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ABSTRACT OF THE THESIS

Collision-Free Task Assignment and Trajectory Planning
for Multi-Robot Systems

by

Yasuhiro Toyoda

Master of Science in Engineering Sciences (Aerospace Engineering)

University of California San Diego, 2020

Professor Sonia Martı́nez, Chair

In this paper, we address the problem of assigning tasks and generating trajectories in

a collision-free manner for multi-robot systems moving along a predefined roadmap. First,

we propose centralized algorithms, which assign tasks to minimize the total travel distance

or the collisions and then resolve the collisions with replanning the trajectory by local graph

modification. Especially, to minimize the collisions in the initial task assignment, we formulate

an optimization problem whose objective function includes the number of collisions based on a

conflict graph that encodes all possible collisions among the system. We also develop a method to

resolve remaining collisions in the initial task assignment. In this method, each robot has a graph

xii



representing the roadmap, which is used to generate its trajectory. When a collision occurs on the

trajectory, the robot modifies the graph to regenerate the trajectory that resolves the collision.

We then propose several decentralized algorithms, extending the centralized methods,

which assign tasks initially before robots start moving in such a way to minimize the total travel

distance, minimize collisions, or deploy randomly, and then avoid collisions with local graph

modification. In the initial task assignment minimizing collisions, each robot calculates the

expected value of collisions based on the local conflict graph, which encodes possible collisions

among the neighborhood, and choose a task to minimize the expectation while coordinating to

resolve a conflict of the assignment with the neighborhood.

The paper finally reports on simulations for systems of several tens of robots to evaluate

the performance of the proposed centralized and decentralized algorithms.
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Chapter 1

Introduction

1.1 Motivation

Coronaviruses have caused a tremendous impact on the global economy and have trans-

formed the lives of people. The United States and a lot of other countries around the world have

declared a state of emergency for COVID-19 and ordered stay at home and work from home to

prevent the spread of infection, and people are living while maintaining a social distance. Even in

such a situation, for essential work such as the healthcare, grocery stores, and delivery service,

they are permitted to continue the business, and the safety of employees against infection is

one of the most significant issues. In order to minimize the risk of infection for employees, to

restart stagnant economic activities, and to reconstruct a more sustainable economic against such

unprecedented situation, the coronavirus recession could bring about a spike to automation in such

a way that most tasks that currently done by human workers are automated by utilizing robots[1].

Especially, the contribution of mobile robots covers a wide range of businesses, exemplified in

Figure 1.1.

Mobile robots are robots that can move from one place to another autonomously, that is,

without assistance from external human operators [2]. For example, many people are shifting
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Figure 1.1: Mobile robots,(a)warehouse robot[5], (b)hospital robot[4], (c)driverless delivery
vehicle[3]

to e-commerce to get essential goods instead of buying at physical stores due to coronaviruses

outbreak. Along with that, the work in the warehouse has increased significantly. On the other

hand, the spread of infection in warehouses has become a major issue, therefore the demand for

autonomous mobile robots that transport inventory around the warehouses is increasing. The field

of robotics is expanding in the medical field as well. Robot nurses are a good example, which

provides appropriate treatment for patients while protecting doctors and nurses from infection [3].

Another type of robot in the hospital may deliver drugs and clean linens and meals to patients

while carting away medical waste and soiled sheets [4]. Thus, various robots will be introduced

in the medical field.

With increasing the demand to minimize contact with other people and to mitigate risks

for such situations, the adoption of mobile robots will be accelerating in a wide range of business

fields such as medical care, industry, and logistics. In an environment where multiple robots

share a workspace, the robots are required to collaborate with others to achieve the whole tasks

effectively as a group of robots, rather than independently performing only predetermined tasks.

In comparison with single robots, multi-robot systems demonstrate several advantages: faster

completion of all tasks by performing tasks in parallel, higher robustness against the faults of

individual robots and small subgroups, and easier adaptation to a variety of different applications

and missions. However, in order to realize the multi-robot system, we need to solve several
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Figure 1.2: Block diagram of mobile robot

specific problems that do not appear in the considerations of the mobile robots acting individually:

preserving the activity of the swarm as a unit, communication and interactions between the

robots, collision avoidance, and allocation of tasks[6]. In this paper, we primarily consider the

collision-free trajectory planning as well as task allocation.

An abstract block diagram of the autonomous mobile robot is shown in Figure 1.2. The

robot processes observations coming from on-board sources such as cameras, radars, LiDARs,

GPS, and/or inertial sensors to estimate its position and perceive the surrounding environment.

Based on such information, each robot decides a task that will be accomplished and plans a

trajectory to the task. Then, local actions are decided based on behavior arbitration [7]. Multi-

robot systems can communicate and coordinate to make better decisions during each process. In

this paper, we focus on collision avoidance in the path planning phase and consider the problem

of task assignment and path planning for multi-robot systems without any collision.

1.2 Related Works

Several works can be found in the literature that addresses task assignment and trajectory

planning in which robots do not collide. In [8], a centralized task assignment algorithm that makes

use of the Hungarian algorithm under the assumption about the initial locations of robots and goals

was proposed. The robot can move around N dimensional Euclidean space with no obstacle. With

the assumption, the proposed algorithm can guarantee the solution is collision-free. In addition, a

3



decentralized algorithm is formulated based on their centralized algorithm. In the decentralized

algorithm, robot exchanges assigned goals with other robots within the communication radius

in such a way that the sum of distance squared for the pair of robots decreases. The work is

extended in [9] to remove the assumption for the initial location and proposes a decentralized

task assignment and trajectory generation based on methods related to switched systems. When

a robot is about to result in colliding with others, it changes policy dynamically to avoid the

collision, which is based on a Lyapunov-like barrier function.

In [10], authors consider the collision-free task assignment for multiple robots, moving

along a predefined roadmap. The conflict graph which encodes possible collision over the system

is introduced, and tasks are assigned to robots solving an optimization problem, which minimizes

total cost under the constraints collected in the conflict graph. The Dijkstra’s algorithm [11] is

utilized for generating the shortest path on the roadmap, and they do not consider replanning the

path to dodge the collisions. Therefore, in some specific cases, the optimization problem does not

have a solution, that is, no matter how tasks are assigned, it includes collisions.

In the literature, several collision avoidance approaches are provided based on local

coordination of robot motion. The coordination method for collision avoidance and deadlock

detection/resolution is proposed in [12]. If a possible collision is detected, robots start to

negotiate, and if necessary, one of the robots has idle time to avoid the collision. In [13], [14],

the decentralized robot motion policy assumes a more realistic situation such that robots have

practical dynamics preventing immediate stops or not allowing stops at all. In [15], this work

introduces a collision avoidance method for aerial robots using altitude control. These works

successfully avoid collisions in euclidean space. Assuming a roadmap environment, they should

be allowed that robots deviate from the roadmap to avoid collisions.

Compared to the centralized multi-robot systems, the decentralized systems offer many

potential advantages: robustness in terms of a single point of failure, computational resources,

scalability, and flexibility of the system configuration. On the other hand, they involve challenging
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issues such as coordination among robots and the handling of the distributed information. In [16],

a distributed version of the Hungarian algorithm is developed considering a connected network in

which each robot broadcasts information over the system.

Several works introduce market-based coordination approaches to solve the task assign-

ment problem, which are characterized by the absence of a centralized decision-maker. [17]

utilizes the contract net protocol, where task-swap is the only possible type of contract. Given

initial task assignments, each robot coordinates according to the protocol and exchanges the task

with a neighborhood if decreasing the cost. Decentralized task assignment algorithms exist in

[18], [19], in which every task is occupied by at least one robot without being given an initial task

assignment. The first work introduces a consensus-based auction approach(CBAA), in which

each robot places bids on tasks, and the highest bid wins the assignment. In general, the auction

algorithm requires an auctioneer to receive and evaluate bids from the neighborhood. The CBAA

removes the auctioneer by combining the consensus approach to resolve conflicts of the winner.

In [19], a distributed coordination algorithm based on the auction approach is proposed. Each

auction is performed among neighborhoods, and a robot with the highest bid is assigned to

the task. Therefore, although it is guaranteed that each robot eventually reaches a task without

conflicts of assignment, this algorithm allows that robots are assigned to the same task.

1.3 Contribution

In this paper, we consider the problem of assigning tasks and generating trajectories in

a collision-free manner for multi-robot systems moving along a predefined roadmap. First, we

propose centralized algorithms, characterized by a two-phase approach, leading a solution that

includes no collision while minimizing the total travel distance. The first phase is to determine the

task assignment, which minimizes collisions over the system. To realize such a task assignment,

we formulate this problem as an integer linear programming, whose objective functions are not
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only the total distance but also the number of collisions encoded utilizing the conflict graph.

Tasks are assigned to robots, solving this optimization problem. We also develop an algorithm to

resolve remaining collisions in the assignment of the first phase. In this algorithm, each robot has

a graph representing the roadmap, which is used to generate the shortest path. When a collision

occurs on the trajectory, the robot modifies the graph to regenerate the trajectory, which avoids

the collision.

Furthermore, decentralized algorithms are developed based on the knowledge of the

centralized system. Robot calculates the expectation of the collisions for each task as an objective

function, making use of the local conflict graph that encodes the collision with the neighborhood.

A variable of the objective function is only its assignment, not related to assignments for other

robots. Therefore, conventional market-based coordination approaches can be exploited to assign

tasks that minimize each robot’s objective function. After start moving to the assigned goal,

robots keep communicating with their neighborhood and updating trajectories dynamically with

the graph modification algorithm to avoid the collision. The proposed decentralized algorithm

guarantee that all robots eventually reach to their goal without collisions.

1.4 Organization

This paper is organized as follows. Section 2 introduces preliminary notions, and the

basis of graph theory related to this paper. Section 3 presents the mathematical formulation of the

problem, which is addressed with the centralized and decentralized approaches. In Sections 4 and

5, the centralized and decentralized algorithm are proposed respectively. The simulation results

for proposed algorithms are provided in Section 6. Section 7 summarizes our conclusions and

future works.
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Chapter 2

Preliminary

Let R, R>0, R≥0, and Z≥0 denote the set of reals, positive reals, non-negative reals, and

non-negative integers, respectively. The transpose of a matrix A is AT . The identity matrix of

size n is denoted by In. The cardinality of a set V is the number of elements of the set, given by

|V |. Let 1n be n-dimensional vector where every element is equal to one.

Graph Theory

A weighted graph G = (V,E) consists of a set of vertices V and a set of edges E ⊆V ×V ,

and each edge of the graph has an associated numerical value, called a weight. The vertex set

of a graph G is reffered to as V (G), its edge set as E(G). For u,v ∈V and u 6= v, the pair (u,v)

denotes an edge from u to v. For an undirected graph, if (u,v) ∈ E, there exists (u,v) anytime,

and the vertices u and v are adjacent, or neighboring.

Given a graph G = (V,E) with V = {v1,v2, · · · ,vn} and E = {1,2, · · · ,em}, the adjacency

matrix A(G) is defined as a |V |× |V | matrix whose (i, j)-th element ai, j given by:

ai, j =


1 if (vi,v j) ∈ E(G)

0 otherwise

7



The unoriented incidence matrix I(G) is a |V |× |E| matrix whose (i,k)-th element ιi,k

given by:

ιi,k =


1 if vi ∈ ek

0 otherwise

where, v ∈ e means that v is the vertex of the edge e.

The set of vertices which adjacent to a vertex v ∈ V (G) is denoted by NG(v), and the

degree of v is defined as d(v) = |NG(v)|. We represent the set of all possible subgraph of G related

to edges as G = {(V,E)|E ⊆ E}. A path (or trajectory) in a graph is an ordered sequence of

vertices such that any pair of consecutive vertices in the sequence is an edge of the graph, A graph

is connected if there exists a path between any two vertices, and otherwise it is disconnected. For a

weighted graph, the length of a path is the sum of the weights of the edges in the path. The distance

dG(u,v) denotes the length of a shortest path between u and v in G, and Appendix A shows an

algorithm for finding the shortest path between an arbitrary pair of vertices. [20],[21],[22].

In this paper, we describe that a n×m grid graph is a graph whose vertices correspond

to the points on two-dimensional Euclidean space with integer coordinates, x-coordinates being

in the range 1,2, · · · ,m and y-coordinates being in the range 1,2, · · · ,n, and two vertices are

connected by an edge whenever the corresponding points are at Euclidean distance 1, as shown in

Figure 2.1.

Multi-robot Systems on Predefined Roadmap

We consider N robots system that robots move on a grid graph G = (V,E) with constant

unit speed 1 and change the direction on only vertices, that is, are located on vertices at each

discrete time t ∈ Z≥0. Let xi(t) ∈ V for i ∈ {1,2, · · · ,N} denote the vertex where the robot

occupies at t. The system state vector is given by:

X(k) = {x1(k),x2(k), · · · ,xN(k)} ∈V N

8



Figure 2.1: n×m grid graph (n = 6, m = 9, N = M = 3)

Given M stationary goals to be accomplished by the robots, let g j ∈ V for j ∈ {1,2, · · · ,M}

denote the vertex where the goal is located. The system goal state vector is:

T = {g1,g2, · · · ,gM} ∈V M

Let ξi, j = {ξ0
i, j,ξ

1
i, j, · · · ,ξ

∆i, j
i, j } denote a trajectory from robot i to goal j. The element

ξt
i, j ∈V (G) represents the location of robot i which moves to goals j at the discrete time t, and

ξ0
i, j = xi(0), ξ

Di, j
i, j = g j. In addition, the length of the trajectory ξi, j is written as l(ξi, j) = ∆i, j. If

assigned goal fi of robot i is decided, we simply write ξi instead of ξi,fi , and let ξ = {ξi | i ∈

{1,2, · · · ,N}} be the set of trajectories for all robots.

9



Chapter 3

Problem Definition

Let us consider N robots with no size which move on a grid graph G = (V,E) and M goals.

All robots are homogeneous and interchangeable with no preference of goals, and do not have

any sensing or actuation error. Let φi, j ∈ {0,1} be the decision variable that indicates whether or

not goal j is assigned to robot i:

φi, j =


1 if robot i is assigned to goal j

0 otherwise

Furthermore, we define the stacked vector of the decision variables related to robot i as φi =

[φi,1,φi,2, · · · ,φi,N ]
T and the stacked vector over the system as φ = [φT

1 ,φ
T
2 , · · · ,φT

N ]
T . Assuming

the number of goals is the same as robots, that is M = N, we require each robot is assigned to

each goal without duplication, which results in ∑
N
i=1 φi, j = 1, ∀ j ∈ {1,2, · · · ,N} and ∑

N
j=1 φi, j = 1,

∀i ∈ {1,2, · · · ,N}. Let fi be the goal assigned to robot i, in other words, fi = { j | φi, j = 1,∀ j}.

Definition 1. Let ξi, j be the trajectory from robot i ∈ {1,2, · · · ,N} to goal j ∈ {1,2, · · · ,N}. The

trajectories ξi, j and ξk,h collide if and only if either of the following conditions is true:

∀t ∈ Z≥0,

10



Algorithm 1: Collision-free Check between Trajectories ξi, j and ξk,h

Input :ξi, j, ξk,h
Output :True or False

1 tmin←min(l(ξi, j), l(ξk,h))
// Check Definition 1(a)

2 if ξt
i, j = ξt

k,h t ∈ {0,1, · · · , tmin} then
3 return False
4 end
// Check Definition 1(b)

5 if ξ
t+1
i, j = ξt

k,h and ξt
i, j = ξ

t+1
k,h t ∈ {0,1, · · · , tmin} then

6 return False
7 end
8 return True

a) ξt
i, j = ξt

k,h , or

b) ξ
t+1
i, j = ξt

k,h and ξt
i, j = ξ

t+1
k,h .

Otherwise, they are collision-free.

As described in the definition, to ensure the collision-free, we require two conditions;

a)any two robots must not occupy the same vertex at the same time, and b)any robots must

not move on the same edge at the same time. Algorithm 1 illustrates the pseudo code to check

collision-free between a pair of trajectories.

In this paper, we address the following problem:

Problem 1. The objective is to find an optimal set of trajectories ξ∗ = {ξ∗1,ξ∗2, · · · ,ξ∗N} which do

not collide each other while minimizing the sum of the length for all robots, given by:

ξ
∗ = argmin

ξ

N

∑
i=1

l(ξi) (3.1)

subject to:

ξi and ξk are collision-free ∀i,k ∈ {1,2, · · · ,N}
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Chapter 4

Centralized Task Assignment and

Trajectory Planning

4.1 Conceptual Approach

In this section, we consider a centralized algorithm to solve Problem 1. The centralized

system requires that robots always have perfect state knowledge over the system, such as locations

of all robots and goals, and goal assignment for all robots.

Problem Formulation with Graph Modification

The basic idea to find collision-free trajectories is that when a collision occurs, robots

replan the trajectories to avoid passing through the collision point. The collision point represents

either a vertex or an edge where robots will collide. In order to realize the idea, we introduce a

modified graph that some edge is removed from the roadmap graph G. The shortest path on the

modified graph, which is computed by Dijkstra’s algorithm, does not path through the removed

edge. Furthermore, it is possible to generate a trajectory that does not include the collisions point

by modifying the graph appropriately.
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Let us consider a situation that two robots 1 and 2 collide, shown in Figure 4.1(a). To

avoid the collision, robot 1 replans trajectories in the modified graph removed an edge, which

includes the collision point, resulting in robot 1 has trajectories that avoid passing the collision

point(see (b)). Then robots find the optimal set of trajectories to minimize the sum of length, as

shown in (c).

We generalize the approach that utilizes the graph modification to manipulate the trajectory

so that it can deal with multiple robots and goals, and reformulate Problem 1 for the centralized

system. Let G = {(V,El)|El ⊆ E l ∈ {1,2, · · · ,2|E|}} denote the set of subgraph related to edges,

which is the set of all possible modified graphs. The modified graph of robot i is denoted as γi,

and the set of modified graphs for the system is γ = {γ1,γ2, · · · ,γN}. Let Di, j(γi) be the distance

from robot i to goal j on the modified graph γi, that is, Di, j(γi) = dγi(xi,g j). Given robot i’s

assignment φi, the length of trajectory to assinged goal l(ξi) can be rewritten as:

l(ξi) =
N

∑
j=1

φi, jDi, j(γi) (4.1)

and since the trajectory can be manipulated by the modified graph, we write ξi = ξi(γi).

We reformulate Problem 1 based on the approach of graph modification as follows:

Problem 2. The objective is to find the set of modified graphs γ∗ and task assignment φ∗ which

result in the collision-free while minimizing the total travel distance:

γ
∗,φ∗ = argmin

γ,φ

N

∑
i=1

N

∑
j=1

φi, jDi, j(γi) (4.2)

subject to:

ξi(γi) and ξk(γk) are collision-free. ∀i,k ∈ {1,2, · · · ,N}

Considering the straightforward way to solve Problem 2, it is a brute-force approach,

as shown in Algorithm 2. This algorithm solves the optimization problem repeatedly for every
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Figure 4.1: An conceptual idea to find the collision-free trajectories.(a) Target assignment and
trajectories based on the original graph, but collision occurs. (b) Left: Robot 1’s trajectories
on the modified graph. Right: Robot 2’s trajectories on the original graph. (c) Collision-free
assignment and trajectories

possible modified graph, and find the desired task assignment and modified graph comparing

each solution. Since each robot has 2|E| possible modified graph, the algorithm requires to solve

the optimization problem 2N|E| times, and its time-complexity is estimated as O(2N|E|(|E|N2 +

N3 + |V | log |V |)). It is almost impossible to solve within a realistic time.
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Algorithm 2: Centralized Brute-force Graph Modification Algorithm
Input :G = (V,E),X(0),T
Output :ξi, fi, i ∈ {1,2, · · · ,N}

1 Jmin←+∞

2 γ(l)←{(V,El)|El ⊆ E, l ∈ {1,2, · · · ,2|E|}}
3 for p1 ∈ {1, · · · ,2|E|} do
4 γ1← γ(p1)
5 compute D1, j j ∈ {1, · · · ,N} by Algorithm 8 with γ1

6 for p2 ∈ {1, · · · ,2|E|} do
7 γ2← γ(p2)
8 compute D2, j j ∈ {1, · · · ,N} by Algorithm 8 with γ2

9
...

10 for pN ∈ {1, · · · ,2|E|} do
11 γN ← γ(pN)
12 compute DN, j j ∈ {1, · · · ,N} by Algorithm 8 with γN
13 D← [Di, j] i ∈ {1, · · · ,N}, j ∈ {1, · · · ,N}
14 compute φ∗ by Hungarian algorithm with D
15 J← ∑

N
i=1 ∑

N
j=1 φ∗i, jDi, j

16 fi← pick the index of ith robot’s goal from φ, i ∈ {1,2, · · · ,N}
17 ξi← trajectory from xi to gfi in γi by Algorithm 8 and 9, i ∈ {1,2, · · · ,N}
18 if J < Jmin and collision-free(Algorithm 1) for every pair of ξi and ξ j then
19 ξi← ξi i ∈ {1,2, · · · ,N}
20 fi← fi i ∈ {1,2, · · · ,N}
21 end
22 end
23 end
24 end
25 return ξi, fi i ∈ {1,2, · · · ,N}

Conceptual Approach for Centralized System

To reduce the time-complexity, instead of comparing all possible modified graphs, we

propose a two-step approach, as shown in Figure 4.2. The first step is to decide an initial

task assignment by solving an optimization problem, and we consider Minimum Distance Task

Assignment(MDTA) and Minimum Collision Task Assignment(MCTA). MDTA assigns goals

in a way to minimize the total travel distance, which is one of the most general assignment
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Figure 4.2: Conceptual approach for centralized system

problem as summarized in Appendix B.1. In this paper, we utilize the Hungarian algorithm to

solve the MDTA problem. In Section 4.2, we formulate the MCTA problem as an integer linear

programming. In this step, collision avoidance is not taken into consideration, and therefore the

initial assignment and trajectory may include collisions. Once we get the initial assignment and

trajectory, we resolve each collision in such a way to modify the graph locally, which is presented

in Section 4.3.

4.2 Minimum Collision Task Assignment

MDTA does not consider about collision and leaves all efforts for collision-free up to

the subsequent graph modification phase. For graph modification, It is anticipated that the more

edges are removed, the more a deadlock situation is likely to happen. Therefore, we develop
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another approach, MCTA, which finds task assignment with fewer collisions as possible while

minimizing the sum of distance. With MCTA, the extent of graph modification can be reduced.

Conflict Graph

We first define a graph to identify all the possible collisions in the system, which is

introduced in [10],[23]. Let S be the conflict graph, whose vertex vi, j ∈ V (S) represents an

assignment of robot i to goal j. The cardinality of V (S) is |V (S)| = N2. The edge between

vi, j and vk,h is denoted as (vi, j,vk,h), which implies that robot i assigned to goal j collides with

robot k assigned to goal h, that is, ξi, j and ξk,h collide. In our problem, each robot cannot be

assigned more than one goal, and each goal cannot be assigned more than one robot. Therefore,

(vi, j,vi,h) 6∈ E(S), ∀ j,h ∈ {1,2, · · · ,N} and (vi, j,vk, j) 6∈ E(S), ∀i,k ∈ {1,2, · · · ,N}.

ILP with Incidence Matrix of Conflict Graph

The MCTA problem is formulated with extending the conflict-free task assignment in

Appendix B.2. Let I(S) be the unoriented incidence matrix of the conflict graph S. Given the

assignment φ, the existence of collisions is encoded by a vector bI(φ) = IT (S)φ ∈ {0,1,2}|E(S)|.

According to the definition of conflict graph and unoriented incidence matrix, if bIk = 2, the

collision represented by the edge of conflict graph corresponding to kth column of I(S). There-

fore, the number of collision in the system can be identified by counting up the element which

is bIk = 2, ∀k ∈ {1,2, · · · , |E(S)|}, which is formulated as ∑
|E(S)|
k=1 R(bIk(φ)− 1). R(∗) is the

ramp function(R→ R>0) defined as the mean of the independent variable and its absolute value,

R(x) := x+ |x|x+|x|2 . Therefore, the number of collision is written as:

h(x) =
|E(S|

∑
k=1

|bIk(x)−1|+bIk(x)−1
2

(4.3)

The objective of MCTA is to not only minimize the number of collision, but also minimize
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the sum of distance. We define the objective function of the sum of distance as the follows:

f (φ) =
N

∑
i=1

N

∑
j=1

Di, jφi, j (4.4)

where, Di, j represents the distance from robot i to goal j on the roadmap graph G. Since there are

two objective functions, the problem is classified to the multi-objective optimization problem,

and we transform the multiple objectives into an aggregate objective function by multiplying each

objective function by a weighting factor and summing up all weighted objective functions. The

optimization problem of MCTA is formulated as follows:

minimize: J(φ) = w1 f (φ)+w2h(φ) (4.5)

subject to:
N

∑
i=1

φi, j = 1, j ∈ {1,2, · · · ,N} (4.6)

N

∑
j=1

φi, j = 1, i ∈ {1,2, · · · ,N} (4.7)

φ ∈ {0,1}N (4.8)

We linearize this problem in such way that the absolute value in the objective function

h(φ) will be reformulated into two linear expressions. Let zk = |bIk−1| be a new variable to relax

the absolute value, and it can be broken down to two inequalities given by: ∀k ∈ {1,2, · · · , |E(S)|

bIk−1≤ zk (4.9)

bIk−1≥−zk (4.10)

and the objective function h(x) is reformulated using two variables as given by:

h(φ,z) =
|E(S)|

∑
k=1

zk +bIk(φ)−1
2

(4.11)
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The optimization problem can then be rewritten as the integer linear programming problem given

by:

minimize: J(φ,z) = w1 f (φ)+w2h(φ,z) (4.12)

subject to: bIk−1≤ zk, k ∈ {1,2, · · · , |E(S)|} (4.13)

bIk−1≥−zk, k ∈ {1,2, · · · , |E(S)|} (4.14)

N

∑
i=1

φi, j = 1, j ∈ {1,2, · · · ,N} (4.15)

N

∑
j=1

φi, j = 1, i ∈ {1,2, · · · ,N} (4.16)

φ ∈ {0,1}N (4.17)

z ∈ {0,1}|E(S)| (4.18)

Solving this ILP problem on the computer, we realized that while the problem could be

solved in a few second, it took a long time to set the problem. This is because the summation of

h(φ,z) in (4.11) blows up as the number of robots and goals increase, and the number of edges of

the conflict graph S reach at most N4. We reformulate the number of collision in a way to use the

adjacency matrix of the conflict graph S.

ILP with Adjacency Matrix of Conflict Graph

Let A(S) = (a(i, j),(k,h)) be the N2×N2 adjacency matrix of the conflict graph S, and

according to the definition of the adjacency matrix, given the assignment φ, the number of

collisions which happens on a path from robot i to goal j is given by:

bi, j(φ) =
N

∑
k=1

N

∑
h=1

a(i, j),(k,h)φk,h (4.19)
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and therefore, the total number of collisions in the system is given by:

hA(φ) =
1
2

N

∑
i=1

N

∑
j=1

bi, j(φ)φi, j (4.20)

Next, we linearize (4.20) since it is the nonlinear function for variables φ. We consider to identify

a linear function:

f (bi, j,φi, j) =


bi, j if xi, j = 1

0 otherwise
(4.21)

Each assignment has at most N−1 collisions, in other words, the upper bound of bi, j is N−1.

From this fact, bi, j−N(1−φi, j) is always negative for φi, j = 0, and clearly shows bi, j for φi, j = 1.

With the ramp function, we can realize the linear function (4.21) as R(bi, j−N(1−φi, j)), and

(4.20) is linearized as the following:

1
2

N

∑
i=1

N

∑
j=1

R(bi, j−N(1−φi, j)) (4.22)

Since (4.22) has absolute value in the ramp function, we reformulate in similar way to

linearize (4.11), as shown by:

hA(φ,z) =
1
2

N

∑
i=1

N

∑
j=1

zi, j +bi, j−N(1−φi, j)

2
(4.23)

zi, j = |bi, j−N(1−φi, j)| (4.24)
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The MCTA problem can be formulated as the multi-objective Integer Linear Programming:

minimize: JA(φ,z) = w1 f (φ)+w2hA(φ,z) (4.25)

subject to: bi, j−N(1−φi, j)≤ zi, j, i, j ∈ {1,2, · · · ,N} (4.26)

bi, j−N(1−φi, j)≥−zi, j, i, j ∈ {1,2, · · · ,N} (4.27)

N

∑
i=1

φi, j = 1, j ∈ {1,2, · · · ,N} (4.28)

N

∑
j=1

φi, j = 1, i ∈ {1,2, · · · ,N} (4.29)

φ ∈ {0,1}N (4.30)

This ILP can solve much faster than the former ILP (4.12), because hA(φ,z) requires to

sum N2 terms, which is less than N4 of h(φ,z).

To get the desirable solution, which prioritizes to minimize the number of collision, we

set the weighting factor as w1 << w2.

Alternative Form of Linearization : We also introduce other way to linearize (4.20). Non-

linearity of this equation comes from the product of two binary product φi, j×φk,h. Let yi, j,k,h =

φi, j×φk,h ∈ 0,1 be new binary variable, and (4.20) can be linearized as:

hA(y) =
1
2

N

∑
i=1

N

∑
j=1

N

∑
k=1

N

∑
h=1

a(i, j),(k,h)yi, j,k,h (4.31)

Since possible combinations of (φi, j,φk,h,yi, j,k,h) are (0,0,0), (1,0,0), (0,1,0), and (1,1,1), we

add some constraint for yi, j,k,h: φi, j− yi, j,k,h ≥ 0 and φk,h− yi, j,k,h ≥ 0 ensure that yi, j,k,h is zero

if either φi, j or φk,h is zero, 1−φi, j−φk,h + yi, j,k,h ≥ 0 ensures that yi, j,k,h takes 1 if both binary
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variables are set to 1. Thus, the integer linear programming can be formulated as:

minimize: JA(φ) = w1 f (φ)+w2hA(y) (4.32)

subject to:
N

∑
i=1

φi, j = 1, j ∈ {1,2, · · · ,N} (4.33)

N

∑
j=1

φi, j = 1, i ∈ {1,2, · · · ,N} (4.34)

1−φi, j−φk,h + yi, j,k,h ≥ 0, i, j,k,h ∈ {1,2, · · · ,N} (4.35)

φi, j− yi, j,k,h ≥ 0, i, j ∈ {1,2, · · · ,N} (4.36)

φk,h− yi, j,k,h ≥ 0, k,h ∈ {1,2, · · · ,N} (4.37)

φ ∈ {0,1}N (4.38)

y ∈ {0,1}N4
(4.39)

This ILP problem deals with much more variables and constraints than foregoing one. Therefore,

in this paper, we solve (4.25) to get the minimum collision solution.

4.3 Local Graph Modification for Collision Avoidance

After accomplishing the initial task assignment by solving optimization problems, we

resolve every collisions in a way to modify the graph locally and regenerate the trajectory, as

shown in Algorithm 3.

The local graph modification first identify a pair of robots which have a collision. Assum-

ing robot i and k collide, let pcol be a location of the collision on trajectories ξi and ξk, which

can be identified by similar method to Algorithm 1. In order to avoid the collision pcol , two

actions are taken into consideration; 1) exchanging assigned goals between robot i and k and 2)

modifying the graph of either robot i or k which is used for computing the path. Considering the

combination of the two actions, there are six options p as shown in Table 4.1. The local graph
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Algorithm 3: Centralized Local Graph Modification Algorithm
Input :ξi, fi, γi, ∀i ∈ {1,2, · · · ,N}
Output :ξi, fi, γi, ∀i ∈ {1,2, · · · ,N}

1 while collision exists in the system do
2 i,k← a pair of robots which collide
3 pcol ← collision point between ξi and ξk
4 fi, fk,γi,γk←run Algorithm 4 (ξi,ξk, pcol)
5 ξi← ξi,fi(γi)
6 ξk← ξk,fk(γk)

7 end

option Assigned goal Graph
p for robot i for robot j for robot i for robot j
1 fi f j γi γ j
2 f j fi γi γ j
3 fi f j γi,fi γ j
4 fi f j γi γ j,f j

5 f j fi γi,f j γ j
6 f j fi γi γ j,fi

Table 4.1: The six options are evaluated in the graph modification approach to find collision-free
solution.

modification approach choose optimal option p∗ such that the collision pcol can be resolved while

the sum of distance is minimized.

Algorithm 4 resolves the collision pcol that happens between robot i and k. We first

consider modifying the graph, corresponding to option 2 and 3. Let γ′i,fi
be the modified graph

which is removed an edge of the graph γi such that the edge is included in the path ξi,fi(γi) and

is before or on pcol . In other words, if collision point pcol belongs to a vertex and corresponds

to the vertex ξt
i,fi
∈ ξi,fi(γi), the edge (ξt−1

i ,ξt
i) is removed from the graph γi. If pcol is on

an edge (ξt−1
i ,ξt

i), its edge is removed. Let J(p) be the sum of distances of two robots for

option p, and with modified graph of robot i and k, we have J(3) = Di,fi(γ
′
i,fi
)+Dk,fk(γk) and

J(4) = Di,fi(γi)+Dk,fk(γ
′
k,fk

). Next, we exchange the assigned goal between robot i and k. If the

trajectories ξi,fk(γi) and ξk,fi(γk) does not collide at the collision point pcol , we do not need to
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Algorithm 4: Collision Avoidance with Graph Modification between ξi and ξk

Input :ξi,ξk,γi,γk, fi, fk, pcol
Output : p∗,γi,γk, fi, fk

1 J(p)← ∞, ∀p = {1,2, · · · ,6}
// For original assignment

2 γ′i,fi
← Remove an edge before or on pcol from γi

3 γ′k,fk
← Remove an edge before or on pcol from γk

4 J(3)← Di,fi(γ
′
i,fi
)+Dk,fk(γk)

5 J(4)← Di,fi(γi)+Dk,fk(γ
′
k,fk

)

// For swapped assignment
6 ξ′i← the shortest path from xi to fk on γi
7 ξ′k← the shortest path from xk to fi on γk
8 if ξ′i and ξ′k collide at pcol then
9 γ′i,fk

← Remove an edge before or on pcol from γi

10 γ′k,fi
← Remove an edge before or on pcol from γk

11 J(5)← Di,fk(γ
′
i,fk

)+Dk,fi(γk)

12 J(6)← Di,fk(γi)+Dk,fi(γ
′
k,fi

)

13 end
14 else
15 J(2)← Di,fk(γi)+Dk,fi(γk)
16 end

// Choose the best option
17 p∗←min(argminp∈{1,2,··· ,6} J(p))
18 switch p∗ do
19 case 1 do fi, fk,γi,γk← fi, fk,γi,γk
20 case 2 do fi, fk,γi,γk← fk, fi,γi,γk
21 case 3 do fi, fk,γi,γk← fi, fk,γ

′
i,fi
,γk

22 case 4 do fi, fk,γi,γk← fi, fk,γi,γ
′
k,fk

23 case 5 do fi, fk,γi,γk← fk, fi,γ
′
i,fk

,γk

24 case 6 do fi, fk,γi,γk← fk, fi,γi,γ
′
k,fi

25 end

consider the graph modification, and get the sum of distance J(2) = Di,fk(γi)+Dk,fi(γk). If the

collision happens, the graph modification is applied to avoid collision in the similar way of option

3 and 4, resulting in J(5) = Di,fk(γ
′
i,fk

)+Dk,fi(γk) and J(6) = Di,fk(γi)+Dk,fi(γ
′
k,fi

).

After computing the sum of distance J(p) for all options, we choose one option such

that minimizing J(p) and overwrite the assignment and graph for robot i and k. This process is
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iteratively executed for each collision until all collisions are resolved, and during this process, the

graph for robots is modified cumulatively, that is, the modified graph may be eventually removed

multiple edges. For each pair of robots, Algorithm 4 focuses on resolving the collision pcol . If

option 2 can avoid the collision pcol even though it has a collision at other location, the algorithm

choose option 2 as the optimal option. Then, solving the new collision, the algorithm may choose

option 2 again. Once this situation occurs, it cannot exit while loop in Algorithm 3. Therefore,

we implement a method that monitors goal exchange to avoid such an endless loop.

In this paper, we will make the following assumption:

Assumption 1. There exists a path from each robot xi to assigned goal fi on the modified graph γi

Proposition 1. The centralized local graph modification algorithm results in collision-free

trajectories.

Proof. The algorithm is to identify collision points pcol and then resolve pcol by local graph

modification, which has two actions: exchanging goals and removing a single edge from a graph

of either robot. First, we will show that local graph modification can solve the collision pcol , and

then show that solving the collisions one by one results in collision-free trajectories.

The collision point pcol denotes a location where robot i and j collide, which is on a edge

or a vertex. In the case that pcol is on the edge, exchanging the goals may not solve the conflict

pcol . For example, in Figure 4.3, even if swapping the goals, both trajectories still include the

collision point pcol , that is, the collision is not resolved by swapping the goals. Removing the

edge of pcol from the graph of either robot, the robot which is removed the edge can no longer

pass through the collision point. In addition, Assumption 1 guarantees that both robots have

trajectories to assigned goals.

Next, we consider the case that the conflict pcol happens on a vertex. Similar to the

precedent case, exchanging the goals does not always solve the collision. Therefore, we show

the edge removal can solve the collision. The degree of vertex pcol denotes d(pcol), and let vl ,
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Figure 4.3: Avoiding collision on edge

l ∈ [1,2, · · · ,d(pcol)] be the neighboring vertex of pcol . We can assume without loss of generality

that robot j passes through the vertex vd(pcol) before the collision. Robot i passes through the

vertex v∗ = vl before the collision, l ∈ [1,2, · · · ,d(pcol)−1], because if robot i passes through

the vertex vd(pcol), robot i would collide with robot j at vd(pcol), and the collision pcol would be no

longer our concern. To avoid the collision, the algorithm removes the edge (v∗, pcol) from the

modified graph γi and regenerates the trajectory of robot i. In some situation, robot i and j may

still collide at the same vertex pcol . However, if all edges (vl, pcol) for l ∈ [1,2, · · · ,d(pcol)−1]

are removed, the collision pcol never happen anymore. Therefore, we can say the collision pcol

can be solved by removing at most d(pcol)−1 edges.

From the foregoing argument to avoid the collision pcol , every collisions in the system can

be solved in such a way to apply local graph modification pairwisely. Although removing edges

may disconnect a graph and robots may not be able to reach the goal, this algorithm guarantee to

generate trajectories to assigned goal since Assumption 1, thus, it holds that this algorithm results

in planning collision-free trajectories. �

4.4 Centralized Algorithms

Now, we have two variations of the centralized algorithms to assign tasks and plan

collision-free trajectories, summarized in Figure 4.4.
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Figure 4.4: Centralized Algorithms

Minimum Collision Task Assignment(MCTA) + Graph Modification

The MCTA + graph modification first solves the ILP problem to assign goals which mini-

mize the number of collisions, formulated in (4.25), and then avoiding the remaining collisions

by the local graph modification approach in Algorithm 3.

Minimum Distance Task Assignment(MDTA) + Graph Modification

The MDTA + graph modification first assigns goals to minimize the total travel distance

by the Hungarian algorithm in Appendix B.1, and then applies the local graph modification

approach to avoid collisions.
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Chapter 5

Decentralized Task Assignment and

Trajectory Planning

5.1 Conceptual Approach

In this section, we discuss a decentralized approach to solve Problem 1 in a way to extend

the knowledge related to the centralized approach. For the decentralized system, while robots

cannot have state information of all other robots, they know their position and the location of all

goals, and have a capability to exchange information, such as their current position, assigned goal

and planned trajectory, with other robots closer than distance Rcom on a roadmap.

Decentralized Problem Formulation

Robots constantly encounter new neighboring robots that come into the communication

radius Rcom, and learn new information from their neighborhoods. The key feature of this

decentralized system is that each robot aims to minimize the total distance locally while avoiding

collisions. Before we redefine Problem 1 as a decentralized problem, we first introduce some new

notation.
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Let Ni denote the set of neighborhoods with in the communication radius Rcom of robot i:

Ni = {k | dE(xi,xk)≤ Rcom,k 6= i} ⊆ {1,2, · · · ,N}\i

where, dE(xi,xk) is the euclidean distance between robots i and k. Let Ξi = {ξk | k ∈ Ni
⋃

i}

denote the set of trajectories for robot i and the neighborhood. Problem 1 is reduced to distributed

problem for each robot as follows:

Ξ
∗
i = argmin

Ξi
∑

k∈Ni
⋃

i
l(ξk) (5.1)

subject to:

ξi and ξk are collision-free ∀k ∈Ni

We exploit the knowledge of the centralized algorithm to construct the collision-free

trajectory within the neighborhood and reformulate (5.1). The assignment matrix φ is no longer

known by any one robot, but robots can know assignment for their neighboring robots, Φi =

{φk|k ∈ Ni
⋃

i} be the set of assigned vectors for robot i and its neighborhood, and similarly

Γi = {γk | k ∈Ni
⋃

i} be the set of modified graph.The set of targets assigned to the neighborhoods

of robot i is given by:

Ti = {fk | k ∈Ni} ⊆ {1,2, · · · ,N}\fi

We formulate the decentralized problem with the graph modification:

Problem 3. For each robot i, the objective is to find the set of modified graphs Γ∗i and task

assignment Φ∗i which result in the collision-free while minimizing the total travel distance:

Γ
∗
i ,Φ

∗
i = argmin

Γi,Φi
∑

k∈Ni
⋃

i
∑

j∈Ti
⋃

fi

φk, jDk, j(γk) (5.2)

subject to:
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ξi(γi) and ξk(γk) are collision-free. ∀k ∈NI

The number of possible modified graphs is at most 2|E| per robot as in the centralized

problem. Since each robot has |Ni| neighborhoods, the robot must calculate and compare the

total cost 2(|Ni|+1)|E| times in a straightforward approach. This approach is not acceptable due to

computationally demanding.

Conceptual Approach for Decentralized System

The proposed decentralized algorithms combine two algorithms for the planning phase

and the execution phase. The planning phase is to assign task and plan trajectories before robots

start moving, and we consider three methods in this phase;Minimum Distance Task Assign-

ment(MDTA), Minimum Collision Task Assignment(MCTA), and Random Task Assignment.

Then, in the execution phase, which is after robots started moving, each robot replans the as-

signment and trajectory with the local graph modification to avoid collisions at every discrete

time steps. In addition, since we do not assume a centralized planner, each robot are required to

coordinate to resolve conflict of the decision among the neighborhood.

5.2 Initial Task Assignment

In this section, we propose two decentralized algorithms to decide an initial task assign-

ment; MCTA and MDTA. Although both algorithms are developed based on corresponding

centralized algorithms, thre are some challenges for adopting to the decentralized system. While

the centralized task assignment algorithms assume a centralized planner, the decentralized algo-

rithms need to coordinate conflicts of decisions to converge to consensus. Furthermore, since

objective functions of the centralized algorithms (4.25) and (B.1) depend on neighborhood deci-

sion as well, they are not cut out for distributed coordination. We modify the objective functions

to fit the decentralized system, and make use of the consensus-based auction algorithm(CBAA)
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in Appendix B.3 to obtain a sub-optimal task assignment to minimize the objective function. To

converge to a feasible assignment, which each robot is assigned to each goal without duplication,

CBAA requires that all of the robots join the same connected communication network.

Minimum Collision Task Assignment

The centralized MCTA assigns tasks to all robots in the system by solving the ILP problem

to minimize the number of collisions. The straightforward way for adopting to the decentralized

algorithm will be that each robot solves the ILP problem within the neighborhood and decide

assignment for the neighborhood as well as its self. In this approach, after robots broadcast the

decision to their neighborhood, they need to negotiate and resolve the conflicts in terms of their

own assignment and their neighborhood assignments. However, it is hard to converge to a valid

assignment. Therefore, the proposed decentralized MCTA approach is that each robot focuses on

deciding only its own assignment, such as minimizing the expectations of the collisions within

the neighborhood and resolve the conflict if it receives information about the other robots are

assigned to the same task. The conflict can be resolved by CBAA.

Based on the centralized MCTA defined in Section 3, we propose an objective function

combining the expectation of the collisions and the distance to the assigned goal. First, we define

the expected value of the number of collisions that happen on a path from robot i to goal j. Let

pk,h be the probability that neighboring robot k is assigned to goal h, and we assume that it

follows a discrete uniform distribution, that is, pk,h = 1/N−1. The denominator is N−1 because

robot i is assigned to one of N goals and robot k is assigned to remaining goal. Since robot i

knows locations of all goals, computing the adjacency matrix a(i, j),(k,h) requires the location of

robot k, that is, robot i can compute only expected value related to the neighborhoods. With the

assignment probability pk,h, we can reformulate the number of collisions which happens on the
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trajectory from robot i to goal j (4.19) as the expected value, given by:

bi, j =
1
Ni

∑
k∈Ni

N

∑
h=1

a(i, j),(k,h)pk,h (5.3)

The expected value is normalized by the number of neighborhood to eliminate the influence of

the number of neighborhood. Given an robot i’s assignment φi ∈ {0,1}N , the expected value of

the collisions in which robot i gets involved is shown as:

hAi(φi) =
N

∑
j=1

bi, jφi, j (5.4)

In the decentralized MCTA, (4.4) is also reformulated such that it depends on only robot

i’s assignment, given by:

fi(φi) =
N

∑
j=1

Di, jφi, j (5.5)

This function represents the distance from robot i to assigned goal fi. Since (5.4) and (5.5), an

objective function of the decentralized MCTA is defined as:

Fi(φi) = w1 fi(φi)+w2hAi(φi) (5.6)

To prioritize minimizing the expectation of collisions hAi(φi) over minimizing the distance fi(φi),

we set the weight value as w1 << w2. With the objective function Fi, each robot decides the

initial task to locally minimize Fi(φi) using the CBAA.
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Minimum Distance Task Assignment

The decentralized MDTA also exploits the CBAA, and its objective function is defined as

the distance from robot to goal given by:

Fi(φi) =
N

∑
j=1

Di, jφi, j (5.7)

5.3 Decentralized Local Graph Modification

After accomplishing the initial task assignment process proposed in the previous section,

robots start moving to their assigned goal along with the planned path. Since the initial task

assignment does not guarantee collision-free, each robot is required to implement collision

avoidance locally. In this section, we propose a decentralized collision avoidance algorithm based

on the graph modification discussed in Section 4.3.

Algorithm 5 and 6 show the procedure of robot i at discrete time step t. Let Ui ⊆Ni be the

update list, which is the list of robots which robot i attempts to check collisions and applies the

graph modification. The update list Ui is updated promptly so that robot i can check the collision

with a robot that has potential collisions. At every discrete time step t, Ui is initialized as the

list of robots that robot i newly encounters since the previous time step t−1. If t = 0, Ui is the

same as the list of the neighborhood. Furthermore, if the assigned goal or trajectory is changed

through the graph modification, the robot needs to check collisions with all of the neighborhood

again(line 7 of Algorithm 5, and line 4 of Algorithm 6).

Robot i attempts Algorithm 7 to each robot according to the update list Ui. The decentral-

ized collision avoidance algorithm is similar to the centralized algorithm, Algorithm 2.However,

while the centralized algorithm is applied to each collision, the decentralized algorithm is basically

applied to all neighborhood regardless of whether the collision exists. In the decentralized graph

modification algorithm, robot i first check collision between the pair of robots. Even if it turns
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Algorithm 5: Decentralized Local Graph Modification Algorithm for robot i at
discrete time t

Input :Ni(t),Ni(t−1),xi, fi, γi
Output :xi, fi, γi

1 Ui←Ni(t)\Ni(t−1)
2 while Ui 6= φ do
3 k←retrieve from Ui
4 request robot k to send xk, fk, γk
5 fi, fk,γi,γk, p∗← run Algorithm 7(ξi(γi),ξk(γk))
6 if task or path are changed (p∗ 6= 1) then
7 Ui =Ni(t)\k
8 end
9 send γk and fk to robot k

10 end

Algorithm 6: Receive data from robot k
Input :Ui, Ni(t), γi, fi
Output :Ui, γi, fi

1 if receive γi and fi from robot k then
2 if task or path are changed(γi 6= γi or fi 6= fi) then
3 γi, fi← γi, fi
4 Ui←Ni(t)\k
5 end
6 else
7 Ui←Ui\k
8 end
9 end

out that the robots do not collide, robot i exchange the assigned goals to find out an option to

minimize the sum of distance. Therefore Algorithm 7 contributes to the reduction of the total

travel distance by exchanging the goal as well as the collision avoidance.

In general, decentralized algorithms are required asynchronous implementation. In the

proposed decentralized algorithm, there is possibility that a robot receive a task assignment

and modified graph, which contradict the recent information, from the neighborhood due to the

communication and process delay. As one of the solution to this issue, a handshaking procedure is

proposed in [24], which guarantees recent information for the robots and secure the coordination
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Algorithm 7: Local Graph Modification with ξk for robot i
Input :ξi,ξk,γi,γk, fi, fk, pcol
Output : p∗,γi,γk, fi, fk

1 J(p)← ∞, ∀p = {1,2, · · · ,6}
2 while True do
3 if ξi and ξk does not collide then
4 J(1)← Di,fi(γi)+Dk,fk(γk)
5 if ξi,fi(γi) and ξk,fk(γk) does not collide then
6 J(2)← Di,fk(γi)+Dk,fi(γk)
7 end
8 end
9 else

10 pcol ← collision point between robot i and k
11 γ′i,fi

← remove an edge in ξi,fi(γi) before or on pcol from γi

12 γ′k,fk
← remove an edge in ξk,fk(γk) before or on pcol from γk

13 J(3)← Di,fi(γ
′
i,fi
)+Dk,fk(γk)

14 J(4)← Di,fi(γi)+Dk,fk(γ
′
k,fk

)

15 if ξi,fk(γi) and ξk,fi(γk) collide at pcol then
16 γ′i,fk

← Remove an edge in ξi,fk(γi) before or on pcol from γi

17 γ′k,fi
← Remove an edge in ξk,fi(γk) before or on pcol from γk

18 J(5)← Di,fk(γ
′
i,fk

)+Dk,fi(γk)

19 J(6)← Di,fk(γi)+Dk,fi(γ
′
k,fi

)

20 end
21 else
22 J(2)← Di,fk(γi)+Dk,fi(γk)
23 end
24 end
25 p∗←min(argminp∈{1,2,··· ,6} J(p))
26 switch p∗ do
27 case 1 do fi, fk,γi,γk← fi, fk,γi,γk
28 case 2 do fi, fk,γi,γk← fk, fi,γi,γk
29 case 3 do fi, fk,γi,γk← fi, fk,γ

′
i,fi
,γk

30 case 4 do fi, fk,γi,γk← fi, fk,γi,γ
′
k,fk

31 case 5 do fi, fk,γi,γk← fk, fi,γ
′
i,fk

,γk

32 case 6 do fi, fk,γi,γk← fk, fi,γi,γ
′
k,fi

33 end
34 ξi,ξk← ξi,fi(γi),ξk,fk(γk)
35 if ξi and ξk does not collide then
36 break
37 end
38 end
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process among the pair of robots. When we implement the algorithm into a real-world application,

such kind of procedures is necessary.

The decentralized system also requires Assumption 1 in Section 4.3 to have the following

proposition.

Proposition 2. For each time step, the decentralized local graph modification algorithm deter-

mines an assignment and trajectory that the robot does not collide with its neighborhood.

Proof. Since the graph modification process is the same as the centralized one, Proposition 1

implies that the decentralized algorithm guarantees to result in collision-free trajectories within

the neighborhood. �

We make the following assumption:

Assumption 2. The communication radius is more than 2.

Proposition 3. The decentralized local graph modification algorithm enable all robots reach to

goals without collisions.

Proof. Since Proposition 2 and Assumption 2, at every time step, each robot is guaranteed not to

collide with other robot within at least distance 2. Since robots move by the distance 1 at each

time step, it is certain that any collision does not occur until the next time step. Therefore, as time

goes on, each robot can approach the goal without collision, and then eventually all the robots

reach the goal. �

5.4 Decentralized Algorithms

Based on the discussion so far, we propose three decentralized algorithms as shown in

Figure 5.1. Each algorithm assigns goals initially in the planning phase in a different way, and

then all of three use the same collisions avoidance algorithm after robots start moving.
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Figure 5.1: Decentralized Algorithms

Minimum Distance Task Assignment(MDTA) + Graph Modification

Before robot start moving, each robot coordinates the initial task assignment to minimize

the distance (5.7). To reach the task assignment that robots are assigned to goals without

duplication, it is required that all robots join one connected communication network. Then, robots

move ahead to assigned goal while performing the local graph modification in Algorithm 5. In

this phase, the system does not require that the communication network is connected.

Minimum Collision Task Assignment(MCTA) + Graph Modification

Each robot coordinates the initial task assignment to minimize the expectation of collisions

with the neighborhood, formulated in (5.6). Once the initial task assignment is determined, robots
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move to assigned goals in the same way as MDTA + Graph Modification.

Random Task Assignment + Graph Modification

Robots are randomly assigned to tasks in the planning phase. For example, each robot is

assigned to the goal corresponding to its index. Then, robots start moving in the same as other

algorithms. Note that this algorithms does not require the network connectivity at all.
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Chapter 6

Simulation Results and Discussion

6.1 Centralized Algorithm

We evaluate the performance of two proposed algorithms in Section 4.4; Minimum Dis-

tance Task Assignment (MDTA) + Graph Modification and Minimum Collision Task Assignment

(MCTA) + Graph Modification. In addition, we simulate only MDTA based on Hungarian

algorithm, which provides the lower bound of the total travel distance. The MDTA results may

include collisions.

Performance Evaluation per Number of Robots

The first set of simulation evaluate the performance as varying the number of robots on

the two different roadmaps, shown in Figure 6.1 and 6.2. For each condition of simulation, 100

trials are performed, and for each trial, the robots and the goals are randomly deployed. The three

algorithms are compared on the same set of initial locations for each condition of simulation. We

assume two different types of roadmaps on which robots move: a grid graph shown in Figure

6.1(a) and a hexagonal graph in (a)-2, which have 169 and 160 nodes, respectively. The number

of nodes is set to be almost the same to eliminate the relative influence. The length of each edge
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Figure 6.1: Roadmaps and trajectories with N = M = 40. Green cross represents initial location
of robots, blue star represents goal location, and colored lines represent the planned trajectory.

is 1. Since the degree of vertices of the hexagonal graph is smaller than one of the grid graph,

we expected more collisions in the hexagonal grid. But as seen from the results, there were no

significant differences between both roadmaps.

Figure 6.2 (a) shows the number of collisions that MDTA has. Collisions are more likely

to occur as the number of robots increases. Also, from this result, we can know the number of

conflicts that MDTA + Graph Mod. and MCTA + Graph Mod. have to deal with. The box plot of

the execution time is evaluated in (b). The execution time increases exponentially as the number

of robots increases.

For all trials in this simulation set, MCTA resulted in collision-free task assignment, and

local graph modification was not performed at all. Therefore, the execution time of MCTA +

Graph Mod indicates the time taken for only MCTA process. MDTA + Graph Mod can lead

results faster than MCTA + Graph Mod. Figure 6.2 (c) shows the total travel distance, which is

the sum of distance which all robots travel. Despite avoiding collisions, both proposed algorithms

show almost the same performance as MDTA. However, this simulation results probably depend

on the underlying graph. More simulation and theoretical analysis will be needed to understand
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Figure 6.2: Simulation results of centralized system with varying the number of robots. (a)
shows the population of trials per collisions for MDTA. (b) and (c) show the box plots of
execution time and total travel distance per number of robots. The ”+” marks represents
statistical outliers.

the graph effects on the total travel distance.

Performance Evaluation per Number of Collisions to be Solved

We evaluate the performance per the number of collisions to be addressed, as shown

in Figure 6.3. In this simulation, each robot moves along with a grid graph whose length and

width are 10 each, and this graph has 100 vertices. The number of robots is 30. Figure 6.3 (a)
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Figure 6.3: Simulation results of centralized system with N = 30. (a) shows the histogram of
the number of collisions in MDTA. (b) shows the execution time per the number of collisions.
The loss of total distance is analyzed in (b) and the number of Graph Mod. processed is shown
in (d).

shows the distribution of collisions for 500 trials of MDTA, which is based on the Hungarian

algorithm. From this result, we can see that 80% of the trials include collisions and, although it’s

a tiny percentage, the maximum number of collisions is 6. We compare the performance of each

algorithm with the same initial deployments shown in Figure6.3(a). (b) depicts the execution

time in terms of the number of collisions that occur in the MDTA. MDTA + Graph Mod avoids

the collisions that occur in MDTA with modifying the graph, and therefore, as the number of

collisions in MDTA increases, the execution time also increases. On the other hand, in MCTA +

Graph Mod, although the objective of MCTA is to assign tasks in a way to minimize the number

of collisions, the task assignment does not have any collisions in all trials of this simulation.

Therefore, the execution time of MCTA + Graph Mod is almost constant regardless of the number

of collisions in MDTA. Even when the number of collisions in MDTA is 0, the execution time of
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MDTA + Graph Mod is not the same as that of MDTA. It is because MDTA + Graph Mod, which

guarantees the collision-free, needs to check the collisions after the initial task assignment by

the MDTA process. Next, we evaluate a loss, which is defined as the difference from MDTA in

terms of the total travel distance. As shown in Figure 6.3 (c), the more collisions the system has

to avoid, the more loss it suffers. However, we can see that both algorithms give the collision-free

solution without the loss in most cases. In addition, this simulation reveals that loss is two in

almost all cases. For six collisions in MDTA, there are no cases with the loss. It seems like not

proper results because the number of trials is five cases shown in Figure 6.3 (a). Finally, Figure

6.3 (d) shows the number of edge removals and goal exchange carried out during the Graph Mod

process. MCTA + Graph Mod can have a collision-free solution in the MCTA process and does

not need Graph Mod process. Therefore, (d) shows the results of MDTA + Graph Mod. From this

result, as the collisions in MDTA increase, more edge removals and goal exchanges are required

to solve the collisions.

6.2 Decentralized Algorithm

We evaluated the performance of the three decentralized algorithms proposed in Section

5.4: MDTA + Graph Mod., MCTA + Graph Mod., and Random TA + Graph Mod. Each simulation

condition is performed 100 trials, and for each trial, the goals were randomly deployed. The

decentralized MDTA and MCTA require that all robots join a connected network. To obtain the

initial deployment that meets the requirement, we check the connectivity of communication for

robots randomly deployed. If it does not show the connectivity, the robots are randomly deployed

on the roadmap repeatedly. The three algorithms are compared on the same set of initial locations

for each simulation condition.
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Figure 6.4: Simulation results of decentralized system with varying the number of robots for
communication radius Rcom = 4 on 13x13 grid graph. (a) execution time, (b) total travel distance,
and (c) the number of send messages. The ”+” marks in each box plot represents statistical
outliers.

Performance Evaluation per Number of Robots

We evaluate performance on a 13x13 grid graph for Rcom = 4. Figure 6.4(a) shows the

execution time defined as the sum of cumulative time it takes to process the algorithm at each

44



time step for all robots. The execution time of MDTA + Graph Mod is less than other algorithms.

In the case of more than 30 robots, decentralized algorithms are superior to the centralization

algorithm. While the execution time of MDTA + Graph Mod. and Random TA + Graph Mod.

show almost linear with the number of robots, MCTA + Graph Mod. polynomially increases.

The total number of communications is shown in Figure 6.4(b). Since random TA + Graph

Mod. does not need to coordinate the initial task assignment, it requires less communication.

MCTA + Graph Mod. requires sending more messages to generate a local conflict graph in the

initial task assignment phase. As for the total travel distance, MDTA + Graph Mod. is the closest

to the centralized results, as shown in Figure 6.4(c).

The performance of the initial task assignment is analyzed as shown in Figure 6.5. (a)

shows the total travel distance planned in the initial task assignment. The decentralized MDTA

results in the smallest total distance and works well as desired. Furthermore, as shown in Figure

6.5(b), the number of goal exchanges that mainly contribute to the reduction in total distance is

the lowest in MDTA + Graph Mod.

Next, we show the number of potential conflicts in the initial task assignment in Figure

6.5(c). MCTA is superior to MDTA in terms of minimizing collisions. Since the less number of

collisions, the graph modification performed to avoid collisions is the lowest in MCTA + Graph

Mod. with respect for the median, as shown in (d).

Performance Evaluation per Communication Radius

Figure 6.6 and 6.7 show the simulation results for N = 30 as varying communication

ranges from the minimum value of 2 to enough big value, Rcom = 16. The robot is deployed

on a 10x10 grid graph roadmap to make it easier to generate initial locations randomly that

all robots are connected. In order to minimize the influence of initial location of robots and

goals, every simulation cases use the same set of initial location for running 100 trials. Since

the communication radius is equivalent to the size of the neighborhood, both execution time (a)
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Figure 6.5: Performance evaluation for initial task assignment algorithms for Rcom = 4 on
13x13 grid graph.
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Figure 6.6: Simulation results of decentralized system with varying communication radius
for N = M = 30 on 10x10 grid graph. (a) execution time, (b) total travel distance, and (c) the
number of send messages. The ”+” marks in each box plot represents statistical outliers.

and the number of communications (b) increase and reach a plateau as the communication radius

increases. In terms of the execution time, MDTA+Graph Mod. is better than the centralized

algorithm even for enough large communication radius. The total travel distances are approaching

to the centralized result, and a gap between each algorithm is narrowed as the communication

radius increases. MDTA+Graph Mod. can obtain a solution closer to optimal even if the
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communication radius is limited.

Next, we discuss the performance of initial task assignments shown in Figure 6.7. As for

the total distance and potential collisions after the initial task assignment, MDTA + Graph Mod.

is not affected by the communication radius. This is because the objective function of MDTA

is invariable to the size of the neighborhood. On the other hand, the results of MCTA + Graph

Mod. vary over the communication radius since MCTA computes the local conflict graph for the

neighborhood. Note that Random TA is unrelated to the communication radius.
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Figure 6.7: Performance evaluation for initial task assignment algorithms for N = M = 30 on
10x10 grid graph.
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Chapter 7

Conclusion

In this paper, we considered the problem of collision-free task assignment and trajectory

planning for multi-robot systems moving along a predefined roadmap.

We first developed two centralized algorithms, which assign tasks to minimize the total

distance or the collisions and then resolve the collisions with replanning the trajectory by graph

modification. The conflict graph, which encodes all possible collisions among the system, was

utilized to formulate an optimization problem, whose solution is a task assignment to minimize

the collisions while minimizing the total distance. The local graph modification approach, which

reconstructs the trajectory to avoid collisions with removing an edge on the trajectory from the

roadmap graph, guarantees collision-free. We show proposed algorithms can avoid all collisions

at the cost of almost no increase of total distance.

We proposed three decentralized algorithms extending the centralized methods, which

assign the initial task before robots start moving in such a way to minimize the total travel distance,

minimize the collisions, or deploy randomly, and then avoid the collision with graph modification.

To realize the minimum collision assignment, we introduced the expectation of the collisions

based on the local conflict graph, which encodes possible collisions among the neighborhood

and is utilized as a bid in a market-based coordination approach. The performance of the
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proposed algorithms was evaluated by computer simulation. The proposed algorithms provided

the suboptimal collision-free solution, and the algorithm of minimum distance assignment and

graph modification showed the best performance among the proposed algorithms.

Future Works

This section briefly summarizes future works that could be considered. In terms of

performance improvement, the decentralized minimum collision task assignment has the potential

to improve in a way that each robot keeps updating a ”conditional” expectation as the bid based

on the decision of the neighborhood’s assignment. Although there is some challenge to coordinate

the bids, which dynamically changes, this approach is expected to reduce collisions in the initial

task assignment. Additionally, we assume the existence of the path to goal on the modified graph

to guarantee to reach the collision-free solution, so that it is interesting to make it more reasonable.

Finally, future work includes considering uncertainty, such as the existence of moving obstacles

and dynamically changing edge weights of the roadmap.
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Appendix A

The Shortest Path on Graph

There are many methods to construct the shortest path between two vertices on a graph,

such that Dijkstra’s algorithm [11], breadth first search [25], and Bellman-Ford algorithm [26].

Bellman-Ford algorithm can deal with a graph in which some of the edge weights are negative

number, but is generally slower than others for the same problem. Breadth first search handles a

unweighted graph, and Dijkstra’s algorithm solves for a non-negative weighted graph. The grid

graph considered in this paper is regarded as the unweighted graph or weighted graph with weight

1 for all edges. In order to keep potential for future work such as expanding our work to non-grid

graph, we decided to apply Dijkstra’s algorithm to solve the shortest path problem.

Dijkstra’s algorithm is shown in Algorithm 8. In a graph G = (V,E) with non-negative

weights, the algorithm finds the shortest paths from a vertex v to every vertices u. The output

is distance of the shortest path from v to u, dG(v,u), and the parent pointers, parent(u), for all

vertices u ∈ V . The parent pointer represents the vertex which is the in-neighbor of u in the

shortest path from v to u. If u = v, the parent pointer will show v because v is the root and does not

have in-neighbor (i.e. parent(v) = v). For the grid graph, the weights of edges are 1 everywhere,

that is, weight(v,u) = 1, ∀(v,u) ∈ E

Given the parent pointers from Algorithm 8, we can construct the shortest path from v to

52



Algorithm 8: Dijkstra’s algorithm
Input :G = (V,E), v
Output : parent(u) and dG(v,u), ∀u ∈V

1 for u ∈V do
2 dG(v,u)←+∞

3 parent(u)← u
4 end
5 dG(v,v)← 0
6 Q←V
7 while Q 6= φ do
8 u← argminu∈Q dG(v,u)
9 Q← Q\u

10 for each vertex w connected to u by an edge in E do
11 if dG(v,w)> dG(v,u)+weight(u,w) then
12 dG(v,w) = dG(v,u)+weight(u,w)
13 parent(w) = u
14 end
15 end
16 end
17 return parent(u) and dG(v,u) for all vertices u in V

any vertex w by Algorithm 9, and the output, path(v,w), is an ordered sequence of vertices on the

shortest path from v to w.

Algorithm 9: Extract-path algorithm
Input :G = (V,E), w, parent(u), u ∈V
Output : path(v,w)

1 path(v,w)← w
2 u← w
3 while parent(u) 6= u do
4 u←parent(u)
5 insert u at the beginning of path(v,w)
6 end
7 return path(v,w)

Computing the shortest path from robot i to goal j in the graph G by Algorithm 8 and 9,

we can get dG(xi,g j). The trajectory from robot i to goal j is denoted as ξi, j = path(xi,g j). Note

that if there are two or more shortest paths whose length is the same as each other, this algorithm
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chooses one of them in accordance with the order of computation, which depends on indices of

robots, goals, edges, and vertices.
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Appendix B

Assignment Problem

B.1 Hungarian Algorithm

In general, the assignment problem is described as the problem to find a optimal assign-

ment of a set of robots to a set of goals(tasks) to minimize the total distances (or cost), assuming

the number of robots N is equal to the number of goals M, that is, M = N. Each robot can be

assigned to at most one task, and each task can be performed by not more than one robot. The

mathematical formulation of the problem is shown as an Integer Linear Programming (ILP) given

by:

minimize:
N

∑
i=1

N

∑
j=1

φi, jDi, j (B.1)

subject to:
N

∑
i=1

φi, j = 1, j ∈ {1,2, · · · ,N} (B.2)

N

∑
j=1

φi, j = 1, i ∈ {1,2, · · · ,N} (B.3)

φi, j ∈ 0,1 (B.4)

where, φi, j = 1 if the robot i is assigned to the task j, otherwise φi, j = 0
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The Hungarian algorithm is one of the well known method to solve the linear assignment

problem with time-complexity bounded polynominally in the number of robots, O(N3) [27].

B.2 Conflict-Free Task Assignment

In [10], authors propose a centralized algorithm to find the set of assignment from all

the combination of robots and goals such that the solution does not have any collisions while

minimizing the total cost as much as possible. In this algorithm, the conflict graph described

in Section 4.2, and [10],[23], is used for identifying possible conflicts. Let φi ∈ {0,1}N be the

assignment vector of robot i, which is φi = {φi,1,φi,2, · · · ,φi,N}T , and φ ∈ {0,1}NN be the vector

collecting all the assignment vector, which is φ = {φT
1 ,φ

T
2 , · · · ,φT

N}T . The following constraint

guarantees the assignment φ does not have any conflict:

IT (S)φ≤ 1N (B.5)

where, S and I represent the conflict graph and the incidence matrix respectively. A proof of

this proposition is shown in [10]. Adding the constraint (B.5) into the ILP problem (B.1), the

constrained optimization problem, whose solution results in collision-free assignment, can be

written as follows:

minimize:
N

∑
i=1

N

∑
j=1

φi, jDi, j (B.6)

subject to: IT (S)φ≤ 1N (B.7)

N

∑
i=1

φi, j = 1, j ∈ {1,2, · · · ,N} (B.8)

N

∑
j=1

φi, j = 1, i ∈ {1,2, · · · ,N} (B.9)

φi, j ∈ 0,1 (B.10)
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However, this ILP problem cannot always be solved because in some cases, any set of

assignment may have collisions, as shown in Figure B.1. Therefore, we will propose a modified

version of this ILP problem such that it can give the set of assignment to minimize the number of

collision while minimizing the total cost in Section 4.2.

Figure B.1: A example of unsolvable configuration. For this initial condition, there are two
choices for the first move; (a) and (b), but both definitely have the collision.

B.3 Decentralized Task Assignment

In this section, we introduce a decentralized task assignment algorithm, consensus-

based auction approach (CBAA), proposed by Luc Brunet in [18].Some types of decentralized

algorithms realize the task assignment to make use of a centralized planner that corrects state

information from all of the robots in the system, compute the optimal assignments, and then

distribute the results. However, in this type of algorithm, the centralized planner requires high

computational capability, which leads to a lack of robustness due to the single point of failure.

The CBAA makes use of two algorithms: auction algorithm and consensus algorithm, and can

efficiently produce the sub-optimal solutions without such a centralized planner.

The CBAA consists of iterations between two phases. The first phase is the auction

process, which is that each robot places a bid on a task, and then, the second phase, the consensus

process, carries out to resolve conflicts and converge to the feasible assignment. In the consensus
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process, all robots need to be connected on communication network directly or indirectly to

resolve all conflicts over the system.

Auction Process

Algorithm 10 shows the procedure of robot i’s auction process at iteration t where one

iteration consists of a single run of both processes. In the auction process, each robot can make

a bid asynchronously. Let Fi, j be the bid that robot i places for goal j, which is equivalent to

the objective functions in Section 5.2. If robot i does not have an assignment(∑ j xi, j = 0), first

it check availability vector σi whose jth entry is 1 if robot i is allowed to place a bid on goal j.

To compute σi, we use the indicator function I(·) that is unity if the argument is true and zero

otherwise. Let xi be the assignment vector, yi be the lowest bid for each goal recognized by robot

i, and zi be the list which represents which robot is assigned to each goal. Within the set of goals

which is σi, j = 1, robot chooses a goal Ji to minimize the bid, and updates xi, yi, and zi for Ji.

Algorithm 10: Auction Process for robot i at iteration t
Input :Fi, j,xi(t−1),yi(t−1),zi(t−1)
Output :xi(t),yi(t),zi(t),Ji

1 if t=0 then
2 xi, j(t) = 0 ∀ j
3 yi, j(t) = ∞ ∀ j
4 zi, j(t) =−1 ∀ j
5 end
6 xi(t) = xi(t−1)
7 yi(t) = yi(t−1)
8 zi(t) = zi(t−1)
9 if ∑ j xi, j(t) = 0 then

10 σi, j = I(Fi, j < yi, j(t)) ∀ j
11 Ji = argmin j σi, j ·Fi, j

12 xi,Ji(t) = 1
13 yi,Ji(t) = Fi,Ji

14 zi,Ji(t) = i
15 end
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Consensus Process

In the consensus process, each robot resolves a conflict of assignment and make a feasible

assignment, which is that each robot is assigned to each robot without duplication. As shown

in Algorithm 11, each robot first exchanges the lowest bid list yi, and the assigned robot list zi

with neighborhoods Ni. The lowest bid list yi is updated in such a way that robot i replaces yi, j

with the lowest value between itself and its neighborhood. Similarly, the assigned robot list zi

is also updated. Then, if zi,Ji 6= i, it means robot i loses its assignment(xi,Ji = 0). If ties occur in

determining zi, j, each robot selects one of them based on the order of the robot index.

Algorithm 11: Consensus Process for robot i at iteration t
Input :Ni,xi(t),yi(t),zi(t),Ji
Output :xi(t),yi(t),zi(t)

1 Send yi and zi to the neighborhood Ni
2 Receive yk and zk from the neighborhood Ni for k ∈Ni
3 yi, j(t) = mink∈Ni

⋃
i yk, j(t) ∀ j

4 zi, j = argmink∈Ni
⋃

i yk, j(t) ∀ j
5 if zi,Ji 6= i then
6 xi,Ji = 0
7 end
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