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Introduction 

Earthquake faults throughout the Earth are quite heterogeneous with respect to geometric 

and material properties, and determining how these properties influence earthquake 

rupture is an ongoing challenge in seismology.  One such geometric complexity is a fault 

stepover: a set of discontinuous, parallel fault segments that are offset from each other at 

the Earth’s surface.  The fault segments may overlap or have gaps along strike.  

Observationally, fault stepovers are found around the world.  Wesnousky (1988) 

examined fault steps in California and Turkey and suggested that faults steps impede 

earthquake ruptures, since more energy is needed to jump from one fault segment to the 

next than to propagate along a single fault segment.  Additionally, Wesnousky (1988) 

further suggests that the number of steps along large strike-slip faults decrease with time 

as cumulative slip smoothes out the fault.  Whether or not rupture jumps from one 

segment to the next is critically important for hazard analysis, since seismic moment is 

proportional to the ruptured area, and the ground motion distribution also depends quite 

strongly on the pattern of ruptured faults.  The 1992 Landers, California, Mw 7.2 

earthquake is a prime example of such a case—it ruptured at least 5 major faults with a 

right-stepping geometry to the north, and was the largest earthquake in the contiguous 

United States in 40 years (Sieh et al., 1993).   

 

Non-vertical dip-slip faults, on which seismic slip is parallel to the dip angle, have a 

geometrical and mass asymmetry between the hanging wall and the footwall near the 

Earth’s surface.  In reverse/thrust faults the hanging wall is thrust over the footwall and 
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the footwall is pushed under the hanging wall (under compression), while in normal 

faults the hanging wall and footwall slide away from each other (under extension).  

Earthquakes on these fault types are also observed around the world (e.g., Ekström et al., 

2012).  One such event was the 1978 Tabas-e-Golshan, Iran, Ms 7.4 earthquake, a thrust 

event that killed 20,000 people and destroyed over 15,000 houses (Berberian, 1982).  

Reverse/thrust earthquakes are often associated with more intense ground motion than 

normal earthquakes.  Cocco and Rovelli (1989) found evidence of larger peak ground 

motions for a group of thrust earthquakes in Friuli, Italy, 1976, versus a group of normal 

earthquakes in the Apennines region of Italy from 1979 to 1984.   

 

Studying both complex fault geometries, e.g., fault stepovers, as well as asymmetric 

geometries, e.g., non-vertical dip-slip faults, can provide information for earthquake 

hazard mitigation.  One way to study these earthquake types is dynamic modeling, in 

which the earthquake and corresponding motion is simulated computationally, in time.  

Since actual earthquakes involve two sides of a fault surface sliding against each other, 

friction is an inherent part of earthquake processes.  Therefore, in order to simulate an 

earthquake dynamically one must implement friction parameters.  For example, Ida 

(1972) examined the elastic wave field around a crack tip and the condition for rupture 

growth under the assumption that frictional strength decreases with displacement.  

Andrews (1976b) implemented this method by modeling earthquake rupture with the 

stipulation that, for a point on the fault surface, shear stress decreases with displacement.  

Using the finite element computer code FaultMod (Barall, 2008) we combine complex 
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and asymmetric fault geometries with laboratory-based friction laws to examine how 

faults, with certain geometries and friction laws, rupture. 

 

First Order Complex and Asymmetric Fault Geometries 

For years earthquake physicists have implemented complex and asymmetric fault 

geometries into computer codes that simulate earthquake rupture.  Many numerical 

studies of stepovers examine two basic types of the strike-slip variety: compressional and 

dilational (extensional ) stepovers (Segall and Pollard, 1980; Harris et al., 1991; Harris 

and Day, 1993; Kase and Kuge, 1998; Harris and Day, 1999; Duan and Oglesby, 2006; 

Oglesby, 2008).  With compressional stepovers fault slip results in compression in the 

region between the fault segments and with dilational stepovers fault slip results in 

extension in the region between the fault segments.  Those indicate the generation of 

strong perturbations in dynamic stresses between the offset fault segments during 

earthquake rupture.  In this study we model strike-slip stepovers, both compressional and 

dilational, comprised of planar fault segments that have variable offset distances.  

Additionally, some laboratory and numerical studies have focused on modeling 

reverse/thrust and normal faults that intersect the free surface or are buried (Brune, 1996; 

Nielsen, 1998, Oglesby et al., 1998; Oglesby and Archuleta, 2000a; Oglesby et al., 

2000b).  These studies indicate strong perturbations in dynamic normal stress, for both 

reverse/thrust and normal fault ruptures as waves from the rupture reflect off the free 

surface and hit the fault again, causing dynamic clamping and unclamping (buried faults 
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dramatically reduce this effect).  In this study we model a fixed geometry for both reverse 

and normal-type ruptures on planar faults that intersect the free surface.  

 

Friction Laws 

It is well known that earthquake ruptures are controlled by friction on faults.  The general 

friction equation for a point on an interface (e.g., fault surface) without cohesion is: 

                                                                  

! 

" # µ$ eff                                                           (1) 

where τ is the shear stress, µ is the friction coefficient, and σeff is the effective normal 

stress (positive in compression in our notation).  When the shear stress at that point 

becomes equal to the friction coefficient multiplied by the normal stress, sliding 

commences, relieving the shear stress at that same point.  Before, during, and after this 

process, the friction coefficient and effective normal stress may also change.  When the 

shear stress is smaller than the product of the former two, sliding ceases.  For earthquakes 

this is a cyclic process that helps explain why earthquakes occur every so many years 

along the same faults.  It is intuitive that dynamic (kinetic) coefficients of friction are 

often smaller than their static counterparts – sliding a heavy cardboard box across a slick 

household floor demonstrates this.  Initially it is more difficult to move, but once the box 

begins sliding it becomes easier.  The nature of such coefficients of friction has been 

explored in the laboratory for many years (Rabinowicz, 1951).   
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One such friction formulation that describes this observation is slip-weakening friction 

(Ida, 1972): 

                                

! 

µ =

µdynamic " µstatic

do
d# + µstatic ,     d# < do

  µdynamic  ,                                 d# $ do

% 

& 
' 

( 
' 

                                (2) 

 

where δ is displacement and do is a slip distance over which the friction coefficient drops 

from its static value to its kinetic value, and is referred to as the effective slip-weakening 

distance.  For computational studies, a nonzero value of do is necessary to resolve the 

stress drop (i.e., rupture front) with more than one time step.  It is also a reasonable 

physical assumption, since energy being focused by seismic waves driving rupture is 

probably not focused at a single point, but a finite volume (Andrews, 1976b), leading to 

an apparent surface energy associated with the onset of fault slip.  Additionally, 

laboratory studies on rock friction show gradual stress drops (Dieterich, 1978b, 1979).  

Andrews (1976b, 1985) was a pioneer in using the slip-weakening formulation to model 

spontaneous earthquake rupture in 2-D.   

 

More complex  and realistic friction formulations have also been developed from 

laboratory experimentation.  One such formulation is rate- and state-dependent friction 

(Dieterich, 1978b, 1979; Ruina, 1983).  Dieterich (1978) shows that, through experiments 

and analysis of a spring slider system, the friction coefficient of rock varies with time and 

slip velocity.  More specifically, the static friction increases with stationary contact time, 

and the dynamic friction also changes with the contact time of sliding asperities – small 
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contact surfaces across the fault that are continually sliding into and out of existence – as 

well as with slip velocity history.  Dieterich (1979) further shows through laboratory 

experiments that a positive increase in slip speed leads to an abrupt increase in frictional 

strength, after which the frictional strength falls toward a dynamic value.  Using the 

constitutive relations proposed by Dieterich (1978b, 1979), Ruina (1983) formulated state 

variable friction laws that include the time and velocity dependence of friction 

coefficient.  The general form of the rate- and state-dependent friction law is: 

                                             

! 

" = µo + aln
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( + bln
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. 
/ 0 eff

                                         (3)
 

where µo represents a constant reference value for the coefficient of friction; a and b are 

constitutive parameters estimated from laboratory experiments; Vo and θo are reference 

values for slip rate and the state of the sliding surface, respectively; θ can be thought of 

as the average age of contacts at some sliding velocity, and the bracketed term is the 

friction coefficient.  Note that for an increase in sliding velocity V there is a 

corresponding increase in friction, and as sliding velocity grows the asperities are in 

contact for smaller amounts of time, making θ small and ultimately decreasing friction.  

Later, Linker and Dieterich (1992) further developed the rate-state framework to include 

the friction coefficient’s dependence on normal stress.  They found that increases in 

normal stress led to decreases in the state variable θ and decreases in normal stress led to 

increases in θ.  This result indicates that the friction coefficient at least partially 

compensates for changes in normal stress. 
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Finite Element Code FaultMod 

FaultMod is a finite element method (FEM) computer code developed by Michael Barall, 

of Invisible Software, Inc. (Barall, 2008).  For the U.S. Geological Survey it is specially 

designed for physics-based dynamic models of earthquake rupture on faults with complex 

and asymmetric geometries and complex material properties (Barall, 2009).  Generally, 

finite element codes divide a given continuum of mass (e.g., the Earth’s surface) into a 

number of elements that can then be used to run computations on (e.g. Hughes, 2000).  

For dynamic earthquake simulations this process involves solving non-equilibrium force 

balance equations and time stepping.  The elemental shapes are hexahedral in this study, 

such that the fault and surrounding region are constructed of these six-sided elements, 

making a mesh.  FaultMod has a built-in mesh generator that creates the mesh before the 

simulation begins.  Calculations for each time step are done on the vertices of elements 

(i.e. nodes), except for stress calculations, which are done at the centroids of the 

elements.  For points that would lie on a fault, there are two concurrent nodes, a common 

node and a differential node.  The common node is the node that would be at a location 

with no fault, whereas the differential node has degrees of freedom corresponding to 

motion of one side of the fault relative to the other side.  This way fault slip can be 

calculated.  FaultMod performs earthquake simulations on all nodes in the following 

fashion: 

(1) A trial step, assuming the same accelerations from the previous time step 

(2) Calculate nodal forces due to the time-stepped accelerations in (1) 

(3) Solve for fault slip, slip rate, and acceleration 
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(4) Apply solutions of fault slip, slip rate, and acceleration as kinematic boundary 

conditions 

(5) Solve force balance equations to obtain displacement, velocity, and acceleration 

along all nodes in the mesh 

(6) Update all variables 

 

In order to solve (3) a friction law must be used, and several friction laws are 

implemented in FaultMod, including slip-weakening and rate-state friction (above).  

Simulations in this study are 2-D and are constrained to allow motion only parallel to the 

plane (plane strain).  Although FaultMod can incorporate different types of materials, we 

assume a homogeneous linearly elastic material.  Additionally, FaultMod only allows 

isotropic materials.  The mass of each element is lumped at the vertices.  

 

Summary 

The functional form of the friction law employed in dynamic earthquake simulations is 

directly related to the energy partitioning of rupture and slip (e.g., Kanamori and Rivera, 

2006).  Earthquake ruptures can propagate along geometrically complex faults by turning 

and jumping along fault segments (Wesnousky, 1988), however, this is dependent on 

how much energy is available to further rupture propagation and how much energy is 

needed.  For planar fault stepovers with homogeneous stress, rupture can jump segments 

or it can arrest at the edge of a segment.  Since friction laws, along with stress regimes, 

implicitly specify the energy budget, different laws can lead to different rupture 
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dynamics.  Using realistic, laboratory-derived friction laws to simulate rupture is a 

constant ambition in seismology.  The rate-state friction formulation includes intuitive 

variables such as time, slip speed history, and normal stress history as well as exhibits 

reasonable properties such as stick-slip sliding, creep, and healing (Dieterich, 1978b, 

1979; Linker and Dieterich, 1992).  Particularly, including the change in friction 

coefficient with normal stress history is imperative for earthquakes that produce large 

dynamic fluctuations in normal stress, including both stepovers and dip-slip faults that 

penetrate the free surface. 

 

In this study we use FaultMod to run dynamic earthquake simulations on fault stepovers 

using the various friction formulas listed above.  Firstly, we investigate effects of the 

functional form of the friction laws on jumping rupture at stepovers. The functional forms 

are associated with unique energy budgets that can determine how far rupture can jump 

within a given amount of time.  We find that making the energy budgets similar between 

the friction parameterizations makes the rupture processes more similar at the stepover 

region (e.g., similar maximum jump distances).   We also find that for larger jumps the 

rupture speeds increase to supershear speeds, even though the initial stress conditions 

would preclude such a result on a planar strike-slip fault (Andrews, 1976b).  Secondly, 

we add to the stepover simulations by introducing the Linker-Dieterich formulation, in 

which friction coefficient depends on normal stress.  It is well known that stepovers 

exhibit perturbations in normal stress along the offset region during rupture, with the sign 

being opposite for compressional and dilational stepovers.  Adding the normal-stress-
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dependent state variable to the friction formulation decreases the maximum rupture jump 

for both types of stepover, however.   

 

Additionally, we apply the Linker-Dieterich formulation to normal and reverse dip-slip 

faults, both of which are known to exhibit dynamic fluctuations in normal stress due to 

the free surface (Brune, 1996; Nielsen, 1998; Oglesby et al., 1998).  Differences in shear 

stress direction between normal and reverse faults produce asymmetric normal stress 

perturbations along the fault during rupture, causing the motion from a reverse fault to be 

larger than that of an otherwise equivalent normal fault.  Adding a normal-stress-

dependent state variable serves to mitigate this effect.  We also find that decreasing the 

initial shear stress inhibits rupture more on normal faults than on reverse faults, given that 

the faults intersect the free surface.  More specifically, smaller initial shear stress results 

in slower rupture propagation for dip-slip models.  Thus, the relative position of the 

rupture front to dynamic changes in normal stress is altered, resulting in reverse fault 

ruptures traveling updip in a region of decreased normal stress, and normal fault ruptures 

traveling updip in a region of increased normal stress. 
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Chapter 1: Using Various Friction Laws to Dynamically Model Fault Stepovers 

Abstract 

It is well known from both observational and numerical studies that fault stepovers can 

under some circumstances allow through-going rupture, and under other circumstances 

cause rupture to terminate (e.g., Wesnousky, 1988; Knuepfer, 1989; Harris and Day, 

1993; Kase and Kuge, 1998; Duan and Oglesby, 2006).  Past studies have shown that the 

dynamics (e.g., slip, slip rate, stress drop) of earthquakes are affected by the choice of 

frictional parameterization.  However, the effects of different friction law formulations on 

jumping rupture have not been extensively explored. In this study we use numerical 

models to investigate how 4 different frictional parameterizations affect the ability of 

rupture to jump a stepover.  We compare linear slip-weakening friction (Ida, 1972; 

Palmer and Rice, 1973; Andrews, 1976b) and 3 forms of rate- and state-dependent 

friction (Dieterich, 1978b, 1979; Ruina, 1983): the ageing law, slip law, and slip law with 

strong rate-weakening (e.g., Rice, 1999, 2006; Beeler and Tullis, 2003; Beeler et al., 

2008; Rojas et al., 2009).  We use the 2-D dynamic finite element method (Barall, 2008) 

to model earthquake rupture along strike-slip stepovers, in both extensional and 

compressional settings. We have found that for parameterizations with the same effective 

slip-weakening distance, friction laws with similar functional forms (i.e., the ageing law 

vs. slip-weakening friction) have similar maximum jump distances, while those with 

significantly different functional forms (i.e., the ageing law and slip-weakening friction 

vs. the slip law) can have large relative differences in maximum jump distance.  Average 

fracture energy is specific to the functional form of each friction formulation, and exerts a 
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strong control on the maximum jump distance perpendicular to strike. In particular, we 

find that the slip law, which has lower fracture energy for a given effective slip-

weakening distance than the ageing law or the slip-weakening law, allows rupture to 

jump larger stepover widths than the ageing or slip-weakening law. With friction laws 

scaled to have equivalent fracture energies (but different effective slip-weakening 

distances), we find that the functional form of the friction law has a second-order effect 

on jumping rupture, with friction laws with steeper initial weakening (e.g., the slip law) 

allowing longer jumps.  Finally, with our specific parameterizations we find that delays 

in rupture across the stepover systems can lead to a previously-unseen mode of 

supershear transition once the rupture re-nucleates on the secondary fault segment, even 

if the stress field on the system prior to rupture is such that a standard Burridge-Andrews 

supershear transition would be precluded (Burridge, 1973; Andrews, 1976b).  Studies of 

multiple friction laws in complex geometries such has fault stepovers can lead to more 

realistic rupture dynamics and better understanding the dependence of rupture properties 

on the type of friction law utilized in models and statistical analysis. 

 

Introduction 

The purpose of this study is to compare rupture properties along strike-slip fault 

stepovers using several friction formulations.  Fault stepovers are systems of parallel, 

disconnected fault segments offset from one another at the Earth’s surface.  There can 

also be some overlap, no overlap, or gaps in the along-strike direction between the fault 

segments.  Strike-slip stepovers, specifically, are such systems with two or more strike-
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slip fault segments.  The amount of horizontal offset between the strikes of the fault 

segments is referred to as step width.  In nature, fault stepover widths from cm to km 

have been observed (Vedder and Wallace, 1970; Bartlett et al., 1981).  Whether or not an 

earthquake rupture terminates at or jumps across a fault stepover is critical in determining 

the ultimate magnitude of such an event. There have been many benchmark studies on 

fault steps over the past three decades including both numerical (e.g., Segall and Pollard, 

1980; Harris and Day, 1993; Kase and Kuge, 2001; Duan and Oglesby, 2006) and 

observational (e.g., Wesnousky, 1988; Sieh al., 1993; Lettis et al., 2002; Wesnousky, 

2006) studies.  Such studies show that earthquakes are preferentially stopped by larger 

stepover widths – the offset distance of the fault segments in a stepover system.   In 

particular, field observations suggest that earthquake ruptures may not jump 

compressional stepovers with step widths greater than 5 km or dilational stepovers with 

step widths greater than 8 km (Wesnousky, 1988; Knuepfer, 1989). In addition to 

showing that ruptures may jump dilational stepovers more easily than compressional 

stepovers, some studies further indicate that dilational stepovers can have larger rupture 

delays at the stepover region than compressional cases (Harris and Day, 1993).  

Additionally, the location of rupture re-nucleation on the secondary segment of a 

stepover system varies depending on whether the system is compressional or dilational.  

Nucleation typically occurs after rupture along the primary segment has terminated (e.g., 

Harris and Day, 1993; Kase and Kuge, 1998).  Additionally, stopping phases – seismic 

radiation that results from the abrupt end of primary fault – are shown to control the 

ability of rupture to jump across a stepover in both numerical and observational studies 
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(Bernard and Madariaga, 1984; Spudich and Frazer, 1984; Oglesby, 2008; Elliot et al., 

2009).  

 

It is well known that earthquakes are a result of stored elastic energy due to friction on 

faults.  Additionally, the friction coefficient partially determines the dynamics during 

rupture.  All of the numerical studies of stepovers cited above utilize linear slip-

weakening (SW) friction (Ida, 1972; Palmer and Rice, 1972; Andrews, 1976).  However, 

there have been no thorough investigations of the rupture properties of stepovers using 

laboratory-derived friction laws such as rate- and state-dependent friction (Dieterich, 

1978b, 1979; Ruina, 1983), which could provide more realistic representations of rupture 

nucleation and dynamics.  Rate- and state-dependent (RS) friction laws are controlled by 

slip velocity and time evolution of one or more state variables, but typically show an 

effective slip-weakening behavior at the onset of slip, as pointed out by Okubo (1989), 

Dieterich and Kilgore (1994), and Bizzarri et al. (2001).  A state variable within the RS 

friction formulation can be thought of as related to strength of contacts, assuming the 

contacts become stronger as they mature.  Because RS friction parameterizations have 

been indicated in laboratory experiments, they provide a reasonable basis on which to 

model the dynamics of earthquake rupture.  For a given parameterization, friction laws 

can be characterized in terms of their effective slip-weakening curves at the onset of 

earthquake rupture.  Steep slip-weakening curves indicate that relatively less fracture 

energy is needed for rupture to start and propagate, when compared to shallower curves 

with the same stress drop.  For SW friction, the coefficient of friction drops linearly with 
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slip.  The RS ageing law also has a relatively linear drop in friction with slip (compared 

to the slip law).   However, many lab studies, including high-speed experiments, show 

nonlinear slip-weakening curves (Dieterich, 1979; Tsutsumi and Shimamoto, 1997; 

Prakash 1998; Prakash and Yuan, 2004; Tullis and Goldsby 2002, 2003a, 2003b; and 

Hirose and Shimamoto, 2005).   Accordingly, the RS slip law has an initially steeper, 

concave-up functional form with slip (Ruina, 1980; Ruina, 1983). Therefore, the RS slip 

law may be a more viable friction formulation from an experimental perspective than 

friction parameterizations that lead to more linearly shaped slip-weakening curves. 

 

Some dynamic rupture simulation studies implement the RS framework (e.g., Okubo, 

1989) including strong rate-weakening friction (e.g., Zheng and Rice, 1998; Rojas et al., 

2009), in which shear stress at a point on the fault surface drops considerably around 

some sliding velocity.  It is well known that not many pseudotachylites are found near 

faults, possibly because of low friction (Sibson, 1973).  Strong rate-weakening friction 

allows for a substantial drop in the friction coefficient with increasing slip velocity, 

thereby simulating, for example, flash heating, or melting of micro-asperities (Rice, 1999, 

2006; Beeler and Tullis, 2003; Beeler et al., 2008).  Strong rate-weakening frictional 

behavior is observed in laboratory experiments by Tsutsumi and Shimamoto (1997), 

Prakash (1998, 2004), Tullis and Goldsby (2002, 2003a, 2003b), and Hirose and 

Shimamoto (2005) at high slip rates (≈ 1 m/s).  The experimental studies cited above 

agree that the velocity at which substantial weakening occurs is on the order of 0.2 m/s, 

while the static and sliding coefficients of friction range between 0.6 – 0.9 and 0.2 – 0.3, 
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respectively.  Using these values in earthquake simulations can help investigate the effect 

of such weakening mechanisms at stepover regions. Although large reductions in 

frictional coefficient over sizeable lengths of fault could imply unrealistically large stress 

drops, strong rate-weakening friction may be possible over small sections of fault on the 

order of kilometers (Nielsen and Olsen, 2000). 

The functional form of frictional weakening is directly related to the earthquake rupture 

energy budget (e.g., Andrews, 1976b; Kanamori and Rivera, 2006).  The total energy of 

the earthquake can be split into 3 categories: fracture energy, energy expended against 

friction, and radiated seismic energy.  Fracture energy can also be thought of in relation 

to the average slip of a rupture zone (Rice, 2006) if the stress-slip weakening curve 

associated with friction continually decreases, on average across the fault, until slip 

ceases.  In this case the effective slip weakening distance do – the slip distance over 

which the stress drops during the rupture process (Rabinowicz, 1951) – would be equal to 

the average total slip across the fault.  The effective fracture surface energy (EFSE) for a 

specific location along a rupture defined by Palmer and Rice (1973) and Andrews 

(1976b) is:  

                                                       

! 

G = "(#) $" f( )d#
0

do

%                                                 (1.1) 

where τ is the shear stress, and δ is the cumulative slip.  Many numerical studies 

constrain the EFSE to be relatively constant over the rupture surface; however, this 

assumption is not necessarily realistic.  For example, Andrews (2005) points out that 

EFSE (and therefore do) is not constant along rupture and grows as a result of the 
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dynamics of the earthquake process.  Inelastic deformation within the damage zone of a 

fault should also contribute to the energy budget of the earthquake (for numerical 

simplicity, it is commonly lumped together with the fracture energy). It should be noted 

that estimating the EFSE can be somewhat subjective for nonlinear friction formulations 

due to a subjective choice of do (e.g., Bizzarri and Cocco, 2003; Rojas et al. 2009).  

Because the shape of the stress-versus-slip curve can be different for different friction 

laws, the energy budget of a simulated earthquake is directly related to the friction 

parameterization.  It is widely known that dynamic models exhibit undershoot or 

overshoot of sliding stresses (e.g., Mai et al., 2006) and can lead to uncertainties in the 

EFSE.  For SW friction, do is more easily defined and implemented numerically.  

However, RS friction has no easily defined do variable among its parameters.  Among the 

RS formulation, the constitutive parameter L – represented as a characteristic slip 

distance – is closely related to do.  Cocco and Bizzarri (2002) show that L and do are 

linearly proportional, and that for typical parameters the ratio do/L is approximately 15 

for the RS ageing law. 

 

Earthquake rupture speed has proven to be an extremely important aspect of seismology 

in that it is directly related to key aspects of earthquakes including slip, stress drop, and 

ground motion.  The ability of rupture to propagate at supershear rupture speed is 

particularly important because such a rupture can produce relatively larger fault-parallel 

particle motion, and the resulting Mach cones carry large stresses and particle velocities 

far from the fault (e.g., Dunham and Archuleta, 2004; Bernard and Baumont, 2005).  
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Supershear rupture velocities are inferred from several seismic observations of the 1979 

Imperial Valley earthquake, the 1992 Landers earthquake, the 1999 Izmit earthquake, the 

2001 Kunlun earthquake, and the 2002 Denali Fault earthquake (e.g., Archuleta, 1982; 

Olson and Apsel, 1982, Spudich and Cranswick, 1984; Olsen et al., 1997; Bouchon and 

Vallée, 2003, Ellsworth et al. 2004).  Laboratory experiments show supershear transition 

of mode II cracks along homogeneous interfaces (Rosakis et al., 1999; Rosakis 2002; Xia 

et al., 2004)) and bi-material interfaces (Xia et al., 2005).  Supershear rupture propagation 

is also predicted and explored in many computational and theoretical studies (e.g., 

Andrews, 1976; Day, 1982b; Harris and Day, 1997; Cochard and Rice, 2000; Madariaga 

and Olsen, 2000; Fukuyama and Olsen, 2002; Dunham et al., 2003). Burridge (1973) and 

Andrews (1976b) demonstrate that a traveling shear wave in front of a rupture front can 

increase stress to the yield level ahead of the crack tip, resulting in a “daughter” crack 

that travels along the fault interface at supershear speed.  For Mode II rupture, rupture 

speeds are limited to either Vrupt ≤ VRayleigh or Vrupt ≥ Vshear for energetically favorable 

conditions (i.e., rupture speeds between the Rayleigh and Shear wave speeds are 

prohibited).  Dynamic modeling parameter studies show that the seismic S ratio  
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where τy is the yield strength, τo is the initial loading stress, and τf is the final sliding 

stress, controls the ability of rupture to make the transition to supershear speed on planar 

faults (Andrews, 1976b; Das and Aki, 1977; Day, 1982b).  For 2-D simulations, S = 1.77 
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is the threshold value, above which ruptures cannot make the transition to supershear 

speeds (Andrews, 1976b).   

 

For values of S between 0 and 1.77, there is an associated transition length Ltrans (e.g., Xia 

et al., 2004) 
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where ν is Poisson’s ratio and G is the shear modulus.  A sub-Rayleigh rupture must 

travel a distance Ltrans before supershear speed is reached.  Liu and Lapusta (2008) show 

that “favorable heterogeneities”, such as a preexisting subcritical crack or small patch of 

high prestress could facilitate mode II cracks changing from sub-Rayleigh to supershear 

speed (as a secondary crack is driven to supershear speed by the main crack).  Dunham 

(2007) demonstrates that changes in fracture energy and stress drops along strike could 

lead to the supershear transition.  Additionally, Dunham (2007) shows that the supershear 

transition length can be sensitive to the effective slip-weakening distance curve, specific 

to the friction formulation used, i.e., the transition length is smaller for more rapid 

decreases in stress with slip due to smaller critical nucleation lengths. 

 

Prior studies that investigate the effects of frictional parameterization on rupture 

dynamics have focused on planar faults, and studies of fault dynamics on non-planar 
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faults have almost entirely used simple SW friction.  Few studies have seen supershear 

transitions that result from complex fault geometries such as fault stepovers (e.g., 

Oglesby et al., 2008).  The seismic S ratio is not only important as a predictor for 

supershear transition, but can also help determine maximum jumping rupture lengths 

along fault stepovers (Harris and Day, 1993).  The use of multiple types of friction 

formulations in such studies could provide some generality to results concerning the 

jump-ability and rupture speed at stepovers, or at least relative values of such parameters 

among different friction parameterizations.  Analyzing several different friction 

formulations can help to illuminate the robustness of the results. 

 

Method 

2-D earthquake rupture models can provide reasonable tests on geometrical parameters 

and scale to 3-D quite well (e.g., Harris and Day, 1993; Harris and Day, 1999).  In this 

study we use the 2-D finite element method (FEM) code FaultMod (Barall, 2008) to 

model mode II dynamic rupture, with a frictional interface, along fault stepovers, in both 

compressional and dilational settings (figure 1.1). Rupture is constrained to take place on 

one or both of two parallel fault segments.  Each fault segment is 50 km in length, and the 

overlap between segments is 7 km.  The overlap is large enough to allow rupture to re-

nucleate on the secondary fault in both compressional and dilational settings.  The 

stepover width, or offset distance, is variable and allows us to determine the maximum 

distance rupture can jump (perpendicular to strike) along stepovers with our 

parameterizations.  FaultMod automatically generates meshes, uses grid doubling away 
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from the fault system to reduce computation resources without loss of accuracy, and has 

been validated in SCEC/USGS rupture benchmark problems (Barall, 2009; Harris et al., 

2009).  The code incorporates artificial viscous damping (Dalguer and Day, 2007) as well 

as algorithmic damping to help damp spurious oscillations, and energy-absorbing 

boundary conditions along the mesh edges to avoid artificial reflections from the model 

boundaries. We consider frictional effects on systems with relatively small and large 

absolute stress fields, with small and large stress drops, respectively (Tables 1.1-1.2).  

Large absolute stress fields are approximately 5 times that of the small absolute stress 

fields. 

 

We compare four friction formulations, including linear slip-weakening (SW) friction 

and three forms of rate- and state-dependent friction: ageing law (RS-AL), slip law (RS-

SL), and slip law with strong rate-weakening (RS-SRW).  The criterion for linear slip-

weakening friction is as follows (Ida, 1972): 
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The general form of RS friction is (Ruina, 1980, 1983; Linker and Dieterich 1992): 
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where µo represents a constant reference value for the coefficient of friction; a and b are 

constitutive parameters estimated from laboratory experiments; Vo and θo are reference 

values for slip rate and the state of the sliding surface, respectively, such that when V = 
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Vo and θ = θo the friction coefficient is µo; θ abstractly represents the average age of 

contacts at some sliding velocity; and σeff is the effective normal stress. 

 

 

Figure 1.1.  Cartoon fault geometry of 2-D models using dynamic finite element code 
FaultMod (Barall, 2008, 2009).  Arrows denote the regional stress field.  Note that the 
position of the secondary fault segment signifies whether the system is compressional 
(top) or dilational (bottom).  The star denotes the nucleation zone.  Fault segment length 
and overlap are fixed.  Stepover width is variable.  For any given simulation, only one 
secondary (blue) fault is present. 
 

 

Following Barall (2009), we use a modified form of the bracketed term in eq. 1.6 that 

does not become singular for very small slip velocities:  
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This form of the RS law closely approximates eq. 1.6 for slip velocities of seismological 

interest.  Note that the right hand side of eq. 1.7 has the form of the effective friction 

coefficient in eq. 1.6 with ψ = bln(θ/θo), or conversely, θ = θoexp(ψ/b).  Conceptually, ψ 

represents the strength of contacts. 
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1.1                       Low Stress Models 
 
τo 15.00 MPa 
σo 24.00 MPa 
τo (nucleation zone) 20.00 MPa 
Density 2670 kg/m3 
S-wave speed 3464 m/s 
P-wave speed 6000 m/s 
Nucleation Radius 3000 m 
Nucleation Speed 1750 m/s 
Element Size 100.0 m 
Vini 1.000e-12 m/s 
Vo 1.000e-6 m/s 
a 0.008000 
b 0.01200 
L (ageing law) 0.02330 m 
L (slip law) 0.1505 m 
µo 0.6000 
µlv 0.6000 
µw 0.3000 
Vw 0.1000 m/s 
µstatic 0.8299 
µdynamic 0.5487 
do ≈ 0.3 – 0.6 m 
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 1.2                     High Stress Models 
 
τo 75.00 MPa 
σo 120.0 MPa 
τo (nucleation zone) 100.0 MPa 
Density 2670 kg/m3 
S-wave speed 3464 m/s 
P-wave speed 6000 m/s 
Nucleation Radius 600.0 m 
Nucleation Speed 1750 m/s 
Element Size 50.00 m 
Vini 1.000e-12 m/s 
Vo 1.000e-6 m/s 
a 0.008000 
b 0.01200 
L (ageing law) 0.02015 m 
L (slip law) 0.1000 m 
µo 0.6000 
µlv 0.6000 
µw 0.3000 
Vw 0.1000 m/s 
µstatic 0.8465 
µdynamic 0.5340 
do ≈ 0.2 – 0.6 m 
 

Tables 1.1-1.2.  A list of stress values, material properties, model properties, and friction 
parameters used for low and high stress models. 
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For the RS-AL, the state variable evolves according to the equation: 
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In the RS-SL, the state variable evolves according to the equation: 
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Both the RS-AL (eq. 1.9a) and the RS-SL (eq. 1.9b) reduce to the standard formula for 

steady-state sliding: 
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RS-SRW, notably different from the RS-SL, incorporates the following steady-state 

equations (e.g., Rice, 1999, 2006; Beeler and Tullis, 2003; Rojas et al., 2009): 
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 where µs is the strong friction coefficient, µw is the weak friction coefficient, and Vw is 

the velocity around which the weakening (of frictional strength) occurs. 
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Slip occurs when the Coulomb stress criterion |τ + Δτ| > µ*|(σ + Δσ)| is satisfied, 

although general µ evolves differently with respect to each friction formulation used in 

this study.  In order to make a comparison among linear SW friction and RS 

formulations, we must define do for our RS formulations.  In this way we may use 

common do values and thus isolate the effects of the formulation itself.  For our RS laws, 

we estimate do as the distance over which approximately 98% of the total stress drop 

occurs. Because do depends on constitutive parameters in the RS formulation for each law 

(for a given stress regime), namely, L, we use specific L values for each RS formulation 

to form a common effective slip-weakening distance.  Figure 1.2 shows a simplified 

energy budget schematic for earthquakes, and how it is related to the functional form of 

friction laws.  Radiated energy density can be thought of as an average for all points 

along the fault.  We strongly note that radiated energy density should be thought of as an 

average over the entire fault; radiated energy density from a single point cannot be 

determined easily from stress-versus-slip weakening curves since large portions of the 

fault are slipping simultaneously, and have complex stress wave interactions.  However, 

fracture energy is dissipated for single points along the fault making it easily measurable 

from models.  Note that all our models have fracture energy that is approximately 

constant for all ruptured points (i.e., all points have approximately the same do) under our 

homogeneous initial conditions, but unless otherwise noted, the fracture energies are not 

necessarily the same between the different friction parameterizations (even with 

equivalent do).  We illustrate the method of effective slip-weakening distance 

equalization by plotting the stress as a function of slip for all friction formulations in our 
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low stress and high stress models in figure 1.3.  Note that with equivalent do, the fracture 

energies for these parameterizations (the area underneath the weakening curves) are quite 

different.  Figure 1.4 shows the same friction formulations, instead, with equivalent 

fracture energy.  Thus, the areas under the weakening curves up to do are approximately 

equal (< 3% difference). 

 

Figure 1.2.  A simplified schematic of energy partitioning for an earthquake.  The gray 
triangle within the radiated energy density indicates the full subtraction of the fracture 
energy density.  Note that the figure shows a non-linear weakening curve for generality.  
Different friction laws produce different weakening curve geometries.    

0

S
tr

e
s
s

Slip

Energy Partitioning

 

 

Radiated Energy Density

Fracture Energy Density

Heat Energy Density

!y

!
0

!f

d
0

d
f



28  

 

Figure 1.3.  Effective slip-weakening distance curves for both low and high stress models 
are shown in the top and bottom panels, respectively.  In order to make a valid 
comparison of all friction parameterizations used in this study, we tune each friction 
formulation to have the same effective slip-weakening distance.  For the ageing and slip 
law formulations, we measure the effective slip-weakening distance as the distance over 
which the stress drop is 98% complete for a point on a fault segment.  The slip law with 
strong rate-weakening has the same L (length parameter in the rate-state framework) 
value as the slip law. We measure do to be approximately 0.6 m for all models.  Although 
this criterion is subjective, it provides a common basis for all models.  Note the 
associated fracture energy density (i.e., the area under the weakening curve) varies 
among friction parameterizations. 
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Figure 1.4.  Effective slip-weakening distance curves for both low and high stress models 
are shown in the top and bottom panels, respectively, with comparable fracture energy 
densities.  In order to equate fracture energy densities among friction parameterizations 
used in this study, the associated effective slip-weakening distances cannot always 
equate. Note that linear slip-weakening friction and the rate-state ageing law have similar 
functional forms, and therefore can have similar effective slip-weakening distances and 
fracture energy densities.  
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Fault length controls the slip duration in our (2-D) study, so stopping phases that 

penetrate inward from the along-strike edges control rupture duration.  Therefore, our 

models represent a seismogenic zone of roughly 25 km (Harris and Day, 1993).  We 

choose a Poisson ratio of 0.25, so that α = √3β where α is the P-wave velocity and β is 

the S-wave velocity.  In order to accurately resolve the rupture process, FEM 

discretization must be able to resolve: (1) the time it takes a P-wave to traverse the 

smallest element size, (2) state-variable evolution (for RS simulations), (3) discretization 

in the cohesive zone (Palmer and Rice, 1973).  To check for this, we adapt equation 

(A3b) from Bizzarri and Cocco (2003): 

                                                        

! 

"x <<
Vrupt
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do                                                        (1.11) 

and the general condition (e.g., Andrews, 1985): 

                                                          

! 
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where Δx is the smallest element size, Δt is one time step, and Vave is the average velocity 

of a node from the time it reaches yield stress to sliding stress.  Additionally we check 

that the number of elements within the cohesive zone for each model is 4 or more, which 

we consider the minimum for resolution of the process.  Note that cases with the lowest 

number of elements in the cohesive zone involve RS-SRW models.  In order for eqs. 1.11 

and 1.12 to be satisfied, our high stress models have 50 m mesh increments along the 

fault, while our low stress models have 100 m mesh increments along the fault.  Within 

each stress system, we use the same grid increments in all friction laws for comparability.  

Additionally, a reliable way to determine that our models have the correct resolution is to 
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compare rupture fronts at various times (Harris et al., 2009).  Therefore we have run test 

models of RS-SRW at 50 m elements for our low stress case and 25 m elements for our 

high stress case.  We find the percent difference of rupture velocity between the larger 

increments and smaller increments to be less than 3% at 20 km away from the nucleation 

center.  Also, it has been shown that for mode II ruptures, there are similar mesh 

convergent rates for the RS-SL and RS-AL using a finite difference method (Rojas et al., 

2009). 

Rupture is artificially nucleated by an expanding zone of increased shear stress in the 

middle of the primary fault segment (see figure 1.1) within a nucleation half-width rn, 3 

km for low stress models and 0.6 km for high stress models; rupture is subsequently 

allowed to propagate spontaneously according to the friction formulation. The nucleation 

zone in both low and high stress models is large enough to limit discretization effects, 

and is proportional to (µdo)/(τy - τo), where µ is the shear modulus.  Thus, the low stress 

models have an rn that is 5 times the size of the high stress models.  Although this study 

does not focus on details within the nucleation process, we try to limit the size of the 

nucleation zones in order to limit the effects of artificial nucleation on the rupture 

process.  Further work is required to see how the size of the nucleation zone can affect 

rupture properties along fault stepovers. 
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Results 

Comparing Different Friction Parameterizations with equivalent do 

A main purpose of this study is to directly compare several different friction 

parameterizations on earthquake rupture at stepovers.  One way to make a comparison 

between otherwise equivalent models is by equating the effective slip-weakening distance 

do for each friction formulation as described above.  Under the assumption of equivalent 

do, we find significant differences in rupture properties among the friction laws within the 

stepover region.  We find that for the same do, the RS-SL allows rupture to jump larger 

stepover widths than equivalent RS-AL models or linear SW models, for both 

compressional and dilational stepover systems (figure 1.5).  The RS-AL and linear SW 

models are very similar with regard to maximum jumping distance due to the fact that 

their weakening curves have very similar functional forms.  However, the RS-SL, which 

has a more concave-up weakening curve, and smaller fracture energy when compared to 

RS-AL and linear slip-weakening models.  Thus, it allows more seismic wave energy 

release along the primary segment and requires a smaller critical patch size to initiate 

rupture along the secondary fault segment.  Hence, secondary nucleation along the 

secondary fault segment can more easily occur when using the RS-SL, according to our 

criteria.  Strong rate-weakening (RS-SRW) models are able to jump very large stepovers 

widths (> 7 km) because of their larger stress drop, and the corresponding large seismic 

wave energy.  Overall, high stress models show less difference in maximum jumping 

distance between the SW, RS-AL, and RS-SL simulations than the low stress models 

(figure 1.5).  We attribute this effect to a shrinking ratio of fracture energy to the total 
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potential energy of an earthquake with increasing slip.  Figure 1.6 illustrates this effect.  

We use the same do for all models discussed above, and the ratio of fracture energy to 

seismic wave energy approximately scales with the ratio of do to the total slip, assuming 

the yield shear stress is close to the initial shear stress.  The total slip for the high stress 

models, however, is much larger than the low stress models.  In other words, the ratio of 

seismic radiation energy to fracture energy increases for our high stress models, resulting 

in the different friction formulations producing similar effects on the rupture dynamics 

(i.e., maximum jump distance) even though they have different functional forms. We 

acknowledge that for the RS-AL, SW, and RS-SRW models with a low stress regime, 

compressional steps have larger maximum jump distances than dilational steps, which is 

different from some previous studies (e.g., Harris and Day, 1993), possibly due to 

different stress regimes. 

 

Comparing Different Friction Parameterizations with equivalent Fracture Energy 

We note that there are other ways to compare the different friction laws (e.g., by equating 

their effective slip-weakening distance). With equivalent do, we attribute differences in 

maximum rupture jump distances to both the functional form of the friction laws, and to 

the associated energy budget.  In order to test the effect of the functional form separately 

from that of the fracture energy, we modeled earthquake ruptures with fracture energy 

using RS-AL, RS-SL, and SW friction (figure 1.4). Note that we do not consider the 

strong rate-weakening formulation here since it is a specialized version of the slip law  
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Figure 1.5.  Maximum jump distances for both low and high stress models are shown in 
the top and bottom panels, respectively.  For each friction formulation, the maximum 
rupture-jump distance perpendicular to strike is shown.  Models with equivalent slip 
weakening distances have maximum jump distances indicated by solid regions (excluding 
the strong rate-weakening models).  Models with equivalent fracture energy density have 
maximum jump distances indicated by dashed regions.  Dashed regions are never lower 
than solid regions.  Note that the y-axis is broken due to the relatively large jump distance 
for RS-SL models incorporating strong rate-weakening friction. 
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Figure 1.6.  Linear slip-weakening curves scaled up by stress, while holding the effective 
slip-weakening distance as well as frictional coefficients constant, result in a larger ratio 
of seismic radiation density to fracture energy density. 
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determine the fracture energy for RS-SL models), the difference in maximum rupture-

jumping distance between the SW and RS-AL vs. the RS-SL simulations is substantially 

smaller (figure 1.5).  Thus, the fracture energy associated with each friction law has a 

first order effect on maximum jump distance, especially for the low stress cases. Due to 
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our grid resolution, a difference in maximum jump width of 50 m and 100 m is not 

significant for our high and low stress models, respectively.  The high stress models 

indicate that maximum rupture jump distance can be very similar, regardless of the 

friction law used, with the exception of RS-SRW models.  Even though the primary 

effect on maximum jump distance appears to come from the fracture energy, the 

functional form for each friction law still affects maximum jump distance, although this 

effect is not as strong.  This result is consistent with numerical studies (Dunham 2007), 

which have shown that the slope of the slip-weakening curve can determine the critical 

nucleation size (i.e., steeper slopes like that of the RS-SL require smaller nucleation 

zones for rupture to propagate outside the nucleation zone).  Further studies are needed to 

fully examine the variation between different friction laws, especially with more complex 

energy budgets that include off-fault damage zones or variable fracture energy along 

strike. 

 

Stepovers as a Mechanism for Supershear Transition 

For the high stress models in this study, we find a supershear transition in the stepover 

region along the secondary fault segment for certain parameterizations.  The supershear 

transition occurs at and above certain minimum stepover widths in both extensional and 

compressional settings.  The transition of rupture to supershear speed might seem 

somewhat surprising, given that our initial conditions in principle preclude our models 

from a supershear transition according to the standard Burridge-Andrews mechanism.  

The seismic S ratio is set to 2.6 for these models, larger than 1.77 – the value at which the 
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supershear transition does not occur for single-fault 2-D models. Thus, this supershear 

transition mechanism is a previously-unobserved one that is related to the fault geometry 

and rupture-jumping process.  Dynamic waves from rupture on the primary fault segment 

alter the stress field along the secondary fault segment before it ruptures, increasing the 

shear stress and reducing the normal stress, and thereby priming the secondary fault 

segment for supershear rupture.  The supershear transition occurs preferentially along 

compressional and dilational regimes after a delay in rupture at the stepover for the RS-

AL, RS-SL, and linear SW friction formulations.  RS-SL models with strong rate-

weakening produce supershear rupture because they have a lower seismic S ratio (due to 

their larger stress drop).  Models that show a supershear rupture transition from the 

primary fault segment to the secondary fault segment show a longer time delay from the 

end of the primary rupture to the start of the secondary rupture than do models that do not 

show supershear rupture.  Models that have longer delays have larger stepover widths.  

Therefore in order for the supershear transition to occur, there is a corresponding 

minimum stepover width.  For compressional regimes, the minimum stepover widths 

required for sustained supershear rupture on the secondary fault are 0.6 km, 0.6 km, and 

0.7 km for linear SW friction, RS ageing law, and RS slip law, respectively, with 

equivalent do.  All step widths above the minimum sustain supershear rupture for the 

entire length of the secondary fault segment (unless rupture cannot jump to the secondary 

fault segment).  However, the appearance of supershear rupture in dilational regimes 

seems to be less systematic, and although they too have minimum step widths required 

for the supershear transition, there is no discernible pattern (i.e., not all step widths above 
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the minimum necessarily sustain supershear rupture speed).  Ultimately, this effect 

probably depends on the variability of the seismic S ratio and Ltrans along strike near the 

re-nucleation zone.  We emphasize that for both compressional and dilational settings, re-

nucleation occurs at zones of decreased normal stress, as shown in figure 1.7. 

 

We find that the ability of rupture to make the transition to supershear speed on the 

secondary fault is related to the spatial distribution of the seismic S value in the region of 

re-nucleation.  Plots of the seismic S ratio right before rupture along the secondary fault 

segment are shown in figure 1.7.  Figure 1.7a shows the case of a sample compressional 

regime with a 0.4 km stepover width using RS-AL; in this case, rupture does not sustain 

supershear speed.  Figure 1.7b shows another sample case – a compressional regime with 

a 1 km stepover width – that rapidly transitions to (and sustains) supershear speed after 

re-nucleation on the secondary fault.  For the Burridge-Andrews supershear transition 

mechanism to operate, the rupture must propagate a distance Ltrans before the S wave 

stress ahead of the crack tip can instigate supershear rupture.  The value for this distance 

at each point on the secondary fault is shown for each plot.  For cases of sustained 

supershear rupture (figure 1.7b) on the secondary fault segment, S and Ltrans values are 

small in the vicinity of the re-nucleation region.  Thus, we see that to allow supershear 

rupture over the entire secondary fault, supershear S values (< 1.77) need only occur in 

small regions that contain the re-nucleation point (but larger than the critical crack 

length).  Put another way, a supershear transition occurs if the value of the reduced Ltrans 

is less than or equal to the width (along strike) of the zone of reduced Ltrans.  For example, 
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if Ltrans is 1 km over a width of more than 1 km, then the transition to supershear occurs if 

self-sustaining slip occurs there.  That is the case for figure 1.7b.  Conversely, in Figure 

1.7a (no supershear transition), while S is less than 1.77 around the nucleation zone, Ltrans 

is still large, preventing a supershear transition over the length of the second fault.  Once 

rupture begins to travel at supershear speed along the secondary fault segment, it satisfies 

√2β < Vrupt < α as predicted by Andrews (1976b). 

 

Figure 1.7c shows a typical supershear transition for a compressional regime with a 0.7 

km step.  We see larger velocity parallel to the fault once the rupture reaches supershear 

speed.  Note that there is a substantial delay (≈15 seconds) from rupture ending on the 

primary segment to rupture beginning on the secondary segment.  Once re-nucleation 

occurs, supershear rupture propagates immediately.  We point out the P-wave front, the 

supershear (S-S) Mach cone, and the sub-Rayleigh (S-R) slip pulse at 38.8 seconds.  A 

single strike-slip fault model 100 km in length (approximately the total length of both 

fault segments of the stepover models) with a high stress regime does not show the 

supershear rupture transition, confirming that the transition is not a result of directivity. 
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Figure 1.7a.  Top panel: Stress snapshots right before the time of re-nucleation on the 
secondary fault segment for a compressional 0.4 km step using slip-weakening friction. 
Bottom panels: S ratio and Ltrans at -8 km to -1 km.  Re-nucleation occurs at -3.9 km 
along strike.  S and Ltrans values are not low enough along an extended section of fault to 
create sustained supershear rupture on the secondary fault. 
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Figure 1.7b.  Top panel: Stress snapshots right before the time of re-nucleation on the 
secondary fault segment for a compressional 1 km step using slip-weakening friction. 
Bottom panels: S ratio and Ltrans at -8 km to -1 km.  Re-nucleation/supershear propagation 
begins at -5 km along strike.  S and Ltrans values are low enough along an extended 
section of fault to create sustained supershear rupture on the secondary fault. 
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Figure 1.7c.  Velocity parallel to strike for a characteristic supershear transition on a 
compressional 0.7 km step using the ageing law.  The nucleation zone is denoted by the 
black star.  Velocity increases substantially on the secondary fault segment. There is a 
delay (about 15 seconds) in rupture ending on the first segment and rupture beginning on 
the second segment.  Additionally, at 38.8 seconds we label the supershear (S-S) Mach 
cone, the P-wave front, and the sub-Rayleigh (S-R) slip pulse that trails the supershear 
rupture. 
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Discussion 

This study focuses on the effects of various friction laws on rupture propagation along 

strike-slip stepovers. Within our friction framework, we use a value of effective slip-

weakening distance do of about 0.6 m to institute some uniformity to all friction 

formulations, consistent with recent studies that show values on the order of 1 m (Ide and 

Takeo, 1997; Oslen et al. 1997).  Our results indicate that the functional form of friction 

can give significant effects on the rupture dynamics at stepovers.  When we assume a 

constant do for all friction parameterizations, we see that differences in the energy 

budgets (in particular, the surface energy relative to the total energy release) correlate to 

differences in maximum jump distance.  In these cases the rate-state slip law has a 

smaller fracture energy density than either the rate-state ageing law or the slip-weakening 

law, and produces more seismic radiation that allows rupture to jump further.  Those 

differences in maximum jump distance are decreased substantially when we equate 

fracture energy densities for the friction laws, but the larger initial stress-slip slope of the 

slip law still causes it to produce slightly larger maximum jump distances.  One way to 

decrease the differences further may be to increase the initial shear stress for models 

using the classic slip-weakening friction and the ageing law, so that they have the same 

average amount of seismic radiation as the slip law.  High stress models show more 

similar maximum jump distances between different friction formulations than low stress 

models, for either equal do or equal fracture energy.  This implies that the type of friction 

law can become less important for modeling jumping rupture with high absolute stresses. 

We also point out that the ageing law produces approximately linear weakening curves, 
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similar to that of slip-weakening friction, making it easier to tune slip-weakening friction 

to mimic the ageing than to mimic the slip law.  However, one very important aspect of 

rate-state friction, in particular the ageing law, is the intuitive healing process (e.g. 

frictional strength increases with contact time) that cannot be mimicked by slip-

weakening friction.  Thus, even if the short-term stepover jumping behavior of the slip-

weakening and rate-state ageing laws is very similar, the long-term behavior of faults 

under these different frictional assumptions may be quite different. 

 

Our results show that the likelihood that rupture can jump a certain fault stepover is 

dependent upon the friction parameterization employed.  Observations of jumping 

rupture could potentially provide insight into which friction law is more valid.  For 

example, for a known stress drop, jump distance, fault geometry, and slip distribution in 

time, one could provide a simple model with a preferred friction law.  Adopted evolution 

laws can influence probabilities of jumping rupture at stepovers and affect the predicted 

magnitude of simulated earthquakes.  Such effects may be critically important for smaller 

step widths, especially if portions of the fault undergo strong rate-weakening.  

Earthquakes with high slip rates would be especially susceptible to non-linear weakening 

curves and large dynamic drops in friction coefficient, with a consequent higher 

likelihood of jumping stepovers.  High-speed laboratory studies that show such nonlinear 

weakening curves are certainly a good reason to explore strong rate-weakening properties 

in dynamic simulations of real world faults.  In light of our general results, dynamic 

simulations based on real fault steps can produce variable results depending of the 
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friction law used (as well as stress regime and material properties).  We have also seen 

that in high stress regimes, the maximum jump distance tends to converge to a maximum 

jump value for the 3 different friction laws (excluding the slip law with strong rate-

weakening), suggesting that is probably not as crucial to consider effects from different 

friction laws in high stress drop, high seismic radiation, homogeneous models.  However, 

it is not obvious under which circumstances the effects of friction law might be 

accentuated (e.g., heterogeneous prestress). 

 

For the high stress regime, we show that fault stepovers can serve as a trigger for a 

previously undocumented mode of supershear transition, even though the initial seismic S 

ratio (2.6) along the fault is too large for the transition to occur on a planar strike-slip 

fault.  Seismic waves from the primary fault segment alter the stress field along the re-

nucleation zone of the secondary segment before rupture initiates, bringing the seismic S 

ratio to a value that allows supershear rupture speeds in this area.  Once the rupture 

reaches supershear speed, it can remain supershear even outside the area of favorable 

stress.  Other numerical studies have indicated supershear transition mechanisms along 

strike-slip faults, including zones of high frictional resistance (Dunham, 2003) and zones 

of favorable prestress (Fukuyama and Olsen, 2002; Liu and Lapusta, 2008), and changes 

in fault strike (Oglesby et al., 2008; Oglesby and Mai, 2011).  Laboratory experiments on 

homalite with a frictional interface (Xia et al., 2004) show the sub-Rayleigh to supershear 

transition.  However, their initial stress configuration allows supershear speed under the 

Burridge-Andrews mechanism.  Observational evidence for supershear rupture speeds 



46  

suggests strong fault-parallel ground motion when compared to sub-Rayleigh ruptures 

(e.g., Archuleta, 1984; Dunham and Archuleta, 2004), and we see such motion in our 

supershear models along the S-wave Mach cone. 

 

We acknowledge some limitations in this study so that future studies can expand on the 

current results.  All models are 2-D, indicating that rupture energy is concentrated along a 

plane, and therefore produce larger average slip, slip rates, and stress drops than 

analogous 3-D models.  The models produced for this study are primarily crack-like (i.e., 

slip pulses are spatially large and fall off asymptotically), likely due to large loading 

stress (initial shear stress) (Zheng and Rice, 1998).  We use spatially homogeneous 

frictional properties and assume that RS friction operates at high slip rates even though it 

is laboratory-derived at low slip rates, suggesting that our models do not entirely account 

for large scale asperities and slip rates.  Additionally, the stress regime on the secondary 

fault is changed by stopping phases – seismic radiation produced by rapid rupture 

termination along the primary fault (Madariaga, 1976) that can cause rupture to re-

nucleate on the secondary fault segment.  Stopping phases in our models result from 

clamping the ends of each fault segment over one element with a high frictional 

coefficient.  Oglesby (2008) shows that slip gradient and rupture acceleration can 

strongly affect maximum jump distance by modulating stopping phase amplitude.  In 

particular, as the stress and slip gradients decrease at the edge of the primary fault the 

ability of rupture to jump also decreases.  However, both high and low slip gradients have 

been observed at stepovers (Elliot et al., 2009).   
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Future work (chapter 2) will incorporate state-variable dependence on normal stress 

(Linker and Dieterich, 1992) in order to produce more realistic ruptures.  Including a 

normal-stress dependent state variable within the RS framework could emphasize or de-

emphasize normal stress asymmetries between compressional and dilational steps.  Such 

a friction parameterization will likely alter the energy budget in regions that have large 

perturbations in normal stress. 
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Chapter 2: Effects of Normal-Stress-Dependent State at Stepovers & Dip-Slip Faults 

Abstract 

Previously we have demonstrated that the maximum rupture jump distance along 

stepovers can vary depending on the frictional parameterization used, with the primary 

factor being amount of fracture energy associated with a certain effective slip weakening 

distance.  The development of the rate- and state-dependent friction framework 

(Dieterich, 1978b, 1979; Ruina, 1983) includes the dependence of friction coefficient on 

normal stress (Linker and Dieterich, 1992), however, a direct dependence of the friction 

law on time-varying normal stress in dynamic models has not yet been extensively 

explored.  Using rate- and state-dependent friction laws and a dynamic finite element 

code (Barall, 2008) we investigate the effect of the Linker-Dieterich dependence of state 

variable on normal stress at stepovers and dip-slip faults, where normal stress should not 

be constant with time (e.g., Harris and Day, 1993; Nielsen, 1998). Specifically, we use 

the relation dψ/dt = -(α/σ)(dσ/dt) from Linker and Dieterich (1992), in which a change in 

normal stress leads to a change in state variable of the opposite sign.  We investigate a 

range of values for alpha, which scales the impact of the normal stress change on state, 

from 0 to 0.5 (laboratory values range from 0.2 to 0.56).  For stepovers, we find that 

adding normal-stress dependence to the state variable delays or stops re-nucleation on the 

secondary fault segment when compared to normal-stress-independent state evolution.  

This inhibition of jumping rupture is due to the fact that re-nucleation along the 

secondary segment occurs in areas of decreased normal stress in both compressional and 

dilational stepovers. A decrease in normal stress results in an increase in state variable 
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(and thus fault strength) in those same areas, thereby hindering rupture in both cases.  

However, the magnitude of such an effect differs between dilational and compressional 

systems.  Additionally, it is well known that the asymmetric geometry of reverse and 

normal faults can lead to greater slip and a greater peak slip rate on reverse faults than on 

normal faults, given the same initial conditions for each  (e.g., Nielsen, 1998; Oglesby et 

al., 1998; Oglesby and Archuleta, 2000a, Oglesby et al., 2000b).  For dip-slip models, we 

find that adding the Linker-Dieterich normal stress dependence to the state variable 

serves to mitigate differences in peak slip rate between reverse and normal fault models.  

However, differences in total slip among reverse and normal fault models remain 

relatively unchanged.  We also examine effects from initial shear stress (loading stress).  

Decreasing the initial shear stress of the dip-slip models results in reverse fault ruptures 

propagating further updip than normal ruptures.  Models using slip-weakening friction do 

show very similar results with regard to loading stress, indicating that this is not an 

exclusive rate-state effect.  For rate-state ageing law models, we add a small (5 km) rate-

strengthening zone on the uppermost portion of a reverse and a normal fault model to 

study the effects of a rate-strengthening zone rupture.  We find that the normal fault 

rupture does not allow a substantial stress drop within the rate-strengthening zone.  

However, the reverse fault rupture does produce a significant stress drop even in the rate-

strengthening zone, due to the dynamic decrease in normal stress.  One result of this 

effect may be a higher likelihood of reverse fault rupture propagating to the surface than 

a corresponding normal fault rupture.   

 



50  

Introduction 

Modeling geometrically complex faults in order to simulate realistic earthquake ruptures 

is an ongoing challenge in seismology. For single planar fault geometries it can be shown 

that normal stress is constant in time.  One example is a single strike-slip fault in a 

homogeneous elastic half space (or whole space).  However, for faults with more 

complex or asymmetric geometry (e.g., stepovers and non-vertical dip-slip faults 

intersecting the free surface), the normal stress can change with time, leading to changes 

in the frictional strength, and thus changes in the time evolution of rupture and slip.  To 

investigate the effects of this time-dependent normal stress, we focus firstly on fault 

stepovers, parallel fault segments of a single system that are horizontally separated by a 

small distance (mm to km) at their edges, and are found all over the world (Wesnousky, 

1988; Knuepfer, 1989).  For a given amount of slip on one fault, the normal stress 

change in the stepover region for a compressional stepover is the negative of that of 

an extensional one (e.g., Harris and Day, 1993).  Stepovers can be considered a first 

order geometric complexity when it comes to modeling earthquake ruptures.  Many 

researchers have used dynamic modeling to investigate the effects of fault geometry on 

rupture propagation and slip at a stepover. (e.g., Harris and Day, 1993; Kase and Kuge, 

1998; Duan and Oglesby, 2006).  These works have shown that termination of slip on the 

primary fault segment causes complex static and dynamic stress fields in the stepover 

region, which can result in rupture re-nucleating along the secondary fault and 

continuing, leading to a larger earthquake than otherwise might have been expected.  For 

example, Harris et al. (1991) and Harris and Day (1993) show that dynamic differences in 
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normal and shear stress determine when and where re-nucleation takes place on the 

secondary fault, assuming a normal-stress independent friction coefficient.  Kase and 

Kuge (1998) also note that rupture propagation on the primary fault triggers rupture on 

the secondary fault by altering the stress field in the medium along the fault system.  

Duan and Oglesby (2006) show that the dynamic stress field for a stepover system can 

vary with the rupture history (i.e., prior earthquakes) and therefore such effects can 

determine future rupture nucleation.   

 

While single, planar strike-slip faults do not produce normal stress changes, strong 

normal stress perturbations are one similarity of stepovers and dip-slip faults.  For 

stepovers these perturbations result from the stress interaction of two or more fault 

segments, whereas for dip-slip faults the normal stress fluctuations come from seismic 

wave reflections from the free surface (Brune, 1996; Nielsen, 1998; Oglesby et al., 1998; 

Oglesby and Archuleta, 2000a, Oglesby et al., 2000b).  Specifically, for non-vertical dip-

slip faults, the free surface allows seismic waves to reflect and hit the fault again, altering 

the stress field on the fault near the free surface.  Oglesby et al. (1998) show that as 

rupture approaches the free surface along a normal fault, there is a decrease in normal 

stress ahead of the crack tip and an increase in normal stress behind the crack tip; this 

effect leads to reduced fault motion near the surface. In contrast, reverse faults produce a 

normal stress increase ahead of the crack tip, and a normal stress decrease behind, leading 

to increased fault motion near the surface. Furthermore, when rupture travels updip along 

a dip-slip fault and reaches the free surface, it produces a breakout phase, a slip pulse 
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traveling back downdip (Burridge and Halliday, 1971; Oglesby et al., 1998), with 

reverse/thrust faults having stronger breakout phases than normal faults.  Numerical and 

experimental studies have seen asymmetric differences in slip velocity, total slip, and 

ground motion between reverse and normal faults, with reverse faults being larger on all 

accounts (Brune, 1996; Nielsen, 1998; Oglesby et a., 1998).  Such effects have large 

implications for dynamic stress drop, which depends on both the time-dependent friction 

coefficient and time-dependent normal stress.  

 

Experimental and observational evidence show that reverse/thrust faults produce more 

intense motion than that of normal faults.  Brune’s (1996) foam block models indicate 

enhanced slip for thrust models relative to normal models. Observationally, the 1994 

Northridge, California and 1971 San Fernando, California earthquakes – both of which 

were thrust events – produced larger ground motion than expected (Nason, 1973; 

Abrahamson and Somerville, 1996).  Allen and others (1998) also show evidence for 

high vertical acceleration and ground motion during the San Fernando earthquake.  

Cocco and Rovelli (1989) find evidence for larger dynamic stress drop and ground 

motion (3 times as much) for reverse earthquakes near Friuli, Italy against normal 

earthquakes in the Apennines region of Italy.  McGarr (1984) shows that, when 

regression lines are fit to acceleration and velocity data from compressional and 

extensional tectonic regimes in North America, peak velocities and peak accelerations in 

compressional environments (e.g., thrust faults) are 2 to 3 times greater than for 

extensional environments (e.g., normal faults).  We note that differing stress magnitudes 
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between compressional and extensional regimes could heavily influence some of these 

results. 

 

Existing numerical studies have modeled earthquakes on stepovers and dip-slip faults 

using classic slip-weakening friction.  However, experimental studies show that rate- and 

state-dependent (RS) friction is a more accurate approximation of real-world frictional 

behavior.  Physically, the RS parameterization reproduces frictional behaviors measured 

in laboratory settings, such as stick-slip sliding, creep, and rate-strengthening (Dieterich, 

1979; Marone et al., 1990).  Theoretically, RS friction incorporates intuitive friction 

variables such as time and slip velocity (Dieterich, 1978b).  Based on previous studies of 

RS friction (Dieterich, 1978b, 1979; Ruina, 1983), Linker and Dieterich (1992) have 

further developed laboratory-derived friction laws to account for their observation that 

the friction coefficient depends on normal stress history.  Their physical experiment 

involves sliding blocks of Westerly granite while perturbing the blocks with changes in 

normal stress.  They show that, at constant slip rate and an initial steady state, a sudden 

change in normal stress results in a change in the state variable in the opposite direction.  

The change in state with respect to normal stress is shown in the following equation (13) 

from Linker and Dieterich (1992): 

                                                            

! 

"#

"$
=
%&#

b$
                                                         (2.1) 

where θ is the state variable, σ is the normal stress, α is experimentally determined, and b 

is a constitutive parameter determined previously by Dieterich (1979).  Furthermore, they 

determine that ultimately θ evolves toward the steady state value prior to the normal 
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stress perturbation, since the steady state (and therefore friction coefficient) is not 

dependent on normal stress (θss = L/V).  Linker and Dieterich (1992) determined values 

for alpha of 0.2 for the rate-state ageing law and 0.56 for the rate-state slip law for 

Westerly granite.  If the state variable compensates for changes in normal stress based on 

the value of α, there could be complex and profound effects on models that have large 

fluctuations in normal stress, including stepover and dip-slip ruptures. 

 

Simulating unstable and stable sliding zones (e.g., outer boundaries of seismogenic 

zones) with RS friction has been suggested (e.g., Scholz, 1998, Hyndman et al., 1998).  

In particular, the increase in the steady-state friction coefficient with slip rate can 

characterize the stable sliding zones that border the seismogenic zones.  Within the RS 

formulation a positive rate-strengthening parameter (a – b), where a and b are 

experimentally determined previously by Dieterich (1978b, 1979) through observed 

stress drop, indicates velocity strengthening or stable slip, and a negative parameter 

indicates velocity weakening or unstable slip.  For reverse/thrust faults it has been 

suggested that such rate-strengthening zones can simulate weak zones in the inner margin 

of the trenches, possibly characterized by large amounts of sedimentation.  Kanamori 

(1972) noted that sediments in the trench could be a mechanism for tsunami earthquakes 

– earthquakes that produce relatively small ground shaking but larger than expected 

tsunamis.  Granular material such as fault gouge tends to stabilize slip (Marone et al., 

1990) and therefore might be the mechanism for rate-strengthening zones.  Hyndman and 

others (1998) point out that rate-strengthening regions can be caused by unconsolidated 
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sediments updip and either temperature or hydrated serpentinite at depth, and that 

seismogenic zones typically lie between 10 km and 40 km depth.  Experiments on 

ultrafine-grained quartz and corresponding regression analysis (Chester and Higgs, 1992) 

suggest that rate-weakening behavior occurs between 100o and 300o C under wet 

conditions, while higher temperatures lead to a rate-strengthening parameter (a – b) of 

0.03. 

 

The use of laboratory-derived friction laws can be a very helpful tool in analyzing rupture 

dynamics (Okubo, 1989).  The objective of this study is to build upon the Linker and 

Dieterich (1992) framework by applying their friction law to both simple stepover and 

dip-slip fault models.  Because both types of models involve dynamic perturbations in 

normal stress on the faults, it is important to incorporate a friction law that has realistic 

dependence on time-dependent normal stress.  For stepover models we concentrate on the 

effect of frictional parameterization on maximum rupture jump distance for both 

compressional and dilational steps, since this will strongly influence potential earthquake 

size as well as estimates of ground motion.  For dip-slip models we concentrate on 

particle motion, for both reverse and normal events, to characterize key differences 

between them and assess the relative hazards of such events.  

 

Method 

We use the 2-D finite element method (FEM) code FaultMod (Barall, 2008) to model 

mode II dynamic rupture along fault stepovers and dip-slip faults (figure 2.1).  
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Additionally, we use stress and friction regimes consistent with observed stress drops as 

well as average values for density and wave velocities within the mid crust (e.g., Harris 

and Day, 1997) (Tables 2.1-2.2).  For stepover models each fault segment is 50 km in 

length, and the overlap between segments is 7 km.  The overlap is large enough to allow 

rupture to re-nucleate on the secondary fault in both compressional and dilational 

settings.  Nucleation is at the middle (along-strike) of the primary fault.  The stepover 

width, or offset distance, is variable and allows us to determine the maximum distance 

rupture can jump (perpendicular to strike).  The secondary fault is placed to simulate 

either a compressional or extensional regime, given the same regional shear stress 

direction (figure 2.1).  Additionally, stepover ruptures are simulated in high and low 

stress regimes with the absolute level of stress differing by a factor of approximately 5 

(see tables 2.1-2.2).   

 

For dip-slip models, dip angle and downdip length are fixed at 45 degrees and 35 km, 

respectively.  Nucleation is at approximately 18.4 km depth.  The direction of shear stress 

is switched to simulate either a reverse or normal fault.  FaultMod generates meshes, uses 

grid doubling away from the fault system to reduce computation resources without loss of 

accuracy, incorporates artificial viscous damping (Dalguer and Day, 2007) as well as 

algorithmic damping to help damp spurious oscillations, and energy-absorbing boundary 

conditions to diminish artificial reflections from the model boundaries. 

 

 



57  

Laboratory-derived friction laws (Dieterich, 1978b, 1979; Ruina, 1980, 1983) are used in 

our simulations to mimic the frictional properties of rock.  The general form of the rate- 

and state- constitutive law (Ruina, 1983; Linker and Dieterich 1992) is: 
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where µo represents a constant reference value for the coefficient of friction; a and b are 

constitutive parameters estimated from laboratory experiments; Vo and θo are reference 

values for slip rate and the state of the sliding surface, respectively; θ can be thought of  

as the average age of contacts at some sliding velocity; V is the slip speed and σeff is the 

effective normal stress (incorporating pore fluid pressure). FaultMod implements a 

modified arcsinh form of the friction coefficient (bracketed term in eq. 2.2) that does not 

become singular for very small slip velocities:  
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This form closely approximates eq. 2.2 for all slip rates of seismological interest.  Note 

that the right hand side of eq. 2.3 has the form of the effective friction coefficient in eq. 

2.2, with ψ = bln(θ/θo), or conversely, θ = θoexp(ψ/b). 
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Figure 2.1.  Cartoon fault geometry of 2-D models for stepovers (in mapview) and dip-
slip faults (in profile view) using dynamic finite element code FaultMod (Barall, 2008).  
For any given stepover simulation, only one secondary fault (represented by a blue line) 
is present, indicating either a compressional or dilational regime.  Step width is variable.  
For any given dip-slip simulation, only one type of stress regime is present (represented 
by either red or blue arrows), indicating either a reverse or normal fault.  Fault dip angle 
and downdip distance are fixed.  Arrows denote the shear stress direction.  The star 
denotes the nucleation zone. 
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2.1                          Low Stress Models 
 
τo  13.78 ‐ 16.10 MPa 
σo  24.00 MPa 
τo (nucleation zone)  20.00 MPa 
Density  2670 kg/m3 
S‐wave speed  3464 m/s 
P‐wave speed  6000 m/s 
Nucleation Radius  3000 m 
Nucleation Speed  1750 m/s 
Element Size  ∼100 m 
Vini  1.000e‐12 m/s 
Vo  1.000e‐6 m/s 
a  0.008000 
b  0.01200 
a (rate‐strengthening)  0.01600 
L (ageing law)  0.02330 m 
L (slip law)  0.1505 m 
µo  0.6000 
µlv  0.6000 
µw  0.3000 
Vw  0.1000 m/s 
α  0 – 0.5000 
µstatic  0.8299 
µdynamic  0.5487 
do  ≈0.6 m 
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2.2    High Stress Models (stepover models only) 
 
τo  75.00 MPa 
σo  120.0 MPa 
τo (nucleation zone)  100.0 MPa 
Density  2670 kg/m3 
S‐wave speed  3464 m/s 
P‐wave speed  6000 m/s 
Nucleation Radius  600.0 m 
Nucleation Speed  1750 m/s 
Element Size  50.00 m 
Vini  1.000e‐12 m/s 
Vo  1.000e‐6 m/s 
a  0.008000 
b  0.01200 
L (ageing law)  0.02015 m 
L (slip law)  0.1000 m 
µo  0.6000 
µlv  0.6000 
µw  0.3000 
Vw  0.1000 m/s 
α  0 – 0.2000 
µstatic  0.8465 
µdynamic  0.5340 
do  ≈0.6 m 
 

Tables 2.1-2.2.  Stress values, material properties, model properties, and friction 
parameters used for low and high stress models.  Both dip-slip and stepover models 
utilize table 2.1 properties; only stepover models utilize table 2.2 properties in addition. 
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For the rate-state ageing law (RS-AL), the state variable evolves according to the 

equation: 
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In the rate-state slip law (RS-SL), the state variable evolves according to the equation: 
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where L is the characteristic length in the rate-state formulation, and ψss is the steady 

state value that depends on slip velocity and the characteristic length L.  We use values of 

L for both the RS-AL and RS-SL that correspond to an effective slip-weakening distance 

of about 0.6 m.  Both laws have the same standard steady-state formula: 
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One version of our RS-SL models incorporates strong rate-weakening, which is intended 

to simulate flash heating around some sliding velocity, via its steady-state formula, with 

which a relatively larger drop in shear stress occurs around some reference velocity: 
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 where µs is the strong friction coefficient, µw is the weak friction coefficient, and Vw is 

the velocity around which the weakening occurs. 

 

In order to incorporate normal stress effects on the state variable we use an adapted form 

of eq. 13 from Linker and Dieterich (1992, eq. 2.1 in this study): 
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where α is the Linker-Dieterich parameter that scales the effect of normal stress on state  

(determined experimentally), σ is the normal stress, and σoff is an offset stress to keep the 

equation stable at low values of normal stress.  The total evolution of ψ, for each time 

step, is the combination of eqs. 2.4a and 2.7, or 2.4b. and 2.7 using the ageing law or slip 

law, respectively.  Since an increase/decrease in ψ corresponds to an increase/decrease in 

the friction coefficient by almost the same amount (see eq. 2.3), a change in normal stress 
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with time results in a change in friction coefficient with time of the opposite sign (see eq. 

2.7).  For example, a positive change in normal stress (clamping) results in a transient 

decrease in friction coefficient, and vice versa.  Note that most previous studies (chapter 

1) have used only eqs. 2.4a and 2.4b for the evolution of the state variables – particularly 

in cases of complex fault geometry.  In the previous chapter, the state variable depended 

on slip speed history and time, whereas now it depends on slip speed history, time, and 

normal stress history.  The Linker-Dieterich parameter α has been experimentally 

determined to be in the range 0.2-0.56 for low slip speeds (i.e., µm/sec) (Linker and 

Dieterich, 1992).  For our stepover models, we use a value of 0 or 0.2 for α.  For our dip-

slip models, we use values of 0, 0.2, and 0.5 in order to illuminate trends for reverse and 

normal fault ruptures.  For comparison, some models incorporate classic slip-weakening 

friction, where friction coefficient drops linearly with slip from the yield coefficient to 

the final coefficient over a critical slip-weakening distance.  In this manner we can assess 

which aspects of our results are exclusive to rate-state friction, and which are more 

generic. 

 

In order to simulate zones of weak fault coupling near the free surface of our dip-slip 

models, we incorporate rate-strengthening frictional behavior.  We note the differential 

equation of steady state friction with respect to the logarithm of slip velocity: 
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dfss

d lnV
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This equation shows that when constitutive parameter b is larger than constitutive 

parameter a, the steady state friction value decreases as velocity increases, and thus 
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represents a velocity-weakening zone.  However, when constitutive parameter b is 

smaller than constitutive parameter a, the steady state friction value increases with 

increasing velocity, and represents a velocity-strengthening zone.  Such a zone is 

seismically stable, and in principle cannot spontaneously nucleate earthquake slip.  Since 

Dieterich (1978b, 1979) experimentally determined a and b values to be on the order of 

0.01, we use values of 0.008 and 0.012 for parameters a and b, respectively, for all rate-

weakening models.  We use values of 0.016 and 0.012 for parameters a and b, 

respectively, in the uppermost 5 km (along dip) for one reverse fault model and one 

normal fault model to represent a region of rate-strengthening. 

 

For dip-slip models, we vary the initial shear stress (i.e., loading stress) from 13.78 MPa  

to 16.10 MPa with constant normal stress of 24 MPa, which produces a range of rupture 

velocities. The type of rupture (i.e., crack-like vs. pulse-like) can depend on the initial 

loading conditions; a self-healing, pulse-like rupture has been shown to be more likely 

under lower loading stress conditions, when compared to the requirements for crack-like 

rupture (Zheng and Rice, 1998).  For analogous classic slip-weakening models, this 

corresponds to changing the seismic S ratio (S = τy-τo/τo-τf, where τy is the yield shear 

stress,τo is initial shear stress, and τf is the final shear stress).  Decreased loading stress 

corresponds to an increase in S. 
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Results 

Stepovers 

Using the Linker-Dieterich formulation we test the effects of normal-stress-dependent 

state (eq. 2.7) on dynamic ruptures at stepovers.  In the following we compare the 

maximum rupture-jumping distance for models with α = 0 (no dependence of state on 

normal stress) and α = 0.2 (figure 2.2).  The maximum jump distance should be sensitive 

to changes in frictional strength along the re-nucleation zones of the secondary fault 

segments. We see that in both extensional and compressional stepover regimes, models 

with α = 0.2 have smaller maximum jump distances than models with α = 0 for all 

friction laws.  Larger values of alpha (e.g., 0.5) continue the effect of decreasing 

maximum jump distance with increasing alpha, but for brevity we do not show those 

results in this study.  The results for dilational and extensional stepovers may seem 

counter-intuitive: according to the Linker-Dieterich formulation one might expect results 

to be anti-symmetric (i.e., decreasing jump distance for extensional stepovers and 

increasing jump distance for compressional stepovers) since extension should lead to 

increased friction and compression should lead to decreased friction (according to eq. 

2.5).  However, we have found that both the dilational and compressional stepover 

models re- nucleate rupture on the secondary fault segments in regions of decreased 

normal stress, although the magnitude of such normal stress reductions is quite different 

for dilational vs. compressional stepovers (figure 2.3).  In both cases, decreased normal 

stress results in a short-term increase in state and friction, compared to standard slip- 

weakening friction.  Thus, incorporating normal stress dependent state (eq. 2.5) in the 
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models reduces the maximum jumpable stepover width for both extensional and 

compressional stepovers relative to models with no such normal stress dependence in 

state, since the state variable, and hence frictional resistance, is increased in regions of 

dynamic normal stress reduction.  We note that stepover models in this study are crack-

like (i.e., slip pulses are spatially large and fall off asymptotically). 
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Figure 2.2.  Maximum jump distance without (dashed bars) and with (solid bars) a 
normal-stress-dependent state (α=0.2) for all rate-state friction laws.  All rate-state 
friction laws show a decrease in max jump distance for both dilational and compressional 
steps.  In this study, the difference in maximum jump distance that results from a normal-
stress-dependent state is more substantial for dilational systems than for compressional 
systems.  Both low and high stress models are shown. 
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The decrease in maximum jump distance due to a normal-stress-dependent state variable 

shown in figure 2.2 is more substantial for dilational stepovers than compressional 

stepovers.  In other words, the ratio of the amount of decrease to the maximum jump 

distance without a normal-stress-dependent state is larger for dilational models.  This is 

due to the difference in magnitude of dynamic normal stress reduction that facilitates re-

nucleation at dilational versus compressional steps.  With that in mind we analyze 

snapshots of stress and state variable ψ along strike, immediately before re-nucleation on 

the secondary faults with the RS-SL and RS-AL (figure 2.3).  Note that for figure 2.3 we 

choose to display results for stepovers with the largest maximum jump distance with a 

normal-stress-dependent state, since these are large step models common to both normal-

stress-dependent and normal-stress independent states.  For a 1.4 km dilational stepover 

with a low stress regime using the RS-SL (figure 2.3a) we find that re-nucleation takes 

place in a region of increased shear stress and reduced normal stress. The area around the 

re-nucleation location (black-dashed circle in figure 2.3a) shows a substantial increase in 

the state variable, and therefore friction coefficient.  The increase in friction coefficient 

makes it harder for rupture to re‐nucleate, and thus decreases the maximum 

jumpable distance.  However, the re-nucleation zone is bordered by a region of 

increased normal stress on the left that corresponds to a decrease in state that would 

promote rupture toward the left once it started.  For a 1.2 km compressional stepover with 

a low stress regime using the RS-SL (figure 2.3b) we find that re-nucleation takes place 

in a region of increased shear stress and reduced normal stress, and is bordered to the 

right by a large region of increased normal stress.  In spite of the different nature of the 
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stepover, this effect is similar to that of the dilational stepover.  The region surrounding 

the nucleation midpoint shows an increase in the state variable and therefore friction 

coefficient, however, it is bordered to the right by a large region of decreased state 

variable.  The bordering region of decreased state variable is certainly close enough to the 

nucleation midpoint to influence re-nucleation in a way that makes it less resistant than 

the comparable dilational model in figure 2.3a.  While this effect may be dependent on 

critical crack size, it explains why the max jump distance is reduced more so for the 

dilational stepovers than for the compressional stepovers when using a normal-stress-

dependent state variable.  Results are similar to RS-AL models (figure 2.3c-d), although 

there are relatively sharper peaks in normal stress change and state variable change along 

the re-nucleation zone for RS-AL models.  Additionally, RS-AL models show larger 

spikes in shear stress at the edges of the primary fault after rupture has ceased there.  

High stress models show similar results to that of the low stress models.   
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Figure 2.3a.  Stress and state snapshot immediately before re-nucleation across a 1.4 km 
dilational step using the slip law with low stress.  Both shear and normal stresses are 
shown. Red indicates the primary fault and blue indicates the secondary fault. A change 
in normal stress results in a change of the state variable that opposes the effect of 
clamping or unclamping on the fault friction.  We use an alpha of 0.2, in agreement with 
laboratory experiments (Linker and Dieterich, 1992).  The dashed black circle indicates 
the location of re-nucleation.  Re-nucleation takes place in a zone of decreased normal 
stress and therefore increased state.  Additionally, there is a zone of decreased state that 
borders re-nucleation on the left.  The magnitude of this effect (change in state with 
change in normal stress) depends on the alpha parameter in the state evolution equation. 
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Figure 2.3b. Stress and state snapshot immediately before re-nucleation across a 1.2 km 
compressional step using the slip law with low stress.  Both shear and normal stresses are 
shown. Red indicates the primary fault and blue indicates the secondary fault. The dashed 
black circle indicates the location of re-nucleation.  Re-nucleation takes place in a zone of 
decreased normal stress and therefore increased state. Note that the increase in state along 
the re-nucleation zone is smaller for the compressional step than for the dilational step.  
Additionally, there is a zone of decreased state that borders re-nucleation on the right. 
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Figure 2.3c. Stress and state snapshot immediately before re-nucleation across a 0.6 km 
dilational step using the ageing law with low stress.  Results are similar to slip law 
models, although there are relatively sharper peaks in normal stress change and state 
variable change along the re-nucleation zone for ageing law models.  Additionally, 
ageing law models tend to produce larger peaks in shear stress at the edges of the primary 
fault than do slip law models. 
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Figure 2.3d. Stress and state snapshot immediately before re-nucleation across a 0.7 km 
compressional step using the ageing law with low stress.  Again, results are similar to slip 
law models, although there are relatively sharper peaks in normal stress change and state 
variable change along the re-nucleation zone for ageing law models. 
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In figure 2.4 we examine the weakening (i.e., stress vs. slip) curves for points within 1 

km of the nucleation midpoints for both a typical dilational stepover model and a typical 

compressional stepover model using both RS-SL and RS-AL laws, with and without a 

normal-stress-dependent state variable (α = 0.2 or α = 0).  The insets show maximum 

shear resistance for simulations.  In all cases, including normal-stress-dependent state 

results in an increase in maximum shear resistance.  However, both laws show a 

relatively larger increase in frictional resistance for dilational stepovers than 

compressional stepovers.  This result is consistent with the observation that both 

dilational and compressional stepovers re-nucleate in regions of decreased normal stress, 

and thus increased fault strength (increased state) relative to the α = 0 case.  The increase 

in shear resistance for dilational systems is present over almost the entire effective slip 

weakening distance (≈0.6 m), implying that in such cases there is a larger increase in 

dissipated surface energy (i.e., the area under the curves from 0 to 0.6 m slip) during the 

nucleation process for the dilational stepovers than the compressional stepovers.  Note 

that figure 2.4 gives results for step widths that correspond to maximum jump distance 

with a normal-stress-dependent state. 

 

Dip-Slip Faults 

We also use the Linker-Dieterich frictional formulation in dynamic dip-slip models to 

investigate how normal-stress-dependent state may affect the asymmetric properties of 

reverse and normal faults, which result from the free surface boundary condition (Brune,  
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Figure 2.4.  Weakening curves for models using the rate-state slip law and ageing law 
parameterizations.  Each weakening curve represents an average from locations within 1 
km of the re-nucleation midpoint.  The left panels show results for dilational and 
compressional step widths of 1.4 and 1.2 km, respectively, using the slip law with and 
without normal-stress dependence. The right panels show results for dilational and 
compressional step widths of 0.6 and 0.7 km, respectively, using the ageing law with and 
without normal-stress dependence.  All insets show the maximum shear stress value with 
and without normal-stress dependence (with the same units as the main plots).  For both 
rate-state laws there is a larger amount of dissipated energy (area under the curves) for 
models with normal-stress dependence than models without it.  Additionally, dilational 
steps show larger differences in dissipated energy than compressional steps between 
models with and without normal-stress dependence as well as larger differences in 
maximum shear stress.  Note that all axes are scaled equally between the main plots and 
the insets. 
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1996; Nielsen, 1998; Oglesby et al., 1998, Oglesby and Archuleta, 2000a: Oglesby et al., 

2000b).  This well-known asymmetry in fault and ground motion between thrust and 

normal faults is associated with the effect of the free surface on the fault stress: as rupture 

approaches the free surface along a normal fault, there is a decrease in normal stress 

ahead of the crack tip and an increase in normal stress behind the crack tip, with the 

opposite effect for reverse faults.  Previous numerical studies using rate-state friction 

have not investigated such effects; we do so by analyzing peak slip speeds and total slip 

for reverse and normal faults at various values of α.  Additionally, we vary the initial 

shear stress (i.e., loading stress) for slower, more pulse-like ruptures (Zheng and Rice, 

1998) and investigate how waves reflecting off the free surface interact with the rupture 

front (Oglesby et al., 1998).  Finally, we investigate how a rate-strengthening zone near 

the free surface affects these results. 

 

Figure 2.5a-c shows peak slip speed for models using the RS-AL, RS-SL, and SW 

friction.  Reverse fault models always have larger peak slip speeds than normal fault 

models, consistent with previous studies (e.g., Oglesby and Archuleta, 2000a).  Figure 

2.5a shows that increasing α from 0 to 0.5 tends to reduce the asymmetry between 

reverse and normal models using the RS-AL, making them more similar.  Decreasing the 

loading stress tends to decrease peak slip speed for both reverse and normal faults.  For a 

lower loading stress (14.29 MPa), normal fault ruptures do not propagate to the free 

surface while the reverse fault ruptures do. Figure 2.5b shows similar results using the 

RS-SL with regard to α, however, both reverse and normal fault rupture penetrate to the 
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free surface under all loading stress regimes.  This difference is due to differing energy 

budgets associated with the laws, given the same effective slip-weakening distance. By 

plotting their effective slip-weakening curves one can see differences in energy budget 

between friction laws (chapter 1, figure 1.2).  Note that the RS-SL has a relatively non-

linear weakening curve when compared to the RS-AL, possibly leading to larger slip 

rates at the edges of the nucleation zone, especially since we implement the same 

nucleation speed and length for both laws.  In figure 2.5c we include the classic slip-

weakening models to show that loading stress effects are not RS dependent; the results 

are very similar to those of the RS-AL with α = 0.   

 

Figure 2.6a-c displays total slip for dip-slip models using the RS-AL, RS-SL, and classic 

slip-weakening friction.  Although varying α has noticeable effects on peak slip speeds 

for both reverse and normal fault models, it does not seem to greatly affect total slip 

(figure 2.6a-b).  However, small differences in total slip updip (that indicate rupture 

extent) seen in RS-AL models show rupture traveling slightly more updip for normal 

faults with increasing α, and the opposite is seen for reverse faults.  Since smaller loading 

stresses result in less energetic ruptures, total slip decreases with decreasing loading 

stress for all models.  However, as noted before, all RS-SL models rupture to the free 

surface. 
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Stress snapshots of reverse and normal ruptures using the RS-AL are plotted in figure 

2.7a-b to elucidate some of the complexities between rupture propagation and the free 

surface.  Nielsen (1998) and Oglesby et al. (1998) found that as rupture approaches the 

free surface along a normal fault there is a decrease in normal stress ahead of the crack 

tip and an increase in normal stress behind the crack tip, with the opposite effect for 

reverse faults.  Thus, the free surface causes a coupling between shear stress and (time-

dependent) normal stress.  The perturbations in normal stress then alter the frictional 

resistance and the sliding stress.  For a loading stress of 16.10 MPa, figure 2.7 shows that 

normal stress change on the faults from the initial value reverse sign at roughly the 

location of the crack tip, consistent with previous studies.  Thus, as the rupture 

propagates updip, the crack tip spends most of its time in an area with normal stress 

relatively unchanged from its initial value (note the position of the rupture front at 8.5 s 

in the τo = 16.10 MPa case in figure 2.7a, and at 8.6 s in the  τo = 16.10 MPa case in 

figure 2.7b).  However, the region of free-surface-induced normal stress fluctuation may 

be offset from the crack tip if the rupture is slowed by a lower loading stress (i.e., for 

lower initial shear stresses, the rupture front tends to lag behind).  Although the fault 

rupture slows for such cases, the wave speeds of the entire model do not change. For a 

reverse fault, this effect sends the rupture front into an area of decreased normal stress 

(note the position of the rupture front at 9.8 s in the τo = 15.00 MPa case in figure 2.7a), 

promoting rupture.  For a normal fault, this effect sends the rupture front into an area of 

increased normal stress, inhibiting rupture (note the position of the rupture front at 10.8 s  
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Figure 2.7a.  Stress snapshots at different times for ageing law models with reverse fault 
ruptures.  In general, the sense of normal stress change on the fault reverses sign at 
roughly the location of the crack tip, consistent with previous studies (e.g., Nielsen, 1998; 
Oglesby et al., 1998; Oglesby and Archuleta, 2000a; Oglesby et al., 2000b).  However, 
for lower initial shear stresses (e.g., 15Mpa), the rupture front tends to lag behind.  For a 
reverse fault, this effect sends the rupture front into an area of decreased normal stress, 
promoting rupture. 
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Figure 2.7b.  Stress snapshots at different times for ageing law models with normal fault 
ruptures.  In general, the sense of normal stress change on the fault reverses sign at 
roughly the location of the crack tip, consistent with previous studies (e.g., Nielsen, 1998; 
Oglesby et al., 1998; Oglesby and Archuleta, 2000a; Oglesby et al., 2000b).  However, 
for lower initial shear stresses (e.g., 15Mpa), the rupture front tends to lag behind. For a 
normal fault, this effect sends the rupture front into an area of increased normal stress, 
hindering rupture.  Results show larger static stress drops and smaller frictional energies 
for reverse-fault models relative to normal fault models. 
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in the τo = 15.00 MPa case in figure 2.7b).  For some normal fault ruptures, a daughter 

crack forms ahead of the main rupture front near the free surface (< 5 km down dip). 

 

Since the dynamic normal stress is quite low near the intersection of the fault with the 

free surface, an S-wave in front of the rupture front can reach the yield shear stress 

(figure 2.7b) resulting in complex ruptures near the free surface (Nielsen, 1998).  

Additionally, we see larger static stress drops and smaller or equal shear resistance for 

reverse-fault models relative to normal-fault models.  In turn, this results in reverse 

ruptures propagating to the free surface even when normal ruptures cannot.  In turn, we 

see larger fault, off-fault, and ground motion for reverse faults than normal faults for this 

parameter space.    

 

All of the above models assume homogeneous frictional conditions along the entire 

down-dip extent of the fault.  Realistically, however, faults are heterogeneous with regard 

to stress, geometry, friction, and material properties.  In an effort to incorporate a more 

realistic frictional regime, we implement a RS-AL rate-strengthening zone in the 

uppermost (along dip) 5 km of a reverse rupture model and a normal rupture model with 

an initial loading stress of 15 MPa and α = 0 (figure 2.8).  In order to quantify such 

effects, we plot maximum and minimum shear stresses for both types of fault, with and 

without a rate-strengthening zone near the free surface.  Without a rate-strengthening 

zone, reverse rupture travels up dip with smaller maximum and minimum shear stress  
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Figure 2.8.  Minimum and maximum shear stress for both reverse (red) and normal-fault 
(blue) models with τo=15 MPa and α=0.  Reverse rupture travels up dip with smaller 
maximum and minimum shear stress than the corresponding normal rupture until near the 
free surface (< 3 km), indicating a larger static stress drop than the normal rupture.  For 
analogous models with a rate-strengthening zone near the free surface (0-5 km downdip), 
reverse rupture travels up dip with smaller maximum and minimum shear stress than the 
corresponding normal rupture; however, note that the normal-fault simulation has no 
significant stress drop in the rate-strengthening region while the reverse-fault simulation 
does (although both ruptures produce significant slip in the rate-strengthening region).  
These results indicate that the time-dependent normal stress induced by the free surface 
allows reverse rupture to more easily penetrate a rate-strengthening region near the 
surface, compared to normal fault rupture. 
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than the corresponding normal rupture until near the free surface (< 3 km), indicating a 

larger static stress drop than the normal rupture  Near the free surface, the maximum 

shear stress for the reverse fault is greatly amplified, while the sliding frictional stress is 

greatly reduced.  The normal fault reverses this pattern.  With a rate-strengthening zone 

near the free surface, reverse rupture travels up dip with reduced maximum and minimum 

shear stress, much as in the no-rate-strengthening case. In particular, there is a strong 

stress drop even in the rate-strengthening zone near the free surface.  However, the 

normal fault simulation shows no significant stress drop in the rate-strengthening region , 

although both ruptures produce significant slip in the rate-strengthening region. For the 

reverse fault case we see a large decrease in normal stress that results in a net stress drop 

and more slip than the normal fault in the rate-strengthening region.  These results 

indicate that the time-dependent normal stress induced by the free surface allows thrust 

rupture to more easily penetrate a rate-strengthening region near the surface, compared to 

normal rupture.  Rate-strengthening zones are normally associated with regions of stress 

increase during rupture.  The current results indicate that it is possible to obtain a stress 

drop in a rate-strengthening zone due to a large free-surface-induced reduction in normal 

stress.  Although the frictional coefficient inevitably increases in such a zone as slip 

accumulates (eq. 2.8), a large dynamic normal stress drop can compensate to ultimately 

lower the shear stress, resulting in a static stress drop (Kozdon and Dunham, 2012). 

 

In light of the peak velocity differences between reverse and normal fault models, as well 

as the normal stress perturbations that seem to drive reverse ruptures more efficiently at 
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lower loading stresses, we examine particle velocities in the mesh.  Figure 2.9 shows 

particle speed snapshots throughout the mesh for reverse and normal ruptures using the 

RS-AL with τo = 15 MPa and α = 0.  Snapshots at 4 seconds have identical particle 

motion amplitudes for both reverse and normal faulting, because no signal has yet arrived 

from the free surface to break the symmetry of the rupture process.  However, at 8 

seconds the reverse rupture begins to accelerate, and increased particle speed is apparent 

relative to the normal rupture. The reverse and normal fault ruptures breakout to the free 

surface at 13 seconds and 15 seconds, respectively, with the reverse case showing much 

larger particle motion.  A sub-Rayleigh (S-R) breakout phase subsequently travels 

downdip to the base of each fault.  At 18 and 20 seconds, respectively, the reverse rupture 

again shows larger particle motion.  Additionally, we note the presence of a supershear 

(S-S) Mach cone traveling immediately behind a reflected P-wave downdip along the 

reverse fault.  This is likely the result of changing normal stress (and thus the seismic S 

ratio, which controls rupture speed) values near the free surface.  Large normal stress 

fluctuations are certainly a mechanism for such a supershear transition, as seen in 

previous stepover models (chapter 1).  The Mach cone is not as clearly seen in the normal 

fault model, although it exists. This mode of supershear transition has not yet been 

reported or observed in the Earth to the best of our knowledge. We plan to investigate 

this supershear mechanism more thoroughly in future work by looking at more 

heterogeneous stress regimes, various dip angles, and other various material properties. 

 



 

 91 

 
Figure 2.9.  Particle speed snapshots at different times for ageing law models with reverse 
and normal fault ruptures (τo = 15MPa and α = 0).  Red lines indicate a reverse fault; blue 
lines indicate a normal fault. Results show larger particle speeds for reverse fault models 
relative to normal fault models.  Due to normal stress changes on each fault, rupture 
propagates much more energetically for the reverse case. At time steps 13 seconds and 15 
seconds for the reverse and normal rupture, respectively, we see a more intense surface 
rupture for the reverse case.  Later seen at time step 18 seconds, the sub-Rayleigh (S-R) 
breakout phase travels downdip along the reverse fault much more prominently than the 
normal fault.  Additionally, a prominent supershear (S-S) Mach cone travels downdip 
ahead of the breakout phase along the reverse fault.  The Mach cone and breakout phase 
have close proximity ground motions. 
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Discussion 

Perturbations in normal stress have been experimentally determined to cause changes in 

the state variable, and therefore friction coefficient, of the opposite sign (Linker and 

Dieterich, 1992).  This is quite significant for faults that are known to exhibit large 

dynamic fluctuations in normal stress during rupture, including both stepovers and dip-

slip faults.  Adding a normal-stress-dependent state variable to our stepover models 

reduces maximum rupture jump distance for both compressional and dilational models, 

due to the fact that both dilational and compressional steps lead to dynamic re-nucleation 

in regions of decreased normal stress.  Although this idea may seem counterintuitive, 

since compressional steps are associated with large dynamic increases in normal stress 

near the step region, the complex stress fields generated in our models do show a 

decrease in normal stress that facilitates re-nucleation.  Secondly, dilational steps tend to 

have larger decreases in maximum rupture jump due to a stronger reduction in normal 

stress, which leads to a corresponding stronger perturbation in state variable and 

frictional resistance. We tested this idea by examining slip-weakening plots for a point in 

the middle of the nucleation zone for each stepover type, showing that the normal stress 

dependence of state leads to a larger increase in dissipated energy for dilational steps than 

for compressional steps.  A secondary mechanism for this result is the increased normal 

stress around the re-nucleation point for a compressional step, which leads to a decrease 

in frictional coefficient; however, this secondary mechanism can be critical-crack length 

dependent.  Specifically, if the critical crack radius for re-nucleation does not encompass 
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this zone of decreased frictional coefficient, then the rupture would already be 

spontaneously propagating by the time it reached such a zone. 

 

The above effects correspond to an overall decrease in the distance that rupture can jump 

using laboratory-derived friction laws with normal-stress-dependent state.  Therefore, 

using classic slip-weakening friction may lead to an overestimation of maximum jump 

distance, given otherwise equivalent models.  Whether or not rupture jumps a fault step 

certainly relates to the size of potential multi-segment earthquakes.  Taking into account 

stepover width, fault segment overlap, whether or not the region is compressional or 

extensional, and absolute stresses at fault steps could be useful in hazard mitigation.  

Although absolute fault stress has proven difficult for seismologists to measure and 

therefore is somewhat arbitrary as a modeling parameter, many models are in good 

agreement with maximum jumping distances determined observationally (e.g., Harris and 

Day, 1993; Wesnousky, 1988).  Dynamic models can and should continue using more 

realistic friction parameterizations since we can directly quantify friction in lab 

experiments.  Additionally, high speed and large slip friction experiments can push the 

boundary of scaling laboratory earthquakes to real earthquakes (e.g., Tsutsumi and 

Shimamoto, 1997). 

 

Decreasing the loading stress of the dip-slip models makes the slip pulses less crack-like 

(Zheng and Rice, 2000), however, we do not quantify this effect specifically.  More 

importantly for the current study, decreasing loading stress eventually leads to ruptures 
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dying out on their way updip to the free surface; this effect is more pronounced for 

normal fault ruptures, consistent with reverse ruptures having smaller frictional resistance 

and lower final shear stress near the free surface.  This effect does not necessarily lead to 

larger dynamic stress drops for reverse ruptures. Nonetheless, if the reverse and normal 

fault rupture fronts travel updip with the same frictional resistance (τo = 16.10 MPa case 

in figure 2.7) exactly at the border between regions of normal stress increase and 

decrease, then it is easily seen that the reverse rupture does have a larger dynamic stress 

drop.  Most importantly, given the same initial conditions, reverse fault ruptures are more 

likely to reach the free surface and produce larger magnitude earthquakes. Adding a rate-

strengthening zone near the free surface does not preclude the ruptures from having static 

stress drops, particularly in the case of thrust earthquakes.  Static stress drop depends on 

the dynamics of the rupture.  In our case, reverse rupture does have an increase in friction 

coefficient in the rate-strengthening zone (figure 2.8).   However, there is also a large 

normal stress reduction (figure 2.7a), which leads to a net shear stress decrease and thus a 

stress drop.   

 

Increasing the normal stress dependence of state variable (i.e., increasing α) in the dip-

slip models tends to quench the difference in peak slip speed between reverse and normal 

faulting.  However, the difference in total slip remains relatively small.  This effect is 

probably due to a relatively unchanged energy budget for the models.  In other words, the 

slope of the weakening curves change with changing alpha, however, the total dissipated 

energy (fracture energy) does not change much, so the energy left over for slip remains 
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largely unchanged.  One can imagine fracture energy remaining the same if both the 

effective slip-weakening distance and the strength excess change by the right amount, 

and this is consistent with Guatteri and Spudich (2000) who suggest that the effective 

slip-weakening distance and the strength excess for earthquakes cannot both be 

determined accurately from fracture energy estimates.  We note that do can change within 

are models, especially near the free surface, where large perturbations in normal stress 

alter shear stress weakening more substantially.  Differences in peak slip speed (and to 

some small extent total slip) between reverse and normal ruptures result from differences 

in dynamic stress drop and frictional resistance.  Thus, strong particle motion seen in the 

reverse models does not come from directivity, which would imply similar motion along 

both reverse and normal faults.  Results can depend on dip angle, fault width, and the 

burial depth of the fault (e.g., Abrahamson and Somerville, 1996; Oglesby and Archuleta, 

2000a).   

 

Observationally, reverse/thrust ruptures are associated with large energy release and 

correspondingly large ground motion.  Some examples of reverse faults reaching the 

surface include the 1973 San Fernando (Hanks, 1974) and the 1978 Tabas, Iran 

earthquakes (Berberian, 1982).  Reverse faults often outcrop under the ocean, and can 

have large tsunami potential.  Therefore our models would imply larger water height 

during tsunamigenesis for reverse ruptures.  Additionally, adding a rate-strengthening 

region near the free surface may be one way to simulate tsunami earthquakes (Kanamori, 

1972) that are devoid of strong, high frequency radiation.  Our rate-strengthening models 
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show decreased rupture speed and decreased slip rate within the rate-strengthening zones 

that could simulate a slow earthquake rupture in the trench with substantial slip,  

 

Brune (1996) argues that radiated energy estimates for thrust faults are underestimated 

due to ‘trapped’ waves in the hanging wall.  Radiation patterns for reverse/normal faults 

could provide some insight into this idea.  For example, figure 2.9 shows large particle 

speed in the hanging wall of the reverse rupture.  Such trapped waves could be attenuated 

before reaching seismic equipment unless the equipment is close to the fault trace.  The 

supershear Mach cone seen traveling downdip in the reverse rupture model has not been 

noted in other dip-slip studies (e.g., Oglesby and Archuleta, 2000a).  Future work will 

include a more thorough investigation as to its mechanism including variations in dip 

angle and stress regime.  Because the S-waves along the Mach cone may nearly coincide 

with the Rayleigh breakout phase along the free surface, observations for such a 

supershear transitions may not be obvious.  Additionally, the standard Burridge-Andrews 

mechanism for supershear rupture cannot be applied to dynamic simulations with a free 

surface, therefore, a new set of criteria must be developed and used to investigate the free 

surface mechanism for supershear transition. 

 

Using laboratory-based friction formulations such as rate- and state-dependent friction 

can make dynamic models of earthquake rupture more realistic.  For earthquake ruptures 

that exhibit strong perturbations in normal stress, for example, stepovers and dip-slip 

faults intersecting the free surface, it is crucial to use laboratory-derived friction laws that 
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incorporate changes in normal stress.  For our study, using too simplistic a friction law 

(e.g., linear slip-weakening friction) exaggerates both maximum jump distance as well as 

the asymmetric dynamics of compressional versus dilational steps and reverse versus 

normal fault ruptures.  Although it is still somewhat unclear how such friction laws scale 

to large slip speeds and over large lengths (e.g., fault length), laboratory faults do indeed 

exhibit behaviors similar to real faults: steady creep, oscillatory creep, and unstable slip.  

Additionally, rate-state friction has reasonable properties including slip weakening, rate-

strengthening, and healing (Dieterich, 1992).  For very large changes in normal stress, the 

state variable may naturally saturate (approach a limiting value), and therefore we may be 

over predicting state variable changes in our models.  For increments in normal stress that 

last for long time periods (103 or 104 seconds) the change in state variable is probably less 

accurate (Linker and Dieterich, 1992). 

 

Our 2-D plane strain models can generalize to 3-D under our homogeneous conditions.  

However, since our models are 2-D there is a concentration of energy near the crack tip 

and an overestimation of particle motion.  Stepovers with small step widths may produce 

some grid-dependent results if the dynamic waves interacting between the fault segments 

have much larger wavelengths than the step width.  Normal stress fluctuations are well 

resolved in our models, as seen by the smooth transition in normal stress across elements.  

However, larger fluctuations in normal stress in larger absolute stress models than we 

have studied here may not be resolved from our discretization, especially if the 

fluctuations happen quickly in time (Andrews and Ben-Zion, 1997).  We do not look at 
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specific frequencies of peak velocities, although they might provide a more robust 

comparison between reverse and normal faulting especially for more realistic ground 

motion (Abrahamson and Somerville, 1996), since attenuation is frequency dependent 

(e.g., Castro et al., 1995).  Future work will incorporate more advanced geometries of 

dip-slip faults including rough and curved faults.  Finally, we will look for the 

mechanism of the observed Mach cone in the dip-slip models by including such fault 

geometries as well as heterogeneous stress and velocity structure. 

 

Conclusion 

Overall, the range in rupture jump distance for our stepover models are in good 

agreement with both observational (e.g., Wesnousky, 1988; Elliot et al., 2009) and 

numerical studies (e.g., Harris and Day, 1993) even though the friction formulations 

employed produce slightly differing results.  By equating the effective slip-weakening 

distance do of the friction formulations we cannot equate the fracture energies between 

different frictional parameterizations.  Nonlinear weakening laws such as the rate-state 

slip law have relatively lower fracture energies and relatively higher seismic radiation 

energies when the weakening distance is equated.  Perhaps a more accurate way to ensure 

that different friction parameterizations will produce similar results is to equate their 

fracture energies, since we have shown that doing so produces more similar maximum 

rupture jump distances between different friction laws.  One way to increase accuracy 

further could be increasing the initial shear stress for models using the classic slip-

weakening friction and the ageing law relative to slip law models, so all have the same 
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average amount of seismic radiation.  It is definitely worth considering friction law 

effects for hazard analysis at stepovers, since maximum jump distance is related to 

maximum earthquake size.  Friction governs the rupture process directly along the entire 

rupture path, and is equally as important as absolute stress levels and detailed fault 

geometry, although all of these are ultimately critical to more accurate modeling. 

 

Using the more advanced Linker-Dieterich form of rate-state friction quenches the 

asymmetries that have been shown in previous stepover and dip-slip studies (e.g., Harris 

and Day, 1993; Oglesby et al., 1998).  Intuitively, it can be easy to understand such a 

result when the friction coefficient compensates for changes in normal stress, since 

differences between compressional and dilational stepovers as well as normal and reverse 

faults are caused by fluctuations in normal stress.   

 

For the same initial conditions, rupture propagation updip is hindered more in the normal 

fault case than the reverse fault case with decreasing loading stress.   Decreasing the 

loading stress does not decrease the wave speeds of the elastic material, and therefore 

normal ruptures travel updip in less favorable conditions (larger shear strength and larger 

final shear stress) than reverse ruptures.  It has been shown that intense asymmetries in 

normal and reverse-type faulting still exist with differing dip angles (Oglesby et al., 

1998), but that the asymmetries reduce dramatically for buried dip-slip faults (Oglesby 

and Archuleta, 2000a, Oglesby et al., 2000b). 
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A novel and unexpected result of the current work is that a supershear transition can 

occur in both stepover and dip-slip models that would otherwise preclude the transition 

based on initial stress regimes in a symmetric whole space (Andrews, 1976b).  Changes 

in normal stress produce conditions for the transition to occur on the secondary faults for 

high-stress stepover models and downdip for reverse fault and normal fault models (albeit 

with a much smaller intensity for the normal fault).  Observing supershear transitions 

along stepovers may be possible by analyzing the direction of strongest ground motion, 

which is known to be fault parallel for strike-slip supershear ruptures (e.g. Dunham and 

Archuleta, 2004) rather than the more common fault-perpendicular direction for subshear 

rupture.  However, to the author’s knowledge no supershear transition has been observed 

for dip-slip ruptures.  Our results show that the ground motion resulting from the 

breakout phase is in close proximity to the ground motion from the Mach cone that 

travels downdip after the rupture has reached the free surface.  The breakout phase 

possibly masks any observations of the supershear slip pulse.  Locating the breakout 

phase for such an observed rupture could provide a starting point to locate supershear 

pulses if they exist in nature.  We plan to further investigate the cause of the supershear 

transition for dip-slip faults by exploring other geometries and stress regimes. 
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