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ABSTRACT: Extreme daily precipitation contributes to flooding that can cause significant economic damages, and so is

important to properly capture in gridded meteorological datasets. This work examines precipitation extremes, the mean

precipitation onwet days, and fraction of wet days in twowidely used gridded datasets over the conterminousUnited States.

Compared to the underlying station observations, the gridded data show a 27% reduction in annual 1-day maximum

precipitation, 25% increase in wet day fraction, 1.5–2.5 day increase in mean wet spell length, 30% low bias in 20-yr return

values of daily precipitation, and 25% decrease in mean precipitation on wet days. It is shown these changes arise primarily

from the time adjustment applied to put the precipitation gauge observations into a uniform time frame, with the gridding

process playing a lesser role. A new daily precipitation dataset is developed that omits the time adjustment (as well as

extending the gridded data by 7 years) and is shown to perform significantly better in reproducing extreme precipitation

metrics. When the new dataset is used to force a land surface model, annually averaged 1-day maximum runoff increases

38% compared to the original data, annual mean runoff increases 17%, evapotranspiration drops 2.3%, and fewer wet days

leads to a 3.3% increase in estimated solar insolation. These changes are large enough to affect portrayals of flood risk and

water balance components important for ecological and climate change applications across the CONUS.

KEYWORDS: Extreme events; Precipitation; Runoff; Hydrology; Data processing; Surface observations

1. Introduction

Extreme weather events take a heavy toll on the U.S.

economy, with the largest events totaling almost $1.8 trillion in

damages (inflation adjusted) from 1980 to early 2020, and

weather-related flooding alone responsible for 33 disasters

costing $1 billion or more during that period (Smith 2020).

Understanding historical extremes is also important for as-

sessing climate change (Donat et al. 2016) and its ecological

impacts (Knapp et al. 2008). It is important to ensure that

meteorological datasets accurately represent extreme precipi-

tation statistics given the significant economic and ecological

impacts of heavy precipitation.

Extreme precipitation statistics can be calculated from

long-term precipitation gauge records, although such instru-

ments have foibles (e.g., Groisman and Legates 1994). Some

gridded precipitation products blend gauge observations with

other data, such as satellite estimates of precipitation, as in the

CPU Unified Gauge-Based Analysis (CPCUGA; Chen et al.

2008). The CPCUGA data cover the conterminous United

States (CONUS) at a 1/48 spatial resolution from 1948 to present

(https://psl.noaa.gov/data/gridded/data.unified.daily.conus.html,

accessed 4 March 2021).

Gauge distribution is geographically uneven and varies over

time, presenting difficulties for applications that cover a wide

domain or a period not sampled by a nearby station. Gridded

meteorological datasets provide a useful alternative and are

widely used in climate, agricultural, ecological, and hydrolog-

ical applications. They provide uniform spatial and temporal

coverage and generally apply quality control procedures to the

underlying station data.

The choices made in station data processing can render a

gridded dataset better suited for some applications than others.

Most precipitation gauge data available in the CONUS are part

of the National Weather Service Cooperative Observer

Program (COOP; https://www.weather.gov/coop/overview,

accessed 11 May 2020; McCarthy 2007) and are recorded once

per day. The most common observation times are morning or

early evening local time, with a trend away from evening ob-

servations in recent decades (Fig. 1; cf. Janis 2002). Hourly

precipitation information is generally not available from such

stations, although a few are first-order sites that have a

weighing precipitation gauge. For the other stations, combin-

ing readings into a uniform time frame requires time adjust-

ment methods based on the hour of observation, which may be

unrecorded or incorrect (Belcher and Degaetano 2005). Time-

adjustment methods can affect the statistics of precipitation

extremes in the gridded product, as well as the wet day fraction

( fwet), wet spell length, and mean precipitation on wet days

(Pwet), rendering a time-adjusted product less suited to ap-

plications affected by such measures. On the other hand,

time adjustment improves synchronicity between stations

observed at different times and can provide a better match to
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calendar-day recording streamflow gauges when comparing

a land surface model’s simulated runoff to observations.

Whether to use a gridded dataset that time adjusts station

observations depends on the application but should be in-

formed by what effects the processing method used has on the

metrics of interest. The current work was motivated by the

need for a gridded precipitation product for training a statis-

tical downscaling scheme applied to global climate model

projections. Accurately representing the statistics of extreme

precipitation is paramount for such applications.

A related but separate issue to processing daily precipitation

observations is how daily values can be disaggregated to hourly

values for use in forcing a hydrological model. Assuming the

daily total falls uniformly results in different runoff than using a

more realistic approach (e.g., Bohn et al. 2019). Although this

is an important consideration, in the current work we focus on

daily values.

Livneh et al. (2013, hereafter L13) is a widely used gridded

meteorological dataset that uses time adjustment when con-

structing the gridded daily precipitation fields. L13 has a

1/168 spatial resolution (;6 km) and covers the conterminous

United States (plus the Columbia River basin in Canada) from

1915 to 2011. A later version using the same time adjustment

and gridding methodology extended the domain to central

Mexico through southern Canada, but at a shorter temporal

coverage (1950–2013; Livneh et al. 2015, hereafter L15). L13

and L15 have their roots in an earlier gridded dataset with 1/88
(12 km) spatial resolution (Maurer et al. 2002), although with

some methodological differences.

In this work we 1) examine how the time adjustment used in

L13 and L15 alters fwet, Pwet, and extreme precipitation sta-

tistics and 2) introduce a new gridded precipitation dataset that

is based on L13 but has no time adjustments, and so better

represents fwet, Pwet, and extreme precipitation statistics in the

gridded data. The new unadjusted precipitation data use the

same 1/168 spatial resolution as L13 and L15 and are suited

to applications that are sensitive to extreme precipitation sta-

tistics, such as flooding, and to ecological or land surface sim-

ulations that are affected by wet day fraction or mean

precipitation onwet days. For example, wet day fraction affects

the calculation of land surface forcing in theMountain Climate

Simulator (MT-CLIM) algorithm (Hungerford et al. 1989),

which in turn affects runoff and evaporation in land surface

models that incorporate such forcing (Gutmann et al. 2014;

Vano et al. 2020). Historically, the Variable Infiltration

Capacity land surface model (VIC; Liang et al. 1994) has

often been driven this way. We also take the opportunity to

extend the precipitation data through 2018, adding 7 more

years to L13.

Examining precipitation statistics in L13 and L15 is impor-

tant because they have been widely used in water resource and

related applications. For example, Gutmann et al. (2014) ex-

amined L13 in the context of water resource assessments, in-

cluding fwet and daily extremes; Prein et al. (2016) examined

precipitation trends in L13, including daily frequency and in-

tensity; Li et al. (2017) trained a downscaling method on daily

L13 to examine how precipitation and melting snow jointly

determine runoff; Mahoney et al. (2016) and Gershunov et al.

(2017) used L13 to assess daily heavy precipitation events due

to landfalling atmospheric rivers in the southeastern and

western United States, respectively; Gergel et al. (2017) used

L13 precipitation and temperature to force a land surface

model to examine wildfire potential; Chen et al. (2015) used

L13 as the precipitation observations to evaluate model biases

and bias correction methodologies, including in extreme daily

precipitation; Lundquist et al. (2015) evaluated daily L13

precipitation against snow pillow observations in large winter

storm events in the Sierra Nevada; Shields et al. (2018) nomi-

nated L13 as one of the observed daily precipitation datasets to

use in evaluating different atmospheric river tracking methods;

Lute et al. (2015) used L13 precipitation and temperature to

train a statistical downscaling technique and examine pro-

jected changes in snowfall extremes and variability; Behnke

et al. (2016) evaluated the suitability of L13 and other gridded

precipitation and temperature datasets for ecological applica-

tions in the CONUS, including precipitation extremes and wet

day counts; Ahmadalipour et al. (2017) used L13 as precipi-

tation observations to evaluate global climate models in the

Columbia River basin, including the variability of daily pre-

cipitation; Livneh and Hoerling (2016) used L15 to drive VIC

FIG. 1. (a) Distribution of precipitation gauge observation times (LST). (b) Average number of observations per

day, calculated for each year. Observation time is indicated using the same colors as in (a).
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and examine drought processes in central NorthAmerica;Walton

et al. (2015) used L13 to evaluate a hybrid dynamic/statistical

downscaling method in Southern California; Huang et al. (2017)

used L13 as the historical basis for examining projected pre-

cipitation changes over the northeastern United States, in-

cluding in extreme precipitation; and Pierce et al. (2014) used

L15 precipitation and temperature to train a statistical down-

scaling method applied to 32 global climate models from the

CMIP5 archive to produce the Localized Constructed Analogs

(LOCA) dataset, which subsequently informed the Fourth

California Climate Assessment (e.g., Pierce et al. 2018) and the

Fourth National Climate Assessment (e.g., Hayhoe et al. 2017).

Thebreadth and geographical diversity of applications usingL13

and L15 precipitation motivates carefully examining the statis-

tical properties of the gridded data.

The data and methods used to construct the unadjusted

dataset will be outlined in section 2, but only briefly since they

largely follow L13. Section 3 shows why the L13 time adjust-

ment affects fwet, Pwet, and precipitation extremes, and how the

unadjusted dataset introduced here compares to L13 in those

measures. Not all applications are affected by the time ad-

justment, and others are more suited to the time-adjusted data.

In section 4 we discuss limitations of both the unadjusted

dataset introduced here and L13/L15, and how to choose be-

tween them for different applications. Conclusions are given in

section 5.

2. Data and methods

The gridding method used here is identical to that used in

L13 and L15, which in turn closely follow Maurer et al. (2002),

and so will be only briefly summarized here. The exception is

the time adjustment, which is discussed in detail in the fol-

lowing sections.

Once-daily precipitation data from the National Climatic

Data Center (NCDC) COOP stations form the backbone of

data used to construct the new dataset. Approximately 20 000

stations were used, and up to 12 000 at a single time. Only

stations with at least 20 years of data were included.

The station data were spatially gridded using the SYMAP

algorithm (Shepard 1984), a form of inverse distance weight-

ing, following Maurer et al. (2002). The effects of topography

at unobserved locations were accounted for by scaling to

the PRISM (Daly et al. 1997, 2008) gridded climatology in

the CONUS and Vose et al. (2014) in Canada, such that the

monthly climatology of the SYMAP-interpolated station data

was set to match the PRISM/Vose monthly climatological

values. In brief, the ratio of monthly PRISM or Vose clima-

tological precipitation to the same quantity in the interpolated

dataset was computed for each month at every location over

the climatological period of 1981–2010. This ratio was then

applied to the daily gridded values at that location for the

applicable month for all years. Details are given in L15.

Most germane to this work is how L13 and L15 time-adjust a

time series of once-daily precipitation gauge values to a cal-

endar day. Let Ph(t) be a gauge observation on day t at hour h

(in the range 0–23). Time adjustment to midnight (h 5 23) is

accomplished by

P23(t)5Ph(t)D1Ph(t1 1)(12D), (1)

where D 5 (h 1 1)/24. Figure 1 shows that that the most

common gauge observation times are between 0600 and 0800

local standard time (LST). Time adjustment recognizes that

for a gauge read in the morning, today’s precipitation is largely

reported in tomorrow’s reading. Minutes are ignored in the

adjustment, and (h 1 1) is used to calculate D so that obser-

vation times are rounded up to the next integer hour. For

example, a 0530 LST observation time (h5 5) is rounded up to

the next whole hour so that D 5 (h 1 1)/24 5 6/24. Missing

observation times are not uncommon and increase in recent

decades. In L13 missing observation times were set to

midnight.

The new unadjusted version of the dataset introduced here

omits the time adjustment in the processing. Any station report

with a nominal 24-h ending time falling within the given cal-

endar day (LST) is used (subject to quality checks and station

data length requirements outlined in L13 and L15). As shown

in section 3c, this reduces the errors in the gridded data’s de-

piction of fwet, Pwet, and precipitation extremes. We also ex-

tended the time coverage of the data through 2018. The 1/168
spatial resolution of L13 and L15 is unchanged.

Hourly station observations

To understand how time adjustment affects the data, we use

hourly precipitation values from the NOAA National Centers

for Environmental Information (NCEI) Hourly Precipitation

Data (HPD) Network, version 2 (https://www.ncei.noaa.gov/

data/coop-hourly-precipitation/v2/access, accessed 11 May

2020) to form synthetic sequences of precipitation as would

have been observed in a once-daily gauge read at 0700 LST, as

well as the time series of true calendar day values. At each

station, the calendar year was included in the analysis if at least

95% of the hourly observations were not missing. A minimum

of four valid calendar years was required to include the station

in the analysis, yielding 1913 stations. Different stations have

different a different number of years included, with the median

being 22 years, and 182 stations having at least 40 years in-

cluded. Although some stations start in 1948, coverage im-

proves in the early 1950s. The last year included was 2018.

3. Results comparing adjusted and unadjusted data

A simple schematic shows how time adjustment alters pre-

cipitation statistics (Fig. 2). In the 0530 LST gauge series

(Fig. 2a), the maximum value over the illustrated period is

50.8mm on 22 June 2010. Following Eq. (1) with h5 5, D5 1/4

so each observation is split into two pieces, 1/4 of the total (pink

blocks) and 3/4 of the total (blue blocks). The observed value is

split this way because the observation time is rounded up to the

next integer hour. The previous day’s observation was 24 h ago,

and 6 of those 24 h (1/4) occurred during the current calendar

day, and 18 of those hours (3/4) occurred during the previous

calendar day. Blocks are labeled by their original observed day

number. Since the maximum value is observed on 22 June, the

largest pink and blue blocks must also be on 22 June (indicated

by the red stars).
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To produce the time-adjusted data, each blue block is shifted

earlier one day and added to the existing pink block (Fig. 2b).

The maximum value is reduced, because the largest blue block

(indicated by the star) is now added to a less-than-maximum

pink block. Likewise, the largest pink block (starred) is

added to a less-than-maximum blue block. Individual days

can have a larger value after adjustment (days 12, 14, 18, and

21 in this example) but none of these can equal or exceed the

original maximum since they are the sum of a blue and pink

block where one or both are not the largest. Numerically, the

maximum drops from 50.8 to 38.1 mm in this example. The

number of wet days increases because the red blocks are

fixed, so those days are wet in both Figs. 2a and 2b, but the

shifted blue blocks create a new wet day whenever they are

shifted into a previously dry day (days 12, 18, and 21). In this

example, 7 wet days are transformed to 10 wet days. Total

precipitation is conserved but spread over more wet days, so

the average precipitation on wet days drops from 26.0

to 18.2mm.

Although Fig. 2 shows the basics of why time adjustment

alters precipitation statistics, this concept has been met with

some surprise. Two common arguments are 1) precipitation is

not locked to the diurnal cycle in most of the CONUS, so it

should notmatter whether extremes are computedwith respect

to the original observation time or after adjustment to local

calendar days, and 2) a daily precipitation total is as likely to be

increased in value by the procedure as decreased and therefore

the changes average out, so time adjustment should have little

effect on extreme statistics given enough samples. These

arguments will be addressed theoretically (section 3a), by

an empirical analysis using hourly gauge observations to

construct a synthetic once-daily observed time series (section 3b),

and via a direct comparison between extreme statistics of L13,

the original station data, and the new unadjusted dataset in-

troduced here (section 3c).

a. How time adjustment alters precipitation statistics

Precipitation can have appreciable diurnal variability

depending on the location and season (e.g., Dai et al. 1999).

However, in this section we consider a simplified case where no

such synchronization is present (this assumption will be re-

moved in the following sections). Under this assumption fwet,

Pwet, and extreme precipitation statistics do not depend on the

24-h window they are calculated in, and calendar day statistics

(h 5 23) will be the same as those based on any other hour:

P23
wet 5Ph

wet and f 23wet 5 f hwet for all hours h.

The key point in addressing argument 1 above is under-

standing that Eq. (1) is only an approximation to a sequence of

observations on calendar day intervals. Approximations have

deficiencies, and it is easy to see why this particular approxi-

mation alters fwet andPwet at a station where h 6¼ 23. Consider a

sequence of N wet days observed at hour h, Ph(1, . . . , N) . 0,

preceded and followed by dry days: Ph(0)5 0 and Ph(N1 1)5
0. Applying Eq. (1) to calculate P23(0), we have P23(0) 5
Ph(0)D 1 Ph(1)(1 2 D). Since Ph(1) . 0 by construction, we

must have P23(0). 0 despite Ph(0)5 0. In other words, Eq. (1)

prepends a newwet day inP23(t) to a sequence ofNwet days in

Ph(t), changing it to a sequence of N 1 1 wet days. This is

analogous to howmoving the blue blocks left in Fig. 2 creates a

new wet day at the start of every string of wet days. Therefore,

the time adjustment increases time-adjusted f 23wet. above the

value f hwet. This violates the initial contention that the two

quantities are equal and therefore is an error in the repre-

sentation of wet day fraction in the time-adjusted data.

Additionally, since Eq. (1) preserves total precipitation over

the period of record (excluding end effects, which are negli-

gible for a long record) the same total precipitation is spread

over more wet days, making P23
wet ,Ph

wet. This again violates the

initial contention that they are the same.

The reason extreme values are diminished by Eq. (1), and

why argument 2 above (that effects compensate) is not valid

even though individual nonmaximum days can be increased

(Fig. 2), is as follows. Let the period extreme precipitation

value Ph(tmax) be higher than any other gauge value observed

at hour h over some period, say a year (for yearly maximum

precipitation). Since by construction Ph(tmax) is larger than any

other Ph(t) value in the period, the gauge reading the day before

the maximum can be written Ph(tmax 2 1) 5 f21P
h(tmax) where

f21, 1. That is, the gauge value read theday before themaximum

gauge valuemust be a fraction (less than 1) of themaximumgauge

value. Likewise for the day after the maximum gauge reading:

Ph(tmax1 1)5 f11P
h(tmax) where f11, 1. Then,P23(tmax2 1), the

time-adjusted precipitation reported for the previous calendar

day, and P23(tmax), the time-adjusted value for the current calen-

dar day, are by Eq. (1) (and dropping the ‘‘max’’ subscript):

P23(t2 1)5Ph(t2 1)D1Ph(t)(12D), (2)

P23(t)5Ph(t)D1Ph(t1 1)(12D): (3)

Using the f values defined above, we can rewrite these as

P23(t2 1)5 f
21
Ph(t)D1Ph(t)(12D)5Ph(t)( f

21
D1 12D),

(4)

FIG. 2. Example time sequence of precipitation (a) after accu-

mulating to a 0530 LST gauge observation time. Black numbers in

the boxes refer to the day of the month. The pink blocks are 1/4 of

the total gauge value, while the blue blocks are 3/4 of the total

value. Red stars indicate the largest pink and blue blocks in the

time series. (b) After time adjustment, the blue blocks are shifted

one day earlier, while the pink blocks remain fixed.

1886 JOURNAL OF HYDROMETEOROLOGY VOLUME 22

Brought to you by LAWRENCE BERKELY NATIONAL LAB | Unauthenticated | Downloaded 04/22/22 04:51 PM UTC



P23(t)5Ph(t)D1 f
11
Ph(t)(12D)5Ph(t)[D1 f

11
(12D)]:

(5)

If on day t 2 1 the time adjusted data were larger than the

gauge observation, it would require P23(t2 1). Ph(t), so from

the rightmost side of Eq. (4), Ph(t)( f21D 1 1 2 D) . Ph(t), or

( f21D 1 1 2 D) . 1 or D( f21 2 1) . 0, or (since D is positive)

f21 . 1 However, by construction f21 , 1, and therefore it is

impossible for the time adjusted value on the day preceding a

gaugemaximum to exceed themaximum gauge observation. In

fact, the time adjusted value is always less than the maximum

gauge value, unless two consecutive and identical maximum

gauge observations are found—an unlikely occurrence since

precipitation values tend to be strongly skewed with many

small values and a few sparse high values.

If on day t the time adjusted data were larger than the

original data, it would require P23(t) . Ph(t). Analogous al-

gebra applied to the rightmost side of Eq. (5) leads to the re-

quirement f11 . 1, which is similarly impossible since f11 , 1

by construction. Therefore, the time adjustment process of

Eq. (1) produces smaller values than reported by the gauge on

both the calendar day before and day of the maximum gauge

observation.

What about P23(y) on days not immediately before or equal

to the maximum day (y 6¼ tmax and y 6¼ tmax 2 1)? Those are

easily shown to be less than Ph(tmax) through a similar process

as above, noting that since Ph(tmax) is greater than every other

value in the period by definition, all other values in the period

can be expressed as some new factor f 0 , 1 times Ph(tmax). For

Eq. (1) to generate a new value . Ph(tmax) would lead to

similar requirements that the f values .1 despite them

being,1. The one exception is at the ends of the period, where

extreme days at the end of the previous period or beginning of

the next period can produce a new in-period maximum after

Eq. (1) is applied. The likelihood of this is low for long periods,

however. In the limit that the distribution of precipitation is the

same every day of the year (no seasonality) the chance this

happens will scale as one over the period length. It is evaluated

for actual stations, which do generally have seasonality, in the

following section.

The increase in fwet depends on the typical length wet day

sequences and the hour of observation. For nonmidnight sta-

tions, the shorter the average sequence length, the more fwet
will be increased. In the limit that wet days always occur singly,

time adjustment of a nonmidnight station would double fwet. In

the limit that wet days typically extend over an entire synoptic

period, say 5 days, fwet would be increased by a factor of 1.2.

Most stations would fall between these two extremes.

The change in Pwet is the inverse of the change in fwet, since

total precipitation is conserved. Therefore, time-adjusted Pwet

is 0.5 of the true calendar day value if wet days occur singly and

0.83 if wet days tend to occur 5 days in a row.

In summary, the time-adjustment method of Eq. (1) reduces

the period-maximum precipitation value of nonmidnight sta-

tions, except in two rare circumstances: 1) an extreme occurs

the day after the period ends and is shifted into the period or 2)

if a gauge records two or more equal extreme values consec-

utively. The adjustment also increases the fraction of wet days

and decreases the mean precipitation on wet days at stations

that are not read at midnight. The key realization is that Eq. (1)

is an approximation to a time series based on calendar days

rather than the actual time series and has different statistical

properties. Where precipitation is not locked to the diurnal

cycle, extreme statistics could be calculated from gauges read

at different hours and still be comparable. However, this is not

true for calculations based on the time-adjusted data, since the

approximation of Eq. (1) alters the extreme precipitation

statistics.

b. Evaluation using hourly precipitation observations

An empirical approach to evaluating the effect of time ad-

justment on fwet, Pwet, and extreme precipitation statistics is to

use hourly precipitation data (section 2) to construct a syn-

thetic time series of once-daily precipitation gauge observa-

tions taken at some hour other than midnight, time-adjust the

synthetic series into calendar days using Eq. (1), and compare

the results to the hourly values aggregated to calendar days.

The empirical approach complements the calculations in

section 3a in that the seasonality and diurnal cycle of precipi-

tation and different station observation hours are included, but

differing periods of records, missing values, and data quality

issues can affect the analysis.

Figure 3 shows the ratio of the average maximum daily

precipitation in a year calculated from the time-adjusted syn-

thetic 0700 LST time series to that calculated from the hourly

data aggregated to calendar days and therefore experiencing

no time adjustment. The values are averaged over all valid

years (section 2) before the ratio is formed. On average, time

adjustment for a 0700 LST station reduces the annual maxi-

mum precipitation value by a factor of 0.73 (Fig. 3a). Greater

temporal coherence in extreme precipitation events gives less

reduction due to the time-averaging process (factors closer to

1). The figure shows extreme precipitation along the West

Coast is more temporally coherent than elsewhere in the

CONUS. The least coherent extremes (smallest factors) are

found in a band from Texas and Louisiana trough theMidwest.

Different stations have the maximum reduced by a factor of

0.6–0.9 (Fig. 3b).

Figure 4 illustrates the effect of the time adjustment on wet

day fraction in the synthetic 0700 LST observation hour time

series, calculated across valid years in the same way as Fig. 3.

On average, the time adjustment for a 0700 LST station in-

creases wet day fraction by 53%, with the range across stations

being 20%–75% (Fig. 4b).

c. Comparing L13, the unadjusted data, and
station observations

We follow the analysis of Risser et al. (2019) in comparing

extreme precipitation statistics between L13, the new unad-

justed dataset, and Global Historical Climatology Network

Daily (GHCN; Menne et al. 2012) once-daily precipitation

observations over the CONUS. Precipitation extremes are il-

lustrated as 20-yr return values obtained from a generalized

extreme value (GEV) fit to the station observations, then

gridding using a data-driven statistical approach (Risser

et al. 2019).
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Figure 5b shows the time-adjusted L13 data underestimate

20-yr return values over almost all the CONUS by about 30%

(all seasons, and differences expressed as both mm day21 and

percent, are shown in Fig. S2 in the online supplemental ma-

terial). The exception is parts of the Rocky Mountains and

Sierra Nevada, likely due to Risser et al. (2019) using a simple

linear adjustment with elevation (Risser et al. 2019, 2021,

manuscript submitted to Climatic Change). L13 and L15 use a

PRISM-based adjustment that includes other topographic

considerations, such as vertical atmospheric layer, orographic

effectiveness of the terrain, and slope orientation (Daly et al.

2008). Differences by season are evident as well, with more of

an apparent overestimation of return values in winter (DJF)

than summer (JJA). Since the methodology of Risser et al.

(2019) does not depend on season, this suggests that some of

the aspects influencing seasonal precipitation that are cap-

tured in the PRISM product reflect systematic summer–

winter differences in precipitation mechanisms in the Rocky

Mountains. The difficulty of estimating long-term precipita-

tion from gauges in complex terrain due to insufficient high-

elevation sampling and changing observation networks may

also play a role (Henn et al. 2018). For example, of the ap-

proximately 5200 weather stations used in the Risser et al.

(2019) product, 95% are below 1800-m elevation and 99% are

below 2400m.

The unadjusted data (Fig. 5c) show less underestimation of

extreme precipitation values over most of the CONUS, with

the bias dropping from ;30% to 4%–12%. A reduction in

return values is still evident in the unadjusted data, with the

largest reduction in summer and smallest in winter. Gutmann

et al. (2014) also identified the low bias in extreme precipita-

tion in L13 and attributed it to the gridding process. Averaging

different extremes across a grid reduces the extrema, especially

when the extrema are not spatially coherent, as one would

expect to be more prevalent in summer. Gervais et al. (2014)

illustrated this with gridding experiments, showing how ex-

trema are reduced when calculated from gridded data versus

when the station extreme statistics themselves are gridded. The

analysis here shows the key role of the time-adjustment process

in reducing extremes, but the reduction from gridding noted by

Gervais et al. (2014), Gutmann et al. (2014), and Risser et al.

(2021, manuscript submitted to Climatic Change) operates

as well.

The fraction of wet days fwet for L13 (top), the newunadjusted

dataset (middle), and the ratio (L13/unadjusted) is shown in

Fig. 6. Days are counted as wet if gridded precipitation ex-

ceeds 0.25 mm, chosen to be consistent with the 0.01 inch

FIG. 3. (a) The ratio of average yearly maximum precipitation in

the time-adjusted data divided by the value in the unadjusted

(calendar day) data, at 1913 hourly stations. The time-adjusted data

are computed on the basis of an idealized 0700 local standard ob-

servation time for all stations. (b) Histogram of the ratio values at

the stations.

FIG. 4. (a) Alteration to wet-day fraction from the time adjust-

ment, shown as the fraction of wet days in the time-adjusted data

divided by wet day fraction in the nonadjusted (calendar day) data.

The time-adjusted data are computed on the basis of an idealized

0700 local standard observation time for all stations. (b) Histogram

of values across the stations.
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reporting minimum for the Coop station data. The fraction

of wet days fwet is about 25% larger in the time-adjusted data

compared to the unadjusted. Similar to Fig. 4, the largest

increase in fwet is seen in the dry regions of Nevada through the

California deserts, and the smallest increase in the wet regions

west of the Cascade Mountains in the Pacific Northwest. As

noted in section 3, this is in accord with the expectation that

increases will be largest in the driest regions and smallest in the

wettest. The fwet found in longGHCN-Daily stations is shown in

Fig. S1. Even the unadjusted data have a higher fwet than seen in

the station data (31.7% versus 25.1% averaged over the

CONUS), another outcome of the gridding process discussed

above. Users who want to make fwet match station observations

could apply a threshold of;0.8mm to the new unadjusted data,

which yields fwet similar to the station data. Doing so would re-

quire increasing the nonzero amounts slightly to maintain the

long-term average value. The change in Pwet is inversely pro-

portional to the change in fwet, and so is about a factor of 0.8

lower in the time-adjusted data than the unadjusted data.

As noted above, fwet increases because the time adjustment

adds a new wet day before a string of wet days at gauges that

are not observed at midnight. Figure 7 shows wet spell length

distributions for the unadjusted (blue) and time-adjusted (red)

data averaged over four regions in the CONUS. The increase

in mean wet spell length (indicated by the blue and red num-

bers on each panel) exceeds one day because wet spells that are

separated by only one day in the original station data are

combined into a single, longer wet spell after time adjustment.

This is more likely to happen in wetter regions, so the relatively

wet Pacific Northwest wet spell length is increased the most

(2.5 days), while the relatively dry southwestern United States

increased the least (1.5 days). In the unadjusted data the most

common wet spell length is 1 day, except in the southeastern

United States where it is 2 days. After time adjustment, this is

increased by a day. There are still 1-day wet spells after time

adjustment because some stations observe at midnight, notably

many of the long-record, high-quality airport stations.

4. Discussion

a. Effect of precipitation time adjustment on hydrology

To explore how the changes in fwet, Pwet, and extreme pre-

cipitation statistics might affect hydrology, we ran theVIC land

surface model (version 4.2.c) twice, once with the adjusted

FIG. 5. (a) 20-yr return value of daily precipitation from theGHCN stations in (left) winter (December–February) and

(right) summer (June–August). (b) Error with respect to theGHCNdata in the gridded L13 time-adjusted data in winter

and summer. (c) Error with respect to the GCHN data in the unadjusted gridded data in winter and summer.
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(L13) precipitation and once with the new, nonadjusted precipi-

tation dataset developed here. The VIC model calibration pa-

rameterswere downloaded fromhttps://ciresgroups.colorado.edu/

livneh/data (accessed 17 August 2020). As listed in Hamman

et al. (2018; their Table 1) VIC has been used for a wide range

of applications, including constructing retrospective datasets of

hydrological variables over both the CONUS and world

(Maurer et al. 2002; Sheffield et al. 2006), evaluation of his-

torical trends in snow, streamflow, and drought (Mote et al.

2005; Tan et al. 2011; Nijssen et al. 2014); climate change

analysis (Barnett et al. 2005; Gergel et al. 2017), and coupled

land–atmosphere modeling (Zhu et al. 2009, Hamman et al.

2016). A comprehensive evaluation of VIC, albeit of a previous

version, is given in Xia et al. (2018). Additionally, VIC

participated in the Water Model Intercomparison Project

(WaterMIP), with a summary of how VIC simulates global

water balance compared to several other land surface and

global hydrological models available in Haddeland et al.

(2011). Xia et al. (2012) show that VIC simulates streamflow

reasonably well compared to observations across much of

the CONUS.

We compared VIC output from the two runs over the period

1950–2011, with the start determined by when the majority of

stations begin reporting observation time (Fig. 1). VIC was run

with a daily input time step without imposing any subdaily

precipitation time distribution. Temperatures were from L13

and held constant between the two runs. Differences between

several fields (unadjusted with respect to time-adjusted) are

shown in Fig. 8. For reference, annual maximum 1-day pre-

cipitation increases 27% in the final unadjusted dataset

(Fig. 8a), not surprising given how time adjustment reduces

extreme precipitation statistics (Figs. 3 and 5). Similarly, VIC

annual maximum 1-day snowfall increases 29% (not shown).

Annual maximum 1-day total runoff (surface plus baseflow)

increases 38% averaged over the domain (Fig. 8b), more than

the increase in maximum 1-day precipitation due to the non-

linear nature of runoff. In much of the central United States

from Texas through North Dakota, annual 1-day maximum

runoff increases more than 50%, which would affect flood

simulations in those regions.

Although it is not surprising that annual maximum 1-day

runoff increases given that annual maximum 1-day precipita-

tion increases, VIC showsmore subtle runoff responses as well.

The unadjusted precipitation has more pronounced peaks and

higher Pwet. Both increase runoff efficiency compared to the

time-adjusted data, which are smoother in time and so yield a

lower runoff efficiency. As a result, annual mean total runoff is

17% higher when VIC is driven by the unadjusted data

(Fig. 8c), and 20%–40% higher over a wide swatch of the

central United States. Seasonally, domain averaged increases

in runoff increase the most in summer (20%) and least in

winter (14%; not shown).

Total precipitation is conserved by the time adjustment

[Eq. (1)] except for small discrepancies (;0.6%) due tomissing

value handling in the adjustment process. In either one of the

two VIC runs the water balance averaged over the full run is

runoff 5 precipitation–evapotranspiration (ET), neglecting

changes in soil moisture, which are small over the individual

multidecade runs. (Note that soil moisture can be different

between the two VIC runs, however.) The increase in runoff

and fixed precipitation therefore mandates a decrease in ET,

which drops 2.3% averaged over the domain in the unadjusted

run (Fig. 8d). ET shows a smaller percentage drop than runoff

even though the changes in mm day21 are equal but oppositely

signed because ET exceeds runoff by a considerable margin

FIG. 6. (top) Fraction of wet days (precipitation . 0.25mm) in

the L13 (time-adjusted) data. (middle) The unadjusted data.

(bottom) Ratio, fraction of wet days in the adjusted over unad-

justed data.
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over much of the United States, rendering a constant value

change a smaller percentage change. ET decreases exceed 6%

over parts of the U.S. Southeast. With reduced ET the latent

heat flux drops by 2.2% as well, again with the largest decreases

over the Southeast (Fig. 8e).

Versions of VIC before version 5 incorporate theMT-CLIM

algorithms (Hungerford et al. 1989). As noted in Gutmann

et al. (2014) and Vano et al. (2020), MT-CLIM uses the pres-

ence or absence of precipitation to influence cloudiness and

therefore surface downwelling solar insolation, which in-

creases 3.3% in the unadjusted run due to the lower fraction of

wet days (Fig. 8f). Annual maximum 1-day snowmelt increases

as well, by 10% over snowy regions (defined as averaging at

least 0.5 cm SWE in winter; not shown).

b. Dataset selection

Combining precipitation observations from gauges with

differing observation times into a uniform time frame is not

straightforward and involves tradeoffs. L13 time-adjusted

the observations to a uniform calendar day, while the new

unadjusted dataset described here omits the time adjustments.

What applications are better suited to the split versus unad-

justed data, and what applications are not affected?

First, applications that use monthly averaged precipita-

tion are not affected by the time adjustment process (e.g.,

Mazdiyasni and AghaKouchak 2015). Second, applications

that are dependent on daily-scale synchronicity across differ-

ent stations likely canmake use of the time adjustment process,

which puts stations observed at different times on a uniform

basis. Even then it should be noted that many stations do not

include an observation time (Fig. 1) and are set to midnight in

L13 and L15, which degrades the synchronicity since it is un-

likely that all the missing stations actually observe at midnight.

On the other hand, the more an application is affected by

daily statistics, the less appropriate it is to use the time-adjusted

dataset. The adjustment process decreases annual maximum

1-day precipitation by 27%, and annual maximum 1-day VIC

runoff by 38%. Even mean annual runoff decreases appre-

ciably in the time-adjusted data (17%), which could be of

concern in large-scale water balance studies. Likewise, wet-spell

FIG. 7. Distribution of wet spell length (days), shown as the average number of spells of the indicated length per

year, averaged over four regions in the CONUS. Blue shows the unadjusted data, and red shows the data after time

adjustment. Vertical lines and numbers show the mean wet spell length. The green box in the inset map shows the

region being averaged over.
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statistics are skewed by the time-adjustment process. Although

the fraction of wet days is affected substantially and the MT-

CLIM algorithm uses this as a predictor of surface forcing, the

resultant change in surface incoming solar radiation is modest

(3.3%), and so may make only a limited difference to ecolog-

ical simulations.

c. Models as the way forward?

Recent discussions have suggested that model-based pre-

cipitation datasets may become increasingly attractive as

model quality improves, obviating problems with the gauge

records, including irregular and biased spatial coverage, in-

consistent and incomplete temporal sampling, and changing

station composition (e.g., Jing et al. 2017; Lundquist et al.

2019). A model-based precipitation dataset avoids problems

with time adjustment noted here, and so is attractive from that

point of view. However, many applications need the long time

series gauge-based records offer, which considerably exceed

the time span of the satellite era (ca. 1979 onward). One way

forward could be to combine the model and gauge based pre-

cipitation records to produce a merged dataset with the

strengths of both. This approach was used by Abatzoglou

(2013), but in that workwas limited to the satellite era. As high-

quality model based reanalyses are progressively pushed fur-

ther back in time, this approach could provide ever longer

hybrid meteorological datasets.

5. Conclusions

Constructing a daily gridded precipitation dataset from ob-

servations taken at different times of the day has surprisingly

strong implications for regional hydroclimate and extreme

FIG. 8. Change (percent) when the VIC land surface model is forced with the new unadjusted precipitation data,

compared to being forced with L13 (time-adjusted) precipitation. Some panels are annual average 1-day maximum

values while others are annual averages, as indicated in the titles.
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precipitation and runoff events. Generating such a dataset in-

volves compromises since the underlying gauge observations

are taken under a variety of conditions. In this work we have

examined the implications of differing times of observation

and the outcome of two different data processing choices, ei-

ther time adjusting the once-daily gauge readings (as done in

L13 and L15) or avoiding this step. Our results will help re-

searchers better assess whether to use the time-adjusted or

unadjusted data developed here by providing a better under-

standing of each selection’s implications.

One of our main findings is that a daily time adjustment that

partitions observed precipitation across two days, such as used

in L13 and L15, has significant consequences. This adjustment

mutes extreme precipitation values, with annually averaged

1-day maximum precipitation in the time-adjusted data 27%

lower than in the unadjusted data, and the 20-yr return value of

daily precipitation 30% lower. Comparing these metrics to the

underlying station data shows that the unadjusted data are far

closer to the observed daily station values than the time-

adjusted data.

Similarly, the time-adjusted data show 25% more wet days

than the unadjusted data, and again, the unadjusted data are a

better match to the original station data. The gridding process

reduces the precipitation extremes and increases the fraction

of wet days, so even the unadjusted data underestimate 20-yr

daily precipitation return values by ;10%, underestimate the

annual mean 1-day maximum precipitation by about 10%, and

portray an unrealistically large fraction of wet days (0.32 versus

0.26, averaged over the domain). Nevertheless, these errors in

the unadjusted data are significantly smaller than those found

in the time-adjusted data.

The unadjusted gridded precipitation dataset developed

here extends L13 by 7 years and has the same 1/168 spatial
resolution as L13 and L15. It will be used for training a sta-

tistical downscaling scheme, where correctly capturing daily

extremes and other statistics of precipitation is of primary

importance. Other applications, such as studies involvingmonthly

total or average precipitation, may be little affected by whether

the time-adjusted or unadjusted data are used. Yet other appli-

cations that examine daily runoff in a limited region and compare

to streamflow gauges might prefer the time-adjusted data.

However, even then it should be kept in mind that the time

adjustment process has a notable effect on both daily and an-

nual runoff (as portrayed by the VIC hydrological model). The

results presented here will assist in selecting the proper gridded

daily precipitation dataset for the intended application.
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