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ABSTRACT OF THE THESIS

A dimensionality reduction approach to model-free clustering of trajectories in
heterogeneous collectives

By

Pei Tan

Master of Science in Mathematical, Computational, and Systems Biology

University of California, Irvine, 2023

Christopher E. Miles, Chair

Collective motion of locally interacting agents is found ubiquitously throughout nature. The

inability to probe individuals has driven longstanding interest in the development of methods

for inferring the underlying interactions. In the context of heterogeneous collectives, where

the population consists of individuals driven by different interactions, existing approaches

require some knowledge about the heterogeneities or underlying interactions. Here, we inves-

tigate the feasibility of identifying the identities in a heterogeneous collective without such

prior knowledge. We numerically explore the behavior of a heterogeneous Vicsek model and

find sufficiently long trajectories naturally cluster with dimensionality reduction computed

by PCA. We identify how heterogeneities in each parameter in the model (interaction radius,

noise, population proportions) dictate this clustering. Finally, we show the generality of this

phenomenon by finding similar behavior in a heterogeneous D’Orsogona model. Altogether,

our results quantify the ability to disentangle identities in heterogeneous collectives in a

model agnostic manner.
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Chapter 1

Introduction

1.1 Collective behaviors in real world

In the natural world, it is common to observe animals and creatures live or migrate in col-

lective, resulting in a synchronized and spatially organized pattern of movement. Notable

examples include fish schooling [1, 2], birds flocking [3, 4], insect [5, 6] and bacterial swarm-

ing [7, 8], human crowds [9], cell migration [10, 11], and other subcellular processes [12, 13]

(Fig. 1.1). Within the system, individuals rely on local cues, such as the positions, motion,

or changes in motion of others, to make decisions about their movements [14,15].

Local interactions can vary in complexity based on their environment and proximity. Fish,

for example, often swim in groups to reduce the energy cost of locomotion [16]. They also

repel one another when they come too close, which helps to prevent collisions and maintain

a safe distance between individuals [17]. Recent researchers have gone further to study more

intricate factors that influence the movements in dynamics systems, moving beyond the basic

binary explanation. Such as, fish can perceive complicated interactions via their lateral line
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Figure 1.1: Collective motions in nature.

A gallery of images related to collective motion. A: Fish schooling, photograph by Bruce

Warrington. B: Human crowd, photograph by Ratapan Anantawat. C: Birds flocking,

photograph by Jan-Niclas Aberle. D: Malignant B-cell lymphocytes seen in Burkitt

lymphoma, photograph by Louis M. Staudt.

system, which can respond to stimulation in flow and discern shifts in the environment, such

as water temperature and oceanic currents [1, 18].

1.2 Typical collective motion modelings

In the study of collective behavior, it is not always necessary to create complex models that

replicate real-life systems with mechanics and dynamics. Instead, simulations can include a

basic noise term to take into account various intricate deterministic factors [11,19]. First, the
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concept of self-propelled particle (SPP) models is introduced [20]. SPP models are made up of

particles that interact with each other locally and have an inherent driving force, resulting in

a consistent velocity. With this context, Tamás Vicsek proposed the Vicsek model [20], which

is a well-known and fundamental model in the field of collective motion. It is regarded as one

of the simplest yet effective models for capturing the essential characteristics of collective

motion.

The classical Vicsek model describes the evolution of N self-propelled particles moving in

2-dimensional space at a constant speed ν and with fluctuating direction. The direction of

each particle is governed by two factors: noise, and local interactions with neighbors (Fig.

1.2). Specifically, each particle averages the orientations over all neighbors within a specified

radius, R. In symbols, θi,t, the orientation of particle i at frame t, evolves as

θi,t+1 = ⟨θj,t(t)⟩∥xxxi,t−xxxj,t∥<R + η. (1.1)

The particle positions xxx are updated with these orientations:

xxxi,t+1 = xxxi,t + ν∆t

cos(θi,t)

sin(θi,t)

 (1.2)

The noise η is chosen from a uniform distribution governed by a scalar magnitude 0 ≤ σ ≤ 1,

such that η ∼ U(−σπ, σπ). The particles are constrained to an L × L periodic box, where

distances are computed in a manner that respects the periodicity of the domain. For systems

with large N , naive O(N2) comparisons are prohibitive. We instead employ a standard KD-

tree [21] O(n log n) implementation for computational scalability. Particles are initialized

3



with uniformly random orientation and position within the box.

R

θi

R

<θj>

R

<θj>+η

A B C

Figure 1.2: The composition of motion orientation in Vicsek.

A: In the Vicsek system, particles identify their neighbors using a circular neighborhood

with a fixed radius of R (filled red). A particle is oriented towards an angle of θi before the

interaction. B: Particles interact with their neighboring particles by aligning their directions

and taking arithmetic mean. C: Introduce environmental noise with an intensity of η. This

noise and interactions determine the direction of each particle during each Vicsek step.

Despite the existence of noise and the lack of leader particles or global forces, there is a

development of orientational order in the Vicsek model, emerging a transient collective cluster

pattern. One intriguing finding in the coupling between density/noise and order [20, 22].

When the noise level or density increases, the system experiences a continuous transition from

a disordered state to an ordered and coherent motion. The debate is ongoing about whether

the order-disorder phase transition is driven by the level of noise [20, 23–25]. Nonetheless,

examining this can provide us with insights into collective motion and how to control and

manage it effectively.

Although the Vicsek has historically served as a testbed for investigations of collective mo-

tion, one may wonder whether our results are specific to heterogeneities in this model alone.

To explore the generality, we also consider a different, historically important alternative: the

D’Orsogona model [26, 27]. The D’Orsogona model describes self-propelled particles in 2D,
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with the position of the ith particle xxxi evolving as

dxxxi

dt
= vvvi,

dvvvi
dt

= (α− β∥vvvi∥2)vvvi −∇U(xxxi), (1.3)

where

U(xxxi) =
N∑
i ̸=j

[
Cre

−∥xxxi−xxxj∥/λr − Cae
−∥xxxi−xxxj∥/λa

]
. (1.4)

In the model, the parameter α describes the self-propulsion magnitude and β is the friction

magnitude. The potential Eq.(1.4) is a Morse-like potential between all pairs of particles.

The two length scales are la and lr, and represent attraction and repulsion, respectively.

Each of those magnitudes is governed by Ca and Cr.

According to the model equations, the D’Orsogna model is designed to simulate nonlinear

interactions between particles through mutual attractive and repulsive forces. Such dis-

tinctions, compared to the alignment-focused Vicsek model, lead the D’Orsogna model to

different patterns and dynamics. D’Orsogna model can produce various topological pat-

terns, including mills, rings, collective swarms, and group escape [26,28]. Additionally, these

patterns can be further classified as either single or double for both ringing and milling

patterns [28].

1.3 Heterogeneous collective identification on trajec-

tories

Most attention has been paid towards investigating homogeneous collectives, where all agents

evolve and interact via the same dynamics. However, real animal collectives are richly
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heterogeneous, which is inevitable [29, 30]. Such heterogeneities are frequently observed in

various species: bacterias grown from a single cell but still varied in length differences and

swarming speed [31]; mixed-species shoals of fish or insects found in wild fields [32]; leader-

follower behaviors in animals [33–36]; cell migration may be attributed to the heterogeneity in

border cell population [37–39] and personal velocity and preferences result in lane formation

in human crowds [40]. The collective motion of heterogeneous systems has consequently

been investigated extensively and found to be even richer than that of the homogeneous

variety [41–45].

Alongside the studies of the emergent behavior of collectives, a parallel thread of investiga-

tions has developed and applied methods for the inverse problem of deducing the underlying

interactions from trajectories [46–51]. This quest is of natural scientific interest due to the

ability to observe only the correlated trajectories of the interactive collective, making disen-

tangling individual interactions inherently challenging, especially with heterogeneities [37].

Recent advances have broken ground on the ability to infer interactions in heterogeneous

collectives using clever and sophisticated approaches. However, these approaches, while pow-

erful and elegant, seemingly share a unifying feature of requiring knowledge of the collective

or its heterogeneities. For instance, methods that provide flexible non-parametric tests of

heterogeneities [52], or the ability to infer the interactions [53] in heterogeneous collectives,

both require knowledge of the particle identities a priori. The work in [54] addresses this with

a mixture model fit alongside sparse identification of the interactions. While able to identify

the identities, the success of this method hinges on the ability to correctly specify a library of

underlying interactions. Other methods for detecting heterogeneities work well but are lim-

ited to specific contexts such as the detection of dissenting directions among neighbors [55]

or only leader-follower interactions [56,57]. In this work, we seek to address whether particle

identities can be detected in heterogeneous collectives with no prior information about the

collective or the structure of the heterogeneities.
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To study disentangling heterogeneities in collectives, we investigate a heterogeneous variant

of the classical Vicsek model [20]. This model is renowned as the textbook minimal example

of a collective motion with rich behavior [58, 59]. Consequently, many variants have been

considered [60], including those with heterogeneities [61,62] such as the ones we propose here.

We first consider a setup with two populations of Vicsek particles with different parameters,

including interaction radii, noise magnitude, and particle numbers, but still interacting as

a single indistinguishable collective. After performing dimensionality reduction on the tra-

jectories, we find that in this latent space, the trajectories cluster into their identities for

sufficiently long observations. In this work, we quantify the parameter-dependent timescale

required for accurate clustering through numerical simulation. Next, we show that this clus-

tering phenomenon persists in a heterogeneous Vicsek model with more than two species.

Lastly, to establish that this is truly a model-free phenomenon, we consider a heterogeneous

D’Orsogona model [26] and find similar clustering behavior. Altogether, our results are sum-

marized and establish the ability to cluster heterogeneous collectives in a model-free manner

with no prior knowledge of the underlying model or heterogeneities.
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Chapter 2

Model Simulation

2.1 Heterogeneous Vicsek and clustering

We consider a variant on the classical Vicsek model with subpopulation amount M ≥ 2.

Specifically, denote ϕϕϕ = (ν, σ,R) as the parameters governing the motion of a particle in

the classical Vicsek model. In the heterogeneous collective, particles belonging to subpopu-

lation j evolve via the parameter set ϕϕϕj = (νj, σj, Rj). Particles interact regardless of their

membership in a subpopulation. In total, the collective consists of N particles that can be

decomposed into their group membership N =
∑M

j=1 Nj, where Nj denotes the number of

particles in subpopulation j. Previous studies have examined this model, with some even

exploring more complex scenarios. [62,63].

The heterogeneous Vicsek model is straightforward to simulate and generate trajectories

for testing. However, performing the cluster analysis on the resulting trajectories in an

unsupervised model-agnostic manner is more subtle. One framing of the problem is that of

time-series clustering, for which there are two standard branches of approaches [64]. One can

assign and cluster based on an appropriate metric between trajectories, such as Euclidean
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distance or dynamic time warping [65]. However, the choice of such a metric for collective

motion data is not obvious to the authors. Therefore, we consider the second main avenue

for clustering time series: dimensionality reduction. A zoo of possible linear and nonlinear

approaches for dimensionality reduction of time series exists. For the sake of discerning

the intrinsic separation of the identities, we opt for the simple but classical approach of

performing principal component analysis (PCA). PCA simplifies a dataset by creating new

variables called principal components (PC). These components are ordered based on the

amount of variance they explain in the data. The first component explains the most variance,

while the last one explains the least variance. By selecting only the first few principal

components, PCA can approximate the original data table while reducing its dimensionality

and retaining critical information [66]. It is worthwhile to note that PCA can outperform

nonlinear dimensionality reductions in certain contexts [67].

The last technical complication is to decide on the “data” to be dimensionally reduced.

Here, we choose θi(t), the orientations. While it may not be possible to directly access

these for experimental observations, the orientations can be estimated by the frame-to-frame

displacement e.g., θ̂i,t = atan2(xxxy
i,t+1 − xxxy

i,t,xxx
x
i,t+1 − xxxx

i,t), where xxxx,y
i,t correspond to the x, y

component of the positions. Naive PCA does not preserve the structure of angular data [68],

so we transform τi,t := tan θi,t. Alternatively, we tested τ̃i,t := [cos θi,t, sin θi,t], which doubles

the trajectory length but may be more generalizable to 3D data, and found no difference in

our results. In summary, for t observations of a collective with N particles, we perform PCA

on the N × t matrix

Tt = tan(Θt) =



tan θ1,0 tan θ1,1 · · · tan θ1,t

tan θ2,0 tan θ2,1 · · · tan θ2,t
...

...
. . .

...

tan θn,0 tan θn,1 · · · tan θn,t


. (2.1)
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Using the first two principal components, both of them are normalized to have zero mean

and unit variance, we then perform standard K-means clustering on these scores, which is

a technique to partition data points into K clusters by iteratively assigning points to the

nearest center until convergence [69]. It is important to note that K-mean is not the only

option for the heterogeneous Vicsek model. Alternative cluster approaches, including K-

nearest neighbors [70] and spectral clustering [71], have been tested and present the ability

to produce similar results.

So far, we would like to propose the PCA dimensionality reduction cluster, a classification

pipeline for heterogeneous collective motion trajectory data, utilizing PCA dimensionality

reduction: First, use PCA to extract the first two PC scores, which represent the most

informative and significant features and capture the majority of the variability within the

data. Then proceed to the clustering stage, which groups particles into their categories (Fig.

2.1).

collective motion dimension reduction clustermake time-series
trajectory matrix

(         )
PCA1

PC
A

2

Figure 2.1: The overview of PCA dimensionality reduction clustering method.

Trajectories can be obtained from motions and then transformed into a time series data

matrix. To identify variations in different subpopulations of particles, a dimensionality

reduction method is applied on the time series matrix. In this particular study, PCA is

utilized as the chosen dimensionality reduction technique.
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Chapter 3

Results

3.1 Two subpopulation Vicsek model cluster over suf-

ficiently long times.

We first demonstrate the dimensionality-reduction-based clustering on a setup with two sub-

populations of particles that differ only in one attribute. Specifically, we take two types of

particles, N1 = 200,N2 = 200 with ϕϕϕ1 = (ν1, σ1, R1)= (0.01, 0.1, 0.05) and ϕϕϕ2= (ν2, σ2, R2) =

(0.01, 0.3, 0.05). That is, the two particles differ only in their magnitude of noise. Other sim-

ulation parameters are set to L = 1,∆t = 1. The results of the simulation over increasingly

long steps can be seen in Fig. 3.1.

From the snapshots of particle positions (Fig 3.1 panel A, B, C), it can be observed that the

collective particles move in cohesive groups, one of the characteristics of the flocking phe-

nomenon. However, the flock is transient and hardly distinguishable as it appears in both

subpopulations. In addition, we analyze the orientation distribution within each subpop-

ulation, aiming to understand the spatial alignment or directional tendencies exhibited by

11
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Figure 3.1: Two subtype Vicsek model simulation and clustering.

ABC: snapshots of the particle positions in a heterogeneous Vicsek simulation with two

types of particles and display no apparent pattern. DEF: The first two principal component

scores for each trajectory, colored by particle type. GHI: Results of K-means clustering

on PC scores. J: Clustering accuracy approaches 100% as the trajectories become longer.

The two populations differ only in their noise magnitude σ1 = 0.1, σ2 = 0.3 and otherwise

ν = 0.01, R = .05 with L = 1,∆t = 1, and particle counts N1 = 200, N2 = 200.
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Figure 3.2: Orientation distribution in two subpopulations Vicsek motion.

The histogram shows the orientation distribution at selected time points: 0 (A), 100 (B),

500 (C), 3000 (D), 5000 (E), 8000 (F). The orientation data are sourced from two sub-

populations Vicsek system N1 = 200,N2 = 200 with ϕϕϕ1 = (ν1, σ1, R1)= (0.01, 0.1, 0.05) and

ϕϕϕ2= (ν2, σ2, R2) = (0.01, 0.3, 0.05). In order to avoid ambiguity, all angles are adjusted to

[−π, π].
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individuals within different subpopulations. However, no significant variations are found 3.2.

Next, performing the PCA clustering strategy as we stated earlier, the first two PC scores

of each trajectory are displayed (Fig 3.1 panel D, E, F). In early times, these scores from

various subsets are closely intertwined. However, with the passage of time, they gradually

become more distinguishable, although they are still not entirely separate. Eventually, the

PC scores for different subpopulations form two distinct clusters. In order to measure the

reliability of using PC scores as a resource for the clustering classifier, we conduct K-means

clustering on the PC scores and calculate the accuracy. The accuracy is suboptimal initially

(around 50%), but it improves as more trajectory data is gathered. Panel J illustrates this

improvement, showing that the accuracy finally stabilizes at 100%.

3.2 Time to accurately cluster is dependent on which

parameters are heterogeneous.

The previous result shows that the PC scores in a single collective with two different noise

magnitudes cluster over sufficiently long times. This leaves the natural question of what

shapes the timescale for accurate clustering. Due to stochasticity, this timing will differ in

each collective. We perform Nsim = 100 simulations for each parameter set to evaluate the

typical time to cluster accurately for the corresponding scenario. The results of varying the

heterogeneity in noise σ, the interaction radius R and the number of particles N1 +N2, the

ratio of N1/N2 in two subpopulations can be seen in Fig. 3.3.

In Fig. 3.3 panel A, we see the effect of differing levels of noise between the two sub-

populations of particles, ranging from 2.5 to 5.0 “noise fold”, meaning the ratio of σ2/σ1.

Intuitively, as the populations become more distinct, the ability to distinguish them be-

comes easier, manifesting as a smaller timescale until all simulations reach perfect accuracy.

14
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Figure 3.3: Parameter influence on timescale of accurate clustering.

A: Median accuracyNsim = 100 of clustering for a two sub-species heterogenous Vicsek model

with only noise magnitude different. “Noise fold” refers to the ratio of σ2/σ1. B: Median

accuracy clustering two sub-species with only interaction radii different C: Median accuracy

clustering with the ratio N1/N2 = 1 fixed but the total number of particles N1 +N2 = N is

increased. D: Median accuracy clustering with the ratio N1+N2 = N fixed but ratio of two

groups is varied.
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Figure 3.4: Parameter influence on required time for accurate clustering.

Required time for perfectly accurate clustering from 100 times repeated clustering simulation

for a two sub-species heterogenous Vicsek model with various parameters setting. The

”required time” refers to the point in time when accuracy reaches and stabilizes at 100%.

It is determined through the method of dichotomy. The scatter plot displays the median

required time with bars representing 95% value to 5% value. In A, only noise magnitude is

different. “Noise fold” refers to the ratio of σ2/σ1. In B, only interaction radii are different

For C, the ratio N1/N2 = 1 is fixed, but the total number of particles N1 + N2 = N is

increased. For D, the ratio N1 +N2 = N is fixed, but ratio of N1/N2 = 1 is varied.
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In panel B, a similar effect can be seen for differing only the interaction radii. However, we

note that the time for clustering with differing radii takes far longer than clustering noise

differences. Next, we investigate the role of particle density by fixing the ratio of N1 to N2 in

the noise test of the first panels. We then increase the total number of particles N = N1+N2

and investigate the time to cluster accurately, finding that the time to cluster decreases with

N , as seen in panel C. Lastly, we fix N and vary the ratio of the two subtypes, seen in panel

D. Here, we find that greater asymmetry produces longer accurate clustering time. Addi-

tionally, we explored the tendency of improving accuracy and identified the point in time

when accuracy reaches and stabilizes at 100%, which also supports the finding (Fig. 3.4). In

sum, we find that (i) the more heterogeneous (in parameter values) the subpopulations,(ii)

higher density, and (iii) lower asymmetry in numbers all decrease the critical timescale for

clustering accurately.

3.3 Cluster relies on simulation time, not initial con-

dition.

In the previous analysis, accurate clustering emerges as the trajectories increase in length.

However, it is not immediately clear whether this timescale is shaped by the increased

length itself or the equilibration from the initialization of the simulations. To investigate

this, we return to the two subpopulation setup with heterogeneous noise and prolong the

time window of collective simulation. The point is to maintain the identical dynamic system

to guarantee the trajectory only differs in initial positions and initial orientations. We then

split the trajectory into two sections, with time window of [0, t] and [t, 2t], to compare their

discrepancy in clustering accuracy changes over time. As the Fig. 3.5 demonstrates, the

accuracy curve is nearly identical, regardless of the initial configuration of the particles.

This suggests the timescales of accuracy are truly representative of the timescale required to
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observe these populations rather than an artifact of the initialization.

3.4 More than two subpopulations can be clustered.

The previous examples explore a heterogeneous collective with only two subpopulations.

However, the dimensionality reduction and clustering of these latent representations need not

be limited to only two populations. We next consider the variation with three subpopulations

of Vicsek particles, differing again only by the noise magnitude σ1 = 0.1, σ2 = 0.3, σ3 = 0.5.

The simulations and clustering procedure can be seen in Fig. 3.6. Again, the collective

itself does not seem to display any apparent pattern in positions (panels ABC), but the PC

scores separate over sufficiently long times (panels DEF). For long trajectories, the accuracy

approaches 100% (panel J). In practice, the number of clusters must be specified for K-

means or other clustering algorithms but may be unknown. In the inset of panel J, we

plot the silhouette score [72], a metric for choosing the number of clusters. We see that for

intermediate times, an incorrect number of clusters may be inferred. When time window is

2000, the maximum silhouette score is at clusters of 5, while the correct cluster is 3. But at

sufficiently long times, for instance, time window is 10000, 3 clusters are recovered correctly

in the silhouette score.

3.5 Model-free clustering is generalizable to a hetero-

geneous D’Orsogona model.

The D’Orsogona model can display considerably more complex behavior than the Vicsek

counterpart. Depending on the parameter values chosen, D’Orsogona model has various

possible behaviors. Here, we investigate a heterogeneous version of the D’Orsogona model
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Figure 3.5: Clustering timescale dependence on initialization.

Clustering accuracy for a single simulation of a heterogeneous Vicsek collective with each

subpopulation differing only by noise magnitude, the same as Fig. 3.1. In the red curve, the

trajectory window is previously shown [0, t], and in blue, the trajectory from [t, 2t]. These

two trajectory sections are derived from same Vicsek system.
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Figure 3.6: Three subtype Vicsek model simulation and clustering.

ABC: snapshots of the particle positions in a heterogeneous Vicsek simulation with three

types of particles and display no apparent pattern. DEF: The first two principal component

scores for each trajectory, colored by particle type. DEF: Results of K-means clustering

on PC scores. J: Clustering accuracy approaches 100% as the trajectories become longer.

Inset: silhouette scores at long times correctly identify the number of clusters. The three

populations differ only in their noise magnitude σ1 = 0.1, σ2 = 0.3, σ3 = 0.5 and otherwise

ν = 0.01, R = .05 with L = 1,∆t = 1, and particle countsN1 = 200, N2 = 200, N3 = 200.
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Figure 3.7: Heterogeneous D’Orsogna model simulation and clustering.

ABC: snapshots of the particle positions in a heterogeneous D’Orsogona model simulation

with two types of particles and display no apparent pattern. DEF: The first two principal

component scores for each trajectory, colored by particle type. DEF: Results of spectral

clustering on PC scores. Simulation parameter are N1 = 200, N2 = 200 with shared parame-

ters: α = 1.50, la = 1.0, lr = 0.9, Ca = 1.0, Cr = 0.9, but differing β1 = 0.80 and β2 = 0.775.
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with two subpopulations of particles that each have different parameters. For simplicity, we

choose β, the friction, to differ. The interaction potential sums all neighbors, both in and

out of the subtype. One key difference is that the magnitude of the velocity may change in

the D’Dorsogona model, whereas in Vicsek it is constant. We again use the orientation alone

as the data input to the dimensionality reduction, with τi,t = atan2(vvvyi,t, vvv
x
i,t) where vvv

x
i,t and

vvvyi,t represent the x, y component of the velocity observed spaced time intervals enumerated

by t. The ODEs are solved numerically using SciPy’s Dormand-Prince dopri5 method and

then re-sampled via linear interpolation to be equally spaced observations by ∆t = 1.

In Fig. 3.7 we see the results of the heterogeneous D’Orsogona simulation and clustering

analysis. For the parameters chosen where attraction is stronger than repulsion, a ring

behavior appears with particles moving both clockwise and counterclockwise (Fig. 3.7 panels

ABC) but otherwise the identities of each subpopulation do not seem distinguishable. The

PC values shown in DEF do not initially separate the identities, but as longer trajectories

are observed, the PC scores from each subtype separate into two circles: those in type 1 with

a smaller radius. Due to the shape of the PC scores, K-means expectedly fails to recover the

true identities, but standard spectral clustering [71] recovers the true identities with flawless

accuracy.

3.6 Other dimension reduction methods are prospec-

tive to function as classifiers.

Through above research, we explore the validity of a PCA-based dimensionality-reduction

clustering method to accurately identify the heterogeneity in collective motion. The fact

is, there are numerous choices available for dimensionality reduction on large data sets [73].

PCA is first proposed because it is both simple and quick, and has the potential for nonlinear
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transformations [66, 67]. However, it is still unclear whether other dimension reduction

methods can function as well as a classifier on motion trajectories.

One such method is Deep Temporal Clustering (DTC), which combines dimensionality re-

duction and temporal clustering using an unsupervised learning approach [74]. In contrast

to PCA, DTC relies on a BI-LSTM neural network to reduce data dimension [75]. In or-

der to compare the effectiveness of these two approaches, we test them on Vicsek model

trajectories and observe that both methods show an increase in accuracy with longer time

simulations, as depicted in Fig 3.8. We also assess the algorithm performance by calculating

loss and accuracy change in train and test data, as depicted in Fig 3.9. It is a prelimi-

nary study of dimensionality-reduction clustering methods in heterogeneous identification.

Further investigation is needed to fully understand the potential of these methods.

3.7 Limitations on multiple datasets

We have thus far investigated the ability to interrogate a single collective at a time and

find that we need sufficiently long trajectories for accurate clustering. However, in practice,

experimental constraints limit the ability to take long observations. Instead, it may be

more practical to obtain replicates of experiments. We therefore investigate the feasibility

of combining data from multiple distinct observations of the same heterogeneous collective.

Returning to the setup with two subpopulations of Vicsek particles with differing noise mag-

nitude with run N1 = 200, N2 = 200, as in Fig. 3.1, we now run three separate simulations.

The three simulations are concatenated into 3× 400 trajectories in one data matrix to clus-

ter. The resulting PC values for the concatenated data can be seen in Fig.3.10. At short

times, no apparent pattern is seen. As time progresses (panel B), the PC scores split into 3

groups. This pattern continues at long times (panel C), and each of the 3 groups splits into
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Figure 3.8: Accuracy comparison over time between clustering methods.

Both deep temporal clustering and PCA-based clustering method are applied to one two

subpopulations Vicsek system with N1 = 200, ϕϕϕ1 = (ν1, σ1, R1) = (0.01, 0.1, 0.05) v.s. N2 =

200, ϕϕϕ2= (ν2, σ2, R2) = (0.01, 0.3, 0.05). For deep temporal clustering, training and test set

are split with a ratio of 80/20.
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Figure 3.9: The changes of loss and accuracy for DTC construction in various
window lengths.

To ensure the optimal performance of a model, it is essential to keep a close eye on its

convergence and performance. One way to achieve this is by monitoring the loss and accuracy

plots, which allow for the identification of potential issues such as overfitting or underfitting.

Besides, adjustments can be made to ensure that the model is operating at peak efficiency.

25



PCA1

PC
A2

A Time=10

PCA1

PC
A2

B Time=1000

PCA1

PC
A2

C

simu01

simu02

simu03

Time=15000

Figure 3.10: Clustering fails to combine multiple experiments.

ABC: PC scores over increasingly long trajectories with three separate collectives concate-

nated into a single dataset. The same setup of two subpopulation Vicsek with different

noises as in Fig. 3.1, but initialized with different random value sets.

2 subgroups, resulting in 6 total clusters. However, the 3 predominant groups correspond

to the 3 distinct simulations. Therefore, clustering distinguishes different simulations rather

than the same groups between simulations. That is, there does not appear to be a way to

tell from the PC scores that the 3 observations were from the same heterogeneous collective.
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Chapter 4

Discussion

Time-scale collective motion trajectory analysis has always been in challenges, due to the

complexity of time series data with spatiotemporal dependencies [76]. Additionally, the high

dimensionality, representing the positions or velocities of multiple particles over time, makes

it more difficult to extract meaningful patterns and structures. The increasing of time length

also will result in an exponential growth of the feature space. Therefore, dimensionality

reduction algorithms are crucial in uncovering latent and relevant information.

Another benefit of dimensionality reduction clustering is the potential to reveal intrinsic

heterogeneities within the data. By mapping the data into a lower-dimensional space, this

algorithm is capable of highlighting underlying patterns and relationships that may be diffi-

cult to detect in original high-dimensional space. The technique provides a more insightful

analysis and interpretation of trajectory data.

Besides, it is impressive that the clustering can work with different kinds of models. Even

though the Vicsek and D’Orsogna models have unique dynamics and interactions, the gener-

ality of analysis can still extract important information from high-dimensional data without

any prerequisite. This analysis focuses on finding key features and structures in the data
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to identify meaningful clusters or groups that exhibit similar motion patterns or behaviors

rather than fitting on a specific predetermined model.

One limitation or shortcut of PCA-based dimension reduction cluster analysis is that it may

not provide explicit information about the specific group or cluster to which each particle

belongs. The reduced-dimensional representation obtained through the algorithm does not

directly label or assign data points to particular categories. To overcome this, it may be help-

ful to combine PCA with algorithms or select discriminative dimension reduction techniques,

such as neural networks.

Another challenge within the clustering algorithm is in finding the right balance between

revealing heterogeneity and reducing noise. Aggressive noise reduction may inadvertently

remove important variance and obscure subtle differences among subgroups, leading to a loss

of information and potentially misleading results. Conversely, insufficient noise reduction

may result in a reduced ability to differentiate between true patterns and noise, leading to

overfitting and decreased classification performance. For this purpose, PC scores are applied

to preserve the maximum variance in the data, potentially capturing heterogeneity [66]. And

neural network algorithms such as DTC implement the feature selection layers before the

classifier encoder.
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Chapter 5

Conclusion

In summary, we have investigated the ability to perform clustering to recover the true iden-

tities of particles in heterogeneous collectives without prior knowledge of the heterogeneities

or underlying model. To do so, we first investigate a heterogeneous Vicsek model. To clus-

ter, the orientations are transformed to non-angular data and then dimensionally reduced

via PCA. In these latent dimensions, we find that the trajectories naturally separate over

sufficiently long timescales. We find that this timescale is decreased by larger differences in

noise magnitudes, larger differences in interaction radii, higher particle densities, and equal

subpopulation numbers. The method was readily extended to a heterogeneous Vicsek setup

with three types of particles, where the number of clusters was also recovered via a silhou-

ette score. Finally, we show that the premise also extends to other models of collectives,

by investigating a heterogeneous D’Orsogona model. For this model, we find that spectral

clustering was necessary due to the complexity of the PCA scores, but these scores did

also separate distinctly over long time scales. Ultimately, our results add an important vi-

gnette to the growing literature on inferring interactions in collectives, especially those with

heterogeneities.
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We emphasize that the approach is not intended as an end-all solution to the identification

of heterogeneous collectives, but rather complementary to existing approaches. That is, it

can be seen as a step of exploratory data analysis to shape the necessary user input to more

sophisticated methods such as [53–55]. One key limitation of our methodology was the in-

ability to identify whether heterogeneities were the same type across different observations.

However, the methodology proposed here could be used to identify the existence of hetero-

geneities that helps steer methods such as [51, 54], which we anticipate can readily handle

learning interactions and assigning identities across observations.

There are several avenues of future interest stemming from our work, in both the theory and

practice of inferring heterogeneous collectives. It would be interesting to compare the perfor-

mance of dimensionality reduction approaches to disentangling heterogeneities to those based

on information-theoretic quantities like transfer entropy [56,57,77] or Granger causality [78].

The choice of PCA for dimensionality reduction was for simplicity, but future work could

also investigate the use of nonlinear approaches such as autoencoders [79] or LSTM architec-

tures [75]. Further, our investigation of heterogeneous collectives was purely numerical. It

is therefore of clear interest to explore whether powerful analytical approaches (e.g., Toner-

Tu theory [80]) can reveal the intrinsic lower dimensional structure of these heterogeneous

collectives. Such lower dimensional structures have been analytically derived elsewhere for

noisy interacting systems [81], and may reveal further insights about the nature of intrinsic

disentanglement of heterogeneities we investigate in this work.
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