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I. INTRODUCTYON

The method of characteristics has been used frequently in the
last few years [1.2] to predict the response (usually measured as
strains) at stations clese to the end of a red to an input imposed en
the end of the rod. The method is capable of handling an input having
any prescribed distribution in the radial direction apd any time de-
pendency. As the method admits problems dependent on only two inde-
pendent variables (at least without considerable difficulty), it is
usually necessary to employ an approximate theory in conjunetien with
the method.

Until now, the responses predicted by the method of charasteris-
tics have only been comparad-with other theoretical predictions,
usually those obtained using integral transforms. These comparisons
have been helpful in appraising the method of charasteristics as a
useful numerical technique. However, they shed no light in determining
whether the approximate theor& used in modeling the true physiecal sys-
tem is actually appropriate. One way to obtainm a‘worthy appraisal of
an approximate theory and to establish further the suitability of the
method of characteristics as a mumerical technique is to compare the
computed responses to actual experimental responses., That few such
comparisons have until now been made is not without reason. The most
important reason stems from the experiment itself.

Experimental responses arising from disturbances on the end of
a rod have been recorded for inputs induced by a variety of devieces.
The strain history at a particular station or stations is usually

meagured accurately and displayed on an oscilloscope frem which it




is photographed. The problem in using the experimental results (for
comparison purposes) arises, not from the responses which are re-
corded in detail, but from the input which induced the response. As
the device used to strike the end of the rod is knowm, it is usually
straightforward to decide what variable (commonly stress) is to be
used to fully deseribe the inmput and what spacial dependemcy is to
be assumed for this variable at the input end. The difficulty en-
countered with the input is in knowing its time dependency.

The general nature of the time dependency can be surmised from
the nature’of the impacting‘dqvice but this formu;ation is not good
enough to use as an input with a theoreticél method (approximate
theory and numerical procedure) for appraising the method as a pre-
dietor of responses. The tiﬁe histories of responses recorded ex-
perimentally are usually detailed and complex, requiring a time hise
tory of the input that is detailed and complex for a theoretical
method to be fairly tested.

A method is devised here for testing a theoretical method
(approximate theory and method of characteristics) as a predictor of
responses against experimental results. The method réquires that re-
sponses be recorded experimentally at two stations not far from one
another. The response at station one (the station nearer the input
end of the rod) is then tfeated as if it were an input. By cone
sidering this response as an input, the time dependency of the imput
(now in terms of strains) is known accurately. As responses can only
be measured experimentally on the surface of the rod, the spacial de-
pendency of the input must now be guessed at. The estimation of the

spacial dependency could lead to serious difficulties in general,




but the difficulty is minimized here by considering tubes rather than
solid rods. The radial dependency adopted for the input strains is
that which satisfies the traction free conditions on the outer and
inner surfaces of the tube, and for higher order theories, that which
is consistent with the kinematic assumptions of the theory. The uti-
lization of the experimental response at the first station as an input
is, in fact, an exchange of time and spacial‘dependencies by which the
complex time dependency is gained and the spacial dependency (whieh,
for all but the thickest tubes, cammot be too different from the as-
sumed spacial dependency) is lost. The response-input at station one
is then used with the method of characteristics and an appropriate
approximate theory to calculate the response at station two. The ex=
perimental and theoretical responses at station two are compared and
the theoretical method appraised.

We are fortunate to have at our disposal the results of experi-
ments conducted by Heimamnn and Kolsky [3.4] . We use the results of
experiments conducted on tubes with two different ratios (a*) of
outer to inner radii. The data on the tube with a* = 1,03 is obe
tained from reference [3] and the data on the tube with a* = 1.15
from a report by Heimann [F]. The material of both tubes is reported
to be of "eold drawn steel", Strains are induced in the tubes by
holding the tubes in a vertical position and allowing a piece of a
mateching tube to suddenly drop on the specimen under study. For both
tubes, stations one and two are 32" and 64" respectively from the im-
pact end of the tube. The longitudinal straim £ ., and the hoop
strain £, are measured on the outer lateral surface of each tube

at both stations. The experimental results are particularly useful




as the authors were able to induce responses with complex time depene
dencies at both stations.

However, what is not so fortunate is that the experiments do not
cover a large range of values of a®*, One can predict that when the
tube is thin (large radius/thickness ratio or a* in the neighborhood
of 1), membrane theory will be adequate as the approximate theory to
be used with the methed of characteristics. This fact is demonstrated
in the body of the paper. One can also predict that as the value of
a* increases, a two-mode theory will give better results than meie
brane theory and, for even larger values of a*, a three-mode theory Eﬂ
will be an improvement on both. Unfortunately these latter predic-
tions remain largely unanswered.

The hypothesis in this paper is that for a certain range of a¥*
values a two-mode theory is the most appropriate and indeed, a two-
mode theory is derived for the first time. Hawéver, the thicker ofl
the two tubes for which a comparison is drawn, has an a* walue which
is in the region between those values for which membrane theory is
adequate and those for which the two-mode theory would give improved
predictions. Three-mode theory would not be needed for better pre-
dictions until the values of a* are much larger than those of the

two tubes tested,




IT. APPROXTMATE THEORIES FOR AXISYMMET
ELASTIC HOLLOW ROD

IT-1, General Field Equations
0f the three approximate theories covered in this section only

one is new; namely, two-mode theory. Both membrane theory and three-
mode theory are well known and are reviewed here merely for complete-
ness.

The semi-infinite tube is raferréd to a cylindrical co-ordinate
system (r, ©, z). The origin of the system is located on the longitu-
dinal axis at the end of the tube. The positive z aies and the axis
of the tube coincide. The tube's outer radius is denoted by "b" and
the inner radius by "a',

Because the field equations for a linear isotropic elastic
material are common to all three theories we begin by setting down
these equations. As the deformations are axisymmetric, we may assume

the displacement field in the form

[=4
it

r = U (ry 2, t)

=4
I

=u, (ry 2, t) (1)

Using amall displacement gradient theory, the strainedisplacement

relations in cylindrical co-ordinates become

t’rr = Up,r Cro=0
u
. _ r _ 1
Ceo= - E’rz = E"(uz,r’ + ur,z) (2)
-EZZ= uZ,Z EQZ =0 °




The constitutive relation for a linear isotropic elastic material is
Tyj = b+ (3)

where . and A are Lame's constants and PRL the Kronecker
delta,.

With Eq. (2) and Eq. (3), stress components ’tr€> and q;az
are zero throughout the body. Ths, the stress equations of metion,

omitting body forces, become

T T Trr = Teve_ v
rr,r + YZ,% + r = PUp ()
¥z o
Trz.r + r[zz,z + r - Puz

. o)
where ( ) = =T and P 1is the mass density. The third equation

is satisfied identically.

II-2, Membrane Theory

Membrane theory begins with the kinematic assumptions that

w, (r, 3, t) = u(z, ©)

(5)
uzhuz,t)=w&,t)
and the stress assumptions that
T =T =0 : (6)

rr rz

throughout the body.
When energy considerations are combined with the above assump-

tions and the field equétions, the resulting equations of motion are




TETTT P 2)
anz. &A
;1- X = --5- W"t’t o
In Eqs. (7)
b2 .
X = -~ , is a dimensionless distanee
L
5t 2
T = — (% is a dimensionless time

u(x, T) and w(x, T) are generalized displacenents

and n_ and n o are generalized forees defined by

R 2
a
ng, = \,/; Teedy

&
a8
n, =/ T,, ydy
i

(8)

where

r

Y = e
a
b

a* = an
a

A =a*2 @ 10

In addition, 4 is a constant defined as the first non-zero root of
3y (5200 (8) - 3y (8)Y ($am) =0 )
where J; is the Bessel function of the first kind and Y, is the
Bessel function of the second kind.
The constitutive equations relating generalized displacements

and generalized forces are




a _ MK2 - 1) 2(a* - 1) 2(k% -
(e = Z @ h)

6(a* < ”"'x

(9)

WOE - 1) 84 2(k% - 2)
(5m, = T et

(a* « 1)u

2(1 =
(1 -2v)

where k2 = and ~/ is Poisson's Ratio.

Finally the strains are given in terms of the generalized

displacements according to

-
Ezz"'a'x"w'x
Eiae»= %
(10)
- (K2 -2) fu, 4
Err”"g—gf—(?+?w'x>
E;rz=0.

A unique solution will result when we speecify
1) throughout the tube, the initial values of Wy u and W, U
2) at the end of the tube, one member of the product Wn, .

For free harmonic motions, the frequency equation, in dimension-
less form, is

n? [nz.. - nur2.a?d) an

(é(a*+ Y [(k - L% -n? +‘§2(k2-.z)]

where £ is the dimensionless wave propagation constant and <L is

the dimensionless angular frequency.




The dimensionless variables Z and (L are related to
their corresponding dimensional counterparts ¥ and (U ace

cording to

e

a

(12)

& o

S
Q =

£

v
where 0)13 = é 2
a

is the first axial shear cut-off frequency

1
and ¥, = <%*>T is the shear wave velocity. Equation (11)
gives rise to two modes for real values of the wave propagation
constant.

The solution of Eq. (11) is shown in Figs. 1 and 2 using the
properties of the two tubes for which experimental data exist. The
method used to establish the value of 0.275 for Poissen's ratio of
the "cold drawn steel" is explained in Section V. It ean be seen
from these figures that the approximate frequency spectra match the
first mode of the exact theory well only for very small values of the
wave propagation constant, The matching of the second mode is over
a2 somewhat more extensive range,

Membrane theory, however, is restricted in use to thin-walled

shells. The governing assumptions have imposed this limitation.

II=3. Three-mode Theory

In this and in the following section, two shell theories are
outlined for which no restrictions concerning the thickness of the
tube are made. The first of these two approximate theories, three

mode theory, zccommodates shear deformation, bending deformation, and




rotary inertia of the shell. The second, two-mode theory, acecommodates

only shear deformation.

Three-mode theory was developed by McNiven, Shah, and Sackman [5].

It is based on the kinematic assumption that the displacements can be
expressed in the form
u, (r, 2z, t) = gwuo (z, t) .
d (13)
2

2
where A11 = ﬁ ®

b +a ,
The theory is contained in the three generalized displacement equa=

tions of motion

2X
2 2 0 _ (2
é;zk Wy, xx * 23n1 (k* - 2)u0'x +)L_IK = § WO,’E’E
52.2,2 2 2 2 6B, 2,2 2
kAw1'ﬂ+66B nzuo’x-zll»anw1+ = éAnhth,t

(14)

2. 2 2 2 2 ,.2
3 an u()»mc - 44 n, (k¥ = z)wo,x - 4 D,y x = 8n1 (k" = 1)uo

- b
0 [rTrz] a

b

_ 2
X1 = [r(1 - Ayr )Trz]a

10




- b
Ry = [ ;!:é?. Trr]

a

and B = a*z + 1 o

The ni"S (i =1, 4) are adjustment factors introduced into the theory
to compensate for the omission of higher order terms in the kinematie
agssumptions and for the prejudiced displacement patterns of the terms
included. As undetermined coefficients they are used in matching the
three spectral lines of the approximate theory to the lowest three
spectral lines of the exact theory. The adjustment factors are fune-
tions only of a¥ and Poisson'!s ratio.

The constitutive equations relating the generalized displace-

ments and generalized forces are

a = 2 (.2 2

]

< a
AN PZO

a _ 3 A3K2
(F) PZ1 N 6B2 b o X

2 1 2
An1 (k° - 2)1.1O + % S Ak wo.x

(15)

—

a _AB . 2 bwy
(ﬂ) B T ™ Léuo.x "5
N

where the generalized forces are defined by

11




(16)
* 2
= /@ y
Yot T /1 A

a
W = v T4y o

=

The strains are given in terms of the generaligzed displacements

according to
u
0
& =
rr n1 T
u
- 0
Eoo™ n4 Y
5 5(1 = Ayt (17)
E’zz =T WO,x + a Wy o X

Nt 1
E =& ['é'uo,x" 2A11aw1J o

A unique solution will result when we specify

1) throughout the tube, the initial values of Wo Wy sy and Wy ¥4 *‘.‘o

2) throughout the tube, one member of each of the three products

3) at the end of the tube, one member of each of the three products

WOPZO' W1Pz1p uOQO [

12
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In order to find the frequency equation, we substitute
uy (%, T) = Fy cos LxexpintT
Wy (x, T) = F2 sin £ x exp 1.Q.T

(18)

W, (x, TY =F_sinL xexp 10T

3

Ria=X,=X,=0

into Eqs. (i14). The solution of the frequency equation (Eq. (42),
Reference [5]) for a* = 1,03, "V = 0.275 and a* = 1.15, -V = 0,275
is shown in Figures 3 and 4 respectively. Although it appears that
the first and third modes of the approximate spectra match their exact
three dimensional counterparts identically for the entire range

0< Z < 0.8, slight differences which cannot be observed (because

of the scale size) exist. The second mode for either set of shell
values does not fare as well. Discrepencies between the approximate
and exact solutions begin at very small values of ¥ and increase

noticeably as £ increases.

IT=k, Two-mode Theory |
A study of the exaet frequency spectra shown in Fig. 3 of

Reference [5] indicates the dependency of the cut-off frequency of
the second mode on both Poisson'!s ratio and a*, An increase or de-
crease in Poisson's ratio or a* has the same effect on the cut-off
frequency of the second mode.

The effect of the a* dependency yields an interesting result.

For small values of a* the first and second mode cut-off frequencies




14

are close to one another, resulting in strong coupling between these
two modes. As the cut-off frequency of the third mode is considerably
higher, the influence of this mode and all higher modes on the lowest
two modes is significantly less proncunced. As the a* values of the
tubes for which experimental results exist fall into this category,
it seems appropriate to develop a two-mode theory.

Two=mode theory is based on the same kinematic assumptions
introduced by Mindlin and Herrmann for a solid rod [6]

u, (ry z, t) =£-u(z. t)
(19)
u, (ry 2, t) =w(z, ) o
As the theory is developed in a mamner similar to that used by
Mindlin and McNiven [7] for a solid rod, no derivation of this
theory is required here. The theory is contained in two generalized

displacement equations of motion

62Bmz’2u,xx - U4 mym,, (k2 - Z)W,x - 8m12 (k% - u + %1— = ézBmBZu,TT
(20)
52m 2kzw,xx + Zém,lm4 (K2 - 2)u,x + 25 = 62m52w,,t,t
L Apr
where
2 b
T
R < [ et ]
a
a
i b
X = LTrzr] °




The my 's (1i=1,5) are adjustment factors introduced into the theory
to compensate for the omission of higher order displacement terms in
the kinematic assumptions. For this reason we replaced in our de-

u u
velopment T by Myzs W, by Mol ps and w,, by muw,z in the strain.
energy-density and U by m3ﬁ and W by m5€z in the kinetic-energy-density.

The values of the adjustment factors will be determined so that the
two spectral lines of this theory match as closely as possible the
lowest two branches of the exact theory. The adjustment factors are
funetions only of Poisson's ratio and a%,

The constitutive equations relating the generalized dis-

placements and generalized forces are

(’;)Pr = 2Am12 (kz - 1)u + 6Am1m,+ (kz = 2)th

2
(;—i)PZ = Am1ml+ (kz - 2)u + 52.1{ m,_“zw,x (21)

(%)Q = .%.A;B_ mzzu,x

where the generalized forces are defined by

a*
/ +Tee)ydy
1
/ T, | (22)
a’ T
rzy dy ®
1

[N
p)%k

15




The strains are given in terms of the generalized displacements

according to
u
Err =Mz
u
€= Ry 7
(23)
=2 .
oz = 3 Wy¥ox
é mzr

Erz = -’;T oy o
A unique solution will result when we specify
1) throughout the tube, the initial values of w,u and w,u
2) throughout the tube, one member of each of the products wX and uR
3) at the end of the tube, one member of each of the products
P, and uQ .

Substitution of

u(x, T)

Dj{ cos T x exp 10T

[}

w(x, T) D, sin Tx exp 1.0 T (24)

into the equations of motion, Eqs. (20), ylields the dimensionless

form of the frequency equation for two-mode theory

¢, (80" < ey (8017 4+ ey =0 (25)

where

16
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(26)

(2]
i
oW
I |
=
N
=

] 2
uzkz + m22m52J (6C) + 81@'11112!!352 (k2 - 1)

oy = (82)%| omZn? (32 - 1) + mym, 3% (857

Discussion of Adjustment Factors

The adjustment factors m, (i =1,5) are introduced into the
theory as undetermined coefficients so that they may be used to mateh
the spectral lines of the approximate theory to the lowest two Spec-
tral lines of the exact theory., As there are five ad justment faetors,
five properties of one set must be set equal to five properties of the
other. For the reasons outlined in [5”?] we choose to match the cut-
off frequency of the second mode, the curvature of the second mode at
cut-off frequency, two points on one spectral line and one on the
~ other, Using these five properties it is found that no solution in
general can be obtained for the five unknown adjustment factors. In
fact, unless the mmber of unknown adjustment factors is reduced to
two, with the remainder being set equal to one, no solution in general
is possible,

Our approach is now focused on determining which of the ten
combinations of two adjustment factors provides the best match between
approximate and exact spectral lines., For each combination, the cute
off frequency of the second mode was used as one property. The cur-

vature of the second mode at cut-off frequency and a point on either
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spectral line were each used in conjunction with the cut-off fre-
quency as the second property.

Results which were again obtained for a* = 1,03, -V = 0,275,
and a* = 1,15, ) = 0,275 were qualitatively identical. Optimal
matehing is achieved by considering either m, or m5 in conjunction
with either my or mq as the unknown coefficients. However, because
of the presence of m, or ms, a disturbance would no longer propagate
in the shell with the dilatational velocity unless the value of my,
or mg as determined from the matching was equal to one. (See Sec-
tion IIT.) As the values of m, or m5 were significantly different
from one, it was decided to forego these excellent matches for a
poorer one, but one in which the dilatational velocity of the dis-
turbance is maintained. The best matching, maintaining the dilata-
tional velocity, was therefore chosen. Values for my and m, were
obtained by matching the cut-off frequency of the second mode and the
point on the first spectral line at Z = 0,70 .

The solution of Eq. (25) for both tubes using the values

calculated for m, and m, is shown in Figs. 5 and 6.
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IIT. SOLUTION OF GOVERNING EQUATIONS OF APPROXIMATE THEORIES

BY METHOD OF CHARACTERISTICS

ITT-1. Fommulation of the Theoretieal Problem

The study under consideration involves a comparison between
the actual dynamic response of a hollow rod as determined from ex-
perimentation and the response of the same rod as prediected by three
approximate theories; namely, membrane theory, two-mode theory and
three-mode theory using the method of characteristics.

The theoretical problem posed is that of determining the
strain responses for a tube, initially at rest, whose eylindrical
surfaces are free of traction and whose end is subjected to a strain
input that has an arbitrary dependence on time. Written in mathe-
matical form and in terms of variables associated with the exact
three-dimensional theory, the prescribed initial and boundary cone

ditions for the tube are

u_ (v, 2z, 0) =u_ (r, 2, 0) = 0
T T (27)
u, (ro 2z, 0) = ﬁz (ry 2z, 0) =0
and

'Efz (by 2, t) = T;z (a, z, t) =0

T (b» Zy t) = (an z, t) =0
rr ry (28)
%2 (bn O, t) = f(t)
ar (bo 0, t) = EZI‘ (av 0, t) =0

respectively, where f(t) is the longitudinal strain response recorded

at station one,




The longitudinal strain responses recorded at station one for
a* = {,03 and a* = 1,15 are shown in Fig. 7. Information is shown
for a limited time after the arrival of the first disturbancee but a
time that admits the maximum strain. The remainder of each recorded
pulse is omitted as the effect of the finite tube length is to super-
impose reflections on all but the first recorded pulse. We also note
that the longitudinal strain responses are continuous functions of
time.

The exact values of the longitudinal strains are not shown in
Fig. 7. An arbitrary scale size was selected when the experimental
responses at station one and station two were magnified from the
photographs.

As the conditions given in Eqs. (27) and Eqs. (28) are not
suitable for direct use with an approximate theory, a transformation
to appropriate initial and boundary conditions for each approximate
theory is required. This is performed later in this section.

The mathematical problem is now well formulated. For each
approximate theory we seek the solution of a set of governing dif-
ferential equations subject to initial and boundary conditions pre-

scribed by Eqs. (27) and Eqs. (28),

ITT=2. Method of Characteristics

The general method of characteristics is by this time
classical knowledge and so will not be reviewed in detail here. Howe
ever, it makes the development more complete by explaining that the
method of characteristics is one of reducing a system of hyperbolic

partial differential equations to a system of equations containing

20
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two basic simpler forms, each of which is amenable to numerical
analysis. The first of these forms is called the canonical equa.

tion and the second, the decay equation. They are not applicable
everywhere on the space-time plane. The canonical form of a dif-
ferential equation is valid only along lines belonging to its
characteristic family which are not wave fronts. Along a charace
teristic line which is not a wave front all derivatives of the genera.
lized displacements appearing in the canonical equation are contimious
and differentiable. The use of the canonical form is further re-
stricted to these characteristic lines or portions of these lines
contained within the domain of the disturbed material. For systems
of hyperbolic differential equations for which many wave fronts exist,
it is the first wave front which defines the boundary between dise
turbed and undisturbed domains. As discontimuities in the deriva-
tives of the displacement vector may occur across a characteristic
line describing a wave front, it is neceséary to develop the decay
equation. Along the characteristic line which is 2 wave front, the
canonical equation is replaced by the deeay equation. The decay
equation calculates the magnitudes of the discontimiities of the
derivatives of the displacement vector across the wave front,

For the particular systems of second order partial differen
tial equations considered here, two different reduction techniques
are employed. The first, a general method [8] » Teduces the dif=
ferential equations to first order by the introduction of new depen-
dent variables. The second [1] deals with the second order differen-

tial equations directly.




Membrane theory exhibits the first reduction technique, while

two-mode and three-mode theories display the the second.

I1I-3. (Canonical Form of the Governing Differential Equations

IT1-3(a) Membrane Theory

The governing differential equations, Eqs. (7) and Eqs. (9),
are transformed into a set of first order differential equations by
the introduction of new dependent variables, The new variables are

related to the old according to

Uy = Uer
U, = Wy
uL" = }_L
anz
s Tt

By taking into consideration the generated relationship

u39’t = usz (50)

and by differentiating the constitutive relationships Eqs. (9)
with respect to T , the governing differential equations can be

rewritten in the general form

ui”t + Bijuj,x = ¢, (1,3 = 1=5) (31)

where

22
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(u; ) = (uﬂe‘uzp Ugs Uy U )

(Bij ) = 0 0 0 0 0
- 2
0 0 0 0 Y
0 -1 0 0 0 (32)
0 -5e°(at-1) 0 0 0
0 o iéiiﬁ 0 © 0
| S— 2 Jom—
o 2u;, =
AR B )
0
0 (33)
82 (a* = 1 ) u.‘

and

2 .
o2 = 2(k 5 2)
k

£2 = K2 = 1) .
k2
In effect, what we have done is to replace the four governing dif-
ferential equations, Eqse. (7) and Eqs. (9), governing the four un-
known dependent variables w, u, ng;, and n_ by a set of five differen-

tial equations, Eqs. (31), governing five new dependent variables Uy,

Us u3, u49 and u5.
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To establish the canonical forms of Eqs. (31) it is necessary
to determine the characteristic lines along which they are valid.

The characteristic equation
dot(Byj - Ay5) =0, (34)

where A\ = 9% defines the characteristic lines on the (x = T)
dt

plane, yields the required information. The values of A are

SN ¢ N G N (O NN C S -
We not that A\ = £ and A= - f describe the two families of physical
characteristics on the (x - T) plane. These are the only lines

across which the derivatives of the displacement vector may suffer a

finite jump. The canonical forms of the governing equations are

duy,

| . . (36)
hm(l) = = hm(l)cm along % = >\(l) (im=1<5)

where the hm(i) is the 1M left-hand eigenvector of the matrix B.
In neither of the vectors { umW or [ ¢ } do the generalized
J . m
displacements w or u appear explicitly. Their presence is not essen
tial for the solution of stress-resultants or strains within the
medium. However, it makes the solution of the problem more complete
if they are included. The canonical forms of the governing equations,

Eqs. (36), together with the differentiability conditions

du = u,,td’t

u.‘dt
along x = const. (37)

dw = w,,td’t = usz

ean be written as
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av .
ol ..J, = . i = =
where
(vy) = (ugy uy, ugy uy, ugy Wy u)
i=1,2 along the characteristics % =f, - f
. dx_ .
i=3-7 along the lines aT 0
and
o 4, .. ]
(ngj) 0 > 0 0 1 0 0
o =iA 0 0 t 0 o0
2
1 0 0 0 0 0 0
» :
o 0 ..__._dg A 0 -1 0 0 [(39)
0 0 de? (a* - 1) - 1 o o0 o
0 0 0 0 0 i 0




- €% (a* - 1)
o? (a% = 1)

0
- e? (a* = 1)
- 2£2 (a* - 1)
(a®* + 1)

0

(40)
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The initial and boundary conditions are derived from Eqs. (27)
and Eqs. (28). In terms of the components of the vector (vj), the
initial and boundary conditions are

u(x, 0) =u, '(x, 0) =0

i

w(x, 0) u, (%, 0) =0

(41)

and

-;f-u3 (0, T) =14 (T)

respectively, where £y (T) is the longitudinal strain recorded at
station one. The above three conditions, Eqs. (41), satisfy the
uniqueness criteria ag specified for membrane theory in Section II.
We delay the discussion of the decay equation until the
canonical forms of the governing equations and the initial and
boundary conditions for two-mode and three-mode theories have been

presented.

III-3(b) Two-mode Theory
This procedure begins by rewriting the governing equations,
Egs. (20), with R = X = 0 in the form
1 .
W L | N =°L--u.+ FRNEY b B (lJ=1 ocee n)
1,xxX °i2 1y ror 1373 /313 JeX ’ ’ ’ (42)
(no sum on i)

where g@f-t_ = ,'f ¢; defines the physical characteristic lines on the

(x = T) plane. For our particular set of equations, if we take

(u19 uz) = (W, u)

26
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we obtain
(o(.lj) = XY 0
8m, 2 (k° - 1) (43)
0
52Bm22
— -
2m, (k% - 2)
(Bij) = 0 Sy
bmy (k2 - 2) ) ()
$Bn,?
and
012 = kZ 022 - m22 @

For the values of Poisson's ratio and a* considered here, it can be

readily shown that
c12 > e

We note that ¢y = k1is the dimensionless form of the dilatational
velocity £~Z;%;&:Zii o

The canonical form of Eqs. (42) along dx od

ETE., =3 ci is (Equ (16) Rest’”)

(ivj = 19°°=9n)

- 1 y = =
+ d(uiux) @ -é.{ d(ul,t) =4 d.x(d\ijuj +ﬁ ijujgx)

(no sum on 1)

(45)
Accordingly, the canonical forms of Eqs. (20) are
< dlw,.) - 1 d(lw, ) =37 dx u aleong dx_ = = ¢
+ x’ = &5 T/ T+ & Batx dt *t "1
_ | ; (46)
F d(u,y) = é% d(u,,t) = 7 dx(elpou +-F321w9x) along E%? =3¢ .
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Equation (46) is a set of four equations relating the five
unknown dependent variables Woys Wor s Uogs o s and u. To get the
necessary fifth equation we exploit the fact that the displacement
field is continuous and differentiable so that along any line on the
(x =T) plane not belonging to the families of physical characteris-
tic lines the relationships

dw

It

waxdx + w,,td't
(47)

du = u,xdx + Wy dtT

are always valid. (As the generalized displacement w does not appear
explicitly in Egs. (46), the first relationship given in Eqs. (47)
can be omitteds It is included here in order to present a more
detailed solution.) In particular, along the family of lines

x = const. these relationships become

dw = w,,td't
(48)
du = u,,.dT o
The set of canonical equations is now complete., Equations (46) and
Egs. (48) combine to form a system of six equations in the six un-

known components of the vector
(VJ) = (Waxv erE9 usxv s s Wy u) .

The initial and boundary conditions determined from Eqs. (27)

and Egs. (28) are, in terms of the components of the vector (vj)g
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u(jc, 0)

= u,,c(x, 0) =0
w(x, 0) =w,,r(x:9 0) =0
and (49)
$ -
vax (O:’E) = f-' (T)

i
o

uox (0, T) =

respectively. Examination of the uniqueness criteria stated in

Section II reveals the adequacy of Eqs. (49).

III=3(e¢) Threec-mode Theory
As the development of the canonical equations for three-mode
theory is identical to that presented in the preceding section, it

suffices merely to write down these equations. The canonical equa=

tions are
Ty ) =g dug o) =T dxp g along = 7 e,
? ? ’ ?
7 o) - g dlag ) = T Ax(kppug + B g + B 5 (50)
along %%‘-f =4 <,
: d(w1 ,x) - 315 d(w1.T) =7 dx(ok23w1 +/S 22“0.,x) along %’f—f =3 03
dwo = WO,TdT
dw1 = wy ',[d’t aleng x = const. (51)

du, = d
0 uO,’E T




where
(L )= 0 0 0
ij
21+Bn22
0 0
§2122
8n12 (k2 - 1) . (52)
0 52
2o 2
2n, (K% - 2)
(Bis) = 0 PR 0
6an22
0 v 0 (53)
4n1 (k2 - 2) . L
2 $B
é Bn, ) 3
and
2
n ~
c 2 = k2 ¢ 2 = 2 o) 2 = }_C:__
1 2 2 3
n, 3 n,

For the Poisson's ratio and a*'s usged here, it can be shown that

2
3

3

012 = c22 > c

We again note that ¢y = k is the dimensionless form of the dilata-
tional wave velocity. Equations (50) and (51) form a system of nine

equations in the nine unknown components of the vector

(VJ) = (WO,X' WO,’[ 9 W1,T 9 uO,X' uO,T’ Wos W19 uo)o

The initial and boundary conditions are again derived from

Egqs. (27) and Eqs. (28). However, it is nececsary to assume a form
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for ths’radial depeﬁdency of the longitudinal strain at station one
in order to fulfil the uniqueness criteria., Consistency with the
kinematic assumptions of three-mode theory dictates the choice of a
quadratic dependency. The kinematic assumptions do not in themselves
dictate whether Ezz increases or decreases as the radius increasese.
The choice made here is that the longitudinal strain increases.
Employing g(r) = E; as the radial dependeéncy for the longi-
tudinal strain at station one, the initial and boundary conditions

for the tube ars

Wy (%, 0) = o, T (x, 0) =0
W, (x, 0) = Wy T (%, 0) =0
u, (x, 0) = Uy T (x, 0) =0
and ‘ (54)

Zéwo’x (0, T) =1, (T) [g(a) + 1]
2 éB. 'é;“hx (0, T) = £, (T) [g(a) - 11

b =
uo.x (0, T) -§w1 (0, T) =0

respectively.

IIT-4. Decay Equations

On the (x - T ) plane a wave front cin be represented by a
line and, by definition, that line will be a characteristic. For
each approximate theory the initial conditions are all zero and the

boundary conditions are continuous functions of ‘T, which imply that
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of a single family of physical characteristic lines it is the one
Gaanating from the origin of the (x - T ) plane that will be the wave
front. Hemse, membrans theory, two-mode theory and three-mede theory
have ene, two, and three wave fronts respectively. The magnitude of
the jump of a derivative of the displacement vector across a charace
teristic line deseribing a wavé front will depend on the boundary
conditions on the end of the tubé; specifically, the dependence en
time in the neighborhood of T = 0, |

If, at least one of the boundary conditions suffers a finite
jump at T = 0, then some components of the vector (vJ) will suffer
a jump across a wave front [1'9] o The specific components suffering
the jump depend on the wave front considered if more than one wave
front exists. For each approximate theory, all boundary conditions
are eontimuous at T = 0, There is no need, therefore, to formally
develop the deca§ equations for each theory. All components of the
vector (vj) for each approximéte theory are continuous across all

existing wave fronts.




IV. NUMERL A S

IV-1. General Comments
We are interested in obtaining the longitudinal and hoop

strain responses at station two, located 32" along the tube from

station one. In order to determine these dynamie responses, it is
necessary to establish, at station two, 2 finite set of vectors

{ Vs (3%?L ’ftnl)} (m =152500098 3 s = 1 = the number of time
intervals desired). With the components of the vectors {vj (3%$L ,’§m>}
known, the longitudinal and hoop strain responses are readily
calculated.

The numerical technique employed to obtain the solution of
the vectors { vj <3%§i » rEm)} for the three approximate theories
closely parallels the numerical method utilized by McNiven and
Mengi in their papers [}’9] .v Although the same numerieal methed
is used with each of the approximate theories, the difference in the
number of wave fronts exhibited by each of the three theories war-
rants the inclusion in this section of two separate descriptions of
the method; one for membrane theory and the other for two-mode and

three-mode theories.

IV-2. Membrane Theory
We refer to Fig. 8 which shows the (x - <) plane. On this

plane, the line T: X « £'T = 0 divides the space-time domain into
two parts; the domain D1, representing undisturbed particles and
Dz, representing particles of the body which are in motion. The part

D2” which is the part that interests us, is subdivided by means of

33




a grid. The grid shown by fine solid lines is formed by two sets of
parallel lines. The first set (x = £T = const.) is parallel to the
line T and the second set (x + £ T = const.) has equal but opposite
slopes. FEach diamond-shaped element has diagonals measuring 2 A X
and 2AT

To establish { vj (3%51 ,’Em>} we start by prescribing values
of (vj) as determined by the decay equation to all nodal points aleng
T, begimning with (1,1) and terminating with (1,n). The integer "n®
is calculated from the equation

n=g+p

where 8 is an integer previously defined in this section and p is an

integer determined from the equation

2o

a

AX

p= +1 °

We then proceed to the next characteristic line parallel to T. Using

a procedure to be explained shortly [9], we determine the values of

(Vj) for each of the required nodal points along this line, beginning

with (2,1) and terminating with (2, n = 1), With (vj) established

along the second characteristic line, we then proceed to the third,

the fourth, and so on, until s characteristic lines have been explored.
In explaining the technique we refer to element M shown in

Fige 9. The vector (vj) is known at points B
bth

3 and B), located on the
characteristic line and point C, located on the c'h characteristic
line. As there are seven unknowns we need seven equations to estab-
lish them.

The seven equations come from using the canonical form of the
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governing equations, Eqs. (38), along their respective characteristic
lines. The seven elements of (vj) are found at 03 by solving the
seven equations by the method of finite differences.

For the element L adjacent to the line x = 0, the procedure
is the same except that the canonical equation along the line
x = £ T = const. is replaced by the boundary condition at x = 0;

namely, the last of Eqs. (41)

3

2 uy (C) = £, (Cp) (55)
As the time dependency of the input (station one) for each
tube is very complex, no attempt is made to reproduce it in func-
tional form. The longitudinal strain response at station one is
magnified from the photographs and a set of descrete values of f£(t)
established graphically at intervals of t = 1.25 microseconds. By
considering this set of discrete values as the input, the value of
f1 (C1) for any mesh size is determined by interpolating the elements

of the input set quadratieally.

IV=3. Tuwo=mode Theory (Three.mode Theory*)

We refer to Fig., 9 which shows the (x « T ) plane divided

into D1 and D2 domains by the line T1: X = c112 = 0, The domain

D2 is subdivided by means of one primary grid and one secondary grid
(two secondary grids*)., The primary grid shown by fine solid lines
consists of members of the families (X = c1”f = const.) and

(x + ey T = const.). The diamond-shaped elements formed by this

grid have diagonals measuring 2A X and 2AT . The secondary set(s*)

of grid lines consists of members of the families x F cét= const.




(x ¥ cj’E = const.*), They are shown dotted in Fig. 9 and are used
when analyzing an individual element.

To establish {.vj ~%$L 91%1)} we explore the nodal points
along the characteristic lines x - c1Tf = gonst. in exactly the same
manner as described for membrane theory, Only the technique for
calculating (vj) at the apex of a diamond-shaped element differs.
Form < 2 the technique is identical to that used by McNiven and
Mengi [1]o

In explaining the general technique employed for m > 2 we
refer to element M showm in Fig. 9 and to the enlargement. The vece
tor (vj) is known at points A, and A5 located on the a™® characteris-
tie; at points B., B, and B4 on the bth characteristic; and at

2" 3

points C1 and C2 on the ¢! characteristic, We seek to establish
(vy) at the point C4 situated on the ¢®® characteristic. As there are
six (nine*) unknown components of the vector (vj) we need six (nine*)
equations,

Through the point C3 we draw the characteristic lines CBD1
and C;D, with slopes * ¢, (the characteristic lines GyD3 and C;D,
with slopes * cB*)a The values of (vj) at D, (DB*) are calculated

by quadratic interpolation of the values at ng B., and Au, and at

’%ﬂ
D2 (Du*) by quadratic interpeolation of the values at BZ” 839 and Buo
Four (six*) of the six (nine*) equations come from using the four
(six*) canonical equations, Eqs. (46) (Egqs. (50)*) along the four
(six*) characteristic lines CZCBg 3403’ DyC5, and D203 (DBCB and DucB*)a
The two (three*) remaining equations are Eqs. (48) (Eqs. (51)*) which

are employed along the diagonal 8303 (x = const.). The six (nine¥*)
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components of the vector (vj) at C3 are found by solving the six
(nine*) equations by the method of finite differences.

For an element L adjacent to the line x = 0, the procedure
must be modified in two ways. First, the value of the vector (vj) at
D2 (Du*) is ealculated by quadratic interpolation of the valuss of
(vj) at B1, Bz, and B3° Secondly, the two (three*) canonical squa-
‘tions along the two (three*) characteristic lines x - cin = conste
(1 =1,2 (3#)) are replaced by the boundary conditions at x = 0,
From Eqs. (49) (Egs. (54)*) these conditions ére

S, (Cy) = £ (Gp)

' (56)
u'x (01) =0 o




V. COMPARISON OF PREDICTED AND EXPERIMENTAL RESPQNSES

Experimental data was obtained from tests conducted by Kolsky
and Heimann on cold drawn steel tubes. Identification of the mechani-
cal properties of the steel was not contained within their paper, neor
are the properties now known. As the theoretical solution is depen-
dent on the mechanical properties of the specimen, it is necessary to
ascertain these properties, specifically modulus of elasticity and
Poisson'!s ratio, from the data that is available.

Steel tables provide upper and lower bounds for Poisson's
ratio and modulus of elasticity for cold drawn steel. From these
bounded sets, the values of 0.275 for Poisson's ratio and 28.2 X 103
ksi for modulus of elasticity are determined for the material by
matching the peak of each of the theoretical strain responses (Ezz
and 8139) at station two, as calculated by membrane theory, to the
corresponding peak of the experimental strain responses for a* = 1,03,
We assume that the same material properties apply to both specimens.

The decision to use only the experimental results of the
thinner tube, a* = 1.03, for the determination of the material DPro=
perties is based on the amount of computer time required for a
theoretical solution. Membrane theory requires significantly less
time than either two-mode or three-mode theory. As membrane theory
is restricted in use to thin shells, it is necessary to use a speci-=
men that falls within the domain of applicability of this theory.

The tube with a* = 1.03, radius/thickness ratio of 32 is, therefore,

chosen.
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The longitudinal and hoop strain responses at station two for
a® = 1,03 as predicted by membrane theory are shown in Fig. 10 and
Fig.'f1 respectively. No attempt is made to obtain similar strain
responses using two-mode and three-mode theories. The large value of
b/h for this tube suggests that little improvement, if any, can be

made over the membrane solution. Considering the complex nature of
| the experimental time dependencies at stations one and two and the
gignificant differencés in the two time dependencies, one is impressed
by how well the theoretieal predictions match the experimental re=-
sponses aﬁ station two.

Figures 12 and 13 show the longitudinal and hoop strain
responses at station two for a* = 1,15, b/h = 7.5, as predicted by
each of the three approximate theories. It can be seen from these
figures that the three approximate solutions match the experimental
results exceedingly well. The.fact that not one of the approximate
theories is noticeably better than another is not unexpected., First,
an a* of 1,15 is probably in the region between those values for
which membrane theory is adequate and those values which requirs a
more refined theory. Secondly, there is a trade-off of advantages
when a higher order theory is pSed. - The improvement introduced by
a higher order theory in more closely reproducing exact behavior is
somewhat offset by complications and sources of error that are intro-
duced by the numerical procedure.

In contrast to membrane theory, two-mode and three-mode
theories contain more than one wave front which necessitates the use

of interpolations within the mumerical procedure for calculation of




the vector (vj) at the apex of each diamond-shaped element. ’As the
responses at a considerable distance from the input are being sought,
the effect of the interpolations and the acecumulative errors generated
by the interpolations is twofold. First, the amount of computer time
required for a satisfactory solution is significantly increased.
Smaller mesh sizes (in conjunction with a second order interpolation
function, Section IV) are employed with the higher order theories in
order to ensure the stability of the numerical procedure. Secondly,

the rate at which the numerical solutions converge is reduced.

On the basis of the results shown here, we speculate that,
as the value of a* increases, somewhat beyond 1.15, the two-mode
theory would supply a predicted response mich closer to the experi-
mental behavior than that predicted by membrane theory. Also, it
seems entirely likely that as a* is further increased, it willyreach
a value for which the three-mode theory would be an improvement over
theAtwoumode theory.

Finally, one can conclude that the method of characteristics
is valuable in calculating responses to a transient input on the end
of a hollow rod at least when the response is no farther’from the

disturbance than that considered here.
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Comparison between the exact and membrane frequency spectra
for a* = 1,03,

Comparison between the exact and membrane frequency spectra
for a* = 1.15&

Comparison between the exact and two-mode frequency spectra
for a* = 1,03,

Comparison between the exact and two-mode frequency spectra
for a* = 1,15,

Comparison between the exact and three-mode frequency gpectra
for a* = 1,03,

Comparison between the exact and three-mode frequency spectra
for a% = 10150 )

Experimental longitudinal strain responses at gtation one,

Characteristic lines and wave front on the (x = T ) plane
for membrane theory.

Characteristic lines and wave fronts on the (x - T ) plane
for two-mode and thres-mode theories.

Comparison between the experimental longitudinal strain re-
sponses at station two for a* = 1,03 and the response pre-
dicted by membrane theory.

Comparison between the experimental hoop strain response at
station two for a* = 1,03 and the response predicted by mem-
brane theory.

Comparison between the experimental longitudinal strain re-
sponse at station two for a* = 1.15 and ihe responses pre-
dicted by the three approximate theories.

Comparison between the experimental hoop strain response at
station two for a* = 1,15 and the responses predicted by the
three approximate theories.
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