yi − η̂t,k[i](Zi))
2

πt(Zi)2
− E[

σ2
t (Zi)

πt(Zi)
]

=
1

K

K∑
k=1

1

|Ik|
∑
i∈Ik

(
1{Ti = t}(Yi − η̂t,k(Zi))

πt(Zi)
)2 − E[(

1{Ti = t}(Yi − ηt(Zi))
πt(Zi)

)2]

We again apply Lemma 2.7.2 to each fold k. This time

Ψt,i =Ψt′,i =
1{Ti = t}(Yi − ηt(Zi))

πt(Zi)
,

Ψ̂t,i =Ψ̂t′,i =
1{Ti = t}(Yi − η̂t,k(Zi))

πt(Zi)
.
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Condition (i) of Lemma 2.7.2 directly follows from Assumption 1.2.1. To check condition

(ii),

E[Ψ2+δ
t,i ] ≤ 1

π2+δ
min

E[(Yi(t)− ηt(Zi))2+δ] ≤ ∞,

by triangular inequality, Assumption 1.2.1 and conditions of this theorem. At last, we check

condition (iii),

(
1

|Ik|
∑
i∈Ik

(Ψ̂t,i −Ψt,i)
2)

1
2 =(

1

|Ik|
∑
i∈Ik

(
1{Ti = t}
πt(Zi)

(η̂t,k(Zi)− ηt,k(Zi)))2)
1
2

≤ 1

πmin

(
1

|Ik|
∑
i∈Ik

(η̂t,k(Zi)− ηt,k(Zi))2)
1
2 .

This upper bound is shown earlier to be op(1) due to cross-fitting. The rest of (2.25) follows

by Lemma 2.7.2 and K being finite and fixed.

2.7.2.4 Proof of Proposition 2.3.1

Recall the estimator µ̂t is defined as

µ̂t =
1

m

m∑
i=1

ζ̂t,k[i](Xi) +
1

n

n∑
i=1

(
1{Ti = t}(Yi − η̂t,k[i](Zi))

πt(Zi)
+ η̂t,k[i](Zi)− ζ̂t,k[i](Xi)).

Add and subtract the limiting functions ζ̃t(Xi) and η̃t(Zi), the scaled and centered distribu-

tion of µ̂t can be written into the sum of two terms,

√
n(µ̂t − µt) =I1 + I2,

I1 =
√
n(

1

m

m∑
i=1

ζ̃t(Xi)− µt +
1

n

n∑
i=1

(
1{Ti = t}(Yi − η̃t(Zi))

πt(Zi)
+ η̃t(Zi)− ζ̃t(Xi))),

I2 =
√
n

K∑
k=1

(
1

m

∑
i∈Ik∪Ĩk

(ζ̂t,k(Xi)− ζ̃t(Xi))

+
1

n

∑
i∈Ik

((1− 1{Ti = t}
πt(Zi)

)(η̂t,k(Zi)− η̃t(Zi))− (ζ̂t,k(Xi)− ζ̃t(Xi)))),

50



The second term I2 can be shown to be op(1) following the same steps as in the proof of

theorem 2.3.1. Hence we only discuss term I1 here.

I1 =
√
n(

1

m

m∑
i=1

(ζ̃t(Xi)− E[ζ̃t(Xi)])

+
1

n

n∑
i=1

(
1{Ti = t}
πt(Zi)

Yi − µt + (1− 1{Ti = t}
πt(Zi)

)η̃t(Zi)− ζ̃t(Xi) + E[ζ̃t(Xi)]))

We can see that E[I1] = 0. Since Yi(t), η̃t(Zi) and ζ̃t(Xi) all have finite second moments, we

can further write

I1 =
1√
n

n∑
i=1

(
1{Ti = t}
πt(Zi)

Yi − µt + (1− 1{Ti = t}
πt(Zi)

)η̃t(Zi) + (
1

γ
− 1)(ζ̃t(Xi)− E[ζ̃t(Xi)]))

+

√
γ − 1

γ2

1√
m− n

m∑
i=n+1

(ζ̃t(Xi)− E[ζ̃t(Xi)]) + op(1).

Define

ϕ̃t(Yi, Ti, Zi) =
1{Ti = t}
πt(Zi)

Yi − µt + (1− 1{Ti = t}
πt(Zi)

)η̃t(Zi) + (
1

γ
− 1)(ζ̃t(Xi)− E[ζ̃t(Xi)])

Let µ = (µ0, ..., µT)
′ and µ̂ = (µ̂0, ..., µ̂T)

′, we then have

√
n(µ̂− µ) =

1√
n

n∑
i=1


ϕ̃0(Yi, Ti, Zi)

...

ϕ̃T(Yi, Ti, Zi)



+

√
γ − 1

γ2

1√
m− n

m∑
i=n+1


ζ̃0(Xi)− E[ζ̃0(Xi)]

...

ζ̃T(Xi)− E[ζ̃T(Xi)]

+ op(1).

Denote ϕ̃ = (ϕ̃0, ..., ϕ̃T)
′ and ζ = (ζ̃0(Xi) − E[ζ̃0(Xi)], ..., ζ̃T(Xi) − E[ζ̃T(Xi)])

′ , by the con-

ditions of this theorem and Cauchy-Schwarz inequality, E[ϕ̃ϕ̃′] and E[ζζ ′] exists. Then by

central limit theorem and the fact that the two samples are independent, we have

√
n(µ̂− µ) N(0, Ṽ ),
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where

Ṽ = E[ϕ̃ϕ̃′] +
γ − 1

γ2
E[ζζ ′]. (2.28)

2.7.2.5 Proof of Theorem 2.4.1

Recall that for L ∈ {LS, PS} our estimator µ̂Lt is defined as

µ̂Lt =
1

m

m∑
i=1

ζ̂Lt (Xi) +
1

n

n∑
i=1

(
1{Ti = t}(Yi − η̂Lt (Zi))

πt(Zi)
+ η̂Lt (Zi)− ζ̂Lt (Xi)).

Add and subtract the true conditional mean functions ζt(Xi) and ηt(Zi), the scaled and

centered distribution of µ̂Lt can be written into the sum of two terms,

√
n(µ̂Lt − µt) =I1 + I2,

I1 =
√
n(

1

m

m∑
i=1

ζt(Xi)− µt +
1

n

n∑
i=1

(
1{Ti = t}U t

i

πt(Zi)
+ ηt(Zi)− ζt(Xi))),

I2 =
√
n(

1

m

m∑
i=1

(ζ̂Lt (Xi)− ζt(Xi))

+
1

n

n∑
i=1

((1− 1{Ti = t}
πt(Zi)

)(η̂Lt (Zi)− ηt(Zi))− (ζ̂Lt (Xi)− ζt(Xi)))),

where U t
i = Yi(t) − ηt(Zi). The first term I1 is identical to what we had in the proof of

theorem 2.3.1 and the second term is an op(1). As a result, the limiting distribution for µ̂ is

the same as in theorem 2.3.1. In the remaining of this proof, we show that the second term

I2 is indeed an op(1).

I2 =I3 + I4,

I3 =
√
n(

1

m

m∑
i=1

(ζ̂Lt (Xi)− ζt(Xi))−
1

n

n∑
i=1

(ζ̂Lt (Xi)− ζt(Xi))),

I4 =
1√
n

n∑
i=1

(1− 1{Ti = t}
πt(Zi)

)(η̂Lt (Zi)− ηt(Zi)).
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To see I3 = op(1), we plug in ζ̂Lt (Xi) = f ′ζ β̂
L
ζ,t and ζLt (Xi) = f ′ζβζ,t + rζ,t(Xi),

I3 =
√
n(

1

m

m∑
i=1

(fζ(Xi)
′(β̂ζ,t − βLζ,t) + rζ,t(Xi))−

1

n

n∑
i=1

(fζ(Xi)
′(β̂Lζ,t − βζ,t) + rζ,t(Xi)))

=
√
n(

1

m

m∑
i=1

fζ(Xi)− E[fζ(Xi)])
′(β̂Lζ,t − βζ,t) (2.29)

+
√
n(E[fζ(Xi)]−

1

n

n∑
i=1

fζ(Xi))
′(β̂Lζ,t − βζ,t) (2.30)

+
√
n

1

m

m∑
i=1

rζ,t(Xi)−
√
n

1

n

n∑
i=1

rζ,t(Xi). (2.31)

By Assumption 2.4.1,

V ar(
√
n

1

m

m∑
i=1

rζ,t(Xi)) =
n

m
V ar(rζ,t(Xi)) ≤

n

m
E[rζ,t(Xi)

2] = o(1),

hence the two terms in line (2.31) are op(1). Line (2.29) and (2.30) can be bounded by

applying the asymmetric Hölder’s inequality,

√
n(

1

m

m∑
i=1

fζ(Xi)− E[fζ(Xi)])
′(β̂Lζ,t − βζ,t)

≤
√
n‖ 1

m

m∑
i=1

fζ(Xi)− E[fζ(Xi)]‖∞‖β̂Lζ,t − βζ,t‖1

=
√
n ·Op(

√
log pζ
n

) ·Op(

√
s2 log(pζ ∨ n)

n
),

where the last equality is by Assumption 2.4.2 and the maximal inequality (Lemma 2.7.3),

for the latter we have fζ(Xi) bounded under Assumption 2.4.3. At last, under the rate

condition in Assumption 2.4.3, line (2.29) is an op(1). (2.30) is also an op(1) following the

same argument.
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Next we discuss term I4.

I4 =
1√
n

n∑
i=1

((1− 1{Ti = t}
πt(Zi)

)rη,t(Zi) + (1− 1{Ti = t}
πt(Zi)

)fη(Zi)
′(β̂Lη,t − βη,t))

=
1√
n

n∑
i=1

(1− 1{Ti = t}
πt(Zi)

)rη,t(Zi) (2.32)

+
√
n(

1

n

n∑
i=1

fη(Zi)− E[fη(Zi)])
′(β̂Lη,t − βη,t) (2.33)

+
√
n(E[fη(Zi)]−

1

n

n∑
i=1

1{Ti = t}
πt(Zi)

fη(Zi))
′(β̂Lη,t − βη,t). (2.34)

Since 1{Ti=t}
πt(Zi)

is bounded under Assumption 1.2.1 and E[1{Ti=t}
πt(Zi)

fη(Zi)] = E[fη(Zi)], line (2.32)

can be bounded by Markov inequality, and (2.33), (2.34) can be bounded by asymmetric

Höelder’s inequality in the same way as (2.29) - (2.31). So we have I2 = I3 + I4 = op(1).

2.7.2.6 Proof of Theorem 2.4.2

To prove this theorem, it suffices to show that for any t, t′ ∈ {0, ..., T} and L ∈ {LS, PS},

1

n

n∑
i=1

(η̂Lt (Zi)− ζ̂Lt (Xi))(η̂
L
t′ (Zi)− ζ̂Lt′ (Xi))

− E[(ηt(Zi)− ζt(Xi))(ηt′(Zi)− ζt′(Xi))] = op(1), (2.35)

1

m

m∑
i=1

(ζ̂Lt (Xi)− µ̂t)(ζ̂Lt′ (Xi)− µ̂t′)− E[(ζt(Xi)− µt)(ζt′(Xi)− µt′)] = op(1), (2.36)

1

n

n∑
i=1

1{Ti = t}(Yi − η̂Lt (Zi))
2

πt(Zi)2
− E[

σ2
t (Zi)

πt(Zi)
] = op(1). (2.37)

All of the above three results are proved by applying Lemma 2.7.2.

Starting with (2.35), we apply Lemma 2.7.2 with Ψt,i = ηt(Zi)− ζt(Xi), Ψ̂t,i = η̂Lt (Zi)−

ζ̂Lt (Xi), Ψt′,i = ηt′(Zi)−ζt′(Xi), and Ψ̂t′,i = η̂Lt′ (Zi)− ζ̂Lt (Xi). Condition (i) and (ii) in Lemma

2.7.2 are directly satisfied by Assumption 1.2.1 and the conditions of this theorem. To see
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(iii), for any t, by triangular inequality,

(
1

n

n∑
i=1

(Ψ̂t,i −Ψt,i)
2)

1
2 =(

1

n

n∑
i=1

(η̂Lt (Zi)− ζ̂Lt (Xi)− ηt(Zi) + ζt(Xi))
2)

1
2

≤(
1

n

n∑
i=1

(fη(Zi)
′(β̂Lη,t − βη,t))2)

1
2 + (

1

n

n∑
i=1

(fζ(Xi)
′(β̂Lζ,t − βζ,t))2)

1
2

(2.38)

+ (
1

n

n∑
i=1

rη(Zi)
2)

1
2 + (

1

n

n∑
i=1

rζ(Xi)
2)

1
2 . (2.39)

The two terms in line (2.39) are op(1) by Assumption 2.4.1 and Markov inequality, as

V ar(
1

n

n∑
i=1

rη(Zi)
2) ≤ 1

n
E[rη(Zi)

2] = o(1),

V ar(
1

n

n∑
i=1

rζ(Xi)
2) ≤ 1

n
E[rζ(Xi)

2] = o(1).

Line (2.38) equals

‖fη(Zi)′(β̂Lη,t − βη,t)‖2,n + ‖fζ(Xi)
′(β̂Lζ,t − βζ,t)‖2,n, (2.40)

where the second term is the prediction norm of β̂ζ,t and is op(1) by Assumption 2.4.2. For

the first term in (2.40),

‖fη(Zi)′(β̂Lη,t − βη,t)‖2
2,n =

nt
n
‖fη(Zi)′(β̂Lη,t − βη,t)‖2

2,nt +
1

n

n∑
i=1

1{Ti 6= t}(fη(Zi)′(β̂Lη,t − βη,t))2

=
n− nt
n

1

n− nt

n∑
i=1

1{Ti 6= t}(fη(Zi)′(β̂Lη,t − βη,t))2 + op(1),

where the last equality follows from Assumption 2.4.2 and nt = Op(n). Next, denote

Wn = {(1{Ti = t},1{Ti = t}Zi)}ni=1,

by Assumption 2.4.2 and the condition of this theorem, we have

E[
1

n− nt

n∑
i=1

1{Ti 6= t}(fη(Zi)′(β̂Lη,t − βη,t))2|Wn]

=(β̂Lη,t − βη,t)′E[fη(Zi)fη(Zi)
′|Ti 6= t](β̂Lη,t − βη,t)

≤K2
B‖β̂Lη,t − βη,t‖2

1 = Op(
s2 log(pη ∨ n)

n
) = op(1).
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Then applying Lemma 2.7.1, we have

1

n− nt

n∑
i=1

1{Ti 6= t}(fη(Zi)′(β̂Lη,t − βη,t))2 = op(1).

Hence condition (iii) of Lemma 2.7.2 which gives (2.35). Next, we prove (2.36) by applying

Lemma 2.7.2 again. This time Ψt,i = ζt(Xi) − µt, Ψ̂t,i = ζ̂Lt (Xi) − µ̂t, Ψt′,i = ζt′(Xi) − µt′ ,

and Ψ̂t′,i = ζ̂Lt′ (Xi) − µ̂t′ . Condition (i) and (ii) in Lemma 2.7.2 are directly satisfied by

Assumption 1.2.1 and the condition of this theorem. To check (iii), for any t, by triangular

inequality,

(
1

m

m∑
i=1

(Ψ̂t,i −Ψt,i)
2)

1
2 =(

1

m

m∑
i=1

(ζ̂Lt (Xi)− µ̂t − ζt(Xi)− µt)2)
1
2

≤(
1

m

m∑
i=1

(ζ̂Lt (Xi)− ζt(Xi))
2)

1
2 + (

1

m

m∑
i=1

(µ̂t − µt)2)
1
2 .

The second term in this upper bound equals µ̂t− µt which is Op(n
− 1

2 ) by theorem 2.4.1 and

for the first term, by triangular inequality,

(
1

m

m∑
i=1

(ζ̂Lt (Xi)− ζt(Xi))
2)

1
2

≤(
1

m

m∑
i=1

(fζ(Xi)
′(β̂Lζ,t − βζ,t))2)

1
2 + (

1

m

m∑
i=1

rζ(Xi)
2)

1
2 . (2.41)

The second term in (2.41) is op(1) by Markov inequality and Assumption 2.4.1, and for the

first term, by Assumption 2.4.2, we have

1

m

m∑
i=1

(fζ(Xi)
′(β̂Lζ,t − βζ,t))2

=
n

m
‖fζ(Xi)

′(β̂Lζ,t − βζ,t)‖2
2,n +

1

n

m∑
i=n+1

fζ(Xi)
′(β̂Lζ,t − βζ,t)2

=
m− n
n

1

m− n

m∑
i=n+1

fζ(Xi)
′(β̂Lζ,t − βζ,t)2 + op(1).
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Furthermore, denote the experimental sample by Cn = {(Yi, Zi, Ti)}ni=1, we have

E[
1

m− n

m∑
i=n+1

fζ(Xi)
′(β̂Lζ,t − βζ,t)2|Cn]

=(β̂Lζ,t − βζ,t)′E[fζ(Xi)fζ(Xi)
′](β̂Lζ,t − βζ,t)

≤K2
B‖β̂Lζ,t − βζ,t‖2

1 = op(1),

by Assumption 2.4.2, 2.4.3 and the condition of this theorem. Then by Lemma 2.7.1, condi-

tion (iii) of Lemma 2.7.2 is satisfied, which in turn gives (2.36). The proof of (2.37) is very

similar to the proof of (2.25) for theorem 2.3.2 and the proof of (2.35) so we choose to omit

it here.
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CHAPTER 3

Model Selection in Doubly Robust Policy Learning

3.1 Introduction

When treatment effects are heterogeneous, an important question is to find out how to best

assign treatment to individuals based on their observable characteristics, i.e. find a good

policy rule π(x) that maps a vector of characteristics x to a treatment. For example, a

job training program might only benefit workers of certain education level; some drugs may

only work on patients of certain age or with certain medical history; variant advertisement

styles lift sales differently depending on customer demographics. In these scenarios, the

decision maker might want to look beyond the average treatment effect and search for a good

policy rule. Given either experiment or quasi-experiment data, researchers can formulate a

statistical decision problem and evaluate policy rules by their expected regret (Manski, 2004;

Dehejia, 2005; Stoye, 2009; Bhattacharya and Dupas, 2012; Armstrong and Shen, 2015;

Kitagawa and Tetenov, 2018; Athey and Wager, 2021; Mbakop and Tabord-Meehan, 2021).

The problem could be described as follows. A population of agents with observed char-

acteristics X ∈ X is to be treated according to a rule π : X → D selected from a class

of available rules (or interventions) π ∈ Π. Each treatment rule will result in an outcome

Y ∈ R (interpreted as utility). Our goal is to learn a treatment rule that maximizes the

expected value of Y , denoted V (π). For that purpose, we attempt to estimate V (π) with

V̂n(π) using available data on the outcomes Yi, treatments Ti, covariates Xi, and optional

auxiliary variables Zi. Specifically, we have access to a collection W n
1 = {Wi}ni=1 of i.i.d.
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samples Wi = (Yi, Ti, Xi, Zi) distributed according to P ∈ P. We note that the space of

observed treatments Ti ∈ T may not be the same as the space of interventions D.

The literature has pointed out that in many situations, the set of rules that a policy

maker can choose from is constrained by various practical concerns such as budget, fairness,

or simplicity. We notice that this constrained set of rules, call it Π, could nevertheless be

ambiguous to a practitioner. For example, regulations may dictate that only certain variables

could be included in the determination of treatment assignment and a decision tree up to

depth four should be employed, but whether to use all of the variables and what exact depth

of trees to consider is still up to the practitioner to decide. A better policy π would very likely

exist in a larger class Π, but a too complex Π might not work well with the limited amount of

data. Just like in many statistical estimation problems, there is a trade-off between bias and

variance. Hence, picking a right class Π is a model selection problem for the practitioner.

In this chapter, we focus on the following question: if a practitioner can choose between

several different classes of policy rules, denoted Πk for k > 1, which class should they choose?

To answer this question, we need a criterion to compare different data-dependent treatment

rules. In line with the literature on statistical treatment rules, we evaluate the performance

of treatment rules in terms of their expected regret, E[R(π̂n)], where regret is defined as

R(π) = max
π′∈Π∗

V (π′)− V (π).

relative to some ideal policy class Π∗ that may be infeasible, unknown or arbitrarily set. In

the aforementioned example, Π∗ could be thought as the largest set of rules allowed under

the regulation. Now, to see the trade-off in picking the class, let π̂n,k denote the optimal

treatment rule chosen from a class Πk, the regret can be written as:

R(π̂n,k) = max
π∈Π∗

V (π)−max
π∈Πk

V (π)︸ ︷︷ ︸
Approximation Error

+ max
π∈Πk

V (π)− V (π̂n,k)︸ ︷︷ ︸
Estimation Error

.

Intuitively, we see that: more complex rules have a better chance of reducing the approxi-

mation error, but, for a given sample size, might have larger estimation error.
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We adapts and extends two recent methods proposed in Mbakop and Tabord-Meehan

(2021) and Athey and Wager (2021). Mbakop and Tabord-Meehan (2021) introduces the

penalized welfare maximization (PWM) rule, which itself is an extension to the empirical

welfare maximization (EWM) rule proposed in Kitagawa and Tetenov (2018). The PWM

rule adds penalization to the EWM rule to achieve model selection. The authors establish a

finite-sample upper bound on the expected regret of the PWM rule. The bound converge to

zero at n−1/2 rate, which is proved to be optimal. A limitation to both EMW and PWM is

that when the propensity score is unknown and has to be estimated, these methods would

no longer be rate-optimal. Athey and Wager (2021) propose a method that could retain the

n−1/2 rate even with estimated propensity scores by leveraging doubly robust estimation, but

their method does not incorporate model selection. In this chapter, we propose a method

that could achieve both.

Following the aforementioned two papers, we propose the following procedure to select

the best class. Define the penalized empirical welfare function:

Qn,k(π) = V̂n(π)− Ĉn,k(π),

where V̂n(π) is a doubly robust estimate of V (π) and Ĉn,k(π) represents a penalty for model

complexity, which, informally speaking, estimates how much the model overfits the data.

For each k, solve for

π̂n,k = argmax
π∈Πk

V̂n(π),

choose

k̂ = argmax
k

Qn,k(π̂n,k),

and set

π̂n ≡ π̂n,k̂.

Our main result is to show that such π̂n is adaptive in a sense that it automatically picks up

the “right” class and has the optimal rate of convergence in terms of expected regret. Our

regret bounds hold in finite samples, are tighter than the bounds available in the literature
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and easily generalize to arbitrary discrete policy rules. Moreover, since the welfare estimation

V̂n(π) is based on doubly robust scores, our method retains the optimal n−1/2 rate in general

setups including quasi experiments where the propensity scores have to be estimated.

In Section 3.2, we further describe the setup and introduce our assumptions. In Section

3.3, we revisit known results from the literature and present modified and refined versions of

them. Our main results are in Section 3.4, where we formally introduce our new algorithm,

the robust penalized welfare maximization (RPWM) rule. We present bound on expect

regret of the RPWM rule and prove that it is rate-optimal. Section 3.5 presents a simulation

study and Section 3.6 concludes. Proofs are collected in the appendix which forms Section

3.7.

3.2 Setup

We consider the standard potential outcomes framework (Neyman, 1923; Rubin, 1974).

Specifically, let Yi(t) denote an outcome that we would have observed if the treatment had

been set to Ti = t, and Y = Y (T ) denote the observed outcome. Let θ = E[τ(X)] denote

the average treatment effect. Our main assumption, following Athey and Wager (2021) and

Chernozhukov et al. (2016), is that we can identify θ via a doubly-robust moment condition.

Assumption 3.2.1 (Identification). Let m(x, t) = EP [Y (t)|X = x] ∈ M. Assume that

m(x, t) induces a treatment effect function τm(x, t) such that:

1. The welfare function can be expressed as V (π) = EP [π(X)τ(X)], where τ(X) =

EP [τm(X,T )|X].

2. The map m 7→ τm is linear and there is a weighting function g(x, z) such that for any

m̃(x, t) ∈M

EP [τm̃(X,T )− g(X,Z)m̃(X,T )|X] = 0.

The auxiliary variable Z could be an instrumental variable, or equals to X when X is
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exogeneous. We illustrate this setting with three important examples borrowed from (Athey

and Wager, 2021).

Example 3.2.1 (Binary Treatments with Selection on Observables). Under conditional

ignorability assumption T ⊥ (Y (1), Y (0))|X, condition 2 in Assumption 3.2.1 is satisfied

with

g(x, t) =
t− e(x)

e(x)(1− e(x))
, τm(x) = m(x, 1)−m(x, 0),

where e(x) = P (T = 1|X = x) is the propensity score. Then the welfare function is

V (π) = EP [π(X)τ(X)] = EP [Y (π(X))]− EP [Y (0)],

which corresponds to our utilitarian welfare objective.

Example 3.2.2 (Endogenous Binary Treatments with Binary Instruments). Assume that

Z is a valid instrument conditional on X in the sense of Assumption 2.1 of Abadie (2003),

and further assume that conditional average treatment effect equals conditional local average

treatment effect, then we can have

τm(x) = m(x, 1)−m(x, 0) =
Cov[Y, Z|X = x]

Cov[T, Z|X = x]
.

Then condition 2 in Assumption 3.2.1 is satisfied with

g(x, z) =
1

∆(x)

z − Ξ(x)

Ξ(x)(1− Ξ(x))
,

Ξ(x) = P [Z = 1|X = x],

∆(x) = P [W = 1|Z = 1, X = x]− P [W = 0|Z = 1, X = x]

Since τm(x) is the same as in the Example 3.2.1, the resulting welfare function is the same.

Example 3.2.3 (Continuous Treatments). Suppose the treatment variable T is continuous

and exogenous, i.e. {Y (t)} ⊥ T |X, then we let

τm(x, t) =
d

dv
m(x, t+ v)

∣∣∣∣
v=0

.
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Under regularity conditions, condition 2 of Assumption 3.2.1 is then satisfied with a function

g(X,T ) derived via integration by parts (Powell et al., 1989)∫ ∫
d

dt
m(X,T )

∣∣∣∣
t=T

dFT |XdFX =

∫ ∫
d

dt
g(X,T )m(X,T )dFT |XdFX ,

g(X,T ) =− d

dt
log(f(t|X))

∣∣∣∣
t=T

.

In this case the welfare function is

V (π) =
d

dv
E[Y (T + vπ(X))]

∣∣∣∣
v=0

,

which is the average effect of a nudge following policy π(x).

In the above settings, Chernozhukov et al. (2016) proposed estimating θ by

θ̂n =
1

n

∑
i=1

Γ̂i, Γ̂i = τm̂(Xi, Ti) + ĝ(Xi, Zi)(Yi − m̂(Xi, Ti)),

where ĝ(·) and m̂(·) are preliminary estimates of the nuisance functions g(·) and m(·). Using

cross-fitting and Neyman orthogonality of the moment condition θ = E[Γ(W ;m, g)], the

authors show that θ̂n is
√
n-consistent and asymptotically Normal, provided that ĝ(·) and

m̂(·) converge sufficiently fast, and may also be semiparametrically efficient (Newey, 1994).

Athey and Wager (2021) proposed using the orthogonal scores Γ̂i for policy learning.

Specifically, under Assumption 3.2.1, V (π) = E(π(X)Γ(W )), so that a feasible sample ana-

log can be constructed as V̂n(π) = n−1
∑n

i=1 π(Xi)Γ̂i. Then, by establishing that V̂n(π)

approximates V (π) uniformly well over π ∈ Π, Athey and Wager (2021) show that π̂n =

argmaxπ∈Π V̂n(π) is rate-optimal in terms of expected regret.1

In section 3.4, we propose our method that complements their results with model selec-

tion. Specifically, we propose a procedure that selects the “best” class of treatment rules to

choose from in a data-driven fashion. It resolves the trade-off between approximation and

1Athey and Wager (2021) work with A(π) = 2V (π) − E(τ(X)) = E((2π(X) − 1)τ(X)) and its feasible
analog, but the modification here changes neither the problem nor the solution.

63



estimation error described earlier and can also be extended to handle policy classes of infi-

nite VC-dimension as in Mbakop and Tabord-Meehan (2021). Another difference between

our results to theirs is that our bounds hold in finite sample while they derived asymptotic

bounds.

Now, we state the high-level assumptions on the first stage estimation that provides us

with Γ̂i.

Assumption 3.2.2 (DGP and First-stage Estimators). In the setting of Assumption 3.2.1,

assume that EP [m2(X,T )] ∨ EP [τ 2
m(X,T )] ∨ E[g2(X,Z)] < ∞, and we have access to esti-

mators m̂(x, d), τm̂(x, d), and ĝ(x, z) depending on the data W n
1 and satisfying the following

conditions. For some 0 < ζm, ζg < 1, with ζm + ζg > 1, and a positive sequence a(n)→ 0 as

n→ 0,

EP [(m̂(X,T )−m(X,T ))2] ∨ EP [(τm̂(X,T )− τm(X,T ))2] 6
a(n)

nζm
,

EP [(ĝ(X,Z)− g(X,Z))2] 6
a(n)

nζg
,

where (X,D,Z) is an independent test sample drawn from P , for all P ∈ P.

The above assumptions on first stage estimation is weaker than the equivalent in Athey

and Wager (2021) as we do not assume uniform consistency. Next, we assume that the policy

classes have finite VC dimensions.

Assumption 3.2.3 (Policy Rules). The class of available policy rules is Π =
⋃K
k=1 Πk, for

some finite K, and each Πk has a finite VC dimension denoted V C(Πk). The no-treatment

rule, π(x) = 0 for all x ∈ X , is included in each Πk.

At last, we assume that the function g(x, z) is bounded away from zero.

Assumption 3.2.4 (Overlap Condition). There is an η > 0 such that the weighting function

satisfies supx,z |g(x, z)| 6 η−1 for all P ∈ P.
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3.3 Related Results

In this section, we revisit some closely related known results in the literature and present

modified and improved version of them.

First, we revisit regret bounds of Kitagawa and Tetenov (2018). Assume that we are in

the setting of Example 3.2.1 and the propensity score is known. Then, the welfare can be

expressed as

V (π) = E
[
π(X)

(
Y T

e(X)
− Y (1− T )

1− e(X)

)]
,

where e(X) = P (T = 1|X) denotes the propensity score, with a sample counterpart

V̂ E
n (π) =

1

n

n∑
i=1

π(Xi)

(
YiTi
e(Xi)

− Yi(1− Ti)
1− e(Xi)

)
. (3.1)

Kitagawa and Tetenov (2018) consider the Empirical Welfare Maximization (EWM) rule,

defined as

π̂EWM
n = argmax

π∈Π
V̂ E
n (π).

They derive the upper bound on the worst-case expected regret of this rule over all distri-

butions with bounded outcomes and propensity scores. In the following theorem, we extend

and sharpen their result allowing for unbounded outcomes.2 Define a set of distributions:

PB,η = {P ∈ P : η 6 P (T = 1|X) 6 1− η a.s.,EP [Y 2] 6 B2}.

Theorem 3.3.1 (EWM Revisited). Assume that treatments are binary, T = {0, 1}, un-

confoundedness holds, (Y (0), Y (1)) ⊥ T |X, and the propensity score e(X) is known. Let

π̂EWM
n = argmaxπ∈Π V̂

E
n (π), with V̂ E

n (π) defined in (3.1), denote the EWM rule. Then,

sup
P∈PB,η

EP [R(π̂EWM
n )] 6 C

B

η

√
V C(Π)

n
,

2In addition to allowing unbounded outcomes, we obtain a substantially smaller constant. Kitagawa and
Tetenov (2018) assume that Y ∈ [−M/2,M/2] and derive an upper bound of the form KMη−1

√
V C(Π)/n.

A careful examination of the proof of their Theorem 1 suggests that the result holds with K ≈ 68. To
compare, note that for any distribution P such that Y ∈ [−M/2,M/2], we have (EP [Y 2])1/2 6 M/2.
Then, our Theorem 3.3.1 implies that the expected regret bound holds with C/2Mη−1

√
V C(Π)/n, where

C/2 = 29.
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where C 6 58 is a universal constant.

We complement this result with a tight lower bound to show that the EWM rule is

rate-optimal.

Theorem 3.3.2 (Regret Lower Bound). Under the assumptions of Theorem 3.3.1, for all

fixed n > 4V C(Π)/η,

inf
π̂n

sup
P∈PB,η

EP [R(π̂n)] > 0.07 · B
η

√
V C(Π)− 1

n
− κn,

where κn = 0.14B/η · (V C(Π)− 1)/n, and the right-hand side is positive.

Remark 3.3.1 (Unknown Propensity Score). One important limitation of the above result

is the assumption that the propensity score is known. If the propensity score is unknown and

has to be estimated, one can plug the estimator in (3.1) and maximize the corresponding

objective function. Then, a result similar to Theorem 3.3.1 holds with an additional O(φ−1
n )

term, where φn is the rate of convergence of the propensity score estimator, which is generally

slower than
√
n. In such cases, π̂EWM

n is no longer rate-optimal.

In the same setting, Mbakop and Tabord-Meehan (2021) propose a treatment rule that

accounts for model selection, called Penalized Welfare Maximization (PWM). Here, for sim-

plicity, we only revisit the so-called holdout procedure defined as follows:

1. Let l = d(1−s)ne and r = n− l for some s ∈ (0, 1), and call W1, . . . ,Wl the estimating

sample, and Wl+1, . . . ,Wn the test sample. We use subscripts l, r, and n for quantities

that depend on the estimating sample only, on the test sample only, and on the entire

sample.

2. Compute the EWM rules π̂l,k ≡ argmaxπ∈Πk
V̂ E
l (π) for each Πk using the estimating

sample. Evaluate each π̂l,k by computing the penalized welfare Qn,k(π̂l,k) = V̂ E
l (π̂l,k)−

Ĉn,k where the penalty is Ĉn,k = V̂ E
l (π̂l,k)− V̂ E

r (π̂l,k).
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3. Select k̂ = argmaxkQn,k(π̂l,k), and define3 π̂PWM
n ≡ π̂n,k̂.

This procedure is natural: we estimate each π̂l,k using the estimating sample, evaluate

their performance by computing the empirical welfare on the test sample, Qn,k = V̂r(π̂l,k),

and select the best estimator. The following result shows that such estimator automatically

selects the best class and attains the optimal rate of convergence.4

Theorem 3.3.3 (PWM Revisited). Assume that treatments are binary, T = {0, 1}, un-

confoundedness holds, (Y (0), Y (1)) ⊥ T |X, and the propensity scores are known. Let π̂n

denote the PWM rule computed with the holdout penalty as described above. Then, for any

P ∈ PB,η,

EP [R(π̂PWM
n )] 6 inf

k6K

{
V ∗Π − V ∗Πk + EP [Ĉn,k]

}
+Rn

where V ∗Π and V ∗Πk denote the maximum welfare attainable within the corresponding classes

(both depend on P ), and Rn = B/η ·K/
√
sn.

Moreover, letting PkB,η ⊂ PB,η be a set of distributions such that V ∗Π = V ∗Πk ,

sup
P∈PkB,η

EP [R(π̂PWM
n )] 6

B

η

(
C

√
V C(Πk)

(1− s)n
+K

√
1

sn

)

where C 6 58 is a universal constant.

To gain interpretation, recall that selecting the best Πk amounts to balancing the ap-

proximation error V ∗Π − V ∗Πk and the estimation error V ∗Πk − V (π̂l,k). The estimation error is

at the same rate as E[Ĉn,k] under the hold-out penalty (Mbakop and Tabord-Meehan, 2021).

Also, intuitively, one could think that the term Ĉn,k = V̂ E
l (π̂l,k) − V̂ E

r (π̂l,k) as an estimator

for V ∗Πk − V (π̂l,k), or at least a measure of over-fitting. Therefore, the above result shows

3A slight abuse of notation here: π̂n,k̂ is obtained by plugging in k = k̂ into π̂l,k. However, we replace

the l by n here (didn’t write π̂l,k̂ ) to stress that the rule now depends on the whole sample as k̂ depends on

the whole sample.

4Our result refines Theorem 3.1. and Corollaries 3.2 and 3.3. of Mbakop and Tabord-Meehan (2021) for
holdout penalty and a finite number of policy classes.
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the oracle property of π̂PWM
n : it behaves as if we knew the right class ex ante and used it to

compute the optimal treatment rule.

The difference in V ∗Πk − V (π̂l,k) is in π but the difference in V̂ E
l (π̂l,k) − V̂ E

r (π̂l,k) is in

the way how V is estimated, so I don’t see why V̂ E
l (π̂l,k) would be estimating V ∗Πk but not

V̂ E
r (π̂l,k). Ideally we should have V̂ E

l (π∗k), then you would say π̂l,k is estimating π∗k, but then

what about V̂ E
r (π̂l,k), why is this not estimating V̂ E

r (π∗k) and then in turn also estimating

V ∗Πk

The goal of this chapter is to construct an estimator with a similar oracle property in a

more general setting of Section 3.2 by combining doubly-robust welfare estimator and model

selection.

3.4 Main Results

We return to the general setting introduced in Section 3.2. Under Assumption 3.2.1, the

welfare can be written as

V (π) = E[π(X)Γ(W )],

and the feasible sample analog is given by

V̂n(π) =
1

n

n∑
i=1

π(Xi)Γ̂i.

We further require that the estimated orthogonal scores Γ̂i are computed using J-fold cross-

fitting, defined as follows. Split the sample into J evenly sized folds of size bn/Jc distributing

the remaining observations uniformly, and let j : {1, . . . , n} → {1, . . . , J} be a function that

identifies the fold j(i) to which observation i belongs. Then, let ĝ(−j(i)), m̂(−j(i)), and τ
(−j(i))
m̂

denote the first-stage estimators computed using (1− J−1)n observations excluding the fold

j(i), and compute

Γ̂i = τ
(−j(i))
m̂ (Xi, Ti) + ĝ(−j(i))(Xi, Zi)(Yi − m̂(−j(i))(Xi, Ti)).

68



Following Athey and Wager (2021), we define a Doubly-Robust EWM estimator as

π̂REWM
n = argmax

π∈Π
V̂n(π).

Our first goal is to bound its expected regret in finite samples. To this end, we define:

Ṽn(π) =
1

n

n∑
i=1

π(Xi)Γi,

and show that, under Assumption 3.2.1-2 and appropriate moment conditions,

E
[
sup
π∈Π
|Ṽn(π)− V (π)|

]
6 C̃

√
V C(Π)

n
E
[
sup
π∈Π
|V̂n(π)− Ṽn(π)|

]
= o(n−1/2).

That is, not knowing the propensity scores (and other nuisance parameters) only comes at

a o(n−1/2) price, meaning that π̂REWM
n has the optimal rate of convergence.

Here, we impose more explicit restrictions on the distributions of the data, in line with

our Assumptions 3.2.2 and 3.2.4. Specifically, we define:5

PBτ ,B,η =

P ∈ P :

EP [τ 2
m(X,T )] 6 B2

τ

EP [(Y −m(X,T ))2|X,T ]
a.s.

6 B2

supx,z |g(x, z)| 6 η−1

 , (3.2)

and prove the following result.

Theorem 3.4.1 (Doubly-Robust EWM). Let Assumptions 3.2.1 – 3.2.4 hold and π̂REWM
n

denote the Doubly-Robust EWM estimator defined above, with the first stage estimators for

the nuisance parameters constructed using a J-fold sample splitting. Then,

sup
P∈PBτ ,B,η

EP [R(π̂REWM
n )] 6 C

√
B2
τη

2 +B2

η

√
V C(Π)

n
+Rn,

5To relate this with the set PB,η defined prior to Theorem 3.3.1, recall from Example 3.2.1 that τm(X,T ) =
m(X, 1) −m(X, 0) so that E(τ2m) 6 4B2 provided that EP [(Y −m(X,T ))2|X,T ] 6 B2. The latter neither
implies nor is implied by EP [Y 2] 6 B2.
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where C 6 58 is a universal constant, and Rn = 2(R1,n +R2,n +R3,n) with

R1,n = C

√
(J + 2)B2 · V C(Π)a((1− J−1)n)

n1+ζg
,

R2,n = C

√
(J + 2)

2(η2 + 1)

η2
· V C(Π)a((1− J−1)n)

n1+ζm
,

R3,n =

√
a((1− J−1)n)2

nζm+ζg
.

It is instructive to compare this result with Theorem 3.3.1 in the context of binary

treatments under unconfoundedness (see Example 3.2.1). Recall that when the propensity

scores are unknown, the analog of Theorem 3.3.1 holds with an additional O(φ−1
n ) term,

where φn is a rate of convergence of the propensity score estimator. The latter is generally

slower than root-n, meaning that π̂EWM
n is not rate-optimal. On the other hand, under

the assumptions of Theorem 3.4.1, the extra term in the upper bound is Rn = o(n−1/2).

Therefore, π̂REWM
n is rate-optimal, whether the propensity score is known or not, which

illustrates the main advantage of using robust welfare estimates.

Next, we present our main result which adds model selection. We propose using a Robust

Penalized Welfare Maximization (RPWM) treatment rule, defined as follows.

1. Let l = d(1−s)ne and r = n− l for some s ∈ (0, 1), and call W1, . . . ,Wl the estimating

sample, and Wl+1, . . . ,Wl+r the test sample. We use subscripts l, r, and n for quantities

that depend on the estimating sample only, on the test sample only, and on the entire

sample.

2. Compute the RWM rules π̂l,k ≡ argmaxπ∈Πk
V̂l(π) for each Πk using the estimating

sample with Γ̂i computed using a J-fold cross-fitting. Evaluate each π̂l,k by computing

the penalized welfare Qn,k(π̂l,k) = V̂l(π̂l,k)− Ĉn,k where the penalty is Ĉn,k = V̂l(π̂l,k)−

V̂r(π̂l,k).

3. Select k̂ = argmaxkQn,k(π̂l,k), and define π̂RPWM
n ≡ π̂n,k̂.
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The following result shows that such estimator automatically selects the best class and

attains the optimal rate of convergence.

Theorem 3.4.2. Let Assumptions 3.2.1 – 3.2.4 hold and π̂RPWM
n denote the Doubly-Robust

PWM estimator defined above, with the first stage estimators for the nuisance parameters

constructed using a J-fold sample splitting. Then:

EP
[
R(π̂RPWM

n )
]
6 inf

k6K
{V ∗Π − V ∗Πk + E[Ĉn,k]}+ Sn,

where V ∗Π and V ∗Πk denote the maximum welfare attainable within the corresponding policy

classes (both depend on P ), and Sn = O(
√
B2
τη

2 +B2/η · 1/
√
sn).

Moreover, letting PkBτ ,B,η ⊂ PBτ ,B,η be a set of distributions such that V ∗Π = V ∗Πk ,

sup
P∈PkBτ ,B,η

EP [R(π̂RPWM
n )] 6

√
B2
τη

2 +B2

η

(
C

√
V C(Πk)

(1− s)n
+K

√
1

sn

)
+ Sk1,n + S2,n

where C 6 58 is a universal constant, Sk1,n = Rk
1,(1−s)n + Rk

2,(1−s)n + R3,(1−s)n, where Rk
1,n,

Rk
2,n, and R3,n are given in Theorem 3.4.1 with Πk instead of Π, and S2,n = o(n−1/2).

Note that this theorem is comparable to Theorem 3.3.3. It shows the same oracle property

as PWM discussed in Section 3.3. Moreover, by incorporating the doubly robust score,

RPWM can retain the n−1/2 rate in more general settings as the REWM rule. Hence, we

are able to get the benefit of both worlds.

Or final result is a lower bound on expected regret that shows the n−1/2 rate is indeed

optimal.

Theorem 3.4.3. Under Assumption 3.2.1 and 3.2.4, with PB,η defined in 3.2, for any policy

rule π̂n as a function of W n
1 , we have

sup
P∈PB,η

EP [V (π∗P )− V (π̂n)] > 0.07 · B
η

√
d

n
− 0.14
√
η
· B
η

d

n
.
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3.5 Simulation

In this section, we conduct a simple simulation to demonstrate how RPWM rule balances

between approximation error and estimation error.

We generate a random sample of size n with the following DGP.

Y (0) = 0.7(X3 +X4 + ε0),

Y (1) = X2 −X1 + 0.7(X3 +X4 + ε1),

P (T = 1|X) = Λ(log(0.5) + (X1 +X2 +X3 +X4)(log(2)− log(0.5))/4).

where all covariates follow U [0, 1] and errors follow N(0, 1) independently. The Λ(·) denotes

the logistic function so the propensity score is in between 1
3

to 2
3
. Under this DGP, the

average treatment effect is zero. However, There is heterogeneous treatment effect and

E[Y (1)− Y (0)|X] = X2 −X1,

which suggest that the first best treatment policy is 1{X2 ≥ X1}. Consider the [0, 1]×[0, 1] ⊂

R2 square where (X1, X2) belongs, the 45 degree diagonal line across this square would be

the boundary of the first best treatment policy.

Now, for policy rule learning, suppose we arbitrarily decided to focus on decision trees

that only splits on X1 and X2 and up to depth 4. We compare three different algorithms,

the first one only considers depth 2 trees, the second one only considers depth 4 trees, and

then an adaptive one which chooses across depths 2, 3 and 4 using the hold-out penalty.

The last algorithm corresponds to RPWM and the first two REWM. We run Monte Carlo

simulations with n ∈ {200, 400, 800, 1200, 1600, 2000} and plot the regrets in Figure 3.1. 200

simulations were run for each sample size.

We see that when sample size is small, the estimation error would dominate, hence focus-

ing on depth 2 trees leads to less regret. When the sample size is large, the approximation

error would dominate so depth 4 trees become more favorable. The adaptive RPWM rule
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Figure 3.1: Regrets of 3 Algorithms with Different Sample Sizes

should ideally trace the lower envelope of the other two curves. That is similar to what it

behaves in this simulation. We do notice a relatively poorer performance when sample size

is small. This might be due to the fact that hold-out penalty effectively reduce sample size.

At last, we show some policy rules learned from the depth 2 and 4 trees at n = 200 and

2000 in Figure 3.2. We can see that the depth 4 tree behaves poorly at n = 200 due to

73



over-fitting while does a good job approximating the first best policy rule when n = 2000.

(a) A depth 2 tree with n = 200. (b) A depth 4 tree with n = 200.

(c) A depth 2 tree with n = 2000. (d) A depth 4 tree with n = 2000.

Figure 3.2: Examples of Policy Trees Learned with n = 200 and 2000.
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3.6 Conclusion

In this chapter, we studied model selection in doubly robust policy learning. Following

Mbakop and Tabord-Meehan (2021) and Athey and Wager (2021), we added hold-out penalty

to the doubly robust policy learning algorithm. The resulting method could achieve data-

driven model selection while retaining optimal n−1/2 rate under general setups including

quasi-experiments where propensity scores are unknown. By deriving finite sample upper

bounds on expected regret, we show that the algorithm can automatically balance approx-

imation error with estimation error. We also refined some related results in the literature

and derived a new finite sample lower bound to show that the n−1/2 rate is indeed optimal.

3.7 Appendix

3.7.1 Known Results for Reference and Some Refinements

First, we recite a well-known symmetrization inequality. See, e.g., Lemma 2.3.1. in van der

Vaart and Wellner (1996).

Lemma 3.7.1 (Symmetrization). Let W1, . . . ,Wn be an i.i.d. sample. Then for any class

of measurable functions F ,

E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Wi)− E(f(Wi))

∣∣∣∣∣
]
6 2E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

ξif(Wi)

∣∣∣∣∣
]

where ξ1, . . . , ξn are i.i.d. Rademacher random variables independent from W1, . . . ,Wn.

Let ψ be a strictly increasing, convex function with ψ(0) = 0 and X be a random variable.

Then the Orlisz norm ||X||ψ is defined as

||X||ψ = inf

{
C > 0 : E

(
ψ

(
|X|
C

))
6 1

}
.

Then, the following maximal inequality holds.
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Lemma 3.7.2 (Maximal Inequality with Orlisz Norms). For any random variables X1, . . . , Xn

and any strictly increasing, convex function ψ,

E
[
max
j6m
|Xj|

]
6 ψ−1(m) max

j6m
||Xj||ψ

Proof. For any C > 0,

ψ
(
E
[
maxj6m

|Xj |
C

])
6 E

[
maxj6m ψ

(
|Xj |
C

)]
6 mmax

j6m
E
[
ψ
(
|Xj |
C

)]
,

where the first inequality holds because ψ is convex and non-decreasing. Therefore, for any

C such that maxj6m E [ψ (|Xj|/C)] 6 1, we have

E
[
max
j6m
|Xj|

]
6 Cψ−1(m).

Choosing C = maxj6m ||Xj||ψ concludes the proof. �

The following result is Theorem 2.6.4. from Van der Vaart and Wellner (1996) with a

precisely pineed down universal constant.

Lemma 3.7.3 (Covering Numbers for VC classes). For any VC-class C of sets, any proba-

bility measure Q, any r > 1, and 0 < ε < 1,

N(ε, C, Lr(Q)) 6
1

2
√
e
V (C)(4e)V (C)

(
1

ε

)r(V (C)−1)

.

Proof. We closely follow the proof of Theorem 2.6.4. in van der Vaart and Wellner (1996). We

start by referencing the main steps and introducing the necessary notation. First, note that

||1C − 1D||Q,r = Q1/r(C4D), so an εr-cover under L1(Q) produces an ε-cover under Lr(Q).

Therefore, the result for r > 1 follows immediately from the result for r = 1. Second, one

can argue that it suffices to consider empirical type measures Q supported on a large enough

finite set of distinct points {x1, . . . , xn}. Third, it is more convenient to bound the packing

number D(ε, C, L1(Q)) first and use the fact that N(ε, C, L1)(Q)) 6 D(ε/2, C, L1(Q)).
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Each set C ∈ C can be identified with a binary vector 1C = (1(xi ∈ C))ni=1, and the

collection C can be identified with a binary matrix Z of size n×#Z. Define d(1C1 ,1C2) =

n−1
∑n

i=1 |1C1−1C2|. Then, recalling that Q places probability 1/n on each xi, Q(C14C2) =

d(1C1 ,1C2), so that D(ε, C, L1(Q)) = D(ε,Z, d). For simplicity of notation, assume that Z

is ε-separated with respect to d, so the goal is to bound its size #Z in terms of the VC

dimension V (C).

Denote S = V (C) − 1 and fix an integer m such that S 6 m < n. For a subset

J ⊂ {1, . . . , n} of size #J = m, let ZJ denote the projection of Z onto {0, 1}J , and #ZJ

denote the average size of ZJ over all subsets J or size m. Then, following the proof on Page

138 of van der Vaart and Wellner (1996) we arrive to the bound

#Z 6 #ZJnε(m+ 1)

εn(m+ 1)− 2(n−m)S
6

ε(m+ 1)#ZJ
ε(m+ 1)− 2S

6
εm#ZJ
εm− 2S

,

which holds without any extra constants. The number of points in any ZJ is equal to the

number of subsets picked out by C from the points {xi : i ∈ J}. By the Sauer-Shelah Lemma,

this is bounded by
∑S

j=0

(
m
j

)
, which is smaller than (em/S)S for m > S.6 Therefore,

#Z 6
( e
S

)S mS+1ε

mε− 2S

holds for all integers m such that S 6 m < n. Denote the right-hand side of the preceding

display by f(m). This function is strictly decreasing until m∗ = 2(S + 1)/ε and strictly

increasing afterwards. Therefore, the optimal unconstrained choice is m = m∗, for which

f(m∗) = (2e/ε)S(S + 1)(1 + S−1)S. However, the argument leading to the upper bound on

#Z only applies to integer m such that S 6 m < n. To ensure that a similar bound holds

for an integer value of m, we can simply use f(m∗− 1) since somewhere between m∗− 1 and

6Indeed, for t ∈ (0, 1),
∑S
j=0

(
m
j

)
6
∑S
j=0

(
m
j

)
tj

tS
6 (1+t)m

ts . Set t = S
m and use (1 + S/m)m 6 eS .
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m∗ there must be an integer, and f(m) is decreasing on this interval. We have

f(m∗ − 1) =
(
e
S

)S (2(S + 1)/ε− 1)S+1ε

(2(S + 1)/ε− 1)ε− 2S

=
(

2e
ε

)S 1
1−ε/2(S + 1− ε/2)

(
1 + 1−ε/2

S

)S
6
(

2e
ε

)S
(S + 1) 1

1−ε/2 exp(1− ε/2)

6
(

2e
ε

)S
(S + 1) · 2

√
e,

for all ε ∈ (0, 1) since the function g(ε) = (1−ε/2)−1 exp(1−ε/2) is monotonically increasing.

Therefore, we obtain the bound

#Z 6
(

2e

ε

)S
(S + 1) · 2

√
e,

and it remains to check that this bound still holds when m∗ − 1 < S or m∗ > n. Note that

m∗ − 1 > S for all ε ∈ (0, 1). If m∗ > n, by the Sauer-Shelah Lemma

#Z 6
S∑
j=0

(
n

j

)
6
(en
S

)S
6

(
em∗

S

)S
6 e

(
2e

ε

)S
,

which certainly implies the bound in the previous display. Therefore, recalling that #Z =

D(ε, C, L1(Q)),

N(ε, C, L1(Q)) 6 D(ε/2, C, L1(Q))

6
(

4e
ε

)S
(S + 1) · 2

√
e

=
(

4e
ε

)V (C)−1
V (C) · 2

√
e

= 1
2
√
e
V (C)(4e)V (C) (1

ε

)(V (C)−1)
,

and the desired result follows.

�

Next, we state and prove two simple lemmas about a specific VC-subgraph class of

functions. A subgraph of a function f : X → R is defined as

Cf = {(t, x) ∈ R×X : t < f(x)}.
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A class of functions F is VC-subgraph if the class of all subgraphs

CF = {Cf : f ∈ F}

has a finite VC dimension. In this case we denote V (F) = V (CF).

The next result is Theorem 2.6.7. from van der Vaart and Wellner (1996). It is a direct

consequence of the result for sets and holds with the same universal constant.

Lemma 3.7.4 (Covering Number for VC-subgraph Classes). For a VC-class of functions

with measurable envelope function F and r > 1, one has for any probability measure Q with

||F ||Q,r > 0,

N(ε ||F ||Q,r ,F , Lr(Q)) 6
1

2
√
e
V (F)(16e)V (F)

(
1

ε

)r(V (F)−1)

,

for 0 < ε < 1.

Next, we refine the above result for a particular VC-subgraph class of functions.

Lemma 3.7.5 (A Simple VC-Subgraph Class). Let G denote a class of subsets of X with

a finite VC dimension V (G), and F : X → R be an arbitrary function. Define a class of

functions:

F = {1(x ∈ G)F (x) : G ∈ G}.

Then, F is VC-subgraph with V (F) 6 V (G).

Proof. Let V C(G) = d and D = {(t1, x1), . . . , (td, xd+1)} ⊂ R × X be an arbitrary set of

points. By definition, D is shattered by F if for every subset {(tj, xj) : j ∈ J} there is a

function f with subgraph Cf such that Cf ∩ D = {(tj, xj) : j ∈ J}. Equivalently, D is

shattered by F if for every subset J ⊂ {1, . . . , d+ 1} there is a set G ∈ G satisfying

tj < 1(xj ∈ G)F (xj) for j ∈ J

tk > 1(xk ∈ G)F (xk) for k /∈ J
(3.3)
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We will argue that D cannot be shattered by F .

First, if there is (tj, xj) such that tj < 0 and tj < F (xj), then tj < 1(xj ∈ G)F (xj) holds

for all G ∈ G. In this case, any subset of D that does not include tj, xj cannot be picked out,

so D cannot be shattered by F . Similarly, if there is (tk, xk) such that tk > 0 and tk > F (xk),

then tk > 1(xk ∈ G)F (xk) holds for all G ∈ G. So, any subset of D that includes this point

cannot be picked out and D cannot be shattered by F . Therefore, we will assume that each

(tj, xj) satisfies either tj < 0, F (xj) > 0 or tj > 0, F (xj) < 0 for j = 1, . . . , d+ 1.

Recall that G does not shatter {x1, . . . , xd+1}, meaning that there exist a subset {xj}j∈J

that G cannot pick out. Then, for every G ∈ G we have either xj /∈ G for some j ∈ J or

xk ∈ G for some k /∈ J . If the inequalities in (3.3) do not hold for this J for any G, then

{(tj, xj)}j∈J cannot be picked out and D cannot be shattered by F . Suppose the inequalities

in (3.3) hold for some G ∈ G. If xj /∈ G for some j ∈ J , it must be that tj < 0 and, according

to the previous discussion, F (xj) > 0. Then the set J ′ = J\(tj, xj) cannot be picked out. If

xk ∈ G for some k /∈ J , it must be that tk > 0 and F (xk) < 0, so the set J ′′ = J ∪ k cannot

be picked out. Therefore, D cannot be shattered by F and V C(F) 6 V C(G).

�

Lemma 3.7.6 (Covering Numbers for Special VC-Subgraph Classes). Let G denote a class

of subsets of X with a finite VC dimension V (G), and F : X → R be an arbitrary function.

Define a class of functions:

F = {1(x ∈ G)F (x) : G ∈ G}.

Then, for any r > 1, probability measure Q with ||F ||Q,r > 0, and 0 < ε < 1,

N(ε ||F ||Q,r ,F , Lr(Q)) 6
1

2
√
e
V (F)(4e)V (F)

(
1

ε

)r(V (F)−1)

.

Proof. By Lemma 3.7.5, F is VC-subgraph. For r = 1, note that:

||f1 − f2||Q,1 = EQ[|1G1 − 1G2||F |] = P (Cf14Cf2) ||F ||Q,1 ,
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where P = λ×Q/ ||F ||Q,1 is a probability measure on R× X and λ is a Lebesgue measure

on R. Then, by Lemma 3.7.3,

N(ε ||F ||Q,1 ,F , L1(Q)) = N(ε, CF , L1(P )) 6
1

2
√
e
V (F)(4e)V (F)

(
1

ε

)(V (F)−1)

.

For r > 1, note that:

||f1 − f2||rQ,r = EQ(|1G1F − 1G2F ||F |r−1) =
||f1 − f2||R,1
||F ||R,1

EQ(|F |r),

for the probability measure R with density |F |r−1/EQ(|F |r−1) with respect to Q. Therefore,

||f1 − f2||Q,r =

(
||f1 − f2||R,1
||F ||R,1

)1/r

||F ||Q,r ,

so that by the previous argument applied to R instead of Q

N(ε ||F ||Q,r ,F , Lr(Q)) 6 N(εr ||F ||R,1 ,F , L1(R)) 6
1

2
√
e
V (F)(4e)V (F)

(
1

ε

)r(V (F)−1)

�

3.7.2 Auxiliary Lemmas

Now we are ready to state and prove three auxiliary lemmas that give our main results.

Lemma 3.7.7 (Finite-Sample Bound on Rademacher Complexity). Let W1, . . . ,Wn be an

i.i.d. sample and ξ1, . . . , ξn be i.i.d. Rademacher random variables independent of W1, . . . ,Wn.

1. Let F be a VC-subgraph of functions with f0(w) = 0 ∈ F , a finite VC dimension

V C(F), and a measurable envelope F such that S = E(F 2) <∞. Then:

E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

ξif(Wi)

∣∣∣∣∣
]
6 C

√
V C(F)S

n
,

where C = 4
√

12
∫ 1

0

√
1/(2e3/2) + log(16e) + 2 log(1/u)du 6 34.

2. In the special case when F = {f(x) = 1(x ∈ G)F (x) : G ∈ G}, for a VC-class of sets

G and an arbitrary measurable function F with S = E(F 2) <∞, the above holds with

C = 4
√

12
∫ 1

0

√
1/(2e3/2) + log(4e) + 2 log(1/u)du 6 29.
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Proof. Denote G0
n(f) = n−1/2

∑n
i=1 ξif(Wi). By the Law of Iterated Expectations,

E
[
sup
f∈F

∣∣∣∣ 1√
n
G0(f)

∣∣∣∣] =
1√
n
EWn

1

[
Eξn1

[
sup
f∈F

∣∣G0(f)
∣∣]] (3.4)

We will use a simple chaining argument to bound the right hand side of (3.4). Let η =

2 ||F ||2,n, and define F0 = {f0} and Fj contain centers of the balls in the minimal η2−j-cover

of F under ||·||2,n, so that |Fj| = N(η2−j,F , ||·||2,n). Let φj : F → Fj be a map that for a

given f finds the closest element of Fj. For any fk ∈ Fk define a chain fk−l = φk−l(fk−l+1)

for l = 1, . . . , k. Then,

G0
n(fk) =

k∑
j=1

(G0
n(fj)−G0

n(fj−1)) 6
k∑
j=1

max
g∈Fj
|G0

n(g)−G0
n(φj−1(g))|,

Let ψ2(x) = ex
2 − 1 and ||·||ψ2

denote the corresponding Orlisz norm. By Lemma 2.2.7. in

van der Vaart and Wellner (1996), conditional on W n
1 , the process G0

n(f) is sub-Gaussian

for the metric dn(f1, f2) = ||f1 − f2||2,n, and satisfies ||G0
n(f)−G0

n(g)||ψ2
6
√

6 ||f − g||2,n.

By Lemma 3.7.2 and the above discussion,

Eξn1

[
max
g∈Fj
|G0

n(g)−G0
n(φj−1(g))|

]
6 ψ−1

2 (|Fj|) maxg∈Fj ||G0
n(g)−G0

n(φj−1(g))||ψ2

6
√

6 · ψ−1
2 (N(η2−j,F , ||·||2,n)) · η2−(j−1)

Therefore,

Eξn1

[
sup
f∈Fk
|G0

n(f)|
]
6
√

6
k∑
j=1

ψ−1
2 (N(η2−j,F , ||·||2,n))η2−(j−1)

(a)

6 4
√

6

∫ η/2

0

ψ−1(N(ε,F , ||·||2,n))dε

= 4
√

6

∫ ||F ||2,n
0

√
log(N(ε,F , ||F ||2,n) + 1)dε

(b)

6 4
√

12

∫ ||·||2,n
0

√
logN(ε,F , ||·||2,n)dε,
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where (a) follows from rearranging rectangles under the curve ε 7→ ψ−1
2 (N(ε,F , ||·||2,n)), and

(b) follows from log(x + 1) 6 2 log(x) for x > 2. Since, conditional on W n
1 , the process G0

n

is separable, by letting k →∞ in the previous display we conclude that

Eξn1

[
sup
f∈F
|G0

n(f)|
]
6 4
√

12

∫ ||F ||2,n
0

√
logN(ε,F , ||·||2,n)dε. (3.5)

Denote V ≡ V C(F) and K = (2
√
e)−1. Applying Lemma 3.7.4 (or Lemma 3.7.6 for the

special case) with r = 2 and Q = Pn,

logN(ε,F , ||·||2,n) 6 log(KV ) + V log(16e) + 2(V − 1) log
(
||F ||2,n

ε

)
= V

(
K log(KV )

KV
+ log(16e) + 2V−1

V
log
(
||F ||2,n

ε

))
6 V

(
K/e+ log(16e) + 2 log

(
||F ||2,n

ε

))
,

where the last line uses the fact that log(t)/t 6 1/e for all t > 0. Therefore,

||F ||2,n∫
0

√
logN(ε,F , ||·||2,n)dε 6

||F ||2,n∫
0

√
K/e+ log(16e) + 2 log

(
||F ||2,n /ε

)
dε ·
√
V

6

1∫
0

√
K/e+ log(16e) + 2 log(1/u)du

√
V ||F ||22,n,

(3.6)

where the second line follows from a change of variables u = ε/ ||F ||2,n. Combining (3.5)

and (3.6), we obtain

Eξn1

[
sup
f∈F
|G0

n(f)|
]
6 C

√
V ||F ||22,n

where C = 4
√

12
∫ 1

0

√
K/e+ log(16e) + 2 log(1/u)du (or the same expression with 4e instead

of 16e in the special case). By (3.4) and Jensen’s inequality,

E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

ξif(Wi)

∣∣∣∣∣
]
6 C

√
V C(F)S

n
,

which concludes the proof.

�
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3.7.3 Proofs of Theorems 3.3.1, 3.3.2, and 3.3.3

3.7.3.1 Proof of Theorem 3.3.1

To keep notation simple, we write π̂n instead of π̂EWM
n . Let π∗ denote a rule such that

V (π∗) = V ∗Π = supπ∈Π V (π). Note that

R(π̂n) = V (π∗)− V (π̂n)

= V (π∗)− V̂n(π̂n) + V̂n(π̂n)− V (π̂n)

6 V (π∗)− V̂n(π∗) + V̂n(π̂n)− V (π̂n),

and, therefore,

E[R(π̂n)] = E[V̂n(π̂n)− V (π̂n)] 6 E[supπ∈Π |V̂n(π)− V (π)|].

Define a class of functions

F =

{
f(w) = π(x)

(
yt

e(x)
− y(1− t)

1− e(x)

)
: π ∈ Π

}
,

so that

sup
π∈Π
|V̂n(π)− V (π)| = sup

f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Wi)− E[f(Wi)]

∣∣∣∣∣ .
Applying Lemma 3.7.1 and part 2 of Lemma 3.7.7,

E

[∣∣∣∣∣sup
f∈F

1

n

n∑
i=1

f(Wi)− E[f(Wi)]

∣∣∣∣∣
]
6 2C

√
V C(F)S

n
,

where C 6 29 is a universal constant and S = E[f(W )2]. By Lemma 3.7.5, V C(F) 6 V C(Π),

and for any P ∈ PB,η,

EP [f(W )2] 6 EP
[
Y 2T

e(X)2
+

Y 2(1− T )

(1− e(X))2

]
6
B2

η2
,

so the desired result follows.
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3.7.3.2 Proof of Theorem 3.3.3

To keep notation simple, we write π̂n = π̂n,k̂ instead of π̂PWM
n , and V̂n instead of V̂ E

n . The

subscripts n, l, and r, indicate the the corresponding objects depend on the entire sample,

only the estimating sample, and only the test sample correspondingly. For example, while

π̂l,k depends only on the estimating sample, π̂n,k̂ depends on the entire sample by the choice

of k̂. Let π∗k denote a rule such that V (π∗k) = V ∗Πk = maxπ∈Πk V (π). Recall that, by definition,

Qn,k(π̂n,k̂) = V̂l(π̂n,k̂)− Ĉn,k̂ = V̂r(π̂n,k̂).

Write

R(π̂n) = V ∗Π − V ∗Πk
+ V (π∗k)−Qn,k̂(π̂n,k̂)

+ Qn,k̂(π̂n,k̂)− V (π̂n,k̂)

By the definitions of k̂ and π̂l,k, for any k,

V (π∗k)−Qn,k̂(π̂n,k̂) 6 V (π∗k)−Qn,k(π̂l,k) 6 V (π∗k)− V̂l(π∗k) + Ĉn,k,

so that

E[V (π̂∗k)−Qn,k̂(π̂n,k̂)] 6 E[Ĉn,k].

Next, write

E[V̂r(π̂n,k̂)− V (π̂n,k̂)] 6 r−1/2E
[
max
k6K

√
r|V̂r(π̂l,k)− V (π̂l,k)|

]
, (3.7)

and, working conditional on the estimating sample W l
1,

E
[
max
k6K

√
r|V̂r(π̂l,k)− V (π̂l,k)|

∣∣∣∣ W l
1

]
6 K max

k6K
E
[√

r|V̂r(π̂l,k)− V (π̂l,k)|
∣∣∣∣ W l

1

]
. (3.8)
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Denoting fk(w) = π̂m,k(x)(yt/e(x)− y(1− t)/(1− e(x))), we have:

E
[
√
r|V̂r(π̂l,k)− V (π̂l,k)|

∣∣∣∣ W l
1

]
= E

[∣∣∣r−1/2
∑

j fk(Wj)− E[fk(Wj)]
∣∣∣ ∣∣∣∣ W l

1

]
6 E

[(
r−1/2

∑
j fk(Wj)− E[fk(Wj)]

)2
∣∣∣∣ W l

1

]1/2

6 E[fk(Wj)
2 | W l

1]1/2

6 B
η
,

where the last inequality follows in the same fashion as in Theorem 3.3.1. Since this bound

does not depend on k, taking expectations on both sides of (3.8) and recalling that r = ln,

we obtain:

E[V̂r(π̂n,k̂)− V (π̂n,k̂)] 6
B

η

K√
ln
.

Combining the above results, we conclude that

E[R(π̂n)] 6 V ∗Π − V ∗Πk + E[Ĉn,k] +
B

η

K√
ln
, (3.9)

holds for all k 6 K, so that

E[R(π̂n)] 6 inf
k6K
{V ∗Π − V ∗Πk + E[Ĉn,k]}+

B

η

K√
ln
,

and the first part of the statement follows.

For the second part of the statement, note that by the Law of Iterated Expectations

E[Ĉn,k] = E[V̂l(π̂l,k)− V (π̂l,k) + V (π̂l,k)− V̂r(π̂l,k)]

= E[V̂l(π̂l,k)− V (π̂l,k)].

Then, repeating the proof of Theorem 3.3.1 with Πk instead of Π and m instead of n, we

obtain

E[Ĉn,k] 6 C
B

η

√
V C(Πk)

(1− s)n
.

Plugging this in Equation (3.9) and recalling that V ∗Π = V ∗Πk for all P ∈ PkB,η, we conclude

that

sup
P∈PkB,η

EP [R(π̂PWM
n )] 6

B

η

(
C

√
V C(Πk)

(1− s)n
+K

√
1

ln

)
,

and the proof is complete.
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3.7.3.3 Proof of Theorem 3.3.2

We consider a particular subclass of PB,η for which the worst-case regret can be bounded

from below by a term proportional to B/η
√
d/n. The construction proceeds as follows.

Let x1, . . . , xd, where d = V C(Π) − 1, be a set shattered by Π with the largest possible

cardinality. Let
X ∈ {x1, . . . , xd}, P (X = xj) = 1

d
;

T ∈ {0, 1}, P (T = 1) = p, T ⊥ (X, Y0, Y1);

Y0 = 0,

and, given a parameter vector c = (c1, . . . , cd) ∈ {−1, 1}d,

Y1|X = xj =


A w.p. 1

2
(1 + cj

γ
A

)

−A w.p. 1
2
(1− cj γA)

,

where γ/A 6 1. Then, for Y = TY1 + (1− T )Y0,

E(Y 2) = pA2,

τ(xj) = E[Y1 − Y0|X = xj] = γcj.

For every c ∈ {−1, 1}d, the joint distribution of W = (Y,X, T ) constructed above belongs

to PB,η as long as p ∈ [η, 1− η] and pA2 6 B2. We will specify such p and A later.

Let C = (C1, . . . , Cd) consist of i.i.d. random variables Cj ∈ {−1, 1} such that P (Cj =

1) = 1/2. The joint distribution of W = (Y,X, T ) given C = c is

P (Y = y,X = xj, T = t|C = c) =


(1− p)1

d
y = 0, t = 0

1
2
(1 + cj

γ
A

)p
d

y = A, t = 1

1
2
(1− cj γA)p

d
y = −A, t = 1

.

We shall also derive the posterior probability P (Cj = 1|W n
1 ) which will play a crucial role

in deriving the lower bound.
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We have

P (Y = y,X = xj, T = t) =


(1− p)1

d
y = 0, t = 0

1
2
p
d

y = A, t = 1

1
2
p
d

y = −A, t = 1

,

and

P (Y = y,X = xk, T = t|Cj = 1) = 1(k 6= j)P (Y = y,X = xj, T = t)

+ 1(k = j)


(1− p)1

d
y = 0, t = 0

1
2
(1 + γ

A
)p
d

y = A, t = 1

1
2
(1− γ

A
)p
d

y = −A, t = 1

.

Therefore,

P (Wi|Cj = 1)

P (Wi)
= 1(Xi 6= xj) + 1(Xi = xj)


1 Yi = 0, Ti = 0

1 + γ
A

Yi = A, Ti = 1

1− γ
A

Yi = −A, Ti = 1

,

and

P (Cj = 1|W n
1 ) =

P (W n
1 |Cj = 1)P (Cj = 1)

P (W n
1 )

=
1

2

(
1 +

γ

A

)N+
j
(

1− γ

A

)N−j
, (3.10)

where

N+
j = #{i : Xi = xj, Yi = A, Ti = 1}

N−j = #{i : Xi = xj, Yi = −A, Ti = 1},

so that a tuple (N+
j , N

−
j , n−N+

j −N−j ) has a multinomial distribution:

P (N+
j = k1, N

−
j = k2|Cj = 1)

=

(
n

k1

)(
n− k1

k2

)(
1

2
(1 +

γ

B
)
p

d

)k1 (1

2
(1− γ

B
)
p

d

)k2 (
1− p

d

)n−k1−k2
. (3.11)

Now we turn to the main part of the proof. Let PC = {PW |C=c : c ∈ {−1, 1}d} ⊂

PB,η denote the set of distributions of W = (Y,X, T ) constructed above, and µ denote the
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distribution of C. Let π∗P denote the first-best treatment rule when the distribution of the

data is P , and write π∗c = π∗PW |C=c
for brevity. By construction, π∗c (xj) = 1(cj = 1), and

π∗c ∈ Π since the class Π shatters {x1, . . . , xd}. Note that:

V (π∗c )− V (π̂n) =
γ

d

d∑
j=1

cj(π
∗
c (xj)− π̂n(xj)) =

γ

d

d∑
j=1

1(π∗c (xj) 6= π̂n(xj)).

Then,

sup
P∈PB,η

EP [V (π∗P )− V (π̂n)] > max
P∈PC

EP [V (π∗P )− V (π̂n))]

>
∫

EPWn
1 |C=c

[V (π∗c )− V (π̂n))]dµ(c)

=
γ

d

d∑
j=1

∫ ∫
1(π∗c (xj) 6= π̂n(xj))dPWn

1 |C=cdµ(c)

=
γ

d

d∑
j=1

PWn
1 ,Cj

(1(Cj = 1) 6= π̂n(xj))

> γ · inf
π
PWn

1 ,Cj
(1(Cj = 1) 6= π(W n

1 )).

(3.12)

Note that PWn
1 ,Cj

(1(Cj = 1) 6= π(W n
1 )) is the probability of misclassification of 1(Cj = 1)

using W n
1 . By Theorem 2.1. in Devroye and Lugosi (1996), the infimum is attained by the

Bayes Classifier, π∗(W n
1 ) = 1(P (Cj = 1|W n

1 ) > 0.5), and is equal to

P (1(Cj = 1) 6= π∗(W n
1 )) = 1

2
P ( P (Cj = 1|W n

1 ) 6 0.5 |Cj = 1)

+ 1
2
P ( P (Cj = 1|W n

1 ) > 0.5 |Cj = −1).

Denote a = γ/A, and work conditional on Cj = 1 from now on. Recalling (3.18),

P (P (Cj = 1|W n
1 ) 6 0.5) = P ((1 + a)N

+
j (1− a)N

−
j 6 1)

> P ((1− a2)N
+
j 6 1|N+

j 6 N−j ) · P (N+
j 6 N−j )

= P (N+
j 6 N−j ).

Let D+
i = 1(Xi = xj, Yi = A, Ti = 1) and D−i = 1(Xi = xj, Yi = −A, Ti = 1). Then,

E[D+
i −D−i ] = ap/d, Var[D+

i −D−i ] = p/d− (ap/d)2, and E[(D+
i −D−i )3] = p/d. Letting Zn

denote the studentized version of n−1
∑n

i=1(D+
i −D−i ) and Φ denote the Standard Normal
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CDF, using Berry-Esseen inequality we obtain

P (N+
j 6 N−j ) = P ( 1

n

∑n
i=1(D+

i −D−i ) 6 0)

= P

(
Zn 6

−
√
nap/d√

p/d−(ap/d)2

)
> Φ

(
−
√
nap/d√

p/d−(ap/d)2

)
− K√

n
1

(p/d)1/2(1−a2p/d)3/2
,

where K < 0.469 (Shevtsova, 2013). Choosing a = γ/A ≡ c/
√
n
√
d/p for some c ∈ (0, 1),

assuming n is large enough to satisfy γ/A 6 1, we obtain

P (N+
j 6 N−j ) > Φ

(
− c√

1− c2/n

)
− K√

n

1√
p/d(1− c2/n)3/2

.

Choosing p = η, A = B/
√
η so that γ = c ·B/η

√
d/n, we have, for n > 3,

sup
P∈PB,η

EP [V (π∗P )− V (π̂n)] > γ
2
· P (N+

j 6 N−j |Cj = 1)

> 1
2
B
η

√
d
n
· c · Φ

(
− c√

1−c2

)
− K

2
√
η
· B
η
d
n

c
(1−c2/3)3/2

Choosing c = 0.5162, and plugging in K = 0.469 gives the final result

sup
P∈PB,η

EP [V (π∗P )− V (π̂n)] > 0.07 · B
η

√
d

n
− 0.14
√
η
· B
η

d

n
.

For n > 4d/η, the right-hand-side in the preceding display is positive, and γ/A 6 1 is also

satisfied.

3.7.4 Proofs of Theorems 3.4.1, 3.4.2 and 3.4.3

The proof of Theorem 3.4.1 is based on the following two lemmas. The first Lemma gives a

maximal inequality in terms of the V C dimension of the class of policy rules Π, the number

of observations n, and the second moment of the orthogonal score Γ.

Lemma 3.7.8 (Uniform Concentration Bound for Ṽn). Suppose that the class Π has VC-

dimension V C(Π) and includes the no-treatment policy π0(x) = 0 for all x. Then,

E
[
sup
π∈Π
|Ṽn(π)− V (π)|

]
6 C

√
V C(Π)S2

n
,

where C 6 58 is a universal constant and S2 = E(Γ2
i ).
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Proof. Define a class of functions F = {f(w) = π(x)Γ(w) : π ∈ Π}, which is a VC-subgraph

class with V C(F) 6 V C(Π) and envelope |Γ|. Then, by Lemmas 3.7.1, 3.7.5, and the second

part of Lemma 3.7.7,

E
[
sup
π∈Π
|Ṽn(π)− V (π)|

]
6 2E

[
sup
π∈Π

∣∣∣∣∣ 1n
n∑
i=1

ξiπ(Xi)Γi

∣∣∣∣∣
]
6 2C

√
V C(Π)S2

n
.

where C 6 29 is a constant from Lemma 3.7.7. �

The second Lemma establishes that V̂n and Ṽn are uniformly close in π ∈ Π. It is a finite-

sample version of Lemma 4 from Athey and Wager (2021) proven under slightly weaker

assumptions.

Lemma 3.7.9 (Uniform Coupling). Let assumptions 3.2.1 – 3.2.4 hold, and assume that

E((Y −m(X,D))2|X,D) 6 B2 almost surely. Suppose that Γ̂i are computed using a J-fold

sample splitting. Then,

E
[
sup
π∈Π
|V̂n(π)− Ṽn(π)|

]
6 R1,n +R2,n +R3,n,

where C 6 58 is a universal constant, and

R1,n = C

√
(J + 2) ·B2 · V C(Π)a((1− J−1)n)

n1+ζg

R2,n = C

√
(J + 2) · 2(η2 + 1)

η2
· V C(Π)a((1− J−1)n)

n1+ζm
,

and

R3,n =

√
a((1− J−1)n)2

nζm+ζg
.

Proof. Let m̂(−j), τm̂(−j) and ĝ(−j) denote the estimators computed on observations exclud-

ing j-th fold. Denote the indices of the observations included in j-th fold by Ij. For an

observation i ∈ Ij, write the difference Γ̂i − Γi as a sum of three terms

Γ̂i − Γi = (Yi −m(Xi, Ti))(ĝ
(−j)(Xi, Ti)− g(Xi, Ti))

+ τm̂(−j)(Xi, Ti)− τm(Xi, Ti)− g(Xi, Zi)(m̂
(−j)(Xi, Ti)−m(Xi, Ti))

− (ĝ(−j)(Xi, Zi)− g(Xi, Zi))(m̂
(−j)(Xi, Ti)−m(Xi, Ti))
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and denote the corresponding summands in V̂n(π)− Ṽn(π) by D1(π), D2(π), and D3(π). We

will bound each term separately.

First Term. Write D1(π) =
∑J

j=1 D
(j)
1 (π), where n

nk
D

(j)
1 (π) is equal to

1

nj

∑
i∈Ij

π(Xi)(Yi −m(Xi, Ti))(ĝ
(−j)(Xi, Zi)− g(Xi, Zi)).

Note that, by the law of iterated expectations,

E[π(Xi)(Yi −m(Xi, Ti))(ĝ
(−j)(Xi, Zi)− g(Xi, Zi)) | ĝ(−j)] = 0,

and denote the conditional second moment by

V1,n(j) = E
[
π(Xi)

2 · E[(Yi −m(Xi, Ti))
2|Xi, Ti] · (ĝ(−j)(Xi, Zi)− g(Xi, Zi))

2 | g(−j)] .
Applying, conditional on ĝ(−j), Lemma 3.7.8 with (Yi−m(Xi, Ti)) · (ĝ(−j)(Xi, Zi)−g(Xi, Zi))

in place of Γi, we get:

n

nj
E
[
sup
π∈Π
|D(j)

1 (π)|
∣∣∣∣ ĝ(−j)

]
6 2C

√
V C(Π)V1,n(j)

nj

Using Assumption 3.2.2, π(Xi)
2 6 1, and the bound on the conditional variance of Y ,

E(V1,n(j)) 6 B
a((J−1

J
)n)

nζg

By the last two displays, the law of iterated expectations, and Jensen’s inequality,

E
[
sup
π∈Π
|D(j)

1 (π)|
]
6 2C

√
nj
n

√
B
V C(Π)a((1− J−1)n)

n1+ζg

Since nj/n 6 1/(J − 1) and supremum is sub-additive,

E
[
sup
π∈Π
|D1(π)|

]
6 2C

√
(J + 2)B · V C(Π)a((1− J−1)n)

n1+ζg

Second Term. As before, write D2(π) =
∑J

j=1 D
(j)
2 (π), where n

nj
D

(j)
2 (π) is equal to

1

nj

∑
i∈Ij

π(Xi)(τm̂(−j)(Xi, Ti)− τm(Xi, Ti)− g(Xi, Zi)(m̂
(−j)(Xi, Ti)−m(Xi, Ti)))
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Denote the individual summands in the previous display by f(Wi; π). Note that

E(f(Wi; π)|m̂(−j), τm̂(−j)) = 0

by part (2) of Assumption 3.2.1 and the law of iterated expectations. Denote V2,n(j) =

E(f(Wi; π)2|m̂(−j), τm̂(−j)). Applying, conditional on m̂(−j) and τm̂(−j) , Lemma 3.7.8 with

(τm̂(−j)(Xi, Ti)− τm(Xi, Ti)− g(Xi, Zi)(m̂
(−j)(Xi, Ti)−m(Xi, Ti))) in place of Γi, we get:

n

nj
E
[
sup
π∈Π
|D(j)

2 (π)|
∣∣∣∣ ĝ(−j)

]
6 2C

√
V C(Π)V2,n(j)

nj

Using (a+ b)2 6 2(a2 + b2), π(Xi)
2 6 1, and Assumptions 3.2.2 and 3.2.4, we get:

E(V2,n(j)) 6 2

(
a((1− J−1)n)

nζm
+

1

η2

a((1− J−1)n)

nζm

)
=

2(η2 + 1)

η2

a((1− J−1)n)

nζm
.

By the last two displays, the law of iterated expectation, and Jensen’s inequality:

E
[
sup
π∈Π
|D(j)

2 (π)|
]
6 2C

√
nj
n

√
2(η2 + 1)

η2

V C(Π)a((1− J−1)n)

n1+ζm

Since nj/n 6 1/(J − 1) and supremum is sub-additive,

E
[
sup
π∈Π
|D1(π)|

]
6 2C

√
(J + 2)

2(η2 + 1)

η2

V C(Π)a((1− J−1)n)

n1+ζm

Third Term. Let j(i) denote the fold in which observation i belongs. We have:

D3(π) = − 1

n

n∑
i=1

π(Xi)(ĝ
(−j(i))(Xi, Zi)− g(Xi, Zi))(m̂

(−j(i))(Xi, Ti)−m(Xi, Ti))

By Cauchy-Schwartz inequality and π(Xi)
2 6 1,

|D3(π)| 6
√

1
n

∑n
i=1(ĝ(−j(i))(Xi, Zi)− g(Xi, Zi))2

×
√

1
n

∑n
i=1(m̂(−j(i))(Xi, Ti)−m(Xi, Ti))2,

where we note that the right hand side does not depend on π. Taking expectations on both

sides, using Cauchy-Schwartz inequality one more time, and recalling Assumption 3.2.2, we

obtain

E
[
sup
π∈Π
|D3(π)|

]
6

√
a((1− J−1)n)2

nζm+ζg
,

and the proof is complete. �
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3.7.4.1 Proof of Theorem 3.4.1

To keep the notation simple, we write π̂n instead of π̂REWM
n and write E instead of EP for a

fixed distribution P ∈ PBτ ,B,η. Let π∗ ∈ Π be such that V (π∗) = maxπ∈Π V (π). Note that:

R(π̂n) = V (π∗)− V (π̂n)

= V (π∗)− V̂n(π̂n) + V̂n(π̂n)− V (π̂n)

6 V (π∗)− V̂n(π∗) + V̂n(π̂n)− V (π̂n).

Then, writing

V (π∗)− V̂n(π∗) = V (π∗)− Ṽn(π∗) + Ṽn(π∗)− V̂n(π∗)

V̂n(π̂n)− V (π̂n) = V̂n(π̂n)− Ṽn(π̂n) + Ṽn(π̂n)− V (π̂n),

and using E[V (π∗)− Ṽ (π∗)] = 0, we obtain:

E[R(π̂n)] 6 E[sup
π∈Π
|Ṽn(π)− V (π)|] + 2E[sup

π∈Π
|V̂n(π)− Ṽn(π)|]. (3.13)

By Lemma 3.7.8, the first term is bounded by 2C
√
V C(Π)S2/n, where S2 = E[Γ2]. By the

Law of Iterated Expectations and P ∈ PBτ ,B,η,

E[Γ2] = E[(τm(X,T ) + g(X,Z)(Y −m(X,T )))2]

= E[τ 2
m(X,T )] + E[g(X,Z)2(Y −m(X,T ))2]

6 B2
τ + η−2B2.

The second term in (3.13) is bounded by Lemma 3.7.9, so the desired result follows.

Before proving the main result of the paper, we include another technical lemma for

easier reference.

Lemma 3.7.10 (Addendum to Lemma 3.7.9). Let W l
1 denote the estimating sample with

l = (1− s)n. In the notation of Lemma 3.7.9:

1. For every fixed π ∈ Π:

E[V̂l(π)− Ṽl(π)] 6 R3,l.
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2. For any π̂l,k computed using the estimated sample W l
1,

E[V̂r(π̂l,k)− V̂r(π̂l,k)] 6 R3,l.

Proof. To prove the first claim, we apply the same argument as in Lemma 3.7.9. The

expectations of the first two corresponding terms, denoted there by D1(π) and D2(π), are

equal to zero, and the expectation of the third term is shown to be less than R3,l.

The proof of the second claim is easier, since we do not need to separate the contributions

of different folds. Replacing the arguments of the functions with the index of the observation

(from the test sample) to which they are applied, we can expand Γ̂i − Γi as a sum of three

terms:

Γ̂i − Γi = (τm̂,i − τm,i − gi(m̂i −mi)) + (Yi −mi)(ĝi − gi)− (m̂i −mi)(ĝi − gi).

Let D1, D2 and D3 denote the corresponding terms in V̂r(π̂l,k)− Ṽr(π̂l,k). Then, by Assump-

tion 3.2.1-2 and the Law of Iterated Expectations,

E[D1|W l
1] = E

[
π̂l,k(Xi) · E[(τm̂,i − τm,i − gi(m̂i −mi))|Xi,W

l
1]
∣∣ W l

1

]
= 0.

Further, by the Law of Iterated Expectations and the exclusion restriction on Zi,

E[D2|W l
1] = E

[
π̂l,k(Xi) · E[Yi −mi|Xi, Ti,W

l
1] · (ĝi − gi)

∣∣ W l
1

]
= 0.

Finally, by Cauchy-Schwartz inequality and π̂l,k(Xi)
2 6 1,

D3 6
√

1
r

∑
i(m̂i −mi)2 ·

√
1
r

∑
i(ĝi − gi)2.

Taking expectations on both sides, applying Cauchy-Schwartz inequality again, and using

the Law of Iterated Expectations, we obtain

E[D3] 6
√

E[(m̂i −mi)2] · E[(ĝi − gi)2] 6 R3,l,

�
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3.7.4.2 Proof of Theorem 3.4.2

To keep the notation simple, we write π̂n,k̂ instead of π̂RPWM
n and E instead of EP for a fixed

distribution P ∈ PBτ ,B,η. The subscripts l, r, and n indicate that the corresponding object

depends only on the estimating sample, only on the test sample, or on the entire sample.

For example, while π̂l,k only depends on the estimating sample, π̂n,k̂ depends on the entire

sample due to the choice of k̂. Let π∗k ∈ Πk be such that V (π∗k) = V ∗Πk . Write:

V ∗Π − V (π̂n,k̂) = V ∗Π − V ∗Πk + VΠk −Qn,k̂(π̂n,k̂)︸ ︷︷ ︸
(I)

+Qn,k̂(π̂n,k̂)− V (π̂n,k̂)︸ ︷︷ ︸
(II)

. (3.14)

First, since Qn,k̂(π̂n,k̂) > Qn,k(π̂l,k), and V̂l(π̂l,k) > V̂l(π
∗
k), we can bound:

(I) 6 V (π∗k)−Qn,k(π̂l,k)

6 V (π∗k)− V̂l(π∗k) + Ĉn,k

= V (π∗k)− Ṽl(π∗k) + Ṽl(π
∗
k)− V̂l(π∗k) + Ĉn,k.

Here, E[V (π∗k)− Ṽl(π∗k)] = 0 and, by Lemma 3.7.10, E[Ṽl(π
∗
k)− V̂l(π∗k)] 6 R3,l. Therefore,

E[(I)] 6 E[Ĉn,k] +R3,l.

Next, consider

(II) = V̂r(π̂n,k̂)− Ṽr(π̂n,k̂) + (Ṽr(π̂n,k̂)− V (π̂n,k̂)).

The first summand can be bounded by

E
[
V̂r(π̂n,k̂)− Ṽr(π̂n,k̂)

]
6 E

[
maxk6K |V̂r(π̂l,k)− Ṽr(π̂l,k)|

]
6 K maxk6K E

[
|V̂r(π̂l,k)− Ṽr(π̂l,k)|

]
.

As in the proof of Lemma 3.7.9, we can expand:

Γ̂i − Γi = (τm̂,i − τm,i − gi(m̂i −mi)) + (Yi −mi)(ĝi − gi)− (m̂i −mi)(ĝi − gi),

so that:
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E
[
|V̂r(π̂l,k)− Ṽr(π̂l,k)|

]
= E

[
|1
r

∑
i π̂l,k(Xi)(Γ̂i − Γi)|

]
6 1√

r
E
[
| 1√

r

∑
i π̂l,k(Xi)(τm̂,i − τm,i − gi(m̂i −mi))|

]
+ 1√

r
E
[
| 1√

r

∑
i π̂l,k(Xi)(Yi −mi)(ĝi − gi)|

]
+ E

[
|1
r

∑
i π̂l,k(Xi)(m̂i −mi)(ĝi − gi)|

]
By Assumption 3.2.1-2 and the Law of Iterated Expectations,

E[π̂l,k(Xi)(τm̂,i − τm,i − gi(m̂i −mi))|W n
1 , Xi] = 0.

Using E[|W |]2 6 E[W 2], the Law of Iterated Expectations, π̂2
l,k(Xi) 6 1, and Assumption

3.2.2, we obtain:

E
[
| 1√

r

∑
i π̂l,k(Xi)(τm̂,i − τm,i − gi(m̂i −mi))|

]2

6 E
[

1
r

∑
i(τm̂,i − τm,i − gi(m̂i −mi))

2
]

= E[(τm̂,i − τm,i − gi(m̂i −mi))
2]

6 2(E[(τm̂,i − τm,i)2] + E[g2
i (m̂i −mi)

2])

6 2η
2+1
η2

a((1−J−1)l)
lζm

.

A similar argument and the bound E[(Yi −mi)
2|Xi, Ti] 6 B2 yield:

E
[
| 1√

r

∑
i π̂l,k(Xi)(Yi −mi)(ĝi − gi)|

]2

6 E[(Yi −mi)
2(ĝi − gi)2] 6 B2 · a((1−J−1)l)

lζg
.

Next, by Cauchy-Schwartz inequality and π̂2
l,k(Xi) 6 1,

|1
r

∑
i π̂l,k(Xi)(m̂i −mi)(ĝi − gi)| 6

√
1
r

∑
i(m̂i −mi)2 ·

√
1
r

∑
i(ĝi − gi)2

Taking expectations on both sides, applying Cauchy-Schwartz inequality and the Law of

Iterated Expectations,

E[|1
r

∑
i π̂l,k(Xi)(m̂i −mi)(ĝi − gi)|] 6

√
E[(m̂i −mi)2] · E[(ĝi − gi)2] 6

√
a((1−J−1)l)

lζm+ζg

Combining the above results, we obtain:

E
[
|V̂r(π̂l,k)− Ṽr(π̂l,k)|

]
6
√

1
s(1−s)ζm∧ζg

√
2(η2+1)
η2
∨B2

√
a((1−J−1)(1−s)n)

n1+ζm∧ζg +R3,(1−s)n
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For the second summand in (II), arguing as in the proof of Theorem 3.3.3 (see Equations

(3.7), (3.8), and the following argument and recall that V̂n in that proof plays the same role

as Ṽr in this one),

E
[
Ṽr(π̂n,k̂)− V (π̂n,k̂)

]
6
√
B2
τ + η−2B2 K√

sn
= K

√
B2
τη

2+B2

η

√
1
sn
.

Let R3,(1−s)n denote the rate Lemma 3.7.9 with (1− s)n instead of n. Defining

S2,n ≡
√

1
s(1−s)ζm∧ζg

√
2(η2+1)
η2
∨B2

√
a((1−J−1)(1−s)n)

n1+ζm∧ζg + 2R3,(1−s)n (3.15)

and

Sn ≡ K

√
B2
τη

2+B2

η

√
1
sn

+ S2,n, (3.16)

we conclude that

E[(I) + (II)] 6 E[Ĉn,k] + Sn.

Therefore, for any k 6 K,

E[R(π̂n,k̂)] 6 V ∗Π − V ∗Πk + E[Ĉn,k] + Sn, (3.17)

and the first statement of the Theorem follows from taking an infimum over k 6 K.

To prove the second statement, it remains to bound E[Ĉn,k]. To this end, write:

Ĉn,k = Ṽl(π̂l,k)− V (π̂l,k) + V̂l(π̂l,k)− Ṽl(π̂l,k)

+ Ṽr(π̂l,k)− V̂r(π̂l,k)

+ V (π̂l,k)− Ṽr(π̂l,k).

By Lemmas 3.7.8 and 3.7.9, for any P ∈ PBτ ,B,η,

E[Ṽl(π̂l,k)− V (π̂l,k)] 6 C

√
B2
τη

2+B2

η

√
V C(Πk)
(1−s)n ,

E[V̂l(π̂l,k)− Ṽl(π̂l,k)] 6 Rk
1,(1−s)n +Rk

2,(1−s)n +R3,(1−s)n,

where Rk
j,(1−s)n, for j = 1, 2, 3, are defined in Lemma 3.7.9 with Πk instead of Π and (1− s)n

instead of n. Finally, by Lemma 3.7.10, E[Ṽr(π̂l,k)− V̂r(π̂l,k)] 6 R3,(1−s)n, and by the Law of
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Iterated Expectations, E[V (π̂l,k)− Ṽr(π̂l,k)] = 0. Plugging the above into (3.17), and noting

that for every P ∈ PkBτ ,B,η, we have V ∗Π = V ∗Πk ,

sup
P∈PkBτ ,B,η

EP [R(π̂n,k̂)] 6
√
B2
τη

2+B2

η

(
C
√

V C(Πk)
(1−s)n +K

√
1
sn

)
+ Sk1,n + S2,n,

where Sk1,n = Rk
1,(1−s)n +Rk

2,(1−s)n +R3,(1−s)n, and S2,n is given in Equation 3.15.

3.7.4.3 Proof of Theorem 3.4.3

We consider a particular subclass of PB,η for which the worst-case regret can be bounded

from below by a term proportional to B/η
√
d/n. The construction proceeds as follows.

Let x1, . . . , xd, where d = V C(Π) − 1, be a set shattered by Π with the largest possible

cardinality. Let
X ∈ {x1, . . . , xd}, P (X = xj) = 1

d
;

T ∈ {0, 1}, P (T = 1) = p, T ⊥ (X, Y0, Y1);

Y0 = 0,

and, given a parameter vector c = (c1, . . . , cd) ∈ {−1, 1}d,

Y1|X = xj =


A w.p. 1

2
(1 + cj

γ
A

)

−A w.p. 1
2
(1− cj γA)

,

where γ/A 6 1. Then, for Y = TY1 + (1− T )Y0,

E(Y 2) = pA2,

τ(xj) = E[Y1 − Y0|X = xj] = γcj.

For every c ∈ {−1, 1}d, the joint distribution of W = (Y,X, T ) constructed above belongs

to PB,η as long as p ∈ [η, 1− η] and pA2 6 B2. We will specify such p and A later.

Let C = (C1, . . . , Cd) consist of i.i.d. random variables Cj ∈ {−1, 1} such that P (Cj =
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1) = 1/2. The joint distribution of W = (Y,X, T ) given C = c is

P (Y = y,X = xj, T = t|C = c) =


(1− p)1

d
y = 0, t = 0

1
2
(1 + cj

γ
A

)p
d

y = A, t = 1

1
2
(1− cj γA)p

d
y = −A, t = 1

.

We shall also derive the posterior probability P (Cj = 1|W n
1 ) which will play a crucial role

in deriving the lower bound.

We have

P (Y = y,X = xj, T = t) =


(1− p)1

d
y = 0, t = 0

1
2
p
d

y = A, t = 1

1
2
p
d

y = −A, t = 1

,

and

P (Y = y,X = xk, T = t|Cj = 1) = 1(k 6= j)P (Y = y,X = xj, T = t)

+ 1(k = j)


(1− p)1

d
y = 0, t = 0

1
2
(1 + γ

A
)p
d

y = A, t = 1

1
2
(1− γ

A
)p
d

y = −A, t = 1

.

Therefore,

P (Wi|Cj = 1)

P (Wi)
= 1(Xi 6= xj) + 1(Xi = xj)


1 Yi = 0, Ti = 0

1 + γ
A

Yi = A, Ti = 1

1− γ
A

Yi = −A, Ti = 1

,

and

P (Cj = 1|W n
1 ) =

P (W n
1 |Cj = 1)P (Cj = 1)

P (W n
1 )

=
1

2

(
1 +

γ

A

)N+
j
(

1− γ

A

)N−j
, (3.18)

where

N+
j = #{i : Xi = xj, Yi = A, Ti = 1}

N−j = #{i : Xi = xj, Yi = −A, Ti = 1},
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so that a tuple (N+
j , N

−
j , n−N+

j −N−j ) has a multinomial distribution:

P (N+
j = k1, N

−
j = k2|Cj = 1)

=

(
n

k1

)(
n− k1

k2

)(
1

2
(1 +

γ

B
)
p

d

)k1 (1

2
(1− γ

B
)
p

d

)k2 (
1− p

d

)n−k1−k2
. (3.19)

Let PC = {PW |C=c : c ∈ {−1, 1}d} ⊂ PB,η be a set of distributions of W = (Y,X, T )

introduced above, and µ denote the distribution of C. Let π∗P denote the first-best treat-

ment rule when the distribution of the data is P , and write π∗c = π∗PW |C=c
for brevity. By

construction, π∗c (xj) = 1(cj = 1), and π∗c ∈ Π since the class Π shatters {x1, . . . , xd}. Note

that:

V (π∗c )− V (π̂n) =
γ

d

d∑
j=1

cj(π
∗
c (xj)− π̂n(xj)) =

γ

d

d∑
j=1

1(π∗c (xj) 6= π̂n(xj)).

Then,

sup
P∈PB,η

EP [V (π∗P )− V (π̂n)] > max
P∈PC

EP [V (π∗P )− V (π̂n))]

>
∫

EPWn
1 |C=c

[V (π∗c )− V (π̂n))]dµ(c)

=
γ

d

d∑
j=1

∫ ∫
1(π∗c (xj) 6= π̂n(xj))dPWn

1 |C=cdµ(c)

=
γ

d

d∑
j=1

PWn
1 ,Cj

(1(Cj = 1) 6= π̂n(xj))

> γ · inf
π
PWn

1 ,Cj
(1(Cj = 1) 6= π(W n

1 )).

(3.20)

Note that PWn
1 ,Cj

(1(Cj = 1) 6= π(W n
1 )) is the probability of misclassification of 1(Cj = 1)

using W n
1 . By Theorem 2.1. in Devroye and Lugosi (1996), the infimum is attained by the

Bayes Classifier, π∗(W n
1 ) = 1(P (Cj = 1|W n

1 ) > 0.5), and is equal to

P (1(Cj = 1) 6= π∗(W n
1 )) = 1

2
P ( P (Cj = 1|W n

1 ) 6 0.5 |Cj = 1)

+ 1
2
P ( P (Cj = 1|W n

1 ) > 0.5 |Cj = −1).
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Denote a = γ/A, and work conditional on Cj = 1 from now on. Recalling (3.18),

P (P (Cj = 1|W n
1 ) 6 0.5) = P ((1 + a)N

+
j (1− a)N

−
j 6 1)

> P ((1− a2)N
+
j 6 1|N+

j 6 N−j ) · P (N+
j 6 N−j )

= P (N+
j 6 N−j ).

Let D+
i = 1(Xi = xj, Yi = A, Ti = 1) and D−i = 1(Xi = xj, Yi = −A, Ti = 1). Then,

E[D+
i −D−i ] = ap/d, Var[D+

i −D−i ] = p/d− (ap/d)2, and E[(D+
i −D−i )3] = p/d. Letting Zn

denote the studentized version of n−1
∑n

i=1(D+
i −D−i ) and Φ denote the Standard Normal

CDF, using Berry-Esseen inequality we obtain

P (N+
j 6 N−j ) = P ( 1

n

∑n
i=1(D+

i −D−i ) 6 0)

= P

(
Zn 6

−
√
nap/d√

p/d−(ap/d)2

)
> Φ

(
−
√
nap/d√

p/d−(ap/d)2

)
− K√

n
1

(p/d)1/2(1−a2p/d)3/2
,

where K < 0.469 (Shevtsova, 2013). Choosing a = γ/A ≡ c/
√
n
√
d/p for some c ∈ (0, 1),

assuming n is large enough to satisfy γ/A 6 1, we obtain

P (N+
j 6 N−j ) > Φ

(
− c√

1− c2/n

)
− K√

n

1√
p/d(1− c2/n)3/2

.

Choosing p = η, A = B/
√
η so that γ = c ·B/η

√
d/n, we have, for n > 3,

sup
P∈PB,η

EP [V (π∗P )− V (π̂n)] > γ
2
· P (N+

j 6 N−j |Cj = 1)

> 1
2
B
η

√
d
n
· c · Φ

(
− c√

1−c2

)
− K

2
√
η
· B
η
d
n

c
(1−c2/3)3/2

Choosing c = 0.5162, and plugging in K = 0.469 gives the final result

sup
P∈PB,η

EP [V (π∗P )− V (π̂n)] > 0.07 · B
η

√
d

n
− 0.14
√
η
· B
η

d

n
.

For n > 4d/η, the right-hand-side in the preceding display is positive, and γ/A 6 1 is also

satisfied.
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