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Marine heatwaves have been linked to negative ecological effects in recent decades.1,2 If marine 

heatwaves regularly induce community reorganization and biomass collapses in fishes, the 

consequences could be catastrophic for ecosystems, fisheries, and human communities.3,4 

However, the extent to which marine heatwaves have negative impacts on fish biomass or 

community composition or even whether their effects can be distinguished from natural and 

sampling variability remains unclear. We investigated the effects of 248 sea bottom heatwaves 

from 1993 to 2019 on marine fishes by analyzing 82,322 hauls (samples) from long-term 

scientific surveys of continental shelf ecosystems in North America and Europe spanning the 

subtropics to the Arctic. We found that the effects of marine heatwaves on fish biomass were 

often minimal and could not be distinguished from natural and sampling variability. Further, 

marine heatwaves were not consistently associated with tropicalization (gain of warm-affiliated 

species) or deborealization (loss of cold-affiliated species) in these ecosystems. While steep 

declines in biomass occasionally occurred after marine heatwaves, these were the exception, not 

the rule. Against the highly variable backdrop of ocean ecosystems, marine heatwaves have not 

driven biomass change or community turnover in fish communities that support many of the 

world’s largest and most productive fisheries.

Main text

Extreme climatic events exacerbated by global climate change are associated with many 

examples of ecological transformation5. Marine heatwaves (MHWs)6—prolonged periods of 

anomalously warm ocean temperatures—have been linked to widespread coral bleaching and 

die-offs of kelp forests and reef fishes in shallow coastal seas1,2. MHWs can rapidly displace 
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some marine species by hundreds of kilometers and cause abrupt declines in phytoplankton and 

commercially important species7–9. These high-profile catastrophes and those emerging from 

regional and global model simulations predict that MHWs will likely wreak ecological 

devastation and negatively impact socio-economic systems3,4,10. However, accurate predictions 

must rely upon generalizable patterns and processes, not case-studies with limited spatial and 

taxonomic scope. The extent to which MHWs in general have negative ecological impacts or 

even whether they can be differentiated from other sources of natural and sampling variability in 

marine systems remains unclear. In the few studies that have compared responses to MHWs 

across multiple species within the same ecosystem, some species declined while others thrived11–

13, suggesting that single-species responses do not accurately reveal net ecological effects. These 

net effects are particularly important to understand in continental shelf ecosystems, where many 

of the world’s largest ocean fisheries operate14.

    Here, we analyzed the cross-species and cross-ecosystem effects of MHWs in 

Northern-hemisphere shelf ecosystems from the subtropics to the Arctic. We analyzed 82,322 

hauls (discrete samples) comprising 22,574,452 observations of 1,769 demersal fish taxa from 18

long-term scientific (i.e., fisheries-independent) bottom trawl surveys covering 45 degrees of 

latitude in the Northeast Pacific, Northwest Atlantic, and Northeast Atlantic (Fig. 1). Ninety 

percent of hauls occurred in waters 18-448 m deep. These surveys represent the most spatially, 

temporally, and taxonomically extensive observations available for testing MHW effects. We 

examined observations from 1993-2019 to quantify the effects of MHWs on regional fish 

biomass and community composition (Fig. 1). 

We defined a MHW as a period of ≥ 5 days with sea bottom temperature (SBT) 

anomalies above the seasonally varying 95th percentile for that region6 and used cumulative 
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intensity as the primary metric characterizing MHWs (see Methods). Cumulative intensity is 

measured in °C-days and represents the sum of the time-varying anomalies above the 95th 

percentile threshold over the duration of the event. This approach—defining MHWs as physical 

phenomena based on relative temperature anomalies—is widely applied in oceanography.15 A 

contrasting approach is to define absolute temperature thresholds above which deleterious 

ecological impacts consistently occur, as have been identified for coral reefs.16 Such a biological 

threshold has not been described in most marine systems, including the ones we studied, so we 

explored a range of relative and absolute MHW metrics (see Methods). We hypothesized that 

MHWs altered fish biomass and community composition and that these effects would increase 

with the cumulative intensity of MHWs.

This dataset recorded some notable MHW impacts that mirror previous reports in the 

literature, including a 22% biomass loss in the Gulf of Alaska following the 2014-2016 

Northeast Pacific MHW with a cumulative intensity of 57 °C-days8,17 and a 70% biomass gain in 

the Northeast USA following the 2012 Northwest Atlantic MHW (67 °C-days; Fig. 2a, 3a)11. 

However, it is important to note that while these effects were substantial, they were neither large 

compared to natural variability in biomass nor repeated across other previously unreported 

MHWs. Other intense MHWs had little discernible effect on total biomass, such as the 42 °C-

days MHW preceding the 2008 North Sea survey that recorded only a 6% biomass decline (Fig. 

2a). Some of the largest biomass changes occurred in non-MHW years, such as the 97% increase

in biomass in the North Sea in 2011, or the 77% biomass decline in the Southeast US in 1996.18 

In addition, we observed that the most extreme biomass changes were often reversed in 

subsequent years. For example, the southern Gulf of St. Lawrence survey hauls caught an 

average of 4 metric tons of fish per km2 in 2011, a non-MHW year; 13 metric tons per km2 in 
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2012 following 36 °C-days MHW; and 4 metric tons per km2 in 2013 following a MHW with 0.4

°C-days of cumulative intensity (Fig. 2a). The peak in biomass in 2012 was driven by Atlantic 

herring (Clupea harengus) and likely reflects a combination of survey variability and a true peak 

in population size of the fall Atlantic herring stock in the region19. 

Contrary to our expectations, both among surveys that were and were not preceded by a 

MHW, the median change in biomass was close to zero (0.023 ± 0.367 and 0.016 ± 0.323, 

respectively; medians and standard deviations of log ratios), indicating that regions were 

approximately as likely to exhibit net biomass gains as losses (Fig. 2a). Of the 369 survey-years 

we matched with sea bottom temperature data, 139 followed MHWs and 230 did not. There was 

no significant difference in mean biomass change between surveys that were and were not 

preceded by a MHW (p = 0.40, t = 0.85, df = 249; two-sided t-test; Fig. 2a). Further, the 

cumulative intensity of a MHW had no significant relationship with the change in biomass 

(linear regression; R2 = 0.00; p=0.88; Fig. 2, Supp. Tab. 2). 

The ecosystems we studied have distinct climates, species assemblages, and histories of 

anthropogenic pressures20, and might respond at different rates and in different directions to 

environmental perturbation.21 More broadly, pulse disturbances and other exogenous drivers 

(including heatwaves) are often expected to increase variance in the biomass of populations and 

communities22. However, we find no statistically significant relationship between the cumulative 

intensity of a MHW and biomass change of these demersal fish assemblages in any individual 

region (Extended Data Fig. 1, Supp. Tab. 3). Across all surveys, variability—measured as the 

absolute value of the year-over-year biomass log ratios—did not increase with MHW cumulative

intensity (linear regression, R2 = 0.00, p = 0.24; Fig. 2b, Supp. Tab. 4). Instead, we find that 

variability in biomass change from one year to the next is similarly high with or without MHWs 
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(0.22 ± 0.248 and 0.19 ± 0.214, respectively; medians and standard deviations of absolute log 

ratios) and that these absolute log ratios of biomass are not significantly different (p = 0.24, t = 

1.17, df = 245; two-sided t-test; Fig. 2b). 

Accounting for latitude, depth, temporal lags, autoregression in the biomass time-series, 

fisheries catch, and species traits (feeding mode, trophic level, and habitat) also did not reveal 

any meaningful effect sizes of MHWs on biomass (Supp. Tab. 6-10, Extended Data Fig. 6-7). 

Our results were also robust to the metric used (cumulative intensity, duration, intensity, or 

degree heating days) to characterize MHWs, how cumulative intensity was scaled, and to 

whether SBT data were detrended (Extended Data Fig. 2, Supp. Tab. 5). Because SBT data was 

only available from 1993 onward, we also analyzed a longer time-series of sea surface 

temperature (SST) that began in 1982 and thus could be paired additional fish surveys. The SST 

analysis included 100,877 hauls comprising 26,886,245 discrete taxon observations, and yielded 

results that were qualitatively similar to the SBT results described in the main text (Extended 

Data Fig. 2b). Because deleterious heatwave effects have often been recorded in summer1, we 

also tested for an effect of summer-only MHWs on biomass (Extended Data Fig. 2g), finding a 

weak positive effect (i.e., greater biomass following more intense MHWs; linear regression, R2 =

0.02, p = 0.02). While interpreting this result cautiously given the high leverage of a few data 

points, this result is consistent with the 2012 Northwest Atlantic MHW that occurred in summer 

and was associated with an increase in biomass in numerous fisheries11.

Individual MHWs may lead to rapid ecological turnover by causing cold-affiliated 

species to decline or go extinct (“deborealization”) and/or by causing warm-affiliated species to 

spread or increase (“tropicalization”)23–25. We tested whether tropicalization or deborealization 

are general effects of MHWs by calculating the Community Temperature Index (CTI) for each 
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survey in each year and comparing CTI change to MHW occurrence and cumulative intensity 

(Methods). CTI is an aggregate thermal niche index for the entire community calculated as the 

biomass-weighted mean of single-species’ realized thermal niches26.

Other studies show that CTI has increased in North American fish communities in recent 

decades, concomitant with ocean warming.25 To explore whether MHWs induce CTI increases, 

we first focused on the 2014-2016 Northeast Pacific MHW, nicknamed “The Blob”—one of the 

largest MHWs in our dataset (Fig. 2, 3). Of the four regions in the Northeast Pacific for which 

we had data, the Gulf of Alaska exhibited the most pronounced CTI increase after the 2014-2016

MHW—from 7.25 °C in 2013 to 7.39 °C in 2015 and 7.50 °C in 2017. We also found a CTI 

increase in the West Coast USA in 2015 following an 8 °C-days SBT MHW (CTI change 0.11 

°C), consistent with findings that warm-affiliated subtidal fishes increased in Southern California 

that year27. However, CTI in the Eastern Bering Sea decreased by 0.22 °C from 2015 to 2017. In 

British Columbia, we measured CTI values of 8.34 °C in 2013, 8.10 °C in 2015, and 8.31 °C in 

2017 (Fig. 3b).   

Our analysis found no evidence for systematic tropicalization or deborealization in 

marine fish communities across all 18 surveys and 369 survey-years in response to MHWs (Fig. 

4). Year-over-year CTI change in communities that did not experience MHWs was not 

significantly different from those that did (0.024 ± 0.996 and 0.007 ± 0.983 °C, respectively; 

means and standard deviations; p = 0.87, t = 0.16, df = 280; two-sided t-test; Fig. 4b). Further, 

there was no relationship between MHW cumulative intensity and CTI change (R2 = 0.00; p = 

0.33; linear regression; Supp. Tab. 11).

Marine heatwaves may restructure ecological communities in other ways beyond 

tropicalization and deborealization28. Less predictable changes in species identity and underlying 
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community structure could also emerge despite consistent biomass29. We tested for changes in 

community composition by calculating dissimilarity over the time-series using occurrence data 

(i.e., species presence-absence) as well as biomass data. Each of these dissimilarity indices is 

calculated from one year to the next using two components—one measure of how much species 

are substituted for one another and one measure of how much each community is a subset of the 

other30 (see Methods). A high dissimilarity value between two years may be driven by a 

transition away from the baseline community structure as a result of disturbance, which has been 

observed in marine systems in response to climate change29.

In some instances, fish communities exhibited high dissimilarity from the previous year 

following a MHW, such as in the Eastern Bering Sea and the West Coast US during the 2014-

2016 MHW (Fig. 3c). However, this was not a general effect. We found that community 

dissimilarity measured between consecutive years was not, on average, significantly different 

whether or not a MHW occurred when measured with occurrence-based substitution (p = 0.12, t 

= 1.57), biomass-weighted substitution (p = 0.99, t = -0.02), or biomass-weighted subset (p = 

0.32, t = 1.00; all two-sided t-tests; Extended Data Fig. 8). The one statistically significant 

relationship suggested that the subset component of occurrence-based dissimilarity was smaller 

after MHW years than after non-MHW years (p = 0.01, t = -2.52, two-sided t-test; Extended 

Data Fig. 8b), the opposite of the hypothesized effect. This observed community stability in the 

face of MHWs could indicate that climate refugia, such as depth refugia or other thermal refugia,

provide safe havens for species during extreme events.31 Further, changes in community structure

at the local scale may not be reflected at the regional scale of our analysis. 

This array of results suggests that the regional impacts of MHWs on fish communities are

highly idiosyncratic, with dramatic effects in single cases but not in general. In particular, the 
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effects of MHWs do not yet exceed natural variability in these ecosystems, or the variability due 

to the sampling process. These results also highlight the need to further explore context-

dependent responses32. Species and spatial portfolio effects33,34 as well as spatial and temporal 

storage effects35 may explain individualistic responses to extreme events that could buffer many 

ecosystems from MHWs. Range shifts and mortality and fecundity rates may vary with latitude,25

although we did not find a latitude effect in our analysis (Supp. Tab. 8). Interspecific variation in 

the timing, magnitude, and direction of MHW response may also be important36. For example, 

population dynamics of abundant species in response to the environment and fishing drive some 

of the biomass changes we observed (Extended Data Fig. 10).  Ecological responses to warming 

may also be mediated by direct and indirect effects of other human impacts on the oceans, such 

as fishing, fisheries management, and changing primary productivity3. 

To verify that our dataset had sufficient statistical power, we developed a series of power 

analyses. First, we estimated that our dataset (n = 369 survey-years paired with SBT data) had 

the power to reveal a consistent MHW-induced regional fish biomass decline of 9% or greater 

(Extended Data Fig. 9c). Using the longer time-series of 441 survey-years that we paired with 

SST data had the power to detect a biomass decline of 8% or greater (Extended Data Fig. 9d). 

Such an effect did not emerge from the results of this study, suggesting that any MHW effects are

smaller than this. We note that even decline in fish biomass of 8-9% or less, if permanent and 

sustained over time, would likely have substantial deleterious consequences for marine fisheries 

and social-ecological systems3. One model simulation of marine fishes experiencing MHWs 

under the high emission, no mitigation future climate scenario (RCP 8.5) projected that the 

negatively affected stocks (approximately ¾ of total stocks) would exhibit an average biomass 

decline of 6%3. Approximately 600 survey-years would be required to detect an average biomass

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251



decline of 6% (Extended Data Fig. 9a, b). Put another way, MHWs may have had effects on 

demersal fish communities in recent decades, but if so, those effects were small. 

In addition, there are alternative explanations to consider. MHWs may affect survey 

methods themselves: a study on several coral trout species found that they were more catchable

—i.e., encountered by fishing gear at higher rates—in warmer temperatures37. However, if this 

response was widespread among the species we studied, it would cause an increase in biomass 

following MHWs that we did not observe. The availability of fishes to surveys can also be 

influenced by range shifts, possibly induced by MHWs38. However, our analysis accounted for 

this by testing for tropicalization or deborealization within fixed spatial areas (the survey 

regions). Because biomass trends may be strongly structured by commercial fisheries catches, we

fitted models predicting biomass change with fisheries catch as well as MHW cumulative 

intensity, with no significant results (Supp. Tab. 10). While the choice of metric to quantify 

MHWs6,15,38,39 and fish community responses11,37 may influence results, our results here were not 

sensitive to these decisions. The pattern in Fig. 2 emerged regardless of whether we analyzed fish

biomass (i.e., weights) or fish abundance (i.e., counts) or whether taxon-level records were 

summarized as means or medians (Extended Data Fig. 5). The spatial scale of our study was 

determined by the surveys, which themselves are designed to capture distinct biogeographical 

and political regions and/or to follow fisheries management criteria40 (see Methods). However, it 

is possible that fish community responses to MHWs vary with the spatial scale at which they are 

measured, as has been found with other metrics of biodiversity.41

Ecological effects of climate change result from the interaction of long-term climatic 

change combined with short-term extreme events such as heatwaves5, which have been projected

to cause widespread ecological devastation on land and in the sea (although see 36,42). To date, 
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this expectation has largely been based on case studies that select one or a few prominent species

and ecosystems with remarkable MHW responses, rather than the comprehensive approach that 

we used. Analyses that focus on particular species that were historically prevalent in a region 

may be predisposed to find a biomass decline following a MHW, possibly due to unrelated time-

series dynamics (e.g., mean reversion or density dependence) or because species that were 

dominant in historical climates might not be as successful after a MHW. In addition, case study 

approaches tend to select and emphasize extreme responses43—although several regional studies 

focused on a single MHW event have also found no net loss of abundance or biomass in coral- or

kelp forest-associated fishes27,44. Further empirical research that builds on the present study and 

extends beyond individual case studies is needed to interpret, contextualize, and predict severe 

MHW effects.2 Building partnerships to leverage existing non-public datasets from the southern 

hemisphere and other under-studied parts of the global ocean will also be helpful in 

understanding how ecological context influences MHW responses40.

Our findings highlight the need to understand divergent responses to extreme events. 

Single-species responses may be mediated by thermal tolerances, but we did not find evidence 

that cold-affiliated species decline or that warm-affiliated species increase following MHWs (Fig.

4a). Other studies find that species’ responses vary from one extreme event to another42. Portfolio

and storage effects may explain why ecosystem-level MHW effects are rare, but they do not 

reveal what caused certain MHWs to have deleterious ecological effects. The community 

stability we observed in the face of MHWs could indicate that climate refugia, such as depth or 

other thermal refugia, provide safe havens for species during extreme events.31 Cumulative 

impacts of MHWs and other stressors such as harmful algal blooms13 or low-productivity events9

could play a role. Perhaps very extreme MHWs in the future will cross a tipping point beyond 
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which adverse ecological effects occur, but we did not see such a tipping point in the recent 

historical record. Other fields (e.g., coral reef ecology) have identified such thresholds, though 

the generality of thresholds across ecological systems remains unclear.45 Gaining mechanistic 

insight into why only some MHWs have deleterious effects, and on only some species, is 

necessary for any future efforts to identify an effect threshold or forecast MHW impacts and 

should be a research priority for the field. Additionally, ecosystem responses to extreme “pulse” 

events such as MHWs can shape impacts of more gradual “press” trends; the complex 

interactions between these climate change effects warrant future research.5

Understanding MHW impacts on entire ocean ecosystems is particularly crucial in the 

context of accelerating global change and efforts to advance towards ecosystem-based 

management that considers the many links between species and with their environment46. MHW 

occurrences are projected to emerge above their natural variability within this century in many 

regions47. Future research will be needed to determine the extent to which fish community 

impacts of MHWs will grow as MHWs intensify, or whether portfolio and other ecological 

effects can buffer ecosystems from MHW impacts. Marine life is more vulnerable to warming 

than terrestrial life, because marine organisms tend to live close to their thermal limits and fewer 

thermal refugia exist in the seas48. Observed and predicted changes in marine ecosystems in 

response to global warming formed part of the rationale behind the Paris Climate Agreement to 

limit the global mean surface temperature increase above industrial levels to 1.5 °C by 210049. As

a future that is more than 1.5 °C warmer looks increasingly likely50, it is more critical than ever 

to develop a deeper understanding of what drives ecological responses to extreme climate events.
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Fig. 1. Of 18 regions studied from the Atlantic and Pacific Oceans, all experienced marine 

heatwaves during the available scientific fish survey time-series. Highlighted areas on the 

map represent the spatial area surveyed by each trawl survey. Inset plots show the number of 

distinct sampling events (i.e., hauls of the trawl net) every year (grey bars, right y-axis) and the 

MHW cumulative intensity in °C-days calculated from sea bottom temperature data (lines, left y-

axis; warmer colors represent greater cumulative intensity). Years correspond to “survey 
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reference years”—the twelve months preceding the survey—rather than calendar years, and vary 

among regions (see Methods).
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Fig. 2. More intense marine heatwaves were not associated with a decline in fish biomass or

an increase in biomass variability, and biomass was approximately as likely to increase as it

was to decrease from one year to the next, regardless of whether a marine heatwave 

occurred. MHW cumulative intensity (°C-days) had no relationship with (a) biomass change 

(measured as log ratio; linear regression, R2 = 0.00, p = 0.45) or (b) absolute biomass change 

(measured as absolute log ratio; linear regression, R2 = 0.01, p = 0.07). The grey shaded area is a 

95% confidence interval. Density plots along the right-hand y-axes show that biomass changes 

from one year to the next were the same whether a MHW did (red, n = 139) or did not (blue, n = 

230) occur. Points represent (a) log ratios or (b) absolute log ratios of mean biomass in a survey 

from one year to the next (n = 369). Surveys following the highest cumulative intensity MHWs 

are labeled (years correspond to when the survey was conducted). Colors correspond to regions 

in Fig. 1. Models exploring the relationships in (a) and (b) are reported in Supp. Tab. 2 and 4, 

respectively. 
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a
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c

Fig. 3. Example of divergent responses to a large marine heatwave. Plots show (a) centered 

and scaled biomass and (b) Community Temperature Index (CTI), and (c) change in community 

composition over time (the substitution component of Bray-Curtis dissimilarity) between the 

previous and given year for four surveys in the Northeast Pacific. Colors correspond to survey 

footprints in Fig. 1. Higher values represent more biomass, tropicalization and/or 

deborealization, and greater community dissimilarity, respectively. The grey stripe denotes the 

2014-2016 Northeast Pacific MHW (“The Blob”). 
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a b

Fig. 4. Scientific bottom trawl surveys during the year following marine heatwaves were as 

likely to exhibit tropicalization and/or deborealization as those that did not follow marine 

heatwaves. (a) There was no relationship between a species’ thermal bias (its cold or warm 

affinity relative to the assemblage mean, calculated as STI - CTI; see Methods) and its species-

specific biomass change following a MHW (n = 13,438). (b) There was no difference in CTI 

change between surveys in the year following a MHW (red, n = 139) versus surveys that did not 

follow a MHW (blue, n = 230). Positive CTI values indicate tropicalization and/or 

deborealization. In (a), each point represents a single species that was present in a survey both 

before and after a MHW. 

Methods

All analyses were conducted in R (R Core Team 2021). Software versions are listed on 

GitHub. 

Fish biomass and abundance data. We collated publicly available datasets from fishery 

management agencies that use scientific (i.e., fisheries-independent) bottom trawl surveys to 

monitor marine fish communities40. These surveys monitor biogeographically and/or politically 

distinct areas that are relevant to fisheries management40. Their footprints often follow marine 
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ecosystem boundaries (e.g., Large Marine Ecosystems52) and are similar in size to the spatial 

extents of MHWs39. Although these surveys are conducted by many nations, we used only 

surveys by agencies that make their raw data publicly available, which facilitates reproducibility 

of this study. Those agencies were the National Oceanic and Atmospheric Administration 

(NOAA), Fisheries and Oceans Canada (DFO), the International Council for the Exploration of 

the Sea (ICES), and the Institute of Marine Research (IMR). This limitation constrained our 

analysis to the Northeast Pacific, Northwest Atlantic, and the Northeast Atlantic (Supp. Tab. 1). 

In these surveys, the sampling unit is a single haul, i.e., a sampling event in which a net is

towed through the water. We filtered invalid hauls based on reported sample quality, sampling 

times, and availability of variables required to calculate taxon-level biomass data. Further detail 

on data cleaning and harmonization in addition to raw data and code can be found in Maureaud 

et al53. All primary analyses used biomass (weight) data; we conducted a supplementary analysis 

of the main results using abundance (count) data for the regions for which it was available (all 

but Northeast US; Extended Data Fig. 5). 

Datasets were trimmed to standardize the spatial footprint of the survey over time, to 

match the available temperature datasets (GLORYS began in 1993 and OISST began in 1982; 

see Marine heatwave data), to remove years with very few samples, and to omit samples 

collected outside of the focal season (3-month interval) of each survey. We used the World 

Register of Marine Species54 to standardize taxonomies, and the “dggridR” R package55 to 

standardize the survey footprints. Across our 18 surveys, we paired 82,322 hauls with GLORYS 

and 101,376 hauls with OISST. Of the 94% of hauls with an associated depth value, 90% 

occurred between 18 m and 451 m depth. The depths sampled vary due to each region’s unique 
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bathymetry and each survey’s protocols, but surveys tend to sample similar depths over time: for 

example, the Southeast US survey samples very shallow inshore areas of just 3 m depth, while 

the Scotian Shelf and West Coast surveys routinely trawl deeper than 1000 m. We used all taxa 

for biomass analyses but only the species-level observations for community analyses (see 

Species and Community Temperature Indices). 

We imputed zeros representing an observed absence in every instance when a species 

(that was observed at some point in the region) was not recorded in a haul. These absences can 

be considered true non-detections due to the standardized spatiotemporal design of bottom trawl 

surveys. We then calculated a mean biomass for each species in every year, and calculated 

region-wide biomass as the sum of species-level biomass. To assess the sensitivity of our results 

to the metric used, we also calculated median biomass, mean abundance, and median abundance 

in the same way (although the Northeast US region did not have abundance data and was thus 

omitted from the abundance analysis). We did this across the entire survey domain (following 

the spatial standardization mentioned above), rather than within the “strata” used in some 

analyses56, because not all of the surveys have stratified sampling designs and we wanted to be 

consistent across all regions. 

Year-over-year mean biomass change was calculated as a natural log ratio,

⁡ln(
biomass t

biomass t−1
). Log ratios for median biomass, mean abundance, and median abundance were 

calculated the same way. For straightforward interpretation, we also reported percentage biomass

changes in the text, although biomass log ratios were used in all models. For example, a 67% 

biomass increase means that biomasst = 1.67  biomasst-1. A 67% decrease means that biomasst 

= (1 – 0.67)  biomasst-1. 
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Because surveys began in different months, we paired each survey’s biomass data with 

MHW data from the preceding 12 months. For example, for a survey that began in August, the 

August 2010 data was paired with MHW data from August 2009 - July 2010. Because we have 

no a priori information on the season in which MHWs could have the greatest ecological impact

—and this may vary by species and life stage—we analyzed MHW effects over a full year (i.e., 

12-month interval). Some substantial MHW effects have been reported in summer,57 and yet 

winter heatwaves strongly influence distribution and abundance for species limited by winter 

survival58,59. Warmer winters are hypothesized to have driven recent ecological changes in the 

Gulf of Alaska12. Winter MHWs may also reduce recruitment in habitat-forming seaweeds6 and 

cause metabolic stress to coral reef fishes60. Spawners and embryos have narrower temperature 

tolerance ranges than non-spawning adults61; a spring heatwave could thus affect the survival or 

performance of spring-spawning fishes and their embryos. To test the sensitivity of our results to 

this choice, we also explored the effects of only summer anomalies on biomass change 

(Extended Data Fig. 2g). 

Interannual biomass variability is significantly lower in surveys with more samples per 

year (linear regression; R2 = 0.08; p < 0.001). To account for this, all models and statistical tests 

either included a survey effect or used biomass log ratios that were scaled and centered within 

surveys. 

Marine heatwave data. We paired the demersal bottom trawl data with MHWs 

calculated with sea bottom temperature (SBT) data from the Copernicus 1/12° (about 8 km) 

global ocean reanalysis, the Global Ocean Reanalysis and Simulations (GLORYS12).62 The 

reanalysis dataset is generated with the Nucleus for European Modelling of the Ocean (NEMO) 
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ocean model forced by the ERA-Interim atmospheric reanalysis. The model assimilates satellite 

altimetry, satellite SST, sea ice concentrations, and in-situ profiles of salinity and temperature. 

We chose GLORYS12 for our analyses because it provided daily estimates of temperature 

anomalies at depth at a fine spatial resolution, and it reproduces nearshore bottom temperatures 

and recent MHWs with enhanced fidelity compared to other products.63,64 Being highly 

dependent on ocean observations for data assimilation, GLORYS12 only began in 1993. We 

used the 1993-2019 period for our analysis. 

Because many bottom trawl datasets began earlier than 1993, we also calculated SST 

MHWs to conduct supplementary analyses with a longer time-series. For SST, we used the 

NOAA daily Optimum Interpolation Sea Surface Temperature (OISST) Analysis version 2.1 

dataset65,66 with a horizontal grid resolution of 0.25°, which is available from 1982 onward, to 

characterize MHWs. This dataset provides a daily global record of surface ocean temperature 

observations obtained from satellites, ships, buoys, and Argo floats on a regular grid. Infrared 

satellite data from the Advanced Very High Resolution Radiometer is its main input and any 

large-scale satellite biases relative to in-situ data from ships and buoys are corrected. Gaps are 

filled in by interpolation. We used the 1982-2019 period for our analysis. OISST and GLORYS 

are plotted against one another in Extended Data Fig. 4.  

Following standard MHW definition (e.g. 9,47), both SBT and SST anomalies were 

calculated within (not across) spatial units—here, the survey regions. This approach defined 

anomalies relative to historical conditions in a region, which are likely reflective of the 

environments to which organisms are adapted. In other words, each MHW we identified 

represented a departure from whatever climate the marine organisms in that region typically 

experienced. Because our study regions varied substantially in seasonality, natural variability, 
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and exposure to oceanographic phenomena, calculating anomalies from cross-region pooled SBT

and SST values would identify only the most globally extreme events as MHWs and would omit 

the many events in which temperatures were anomalously high for species within a region but 

not necessarily high for the global oceans. 

For both SBT and SST, we defined a MHW as a period of at least five continuous days 

during which the SBT (or SST) averaged for each survey area was larger than a seasonally 

varying threshold given by the 95th percentile of the survey-area averaged SBT (or SST) 

anomalies (relative to the mean seasonal cycle that is calculated for each calendar day 

individually). This is a common approach for defining MHWs, although some authors use the 

90th percentile6 or the 99th 39 instead of the 95th. Under our definition, MHWs may occur 

throughout the year and at all locations. 

The temperature data was linearly detrended before any analysis to distinguish discrete 

MHWs from the long-term warming signal (see Jacox et al. 38,67 and Extended Data Fig. 3) 

although we also tested the sensitivity of our results to this decision by re-running the analysis 

with non-detrended data and reached equivalent conclusions (see Extended Data Fig. 2c). Using 

the five-day threshold and the detrended data, we identified 511 distinct surface MHWs in 

OISST and 248 bottom MHWs in GLORYS. Many years had multiple MHWs. GLORYS had 

fewer MHWs partly because the time-series is shorter and partly because the MHWs it recorded 

were longer in duration (leading to fewer discrete MHW events relative to OISST, which 

recorded many shorter MHWs). 

We then calculated different MHW metrics: MHW cumulative intensity (the anomaly 

above the 95th percentile threshold summed over the duration of the event in °C-days, duration 

(number of days), and mean intensity (the average anomaly above the 95th percentile threshold 
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over the course of the MHW in °C). We chose MHW cumulative intensity for the main analysis 

because it encompassed elements of both intensity and duration (i.e., cumulative intensity is 

higher for longer or for more intense MHWs)—but our biomass results did not change if we used

different metrics (Extended Data Fig. 2d, e). Because under our definition all MHWs exceeded 

95% of temperature anomalies in the region, even MHWs with relatively low cumulative 

intensities represented extreme events. Unless otherwise specified, models in the main text and 

Supplement used MHW cumulative intensity centered and scaled within regions, although our 

results were not sensitive to whether we scaled and centered within vs across regions (Supp. Tab.

5).

In coral reef ecology, a threshold for ecological damage (i.e., coral bleaching) has been 

identified using degree heating days—the number of days that exceed average temperatures for 

the hottest summer month by at least 1 °C.16 We also processed the non-detrended GLORYS data

using this method for each region (Extended Data Fig. 2f). One data product, Coral Reef Watch, 

calculates the average temperatures for the hottest summer month during a baseline period of 

1985-1990 plus 1993.16 Because GLORYS began in 1993, we used the four-year interval 1993-

1996 as the baseline to calculate the average temperatures for the hottest summer month.  

The five-day threshold for a MHW used in the main analysis was based on empirical 

analyses demonstrating that contemporary heatwaves last on average 4.6 days68, and is widely 

used in the literature6, although we note that alternate methods exist to define and measure 

MHWs15,39,69. We also assessed whether MHW responses would emerge from classifying any 

daily anomaly (without the five-day cutoff) as a MHW. We found no relationship (Extended 

Data Fig. 2a). 

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617



Species and Community Temperature Indices. The Species Temperature Index (STI) 

and Community Temperature Index (CTI) are measures of thermal affinity at the species and 

community level, respectively.70 We quantified STI as the median sea surface temperatures found

throughout a species’ modeled range from the publicly available STI dataset in Burrows et al.26. 

STI values were available for 844 of our 1772 focal taxa, comprising 82% of total biomass in our

survey dataset. CTI was calculated in each region and year as the biomass-weighted mean of all 

STIs, and we used the difference in CTI from one year to the next as our metric of CTI change. 

We also quantified the thermal bias of each species relative to the community (STI - CTI)70.  

Community beta-diversity metrics. Only observations identified at the species level 

were included in species composition change (beta diversity) analyses. To assess the impact of 

MHWs on community structure, we compared Bray-Curtis dissimilarity between surveys 

spanning a MHW to those between years that did not span a MHW. We partitioned Bray-Curtis 

dissimilarity into two components (biomass gradient and balanced variation) using the betapart 

package in R30,71. The biomass gradient component focuses on changes in biomass of species 

between years within the survey region, while the balanced variation component focuses on the 

substitution of the biomass of one species by the biomass of another species. For comparison, we

also calculated occurrence-based dissimilarity metrics (i.e. species presence-absence data) using 

Jaccard dissimilarity partitioned into nestedness and turnover components. Balanced variation 

and turnover both measure substitution of species between communities while biomass gradient 

and nestedness both measure how species are subsetted between communities. 

Additional predictors. We conducted supplementary analyses to explore the role of a 

number of additional predictors of fish biomass change. In addition to the geographical shifts that
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may lead to changes in biomass and community composition in a fixed area, marine fishes may 

shift deeper in response to warming72,73. We tested for this effect by calculating depth log ratios 

that described whether assemblages had shifted deeper or shallower from one survey to the next. 

Depth log ratio was quantified by: 1. Taking an average of depths at which a species was found 

in each survey and year, using the depth observations for each haul, and weighted by biomass in 

the haul; 2. Taking a biomass-weighted mean of all species-level depth values for the entire 

survey; 3. Calculating the log ratio of the survey-level, biomass-weighted depth values from one 

year to the next. We found no relationship between MHW cumulative intensity and depth log 

ratio and no difference between depth changes that did and did not follow a MHW (Extended 

Data Fig. 6, Supp. Tab. 9). 

Marine communities across latitudes have responded differently to climate change, with 

some declines in species richness recorded in the tropics and at equatorward range edges24,74 and 

some increases in species richness recorded in colder oceans and at poleward range edges74,75. 

We tested for latitudinal trends in biomass log ratios and found that the direction or magnitude of

biomass change was not related to the median latitude of the region (Supp. Tab. 8). 

We explored whether species traits helped to predict species-level biomass change in 

general, and specifically in the context of MHWs. All fish species traits were obtained from the 

database in Beukhof et al.51. Of the 1772 taxa used in the main analysis, 1620 had trophic level 

data, 1591 had feeding mode data, and 1612 had habitat data. The pattern of no relationship 

between MHW cumulative intensity and biomass log ratio persisted when data were grouped by 

trophic level, feeding mode, or habitat (Extended Data Fig. 7). 

Some studies find that marine communities respond rapidly to environmental change76. 

Others suggest that ecological responses may lag disturbances by years77. We explored whether 
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MHW data from further into the past—up to five years before each trawl survey—predicted 

biomass responses. Analogous to our findings for MHWs that occur up to 12 months before each

survey reported in the main text, we found no evidence that biomass change is associated 

generally with MHW cumulative intensity from prior years (Supp. Tab. 6). 

Because fishing, through increased mortality, can influence temporal biomass change, we 

also analyzed the effects of catch on biomass change. We extracted a historical time-series of 

reconstructed catch values from the Sea Around Us database78 by Marine Ecoregions (MEs).79 

The Sea Around Us reconstructed catches are spatially allocated to half degree ocean cells,80 

which permits catch data to be assigned to spatial entities such as the 232 MEs identified by 

Spalding et al.79 We then paired our survey footprints with the most-overlapping ME. In most 

cases, the MEs and survey footprints were similar. For two large surveys (the West Coast and the

Northeast US) we summed catch data across two adjacent MEs. Two small surveys (France and 

the English Channel) did not correspond well to the MEs and were omitted from the fishing 

analysis. Because catch data are recorded by calendar year, and the surveys often occur midyear, 

we fitted models comparing biomass change in a given year to the mean catch level in the past 

three calendar years (Supp. Tab. 10). 

Statistical methods. We tested for the effects of MHWs using linear models, generalized

linear models, or generalized additive models for continuous variables. Models and 

transformation of variables are described in Supp. Tab. 2-11. Generalized linear models were 

fitted with the R package “glmmTMB”81 and generalized additive models with the R package 

“mgcv”82. When comparing MHW versus non-MHW effects we used two-sided t-tests. While 

not all of the datasets were normally distributed, the t-test is insensitive to skewness for large 
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sample sizes such as ours, whereas non-parametric alternatives are better suited to smaller 

sample sizes83.   

Power analysis. We simulated data to assess whether our study had sufficient power to 

detect MHW-driven biomass changes. We fitted an autoregressive linear model of log biomass 

over time (Gompertz model) to each region's biomass data, including MHW presence/absence as 

a predictor. We extracted the coefficient , intercept , and conditional standard deviation  of 

this model, and used them to simulate data from the same Gompertz model

ln ( Bt )=α+ρ ×ln ( Bt−1 )+γ × MH W t+σ '

where B represents biomass in year t, MHW is a binary variable for MHW presence/absence, and

 represents the "true" MHW effect that we varied to explore power. This simulation also 

included an error term  calculated as a random draw from a normal distribution with mean 0 

and standard deviation . We (1) varied the number of years the simulation was run (assuming 

that each of the 18 surveys was conducted for that number of years) from 10 to 40 in 1-year steps

and 50-200 in 10-year steps with a fixed value of  = ln(0.94), corresponding to the 6% loss of 

biomass predicted by Cheung et al.3; and (2) varied  to represent biomass losses ranging from 

1% to 30% (in 1% increments up to 10%, and then in 5% increments) given the actual number of

years of data we have (n = 369 for GLORYS and n = 441 for OISST). Note that the mean survey

duration in our analysis was 20-25 years depending on the paired temperature dataset used. For 

all these scenarios, simulations were run for each individual survey, converted into log ratio units

(as used in the main text), scaled and centered within regions, and pooled across regions. Each 

set of simulations was run 1000 times for each condition (survey and either number of years or 

).
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With these four simulated datasets—a true MHW effect on biomass of -6% and variable 

numbers of years, or a fixed number of years from the real dataset and a variable effect of MHW 

on biomass, each for OISST and GLORYS—we conducted the same statistical tests as we did in 

the main text to test for an effect. For every iteration of the simulation, we split the biomass log 

ratio data into MHW and non-MHW years and compared the two with a two-sided t-test. We 

then calculated what proportion of those tests were significant (p = 0.05). These results are 

shown in Extended Data Fig. 9. 
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Extended Data Fig. 1. Alternate version of Fig. 2 from the main text, showing results by 

region. MHWs were calculated from the detrended GLORYS sea bottom temperature data with 

a five-day minimum duration threshold for MHWs, as used in the main text. Points represent log 

ratios of mean biomass in a survey from one year to the next. The fitted lines are linear 

regressions. The shaded areas are 95% confidence intervals. Survey names and sample sizes per 

survey are listed in Supp. Tab. 1.
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Extended Data Fig. 2. Results did not change when alternative methods were used to 

quantify marine heatwaves. Results were robust to (a) removing the five-day threshold for 

MHWs, (b) using SST from OISST instead of SBT from GLORYS (detrended), (c) using non-

detrended data, (d) using a MHW metric of duration (days), (e) using a MHW metric of intensity

(°C), (f) calculating degree heating days instead of MHW anomalies, and (g) using only summer 
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MHWs (see Methods). The fitted lines are linear regressions. The shaded areas are 95% 

confidence intervals. For all panels n = 369 except in (b) n = 441. 

Extended Data Fig. 3. Marine heatwave cumulative intensity (total anomaly in °C-days) in 

each survey region with and without detrending the temperature data to remove the signal 

of secular warming. The main text results are detrended. Here, we plot MHW cumulative 

intensity based on all SBT anomalies from GLORYS, rather than applying the five-day threshold

that was used the main text, to more clearly show the differences between the two methods.
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Extended Data Fig. 4. Daily 95th percentile anomalies in the two marine heatwave data 

sources: sea surface temperature from OISST and sea bottom temperature from GLORYS 

(both detrended). To simplify comparison we plot all anomalies, not just those MHWs that 

exceeded a five-day threshold. Note that the OISST time-series began in 1982 and GLORYS 

began in 1993. Region names are listed in Supp. Tab. 1.
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Extended Data Fig. 5.  Results are consistent across different metrics of the fish community.

We calculated mean abundance (a), mean biomass (b, used in the main text), median abundance 

(c), and median biomass (d). MHWs were calculated from the detrended GLORYS sea bottom 

temperature data with a five-day minimum duration threshold for MHWs, as used in the main 

text. Points represent log ratios of each metric in a survey from one year to the next (n = 343). 

The fitted lines are linear regressions. The shaded areas are 95% confidence intervals. The 

Northeast US survey was omitted because it did not have abundance data recorded.

Extended Data Fig. 6. Depth changes in the fish assemblage in response to marine 

heatwaves. Fish assemblage depth change (log ratio) was not predicted by (a) the presence or 

absence of a MHW or (b) MHW cumulative intensity (total anomaly in °C-days; n = 369). 

MHWs were calculated from the detrended GLORYS sea bottom temperature data with a five-

day minimum duration threshold for MHWs, as used in the main text. The fitted line in (b) is a 

linear regression and the shaded area is its 95% confidence interval.
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Extended Data Fig. 7. Marine heatwave effect on taxon-specific biomass log ratios grouped 

by traits. Biomass log ratio and MHW cumulative intensity (total anomaly in °C-days) grouped 

by (a) feeding mode (n = 29,628), (b) trophic level (n = 29,909), and (c) habitat preference (n = 

29,681) of each taxon. Trait data were extracted from Beukhof et al.51 (see Methods). MHWs 

were calculated from the detrended GLORYS sea bottom temperature data with a five-day 

minimum duration threshold for MHWs, as used in the main text. Fitted lines are linear 

regressions. Shaded areas are 95% confidence intervals.
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Extended Data Fig. 8. The presence or absence of a MHW did not affect temporal 

community dissimilarity. We measured community dissimilarity as partitioned occurrence-

based beta diversity metrics of substitution and subset (Jaccard turnover (a) and nestedness (b)) 
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and partitioned biomass-based beta diversity metrics of substitution and subset (Bray-Curtis 

balanced variation (c) and biomass gradient (d)). Community dissimilarity metrics were 

calculated within each region from one year to the next (n = 369). MHWs were calculated from 

the detrended GLORYS sea bottom temperature data with a five-day minimum duration 

threshold for MHWs, as used in the main text.

Extended Data Fig. 9. Results from a power analysis simulating how much data would be 

required to detect a range of MHW-induced biomass losses. Approximately 600 survey-years

in total (summed across all regions) would be required to find a significant effect if MHWs 
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reduced biomass by 6% using either the GLORYS (a) or OISST (b) datasets; the dashed vertical 

line shows the sample size of our actual datasets. Given the true size of our datasets (n = 369 

survey-years for GLORYS and 441 for OISST), our analysis had the power to detect a MHW-

induced biomass decline of ~9% with GLORYS (c) and ~8% with OISST (d). The dashed 

horizontal line denotes one conventionally accepted threshold for power (0.8).
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Extended Data Fig. 10. Biomass trends over time in each survey. The top five taxa by 

biomass are highlighted. Shaded grey rectangles denote when any MHWs occurred in the 

preceding survey-year. MHWs were calculated from the detrended GLORYS sea bottom 

temperature data with a five-day minimum duration threshold for MHWs, as used in the main 

text. Note that x- and y-axes vary depending on time-series length and overall survey catch. 
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