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Longitudinal changes in brain structure and integrity 

during acute HIV 

by 

Torie N. Tsuei 

Abstract 

 

Cognitive impairment persists in the form of HIV-associated neurocognitive disorder 

(HAND) among chronically infected individuals despite successful viral suppression. Widespread 

access to combination antiretroviral therapy (cART) has allowed infected individuals to initiate 

treatment at an earlier time point and effectively reduce the risk of HIV-related mortality and 

morbidity. The current study examines whether cART, when initiated within days to weeks 

following infection, can longitudinally preserve brain health. Quantitative magnetic resonance 

image (MRI) methodologies were used to analyze T1-weighted structural images and diffusion 

tensor imaging (DTI) metrics. Specifically, region of interest and voxel-wise volume and tensor-

based spatial statistics (TBSS) approaches were performed to evaluate differences in brain 

volumes and white matter microstructure. We examined 31 acute HIV (AHI) participants who had 

paired month 0 (baseline) and month 24 (two-year follow-up) scans. Participants were 

comparatively analyzed in both a longitudinal manner to themselves, and a cross-sectional manner 

against 25 healthy control (CO) participants. As an indication of inflammation, CD8 t-lymphocyte 

counts was examined as a clinical covariate. The 31 AHI participants had a median (IQR) age of 

26 (23-30) years at the time of enrollment and a median (IQR) baseline CD4 count of 576 (370-

868) cells/μL. All immediately initiated cART. The 25 healthy controls had a median (IQR) age 

of 31 (26-37) years. Differences of brain integrity in the AHI group followed longitudinally were 
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observed. Baseline CD8 count was significantly associated with increased mean diffusivity (MD) 

in the longitudinally infected, present in the genu and the splenium of the corpus callosum, the 

corona radiata, and the superior longitudinal fasciculus (all p<0.05). Structural analysis revealed 

enlarged corpus callosum (p<0.01) volumes, as well as enlarged caudate and thalamus subcortical 

gray matter volumes in the longitudinally infected AHI participants (both p<0.05). Differences of 

brain integrity in the AHI group after 24 months of treatment were observed compared to healthy 

controls. Specifically, fractional anisotropy (FA) was reduced in AHI at 24 months compared to 

controls in models adjusting for age in the corpus callosum, the corona radiata, and the left superior 

longitudinal fasciculus (all p<0.05). Structural analyses revealed enlarged putamen and the caudate 

volumes (both p<0.05). We conclude that differences in both brain integrity and structural volumes 

can be seen in AHI with successful viral suppression when compared to healthy controls. Future 

work will include longitudinal imaging data from healthy controls who are followed over two-year 

follow-up to ensure that observed changes are disease specific. We will also comparatively 

investigate longitudinally treated chronic HIV-infected participants (‘positive controls’) to 

examine if the differences are similar to those seen when therapy is initiated in the chronic stage 

of infection. We will examine inflammatory plasma and CSF biomarkers to inform potential 

mechanisms and, separately, cognitive testing to inform clinical significance.  
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1. Introduction 

1.1. HIV, Cognition, and Brain Injury 

Southeast Asia contains the second most prevalent population in the world of people living 

with human immunodeficiency virus (HIV) infection.1 In addition to compromising the immune 

system and causing opportunistic infection, HIV, itself, is known to have neuropathogenic 

properties.2 These pathogenic properties are the core of current challenges, wherein people living 

with HIV who have never had opportunistic infections and have access to the best available 

therapies continue to experience cognitive impairment. In the chronic stage of infection, up to 50% 

of people living with HIV have neuropsychological testing impairment meeting research criteria 

for HIV-associated neurocognitive disorder (HAND).3 Still, some infected individuals maintain 

preserved brain function even into later stages of disease.4–6 Identifying neuro-preserving factors 

is of high clinical relevance. 

In recent decades, widespread access to combination antiretroviral therapy (cART) has 

allowed infected individuals to live with a markedly reduced risk for opportunistic infections, and 

has reduced the prevalence of severe forms of HAND as well as overall HIV-related morbidity 

and mortality.7–10 Given that not all individuals experience brain changes in the setting of HIV, 

there is great clinical interest and public health incentive to identify if very early cART initiation 

maintains brain health. There are currently no data to inform whether the earliest initiation of 

therapy is brain protective, leading us to examine brain changes following treatment initiated 

during the first weeks of infection by leveraging a novel cohort from Bangkok, Thailand.  
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1.2 Acute HIV 

Acute HIV infection (AHI) describes the earliest period following initial viral exposure, 

and typically lasts around four weeks.11,12 During this period, the virus can cross the blood-brain 

barrier, and is associated with brain inflammation before plasma HIV antibodies and, sometimes, 

systemic and central nervous system (CNS) symptoms are identifiable.13 AHI is considered the 

earliest stage of HIV infection and is compared to primary HIV (PHI, <1 year of infection but after 

plasma antibodies are present) and chronic HIV (CHI, >1 year of infection). Neuroimaging studies 

demonstrate brain atrophy, as well as changes in brain integrity, inflammation, and metabolism 

during the chronic stage of HIV.14 Previous studies report brain inflammation by magnetic 

resonance spectroscopy (MRS) in AHI individuals prior to treatment, as well as the reduction of 

selected structural volumes over two years following treatment initiated during AHI (i.e. putamen 

atrophy), although comparative groups of uninfected controls were not available.15,16 Our prior 

work did not identify DTI abnormalities among study participants imaged during AHI before 

treatment, suggesting that early treatment may be protective.17,18 

1.3 Diffusion Tensor Imaging in HIV Infection 

In groups of people where chronic HIV infection has been successfully suppressed with 

cART (>45 years old), investigators continue to find cognitive impairment, gray matter atrophy, 

and widespread white matter microstructural abnormalities.19 Previous structural region of interest 

(ROI), connectivity, and voxel-wise analyses in samples of chronically infected individuals 

demonstrated reduced nodal inefficiency, fiber integrity, and compromised frontal/motor 

regions.20–22 Nodal efficiency is a graph theory measure derived from structural connectivity 

analysis that may measure information processing capabilities. Fiber integrity reduction refers to 

the observed reduction in fractional anisotropy (FA) and increased mean diffusivity (MD) metrics. 



3 

 

The etiology of these abnormalities is less clear and may be due to host-inflammatory responses.23 

These studies are also unable to differentiate if the abnormalities are due to active processes or a 

hallmark of injury occurring during the years before successful treatment with cART, since most 

such study participants would have initiated therapy only when immune compromise was seen. 

Although, in more recent years, study participants may have been started on therapy upon 

diagnosis, reflecting changes in treatment recommendations, this still would likely be months to 

years given known delays in HIV diagnosis and access to care and since, during this time, HIV 

may be relatively asymptomatic. 

Brain regions of interest (ROIs) recognized as vulnerable in chronic HIV include the corpus 

callosum, caudate, putamen, thalamus, and hippocampus.24,25 Prior neuroimaging analyses from 

our research group has shown longitudinal reduction in brain volume of AHI participants, evidence 

supportive of brain atrophy in the putamen as well as the caudate at rates that were out of 

proportion to that anticipated from published work on healthy controls; however, co-enrolled 

controls were not then available for direct comparisons.16  

Since the initiation of cART during the chronic phase of HIV does not appear to be fully 

neuroprotective against HAND, it is of particular interest to determine if initiation at an earlier 

time point, prior to structural deficit and cognitive decline, can be protective against neurological 

disease progression. Of particular note, DTI can be helpful in assessing white matter structural 

integrity of treated individuals at various time points following initiation of cART during AHI. 

Although our prior study did not identify DTI abnormalities in AHI, previous studies among 

individuals with primary HIV, some who had brief exposure to cART, identified higher FA and 

lower mean and radial diffusivity (RD) in the corpus callosum and corona radiata.24 Thus, it is of 
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particular interest to investigate whether the very earliest administration of cART during AHI may 

prevent neuropathogenic developments.  

1.4 Study Aims 

The current project will examine the evolution of white matter microstructural change over 

two years among individuals with initiation of cART during AHI. We will examine changes in 

DTI and structural volumes over 24 months by comparing individuals’ baseline and two-year 

follow-up image data to each other. Structural regions of interest (ROIs), chosen based on 

published literature in CHI and previous work by our group, will be investigated. We will also 

complete voxel-wise DTI and structural analyses to explore more broadly if abnormalities emerge 

in other brain regions.24,25 Additionally, we will compare AHI cases at two-year follow-up to 

healthy controls.  

Should we identify abnormalities in AHI at 24 months, this study will then examine 

baseline biological parameters correlative to progressive brain injury in successfully suppressed 

AHI individuals. This study has public health relevance if we demonstrate generally preserved 

microstructural integrity associated with early treatment as it will contrast that of the published 

literature among individuals treated in later stages of disease. These proposed findings would 

support efforts for initiation of cART as early as possible, a guidance that has not yet achieved 

international consensus. Should abnormalities be found, our work would suggest the need for 

adjuvant therapies for neuroprotection. 
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2. Methods 

2.1 Principles of Diffusion 

Diffusion tensor imaging (DTI) is a nuclear magnetic resonance imaging (MRI) technique 

that measures signal attenuation based on the principles of Brownian motion in a restricted 

environment, and involves acquisition of diffusion images in multiple non-collinear directions. In 

the brain, DTI is used to noninvasively characterize white matter tract orientation and quantify 

microstructural integrity from acquired T2-weighted images with spatial accuracy.26  

Mono-exponential signal attenuation captured in acquired T2-weighted images varies 

depending on a predetermined b-value (smm-2), and contributes to the approximation of the 

macroscopic apparent diffusion coefficient constant (ADC) value. The b-value is a user-defined 

scalar factor that considers how adjustments in pulsed gradient parameters affect detection of 

changes in particle precession frequency (Figure 1).  

 
Figure 1: Differential b-values capture signal attenuation modulated by the diffusion coefficient. 

Increasing b-values will strengthen signal attenuation and improve image contrast.27 

Such changes describe the phenomenon of incomplete signal refocusing due to changes in 

particle position, and ultimately influence subsequent signal attenuation, or measured diffusion. 

Pulsed gradients are cumulatively described by the b-value. The b-value accounts for the 

magnitude (G - Tmm-1), duration (𝛿 - s), and temporal spacing (∆ - s) between pulsed gradients 
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applied during diffusion image acquisition (Equation 1).  (rads-1T-1) represents the 

gyromagnetic ratio of protons, and is squared along with magnitude and duration to account for 

both pulsed gradients. A fractional duration component is subtracted from temporal spacing, which 

represents periods of transitory slew rate and subsequent non-maximum gradient magnitude. 

 
(1) 

Adequately chosen b-values depend on systemic application. For example, a b-value 

ranging from 1000-1500 s/mm2 is typically used when imaging the adult brain, while a b-value of 

600-900 s/mm2 is typically used to image the pre-adolescent brain. Generally, higher b-values are 

more sensitive to restrictive diffusion and result in better image contrast; tissues with random, 

molecular de-phasing experience greater signal loss, while restricted tissues that hinder random 

motion remain visually conspicuous. 

Diffusion in biological tissues is constrained by cellular membranes, leading to anisotropic 

flow. Water in the CNS follows curvatures parallel to axonal fiber orientations, but movement is 

highly restricted in the directions perpendicular to white matter fibers. An effective diffusion 

tensor (Deff – mm2s-1) thus quantitatively relates the macroscopic proton concentration gradient 

(C - mm-3) and their diffusive flux (J - mm-2s-1) in an anisotropic environment (Equation 2). 

 
(2) 

Deff elements represent three-dimensional proton displacement in the CNS along axonal 

bundles. Diagonalization of Deff aligns the framework from native space into tensor eigenspace. 

The resulting eigenspace consists of eigenvalues and eigenvectors that correspond to diffusive 

motion captured along the principle directions of proton flow in a single voxel, and can be 

visualized as effective diffusion axes of an ellipsoid defining restricted water movement.28 A 
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commonly used DTI measure is fractional anisotropy (FA), which assesses general diffusion 

asymmetry within a voxel. Another common DTI measure is mean diffusivity (MD), which 

describes diffusive changes recorded between the application of constant, pulsed gradients in the 

sequence paradigm by considering both radial (perpendicular) diffusivity (RD) and axial (parallel) 

diffusivity (AD).26  

2.2 Study Design 

Included study participants enrolled after seeking HIV testing and receiving AHI diagnosis 

at the Thai Red Cross AIDS Research Center’s anonymous volunteer counseling and testing (VCT) 

clinic in Bangkok, Thailand (Table 1). Enrolled participants consented to neuroimaging, 

laboratory assessments, and clinical follow-up as outlined in a broader protocol for investigation 

of immunology and virology in AHI (SEARCH 010/RV 254).11 Estimated duration of infection 

before cART initiation was calculated from participants’ self-reported exposure date, or by taking 

the median date of multiple potential exposure dates. In this prospective study, preliminary 

analyses were performed to compare imaging of AHI participants at baseline to all follow-up scans 

collected after at least one year (i.e. month 12, month 18, and month 24 follow-up) with >90% 

collected at a 24 month time point.  

Specifically, we examined all SEARCH 010/RV 254 participants who consented to and 

underwent neuroimaging on a 3.0 Tesla MRI (acquisition dates: 8/26/15–2/26/19). Several clinical 

and laboratory variables captured both at baseline and latest follow-up, including CD4 t-

lymphocyte counts, CD8 t-lymphocyte counts, calculated CD4/CD8 ratio, and plasma HIV RNA 

(copies/mL), were also considered. MRI for the AHI group was performed following cART 

initiation in 26% of AHI participants (i.e. one to four cART doses received, MRI collected after 
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an average of two days), and were acquired at subsequent month 12, month 18, and month 24 

follow-up time points. 

Exclusion Criteria 

Participants were excluded from this study if they had concurrent positive serology for 

syphilis (serum VDRL) at baseline or follow-up. Although the SEARCH study has been collecting 

AHI participant scans on the 3.0 Tesla Philips Ingenia (n=138), individuals who did not have 

paired month 0 baseline and month 24 follow-up scans were excluded (n=98). Individuals were 

also excluded if motion and artifacts affecting image quality were present at either month 0 

baseline or month 24 follow-up time points (n=9). 

2.3 Image Acquisition 

All structural magnetic resonance imaging (MRI) data were acquired on the same Philips 

Ingenia 3T MRI scanner. A 15-channel phased array head coil was used for signal excitation and 

reception. High-resolution, three-dimensional, T1-weighted structural images were acquired using 

a turbo field echo (T1W 3D TFE) sequence (TR=8.1ms, TE=3.7ms, flip angle=8°, field of view 

(FOV)=256mm×256mm, voxel size=1mm×1mm×1mm, 165 slices with no gap). Diffusion 

weighting imaging sequences included gradients applied in 32 directions with a b-value of 1000 

s/mm2 (TR=11000ms, TE=111ms, flip angle=90°, FOV=256mm×256mm, slice thickness=2mm, 

2380 axial slices). In the acquisition paradigm, two equally weighted, time-dependent pulsed 

gradients were implemented in conjunction with a conventional spin-echo (SE) sequence. The first 

gradient pulse was applied following the initial SE 90 pulse that generates free induction decay 

(FID) to represent phase coherence prior to diffusive movements. The second gradient pulse was 

applied after the SE 180 inversion pulse in order to capture incomplete refocusing of diffusive 

nuclei spins that had since moved from original recorded positions. In short, pulsed gradients were 
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used to detect and visualize subtle changes in water movement as differences in signal intensity, 

or signal attenuation.29 

2.4 Image Processing 

Hybrid Temporal Processing 

Both cross-sectional and longitudinal analyses were used to process a group of individuals 

with variable imaging time points. All longitudinal diffusion and structural images, including 

every time point collected for included AHI participants (month 0, month 12, month 18, and month 

24) initially underwent longitudinal analyses, described in the following sections, and output a 

group template. All images collected at month 0 baseline, including CO and AHI participants, 

were then processed in a cross-sectional manner using the group template built from longitudinal 

analysis. Iterative group template creation in cross-sectional analyses was suppressed such that 

included images were simply warped into initial target template space, but did not contribute to 

building a new cross-sectional-specific group template. This ensured that a single group template 

from hybrid processing could be implemented in comparative statistical analyses. 

DTI Longitudinal Image Processing  

Diffusion images were visually inspected and denoised, and images with significant 

artifacts were excluded from further analysis.30 The FSL MCFLIRT algorithm was used to register 

diffusion images to the primary volume of the sequence.31 Data reflecting absolute displacement 

parameters beyond 1mm were screened out, and volumes surpassing relative displacement 

parameters beyond 1mm were removed. Background voxels not considered to be brain tissue were 

then masked out of the diffusion image volumes by applying a median otsu function.32 This 

function utilized the B0 acquisitions to provide a mask using otsu thresholding with a 4mm radius 
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and four iterations to minimize intra-class variance.33 Re-aligned diffusion images, corresponding 

masks, b-vectors, and b-values were used to correct for eddy current-induced distortions.34  

Remaining tensor eigenvalues were then fitted using the Diffusion Imaging in Python 

package (DIPY) with a non-linear least-squares approach derived fitting model to construct FA, 

MD, RD and AD maps.35 Post processing steps included construction of a group template and 

normalization of DTI tensors into standard Diffusion Tensor Imaging – Tool Kit (DTI-TK) space. 

Voxels with significant signal outliers, which degrade template generation and are identified as 

voxels with tensor norm value greater than 100, were first masked out of the tensor maps. Tensor 

Based Registration was completed using DTI-TK. A diffusion tensor group template specific to 

the Thailand population was created in a previous study, and was used as a target to build the group 

template using tensor-based registration. Specifically, participants' DTI tensors were processed 

through a bootstrapping algorithm to a standard DTI template provided by DTI-TK. The next step 

involved computing affine alignment transformations using DTI-TK to place all participants’ 

tensors into standard space with a normalized mutual information cost function implemented over 

three iterations. A binary mask was then created using the trace of the diffusion tensor (MD) map 

to mask out tensors outside template brain tissue. A final deformable alignment was then used to 

register all participants to iteratively refine the Thai group template.  

The stored affine transformations and displacement field vectors were then composed into 

a global displacement field and applied to transform the native participant DTI volumes to standard 

Thai group template space to minimize interpolation steps. Analyses followed conventional tract 

based spatial statistics (TBSS) integration pipeline using FSLtools in DTI-TK space. After the post 

processing steps were completed, proceeding skeleton creation, projection and statistics were 

carried out using standard FSL TBSS processing (FMRIB Software Library; 
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http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS). Skeletonised FA maps were created to eliminate the 

locational variability of tracts by projecting individuals’ voxels of maximum anisotropy onto a 

group template skeleton for registered statistical comparison.  

Structural Longitudinal Image Processing 

Before image pre-processing, all T1-weighted images were visually inspected for quality 

control and images with excessive motion or image artifact were excluded. T1-weighted images 

underwent bias field correction using N3 algorithm, and segmentation was performed using 

SPM12 Unified Segmentation (Wellcome Trust Center for Neuroimaging, London, 

UK, http://www.fil.ion.ucl.ac.uk/spm).36 An intra-subject template was created using a 

composition of non-linear diffeomorphic and rigid-body registration drawn from symmetric 

diffeomorphic registration methods implemented in a longitudinal MRI framework.37 The intra-

subject template was also segmented using SPM12's Unified Segmentation.  

A within-participant modulation was applied by multiplying each time points' Jacobian 

matrix with intra-subject averaged tissues.38  A group template was generated from the within-

subject average gray and white matter tissues (GM, WM) as well as the CSF by non-linear 

registration template generation using the geodesic shooting algorithm.39 Modulated intra-subject 

GM and WM were normalized and smoothed at 10mm full width half maximum Gaussian kernel 

in the group template. Every step of the transformation was carefully inspected from the native 

space to the group template. For statistical purposes, linear and non-linear transformations between 

the group template space and International Consortium of Brain Mapping (ICBM) were applied.40 

  

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/TBSS
http://www.fil.ion.ucl.ac.uk/spm
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2.5 Conjugate Analyses of Spatial Normalization 

Parametric mapping of brain regions from T1-weighted structural images was performed 

through a composition of linear and non-linear registrations into a common template using 

diffeomorphic mapping. Diffeomorphic mapping captures individual tensor element displacement 

within a given neighborhood in an optimization metric to generate smoothed displacement fields.41 

As a result, every element was uniquely interpolated to best fit the group template. Structural 

diffeomorphism involves zero order tensors (structural maps), whereas diffusion tensor mapping 

involves second order tensors. Both methods belong to a larger framework: Large Deformation 

Diffeomorphic Metric Mapping (LDDMM). Voxel-based morphometry (VBM) and TBSS 

minimized spatial inconsistencies among included participants such that group difference analyses 

may be achieved through voxel-wise coherence. In this study, both methods were implemented to 

investigate longitudinal differences in brain volumetric and regional fiber integrity, respectively.  

Comparison of Tissue Volume and Densities with Voxel-Based Morphometry (VBM) 

VBM is an image processing technique used for group comparison of brain matter volume 

and density through analysis of T1-weighted structural images. VBM is limited, however, by a loss 

of information due to smoothing, which is performed to estimate voxel-wise similarity among 

geometrically variant participants. This analysis contributed to comparisons between larger groups 

of voxels in complete ROIs and whole brain analysis. 

Tensor Normalization and Tract Comparison with Tract-Based Spatial Statistics (TBSS) 

Diffusion images require greater spatial focalization such that relative tensor geometries 

are not heavily interpolated. Subsequently, the realistic orientation of macroscopic tracts was 

altered to achieve spatial coherence for voxel-wise statistical analyses. TBSS, a diffusion image 

processing technique, optimizes analyses by projecting voxels with peak anisotropic values onto 
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an alignment-invariant tract mean FA skeleton, representing the center of all tracts common to the 

comparative groups. Projection of peak anisotropic values was done using carefully fine-tuned 

nonlinear registration, thereby reducing spatial smoothing and improving the objectivity and 

interpretability of tensor-based group comparison statistical models.42 

2.6 Statistical Approaches 

DTI and conjugate structural metrics were investigated among three group comparisons. 

The first comparison structure explored the longitudinal changes between AHI at month 0, AHI 

(0), vs. AHI at follow-up time points. In voxel-wise and ROI structural analyses, comparison of 

single longitudinal time point, AHI at month 24, AHI (24), were investigated. A comparison of 

disease states was then performed to examine differences between healthy controls, CO vs. AHI 

(24).  

Statistical Considerations 

Several clinical and laboratory measures were not available at the same time point as the 

MRI collection date; measures at longest follow-up were thus considered (month 12, month 18, 

and month 24) as representative covariates in comparative models of AHI (24) imaging metrics. 

One-way analysis of variance (ANOVA) testing was performed to assure that measures collected 

at the three longest follow-up time point groups did not significantly differ, and subsequently 

would not alter group comparison. Affected clinical measures included both CD4 t-lymphocyte 

counts (p>0.05) and CD8 t-lymphocyte counts (p>0.05), both of which showed insignificant 

differences among the three collection date groups. Several demographic variables were observed 

among the participant groups, including significant differences in age, sex, and education. Given 

the sample size, we chose appropriate covariates parsimoniously. Total intracranial volume (TIV) 

was used to adjust for collinear differences in sex.43,44 Each demographic factor found to differ 
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across groups was initially adjusted for in every comparison structure to determine the most 

significant contributing covariates, which were retained. Voxel-wise models testing for baseline 

group differences were adjusted for age and TIV.45,46 Structural ROI models testing for baseline 

group differences were adjusted by age, and ROI values were normalized by TIV to adjust for 

differences in sex. 

DTI Tract-Based Spatial Statistics and Voxel-Wise Analysis 

Skeletonised maps created with TBSS were used to perform voxel-wise analysis of DTI 

metrics. Voxel-wise statistical analyses was completed with FSL Randomise, which corrects for 

family-wise error (FWE) using 5000 permutations and threshold-free cluster enhancement 

(TFCE).47–49 We chose this approach since voxel-wise statistical analyses probes group differences 

with finer spatial accuracies compared to region of interest (ROI) analysis, which represents entire 

regions as a single functional unit. Voxel-wise group differences in DTI metrics are examined 

across the whole brain, and provide a means to explore whether statistically significant differences 

persist after controlling for clinical covariates. Group differences were characterized using the 

Johns Hopkins University atlas (JHU) labels transformed in to the DTI-TK space. We focused on 

investigating JHU regions of interest (ROIs) drawn from previous methods in our group and 

existing HIV literature. A priori chosen ROIs included: the corpus callosum (genu, body, and 

splenium), known to exhibit reduced FA in early infection, the corona radiata (anterior, superior, 

and posterior), known to be affected in early and chronic HIV, and the superior longitudinal 

fasciculus (left, right), known to be affected in early HIV.17,24,25,50  

Structural Volumetric Based Morphometry and Voxel-Wise Analysis 

VBM was performed by smoothing images using FSL tools with a sigma 3mm Gaussian 

kernel as a mean filter. Voxel-wise statistical analyses were computed on both gray (GM) and 
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white matter (WM) tissues using FSL Randomise, which corrects for family-wise error (FWE) 

using 5000 permutations and threshold-free cluster enhancement (TFCE).47–49
 

Structural Region of Interest Analysis 

ROI analysis was implemented by warping the Desikan-Killiany Cortical Atlas into group 

template space using SPM12 deformation tools, using nearest neighbor interpolation to preserve 

regional integrity.39,51 Advanced Normalization Tools (ANTs) ImageIntensityStatistics was then 

used to calculate regional volumes (in mm3) and masked by gray and white matter tissue 

probability maps (GM, WM). A priori chosen regions were chosen from previous methods in our 

group and existing HIV literature. In GM, the frontal lobe, temporal lobe, caudate, nucleus 

accumbens, cerebellum, hippocampus, and total cortical gray matter regions were investigated. In 

WM, the frontal lobe, temporal lobe, cerebellum, corpus callosum, and cerebral white matter 

regions were investigated. In addition, the pallidum, putamen, thalamus, and brainstem were 

analyzed as composite volumes, inherently consisting of both GM and WM tissues.24,52,53 Cohen’s 

d effect sizes were calculated to estimate the amount of observed differences in adjusted models. 

Longitudinal analyses with Bayesian mixed linear effects model (BMLE) 

The group and participants’ voxel-based trajectories of GM atrophy and the disruption of 

DTI indices (FA, MD) were longitudinally modeled using hierarchical Empirical Bayesian linear 

mixed-effects methods.38 In brief, the model consists of two hierarchical levels: the single 

participant trajectory and the group trajectories. Trajectory is defined as a first-degree polynomial; 

the j-th time point of the subject i represents the volumetric intensity or the DTI metric in a single 

voxel yij (Equation 3). 
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(3) 

A single voxel is fitted using a design matrix X(1), where tj is the subject's age at the time 

point j acquisition day, and θ(1) and ϵ(1) represent the first level vector of parameters and noise, 

respectively. The complete model can be written as:  

 
(4) 

X(1) and ϵ(1) define the first level design matrix and noise, respectively. The model’s 

second level can be represented as: 

 
(5) 

X(2), θ(2) and ϵ(2) are equivalent to the second level design matrix, parameters and noise, 

respectively. The second level design matrix also holds the explanatory variables of interest at 

baseline. At each level, the noise distribution is drawn from a centered Gaussian: ϵ(u) ∼ N(0, Cϵ
(u)

), 

where Cϵ
(u)

 is the hierarchical level u covariance matrix. 

The chosen primary predictors of change included a measure of inflammation, CD8 t-

lymphocyte counts at baseline. Time and the interaction between included CD8 counts at baseline 

and time provided the framework for assessing the impact of CD8 counts at baseline on rates of 

change in GM tissue volumes or DTI metrics.   
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3. Results 

3.1 Clinical and Demographic Characteristics 

After quality control, 31 AHI participants (100% male, 55% completed at least a bachelor’s 

degree) with a median (interquartile range, IQR) age of 26 (23-30) years at enrollment, and 25 

HIV-uninfected control (CO) participants (52% male, 0% completed at least a bachelor’s degree) 

with a median (IQR) age of 31 (26-37) years at enrollment were evaluated (Table 1). The AHI 

participants did not differ from control participants in age (p>0.05); however, there were 

proportionally more females in the control group (p<0.01) and differences in years of education 

were apparent (p<0.01). CD4 t-lymphocyte counts of AHI and CO differed, as expected (p<0.01), 

but did not differ between AHI participants and month 24 and CO, indicating immune 

reconstitution associated with cART. The median (IQR) estimated infection duration prior to 

cART initiation was 18 (14-22) days. Antiretroviral regimen differed between AHI participants at 

month 0 vs. month 24 since a subset of participants (52%) switched from Efavirenz (EFV-based) 

to Dolutegravir (DTG-based) treatments in accordance with the parent protocol and changing 

international recommendations. Most AHI participants were classified into early Fiebig Stages (I-

III, 87%). This group of early Fiebig stage participants had lower CD4/CD8 ratios (1.09 (0.52) vs. 

1.31 (0.31)) and lower plasma log10 HIV RNA (5.66 (1.37) vs. 6.09 (1.14)) compared to AHI 

individuals classified into late Fiebig Stages (IV-V) at enrollment. 
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3.2 Longitudinal Changes in Acute HIV  

i. DTI Analysis 

BMLE models revealed statistically significant interaction effects between primary baseline 

predictors on changes in AHI participant MD metrics after adjusting for TIV. CD8 t-lymphocyte 

counts were associated with increasing MD metrics, suggesting that CD8 count at baseline 

significantly contributes to the MD global rate of change (p<0.05). This effect was present in the 

genu and splenium of the corpus callosum, the corona radiata, and the superior longitudinal 

fasciculus (Figure 2A). We identified no differences in any model when examining FA. 

 

Figure 2: A. A p-value statistical map of significant voxel-wise group differences due to CD8 t-

lymphocyte counts at baseline in increasing MD metrics of AHI participants followed 

longitudinally after adjusting for differences in TIV (p<0.05). DTI group template created with 0.2 

threshold (in green) overlaid with significant changes (in red-yellow). B. A p-value statistical map 

of significant voxel-wise group differences (in red-yellow) due to CD8 t-lymphocyte counts at 

baseline in increased GM volumes of AHI participants followed longitudinally after adjusting for 

differences in TIV (p<0.05). 

 

ii. Structural Analysis 

Conjugate VBM analysis of AHI participants, adjusted for age and TIV, demonstrated no 

significant differences between AHI (24) compared to AHI (0). In contrast, analysis of ROIs 

normalized with TIV and adjusted by age, revealed greater white matter volume of the corpus 

callosum, corroborated by large regional effect size (p<0.01, ES=-8.24), among AHI (24) 
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compared to AHI (0) group (Table 2-3). Statistically significant group difference in the corpus 

callosum, normalized with TIV, persisted despite adjusting for both age and CD8 t-lymphocyte 

counts (p<0.01) (Table 2). BMLE models, however, revealed statistically significant interaction 

effects between primary baseline predictors on changes in AHI participant GM volumes after 

adjusting for TIV. CD8 t-lymphocyte counts were associated with increasing caudate and thalamus 

volumes (both p<0.05), suggesting that CD8 count at baseline significantly contributes to the GM 

volumetric rate of change (Figure 2B). 

Table 2: Structural ROI analysis demonstrating significant regional differences in gray (GM) and 

white matter (WM) regions, including the corpus callosum (CC) and hippocampus. The table 

highlights changes observed in longitudinal comparison, AHI (0) vs. AHI (24), and changes by 

disease state, CO vs. AHI (24).  
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Table 3: Structural analysis of ROIs, normalized with TIV, demonstrating unadjusted differences 

in magnitude between groups, represented by calculated Cohen’s d effect size coefficients. The 

table highlights differences observed in longitudinal comparison, AHI (0) vs. AHI (24), and 

changes by disease state, CO vs. AHI (24).  

 

3.3 Changes by Disease State: Healthy Controls vs. HIV Infected at 24 months 

i. DTI Analysis 

TBSS voxel-wise analysis of AHI participants compared to healthy controls demonstrated 

reduced FA measures of AHI after 24 months of cART compared to CO,  linked across the corpus 

callosum, the corona radiata, and the superior longitudinal fasciculus (all p<0.05) in models 

adjusted for age and TIV (Figure 3A). We identified no differences in any model when examining 

MD. As a secondary analysis, age, TIV, and CD8 t-lymphocyte count, as a marker of 

inflammation, were adjusted for in model design. TBSS voxel-wise analysis revealed a preserved 
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finding of reduced FA of AHI (24) compared to CO, linked across corpus callosum, the corona 

radiata, and the superior longitudinal fasciculus (all p<0.05). 

 

Figure 3: A. A p-value statistical map of significant voxel-wise group differences in FA metrics 

between CO and AHI (24) after adjusting for differences in age and TIV. DTI group template 

created with 0.2 threshold (in green) overlaid with significance (in red-yellow) representing 

significant differences (p<0.05). B. A t-score statistical map outside 3 standard deviations (σ) 

between the CO and AHI (24) means in GM volumes after adjusting for differences in age and 

TIV. The group template overlaid with t-score (in blue-lightblue) represents significant differences 

(t=3-5). C. A t-score statistical map outside 3σ between the CO and AHI (24) means in WM 

volumes after adjusting for differences in age and TIV. The group template overlaid with t-score 

(in blue-lightblue) represents significant differences (t=3-5). 

 

ii. Structural Analysis 

VBM structural analysis, adjusted for age and TIV, revealed larger subcortical gray matter 

volumes close to statistical significance in both the putamen and the caudate (p<0.10; t>3), in AHI 

(24) compared to CO (Figure 3B). Analysis of ROIs normalized by TIV, however, revealed 

reduced gray matter hippocampal volumes, with medium effect size (p=0.05, ES=0.49) in the AHI 

(24) group relative to the CO group despite adjusting for age (Table 2-3). The same voxel-wise 

model design applied to white matter volumes demonstrated enlargement of the right frontal lobe 
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in the AHI (24) group relative to CO group (p<0.05; t>3) (Figure 3C). Analysis of ROIs 

normalized by TIV revealed no significant regional differences in white matter volumes after 

adjusting for age. 

VBM analysis, adjusting for age, TIV, and CD8 t-lymphocyte counts did not resolve the 

same significant differences as models adjusting for age and TIV. ROI analysis normalized with 

TIV, however, demonstrated reduced gray matter hippocampal volumes (p=0.05) in the AHI (24) 

group relative to the CO group despite adjusting for age and CD8 counts. In white matter volumes, 

VBM analysis adjusted for age, TIV, and CD8 counts demonstrated enlargement of the right 

frontal lobe in the AHI (24) group relative to CO group close to statistical significance (p=0.06). 

Analysis of ROIs, normalized by TIV, revealed no significant regional differences after adjusting 

for age and CD8 counts. 

3.4 Sensitivity Analysis 

A disproportionate number of AHI participants completed at least a bachelor’s degree 

compared to the healthy controls (55% vs. 0%, p<0.01) (Table 1). BMLE models were used to 

consider whether baseline education in years and time impacted observed longitudinal AHI group 

differences in DTI metrics and structural volumes. TBSS and VBM group comparison models 

were used to consider whether differences of education in years impacted observed disease state 

group differences in DTI metrics and structural volumes, respectively. 

Longitudinal Analysis 

BMLE models were used to examine whether baseline education in years was associated 

with longitudinal changes in brain integrity during infection. Longitudinal analysis of AHI 

participants at AHI (0) compared to AHI (24) revealed that baseline education was associated with 

increased MD in the genu of the corpus callosum and the anterior corona radiata (both p<0.05) 
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after adjusting for TIV. In gray matter volumes, baseline education was associated with a global 

increase in GM volumes. Specifically, increased frontal lobe, right temporal lobe, right caudate, 

right thalamus, cerebellum, and right hippocampus regions (all p<0.05) were observed in AHI 

participants followed longitudinally after adjusting for TIV. 

Changes By Disease State 

TBSS voxel-wise analysis revealed reduced FA in the AHI (24) group when compared to 

the CO group after adjusting for age, TIV, and education, linked across the corpus callosum, the 

corona radiata, and the left superior longitudinal fasciculus (all p<0.05). Conjugative VBM 

analysis revealed no significant differences in gray matter or white matter volumes of the AHI (24) 

group relative to the CO group. Comparative ROI analysis adjusting for age and education, 

however, revealed reduced gray matter hippocampal volumes (p=0.04) in the AHI (24) group 

relative to the CO group (Table 2).  
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4. Discussion 

4.1 Major Findings 

Our sample represents a novel cohort with neuroimaging data captured when cART was 

initiated in the first weeks of infection. We are not aware of any other cohort that has effectively 

examined longitudinal changes in brain integrity among individuals treated in the acute stage of 

infection. AHI participants were carefully selected to exclude confounding conditions and only 

include those individuals with paired imaging at both month 0 (baseline) and month 24 (two-years 

of cART followed longitudinally) who had successfully suppressed plasma virus. This approach 

strengthens the interpretations of longitudinal changes in brain volume and integrity despite 

successful viral suppression. 

Differences of DTI metrics were observed in the AHI group followed longitudinally 

despite successful viral suppression. A statistically significant association between baseline CD8 

t-lymphocyte count and an increase in MD metrics were observed after adjusting for age and TIV. 

As well, differences in structural volumes were reported. Baseline CD8 counts were associated 

with increasing GM volumes of AHI participants followed longitudinally after adjusting for TIV. 

In sensitivity analyses, we found that these changes were also associated with differences in 

baseline education in years.  

Differences of DTI metrics in the AHI group were observed compared to healthy controls 

despite successful viral suppression. FA metrics demonstrated statistically significant reduction in 

AHI (24) compared to CO after adjusting for age and TIV, and this relationship persisted in models 

adjusted for age, TIV, and CD8 t-lymphocyte count. In sensitivity analyses, we also confirmed the 

finding in models adjusted for age, TIV, and education, given noted difference in educational 

attainment. Group differences between AHI (24) compared to CO were not associated with 
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observed differences in the amount of cytotoxic plasma CD8 t-lymphocyte cells (732 vs. 612, 

p=0.11).  

We conclude that despite successful viral suppression, physical changes affecting the brain 

integrity may continue to persist and develop over time. Structural analyses revealed enlarged gray 

and white matter volumes in AHI (24) compared to CO after adjusting for age, and age and CD8 

t-lymphocyte count, which may be interpreted as an effect of infection, possibly enlargement 

associated with infiltration of immune cells in response to infection. 

4.2 Clinical Interpretations 

In a healthy state, water movement in the CNS is compartmentalized in intracellular and 

extracellular spaces (Figure 4). Adaptive immune cells are known to migrate to sites of infection 

to destroy foreign and unwanted microbes. Resident microglia also activate and flood axonal 

bundles with neurotoxic and neuroprotective factors.54,55 As a result, both innate cellular and 

adaptive immune responses may cause chronic demyelination surrounding axonal bundles causing 

redirection of typically restricted extracellular flow. This may explain observed FA reduction in 

infected participants at follow-up relative to healthy controls.56 Local immune responses may also 

lead to increased circulation of immune and subsequent scarring, which could cause impeded water 

movement. This may provide an explanation as to why we observed increased gray and white 

matter volumes in the longitudinally infected relative to healthy controls. 
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Figure 4: A visual representation of intracellular (in red) and extracellular (in blue) 

compartmentalized flow. Intracellular flow is bound by axonal or dendritic membranes. 

Extracellular flow is better approximated by a Gaussian displacement of water in extracellular 

spaces bound by cellular membranes of somas and glial cells.27 

The association of baseline education and differential DTI longitudinal findings suggests 

there may be a relationship between the development of white matter tracts and educational 

attainment. As a result, educational differences may have been a contributor to observed 

differences in MD metrics. A recent study has identified the importance of educational attainment 

on white matter tract development (i.e. FA measures) in a cross-sectional design among late 

adolescents.57 However, the longitudinal effects of educational attainment on healthy white matter 

tract development in early adulthood, which describes our participant group (approximately 20-30 

years of age), let alone in a disease state, have yet to be examined.  

Additionally, we cannot discount the fact that antiretroviral therapies, themselves, may 

contribute to observed differences in volumetric and DTI analysis. Many participants in our sample 

changed antiretroviral regimens over the course of 24 months. A subset of AHI participants 

received inconsistent antiretroviral regimen, switching from an EFV-based treatment, a non-

nucleoside reverse transcriptase inhibitor (NNRTI), at month 0 baseline to a DTG-based treatment, 

an integrase strand transfer inhibitor (INSTI), at month 24 baseline (n=16). A single AHI 
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participant remained on an EFV-based treatment at both time points (n=1), while the remainder of 

considered AHI participants in our sample received a DTG-based treatment at both time points 

(n=14). 

4.3 Exploratory Findings 

Cross-sectional Differences by HIV Status at Baseline 

We repeated analysis done in our group as a confirmation of previous findings. TBSS 

voxel-wise analysis of healthy controls compared to the baseline AHI group showed reduced FA 

in AHI (0) compared to CO in the corpus callosum, the corona radiata, and the left superior 

fasciculus (all p<0.05) after adjusting for age and TIV. The same model demonstrated increased 

MD in the corpus callosum (p=0.10) close to statistical significance. VBM structural analysis, 

adjusted for differences in age and TIV, revealed enlarged gray matter volumes, namely the 

putamen, the caudate, and the nucleus accumbens (all p<0.05), in the infected group compared to 

the CO group. The AHI (0) group also exhibited larger white matter volumes, particularly in the 

frontal lobe, the temporal lobe, and the brainstem (all p<0.05) after adjusting for age and TIV. 

Differences in Treatment 

We addressed differences in treatment regimen by splitting AHI participants into two 

groups: participants who switched from EFV-based treatment to DTG-based treatment over the 

course of 24 months (n=16), and participants who remained on a DTG-based treatment at both 

time points (n=14). To limit variability, the single AHI participant who remained on EFV-based 

treatment at both time points was excluded from analysis. BMLE models adjusted for TIV showed 

two findings. First, CD8 t-lymphocyte count was significantly associated with a reduction in FA 

metrics in both groups. Second, this association was more pronounced in the group switching from 
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EFV-based to DTG-based treatment, suggesting that the treatment switch may have biased single 

group longitudinal findings.  

4.4 Limitations and Future Aims 

There were several limitations to this study. First, the sample size was small and lacked 

imaging data of healthy control participants followed longitudinally to month 24 follow-up. As 

such, BMLE models may have been particularly susceptible to inherent physiological or 

instrumental differences among individuals that could influence collected clinical and imaging 

data, respectively. As a result, statistical analysis may have captured these differences instead of 

differences due to longitudinal changes in brain integrity and volume. Continuation of this analysis 

would necessitate the inclusion of more AHI participants (expected n = 60), as well as both chronic 

HIV (expected n = 40) and healthy control groups (expected n = 40) to represent relative changes 

of brain integrity and volume in later-stage disease and relative changes due to normal aging, 

respectively.  

Due to the ongoing development and proven tolerance of second-generation antiretroviral 

therapies, a sizable proportion of early AHI participants switched from EFV-based to DTG-based 

antiretroviral therapy while more recently enrolled infected individuals began the DTG-based 

regimen.58 The change in therapy among some participants hinders interpretation, since medical 

effects are possible. Future analysis will include further sensitivity analysis to investigate changes 

in brain structure and integrity within the HIV-infected group and determine whether choice of 

antiretroviral regimen biases single group findings. 

Regional and functional variability may have also contributed to incongruent findings in 

structural ROIs when compared to voxel-wise analysis. Examining region of interest (e.g. 

functional units) differences involves interpreting mean values of often large groups of voxels, 
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which may overlook observed variabilities within the structure. Although analyzing subsections 

of regions may eliminate averaging out regional variability, diffusion among a group of voxels 

that represents diversely tortuous geometries inherently smooths away observed differences that 

may attribute to functional variability. Finer methods, such as functional analysis of diffusion 

tensor tract statistics (FADTTS), may better control for regional variance by implementing an 

additive spatial component in the analysis of diffusive motion. FADTTS considers the geometric 

orientation of diffusion signal within a well-defined tract as a parameter contributing to the voxel-

wise value of diffusion metrics. Additionally, investigation of separable physical factors 

contributing to diffusive motion may be achieved by using more advanced diffusion imaging 

methods, like neurite orientation dispersion and density imaging (NODDI). NODDI uses an 

orientation-dispersion cylinder model and assumes there are three diffusion compartments in the 

brain (hindered, restricted, and free-water diffusion), to characterize angular variation and axon 

diameter as separate contributing factors in directional diffusivity. Thus, this model may be more 

effective at attributing changes in DTI indices to physical perturbations in neurite morphology and 

or neurite density.59,60  
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5. Conclusion 

The analyses presented in this work are concerning that changes in brain integrity occur in 

HIV despite treatment with cART initiated in the very earliest stage of infection, suggesting the 

need for further development of adjuvant therapies for neuroprotection. We present proof of 

principle that such analyses can be accomplished and suggestions for findings that may emerge 

once our study reaches target enrollment numbers. Future work will also be powered to examine 

clinical and laboratory measures, such as neuropsychological testing performance, plasma 

biomarkers, and, potentially, cytokines measured in CSF to understand if they associate with any 

observed changes in brain integrity. This future work will provide greater clarity as to whether 

inflammation underlies anticipated observed differences in brain integrity. 

In all, this study will overcome limitations in the existing literature where examination of 

DTI and volume abnormalities cannot exclude changes that occurred prior to the initiation of 

antiretroviral therapies since all participants in this study will start treatment within days of viral 

exposure. As well, our study will stand alone from prior studies that were completed among 

participants examined during primary HIV and will inform an early protective window (i.e. acute 

HIV), during which if treatment is initiated, changes noted in chronic HIV are mitigated. If early 

treatment ultimately proves to be neuroprotective in this novel cohort, findings may impact public 

health approaches encouraging the earliest possible treatment of HIV. 
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