
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Information Search with Depleting and Non-Depleting Resources

Permalink
https://escholarship.org/uc/item/1z845887

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 38(0)

Authors
Bloomfield, Amber
Harbison, J.
Campbell, Susan
et al.

Publication Date
2016
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1z845887
https://escholarship.org/uc/item/1z845887#author
https://escholarship.org
http://www.cdlib.org/


Information Search with Depleting and Non-Depleting Resources 
 

Amber Bloomfield (anbloomfi@umd.edu) 
J. Isaiah Harbison (isaiah.harbison@gmail.com) 

Susan Campbell (susanc@umd.edu) 
Petra Bradley (pscheck@umd.edu) 
Lelyn Saner (lsaner@casl.umd.edu) 
University of Maryland, 7005 52nd Ave 

College Park, MD 20742 USA 
 
 
 

Abstract 

Predictions about information search behavior have been 
informed by extensive research in food foraging behavior. 
However, information foraging environments may differ in 
key ways from food foraging environments, and these 
differences may impact search behavior. We investigated the 
effect of patch distribution (depleting or non-depleting) and 
ability to return to previously searched patches on 
participants’ decision to switch from one patch to another 
while searching. Whether or not a participant could return 
after leaving a patch led to fewer samples and fewer relevant 
items found. Whether or not the patches depleted and whether 
it was possible to return to a patch influenced stopping rules, 
indicating that these factors may alter the size of the 
increment applied through the Incremental Rule.  

 
Keywords: information foraging, marginal value theorem, 

stopping rules, patch distribution  

Introduction 
How do information foragers decide where to look and 
when to look elsewhere? Research on information foraging 
has benefitted from an analogy to food foraging behavior 
(Constantino & Daw, 2015; Dennis & Taylor, 2006; Hills, 
Jones, & Todd, 2012; Hutchinson, Wilke, & Todd, 2008; 
Jacobs & Hackenberg, 1996; Kalff, Hills, & Wiener, 2010; 
Sandstrom, 1994; Wilke, Hutchinson, Todd, & 
Czienskowski, 2009). The Marginal Value Theorem (MVT), 
introduced by Charnov (1976), describes how animals 
foraging for food decide when to cease exploiting a current 
source to move on to another. In a situation of depleting 
returns (e.g., a berry bush has fewer berries to offer as a 
forager consumes berries from that bush), the MVT predicts 
that a forager will exploit a resource until the point at which 
the resource’s rate of return (i.e., richness) has decreased to 
the mean return value of the environment. The point at 
which a forager will leave a resource (i.e., the stopping rule) 
is then determined by the richness of the resource and the 
cost of moving on to another resource (the switch cost). A 
strict interpretation of this rule means that foragers should 
not leave patches that remain richer than the mean return 
expected from moving on.  

While the analogy to food foraging in animals has proven 
useful, there are a number of potential differences between 
the environments in which food and information foraging 

typically take place. First, in food foraging, a given source 
normally depletes (e.g., picking a berry results in fewer 
berries remaining), but depending on the information 
source, the number of items to search may be so large or 
replenished so frequently that functionally there is no 
depletion. For example, the number of tweets on a topic 
could be so numerous that the information forager is 
unlikely to read all of them, or the number may increase 
faster than they could be read as additional tweets are 
created. Search behavior in environments without depletion 
has not been investigated in previous studies. A related issue 
concerns search behavior in environments where it is 
possible to return to previously investigated patches. While 
returning to a previous patch is usually sub-optimal in food 
foraging, as that patch was only left because its richness had 
diminished beneath the expected return for the environment, 
a previously visited source may offer the highest richness in 
the environment if the source does not deplete. Search 
behavior in environments where it is possible to revisit a 
patch has not been investigated in previous research. 

Stopping Rules 
Because the MVT stopping rule requires that a forager have 
access to information about the richness of a patch at each 
moment as well as knowledge of the average richness for 
the environment, more computationally feasible rules have 
been proposed. The rule which has received the largest 
share of support in previous information search studies is 
the incremental rule. In applying this rule, the information 
forager begins with a set threshold of sampling attempts for 
a patch (e.g., 10 samples before moving on). When a 
relevant item is found, the threshold is increased by some 
increment. People tend to use the incremental rule both for 
internal search (e.g., memory search; Harbison, Dougherty, 
Davelaar, & Fayyad, 2009) and external search (e.g., 
searching in a library or on an online database; Wilke et al., 
2009).  

Application of the Incremental Rule can produce different 
switching behavior depending on the size of the increment 
the information forager uses. For instance, the total failures 
rule is a special case of the Incremental Rule where the 
threshold is incremented up by one search attempt for every 
relevant item found; in essence, samples that yield relevant 
items do not count against the sampling threshold. An 
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information forager applying the total failures rule will 
switch patches when the total number of samples not 
yielding relevant items (i.e., the number of failed samples) 
exceeds their threshold. Another special case of the 
Incremental Rule is the total samples rule. In this rule, the 
size of the increment is zero, such that an information 
forager will switch patches after a threshold number of 
samples, no matter how many relevant items are found. 
Although the total failures rule and the total samples rule are 
the most common variations of the Incremental Rule, others 
are possible. For instance, an information forager applying 
the rule with an increment of size 2 would stay longer in 
richer patches than a searcher applying either the total 
failures rule or the total samples rule because each 
encountered relevant item would increment the sample 
threshold up by two. These three cases of the Incremental 
Rule make increasingly similar predictions the poorer the 
search patch and make the same prediction for patches with 
zero target items (the case were there would not be an 
increment). 

Predictions 
Figure 1 shows the predicted relationship between return 
rate and number of relevant items found under different 
increment sizes for the two depletion conditions. These 
simulated results, like the experiment described below, 
include three levels of richness: 10%, 30%, and 50% 
relevant items. 
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If participants in our experiment apply the total samples 
variant of the Incremental Rule (i.e., the size of the 
increment is zero, represented by the gray and black double 
lines in Figure 1), they should find more relevant items as 
patch richness increases, regardless of whether the patches 
deplete. This is also true for the two other specific cases of 
the Incremental rule (increments of size 0.1 and 0.3). 
Therefore, the number of relevant items found does not 
make a clean distinction between different increment values. 
However, because of differences in the distribution of 

relevant items, it is predicted that participants in the 
Depleting condition will find more relevant items at each 
level of patch richness than participants in the Non-
depleting condition (in Figure 1, the group of black lines are 
consistently higher than the group of gray lines). 

The present experiment also allows us to measure the 
influence of irrelevant items on search termination in a way 
that has not previously been explored in the literature. The 
number of irrelevant items is not accessible to researchers 
when participants are retrieving from memory because the 
irrelevant items do not usually elicit a response, and the 
number of times such irrelevant items are output such that 
they can be observed is relatively rare (but see Unsworth et 
al., 2011). In the information search literature, paradigms 
such as anagram, word search, and fishing provide only a 
measurement of the time spent not finding relevant words or 
fish. With the current task, the number of irrelevant items 
found and their impact on search termination can be 
measured directly. 

The predicted relationship between patch richness and 
number of irrelevant items found for each depletion 
condition with three different increment sizes is shown in 
Figure 2. In this case, there is expected to be a different 
form of relationship between number of irrelevant items 
found and return rate dependent on the increment the 
participant uses. A negative relationship between patch 
richness and the number of irrelevant items found is 
predicted if a participant applies the total samples rule 
(increment of 0). More time is spent sampling relevant items 
in the richer patches, and since the stopping threshold is not 
influenced by the number of relevant items found, these 
relevant items displace the irrelevant items that would be 
found in poorer patches. Given a larger increment, the 
relationship should become increasingly positive. Thus, if 
an information forager applies the total failures rule 
(increment of 1), a larger number of irrelevant items will be 
found as the return rate of the patch increases. 
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In summary, a different pattern of irrelevant items found 

in patches of different richness levels will emerge 

Figure 2: Predicted relationship between return rate and 
number of irrelevant items found by depletion condition 

and increment size. 

Figure 1: Predicted relationship between return rate and 
number of relevant items found by depletion condition 

and increment size. 
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depending on the size of the increment the information 
forager uses. The predictions are the same for both depleting 
and non-depleting patches. However, it is possible that 
information search under conditions where resources do not 
deplete will lead participants to apply a different size of 
increment, and so show a different pattern in the 
relationship between irrelevant items found and patch 
richness. It may also be the case that whether or not it is 
possible to return to a patch will impact the increment used 
to determine when to stop exploiting a given patch. As 
noted above, previous research has not explored stopping 
rules when it is possible to return. One possibility is that 
information foragers will adopt a more conservative 
approach to stopping when they know they can return to a 
patch, potentially entailing a smaller increment size. The 
analyses will explore these possibilities.  

Experiment 

Search Task 
The participants’ search task was to collect information 
about clients for a matchmaking service wherein the 
participant would use the information found to judge the 
compatibility of a pair of clients. On each trial, participants 
saw the name of a client. During the search task, three 
different sets of tweets (i.e., brief messages stating a piece 
of information about a person) were offered for the 
participant to search. Each patch (of tweets) was described 
as having been produced by a different algorithm designed 
to gather tweets about the service’s clients. Tweets could be 
about the client (relevant) or about another person 
(irrelevant).  

The richness of the algorithm patches (i.e., the percentage 
of relevant tweets), could be 10%, 30%, or 50%. The 
richness levels available among the three patches in a trial 
varied across trials, with the restriction that all three patches 
could not have the same return rate. Thus, the highest level 
of richness available varied from trial to trial. In the 
depleting condition, the tweets in each of the three patches 
were ordered such that the rate of return was highest for the 
first few selections, but decreased as the number of 
selections increased; in the non-depleting condition, the rate 
of return remained constant throughout the patch. Patches in 
the depleting condition had the highest return rate in the first 
ten selections, and the rate of return decreased in successive 
sets of ten selections, with the average richness being 10%, 
30%, or 50% if the participant sampled 100 times; patches 
in the non-depleting condition had a constant return rate of 
10%, 30%, or 50% throughout.  

For each tweet, participants were asked to indicate 
whether it was relevant for the target candidate or not 
relevant by clicking one of two buttons. After determining 
whether a given tweet was relevant to the target, the 
participant could either choose to view another tweet from 
the same algorithm or move to a different patch. The switch 
cost (i.e., the time required to switch to another patch) was 1 
second. Depending on condition, participants were either 

able to return to a patch they had previously searched 
(return condition), and all three patches remained available 
throughout each trial, or a patch disappeared after the 
participant chose to leave the patch (no return condition). 

Relevant tweets correctly identified as relevant by the 
participant were reflected in a running total at the top of the 
screen, labeled “Score”; participants were not penalized for 
incorrect decisions, though relevant tweets deemed 
irrelevant or irrelevant tweets deemed relevant did not 
increase the participant’s score. For each target, participants 
had two minutes to search for information. At the end of 
each search, they moved on to the search task for a new 
target with a new set of patches.  

Matching Task 
After 20 search trials, each involving a different target 
person, participants completed a matching task. This task 
involved 10 trials; on each trial, the participants evaluated 
the compatibility of a pair of targets (matched based on the 
gender of match each target was seeking) using the relevant 
tweets found during the search task. Only relevant tweets 
the participant had judged to be relevant were available in 
this phase of the task. Participants indicated their 
compatibility judgment using an unlabeled slider (scored as 
a 0-100 scale) with “Horrible Match” and “Great Match” at 
the poles. The matching task was used to motivate the 
search task but data from this task were not analyzed.  

Participants 
Eighty-five participants were recruited via Amazon 
Mechanical Turk. “Workers” on Mechanical Turk receive 
monetary compensation for completing online tasks. 
Workers who selected this experiment task were informed 
that they would receive $10 for their participation in a task 
requiring about one hour of time.  

Eight participants’ data were removed from the sample 
due to low judgment accuracy, no switching decisions, 
performing the task twice, or not completing the task. The 
total analyzed sample, therefore, was 77 participants.  

Procedure 
Before beginning the experiment, participants were 

provided instructions and a practice session that included 
two search tasks and a single matching task. Participants 
were able to contact the researchers via email if they had 
questions or encountered difficulty during the experiment. 
At the end of the experiment, participants were thanked for 
their participation and paid via Amazon Mechanical Turk.  

Participants were randomly assigned to one of the two 
search conditions: return and non-return. Participants were 
also, independently, randomly assigned to one of two patch 
distribution conditions: depleting or non-depleting. There 
were 16-20 participants in each of the four possible 
conditions. 
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Results 
As shown in Table 1, the number of samples participants 
made varied considerably by patch, as did the number of 
relevant and irrelevant items found.  

 
Table 1. Summary of visits aggregated over patches visited. 

 
 Mean SD Min Max 
Total Visits 1.31 1.03 1 10 
Total Samples 23.61 16.34 1 100 
Total Relevant  9.81 9.37 0 49 
Total Irrelevant  13.67 9.80 0 90 

 
Most participants in the Can Return condition chose to 

return to a previously exploited patch at least once across 
the ten search trials (~88% of the 41 participants). As shown 
in Table 2, people were more likely to return in the 
Depleting condition than the Non-Depleting condition 
(return was not possible in the No Return condition).  

 
Table 2. Mean visits per visited patch by condition. 

Standard deviation in parentheses.  
 

 Can Return No Return 
Depleting 1.65 (1.42) 1.00 (0.00) 
Non-depleting 1.47 (1.27) 1.00 (0.00) 

 
The analyses in this section focused solely on the 

participant’s first visit (for participants in the Can Return 
condition) to the first patch offered in each search set, to 
investigate how depletion condition and return condition 
influenced participants’ search behavior. This focus on the 
first patch ensured that participants had ample time to 
investigate the patch prior to choosing to leave, rather than 
“stopping” as the result of running out of time in the trial. In 
addition, each analysis involved a multi-level model which 
estimated an intercept for each participant to account for any 
individual variability in search behavior.  

The first model fit to the data predicted total samples 
based on return rate of the patch, depletion and return 
condition. Total number of samples from a patch was 
related to whether the participant could return (B = 6.98, p 
< 0.05), and the return rate (B = 7.41, p < 0.05 comparing 
30% to 10% and B = 18.56, p < 0.05 comparing 50% to 
10%), but not depletion condition (B = -1.98). The means 
for each condition are shown in Table 3.  

 
Table 3. Mean samples per visited patch by condition. 

Standard deviation in parentheses. 
 

 Can Return No Return 
Depleting 24.60 (20.89) 28.12 (15.92) 
Non-depleting 19.77 (19.1) 28.97 (19.88) 

 
Number of relevant items found was related to all three of 

the independent variables: return rate (B = 7.04, p < 0.05 
comparing 30% to 10% and B = 18.20, p < 0.05 comparing 

50% to 10%), depletion condition (B = -4.84, p < 0.05), and 
return condition (B = 2.60, p < 0.05). Average number of 
relevant items found in each condition are shown in Table 4. 

 
Table 4. Mean relevant items found per visited patch by 

condition. Standard deviation in parentheses. 
 

 Can Return No Return 
Depleting 13.54 (11.10) 14.72 (10.79) 
Non-depleting 8.13 (9.51) 10.13 (10.16) 

 
Only the return condition was significantly related to the 

number of irrelevant items found by participants (B = 4.16, 
p < 0.05). Participants in the No Return condition found 
more irrelevant items than those in the Can Return condition 
(Table 5). 

 
Table 5. Mean irrelevant items found per visited patch by 

condition. Standard deviation in parentheses. 
 

 Can Return No Return 
Depleting 12.39 (12.92) 13.57 (7.45) 
Non-depleting 13.36 (11.34) 19.31 (11.73) 

 
The relationship between number of relevant items found 

and depletion condition is expected given differences in the 
distribution of items in these conditions. Because depleting 
patches were front-loaded with relevant items and their rate 
of return diminished with repeated sampling, participants in 
the depleting condition found more relevant items, on 
average, than did the participants in the non-depleting 
condition. The significant relationship between return 
condition and number of relevant and irrelevant items found 
is more surprising. Participants consistently found fewer 
relevant and irrelevant items when they were able to return 
to a previously exploited patch. Taken together, the results 
suggest that deciding when to switch to a new patch or a 
previously visited patch, and performing a switch, cost the 
participants in the Can Return condition a significant 
number of relevant items and, because there was no penalty 
for finding irrelevant items, saved them nothing.  

Switching behavior 
In any given search trial, participants could either switch 
from the first patch in the set or continue exploiting that 
patch for the entirety of the two-minute search time. This 
“sticking and staying” behavior occurred on 9.8% of search 
trials. We explored how the return rate of the patch and the 
depletion and return conditions impacted whether or not 
participants stayed with a patch without exploring any other 
options in the search trial. Participants were more likely to 
stay with the first patch when the return rate of the patch 
was higher (B = -2.57, p < 0.001 comparing 30% to 10% 
and B = -4.89, p < 0.001 comparing 50% to 10%), but 
neither depletion nor return condition impacted likelihood of 
staying with the same patch (B = -1.36 and B = 0.51, 
respectively). Participants may have gotten a sense of the 
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highest available return rate over several trials and stayed 
with the first patch when they suspected this patch had the 
highest return rate possible. 

Stopping rules 
The impact of depletion and return conditions on average 
relevant and irrelevant items found suggests that the Can 
Return may have led to a less optimal search strategy than 
the No Return condition. However, the pattern of number of 
relevant and irrelevant items found across patches of 
different return rates can provide insight into the dominant 
increment used in the stopping rule across participants, and 
whether the increment changed due to return or depletion 
condition.  

Figure 1 shows how the relationship between return rate 
and number of relevant items found changes depending on 
return and depletion condition. Consistent with the overall 
results regarding number of relevant items found, 
participants in the Depleting condition found more relevant 
items across all return rates and those in the No Return 
condition tended to find more relevant items regardless of 
return rate. Because all forms of the incremental rule predict 
a position relationship between return rate and the number 
of relevant items found, these results are consistent with the 
use of any size of increment. 

 
  

 
Figure 2. Average relevant items found for each return rate, 

by depletion and return condition. 
 
Figure 4 shows the average number of irrelevant items 

found across the three return rates for each depletion and 
return condition. Across all return rates, participants in the 
Non-depleting – No Return condition found the most 
irrelevant items, and there is a slight but positive trend for 
number of irrelevant items found as return rate increases for 
this condition and for the Non-depleting – No Return 
condition. Comparatively, the slope of the Depleting – No 
Return and Depleting – Can Return appear slightly negative. 
This difference between the depletion conditions is 
intriguing because the application of the incremental rule is 
predicted to result in a different relationship between return 
rate and number of irrelevant items found depending on the 
size of the increment the information forager uses. 

  

 
Figure 4. Average irrelevant items found for each return 

rate, by depletion and return condition. 
 

To explore the dominant stopping rule used by 
participants in each condition, we fit a linear model 
predicting number of irrelevant items from patch return rate 
to each participants’ data separately (for all patches, 
regardless of their position in the search set). Of the 77 
participants, there was a non-significant relationship 
between the number of irrelevant items found and the return 
rate of the patch for 33. However, 42% of the sample 
showed a significant negative relationship between number 
of irrelevant items found and return rate of the patch. Only 
14% showed a positive relationship, consistent with using a 
larger increment. Further, there was variation in the 
predominant relationship between return rate and irrelevant 
items found by condition: 63% of participants in the 
Depletion – No Return condition showed a negative 
relationship between patch return rate and irrelevant items 
found; this pattern was found for only 32-40% of 
participants in the other conditions. Thus, it seems that both 
whether the patches deplete and whether it is possible to 
return to previously exploited patches influenced the 
stopping rule used by participants.  

Discussion 
The current study explored whether the distribution of 
relevant items in a patch (depleting or non-depleting) and 
the ability to return to a previously exploited patch 
influenced the search behavior of information foragers. 
Overall, ability to return affected the average number of 
samples participants made from each patch: those 
participants who could return made fewer samples, and as a 
result found fewer relevant and irrelevant items. This 
suggests that the additional burden of deciding whether to 
leave a patch to return to a patch previously searched or a 
patch that has not yet been searched, and the accompanying 
time taken in switching patches, cut into the amount of time 
participants in this condition had to exploit any given patch. 
Because these participants found fewer relevant items 
compared to participants who could not return, this suggests 
that performing information search while weighing the 
ability to return to the current or previously explored 
patches may lead to suboptimal search. Even in cases where 
return to a patch is possible, as it is in most real-world 
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information search tasks, it may be advantageous for 
information foragers to leave each patch only when they are 
confident they will not wish to return to it. 

Across all participants, the number of relevant items 
found increased with the richness of the patch. This pattern 
is to be expected if participants are applying the Incremental 
Rule while searching. Further, the relationship between 
number of relevant items found and richness of the patch 
differs only in degree between uses of an incremental 
stopping rule with different sizes of increments (see Figure 
1). However, our study provided an opportunity to directly 
observe the relationship between number of irrelevant items 
found and richness of the patch which has not been possible 
in previous studies. Increments of different sizes are 
predicted to yield different relationships when the increment 
is 0, the relationship is predicted to be negative; as the size 
of increment increases, the relationship is predicted to 
become increasingly positive (see Figure 2). Of participants 
who showed a significant relationship between return rate 
and number of irrelevant items found, the majority showed a 
negative relationship. This is consistent with application of 
the total samples rule, which dictates an increment of 0. 
There were further differences between the conditions: a 
negative relationship between return rate and irrelevant 
items found was most prevalent in the Depleting – No 
Return condition, more common than any other pattern, 
while other conditions yielded a greater number of positive 
or non-significant relationships. 

Conclusion 
Previous research on information foraging has not 

explored situations where the proportion of targets or 
relevant items in a patch does not deplete, or cases where it 
is possible to return to a previously searched patch, yet both 
scenarios are possible in real-world search tasks. Our results 
indicate that these factors influence the stopping rules that 
information foragers apply. Further, our results suggest that 
having awareness of the ability to return to previously 
searched patches may lead to less optimal search behavior. 
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