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Abstract 'e

Principles of current distribution are related to fundamental transport
equations. Application Of these principles in the past has foilowed mainly
two courses -nﬁreatment of systems analogous to those . of heat and nonelectro-
lytic mass transfer and eapplications of potentidl: theory, wherehthe potential
distribution satisfies Laplace's equation. These results are illustrated for
two plane electrodes forming part of the walls of a flbw chanﬁel.' Problems

of an intermediate nature include the effect of jonic migration on limiting

currents and current distribution below the limiting current.
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Intfoduction
Fundamental equaiions describiné transport in dilute electrolytic solu-
tions have been khown siﬁce ﬁhe ﬁurn of the:centuryf In an electrochemical
system, many'processés océur-simultaneously, and the treatment bf‘such'prob—

lems involves consideration of the ohmic potential drop, concehtration chanéés

near electrodes, and the kinetics of the heterogeneous electrode reaction.

Application of these principles has followed two main courses: There
are systems where the ohmic potential drop can be neglected. The current
distribution is then determined by the same principles which apply to heat

transfer and non-electrolytic mass transfer. This usuaily involves systems

¢

. k)
~operated at the limiting current with an excess of supporting electrolyte,

because below the limiting current it is usually not justified to neglect the
ohmic potential drop and because the presence of the supporting electrolyte

allows the effect of ionic migration in the diffusion layer to be ignored.

Furthermore, the concentration of the reactant is zero at the electrode sur-

face, and the treatment becomes simplified. Let us call these "convective-

transport problems."
At currents much below the limiting current, it is possible to neglect .

concentration variations near the electrodes. The current distribution is then

. @etermined by the ohmic potential drop.in the solution and by electrode over-

potentials. Mathematically, this means that the potential satisfies Laplace's
eguation, and many results of potential theory, developed in electrostatics,
the flow of inviscid fluids, and steady heat conduction in solids, are
directly applicable. Let ué call these .potential-theory problems.” The
electrode kinetics provide boundary conditions which are usually different

from those encountered in other applications of potential theory.
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APfoblemévhaVé'beén treétedkwhich d§ not fall within either of ﬁhese'two
clabéés. Some problems can be”fegarded as an extension of the convective-
transport problems. At the.limiting current the éhmiC‘potential drop in the bulk
of the solution.may stiil be negligible, but the electric fiéld in the diffus;on
layer near electrodes may lead to an enhancement of the limiting current. The
1currenﬁ density is then,disfriﬁuted along the electrode iﬁ the same manner as
when migration is neglected, but the magnitude of the current density at all
points is inéreased or diminished by a constant factor which depends upon the
bulk composition of the sdlution,' |

At4curren£s below, but at an appreciable fragtidn of, the limiting current,
“diffusion and éonvective transport are essential,’but heither conéentration
variatiohs near the electrode nor the ohmic potential drop.in the bulk‘solution
can generally be néglected, These problems are complex because ali the factors
are involved at.once. |

In pordus electrodes.conQection may not be present, but it is usuallyv
hecessary to consider the ohmic potential‘drop,‘ cohcentration variations, and
electrode kinetics. Most treafments adépt a ﬁacroscopic model which does not
take account of the detailed, random geometry of the porous structure. Re-
sults of éotential theory are then not applicable since Laplace's equation
-does not hold. Bécause poroﬁs électrodes dQ not fit in well with the other

electrolytic cells considered, their treatment is omitted from this paper.

Fundamental Equations

Transport in electrolytic solutions
The laws of transport in dilute electrolytic solutions have been known

for many yéars and have been discussed in detail elsewherel’g. The flux of

(2 1)
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a species ig due to migration in-an electric field, diffusion due to a conceh-
tration gradient, and convection with tﬁe fluid velocity.

N o= —ziutiiV®‘- D,Ve, * ve, - (1)
A material balance for a small volume element leads to the‘differential con-
servation law:
3 =V YR (2)
Since reactions are frequently restricted to the surfaces of electrodes, the
bulk reaction term Ri is often zero in electrochemical systems. To a very good
approximation the solution 1s electrically neutral, |

Ejzici = 0, : | (3)

i

'except in the diffuse part of the double layer very close to an interface.

The current density in an électrolytic solution is due to the motion of

charged species: -

i = . . 7 L"

LY Fzzil_!i (%)
!

These laws provide the basis for the analysis of electrochemical systems.

The flux relation (1) defines transport coefficients--the mobility u, and the

Na

diffusion coefficiént Di of an ion in a dilute solution. Many electrochemical

systems involve flow of the electrolytic solution. The fluid velocity is to

be determinedlfrom the Navier-étokes equation
N
¢ <§ + X'VX> = -Vp - uVev + P , (5)
‘E{ s ~ E_

and the continuity equation



Electrdde kinetigs

Tﬁe_differential equaﬁiohs;describing-the eiectrolytic SOlution rgquire
boundary éonditions.in 6rder.for the:behaviof‘of an electrochemical system to
be predicted, The(mostvgompiex of these concerns the kinetics of électrbde

réactions. A single electrode reaction can be written in symbolic form as

N

z, ‘ o .
E: siMil -ne” .. - E ' (1)

1
Then the nofmal component ‘of the flux of a species is related to the normal
compénent Qf the current deﬁsity, that which contributes to the exterﬁal cur=-
| rent to the eiectrode.
N, =--—+4 . (8)
This equation is restricted not only to a single electrode réaction but also
to the absence of‘an appreciable chérging of ﬁhe double léyer, a process which
does not follow Faraday's‘law. | |
Next one needs an equation describing the kinetics of the electrode reac-
_tion, that is, an equation which relates the normasl component of the current
density to the surface overpotential at that point apd the composition of
the solution Just outside the diffuse part of the double layer. Thé motiva-
tion of the electrochemical engineer in this regard is basically different
.from that of an electrochemist. The dbjéct is to predict the behavior of a
complex electrochemical system rather thén to elucidate the mechanism of
~an electrode reaction. For this.pﬁrpose one needs an equation which describes
accurately how the interface behavés dufing the passage of current, énd for .
thls purpose the interface includés the diffuse part ofAthe double layer:
The surface overpotential Ng can be .defined as the potential of the

working electrode relative to a reference electrode of the same kind located
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Just outside the double layer. Then one seeks a kinetic ekpression of the fbrm

1= flnge), c | (9)

where charging of the double layer is.again‘ignored. The concentrationé
cy here refer to the point just outside the doub%fflayer. Such an expression
thus describes the'interface since in’ Ngs and ¢y ;re all local quantities.
In particular, the concentration veriation between the ihterface and the bulk
solution and the ohmic potential drop in the solution have only an incidental_v
bearing on events at the interface. At the same time no attempt is made to
give a separate account.of the diffuse part of the double layer.

The functioﬁ f in equation (9) is in general complicated. However,
there 1s_ample evidence that there is a large class of electrode reactions
for which the cur;entvdensity_depends exponentially‘on the surfaée overpoten-

tial in the following form: | SR

1 = wr 1 o[ Qe YT '
n 10---[exp {RT ns}_ ex-P{ RT “sH ’ (10)

n
where io is the excﬁange‘éurrent density and dependé on the concentrations
cye This latter dependehce can frequently be expressed as a product of
powers of the concentrations. In this equation{ in and ns are positive for
anodic processes, negative for cathodlc proées;;s. Both a and n are kinetic
parameters and must be determined to'agree with experimental data.

Information on electrode kinetics can be found in the literature3’h’5.
This is often interpreted:.from the point of view of reaction mechanisms and

not with the object of predicting the behavior of electrochemical systems.

Convective-Transport Problems
For the reaction of minor lonic species in a solution containing

excesgs supporting electrolyte,- 1t should be permissible to neglect the
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)

contribution of ionic migrationfto the fluxIOf the reaéting idns,‘so that
equation (1) becomes

: Ei‘=v'Divci +:1pi_, | _ (11)

and substitution into equation (2) yields

dc R ’ - :

 This may be.called the equation of convective diffﬁsion. A similar equation .

appiiés to éonvective heat fransfer.and'convective1mass transfer in non-
electrolytic solutions. Since these fields ha&e béen studied in detail,

it is,poésible to apply many results to electrochemiéal systems wﬁich obey
“equation (12). At.the same time electrochemical systems sometimes pfovide
the most convenient experimental means of tésting these results or arriving
“at new results for systems foo complex to analyze.

Essential to the undefstanding of convéctiveftransport pfoblems is the

. win -
A \)
concept of the diffusion layer. Frequently, due to0"the small value of the

-

diffusion coefficient, the concentrations differ'significantly from their

bulk values only in a thin reéion near the surface of an electrode. In this.

region the Qelocify_is small, and diffusion is important to the transport
proceés. KThe thinness of this region permits a simplification in the analy-
sis, but it is erroneous to treat the-diffusion layer as a stagnant region.
Figure 1 shows the concentration profile'in the diffusion layer, with thé'
electrode surface at the left. Far from the surface, convective transport

dominates, while at the surface itself there is only. diffusion.

The systems typically studied in heat and mass transfer involve laminar

and turbulent flow with various geometric arrangements. The flow may be

due to some more or less well characterized stirring (forced convection)

oy
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or may be the result of density differences'created in the selutioh as part
of the transfer.process (free convectien)., We shall-discuss here a few

examples, although there is no need to be exhaustlve since convectlve heat

£:7,8,9,

and mass transfer is thoroughly treated in many texts and monograph

There are also several reviews of mass transfer in electrochemlcal systems

10,11,12 iy examples. selected are primarlly those which have been studied

with electrochemical systems. In addition certain theoretlcal results of
general validity are included because they are particularly applicable‘to
electrolytic solutions, where the Schmidt numbers are invariably large;

The annulus
Axial flow in the annular space between two concentric cylinders pro-

" vides a.convenient situation for experimental studies of mass transfer.

13

In the work of Lin, Denton, Gaskill, and Putnam ~ the electrode of interest

formed part of the inner cylinder while the outer cylinder formed the counter

- electrode. However, their experimentel results and theoretical treatment

15

have been severely criticized by Friend‘and Metznerlu. Rossland Wragg
reviewed the problem and performed additional experiments with a similar

arrangement. A circular tube with no inner cyliqger is a limiting-case of

the annular geometry and has been studied by Van éﬁaw,vReiss, and Hanrattyl .

Another limiting case investigated by Tobias and Hickmaan

is the flow be-
tween two plane electrodes.
Let the radius of.the outer cylinder be R, and the radius of the inner

cylinder be kR. The electrode of interest is of length L and is located

far. enough downstream in the annulus that the velocity distribution is fully

developed before this electrode is reached. A limiting current is reached

at this electrode when the concentration of the reactant drops to zero at

the surface.

ey
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For laminar flow in the énnulus, the local, limiting'currént density

should follow the theoretical expression

. 1/3
nF D‘l Cy <V> p
(l-K)RDix >

i = 0.8546 - (13)

i
where (v> is the éverage velocity in the annulus, x 1s the-distance from the
upstream edge of the elecﬁrode, and ¢l/3 is a function of the geometric

pafameter k and is shown in figuré'Q for both the.inner and the‘outer elec-

trode.

Mass transfer in laminar flow is very similar to the classical Graetz-

18).

Nusselt-Léveque problem (see Jakob Equation (13) is valid only when

the concentration variation is confined to a thin diffusion layer near the
electrode surface, as it is for small values of x. However, for electro-
chemical systems the diffusion coefficieht is small, and consequently the

diffusion layer grows in thickness slowly with increasing x. It might be

15

estimated™” that equation (13) is valid for

x < 0.0L Re Sc 4 , (1)

7 :
where dg = 2(1-k)R is the equivalent diameter of the annulus, Re = de,(v> /v

is the Reynolds number, and Sc = V/Di is the Schmidt number. For Sc = 2,000

-~

and Re = 500, this condition yields

A )4 <y

x <1074 , Qe (15)

and is usually sétisfied in the experiments.

In order to facilitate comparison of results for different systems and
withvthe standard corfelations of heat and mass transfer, eduation (13) is

frequently written in dimensionless form.-

Nu(x) = 1.0767 (# Re Sc de/x)l/3', (16)
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Figure 2. Coefficient for mass transfer in annuli. .
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where the Nusselt numbef iS'a.dimensiénless mass-trénsfer rate;

Mu(x) = 'Nide/c«pi . - (17)

The average value of the Nusselt number, correspohding to the average mass-

transfer rate over the length L, is

Nu. =L&ﬂ(¢m3c%mfh. o  (18)

3]
aveg

As k=1, these results apply to the flow between'two flat plates, parts
of which form plane electrodes. Then # = 1.5, and equations (13), (16),

' : nfF Di e/ <V> 1/3
_in = 0.9783 sy n D, x ’ . (19)

and (18) become

1

where h = (1-k)R is the distance between the planes,

Nu(x)

1

1.2325 (Re Sc de/x)l/3 , ;  (20)

Nu
aveg

1.8488 (Re Sc de/L)l/3 . (21)

In fiéure 3 the curve denotedv"limited by convection and‘diffusion" depicts
the local current density as a function of position along the electrode.

The mass-transfer rate is infinite at the upstream eége of the electrode

whefe fresh solution is brought'in contact with the electrode. The current
decreases with'increasing‘x since the solution in the diffusion layef has
already been depleted by the electrode reaction further upstream. ILater it
will be instructive to compare'this current distribution with that which

would be obtained when the ohmic potential drop in the solution is controlling.

13

The results of Lin, Denton, Gaskill, and Putnam™~ for laminaer flow fall
roughly 17 percent below the values predicted by equation (18). Part of
this discrepancy can be attributed to the fact that some of the diffusion

coefficients were determined by fitting these experimental results to an
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Figure 3. Currenﬁ distribution on plénar electrodes.
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'6? laminar results are 9 to 13 percent

below those predicted, while those of Tobias andAHickmaan scatter within

erroneous equation. Ross and Wragg

7 percent of the values predicted by equation (21).

Turbulent flow 1s characterized by rapid,and‘random_fluctuationsvof the
velocity and pressure about thelr average wvalues. The turbulence is greater
at a distance from solid .walls, and the fluctuations gradually -go to zero as
 the wall 1s apprdached. The fluctuations in velocity result in fluctuastions
in concentration and also in enhanced rates of mess transfer. Near the wall
the fluctuations go to zero, and me.ss transfer at thg wail is}by diffusion.
The details of thé natﬁre of the fluctuatiéns are important in the region
near the wall where diffusion and turbulent transport contribute roughly
equally to the mass transfer rate.

In the mass-transfer entry reglon in turbulent flow, Van Shaw, Reiss,
and Hanrattyl6 expect the average Nusselt number in circular tubes to be

given by

Ny g = 0-276 re0" 5862/ 3(de/L)l/ 3, (22)

The experimental results fall 7 percentvbelow thesej;alues but exhibit the
same dependence upon the Reynolds number and the electrode length. The data
of Ross and Wraggls for the inner cylinder of an annulus with k = 0.5 are
correlated by equatibn (22). However, in this geometry, those authors
expect the coefficient to be 9 percent higher.

The mass-transfer entry region where equation (22) applies is'much
shorterlin turbulent flow than in laminar flow. The results of Van Shaw,
Reiss, and Hanratty16 indicate that this length ranges fromﬁe diameters to
|

0.5 diameter as the Reynolds number ranges from 5,000 to 75,000,

Beyond this short entry region, the Nusselt number rapldly approaches
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a constant value}.corresponding fﬁ-fﬁll&-developed @ass transfer. It is
surprising that’fully-develqped mass transfer has not been sﬁudied hore'
.extensively with electrochemical syétems. iThé reéulfs 6f Iin, Denton,. _
Géskill, ané Putnaml3 agree well'with the equation of Chilton and Colburnl9

for heat transfer:

_ 0.8, 1/3. - pay
Nuavg = of023 Re sc . | ' (23) |
- Friend and Metznerll‘t discussvcritically the‘applicability of such an equa-
tion for Schmidt numﬁers as large as those encounteredlin electrochemical

systems. However, Hubbardgo also obtained agreement with this equation.

Two-dimensional diffusion layers in laminar forced convection

‘In 19k2 Levichgl, in treating eléctrolytic mass transfer to a rotating
disk; rémarked that in the case of diffusion, ﬁarticﬁlarly the diffusion of
ions, the Scpmidt number reaches the vélue of severél thousands. fThus,
in this case we deal with a peculiar limiting case of hydrodynémics, which
may be called thevhydrodynamics of Prandtl’'s [or Schmidt's] large numbers."”
Lighthill22.developed a solution for the heat-tranéfer.rate.applicable when -
the. region of temperature variation is thin comparea to the region of velb- |
~city varlation. Ac;r'ivos;e3 realized that this method is applicable to a wide.
range of'problems when thé Schmidt number is large. Thus, for electrochemical .
. systems where the Schmidt nuhbér is generally large, i1t is frequently possible
to ébtain the concentration distribution ané the rate of mass transfer for
steady problems when the velocity distribution near the electrode is knqwn
in advance. Many results for electrolytié mass transfer can be regarded
as speclal cases of the agplicatioﬁ of this method.

The concentration distribution in & thin diffusién layer hear an elec-

trode is governed by the equation
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de dc 3% ' .
1 i i .
Y% 0% T Vv 3y © D, T3
. oy :

(2)

This equation is restricted to two-dimensional flow past an electrode, with
x measured along the electrode from its upstream end and y measured perpen-
dicularly from the surfacé into the solution.

Due to the thinness of the diffusion léyer compared to the region of
variation of the velocity, it ls permissible to approximate the velocity

components by:their first terms in Taylor's expansibns in the distance y from

" the wall:

v, = yB(x) end v =-3yB(x), o (25)

where B(x) is the velocity derivative ka/By evaluated at the wall (y=0).

These expressions for the velocity thus satisfy the applicable form of equa-

tion (6):
avx ov |
5;- + Byx =0, (26)
as well as the boundary conditions v, = vy = 0at y = 0. With this approxi-
mation, equation (24) becomes .
' 2
y8 g}c;i- - 1 P g% =D, Zyzi . (e1)

If the concentration at the surface 1s a constant ¢y, then the concen-
tration profiles at different values of x are similar and depend only on

the combined wvariable

SR / |
¢ = y\/-{7[9Dif \/-B_dx]l 3. | (28)

In terms of this similarity variable, the concentration profile is given by

. Y
C_i"C 1 . '63 .
- coo-cz = T(L/3) f ¢ ek, (29)
0
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where T(4/3) = 0.89298, This function is plotted in figure 1 and has been
' tabulatea®”. B I |
‘The limitihg curren£ density (fof coﬁ= O)'is thus
- D, e VF [ ” ’xj— ]1/3 o R
et/ o [ Bl BN
_ S [ . 4
N o
Equation (19) for flow between two plates isvaf"special cése of equation . (30) -
* for which B is independent of x and has the value 6 (V) /h. Equation (30)

~ gives the rate of mass transfer if B is already known.

Axisymmetric diffusion layers in laminar forced convection

Equation (2&) &1$0 epplies to steady mass trénsfer ih a#isymmetric'diffu;
sion layers,‘that is, where the electrode forms'part_of a body of revolution,
Examples Qould be the.annulus éonsidered earlier, a.sphere, and a aisk elec~
trode. . The coBrdinates b4 and y have the same meaning; x is meaéured along
the electrode from its upstream end andvy is measured perpendicularly from.
the surface into the solution. It is also nécessary to épecify the normal
~distance r(x) of the surface from the axis of symmetry.

The applicaﬁle form‘of equation (6) now is (see Schlichting9, p. 185)

olrv.) . ov
-'—gx—x—'*'ryf-o. (31)

Due to the thinness of the diffusion layer it is still permissible to approxi-
mate the velocity components by their first terms in Taylorfs expansions

in y. However, in view of equation (31), these now take the form
R Lo o | .
v = yB(x) end v o= -3y (rB)'/r, - (32)

and equation (24) becomes

dc
“F3 1 2 (rB) i _ i :
yB S " Y % S Di 555"_- . _ (33)
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The concentration profile is again given by equation (29)'in terms of

the similarity varisble
1/3

X : L
¢ = yVrp [9D_? fr\/‘rB dx-] , (34) -
R |
o

and the limiting current density is

'.':.n = "‘EP(’LW [QDT‘ f TN rh d:-:’.f:] . , (35)

0

Fgiation (13) for the annulus is a spec;al case of ecuation (35) in wvhich r
and B are indcpendent of .
A flat plate in a free stream

The steady, laminar hydrodynamic flow parallel to a flat plate beginning
at x = 0 and éxtending along the positive x-axis has been treated extensively.
The value of the yelocity derivative at the surface is (see Schlichting9,
p. 120)

B = 0.33206 v_Vv_ /vx , | (36)

where v 1s the value of vxvfar from the plate. Substifﬁtion into equation

(30) yields

. nF Di cm(vml/z(v\>l/3 ‘
i, = 0.3387 —-—?Qf——' ® \5;A . , (37)

The average Nusselt number for an electrode of length L is

s, Li =~ | :
i avg _ 1/2 . 1/3
Nuavg = Ef—ﬁz—g—— = 0.677k Re;’” 8e™' 7, (38)

[ee] : .
where ReL =L vm/v. These results apply to laminar flow. The flow hecomes
~ turbulent at a Reynolds number of about 105.

Electrochemical systems for which these results are directly applicable

are not frequently encountered. Unfortunately the analysis for a flat plate
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in 8 free stream has been applied to annular geometries'and the flow .between

25,26,27

two flat plates ; which should follow equations (13) and (19).

Rotating cylinders -

Mass transfer befween concentric cylinders, the inner of which is rotating
.Mith an angular speed {}, has been studied by Eisenbefg;vTobias, and Wilke28
and by Arvia and CarroézaEQ. .If the flow beﬁwgén fhe electrodes is tangential
_and laminar, it does notvcontribute to the rate of massrtransfef since the
. flow velocity is pérpendicular to the mass flux. At higher rotation speeds,
the flow is still laminar but no longer tangential, and so-called Taylor
vortices are formed. Superimposed on the tangential motion is é radial
and axial motion, outward aﬁ one point and inward at a different axial ﬁosi—
tioﬁ. At.still higher rotation speeds, the flow.becomes %urbulent. Mass
transfer in this turbulent flow, which is achieved at lower rotation speeds
if thé.inner cylinder rotates rather than the outer, has been studied in
the above-mentioned works.

By the nature of the éeometric arrangement, the_current distribution

is uniform. The results have been correlated by the equation

nF D c, Qd3 0.70 0. 356
in = 0.0791 s, <'2Vd (. > v : (39)

or, in dimensionless form,

Nu = 0.0791 (Re dR/dL)O‘7° 5c0-3% (40)

where dR is the diameter of the inner, rotatiné ecylinder, dL 1s the diameter
of the cylinder with the limiting curregt, Nu = insidR/nF Di ¢, is the Nusselt
number, and Re = ng/Qv is the Reynolds number.

In the work of Eisenberg, Tobias,;and Wilke the 1imiting electrode was

the inner, rotating electrode, and dR = dL' The results, for which the
| .
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_ Reynélds nunber ranged from 112 to l62,000.and the Schmidt number from 2230 .

to 3650, agree with equations (39) and (40) within 8.3 percent. Arvia and

Carrozza measured the limiting fates of mass transfer at the stationary,

iouter electrode.

Growing mercury drops

and also Mac Gillavry and Rideal

Limiting diffusion currents to a dropping mercury electrode find impor-

tant applications in the quantitative analysis of electrolytic solutions.

Let the mercury flow at a éonstant rate from the capillary tube to the drop

. growing at the tip, so that the radius increases as

N ~ (41)
\/— u3o,3l
The diffusion layer on the drop has a thickness proportional tovt. Ilkovic
32 |

treated the problem with the assumption

that the diffusion layer 1s thin compared to the radius of the drop.

For radial growth of the drop, withoﬁt tangential surface motion, the

limiting current hénSity is

4“» nFc . 7D~ i > )
_ © 3 1/2 1/6
1= T NI [1+1.0302 0/ +/°/r] . (k2)

This equation, without the correction term, was flrst derived by Tlkovié.
The correcfion term, which accounts for the greater thickness of the diffusion
layer and for which at least three different values of the coefficient can
be found in the literature, was first derived correctly by.Kouteck§33. (We
have carried this slightly furthér8h to express the coefficient in terms of
gamma, functions: -
1.0302 =v3/7 160(15/1k)/110(31/7).)
The total current to the drop, avérgged over the life time T of the drop,

then takes the form
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nF cg . :
2, 2 6 6
1 = 35723 ——= 032306 i assode/m2)/0Y, 3)
51 . :
where m 1s the volumetric flow rate of the mercury'(cms/sec).
Since, in the absence of tangential surfacé motion, the convective flow
is well defined, the dropping:mercury electrode has frequently been used for

the determination of diffusion coefficients.

The rotating disk

When a circular disk is rotated with an angular_velocity'ﬂ about its-
axis in a fluid, the centrifugal force caﬁses the fluid to move radialiy out-
- ward near the disk ahd to be replenishéd by an axial’motidn towafd the disk.
Levichgl has analyzed the mass transfer in such a fluié motion. Since the
~axial component of the velocity is uniform and dépends only on the normal
distance from the disk surface, the'maés—transfer fatevto the disk is also

uniform.

For the disk, r = x, and the value of the velocity derivative at the -

9 3h)

surface is (see Schlichting”, p. 87, or Sparrow and Gregg

NN oy (1)

where a = 0.51023. Substitution into equation (35) yields

1 = 0. 620&8

\/—(~—> ) ()

This expression uses the approximations (32) of the velocity components near

the disk and is valid for large Schhidt numbers. The correction for the
: _ %

fact that the Schmidt number is not infinite has also been treated35’ for
this system.
Because of the well-defined fluid motion, the rotating disk electrode

has been used.extensively for the determination of diffusion coefficients
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‘and the parameters of electrode kinetics. The application of the rotating

disk system has recently been reviewed by RiddifordBY.

Free convection _ N

Free convection is a hydrodynamic flow which results from density varia-
tions in the solution produced,_in.fhe cases of interest here, by concentra-

tion variations near the electrode. Free convection st a vertical plate

, ~"electrode has been studied extensively. TFor deposition of a metal the solution

8ensity‘is lower near the electrode than. in the bulk; and ‘an uPWard'flOﬁ near the
electrode occurs. This upward flow provides convective transport of the

reéétant to the electrode diffusion layer. Ibl38 has reviewed the experi-

, e

mental work on this problem and reports the limiting current density to an

electrode of length L.

nF D, c. ~g(p_=p_ )11/b
_ X i o0 o0 o’
1oyg = 0-66 [p& p ] (46)
Mavg © nF D, ¢, o D¢ b ’ 7
- where - : g(pm_po )L3 .
' . O = (48)

Po V

is the Grésﬁof number. These results apply'to values of Sc¢ Gr between th
and 10%2. |

Free confection in solutions‘with an excess of supporting electrolyte
is complicated by the fact that the concentration of the supporting elec-
trolyte also varies in the diffusion layer andvtherefore contributes to the
variation of the density. Approximate methods of estimating the interfacial

density difference in the Grashof number have consequently been introduced,

39



- 20 .

Lo -

For turbulent natural convection at a vertical plate Fouad and Ibl’
obtained the relation
’ b -~ ‘. 0028 . . X
Nuavg = 0.31 (Sc Gg) R o (49)
' f 13 . . ALS
applicable in the range 4 x 107~ < Sc 6r <1077 .
o b ' '
Schutz L investigated experimentally free convection mass transfer to

spheres and horizontal cylinders and obtained for the average Nusselt number

for spheres

| . 1/% |
M, yg = 2 % 0-59 (Se Gr)™" | (50) .
. : 8 10
in the range 2 x 10~ < Se Gr < 2 x 107 and for cylinders
o 1/4 -
Nuavg = 0.53 (Sc Gr) | - , (51)

. .for Sc Gr < 109. In forming'these‘dimensionless groups, L= d, the diameter
of the sphere or cylinder. Schiitz also measured localvNusselt numbers using

a sectioned.electrode technique. S ' : ;

Acrivosb'2 has obtained a solution of the laminar free-convection boundary-

t

layer equations for arbitrary two-dimensional and éxisymmétric éurféces'in
‘the asymptotic limit Sc = «, These results should be of some interest here
" since the Schmidt number is large for electrolytic solutions. The local

limiting cdrrent density for two-dimensional surfaces is predicted to be

nF Di Co [g(pw-po)}l/h .(°iné)l/3

1= 0.5029 5D

oo

1

and the average limiting current from x = 0 to x'= L is

- ox 3/L
nF D, c PR
i = 0.6705 ——E—i——— (Se Gr)l/h [%50/‘(sin€)l/3dx]
‘ L :

av .
& 1

, (53)
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whe;e-e(x) is the angle between the normsl to the surface and the vertical.
For a vertical elecﬁrode, sine = 1, and the coefficient 0.6705 of equation
(53) can be compared directly with the experimental coefficient‘of equation
(16). |

For an axisymmetric surface, where r(x) is again the distance of the

surface from the axis of symmetry, the loecal limitihg current density is

1/h -
nf D, ¢, [g(ou:oo) (r sin €)1/3 | ()
8y P Dy V. X 1/4 >

-[L/"(r“sine)l/3dx]
(o]

From the results 6f Acrivos, the predicted coefficients of (Sc Gr

1 = 0.5029

)1/h\
in thHe expressions for the average Nusselt number for the sphere and the
horizontal cylinder are 0.58 and 0.50, respectively, which can be éompared
with the experimental coefficients in equations (SO) and (51). |
Free convectién at & horizontal plate is essentially different from that
discussed above since there is no chance for a laminar(boundary layer to

form and sweep fresh solution past the plate. At a horizontal electrode with

: é small density gradient, the solution at first_remains stratified. With a

higher density difference, a cellular flow pattern results, and for still

higher density differences, the flow is turbulent. In the turbulent region,
43 L

Fenech and Toblas ~ propose the relaﬁiént

nF D, c, [g(pw-po)]l/é,

poo V D-i

1 = 0.19 (55)

for electrodes wider than 2 cm.

Combined free and forced convection

When there ie the possibility of effects of free convection superimposed

on forced convection, the situation becomes essentially more complicated.
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Forfunately it apﬁears'that one effect or the other predominates in bhe mass
transfer process, depending upon the values. of the Reynolds and Grashof num-
bers. At horizontal electrodes Tobias and Hickman17 find that free convection

predominates and the average rate of mass transfer is given by equation (55) -

if - » L de g(poo-po) .
' <V> v o, > 923) - . : ) (56)

where L is the,electrode length and de is the equivélent diameter of the

'channel. Otherwise forced convection predominates and the average rate of
 .mass,transfer is given by equation (21). These results apply to laminar.flow
(Re < 2100). For turbulent flow, Tobias and Hickman find that forced convec-
tion predominates. | | |

Acrivosuh has analyzed_the combined effeéﬁ of free and forced convection
for surfaces which are not horizontal and also finds that the transition region_ 
between predominance of free convection and predominance of forced convection
is uéually narrowv. - |

Limitations of surface reactions

The work described above is resﬁricted to processes at the limiting cur-
rent where the concentration of the reactant at the surfgce_has a constant
value of zéro. Most industrial processes are operated belov the limiting
current, and the kinetics of the surface reaction then influence the distri-
'butiog of current. In this section on convective-transport problems, the
ohmic potential drop is not considered. Thus we must assume here that the
ohmic potential drop is eiﬁher negligible or constaﬁt-for all parts of the
electrode in question. The sum of the surface overpotential and the concen-
tration overpotential is then constant, and the current distribution is

determined'by a balance of these overpotentials. The concentration and the
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current density at the surface vary with position on the electrode and must

"adjust themselves so that the total overpotential is constant. The more

general problem involving the ohmic potehtial drop wlll be discussed in &
iater section.

Under these conditions the reaction rate at the electrode can be expressed
in terms of the concentratibn»at the surface, and the probiem is similar to

45-48

nonelectrolytic éatalytic problems . The éonvective—transport problem
can then be reduc¢ed to an integral equation relating the reaction rate to an
integral over the surface concentration at points upstream in the diffusion
layer. Other approximate methods]have also been developed for calculating
the surface concentration and reaction rate as a function of position on the
electrode. These meﬁhods, including the integral equation method, should

also provide a useful starting point for attacking the more general problem

involving the ohmic potential drop.

Applications of Potential Theory
When concentration gradients in the solution can be ighored, substitution
of equation (1) into equation (&) yields

1= -KV0 , (57)

where .
2 2
_ - 8
E kK =F ~}:ziuici (58)
i

is the conductivity of the solution and where the convective transport terms
sum‘to zero by the electroneutrality relation (3). Equation (é) when multi-|
plied by zy and summed éver i yields . |

| Vo =0, | | (59)
that is, the potential satisfies Laplace's equation.

The boundary conditions are determined with equation (57). On insulators
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/ey -0, 60y
where y is the normal distance from the surface. On electrodes, equation
(5?) relates this potential dérivative to the surface overpotential thfough
equation (9) or (10). If the potential @ in the solution is meésurea with a
- reference electrode of the same kind as the working electrode, then the sur-
 face overpotential can be eliminated with the relation

ng =V - ® at y = Q , | (61)

" where V is the potential of the metal electrode. The resulting boundary
conditlon is a nonlinear relationship ﬁetween the potential and the potential
derivative and is not commonly encouﬁtered in other applications of potential"
fheory.

As formulated above, the potentisl-distribution problem is similar to
the problem of the steady temperature distribution in solids, with the poten-
tial playing the role of the temperature, the curfent density that of the

heat flux, and the -electrical conductivity that of the thermal conductivity.

¢

Consequently, it is useful to be familiar with treatises on heat conduction,

k9 85

such as that of Carslaw and Jaeger “. A knowledge of electrostatics and

of the flow of inviscid fluids5o is helpful since they are also involved with

the solution of lLaplace's equation.

oL

Rousselot presents an interesting discussion of potential distribution

problems. Kronsbein52 haé given an historical account of the literature of

53

current distribution, and Fleck”™ has recently reviewed the available analytic
solutions of such problems.

Primary current distribution

In so-called primary-current-distribution problems the surface overpoten-'

tial is neglected altogether, and the solution adjacent to the electrode is



- @7 -

taken to be an equipotential surface. This defines a classical problem in
mathematical physics. The primary qurrent density is always infinite or zero
at the edge of an electrode unless the electrode is perpendicﬁlar to an insu-
lating surface at its edge. Generally, the primary current distribution shows
that the more inaccessible parts of an electrode receive a lower current
density. |

Moulton5h'gave a classical solution for the primary current distribution
for two electrodes placed arbitrarily on the boundary of & rectangle. This
is an example of one way to solve Laplace's equation, that of conformal map-
ping55 using 'in this case the Schwarz-Christoffel transformation. A special
case of this geometry is the primary current éistribution for two plane elec-
trodes piaced opﬁosite each other in the flow channel considered earlier.
This is shown in figure 3 for L = 2h and can be contrasted with the distri-
bution determined by conveption and diffusion. The distribution is symmetric
since convection is not important. The current density is infinite at the
ends of the electrodes sihce the current can flow through tﬁe solution beyond

the ends of the electrodes. The current distribution in this case is given

by .
Iy € cosh e/K(tanhee) ~ 6

1 = 5 ] (62)
&ve \/sinh €-sihh2(2xe/L)

where € = ﬂL/Eh, X 1s measured from the center of the electrode, and K(m)

is the complete elliptic integral of the first kind, tabulated in reference

24k, p. 608. This illustrates the fac£ that the primary current distribution
depends only on the geometric rgtios of the cell, in this case the parameter €.
The conductivity of the solution does not enter into the relation.

6 .
K’asper5 gives the primary current distribution for a point electrode
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and & plane electrode, linevelectrodes parallel to plane electrodes and plane .

insulators, and for cylindrical electrodes in various configurations. These

systems illustrate the application of the method of images. According to

o7

Newman”', the primary current distribution on a disk electrode of radius T,

embedded in an infihite insulating plane. is

1 . . '
n _ 0.5 , ' . (63)

lave \/l;(r/ro)e '

" This is a simple example of the application of the method of separation of

58,59,

variables and Fourier series and integrals
‘Hine, Yoshizawa, and Okada6o have described the primary currenﬁ distri-
bufion for two plane eiectfodes of infinite length and finite width confined
between tﬁobinfinite insulating planes perpendicﬁlar to, but not tbuching,
the electrodes. Wagner6; hés given the primary curreﬁt distribution for a

‘two2dimensional rectangular slot in a plane electrode. These are further .

examples of the Schwarz-Christoffel transformation.

62 ' ,
Kojime ~ has collected various expressions for the resistance between
two electrodes in various configurations. Analogous collections should be

63

found for the resistance for heat conduction in solids and for the capaci-

tance of two electrodes. The resistance for a disk electrode embedded in
an'infinite insulating plane with the counter electrode in the form of a

hemisphere at infinity is57

R=1/ber, . (6u)

The resistance for two plane electrodes.of length L in the walls of a flow
channel separated by a distance h, where the primary current distribution
~is given by equation (62) is

, . _ |
o
K(tanh €)
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where W is the width of the electrodes pefpendicular to the length of the
channel.

Secondary current distribution

When slow electrpde reaction kineties are taken into éccount, the electro-
lytie solutién near the electrode is ho longer an equipotential surface. A
wide variety of expressidns for the electrode polafizatibn has been used,
which refiects the variety of electrode kiﬁetics as well as a variety of
approximations. The result of such a calculation is the so-called "secondary
current distribution.”  The general effect of electrode polarization is to
make the secondary current distribution more nearly uniform than the primary
current distribution, and an infinite current density at the edge of elec-
trodes is eliminated. vThe mathematical problem now involves the solution
of Laplace's equation subject to a more complicated, perhaps even nonlinear,
boundary condition.

_ .For sufficiently small surface overpotentials, equation (lO)vcan be

linearized to resd

‘din io nF » (66)
i = =— Ny =™ N, « .
n dns n =0 8 RT 5

s
This provides a linear boundary condition for Laplace's equation énd has been
populér in the literature since there is some hope of solving the resulting
linear problem. Furthermore, if the range of cﬁrrent densities at the elec-
trode is sufficiently narfow, as one wants to achieve in electroplating, it
is, of course, justified to linearize the polarization equation about some
other, nonzero value of the surface overpotential. Finally, with linear
polarization one achieves an economyvof parameters needed to determine the
current distribution,and the calculation of a family of curves representing

the current distribution for a particular geometry is justified.
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The‘éecondary current distributipn’in/ depends upon the same geometric

, , o iavg
ratios as %he primary current distribution‘and, in sddition, for linear polari-
: zation dependa qnjthe pafameter (L/K)diﬁ/dns; whefe L is‘a-lgngth charéctéris-
tic of the.system. This parametef has been identifiedvby Hoar and Agar6h for.
the characteriéation Qf the influence of electrolytic resistanceé polarizaﬁion,
-and cell size’én current distriﬁutioh. When Both électrodéé are polarized,
fhere are t@o such parameters involving the slope of the polarizafion'curve on
Both the anode and the cathode. For linear polarization, the current distfi-
‘bution in/ia'vg"is st111 independent of the magnitude of the current.

.The Tafel polarizatiqn'law, where one of the exponéntial terms in eqﬁaf

tion (10) is negligible, is also popular in the literature. For a cathodic

reaction we have

= - _(l_Rg.__m [Z%‘(-in) - ;o] e = | (67)

This is popular because, while being a fairly realistic polariZation law, Tafel's

equation introducésia minimum ofwadditional'parameterS'inﬁbfthe'prob1Em. In addi-

tion to depending on the.same_geometric ratios as the primary current distribution,

g

The current distribution now depends on the magnitude of the'current,'but it is

the.currentndiétributiod 1n/1&vg now depends.on the-parame£e¥ lié& | (1-a)nFL/RTk.

independent.of the‘vélue of the exchange current density io’ insofar as Tafel
polarization is applicable Only‘for current densities appreciably above the
exchange current density.

'Newman65 has treated the secondary cﬁrrent distribution for avdisk elec-
trode embedded in an infinitevinsulating plane. Fbr both a linear and‘a
Tafel polarization law, the current distribution épproaches the primary cur-
.rent distribution as ﬁhe electrode becomes large at a éonstant average cur-

rent density. This is a general effect of the change of size in an electro-
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56

chemical system. Kasper has_treated the effect of linear polarization on
some line-plane systems and for:cylindrical electrodes.

| Wagner has treated the secondary current distribution for a plane elec-
trode with & two-dimensional slot6l, two caées of plane electrodes in the-
walls of an insulating chsnnel, and a nonplanar‘electrode with a triangular
profile66L One of the cases treated by Wagner\for linear pblarizétion, that
of a plane electrode of finite width embedded in an inéulating plane and with
the counter electrode at infinity, has béen treatéd by Gnusin, Poddubny{,
Rudenko,. and Fomin67 for Tafel polarization. Sbme of these cases illustrate

the use of current sources distributed along the electrode surface as a method

of reducing the problem to an integral equation. This integiral.equation; which may

be linear .or nonlinear depending on the polarization law used, frequently
requires a numerical solution.

Numerical solution gx finite differences

Analytic solutions of current-distribution problems are usually restricted

to simple geometric arrangements and to no polarization or linear polarization.

The use of some analytic solutions is facilitated by computer evaluation of

certain integrals and infinité series. Some methods, like Wagner's integral-
equation method or solutions in infinite series with ﬁndetermined coefficients,
require numerical evaluatioh of the current distribution on the electrodes

or of the coefficienpé. When such methods can be usea, the labor is less and
the results more accurate than a numerical solution of Laplace's equation by
finite-difference methods. Nevertheless, finite-difference.methods have been
developed for solving laplace's equation for heatfconduction problems, for
example. The applicability of this procedure is much less restricted than

analytic or partial analytic solutions.
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Klingert, Lynn, and Tobias68‘have used a finite;difference method for
the solution of Laplace's equation in an L-shaped region where the anode forms

-

- & right angle one side of which is opposife the'cathode and the other side of
3

which is opposite an:insulating surface. -Fleck5 has developed‘a general com-
puter progrémlfdr solving Laplace’s equatioﬁ.by successive overrelaxation in
érbitrériiy-sﬁéped,‘two?dimensional regioné, ihcluding those with curved boun-
daries, and for arbifrary polarization laws.

This review of the applications of pobential theory has not been exhaus-

tive. Other interesting sources can be found in the references already cited.

Intermediate Problems

We héve discusséd a£ length two extreme cases of current distribution
problems:‘ convective-trénsport.problems mostly at the limitihg current and
applications of potential théory to cases where cohcentration variations near
" the electrédes caﬁ.be ignored. |

A relatively simple problem of an intermediate nature ;esults if the
current is maintained at a limiting valﬁe, but the concentration of supporting v
electrolyte is reduqed felativé to the concentrétion of the reacting ions.
Since the current is at its limiting value, the ohmic potential drop in the
bulk of the solution is still negligible, and the current distribution is
determihed by mass trgnsfer in the diffusion layer. However, the presence
of an electric field in the diffusion layer can lead to an increase or a de-
crease in-the limiting current due to migration of the reacting ions. «

Aﬁ currents below but at an appreciable fraction of the limiting current, .
'concenfration variations cannot be ignored. As indicated in the subsection
on "limitations of surfaée reactions, itvmay éccasionally'be possible to

treat the problem like one involving non-electrochemical catalysis. More
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frequently, however, the variatiéns in the ohmic ﬁotential drop in the solu-
ﬁion cannot be ignored.

As mentioned in the intrbduction, porous electrodes will not be dis-
cussed here.

Effect of migration on limiting currents

Because of the electroneutrality condition (3), solutions of only two
ions also satisfy the equation of convective diffusion (12) but with Di re-
placéd by the diffusion coefficient of the electrolyte

zuD -2z ulD
D=—Ff- - -* (68)

‘z+u+ - Z_U._

Consequently it is felatively simple to solve convective-transport problems

at the limiting current for these solutions. For example, Levich originally
treated the rofating disk for such a binary electrolyteEl. The Ilkovig equa-
tion for a growing mercury drop has been extended to a binary electrolyte

by Lingane and Kolthoff69- These results indicgfe an enhancement of the'j
limiting current compafed to the same discharging ion in a solution with excess
inert.electrolyte, and this can be attributed to the effect of migration in

the diffusion layer.

There is some interest in calculating the limiting current for inter-
mediate cases where there is some inert electrolyte but no£ 8 large excess.
Eucken70 gave the solution for three ion types in systems which could be repre-
sented by a stagnant Nernst diffusion layer. Because experimental data7l
for the discharge of hydrogen ions on growing mercury'drops did not agree with

30

Eucken's formula, Heyrovsky~ rejected his method and introduced a correction
factor involving the transference number of the discharging ion. This trans-
ference number correction is not based on quantitative arguments, but it has

become entrenched in the electrochemical literature.
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72 have considered the effect of ionic migraJL

Gordon, Newman, anleobiaé
tion on.limiting currents for a rotating disk.éléctrode, Newman'3 ﬁas treated
" 'thé effect fof four cases:"tﬁé rotafiﬁg diék, the gfowing mercuf} dfop, pene-

. tration into & semi-infinite medium,'and the stagnant Nernst diffusion layer.v_ e
Thé raﬁio iL/ID 6f the limiting current to the limiting diffusion current;:
calculated as in the secfion'on convective-tranéport‘problems, is a convenient :
measuré of the effect of migration and depends ﬁn the ratios of cdncentrafions
in ghé bulk solution. =TIt is found that this correction factor'is exactly
the same for the two transient processes, the.growing meicury'drop and pene;
tration into‘a stagnant medium. Numerical values 6f thé'correction factor were
calculated fof rgdox reactiohs‘in a ferro-férricyanide system, discharge of
hydrogen.ions from KCl_éolutions, deposition of .copper from HQSOu and MgSOu
solutions, and‘deposition of‘silver. from HNO3tsolutiohs, The difference
between the fesults fér the disk and the drop was striking only for the discharge
z.of hydrogen ions, the same system £hat botheredvﬁeyrovskﬁ. In a later wqu~
.NewmanTu showed that the cérrection factor for steady transfer in arbitrary
two-dimensional and axisymmetric diffusion layers is exactly the same as that
already calculated for the rbfaﬁing disk.

The effect.of migration on limiting currents is a simple example of a
phenomenon which does not occur in nonelectrolytic systems; in contrast to
the convective-transport problems'which hgve direct analogues in heat'transfer
and nonelectrolytic méss trgnsfer. ' v o o

Currents below the limiting current

Problems involving consideration of concentration variations near elec- . - ;
trodes, ohmic potential drop in the bulk of the solution, and electrode kine-

tics are inherently of greater complexity than either the convective-transport
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problems or the potential-theory problems. For.geometric and hydrodynamic
conditions where it is’possible to solve both of the extreme cases, there is
some hope that the intermediate problem can also be. treated. Problems of
poorly defined stirring orvgeometry so complicated that even numerical solu-
tion of Laplace's equation is not feasible would net be expected to be amenable
to analysis at intermediate current levels.

Fortunately the concentration variations are usually restricted to thin
layers adjacent to the surfaces of the electrodes, and Laplace's equation still
applies in the bulk of the solution outside these diffusion layers. This means
that one can devote separate attention to these different regions. Since the
diffusion layefs are thin, the bulk region essentially fills the region of the‘

electroly%ic solution bounded by the walls of the cell and the electrodes. In
this region the potenﬁial is determined so as to satisfy laplace's equation
and agree with the current density distribution ‘on the boundaries of the
region. In the diffusion layers the concentrations are determined so as to
satisfy the appropriate form of the transport equations, with & mass flux at
the wall appropriate to the current density on the electrodes and approaching
the bulk concentrations far from the electrode. The current distribution and
concentrations at the electrode surface must adjust themselves so as to agree
with the overpotential va:iation determined from the calculation of the poten-~
tial in the bulk region.

The thinness of the diffusion layers also allows one to separate the
irreversible part of the_cell ﬁotential into the sum of the surface overpoten-
tials, the concentration overpotentials, and the ohmic potential dfop in the
solution. The surface overpotential has already been defined and is related

to the concentrations and current density at the electrode surface by the
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.polarization equation (9); The surface overpotential varieé with bosition

Qﬂ the électrode uniess4the.éopcentrations and.currentvdeﬁsity;are uniform

.on the elect;ode. | | |
For the conégntration overpotential, first let ANIVbe“thé’pbtentiaiﬁﬁf ' -

the reference electrode neaxr the‘surfaée bf the working elecfrode minus the '

potential of a reference eleétrode outSide the‘diffﬁsion layer? and let ANohm

| be the potential difference-between these électfodeS'Qhenuthere is the same

current distribution but no concentration variations near the electrode.

_Then the concentrafiqn overpotential ns is

g = AV - AV . (69)

This general definition is applicablg even for concentratéd solutions whére
the transéort equation (1) is not ap@licable?5 By subtracting Ayéhm as de-
fined above, fhe concentration overpotential becomes independent of the place-
‘ment of the second reference electrode in the bulk of the solution.

The manner in which th¢ fotential Vr of a movable reference electrode

(relative to a fixed reference electrode) varies with position can be ex~

pressed as

y s, Vi, = -nFWV_, (70)

where ui is the electrochemical potential of specles 1. In the dilute-solution

approximation used here, these can be written

Vi, = BRIV ¢, + 2,F70. (71) -
s:'mceZsizjL = -n, equation (70) becomes o - | .
i | o s, RT _‘ : ‘
Vvr = Vo -Z o v}m e, , . (72)

i

where V® is obtained by suBstituting equation (l) into equation (h) with the
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result ' ‘ .
. i-= -ICVCI).- F Z ZiDivci . (73)

i
If we subtract the ohmic drop which would exist in the absence of . concentra-
tion variations and 1ntegréte gcioss the diffuéion layer, we obtain the con-

centration d#erpotehtial as defined abbve

v

° RT = D‘ 0 '
s d s ] : i Z c
. 11 ;’ i io o[ y i1 o1
Mo = lnf (K Kw> dy +A_—J o Tt F‘/‘[_,J xSy | ay,  (7h)
) i 10

c 1

where y is the normal distance from the electrode surface, K, is the conduc-

tivity of the bulk'solution, cio(x) is the concentration of species i at the

electrode surface, and c,  is the concentration in the bulk. According to

{00
equation (7&), the concentration bverpotential is the potential difference
of a concentration cell plus an ohmic contribution due to the variation of
conductivity in the diffusion layer. In general, the concentration qverpoten-
tial also depends upon the position along the el;ctrode surface.

For simplicit&, let us restrict ourselves to systems where the anode
and cathode réactions are the same. Let x and y represent cartesién coordinates

appropriate to the solution of Laplace's equation in the bulk region and let

Xoath’ Yoath’ xanode’ and Yanode represent diffusion-layer coordinates appro-

priate to the cathode and the anode, as used in the section on convective-
transport problems. Let & (x

cath' cath (x

tion of Laplace's equation in the bulk region evaluated at the surfaces of the

) and ® ) represent the solu-

anode ‘“anode

cathode and anode. TFurther let nc,cath’ ns,cath{ nc,anode’ and qs,anode rep-

resent the concentration and surface overpotentials at the cathode and anode

and let Vca e be the potentials of the metal cathode and anode.

th od
Then the applied cell potential Va

and V
., @n

node-vcath can, in view of the definitions
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of overpotentials, be expreséed as

( (x )

anode’ .

) + &

‘anode

- = + v
Vano_de Vcath ns,anode xanode) - nc,ano_de(xanode

(x (x (75)

cath) ) ®cath cath)'

B T]_s,cza.t‘h(xca’ﬁh) " T, cath

- If the metal anode and cathode are equipotentials, then the overpotentials

must add up tO a constant value accor-

and ohmic potegtlal Qrop Qanode" Qcath

ding to equation (75) even though individuall&'they“depend upon the position
along the electfodes. Thé current densitiés and éoncéntrations at the elec;
.trode surfaces must adjust themselves so that this condition‘is satisfied.
According tb the Second.léw of thermodynamics, the overfotentials éie always
positive.at an anode and negative at a cathode. |

If the potential in the-bulk'of(fhé solution is'measured with a reference

electrode of the same kind as the working electrodes, then the total overpoten-

tials at the anode and cathbde are

‘ = - L= 5 S
anode Vénode CDanQde r]s,amode * T]c,anode ’ : (76)
= . - @ = .
eath Vcath cath ns,cath * nc,cath (77)

76

Asada, Hine, Yoshizawa, and Okada ~ have used a separate treatment of the
diffusion layers and £he bulk solution to treat free convection in a reétangu~
lar cell with a vertical electrode at each endvfdr currents below the limiting '
current. Newman has given a detailed justification forbsuch a procedure for
systems with laminar, forced convectionTu“and'has applied the method to the
rotating disk electrode65’77.

In discussing the details of the application 5f_these concepts, let us
pick a fresh example, that of two electrodés of length.prlaped opposite each .

other at a distance h, embedded in the walls of a flow channel with steady,

laminar flow. The mass-transfer-limited current distribution and the primary

A
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current distribution have already been depicted for this system in figure 3.
No calculated results will be given, but it will be shown how to treat the dif-
fusion layers and the bulk solution without the necessity for a numerical
solution of partial differehtial equations by finite differences.
. a. The diffusion layers

The determination of all the concentrations in the diffusion layer is
complicated and usually not required. Let us suppose that the electrode resc-
tions involve deposition and dissolution of copper from copper sulfate solu-
tions with enough sulfuric acid added that the effect of ionic migration in
the diffusion layers can be ignored, and equation (ll) applies.  Let us also
assume that the solution is. so dilute that supersaturation of copper sulfate
at the anode is not a problem.

Application of Duhamel's theorem to the solution expressed by equation
(19) yields a relation between the current~density and the concentration of
copper ions (indicgted by the subscript R) at the surface of the electrode (see

also Acrovos and Chambréh6):

de nF D 1
. F 1 R d
1 (x) === 13y |, T T S T(3) 3hD> f ‘dx (x_;)l/B - (78)

This equation can be applied to either the anode or the cathode by adding
appropriate subscripts to i n? X and cR , but in either case it should be
noted that the equation involves a Stieltjes integral. This is important onl;
if there 1s an abrupt change in the surface concentration at the leading edgei
of the electrbde, as there is at the limiting current.

- be Solution of Laplace's equation

The solution of Laplace's equation for current sources distributed along

the anode and the cathode is (compare Wagner66)
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' ' L. o : - S
1 [ | ( X=X \3 ﬂ(y- )> |
0 = - : ! 5 '
Oy ek, “/f 1n,caith(X ) [51nh , .. + in . 2h . Qx
: ? 0 , - | o

) 2 W(X-X')) o, 2 ﬂ'y-l .
) EWK L/“ *n, anode(X ) n [slnh <’2h )t osin A5y | dx’ , (79)

o
where the cathpde is at y = h and theléhode.is at y = 0. From this equation,
the potehtial in the bulk solution extrapolateé t¢ tﬂe_cathode surfacé is

. L' , | _ .
Qcath(x) - ?* _IQi@w k_/. in,cath(x’) n sinh? (ii%iﬁli> ax!
o .

QﬂKm
. o)

L
1 , .
- J[ 1n,anode(x ) cosh® <ﬁ£§—5f2> ax' , (80)

and that extrapolated to the anode surface is

~n

L .

I BT A 2 (ﬂ(x-x' )> ,
<I)anode(x) B x QﬂKw “/~ 1n,cath(x ) n cosh ‘\, 2h . dx
. i (] .
L | |
1 . (! - (W(X—X')> !
© el L/r 1n,anode(x ) I sinh o ax' . (81)
. ‘

The current density at the anode is positive and that at the cathode is
negative, in accordance with equation (78). The integration constant 0, is
to be determined from the condition that the total anode and cathode currents

are equal L

u/i [in,céth(x') * in,anode(x'>]_dxr =0. (82)

o
Otherwise the solution (79) represents a "leakage” of current along the chan-

nel to + and ~ infinity.

L e
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¢c. Boundary conditioné

The boundary conditions have, to some extent,.alfeady been incorporated
into the solutions for the diffusion layers and the bulk region. The solution
(79) for the potential in the bulk solution alfeady sétisfies the condition of
zero current normal to the insulating walls of the channel and gives the appro-
priste current densities on the anode and the cathode. The solution for the
concentrations in the diffusion layers, on which equation (78) is based, agrees

with the value ¢ in the bulk of the solution. Tor the determination of the

Reo
unknown concentrations and current densities along the electroée_surfaces it
is necessary to use equations (76), (77), (7T4), and the polarization equation
(9). 1In view of the aésumption‘ofvan excess of supporting electrolyte, it is
appropriate to simplify equation (74) to

s RT Creo
B 2T (83)

 This neglects the variation of the coﬁductivity across the diffusion layers and

also the diffusion potential represented by the second integral ih eguation
(74). If this were not permissible, it would be necessary to solve for the
concentration frofiles of each ionic species in the diffusion layers. )

d. Suggested solution procedure

The method of solving the problem even as formulated is by no means
obvious or straightforward. In fact it is worthwhile to verify that there are

enough equations to match the unknowns. By combining equations (9), (76),

(77), and (83) it is possible to relate the current densities at the electrodes

to the total overpotential and the concentrations in the bulk and at the surface:

1, = f(n,ep ,cpa) (8k)

where the total overpotentials are obtained from equations (76), (77), (80),
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and (81):

n= V- o+ g In,catn’ n,anodeY/gﬂK ’ . - (85)

N

where g represents the integrals in equations (80) and (81). Thus there is one

constant unknown &, and six variable unknowns, in’ n, and‘cRO at both the cathode o

and the anode. There is one equation (82) for the detefmination of the constant,

and there are two each of integral equations (78)‘aﬁd (85) and of equation (84),

which applies at all points on the electrodeé. Thus the problem is determinate.
The following, doubly iterative, célculation procédure is suggested, but

convergence can hardly be guaranteed. Let Vcath and Vanode be given.

1. .Assume values of i (x) and 1 (x) such that equation (82)

n,cath n,anode

is satisfied.
2. Guess a value of o, .

3. CalCulatg_qéééh(g) and 0 (x) from equation (85).

anode
L. Solve the integral equation (78) witﬂwéquation (84), for i, and cp
for both the anode and the cathode. This is an integral equation of the
Volterra type, and the method of numerical solution has been outlined by Acrivos
and Chambréh6, buﬁ one must take into account the facf that 7n depends on x.

5. If the correct value of &, was used, the values of 1n will now satis-
fy equatlon (82) If not, pick a new value of 9,, by trial and error, and go
back to step 3, using the old vélues ofvin to calculate ncath and nanode'

6. If the correct values of i had been used in step 3, the new values
of in will agree with the old. If not,.pick new values and go back to step 2.

It will probably be necesséry65

-

to averagefthe new'and'old values in some way at
this point in order to achieve convergence. : .
From the complexity of this example, one will perceive why so few solu-

tions of intermediate problems are found in the literature.
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Discussion and‘Conclusions
Existing work on current distribution and_mass transfer in electrochemical
systems has been reviewed, with emphasis being placed on how each contribution
is related to the limiting cases of convective-transport problems (directly
analogous to problems in convective hegt and nonelectrolytic mass transfer)
and applications of potential theory (where concentration variations can bev
ignored and the electrostatic potential satisfies Laﬁlace's equation). This

78

framework can be compared with Wagner's discussion' = of the scope of elec-
trochemical engineering. Much work either fits into the extreme coses or takes
into account phenomena neglected in the extreme cases. .

Information regarding convective-transport problems not yet treated for
electrochemical systems can be inferred from the literature of convective heat
and mass transfer. Electrochemical systems provide a convenient experimental
means of studying problems of wider interest, particularly at large Schmidt
numbers. They can, for example, yield information about turbulent transport
very close to a solid wall.

In technical electrochemical systems, the ohmic poteozial drop is of
great importance, and potential-~theory problems find application here. Never-
theless, concentration variations near electrodes frequently provide limita-
tions on reaction rates and current efficiencies in industrial operations.

In view of the complexity of treating simultaheously'concentration variations
and ohmic potential drop, gualitative or semi-quantitative application of

these concepté may have to soffice for some time.

Concentrated solutions

Transport theory valid for dilute solutions has been applied fruitfully
to electrochemical systems. It should be pointed out that equations valid for

concentrated solutions and multicomponent transport are available2’79.
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Transpérf-theofy for solutions of a single salt is moderately simple Ana has
been appliéd to electrodeposition on a rotating disk eiectrodeTS’Sof Further-
more, transport properties for suchfsdlufions are frequéntly.availéble_in the
literatureBl. | |
Multicomponent transport theory could be'applied to cerfain simple geo-
.meffieé which would involve numérical solution of ordinary differential équaé
tions. for the concentration profiles. However,iin mést cases data for all
the necessary ﬁransport propérties are incoﬁplete82, and a rigorous treatment
is precluded. There is, héwever{ reason to believe that.integral diffusion
, éoeffiéienté messured, say, ﬁith a rotating disk electrode at the limitiﬁg
currenf would also be.applicable to_other geometries even though there is migra-

Th

tion in the diffusion layer =~ and the transport properties vary with the con-

23

centrations in the diffusion layer.~.

Geometries of interest in electrode kinetic studies

The behavior of the interface; particularly the éleétrode kinetics, is
important in determining the behavior of an electrochemical system. In selec-
tiﬁg a system for the study of electrode kinetics care should be used to avoid
complications not essential to fhe electrode kiheticsf

The ro£ating disk electrode has been popular for the study of moderately
fast eiectrode reactions because the hydrodynamic flow is well defined and con-
centration variations can be calculated. quever, it should be realized that
the primary current distributionAis not uniform, ahd,this problem becomes more
serioﬁs for faster reactions, larger current densities, and largef disks.

Perhaps more attention should be devoted to the possibility of using
rotating cylindrical electrodes. Here both the priméry and mass-transfer-

limited current distributions are uniform on the electrodes and both the ohmic
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potential drop and the concentration change at the electrodes can be accurately
calculated even fhough the flow is turbulentf It might be more difficult to
maintain cleanliness in such a system than wiﬁh a rotating disk electrode.
Another way to avold concentration variations in studies of the kinetics
of moderately fast electrodé reactions is to use a step change in current and
follow the change in electrode potential in the‘time before the concentration
cén change significantly. For studies of the eléctrodeposition of copper by

83

this method, Mattsson and Bockris ~ used small spherical electrodes, where
the primary current distribution should be uniform. Current-step methods
should not be used if the primary current distribution is not uniform.

~
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'Nomencléture
0.51023.

concentration of species i (mole/cm3).

equivalent diameter of ahnulus (Qm).

diffusioﬁ coefficient of salt (cm®/sec). L ‘ ' B ‘ ‘:
diffusion coefficient of species i (cmg/;ec);

symbol for the electron;‘-

function in expression of electrode kineticé.

Faraday's constant (coulomb/equiv. ).

gravitational acceleration (em/sec?).

Grashof number.

éistance between walls of flow chanﬁel (cm).v ‘

current density (amp/cm®).

normél component of current density at a surface (amp/cmg).

exchange current density (amp/cm?).

total current (amp).

complete elliptic integral of the first kind.

length of electrodes (cm).

characteristic length (em).

volumetric flowrate of mercury (em3/sec).

symbol for the chemical formula of species 1.

number of electrons transferred in electrode feaction.

flux of species i (mole/cme-sec), | : ' | . .
Nusselt number. . | .“
pressure (dyne/cm®). o ,,u

radial position codrdinate (cm).
defines position of surface for an axisymmetric body (em).

radius of disk electrode or of grdwing mercury drop (cm).



-

B

Y

- L7 -

N

radius of outer cylindrical electrode (cm).

universal gas constant (joule/mole-deg K).

resistant (ohm).

homogeneous rate of production of species i (mole/cm3-sec).
Reynolds number. | '
stoichjometric coefficient of species i in eiectrode feaction.
Schmidt number |

time (sec).’

temperature (deg K).

life time of drop (sec).

mobility of species 1 (cme-mole/joule—sec).

fluid velocity (em/sec).

average velocity (cm/sec).

potential of an electrode (vélt).

width of electrodes (cm).

distance measured along an electrode surface (also used as a cartesian
coordinate in the bulk medium)(em).

normal distance from the surface (also used as a cartesian coordinate in
the bulk medium)(cm).

charge number of species 1i.
transfer coefficlent.
velocity derivative at the solid electrode (sec'l).

constant in rate of growth of mercury drops (cm/secl/3).

r'(4/3) = 0.89298, the gamma function of 4/3.

€

angle bvetween the normal to a surface and vertical (radian).

'rr'L/Qh°

overpotential (volt).
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. - conéentration overpoténtial (volt).
Ng - surféce overpotential (volt).

e - diméhsibnléss-conéentration.v

k - cohductivity (mho/cm)-_

: . _ ot
Kk =~ ratio of radii of inner to outer cylinder. :

B - viscosity (g/cm-seé). , .
. M, - electrochemical pétentialvof species i (Joﬁle/mole);
v —Vkinematic viscosity (em®/sec). | |

E - dimensionless indepenaent varisble (see eqﬁations (28) and (34)).
b - density (g/em3). | | |
g - diménsionléss velocity derivative aﬁ the surface,

® - electrostatic potential (volt).

Q0 - rotation speed (radians/sec).

subscripts

anode - anode.

avg - average.

cath -~ cathode.

R - reactant.

o - at the electrode surface.

0 - in the bulk solution.
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