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Abstract 
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Principles of current distribution are related to fundamental transport 

equations. Application of these principles in the past has followed mainly 

two courses -treatment of systems analogous to those·of heat and nonelectro-

lytic mass transfer and applications of pbtential theory, where 'the potential 

distribution satisfies Laplace I s equation. These results are illustrated for 

two plane electrodes forming part of the walls of a flow channel. Problems 

of an intermediate nature include the effect, ·of ionic migration on limiting 

currents and current distribution below the limiting current • 



Introduction 

Fundamental equations describing transport in dilute electrolytic solu-

• 
tions have been known since the turn of the century. In an electrochemical 

~ system, many'processes occur simultaneously, and the treatment ofsuchprob-

'" 
lems involves consideration of the ohmic potential drop, concentration changes 

near electrodes, and the kinetics of the heterogeneous electrode reaction. 

Application of these principles has followed two main courses; There 

are systems where the ohmic potential drop can be neglected. The current 

distribution is then determined by the same principles which apply to heat 

transfer and non-electrolytic mass transfer. This usually involves systems 

\ 
operated at the iimiting current with an excess of supporting electrolyte, 

because below the limiting current it is usually not justified to neglect the 

ohmic potential drop and because the presence of the supporting electrolyte 

allows the effect of ionic migration in the diffusion layer to be ignored. 

Furthermore, the concentration of the reactant is zero at the electrode sur-

face, and the treatment becomes simplified. Let us call these "convective-

. " transport problems. 

At currents much below the limiting current, it is possible to neglect 

concentration variations near the electrodes. The current distribution is then 

determined by the ohmic potential drop in the solution and by electrode over-

potentials. Mathematically, this means that the potential satisfies Laplace I s 

equation, and many results of potential theory, developed in electrostatics, 

the flow of inviscid fluids, and steady heat conduction in solids, are 

directly applicable. fr. 11 Let us call these: potentlal-theory problems. The 

electrode kinetics provide boundary conditions which are usually different 

from those encountered in other applications of potential theory. . 
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Problems have been treated which do not fall within either of these two 

cla~ses. Some problems can be regarded as an extension of the convective-

transport problems. At the.limiting current the ohmic potential drop in the bulk 

of the solution may still be negligible, but the electric field in the diffus~on C 

layer near electrodes may lead to an enhancement of the limiting current. The 

current denSity is then. distributed along the· electrode in the same manner as 

when migration is neglected, but the-magnitude of the current density at all 

points is increased or diminished by a constant factor which depends upon the 

bulk composition of the solution. 

At .currents below, but at an appreciable fraction of, the limiting current, 
S 

diffusion and convective transport are essential, but neither concentration 

variations near the electrode nor the ohmic potential drop in the bulk solution 

can generally be neglected. These problems are complex because all the factors 

are involved at once. 

In porous electrodes- convection may not be present, but.it is usually 

necessary to consider the ohmic potential ,drop, concentration variations, and 

electrode kinetics. Most treatments adopt a macroscopic model which does not 

take account of the detailed, random geometry of the porous structure. Re-

sults of potential theory are then not applicable since Laplace's equation 

does not hold. Because porous electrodes do not fit in well with the other 

electrolytic cells considered, their treatment is omitted from this paper. 

Fundamental Equations 

Transport in electrolytic solutions 

The laws of transport in dilute electrolytic solutions have been known 

for many years and have been discussed in detail elsewherel , 2. The flux of 

" 
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a species is' due to migration in an electriG field, diffusion due to a concen-

tration gradient, and convection with the fluid velocity. 

A material ba+ance for a small volume element leads to the differential con-

servation law: 

(2 ) 

Since reactions are frequently restricted to the surfaces of electrodes, the 

bulk reaction term Ri is often zero in elect~ochemical systems. To a very good 

approximation the solution is electrically neutral, 

except in the diffuse part of the double layer very close to an interface. 

The current density in an electrolytic solution is due to the motion of 

charged species: 

i = F\ z N L i-i 
i 

(4) 

These laws provide the basis for the analysis of electrochemical systems. 

The flux relation (1) defines transport CO~fficients--the mobility ui and the 
"j 

diffusion coefficient D. of an ion ina dilute solution. Many electrochemical 
1 

systems involve flow of the electrolytic solution. The fluid velocity is to , 

be determined from the Navier-Stokes equation 

and the continuity equation 

\l·v = 0 . (6 ) 
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Electrode kinetics 

The differential equations describing the electrolytic solution require 

boundary conditions in order for the behavior of an electrochemical system to 

be predicted. The most complex of these concerns the kinetics of electrode 

reactions. A single electrode reaction can be written in symbolic form as 

I 
'i 

z. 
~ 

s.M .. - ne 
~ ~ 

Then the normal component of the flux of a species is related to the normal 

component of the current density, that which contributes to the external cur-

rent to the electrode. 

N. 
J.n 

(8) 

This equation is restricted not only to a single electrode reaction but also 

to the absence of an aJ?preciable charging of the double layer, a process which 

does not follow Faraday's law. 

Next one needs an equation describing the kinetics of the electrode reac-

tion, that is, an equation which relates the norma], component of the current 

density to the surface overpotential at that point and the composition of 

the solution just outside the diffuse part of the double layer. The mottva-

tion of the electrochemical engineer in this regard is basically different 

from that of an electrochemist. The object is to predict the behavior of a 

complex electrochemical system rather than to elucidate the mechanism of 

an electrode reaction. For this .purpose one needs an equation which describes 

accurately how the interface behaves during the passage of current, and for 
, 

this purpose the interface includes the diffuse part of the double layer. 

The surface overpotential" can be.defined as the potential of the s .. 

working electrode relative to a reference electrode of the same kind located 

.. 
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just outside the double layer. Then one seeks a kinetic expression of the form 

where charging of the double layer is again ignored. The concentrations 

c. here refer to the point just outside the double,layer. Such an expression 
1. . "":::i 

thus describes the interface since in' 11s' and ci are all local quantities. 

In particular, the concentration variation between the interface and the bulk 

solution and the ohmic votential drop in the solution have only an incidental 

bearing on events at the interface. At the same time no attempt is made to 

give a separate account of the diffuse. part of the double layer. 

The function f in equation (9) is in general complicated. However, 

there is ample evidence that there is a large class of electrode reactions 

for which the current density depends exponentially on the surface overpoten-, 

tial in the following form: 

i = i [exp {~nF 11 } - exp {-n o. RT s .. 
(10 ) 

. . 

where io is the exchange; current density and depends on the concentrations 

c
i

• This latter depende'nce can frequently be expressed as a product of 

powers of the concentrations. In this equation~. in and 11s are positive for 
.J 

anodic processes, negative for cathodic processes. Both ~ and n are kinetic 

parameters and must be determined to 'agree with experimental data. 

Information on electrode kinetics can be found in the literature3,4,5. 

This is often interpreted:.f.rom the point of view of reaction mechanisms and 

not with the object of predicting the behavior of electrochemical systems. 

Convective-Transport Problems 

For the reaction of minor ionic species in a solution containing 

excess supporting electrolyte,. it should be permissible to neglect the 
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contribution of ionic m1grationto the flux of the reacting ions, so that 

equation (1) becomes 

N = -D 9c + vc , -i i i- i 

and substitution into equation (2) yields 

(12 ) 

This may be called the equation of convective diffusion. .A similar equation 

applies to convective heat transfer.and convective mass transfer in non-

electrolytic solutions. Since these fields have been studied in detail, 

it is possible to apply many results to electrochemical systems which obey 

equation (12). At the same time electrochemical systems sometimes provide 

the most convenient experimental means of testing these results or arriving 

at new results for systems too complex to analyze. 

Essential to the understanding of convective-transport problems is the 
it,;:? 

concept of the diffusion layer. Frequently" due tb- the small val)l.e of the 

diffusion coefficient, the concentrations differ significantly from their 

bulk values only in a thin region near the surface of an electrode. In this 

region the velocity is small) and diffusion is important to the transport 

process. The thinness of this region permits a simplification in the analy-

SiS, but it is erroneous to treat the ·diffusion layer as a stagnant region. 

Figure I shows the concentration profile in the diffusion layer, with the 

electrode surface at the left. Far from the surface, convective transport 

dominates, while at the surface itself there is only. diffusion. 

The systems typically studied in heat and mass transfer involve laminar 

and turbulent flow· with various geometric arrangements. The flow may be 

due to some more or less well characterized stirring (forced convection) 



- 7 ... 

... 

1.0 

0.8 

0.6 
(8) 

0.4 

0.2 

0 
0 0.4 0.8 1.2 1.6 2.0 

Figure 1. Concentration profile in the diffusion layer. 
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or may be the result of density differences created in the solution as part' 

of the transfer process (free convection) •. We shall discuss here a few 

examples, although there is no need to be exhaustive since convective heat 

and mass transfer is thoroughly treated in many texts and monograpbs6,7,8,9. 

There are also several reviews of mass transfer in electrochemical systems 

10,11,12 The.examples selected are primari~y those which have been studied 

with electrochemical s~stems. In addition certain theoretical results of 

general validity are included because they are particularly applicable to 

electrolytic solutions, where the Schmidt numbers are invariably large. 

The annulus 

Axial flow in the annula'r space between two concentric cylinders pro-

vides a,convenient situation for experimental studies of mass transfer. 

In the work of Lin, Denton, Gaskill, and Putnam13 the electrode of interest 

formed part of the inner cylinder whi~e the outer cylinder formed the counter 

electrode. However, their experimental results and theoretical treatment 

have been severely criticized by Friend and Metznei4. Ross and Wragl 5 

reviewed the problem and performed additional experiments with a similar 

arrangement. A circular tube with no inner cylin<ier is a limiting-case of 
,~~,) 16 

the annular geometry and has been studied by Van Shaw, Reiss, and Hanratty • 

Another limiting case investigated by Tobias and Hickman17 is the flow be-

tween two plane electrodes. 

Let the radius of the outer cylinder be R, and the radius of the inner 

cylinder be KR. The electrode of interest is of length L and is located 

far enough downstream in the annulus that the velocity distribution is fully 

developed before this electrode is reached. A limiting current is reached 

at this electrode when the concentration of the reactant drops to zero at 

the surface. 

," 
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For laminar flow in the annulus, the local, limiting current density 

should follow the theoretical expression 

nF Di Coo 
i = 0.8546 ---"'--
n s. 

1 

where (v) is the average velocity in the annulus, x is the distance from the 

upstream edge of the electrode, and ¢1/3 is a function of the geometric 

pa·rameter Ie and is shown in figure 2 for both the inner and the outer elec-

trode. 

Mass transfer in laminar flow is very similar to the classical Graetz-

, " ( 18) Nusselt-Leveque problem see Jakob • Equation (13) is valid only when 

the concentration variation is confined to a thin dif~sion layer near the 

electrode surface, as it is for small values of x. However, for electro-

chemical systems the diffusion coefficient is small, and consequently the 

diffusion layer grows in thickness slowly with increasing x. It might be 

estimated15 that equation (13) is valid for 

x < 0.01 Re Sc de ' (14 ) 

f 
where de = 2(1-K:)R is the equivalent diameter of the annulus, Re = de' (v) /v 

is the Reynolds number, and Sc = v/D. is the Schmidt number. For Sc = 2,000 
1 

and Re = 500, this condition yields 

and is usually satisfied in the experiments. 

In order to facilitate comparison of results for different systems and 

with the standard correlations of heat and mass transfer, equation (13) is 

frequently written in dimensionless form.-

Nu(x) = 1.0767 (¢ Re Sc d /x)lh, 
e 
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where the Nusselt number is a dimensionless mass-transfer rate: 

The average value of the Nusselt number, corresponding to the average mass-

transfer rate over the length L, is 

Nu = 1.6151 (¢ Re. Sc de /L)1/3 • avg 

As K -1, these results apply to the flow between two flat plates, parts 

of which form plane electrodes. Then ¢ = 1.5, and equations (13), (16), 

and (18) become 

i = 0.9783 _nF_D-:.;i_C_OOG (v) )1/3 
n s. h D. x ' 

l l 

where h = (l-K)R is the distance between the planes, 

Nu(x) = 1. 2325 (Re Sc d /x)1/3 , e (20) 

Nu = 1.8488 (Re Sc d /L)1/3 
avg e (21 ) 

In figure 3 the curve denoted "limited by convection and diffusion" depicts 

the local current density as a function of position along the electrode. 

The mass-transfer rate is infinite at the upstream edge of the electrode 

where fresh solution is brought in contact with the electrode. The current 

decreases with increasing x since the solution in the diffusion layer has 

already been depleted by the electrode reaction further upstream. Later it 

will be instructive to compare this current distribution with that which 

would be obtained when the ohmic potential drop in the solution is controlling. 

The results of Lin, Denton, Gaskill, and Putnaml3 for laminar flow fall 

roughly 17 percent below the values predicted by equation (18). Part of 

this discrepancy can be attributed to the fact that some of the diffusion 

coefficients were determined by fitting these experimental results to an 
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erroneous equation. Ross ,and Wragg' s15 laminar results are 9 to 13 percent 

below those predicted, while those of Tobias and Hickman17 scatter within 

7 percent of the values predicted by equation (21) • 

Turbulent flow is characterized by rapid and random fluctuations of the 

velocity and pressure about their average values. The turbulence is greater 

at a distance from solid,walls, and the fluctuations gradually-go to zero as 

the wall is approached. The fluctuations in velocity result in fluctuations 

in concentration and also in enhanced rates of mass transfer. Near the wall 

the fluctuations go to zero, and mass transfer at the wall is by diffusion. 

The details of the nature of the fluctuations are important in the region 

near the wall where diffusion and turbulent transport contribute roughly 

equally to the mass transfer rate. 

In the mass-transfer entry region i~ turbulent flow, Vaq Shaw, ReiSS, 

16 and Hanratty expect the average Nusselt number in circular tubes to be 

given by 

(22 ) 

The experimental results fall 7 percent below these values but exhibit the 

same dependence upon the Reynolds number and the electrode length. The data 

of Ross and Wragg15 for the inner cylinder of an annulus with K = 0.5 are 

correlated by equation (22). However, in this geometry, those authors 

expect the coefficient to be 9 percent higher. 

The mass-transfer entry region where equation (22) applies is much 

shorter in turbulent flow than in laminar flow. The results of Van Shaw, 

16 ~ 
Reiss, and Hanratty indicate that this length ranges from"2 diameters to 

0.5 diameter as the Reynolds number ranges from 5,000 to 75,000. 

Beyond this short entry region, the Nusselt number rapidly ,approaches 
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a constant value ,corresponding to fully-developed mass transfer. It is 

surprising that fully-developed mass transfer has not been studied more 

exte,nsi vely with electrochemical systems. The results of Lin, Denton, 

Gaskill, and Putnam13 agree well with the equation of Chilton and Colburn19 

for heat transfer: 

, Friend and Metzner14 discuss critically tpeapplicability of such an equa-

tion for Schmidt numbers as large as those encountered in electrochemical 

systems. However, Hubbard20 also obtained agreement with this equation. 

Two-dimensional diffusion layers in laminar forced convection 

In 1942 Levich
2l

, in treating electrolytic mass transfer to a rotating 

disk, remarked that in the case of diffusion, particularly the diffusion of 

S "Th ions, the chmidt number reaches the value of several thousands. us, 

in this case we deal with a peculiar limiting case of hydrodynamics, which 

may be called the' hydrodynamics of Prandtl' s [or Schmidt' s ] large numbers." 

Lighthil1
22 

developed a solution for the heat-transfer rate applicable when 

the region of temperature variation is thin compared to the region of velo­

city variation. Acrivos23 realized that this method is applicable to a wide 

range of problems when the Schmidt number is large. Thus, for electrochemical 

systems where the Schmidt number is generally large, it is frequently possible 

to obtain the concentration distribution and the rate 'of mass transfer for 

steady problems when the velocity distribution near the electrode is known 

in advance. Many results for electrolytic mass transfer can be regarded 

as special cases of the application of this method. 
" 

The concentration distribution in a thin diffusion layer near an elec-

trode is governed by the equation 
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(24 ) 

This equation is restricted to two-dimensional flow past an electrode, with 

x measured along the electrode from its upstream end and y measured perpen-

dicularly from the surface into the solution. 

Due to the thinness of the diffusion layer compared to the region of 

variation of the velocity, it is permissible to approximate the velocity 

components by their first terms in Taylor's expansions in the distance y from 

the wall: 

v = y's(x) and v = - ~ y2,S, (x) , x y 

where ,s(x) is the velocity derivative ovx/Oy evaluated at the wall (y=O). 

These expressions for the velocity thus satisfy the applicable form of equa-

tion (6): 

ov ov 
dX

x 
+ "'Cf:! = 0 , (26 ) 

as well as the boundary conditions Vx = v = 0 at y = O. 
Y 

With this approxi-

mation, equation (24 ) becomes 
,/> 

oCi oCi 
2 

1 2.B' Di 
o ci 

y.B dx - 2" Y dy = 
Oy2 

If the concentration at the surface is a constant co' then the concen-

tration profiles at different values of x are similar and depend only on 
I 

the combined variable 

(28) 

In terms of this similarity variable, the concentration profile is given by 

" ~ 

e = 1 J = r(4!3) , 
o 



where r(1~/3) = 0.89298. This function is plotted in figure 1 and has 'been 

24 
ta'bu1ated. 

. . 

Equation (19) for flow between two plates is a special case of equation. (30) 

for which i3 is independent of x and' has the value 6 (v) Ih. Equation (30) 

gi ves the rate of mass transfer if i3 is already knovm. 

Axisynynetric diffusion layers in laminar forced convection 

Equation (24) also applies to steady mass transfer in axisymmetric diffu~ 

sion layers, that is, where the electrode forms part of a 'body of revolution~ 

Examples would 'be the annulus considered earlier, a sphere, and a disk e1ec~ 

trode. The coordinates x and y have the same meaning; x is measured along 

the electrode from its upstream end and y is measured perpendicularly from. 

the surface into the solution. It is also necessary to specify the normal 

distance r(x) of the surface from the axis of symmetry:~, 

The applicable form of equation (6) now is (see Schlichting9, p. 185) 

d(rv ) dV 
dX

x 
+ r ~ = 0 . 

Due to the thinness of th,e diffusion layer it is still permissi.ble to approxi~ 

mate the velocity components 'by their first terms in Taylor's expansIons 

in y. However, in view of equation (31), these now take the form 

v = yf3(x) and v = - ~ y2(rf3)'/r, x y 

and equation (24) becomes 

1 2 (rf3)' oC i 
"2 y - r dy 

.. 
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The concentration profile is again given by equation (29)'in terms of 

the similarity variable 

(34) , 

and the l-tn:L ting current dcns:Lty tn 

, ] /" .. .) 

rJ';:r ax] . 

Eqilation (13) for the annulus is a spec:i,al ease of equat'i.on (35) i,n 11h'i.ch r 

and 0 are independent of ~:. 

!:: flat plate :tn !!. free stream 

The steady, laminar hydrodynami.c fl014 parallel to n flat plate beg~nning 

at x = 0 and extending along the positi.ve x-axis has been treated extensively. 

The value of the velocity derivative at the surface 1s (see SchHchti,ng9, ' 

p. 120) 

where VCtJ is the value of Vx far from the plate. Substitution into equation 

(30) yields 

The average Nusselt number for an electrode of length L is 

"There Re
L 

= L voolv. These results apply to laminar flow. The flov] becomes 

turbulent at a Reynolds nt~ber of about 105. 

Electrochemical systems for which these results are directly applicable 

are not frequently encountered. Unfortunately the analysis for a flat plate 
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in a free stream has been applied to annular geometries and the ;flow between 

. 25 26 27 two flat plates ' , , which should follow equations (13) and (19). 

Rotating cylinders· 

Mass transfer between concentric cylinders, the inner of which is rotating 

,with an angular speed D, has been studied by Eisenberg, Tobias, and Wilke28 

and by Arvia and Carrozza29 , If the flow between the electrodes is tangential 

and laminar, it does not contribute to the rate of mass transfer since the 

flow velocity is perpendicular to the mass flux, At higher rotation speeds, 

the flow is still laminar but no longer tangential, and so-called Taylor 

vortices are formed. Superimposed on the tangential motion is a radial 

and axial motion, outward at one point and inward at a different axial posi-
( 

tion. At. still higher rotation speeds, the flow becomes turbulent. Mass 

transfer in this turbulent flow, which is achieved at lower rotation speeds 

if the inner cylinder rotates rather than the outer, has been studied in 

the above-me~tioned works. 

By the nature of the geometric arrangement, the current distribution 

is uniform. The results have been correlated by the equation 

i = 0,0791 
n 

or, in dimensionless form, 

(40 ) 

where dR is the diameter of the inner, rotating cylinder, dL is the diameter 

of the cylinder with the limiting current, Nu = i s.dR/nF D. COO is the Nusselt 
n 1. 1. 

number, and Re = D.d~/2V is the Reynolds number. 

In the work of Eisenberg, Tobias, .and Wilke the limiting electrode was 

the inner, rotating electrode, and dR = dL, The ,results, for which the 
I 
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Reynolds number ranged from 112 to 162,000 and the Schmidt number from 2230 . 

to 3650, agree with equations (39) and (40) within 8.3 percent. Arvia and 

.. # Carrozza measured the limiting rates of mass transfer at the stationary, 

". 

outer electrode. 

Growing mercury drops 

Limiting diffusion currents to a dropping mercury electrode find impor-

tant applications in the quantitative analysis of ~lectrolytic solutions. 

Let the mercury flow at a constant rate from the capillary tube to the drop 

. growing at the tip, so that the radius increases as 

.. '. 1/3 (41) r = rt . o 

The diffusion layer on the drop has a thickness proportional to /-t. Ilkovi~30,31 
. 32 

and also Mac Gillavry and Rideal treated the problem with the assumption 

that the diffusion layer is thin compared to the radius of the drop. 

For radial growth of the. drop, without tangential surface motion, the 

limiting current qensity is 

i • nF Coo "7~ [1 + 1.0302 ~/2 t1/6lrl 
n si" 31ft 1 

(42 ) 

This equation, without the correction term, was first derived by Ilkovig. 

The correction term, which accounts for the greater thickness of the diffusion 

layer and for which at least three different values of the coefficient can 

be found in the literature, was first .derived correctly by Koutecky33. (We 

have carried this slightly further84 to express the coefficient in terms of 

gamma funct ions: . 

The total current to the drop, averaged over the life time T of the drop,' 

then takes the form 
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where m is the volumetric flow rate of the mercury (cm~/sec). 

Since, in the absence of tangential surface motion, the convective flow 

is well defined, the dropping mercury electrode has frequently been used for 

the determination of diffusion coeffic·ients. 

The rotating disk 

When a circular disk is rotated with an angular velocity n about its' 

axis in a fluid, the centrifugal force causes the fluid to move radially out-

ward near the disk and to be replenished by an axial motion towar.d the disk. 

Levich2l has analyzed the mass transfer in such a fluid motion. Since the 

axial component of the velocity is uniform and depends only on the normal 

distance from the disk surface, the mass-transfer rate to the disk is also 

uniform. 

For the disk, r ;:: x, and the value of the veloci:t;y derivative at the 

surface is (see Sc~li'Cht ing9, p.' 87, or Sparrow and Gregg34 ) 

i3 ;:: aDx JD/v , 

where a ;:: 0.51023. Substitution into equation (35) yields 

i 
n 

ilF Coo 
= 0.62048--

D )2/3 
JDv ( ~ • 

(44 ) 

This expression uses the approximations (32) of the velocity components near 

the disk and is valid for large Schmidt numbers. The correction for the 

fact that the Schmidt number is not infinite has also been treated35,36 for 

this system. 

Because of the well-defined fluid motion, the rotating disk electrode 

has been used extensively for the determination of diffusion coefficients 

.. •. 
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and the parameters of electrode kinetics. The application of the rotating 

disk'system,has recently been reviewed 'by Riddiford37 • 

Free convection 

Free convection is a hydrodynamic flow which results from density varia-

tions in the solution produced, in the cases of interest here, by concentra-

tion variations near the electrode. Free convection at a vertical plate 

electrode has been studied extensively. For deposition of a metal the solution 

density is lower near the electrode than, in the bulk; and 'an upward' flow near the 

electrode occurs. This upward flow provides convective transport ~f the 

reactant to the electrode diffusion layer. Ib138 has reviewed the experi~ 
I 

mental work on this problem and reports ,the 'limi ting current density to an 

electrode of length L. 

(46) 

or si L i 
(Sc Gr)1/4 Nu = 

avg = 0.66 avg nF Di Coo 
, 

l -, 

Gr 
g(Poo-Po )L3 

= 2 (48) 
where 

Poo v 

is the Grashof number., These results apply to values of Sc Gr between 104 

and 1012• 

Free convection in solutions with an excess of supporting electrolyte 

is complicated by the fact that the concentration of the supporting elec­

trolyte also varies in the diffusion layer and therefore contributes to the 

variation of the density. Approximate methods of estimating the interfacial 

density difference in the Grashof number have consequently been introduced, 

a popular method being that of Wilke, Eisenberg, and Tobias39. 
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. 40 
For turbulent natural convection at a vertical plate Fouadand Ibl 

obtained the relation 

Nu = 0.31 (Sc Gr)0.28 avg , 

applicable in the range 4 x 1013 < Sc Gr < 1015 • 

.. 41 
Schutz investigated experimentally free convection mass transfer to 

spheres and horizontal cyl.inders and obtained for the average Nusselt number 

for spheres 

Nu = 2 + 0.59 (Sc Gr)1/4 avg (50) . 

8 10 in the range 2 x 10 < Sc Gr < 2 x 10 and for cylinders 

Nu 0.53 (Sc Gr)1/4 
avg 

for Sc Gr·< 109 • In forming these dimensionless groups, L = d, the diameter 

of the sphere, or cylinder. SchUtz also measured local Nusselt numbers using 

a sectioned· electrode technique. 

Acrivos
42 ha~ .obtained a solution of the laminar free-convection boundary,:" 

layer equations for arbitrary two-dimensional and axisymmetric surfaces in 

the asymptotic limit Sc _00. These results should be of some interest here 

since the Schmidt number is large for electrolytic solutions. The local 

limiting current density for two-dimensional surfaces is predicted to be 

, riFD 
i = 0.5029 i 
n s. 

1. 

. 1/4 
c [g(P -p )J .. 00 00 0 

Poo D. v 
1. 

and the average limiting current from x = ° to x '= L is 

i avg , (53) 
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where E(X) is the angle between the normal to the surface and the vertical. 

For a vertical electrode, sinE = 1, and the coefficient 0.6705 of equation 

(53) can be compared directly with the experimental coefficient of equation 

(46) • 

For an axisymmetric surface} where r(x) is again the distance of the 

surface from the axis of symmetry, the local limiting current density is 

( ) 1/4 
_nF_D-=i=--c_oo [g p 00- po 1 

in = 0·50~9 s .p D v . 
i 00 i 

From the results Of Acri.vos} the predicted coefficients of (Sc Gr )1/4, 

in the expressions for the average Nusselt number for the sphere and the 

horizontal cylinder are 0.58 and 0.50, respectively, which can be compared 

with the experimental coefficients in equations (50) and (51). 

Free convection at a horizontal plate is essentially different from that 

discussed above since there is no chance for a laminar ?oundary layer to 

form and sweep fresh solution past the plate. At a horizontal electrode with 

a small density gradient, the solution at first remains stratified. With a 

higher density difference, a cellular flow pattern results, and for still 

higher density differences) the flow is turbulent. In the turbulent region, 

Fenech and TObias43 propose the relation 

i = 0.19 
n 

for electrodes wider than ~ cm. 

Combined free and forced convection ----

When there is the possibility of effects of free convection superimposed 

on forced convection} the situation becomes essentially more complicated. 
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Fortunately it appears' that one effect or the other predominates in the mass' 

transfer process, depending upon the values of the Reynolds and Grashof num­

bers. At horizontal electrodes Tobias and Hickman17 find that free· convectior). 

predominates and the average rate of mass transfer is given by equation (55) 

if L d g(p -p ) . 
e 000>92 
(v) v poo 3, 

where L is the electrode length and d is the equivalent diameter of the e 

channel. Otherwise forced convection predominates and the average rate of 

mass. transfer is given by equation (21). These results apply to laminar flow 

(Re < 2100). For turbulent flow} Tobias and Hickman find that forced convec-

tion predominates. 

, 44 
Acrivos has analyzed the combined effect of free and forced convection 

for surfaces which are not .horizontal and also finds that the transition region 

between predominance of free.convection and predominance of forced convection 

is usually narrow •. 

Limitations of surface reactions 

The work described above is restricted ~o processes at the limiting cur-

rent where the concentration of the reactant at the surface has a constant 

value of zero. Most industrial processes are operated beloy the limiting 

current, and the kinetics of the surface reaction then influence t'he distri-

bution of current. In this section on convective-transport problems, the 

ohmic potential drop is not considered. Thus we must assume here that the 

ohmic potential drop is either negligible or constant for all parts of the 

electrode in question. The sum of the surface overpotential and the concen-

tration overpotential is then constant, and the current distribution is 

determined by a balance of these overpotentials. The concentration and the 



current density at the surface vary with position on the electrode and must 

. adjust themselves so that the total overpotential is constant. The more 

general problem involving the ohmic potential drop will be discussed in a 

later section. 

Under these conditions the reaction rate at the electrode can be expressed 

in terms of the concentration at the surface, ,and the problem is similar to 

45-48 nonelectrolytic catalytic problems • The convective-transport problem 

can then be reduced to an integral equation relating the reaction rate to an 

integral over the surface concentration at points upstream in the diffusion 

layer. Other approximate methods have also been developed for calculating 

the surface concentration and reaction rate as a function of position on the 

electrode. These methods, including the integral equation method} should 

also provide a useful starting point for attacking the more general problem 

involving the ohmic potential drop. 

Applications of Potential Theory 

When concentration gradients in the solution can be ignored, substitution 

of equation (1) into equation ( 4') yields 

i = -l0Jtp , ( 57·) 

where 2I 2 Ie = F '-J ziuici (58) 
i 

is the conductivity of the solution and where the convective -transport terms 

sum to zero by the electroneutrality relation (3). Equation (2) when multi-

plied by z. and summed over i yields 
l 

iftp = a , 

that is, the potential satisfies Laplace ,I s equation. 

The boundary conditions are determined with equation (57). On insulators 
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cYP/Oy = 0 , (60) 

where y is the normal distance from the surface. On electrodes, equation 

(57) relates this potential derivative to the surface overpotential through 

equation (9) or (10). If the potential W in the solution is measured with a 

reference electrode of the same kind as the working electrode, then the sur-

face overpotential can be eliminated with the ,relation 

T] =V-W 
s at y = 0 , 

where V is the potential of the metal electrode. The resulting boundary 

condition is a nonlinear relationship between the potential and the potential 

derivative and is not commonly encountered in other applications of potential 

theory. 

As formulated above, the potential-distribution problem is similar to 

the problem of the 'steady temperature distribution in solids, with the poten-

tial playing the role of the temperature, the current density that of the 

heat flux, and the -electrical conductivity that of the thermal conductivity. 

Consequently, it is useful to be familiar with treatises on heat conduction, 

such as that of Carslaw and Jaeger49 . A knowledge of electrostatics85 and 

of the flow of inviscid fluids 50 is helpful since they are also involved with 

the solution of Laplace's equation. 

Rousselot 5l presents an interesting discussion of potential distribution 

problems. Kronsbein52 ha~ given an historical account of the literature of 

current distribution, and Fleck53 has recently reviewed the available analytiC 

solutions of such problems. 

Primary current distribution 

In so-called primary-current-distribution problems the surface overpoten-' 

tial is neglected altogether) and the solution adjacent to the electrode is 
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taken to be an equipotential surface. This defines a classical problem in 

mathematical physics. The primary current density is always infinite or zero 

at the edge of an electtode unless the electrode is perpendicular to an insu-

lating surface at its edge. Generally, the primary current distribution shows 

that the more inaccessible parts of an electrode receive a lower current 

density. 

Moulton54 gave a classical solution for the primary current distribution 

for two electrodes placed arbitrarily on the boundary of a rectangle. This 

is an example of one way to solve Laplace's equation, that of conformal map­

Ping55 using 'in this case the Schwarz-Christoffel transformation ... A special 

case of this geometry is the primary current distribution for two plane elec-

trodes placed opposite each other in the flow channel considered earlier. 

This is shown in figure 3 for L 2h and can be contrasted with the distri-

bution determined by convection and diffusion. The distribution is symmetric 

since convection is not important. The current density is infinite at the 

ends of the electrodes since the current can flow through the solution beyond 

the ends of the electrodes. The current distribution in this case is given 

by 

i avg 

€ cosh €/K(tanh2€) 

J sinh2E-si'nh2 (2x€/L) , 

(62 ) 

where E = nL/2h, x is measured from the center of the electrode, and K(m) 

is the complete elliptic integral of the first kind, tabulated in reference 

24, p. 608. This illustrates the fact that the primary current distribution 

depends only on the geometric ratios of the cell, in this case the parameter €'. 

The conductivity of the solution does not enter into the relation. 

Kasper56 gives the primary current distribution for a point electrode 
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and a plane electrode, line electrodes parallel to plane electrodes and plane 

insulators, and for cylindrical electrodes in various configurations. These 

systems illustrate the application of the method of images. According to 

Newman57, the primary current distribution on a disk electrode of radius r 
o 

embedded in an infihite insulati:ng;plane, is 

'. 

This is a simple example of the application of the method of separation of 

variables and Fourier series and integralS58,59. 

O 
60. , 

Hine, Yoshizawa, and kada have described the primary current distri,.. 

bution for two plane electrodes of infinite length and finite width confined 

between two infinite insulating planes perpendicular to, but not touching, 

the electrodes. wagner61 has given the primary current distribution for a 

two~dimensional rectangular slot in a plane electrode. These are further 

examples of the Schwarz-Christoffel transforma,tion. "I 

KOjima
62 

has collected various expressions for the resistance between 

two electrodes in various configurations. Analogous collections should be 

found for the resistance for heat conduction in SOlids63 and for the capaci-

tance of two electrodes. The resistance for a disk electrode embedded in 

an infinite insulating plane with the counter electrode in the form of a 

hemisphere at infinity is 57 

R = 1/4K.ro (64 ) 

The resistance for two plane electrodes ,of length L in the walls of a flow 

channel separated by a distance h, where the primary current distribution 

is given by equation (62) is 

'. 
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where W is the width of the electrodes perpendicular to the length of the 

channel. 

Secondary current distribution 

When slow electrode reaction kinetics are taken into account, the electro-

lytic solution near the electrode is no longer an equipotential surface. A 

wide variety of expressions for the electrode polarization has been used, 

which reflects the variety of electrode kinetics as well as a variety of 

approximations. The result of such a calculation is the so-called "secondary 

current distribution." The general effect of electrode polarization is to 

make the secondary current distribution more nearly uniform than the primary 

current distribution, and an infinite current density at the edge of elec-

trodes is eliminated. The mathematical problem now involves the so~ution 

of Laplace's equation subject to a more complicated, perhaps even nonlinear, 

boundary condition. 

For sufficiently small surface overpotentials, equation (10) can be 

linearized to read 

di n 
in = ·Cfrl 

s 1'] =0 
s 

"8 = 

i nF o 
RT 

1'] • s 
(66 ) 

This provides a linear boundary condition for Laplace's equation and has been 

popular in the literature since there is some hope of solving the resulting 

linear problem. Furthermore, if the range of current densities at the elec-

trode is sufficiently narrow, as one wants to achieve in electroplating, it 

is, of course, justified to linearize the polarization equation about some 

other, nonzero value of the surface overpotential. Finally, with linear 

polarization one achieves an economy of parameters needed to determine the 

current distribution,and the calculation of a family of curves representing 

the current distribution for a particular geometry is justified. 
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i 

The secondary current distribution i Ii depends upon the same geometric , n avg . 

ratios as the primar~ current distribution and, in addition, for linear polari-

zation depends, ou·:the parameter (L/IC)din/d"s'; where Lisa length characteris­

tic of the. system. This paramete~ has been identified by Hoar and Agar64 for 

the characterization of the influence of electrolytic resistance, polarization, 

and cell size on current distribution. When both electrodes are polarized, 

there are two such parameters involving the slope of the polarization curve on 

both the anode and the cathode. For linear polarization, the current distri­

bution i Ii is still independent of the magnitude of the current. n avg 

The Tafel polarization law, where one of the exponential terms in equa-

tion (10) is negligible, is also popular in the literature. For a cathodic 
/ 

reaction we have 

,0 

This is popular because, while being a fairly realistic polarization law, Tafel's 

equation introduces~a minimum of.additionalparametersinto .the·problem. Ih aadi-

tion to depending on the. same--.:geometric <r~atio.s as the primary current distribution, 

the. current .distributionin/ia;vgrto", depends.on the paramete~ .'-i~~g I (l-a:.)nFL/RTIC. 

The current distribution now depends on the magnitude of the current,but it is 

independent of the value of the exchange current density i , insofar as Tafel o 

polarization is applicable only for current densities appreciably above the 

exchange current density. 

Newman65 has treated the secondary current distribution for a disk elec-

trode embedded in an infinite insulating plane. For both a linear and a 

Tafel pOlarization law, the current distribution approaches the primary cur-

. rent distribution as the electrode becomes large at a constant average cur-

rent density. This is a general effect of the change of size in an electro-
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chemical system. 56 Kasper has treated the effect of linear polarization on 

some line-plane systems and for cylindrical electrodes. 

Wagner has treated the secondary current distribution for a plane elec-

61 
t.rode with a two-dimensional slot ,two cases of plane electrodes in the" 

walls of an insulating channel, and a nonplanar electrode with a triangular 

profile
66 . One of the cases treated by Wagner for linear polarization, that 

of a plane electrode of finite width embedded in an insulating plane and with 

IJ 
the counter electrode at infinity, has been treated by Gnusin, Poddubnyi, 

Rudenko, and Fomin67 for Tafel polarization. Some of these cases illustrate 

the use of current sources distributed along the electrode surface as a method 

of reducing the problem to an integral equation. This integral: equation; which may 

be linear .or nonlinear depe.nding on the polarization law used, frequently 

requires a nunierical solu.tion.-

Numerical solution £l finite differences 

Analytic solutions of current-distribution problems are usually restricted 

to simple _geometric arrangements and to no polarization or linear polarization. 

The use of some analytic solutions is facilitated by computer evaluation of 

certain integrals and infinite series. Some methods, like Wagner's integral-

equation method or solutions in infinite series with undet-ermined coefficients, 

require numerical evaluation of the current distribution on the electrodes 

or of the coefficients. When such methods can be used, the labor is less and 

the results more accurate than a numerical solution of Laplace's equation by 

finite-difference methods. Nevertheless, finite-difference .methods have been 

developed for solving Laplace's equation for heat-conduction problems, for 

example. The applicability of this procedure is much less restricted than 

analytic or partial analytic solutions. 
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Klingert, Lynn, and Tobias
68 

have used a finite-difference method for 

the solution of Laplace's equation in an L-shaped region where the anode forms 

a right angle one side of which is opposite the cathode and the other side of 

which is opposite an 'insulating surface. Fleck53 has developed a general com. 

puter program for solving Laplace's equation by successive overrelaxation in 

arbi trarily- shaped, two-dimensional regions, including those with curved boun-

daries, and for arbitrary polarization laws. 

This review of the applications of ~otential theory has not been exhaus-

ti ve. Other interesting sources can be found in the references already cited. 

Intermediate Problems 

We have discussed at length two extreme cases of current distribution 

problems: convective-transport problems mostly at the limiting current and 

applications of potential theory to cases where concentration variations near 

the electrodes can be ignored. 

A relatively 'Simple problem of an intermediate nature results if the 

current is maintained at a limiting value, but the concentration of supporting 

electrolyte is reduced relative to the concentration of the reacting ions. 

Since the current is at its limiting value, the ohmic potential drop in the 

bulk of the solution is still negligibl~ and the current distribution is 

determined by mass transfer in the diffusion layer. However, the presence 

of an electric field in the diffusion layer can lead to an increase or a de-

crease in,the limiting current due to migration of the reacting ions. 

At currents below but at an appreciable fraction of the limiting current, 

concentration variations cannot be ignored. As indicated in the subsection 

on "limitations of surface reactions,"! it may occasionally be possible to 

treat the problem like one involvi0g non-electrochemical catalysis. More 

" 
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frequently, however, the variations in the ohmic potential drop in the solu-

tion cannot be ignored. 

As mentioned in the introduction, porous electrodes will not be dis-

cussed here. 

Effect of migration on limiting currents 

Because of the electroneutrality condition (3), solutions of only two 

ions also satisfy the equation of convective diffusion (12) but with D. re-
1. 

placed by the diffusion coefficient of the electrolyte 

(68) 

Consequently it is relatively simple to solve convective-transport problems 

at the limiting current for these solutions. For example, Levich originally 

treated the rotating disk for such a binary electrolyte21 . The Ilkovi~ equa-

tion for a growing mercury drop has been extended to a bin~ry electrolyte 

by Lingane and KOlthOff69 . These results indicate an enhancement of the, 

limiting current compared to the same discharging ion in a solution with excess 

inert electrolyte, and this can be attributed to the effect of migration in 

the diffusion layer. 

There is some interest in calculating the limiting current for inter-

mediate cases where there is some inert electrolyte but not a large excess. 

Eucken70 gave the solution for three ion types in systems which could be repre­

sented by a stagnant Nernst diffusion layer. Because experimental data 71 

for the discharge of hydrogen ions on growing mercury drops did not agree with 

Eucken's formula, Heyrovsky30 rejected his method and introduced a correction 

factor involving the transference number of the discharging ion. This trans-

ference number correction is not baseq on quantitative arguments, but it has 

become entrenched in the electrochemical literature. 
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Gordon, Newman, and Tobias72 have considered the effect of ionic migra';< 

tion on limiting currents for a rotating disk electrode. Newman73 has treated 

the effect for four cases: the rotating disk, the growing mercury drop, pene-

tration into a semi-infinite medium, and the stagnant Nernst diffusion layer. 

The ratio IL/ID of the limiting current to the limiting diffusion current, 

calculated as in the section on convective-transport problems, is a convenient 

measure of the effect of migration and depends on the ratios of concentrations 

in the bulk solution. It is found that this correction factor is exactly 

the same for the two transient processes, the growing mercury drop and pene-

tration into a stagnant medium. Numerical values of the correction factor were 

calculated for redox reactions in a ferro-ferricyanidesystem, discharge of 

hydrogen ions from KCl solutions, deposition of . copper from H2S04 and MgS04 
solutions, and deposition of silver from HN03 solutions._ The difference 

between the results for the disk and the drop was striking only for the discharge 

of hydrogen ions, t~e same system that bothered Heyrovsky_ In a later work 

Newman74 showed that the correction factor for steady transfer in arbitrary 

two-dimensional and axisymmetric diffusion layers is exactly the same as that 

already calculated for the rotating disk. 

The effect of migration on limiting currents is a simple example of a 

phenomenon which does not occur in nonelectrolytic systems, in contrast to 

the convective-transport problems which have direct analogues in heat transfer 

and nonelectrolytic mass transfer. 

Currents below the limiting current 

Problems involving consideration of concentration variations near elec-

trodes, ohmic potential drop in the bulk of tb~ solution, and electrode kine-

tics are inherently of greater complexity than either the convective-transport 



problems or the potential-theory problems. For geometric and hydrodynamic 

conditions where it is possible to solve both of the extreme cases, there is 

some hope that the intermediate problem can also be treated. Problems of 

poorly defined stirring or geometry so complicated that even numerical solu­

tion of Laplace's equation is not feasible would not be expected to be amenable 

to analysis at intermediate current levels. 

Fortunately the concentration variations are usually restricted to thin 

layers adjacent to the surfaces of the electrodes} and Laplace's equation still 

applies in the bulk of the solution outside these diffusion layers. This means 

that one can devote separate attention to these different regions. Since the 

diffusion layers are thin} the bulk region essentially fills the region of the 

electrolytic solution bounded by the walls of the cell and the electrodes. In 

this region the potential is determined so as to satisfy Laplace's equation 

and agree with the current density distribution ~on the boundaries of the 

region. In the diffusion layers the concentrations are determined so as to 

satisfy the appropriate form of the transport equations} with a mass flux at 

the wall appropriate to the current density on the electrodes and approaching 

the bulk concentrations far from the electrode. The current distribution and 

concentrations at the electrode surface must adjust themselves so as to agree 

with the overpotential variation determined from the calculation of the poten­

tial in the bulk region. 

The thinness of the diffusion layers also allows one to separate the 

irreversible part of the cell potential into the sum of the surface overpoten­

tials} the concentration overpbtentials} and the ohmic potential drop in'the 

solution. The surfaceoverpotential has already been defined and is related 

to the concentrations and current density at the electrode surface by the 
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polarization equation (9). The surface overpotential varies with position 

on the electrode unless the concentrations and current density are uniform 

on the electrode. 

For the concentration overpotential, first let t:N1" be 'the J?otentiiH:of 

the reference electrode near the surface of the working electrode mtnus the 

potential of a reference electrode outttde the ,diffusion layer, and let 6V
Ohm 

be the potential difference'b~tween these electrodes when there is the same 

current distribution but no concentration variations near the electrode. 

Then the concentration overpotential T] is 
s 

T] = 6V - 6V 
c 1 ohm 

This general definition is applicable even for concentrated solutions where 

the transport equation (1) is not a:p.plicable T5 By subtracting 6V
Ohm 

as de-

fined above, the concentration overpotential becomes independent of the plac.e-

ment of the second reference electrode in the bulk of the solution. 

The manner in"which the potential V of a movable reference electrode 
, r 

(relative to a fixed reference electrode) varies with position can be ex-

pressed as 

-nF'VV , 
r 

(70) 

where Il
i 

is the electrochemical potential of species i. In the dilute-solution 

approximation used here, these can be written 

'VI-L. = RT 'V 2');(, ci + z.F'V<I>. 
l' 1 

Since I Si Zi = ~~, equation (70) becomes 

i 
s.RT 
_1_ 'V 2 

nF ');(, ci ' 

where 'V<I> is obtained by substituting equa,tion (1) into equation (4) with the 
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i = -10l¢ - F L zi Di \lc i . 

i 

If we subtract the ohmic drop which would exist in the absence of concentra-

.... tion variations and integrate acros's the diffusion layer, we obtain the con-

centration overpotential as defined above 

00 00 

z.D. dC'l 
in! (~ ~j dy + L s.RT c. oo 

FJrI "c 
~ l'Jlt.2.- + ~ ~ ~ d (74 ) = nF c. -1(.- dY, ' y, 

0 i ~o 
0 i 

where y is the normal distance from the electrode surface, 1(.00 is the conduc-

tivity of the bulk solution, c. (x) is the concentration of species i at the 
~o 

electrode surface, and c. oo is the concentration in the bulk. According to 
~ 

equation ((4), the concentration overpotential is the potential difference 

of a concentration cell plus an ohmic contribution due to the variation of 

conductivity in the diffusion layer. In general, the concentration overpoten-

tial also depends upon the position along the electrode surface. 

For simplicity, let us restrict ourselves to systems where the anode 

and cathode reactions are the same. Let x and y represent cartesian coordinates 

appropriate to the solution of Laplace's equa~ion in the bulk region and let 

xcath' Ycath' x and y d represent diffusion-layer coordinates appro-anode' ano e 

priate to the cathode and the anode, as used in the section on convective-

transport problems. Let ¢ th(x th) and ¢ d (x d) represent the solu-ca ca ano e ano e 

tion of Laplace's equation in the bulk region evaluated at the surfaces of the 

cathode and anode. Further let "c,cath' "s,cath' "c,anode' and "s,anode rep­

resent the concentration and surface overpotentials at the cathode and anode 

and let V t'h and V d be the potentials of the metal cathode and anode. ca , t;l.no e 

Then the applied cell potential Vanode-Vcath can, in view of the definitions 
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of overpotentials,.be expressed as 

If the metal anode and cathode are equipotentials, then the overpotentials 

and ohmic poi;.ential drop ¢anode- ¢cath must add· up .to a constant value accor­

ding to equation (75) even though individually ·they depend upon the position 

along the electrodes. The current densities and concentrations at the elec-

trode surfaces must adjust themselves so that this condition is ,satisfied. 

According to the second law of thermodynamics, the overpotentials are always 

positive at an anode and negative at a cathode. 

If the potential in the bulk of the solution is measured with a reference 

electrode of the same kind as the working electrodes, then the total overpoten-

tials at the anode and cathode are 

TJanode = V - q, 
anode anode 

TJ cath = Vcath - ¢cath = TJs,cath + TJc,cath • (77) 

Asada, Hine, Yoshizawa, and Okada 76 have used a separate treatment of the 

diffusion layers and the bulk solution to treat free· convection in a rectangu-

lar cell with a vertical electrode at each end for currents below the limiting 

current. Newman has given a detailed justification for such a procedure for 

systems with laminar, forced convection74 and has applied the method to the 

rotating disk electrode65,77. 

In discussing the details of the application of these concepts, let us 

pick a fresh example, that of two electrodes of length L placed opposite each 

other at a distance h, embedded in the walls of a flow channel with steady, 

laminar flow. The mass-transfer-limited current distribution and the primary 
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current distribution have already been depicted for this system in figure 3. 

No calculated results will be given, but it will be shown how to treat the dif-

fusion layers and the bulk solution without the necessity for a numerical 

solution of partial differential equations by finite differences. 

a.The diffusion layers 

The determination of all the concentrations in the diffusion layer is 

complicated and usually not required. Let us suppose that the electrode reac-

tions involve deposition and dissolution of copper from copper sulfate solu-

tions with enough sulfuric acid added that the effect of ionic migration in 

the diffusion layers can be ignored, and equation (11) applies. Let us also 

assume that the solution is so dilute that supersaturation of copper sulfate 

at the anode is not a problem. 

Application of Duhamel's theorem to the solution expressed by equation 

(19) yields a relation between the current denSity and the concentration of 

copper ions (indic~ted by the subscript R) at the surface of the electrode (see 

,46 ) also Acrovos and Chambre : 

i (x) 
n 

nF (jc i 
= S. Di cY 

l y=O 

nF D ( ,)113 x 
R 2 VI J 

= - -sR-::r:-1("'-[~ /-r"3--'-) .3hD
R 

. 0 

dc Ro (x' ) 

-dx' 
dx' 

1/3 . (78) 
(x-x' ) 

This equation can be applied to either the anode or the cathode by adding 

appropriate subscripts to in) x, and cRo ' but i.n either case it should be 

noted that the equation involves a Stieltjes integral. This is important only 

if there is an abrupt change in the surface concentration at the leading edge 

of the electrode, as there is at the limiting current. 

b.' Solution o.f Laplace's equation 

The solution of Laplace's equation for current sources distributed along 

the anode and the cathode is (compare wagner66) 
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L, 

lyt [sinh
2 (.7r(x-x'i

V 
... i2 (7r(Y-h ))] cD cD - 1 J i (x ') dx ' = 2h ,,+ s n , 2h,' * 27flCoo n cath ) . . : .~ 

'0 

L 
1 J . (x ') lyt [ 2 (7T(x-x I )) +' 2 

(7f
y)l dx ' (79) 27flCoo 

l.n anode sinh 
,2h . sin , ,2h , ... 

0 

where the cathode is at y = h and the anode is at y = O. From thts equation, 

the potential in the bulk solution extrapolated to the cathode surface is 

and 

L 

cD cath (x) = cD* - 2~lCoo J' in, cath (x ') lyt sinh
2 (7T(~~x I )) dx I 

o 

L 

__ 1_ J i '(x ') Lyt cosh2 (fr(x-x I)) dx I 
27flCoo n, a nod e , 2h 

o 

that extrapolated to the anode surface is 

L i 

cDanode(x) 
1 :J i (x' ) 2 (7f(x X")) = cD* - 27flCoo 

lyt cosh - dx ' n,cath , 2h, 
0 

(80) 

L 

2~K:oo J in, anode (x') l'J.t sinh
2 (7f(~~x' )) dx' . (81) 

o 

The current density at the anode is posiU.ve and that at the cathode is 

negative, in accordance with equation (78). The integration constant cD* is 

to be determined from the condition that the total anode and cathode currents 

are equal 
L 

J [i th(x ' ) + i (x')] dx' = O. n,ca n,anode ' 
(82 ) 

o 

( ) "" Otherwise the solution 79 represents a leakage of current along the chan-

nel to + and - infinity. 



• 

- 41 -

c. Boundary conditions 

The boundary conditions have, to some extent,alread~ been incorporated 

into the solutions for the diffusion layers and the bulk region. The solution 

(79) for the potential in the bulk solution already satisfies the condition of 

zero current normal to the insulating walls of the channel and gives the appro-

priate current densities on the anode and the cathode. The solution for the 

concentrations in the diffusion layers, on which equation (78) is based, agrees 

with the value cRoo in the bulk of the solution. For the determination of the 

unknown concentrations and current densities along the electrode surfaces it 

is necessary to ~se equations (76), (77), (74), and the polarization equation 

(9). In view of the assumption of an excess of supporting electrolyte, it is 

appropriate to simplify equation (74) to 

This neglects the variation of the conducti vi tyacross the diffusion layers and 

also the diffusion potential represented by the second integral in equation 

(74). If this were not permissible, it would be necessary to solve for the 

concentration profiles of each ionic species in the diffusion layers. 

d. Suggested solution procedure 

The method of solving the problem even as formulated i q by no means 

obvious or straightforward. In fact it is worthwhile to verify that there are 

enough equations to match the unknowns. By combining equations (9), (76), 

(77), and (83) it is possible to relate the current densities at the electrodes 

to the total overpotential and the concentrations in the bulk and at the surface:. 

(84) 

where the total overpotentials are obtained from equations (76), (77), (80), 
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and (81): 

where g represents the integrals in equations (80) and (81). Thus there is one 

constant unknown ~* and six variable unknowns, i , 
n 

1'], and cRo at both the cathode 

and the anode. There is one equation (82) for the determination of the constant, 

and there are two each of integral equations (78) and (85) and of equation (84), 

which applies at all pOints on the electrodes. Thus· the problem is determinate. 

The following, doubly i terat1.ve, calculation procedure is suggested, but 

convergence can hardly be guaranteed. Let V th and V d be given. ca ano e . 

1. Assume values of i (x) and i d (x) such that equation (82) n,cath n,ano e 

i.s satisfied. 

2. "Guess a value of 4>*. 

3· Calculate. Tl' t"h(x). and 11 d (x) from equation (85). ·"ca. ano e 

4. Solve the integral equation (78) with equation (8~·),for in and cRo 

for both the anode and the cathode. This is an integral equation of the 

Volterra type, and the method of numerical solution has been outlined by Acrivos 

,46 ' 
and Chambre ,but one must take into account the fact that 11 depends on x. 

5· If the correct value of 4>* was used, the values of i will now satis­
n 

fy equation (82). If not, pick a new value of ~*' by trial and error, and go 

back to step 3, using the old values of i to calculate 11 th and 11 d' -- . n ca ano e 

6. If the correct values of i had been used in step 3, the new values 
n 

of i will agree with the old. If not, ptck new values and go back to step 2. 
n 

.',- 6 
It will probably be necessary 5 :to average the new· and old values in some. way at 

this point in order to achieve convergence. 

From the complexity of this example, one will perceive why so few solu-

tions of intermediate problems are found in the literature. 

.. ' 

," , 
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Discussion and Conclusions 

Existing work on current distribution and mass transfer in electrochemical 

systems has been reviewed, with emphasis being placed on how each contribution 

is related to the limiting cases of convective-transport problems (directly 

analogous to problems in convective hea:t and nonelectrolytic mass transfer) 

and applications of potential theory (where concentration variations can be 

ignored and the electrostatic potential satisfies Laplace's equation).' This 

f k b d 'th W 'd'" 78 ~ thh f I ramewor can e compare Wl agner s lSCUSSlon 0.1." c, scope 0 : eec-

trochemical engineering. Much work either fits into the extreme cases or takes 

into account phenomena neglected in the extreme cases. 

Information regarding convective-transport problems not yet treated for 
~ 

electrochemical systems can be inferred from the literature of convective heat 

and mass transfer. Electrochemical systems provide a convenient experimental 

means of studying problems of wider interest, particularly at large Schmidt 

numbers. They can, for example, yield information about turbulent transport 

very close to a solid wall. 

In technical electrochemical systems, the ohmic potential drop is of 

great importance, and potential-theory problems find application here. Never-

theless, concentration variations near electrodes frequently provide limita-

tions on reaction rates and current efficiencies in industrial operations. 

In view of the complexity of treating simultaneously concentration variations 

and ohmic potential drop, qualitative or semi-quantitative application of 

these concepts may have to suffice for some time. 

Concentrated solutions 

Transport theory valid for dilute solutions has been applied fruitfully 

to electrochemical systems. It should be pOinted out that equations valid for 

concentrated solutions and multicomponent transport are available2,79. 
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Transport theory for solutions of a single salt is moderately simple and has 

been applied to eleCtrodeposition on a rotating disk electrode75,80. Further-

more, transport properties for such solutions are frequently available in the 

. 81 11terature • 

Multicomponent transport theory could be applied to certain simple geo­

met'ries which would involve numerical solution ~f ordinary differential equa-

tions.for the concentration profiles. However, in most cases data for all 

the necessary transport properties are incomplete82, and a rigorous treatment 

is precluded. There is, however, reason to believe that integral diffusion 

coefficients measured, say, with a rotating disk electrode at the limiting 

current would also be applicable to other geometries even though there is migra­

tion in the diffusion layer74 and the transport properties vary with the con­

centrations in the diff~sion layer23. 

Geometries of interest in electrode kinetic studies 

The behavior of the interface, particularly the electrode kinetics, is 

important in determining the behavior of an electrochemical system. In selec-

ting a system for the study of electrode kinetics care should be used to avoid 

complications not essential to the electrode kinetics. 

The rotating disk electrode has been popular for the study of moderately 

fast electrode reactions because the hydrodynamic flow is well defined and con-

centration variations can be calculated. However, it should be realized that 

the primary current distribution is not uniform, and this problem becomes more 

serious for faster reactions, larger current denSities, and larger disks. 

Perhaps more attention should be devoted to the possibility of using 

rotating cylindrical electrodes. Here both the primary and mass-transfer-

limited current distributions are uniform on the electrodes and both the ohmic 



potential drop and the concentration change at the electrodes can be accurately 

calculated even though the flow is turbulent. It might be more difficult to 

.• maintain cleanliness in such a ~ystem than with a rotating disk electrode. 

" .. 
Another way to avoid concentration variations in studies of the kinetics 

of moderately fast electrode reactions is to use a step change in current and 

follow the change in electrode potential in the time before the concentration 

can change significantly. For studies of the electrodeposition of copper by 

this method, Mattsson and Bockris83 used small spherical electrodes, where 

the primary current distribution should be uniform. Current-step methods 

should not be used if the primary current distribution is not uniform. 
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Nomenclature 

a = 0.51023. 

ci - concentration of species i (mole/cm3 ). 

d - equivalent diameter of annulus (cm). e 

D - diffusion coefficient of salt (cm2/sec). 

Di - diffusion coefficient of species i (cm2/sec). 

e symbol for the electron. 

f - function in expression of electrode kinetics. 

F - Faraday's constant (coulomb/equiv.). 

£. - gravitational acceleration (cm/sec2). 

Gr - Grashof number. 

h - distance between walls of flow channel (cm). 

i current density (amp/cm2 ). 

in - normal component of current density at a surface (amp/cm2 ). 

io - exchange current density (amp/cm2 ). 

I - total current (amp). 

K - complete elliptic integral of the first kind. 

L - length of electrodes (cm) . 

. L - characteristic length (cm). 

m - volumetric flowrate of mercury (cm3/sec). 

Mi symbol for the chemical formula of species i~ 

n - number of electrons transferred in electrode reaction. 

N. flux of species i (mole/cm2-sec). 
-J. 

Nu Nusselt number. 

p pressure (dyne/cm2 ). 

r - radial position coordinate (cm). 

r - defines position of surface for an axisymmetric body (cm). 

r - radius of disk electrode or of growing mercury drop (em). o 

-.1 

." 
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R - r.adius of outer cylindrical electrode (cm). 

R - lini versal gas constant (joule/mole-deg K). 

R - resistant (ohm). 

Ri - homogeneous rate of production of species i (mole/cm3-sec). 

Re 

s. 
). 

Sc 

t 

T 

T 

u. 
). 

v 

- Reynolds number. 

stoichiometric coefficient of species i in electrode reaction. 

- Schmidt number 

- time (sec).' 

- temperature (deg K). 

- life time of drop (sec). 

- mobility of species i (cm2-mole/joule-sec). 

- fluid velocity (cm/sec). 

(v) - average velocity (cm/sec). 

v 

w 

x 

y 

r 

- potential of an electrode (volt). 

- width of electrodes (cm). 

- distance measured along an electrode surface (also used as a cartesian 
coordinate in the bulk medium)(cm). 

normal distance from the surface (also used as a cartesian coordinate in 
the bulk medium)(cm). 

charge number of species i. 

- transfer coefficient. 

- velocity derivative at the solid electrode (sec-l ). 

constant in rate of growth of mercury drops (c~/secl/3). 
r(4/3) ~ 0.89298, the gamma function of 4/3. 

E angle between the normal to a surface and vertical (radian). 

€ 7rL/2h. 

~ - overpotential (volt). 
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~c concentration overpotential (volt). 

~s - surface overpotential (volt). 

e - dimensionless concentration. 

K - conductivity (mho/em). 

K - ratio of radU of inner to outer cylinder. 

~ - viscosity (g/cm-sec) . 

.. 1-1. - electrochemical potential of species i (jo~le/mole ) .• 
1 

V - kinematic viscosity (cm2/sec). 

~ - dimensionless independent variable (see equa~ions (28) and (34)). 

p - density (g/cm3). 

¢ - dimensionless veloCity derivative at the surface. 

~ - electrostatic potential (volt). 

n - rotation speed (radians/sec), 

subscripts 

anode - anode. 

avg average. 

cath - cathode. 

R reactant. 

o - at the electrode surface. 

00 _ in the bulk solution. 
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This report was prepared as an account of Government 
sponsored work. Neither the United States, nor the Com­
m1SS10n, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa­
ratus, method, or process ·disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor­
mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behal f of the 
Commission" includes any employee or contractor of the Com­
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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