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ABSTRACT OF THE DISSERTATION

Fault Tolerant and Energy Efficient One-Sided Matrix Decompositions on
Heterogeneous Systems with GPUs

by

Jieyang Chen

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, March 2019

Dr. Zizhong Chen, Chairperson

Heterogeneous computing system with both CPUs and GPUs has become a class of widely

used hardware architecture in supercomputers. As heterogeneous systems delivering higher

computational performance, they are being built with an increasing number of complex

components. This is anticipated that these systems will be more susceptible to hardware

faults with higher power consumption. Numerical linear algebra libraries are used in a

wide spectrum of high-performance scientific applications. Among numerical linear algebra

operations, one-sided matrix decompositions can sometimes take a large portion of execution

time or even dominate the whole scientific application execution. Due to the computational

characteristic of one-sided matrix decompositions, they are very suitable for computation

platforms such as heterogeneous systems with CPUs and GPUs. Many works have been

done to implement and optimize one-sided matrix decompositions on heterogeneous systems

with CPUs and GPUs. However, it is challenging to enable stable and high performance one-

sided matrix decompositions running on computing platforms that are unreliable and high

energy consumption. So, in this thesis, we aim to develop novel fault tolerance and energy
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efficiency optimizations for one-sided matrix decompositions on heterogeneous systems with

CPUs and GPUs.

To improve reliability and energy efficiency, extensive researches have been done

on developing and optimizing fault tolerance methods and energy-saving strategies for one-

sided matrix decompositions. However, current designs still have several limitations: (1)

Little has been done on developing and optimizing fault tolerance method for one-sided

matrix decompositions on heterogeneous systems with GPUs; (2) Limited by the protection

coverage and strength, existing fault tolerance works provide insufficient protection when

applied to one-sided matrix decompositions on heterogeneous systems with GPUs; (3) Lack

the knowledge of algorithms, existing system level energy saving solutions cannot achieve

the optimal energy savings due to potentially inaccurate and high-cost workload prediction

they rely on when they are used in one-sided matrix decompositions; (4) It is challenging

to apply both fault tolerance techniques and energy saving strategies to one-side matrix de-

compositions at the same time given that their current designs are not naturally compatible

with each other.

To address the first problem, based on the original (Algorithm Based Fault Tol-

erance) ABFT, we develop the first ABFT for matrix decomposition on heterogeneous sys-

tems with GPUs together with the novel storage errors protection and several optimization

techniques specifically for GPUs. As for the second problem, we design a novel checksum

scheme for ABFT that allows data stored in matrices to be encoded in two dimensions.

This stronger checksum encoding mechanism enables much stronger protection including

enhanced error propagation protection. In addition, we introduce a more efficient checking

ix



scheme. By prioritizing the checksum verification according to the sensitivity of matrix

operations to soft errors with optimized checksum verification kernel for GPUs, we can

achieve strong protect to matrix decompositions with comparable overhead. For the third

problem, to improve energy efficiency for one-sided matrix decompositions, we introduce an

algorithm-based energy-saving approach designed to maximize energy savings by utilizing

algorithmic characteristics. Our approach can predict program execution behavior much

more accurately, which is difficult for system level solutions for applications with variable

execution characteristics. Experiments show that our approach can lead to much higher

energy saving than existing works. Finally, for the fourth problem, we propose a novel en-

ergy saving approach for one-sided matrix decompositions on heterogeneous systems with

GPUs. It allows energy saving strategies and fault tolerance techniques to be enabled at

the same time without brings performance impact or extra energy cost.
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Chapter 1

Introduction

The heterogeneous system with CPUs and GPUs has become one of the most im-

portant system architectures in modern High Performance Computing (HPC) systems. To-

day, 5 of the top 10 supercomputers [30] are using heterogeneous system architecture. Since

the heterogeneity enables it to efficiently handle a wide spectrum of workload types, many

scientific applications and libraries [17, 9] have their release versions that are implemented

and optimized for this architecture. Numerical linear algebra libraries are commonly used in

many high performance scientific applications. These libraries solve systems of linear equa-

tions, linear least square problems, and eigenvalue/eigenvector problems. Among numerical

linear algebra operations, one-sided matrix decomposition methods like LU, Cholesky, and

QR play a pivotal role in many scientific applications. Due to their computational char-

acteristic, their workloads are very suitable for computing systems such as heterogeneous

systems with GPUs. So, much work has been done to develop highly optimized one-sided
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matrix decompositions on heterogeneous systems with GPUs [9, 17] and these libraries have

been widely used by many scientific applications.

Driven by the ever-increasing demand of computation power, more and more pow-

erful supercomputers have been built, which comprise an increasing number of complex

components with shrinking feature size [152]. This is anticipated to result in these systems

being increasingly susceptible to hardware faults in many components in HPC systems.

Among those, soft errors, also known as silent data corruption (SDC), caused by hardware

transient faults are especially hard to tolerate given that they usually only cause incorrect

computation results without interrupting computation processes and they also have a much

higher error rate compared with other types of error [150] given the same hardware condi-

tion. Heterogeneous systems with both CPUs and GPUs are no exception. Recent research

has shown that GPUs are also very susceptible to soft errors [94, 170, 77, 90, 79, 80, 78]

and soft error rate increases significantly as the GPU workload increases [155]. Also, energy

saving approaches for GPUs based on undervolting and overclocking greatly disrupt GPU’s

stability and thus incur frequent soft errors [113, 156, 47]. Due to the computation pattern in

one-sided matrix decompositions, the majority of matrix elements are repeatedly referenced

during the decomposition process. So, soft errors can not only impact individual matrix

elements but also lead to serious error propagations, which can invalidate the whole decom-

positions results [185, 184, 180, 65] and significantly weakens the reliability of scientific appli-

cations that heavily depend on matrix decompositions. It is very well known that, for matrix

operations, the algorithm-based fault tolerance (ABFT) technique developed by Huang and

Abraham in [102] introduces much lower fault tolerance overhead than more general fault
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tolerance approaches such as (Triple Modular Redundancy) TMR. While many works have

been proposed to apply ABFT on CPUs [39, 58, 148, 151, 146, 57, 75, 123, 180, 183, 65],

not much work has been proposed to optimize ABFT on one-sided matrix decompositions

on heterogeneous systems with GPUs. To this end, in this thesis, we design the first ABFT

for one-sided matrix decompositions on heterogeneous systems with GPUs – Enhanced On-

line ABFT. By designing a novel ABFT checksum maintaining algorithm for GPUs, our

Enhanced On-line ABFT effectively tolerates errors during matrix decompositions. Also, in

additional to tolerating to soft errors that occur in logic circuits (e.g., computation error)

as found in many previous ABFT works, our Enhanced Online ABFT can also tolerate a

considerable amount of soft errors in GPU off-chip memory. Finally, the optimizations are

carefully designed to reduce fault tolerance overhead on multiple generations of modern

GPUs. To further improve the fault tolerance capability of handling error propagations, we

present Full checksum ABFT. Full checksum ABFT is designed based on Enhanced On-line

ABFT. Besides all the fault tolerance capabilities provided in Enhanced On-line ABFT,

Full checksum ABFT enables also much wider and stronger error protection for matrix de-

compositions benefited from our novel full checksum scheme specially designed for one-side

matrix decompositions. This stronger error protection can effectively reduce and tolerate

error propagations during matrix decompositions.

Another thing we notice is that demanding requirements of energy efficiency in

HPC nowadays are becoming prevalent and challenging due to growing power costs. Al-

though GPUs are proven to be more energy efficient compared with CPUs, they still con-

sume a considerable amount of power in modern computing systems. For example, typical
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GPUs have peak power consumption ranges from 100 to 300 W. Modern HPC systems usu-

ally have 4 to 8 GPUs per computing node, which makes the total power consumption of

heterogeneous computing nodes far higher than computing nodes with only CPUs. However,

high system power consumption can usually lead to high heat dissipation, which imposes

high pressure on the cooling systems. Without proper cooling at all times, systems may

suffer performance degradation or hardware instability, which may impact the usability of

scientific applications running on them. So, it is essential that we design systems or applica-

tions in an energy efficient way. Since many scientific applications heavily rely on numerical

linear algebra libraries, their energy efficiency can greatly impact or even dominate the

whole applications. Improving the energy efficiency of commonly used libraries is an effec-

tive approach to energy efficient scientific computing. Unfortunately, existing libraries are

focused on performance, inconsiderate of energy savings opportunities that do not adversely

impact performance. For example, MAGMA decomposes a program to tasks and schedules

sequential and less parallelizable tasks on CPU and larger more parallelizable ones on GPU.

Consequently, MAGMA achieves better performance than its counterpart libraries for ho-

mogeneous CPU computing. Yet, inherent in the DAG-based task scheduling in MAGMA,

processing units scheduled with tasks on non-critical paths unavoidably experience idle

time, i.e., slack. The slack can be further exploited for energy savings by leveraging hard-

ware power-aware techniques including Dynamic Voltage and Frequency Scaling (DVFS).

DVFS has been used to save energy on CPU by scaling down CPU speed during underused

execution phases [84] [145] [144] [158], and now is also available on memory [63] [66] and

GPU cards [129] [24]. Such advanced energy-saving software-based hardware techniques can
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further significantly boost the energy efficiency of scientific applications on heterogeneous

systems. Maximizing energy saving requires accurate slack prediction, which is challeng-

ing for exiting system-level approaches. To this end, we propose a novel algorithmic slack

reclamation energy-saving approach for one-sided matrix decompositions on GPUs. Our

work exploits algorithmic knowledge of linear algebra operations to predict slack on CPU

and GPU and use application-level DVFS strategies to reclaim the slack for energy savings.

Compared to system-level solutions that rely on online learning and prediction for DVFS

scheduling decisions, our work accurately pinpoints and fully reclaims the slack, achieving

more energy savings with less overhead.

Finally, we notice that despite optimizations have been proposed for one-sided

matrix decomposition in terms of energy efficiency and fault tolerance, none of the previous

work is able to optimize both at the same time. One major challenge is that many energy

efficiencies and fault tolerance approaches are not compatible with each other. For exam-

ple, fault tolerance approach such as ABFT brings performance overhead, which in turns

decrease energy efficiency. Energy saving approach as such overclocking or undervolting

can decrease system reliability and can cause serious error propagation in matrix decom-

positions, which is beyond tolerable for ABFT. To this end, we propose bi-directional slack

reclamation, an enhanced energy saving approach that can be applied with fault tolerance

at the same time.
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1.1 Problem Statement

The main problem in this thesis is to design fault tolerant and energy efficient

techniques for one-sided matrix decompositions on heterogeneous systems with GPUs. The

algorithms and implementations are for large-scale HPC applications on high-performance

computing facilities. One-side matrix decompositions including Cholesky, LU, and QR de-

compositions are used as core computation components for many high performance scientific

applications. They are implemented in many state-of-the-art numerical libraries, such as

MAGMA [17] and CULA [9]. Soft errors include single and multiple bit-flips in on-chip and

off-chip memory systems, computation error in logic circuits, and communication error in

PCIe.

1.2 Thesis Statement

Specially designed ABFT schemes can enable efficient fault tolerance in one-sided

matrix decompositions on heterogeneous systems with GPU. Algorithmic slack reclamation

energy-saving approach for one-sided matrix decompositions on GPUs can achieve more

energy savings with less overhead. Bi-directional slack reclamation enables fault tolerance

and energy saving optimizations to be applied to one-sided matrix decompositions at the

same time.
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1.3 Contributions

1.3.1 Fault Tolerant One-sided Matrix Decompositions with Enhanced

Online ABFT

To enabled fault tolerance for one-sides matrix decomposition on heterogeneous

systems with GPUs, we design the first ABFT for one-sided matrix decompositions on het-

erogeneous systems with GPUs – Enhanced Online ABFT. By designing a novel ABFT

checksum maintaining algorithm for GPUs, our Enhanced On-line ABFT effectively toler-

ates errors during matrix decompositions. More specifically, the contributions of this work

include:

• The first ABFT for one-sided matrix decompositions on heterogeneous systems with

GPUs.

• First Online-ABFT scheme to correct both computing and storage errors. Our new

online ABFT scheme that verifies the correctness of the matrix elements immediately

before the data are accessed. Therefore, both computing errors and storage errors can

all be detected and corrected before the using the matrix elements for the next stage

of the computation.

• We develop three novel optimization techniques to optimize ABFT overhead on het-

erogeneous systems with GPU accelerators. Experimental results show that our ABFT

only brings less than 10% performance overhead.
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1.3.2 Fault Tolerant One-sided Matrix Decompositions with Full Check-

sum ABFT

To further enable stronger error propagation protection, we propose Full checksum

ABFT. Full checksum ABFT enables also much wider and stronger error protection for ma-

trix decompositions benefited from our novel full checksum scheme specially designed for

one-side matrix decompositions. This stronger error protection can efficiently reduce and

tolerate error propagations during matrix decomposistions. More specifically, the contribu-

tions of this work include:

• We prove that full checksum protection is applicable for all three one-side matrix

decompositions. Based on full checksum protection, we are able to provide full matrix

protection for all three core one-sided matrix decomposition methods except for a

trivial step of QR that computes triangular factor. Since the full checksum encodes

the matrix in two dimensions, the protection comes along with the benefit strong error

propagation protection.

• We give the first systematic study of error propagation pattern caused by computation,

memory system, and communication error that occurs in all major operations of

matrix decompositions. Based on the study results, we provide an efficient ABFT

checking scheme by prioritizing the checksum verification according to the sensitivity

of matrix operations, which leads to strong error protection with low fault tolerance

overhead.
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• By carefully reordering checksum verification, communication, and computation, our

new ABFT checking scheme can also protect soft errors that occur in communications

over PCIe with negligible overhead.

• Based on the characteristics of its calculation and GPU architecture, we design an

innovative highly optimized checksum encoding kernel on GPUs. Experiments show

that our optimized kernel improves performance of checksum calculation by 1.7x on

average and up to 1.9x compared with the existing best work.

1.3.3 Energy Efficient One-sided Matrix Decompositions with Algorith-

mic Slack Reclamation

To accurately predict the slacks in one-sided matrix decompositions and maximize

energy saving, we propose a novel algorithmic slack reclamation energy saving approach

for one-sided matrix decompositions on GPUs. Our work exploit algorithmic knowledge

of linear algebra operations to predict slack on CPU and GPU, and use application-level

DVFS strategies to reclaim the slack for energy savings. More specifically, the contributions

of this work include:

• Novel algorithmic slack prediction model for one-sided matrix decompositions on het-

erogeneous systems with GPUs.

• An energy efficient one-sided matrix decompositions on heterogeneous systems with

GPUs that effectively leverages the algorithmic characteristics of the linear algebra

operations to maximize energy savings.
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• Detailed theoretical and empirical comparison between the proposed designs and state-

of-the-art work show that our algorithmic energy saving approaches can save upto 3x

more energy than existing works.

• Our design is transparent to applications. With the same programming interface as

the existing library MAGMA, existing MAGMA users do not need to modify their

source codes to energy saving benefits.

1.3.4 Energy Efficient and Fault Tolerant One-sided Matrix Decomposi-

tions with Bi-directional Algorithmic Slack Reclamation and ABFT

We propose PowerLA, enhanced one-sided matrix decompositions that are both

energy efficient and fault tolerance. Specifically, our contributions are listed as follows:

• We extend clock frequency range used in DVFS based slack reclamation energy saving

approach to further include overclocking frequencies. This enables us to obtain more

energy saving.

• We carefully design optimizations to incorporate overclocking and ABFT to ensure

execution correctness.

• We propose a novel bi-directional slack reclamation, which allows slacks to be re-

claimed by both processors at the same time. This greatly improves flexibility when

reclaiming slacks.

• We implement our optimization on three core one-sided matrix decompositions and

evaluate our implementation on our energy aware heterogeneous computing systems
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with GPUs. Results show that our proposed work can obtain more energy saving with

fault tolerance capability at the same time.
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Chapter 2

Fault Tolerant One-sided Matrix

Decompositions with Enhanced

Online ABFT

2.1 Introduction

Heterogeneous systems with both CPUs and GPUs have been proven to be efficient

to accelerate a variety of HPC applications. However, like the traditional computing systems

with only CPUs, soft errors also occur frequently in heterogeneous systems [94, 155]. A

widely used efficient fault tolerance approach for matrix operations is algorithm-based fault

tolerance (ABFT) technique, which was developed by Huang and Abraham in [102] since it

introduces much lower fault tolerance overhead than the general techniques DMR and TMR.
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Following their work, many researchers have extended ABFT to support more algorithms

on different hardware platforms [65, 180, 123, 183, 57, 146, 151].

2.1.1 Limitations of Existing ABFTs

Despite that tremendous progresses have been made in the field of algorithm-based

fault tolerance for matrix operations, existing ABFT schemes for matrix decomposition have

the following limitations:

1. Few schemes are developed and optimized for heterogeneous systems with

GPU accelerators: Classical ABFT schemes [102] are originally developed for sys-

tolic arrays. Because of their low overhead to detect errors, they have been extended

by many researchers to detect and correct errors on modern general purpose micropro-

cessors. However, little has been done on developing and optimizing ABFT schemes

for heterogeneous systems with both CPUs and GPUs.

2. Capability to correct storage errors is limited: Traditional ABFT schemes [102]

correct errors offline at the end of the computation. They do not distinguish between

computing errors (i.e., 1+1=3) and storage errors (i.e., 0 becomes 1). Because of

the propagation of the error, one error in one element often causes numerous errors

in the computation results. Furthermore multiple errors will accumulate. Therefore,

it is either impossible or very expensive to correct storage errors at the end of the

computation. While most recent Online ABFT scheme [182, 180, 65] can correct

computing errors online in the middle of the computation, storage errors occurred

between checksums verification and the next data access can not be corrected.
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2.1.2 Our Contributions

This paper develops a new heterogeneous-system based ABFT scheme for Cholesky

decomposition to correct both computing errors and storage errors at the same time. Several

optimization techniques are developed to reduce the fault tolerance overhead for heteroge-

neous computing systems with both CPUs and GPUs. Experimental results demonstrate

that our fault tolerant Cholesky decomposition is able to correct both computing errors and

storage errors in the middle of the computation and achieve better performance than the

state-of-the-art vendor provided version Cholesky decomposition library routine in CULA

R18 [9]. Cholesky decomposition has been widely used to solve linear equations arising from

linear least squares problems, non-linear optimization problems, Monte Carlo simulations,

and Kalman filters. An efficient and fault tolerant implementation of Cholesky decomposi-

tion can therefore benefit a large number of users and a wide range of scientific fields. More

specifically, the contributions of this paper include:

1. First Online-ABFT scheme to correct both computing and storage errors:

Current state-of-the-art online-ABFT [65, 180, 182, 67, 71, 106, 147, 185] is based on

post-updating-verification scheme, which verifies the data correctness immediately af-

ter updating the matrix. However, the correctness of the data between one verification

and its immediate next reading is not protected. Therefore, errors occurred during

this period will be propagated to pollute too many elements to correct. We designed

a new online ABFT scheme that verifies the correctness of the matrix elements imme-

diately before the data are accessed. Therefore, both computing errors and storage

errors can all be detected and corrected before the using the matrix elements for the
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next stage of the computation. To the best of our knowledge, our ABFT scheme is the

first online ABFT scheme that is able to correct both computing and storage errors

at the same time.

2. First Online-ABFT scheme for Cholesky decomposition on heterogeneous

systems with GPU accelerators: Existing ABFT schemes for Cholesky factor-

ization are designed/optimized either for systolic arrays [102] or for general purpose

microprocessors [180]. To the best of our knowledge, our ABFT scheme is the first

ABFT scheme for Cholesky decomposition on heterogeneous systems with GPU ac-

celerators.

3. Innovative overhead reduction techniques for ABFT: This paper developed

three novel optimization techniques to optimize ABFT overhead on heterogeneous

systems with GPU accelerators. Checksums recalculation is the key operation for

data correctness verification in ABFT. It is an relatively expensive (i.e., O(n)) opera-

tion on the critical path. Because it consists of several BLAS Level-2 operations, the

efficiency of executing checksums recalculation on GPU is low. This paper designed

an optimization approach that allows several BLAS Level-2 checksums recalculation

operations being executed on the GPU concurrently using CUDA concurrent kernel

execution feature. Checksums updating is another relatively expensive (i.e., O(n))

operation in ABFT. It is non-trivial to decide whether the checksums updating oper-

ation should be executed on CPU or GPU. This paper designed a model to help to

make this decision based on the relative speed of the involved CPU and GPU. Existing

online ABFT schemes introduce considerable overhead because it verifies checksums
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at the end of every outer iteration. This paper significantly reduces the overhead

for checksums verification by verifying checksums every K iterations, where K is a

parameter related to the failure rate of the system.

2.2 Background

In the section, we provide several backgrounds that are necessary to understand

the key ideas of this work.

2.2.1 Cholesky Decomposition in MAGMA

Algorithm 1 MAGMA’s Cholesky Decomposition

Require: Positive-definite n× n matrix A

1: for j = 1 to N do

2: [GPU] Symmetric rank-k updating (SYRK):

A[j, j]− = A[j, 0 : j − 1]×A[j, 0 : j − 1]T

3: Transfer A[j, j] to CPU main memory ACPU [j, j]

4: [GPU] Matrix-matrix multiplication (GEMM): A[j + 1 : N, j]− = A[j + 1 : N, 0 :

j − 1]×A[j, 0 : j − 1]T

5: [CPU] Single block Cholesky decomposition (POTF2): ACPU [j, j]→ LCPU [j, j]

6: Transfer LCPU [j, j] to GPU main memory L[j, j]

7: [GPU] Linear systems solving (TRSM):

A[j + 1 : N, j] = A[j + 1 : N, j]× L[j, j]T

8: end for
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Figure 2.1: MAGMA’s Cholesky decomposition

MAGMA [17] is a linear algebra library that utilizes the heterogeneous systems

with GPUs. CPU and GPU have different specialty in handling computation tasks: CPU

is more efficient at doing less parallelized irregular patterned calculations; GPU, on the

other hand, is better at handling highly parallelized calculations. So, to better utilize

this characteristic of the heterogeneous systems, MAGMA assigns different operations to

different computation units based on the degree of their parallelization. For Cholesky

decomposition, MAGMA chose the inner product version because it has more BLAS Level-

3 operations, hence, can utilize the heterogeneous system more efficiently. As shown in

Figure 2.1 and Algorithm 1, less parallelized single block Cholesky decomposition (POTF2)

in line 5 is assigned to CPU and highly-parallelized symmetric rank-k updating (SYRK) in

line 2, matrix-matrix multiplication (GEMM) in line 4 and linear systems solving (TRSM)

in line 7 are assigned to GPU. Moreover, most data transfer (line 3 and 6) and POTF2 (line

5) on CPU are hidden by the most time-consuming GEMM (line 4) operation on GPU. So,

the Cholesky decomposition in MAGMA is very efficient on heterogeneous systems.
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2.2.2 Offline-ABFT and Online-ABFT

Offline-ABFT was first introduced by Abraham and Huang [102] to handle comput-

ing errors. The main idea is that, for a matrix operation P (A1, A2, ..., An) = (X1, X2, ..., Xm),

if we encode the input matrices into their checksum form, then apply the operation on the

encoded matrices, the results are still encoded with checksums, which can be used to detect

and correct errors in results.

P (A1
enc, A2

enc, ..., An
enc) = (X1

enc, X2
enc, ..., Xm

enc).

The detection and correction is done after the whole computation is complete. It can handle

non-propagating soft errors, but unable to handle errors that propagate.

Online-ABFT was first introduced by Davies and Chen [57] to correct errors before

they propagate. The key idea is that checksums are not only ensured to be consistent by the

end of computation, they are also maintained during computation. So they can be used to

detect and correct errors in the middle of computation. Thus, any error could be corrected

in a timely manner to avoid error propagation.

2.3 Fault Model

In this work, we focus on tolerating two types of soft errors caused by faults in

three important hardware components in heterogeneous systems with GPUs: CPU/GPU

logic parts and CPU/GPU memory system.

1. Computation error occurs during update operations. It is caused by fault in the

logic part of CPUs/GPUs, and results in calculation error (e.g., 1 + 1 = 3). It can
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Figure 2.2: Enhanced Online-ABFT
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be observed as a standalone wrongly computed matrix element in the result. When a

wrongly computed result is used to update other matrix elements, it can cause more

errors.

2. Memory system error occurs anytime when the matrix is stored in the CPU/GPU

memory system. It can occur in both off-chip memory (DRAM) or on-chip memory

(cache, registers, or shared memory). It is caused by faults in memory system, and

results in a error in the storage cell of memory. In this work, we only consider errors

with multiple bit-flips in a word as many memory systems are equipped with ECC

that cannot tolerate that kind of error. Error propagation can occur when a corrupted

element is used to update other matrix elements. In this part of the work, we only aim

to tolerate memory error that occurs to off-chip memory and leave on-chip memory

error to the next part of this thesis.

We assume that no more than one fault strikes the same matrix block between two

neighbor checksum verifications. This is a relative rare case and can be hard to tolerate.

2.4 Design of Enhanced Online ABFT

In the current state-of-the-art Online-ABFT, checksums are maintained in the

middle of computation. After each operation completes, those checksums are used to detect
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and correct any error in the result. Basically, for each operation, Online-ABFT consists 4

steps ordered as follows:

1. Original updating operation;

2. Corresponding checksums updating operation;

3. Checksums recalculation for result data;

4. Result error detection and correction.

However, the limitation of current Online-ABFT is that the data stored in memory

is not protected from memory storage error, which could corrupt the result or even leads to

fail-stop failure. To illustrate this problem, we show a general updating process, which is the

kind of operation that takes up the majority computation of almost any matrix operation.

For example, a data block A has just been updated and will be used to update a data block

B in a moment. The details in this process is shown as follow:

1. Data block A has just been completely updated;

2. As the result of updating, any error in A is detected and corrected by Online-ABFT

immediately;

3. Data block A has to wait in the memory for some other related tasks to complete

before it can be referenced for updating data block B;

4. Updating data block B using data block A;

5. Again, as the result of the updating, any error in B is detected and corrected by

Online-ABFT immediately.
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First, we can ensure the correctness of data block A after Step 2. However, since

it has been stored in the memory for a while in Step 3, some memory storage errors could

appear in it. Also, data block B is stored in memory and may has not been verified re-

cently. So, potentially both data block A and B could have memory storage errors before

the updating in Step 4. Moreover, the updating in Step 4 potentially could generate com-

putation errors in B. All these errors could persist and eventually affect the correctness of

data block A and B in Step 4. Fortunately, Online-ABFT can handle the errors in B in

Step 5. However, no one can guarantee the correctness of data block A now. Because A

has already been updated, and it will not be updated or verified anymore in the future, so

incorrect data will persist. Even worse, if data block A will be used to update other parts

of the matrix, errors in A will propagate and in some cases they would cause unrecoverable

or even fail-stop error. For example, a single memory error in a matrix block could break

the positive-definite property of that block before the single block decomposition (POTF2)

in Cholesky decomposition, which leads to termination of the whole process.

Even thought, the time interval between a data block is verified and referenced

could be vary short and memory storage error doesn’t occur often, however, as the problem

size increases with the memory space growth in current HPC systems, this kind of time

interval will be longer and the probability of memory storage error will be higher. Although

some memory storage errors can be fixed by the ECC feature in memory, the most commonly

used ECC scheme can only fix a single bit error per word. If there are more than one bit

flipped, ECC cannot correct them, so the result is still incorrect.
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To overcome this limitation in current Online-ABFT, we designed an innovative

Enhanced Online-ABFT, in which both computation and memory storage error can be

detected and corrected. The main idea is that data blocks are no longer verified after they

are updated, instead, data blocks are verified before each time they are referenced. So,

any error including calculation error from last operation or memory bit-flips error occurred

during storage can be corrected before use. Moreover, since we use checksums to correct

errors, multiple consecutive bits errors can also be corrected as long as they only corrupted

one element, which is stronger than ECC. For specific, each operation in our Enhanced

Online-ABFT consists 4 steps and ordered as follow:

1. Checksums recalculation for input data;

2. Input error detection and correction;

3. Original updating operation;

4. Corresponding checksums updating.

2.5 Implementation

Our implementation of Enhanced Online-ABFT Cholesky decomposition is based

on the MAGMA’s Cholesky decomposition routine. We choose the version, in which the

initial matrix is stored on GPU memory. The overall design is shown in Figure 2.2. (We

use slight different assignment strategies for different systems and we will explain it in

Optimization 2 of next section) As we can see, each data input, including the data to

be updated and the data to be referenced, is verified by checksums at first to ensure its
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correctness. Then, the original updating operation is performed. Finally, corresponding

checksums are updated to prepare for future correctness verification if it is referenced. The

error correction before the updating operation ensures the correctness of the input for the

immediate next upcoming updating operation, which not only ensures the correctness of

the final result, but also prevents error propagation that may causes unrecoverable errors

or fail-stop failure. As for the implementation details, we focus on three parts:

1. Encoding input matrix with checksums before Cholesky decomposition

2. Updating checksums during the decomposition

3. Detecting and correcting errors using checksums after each operation

2.5.1 Encoding Checksums

To encode a input matrix with checksums, the matrix is multiplied by a specially

designed checksum vector to get the checksum. The resulted checksum can be row checksum,

column checksum and full checksum. In MAGMA’s blocked Cholesky decomposition, the

input matrix is divided into blocks, which each one of them is treated as an updating unit.

So, similarly we choose to encode the input matrix using the matrix block as a unit instead

of the whole matrix. Although this strategy brings slightly more memory space overhead,

it significantly strengthen the fault tolerance density.

Encoding one checksum is only good enough to verify the correctness of matrix

blocks. To locate and correct errors, a second checksum with a different weight (calculated

by a different weighted checksum vector) need to be added. As mentioned by [180], two

row checksums or two column checksums works the best for Cholesky decomposition, so
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that they can locate and correct up to one error per column or row in a matrix block.

We choose two column checksums in our Enhanced Online-ABFT Cholesky decomposition.

The process of checksums encoding with two column checksums is illustrated as follow: (It

is similar for two row checksums). First, we choose two weighted checksum vectors to be:

v1 = [1, 1, 1...1] and v2 = [1, 2, 3...B], where B is the matrix block size. The matrix block

to be encoded is A = [a1, a2, a3...aB] with ai represents the ith column of A. So, the two

column checksums can be calculated as:

chk1 = v1
TA = [r11, r12, r13...r1B]

chk2 = v2
TA = [r21, r22, r23...r2B]

For better efficiency, all checksums for an input matrix are stored together in a checksum

matrix, so they can be updated together.

2.5.2 Updating Checksums

In this section, we describe the details in updating checksums for single block

Cholesky decomposition (POTF2), linear systems solving (TRSM), symmetric rank-k up-

datring (SYRK) and matrix-matrix multiplication (GEMM). Inspired by the checksum up-

dating algorithm in outer product Cholesky decomposition [180], we conduct the checksum

updating algorithms for inner product Cholesky decomposition as follow. As an example,

we show the process of the third iteration of decomposition a 5 blocks × 5 blocks matrix

in Figure 2.3. Upper left gray areas represent decomposed slate area, which will not be
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Figure 2.4: Checksum Update in Enhanced Online-ABFT

updated or referenced in the future. In this iteration, area A(in red) and B(in blue) will be

updated to area LA(in red) and LB(in blue) using area LC(in green) and LD(in yellow).

The first step is SYRK (symmetric rank-k update) which updates the the block

on the diagonal (Area A). It can be described mathematically as:

A′ = A− LC × LCT

The checksums of A can be updated as (Figure 2.4(a)):

chk(A′) = chk(A)− chk(LC)× LCT

The next step is GEMM, which updates the panel (Area B). It can be described mathe-

matically as:

B′ = B − LD × LCT
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The checksums update algorithm of GEMM is (Figure 2.4(b)):

chk(B′) = chk(B)− chk(LD)× LCT

The third step, POTF2 operation is responsible for decomposing a single block (Area A’).

The checksums of the decomposed single block can be updated as:

Algorithm 2 checksums updating algorithm for POTF2

Require: factorized n× n lower triangular matrix LA with a column checksum chk

1: for j = 1 to N do

2: chk[j]← chk[j]/LA[j, j]

3: chk[j + 1 : n]← chk[j + 1 : n]− chk[j] · LA[j + 1 : n, j]

4: end for

As shown in Figure 2.4(c), the checksum is updated to the checksums of LA after

the execution of Algorithm 2. Then, the checksum is available to be used for detecting and

correcting errors in LA.

The final step, TRSM solves linear triangular systems. It updates the panel sub-

matrix B′ using the result LA from POTF2, which can be described as (Figure 2.4(d)):

LB = B′ × (LAT )
−1

So, similarly, the checksums of B′ are updated as (Figure 2.4(d)):

chk(LB) = chk(B′)× (LAT )
−1
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2.5.3 Error Detection and Correction

Before each updating in Cholesky decomposition, verifying and correcting input

data is necessary in our Enhanced Online-ABFT. We illustrate the process of error detecting,

locating and correcting in a matrix block as follow. First, The matrix block to be detected

is A and its corresponded two column checksums are:

chk1 = [r11, r12, r13...r1B]

chk2 = [r21, r22, r23...r2B]

Next, we recalculate the two column checksums for A:

chk′1 = v1
TA = [r′11, r

′
12, r

′
13...r

′
1B]

chk′2 = v2
TA = [r′21, r

′
22, r

′
23...r

′
2B]

Then, we compare chk1 with chk′1 to see whether they are close enough(within rounding

error) by calculate:

δ1i = r′1i − r1i

δ2i = r′2i − r2i

For instance, let’s say we have found that abs(δ1i) > e, where e is the threshold of rounding

error. So, an error is detected on the ith column in the matrix block. By dividing δ2i/δ1i = j,

we could get the row index j of the error and δ1i give us the difference between the correct

value and error value, so that we can correct it.

28



2.6 Optimizations

We designed several innovative techniques aimed to minimize the overhead in

our Enhanced Online-ABFT. Our optimization techniques mainly focused on three parts:

checksums recalculation, checksums updating and the ABFT scheme.

2.6.1 Optimization 1

In this section, we focus on minimizing the overhead brought by the checksums

recalculation. In our Enhanced Online-ABFT, checksums recalculation is the key operation

for data correctness verification. Optimizing its execution time is really important for

several reasons: (1)It is on the critical path. For specific, it must be executed before each

data correctness verification and the following original updating operation, so its execution

cannot be overlapped with any one of them; (2)It is one of the few operations that bring

majority overhead. However, the efficiency of executing checksums recalculation on GPU

is low, since it consists several BLAS Level-2 vector-matrix multiplications. Moreover, due

to the position of each block, these BLAS Level-2 operations cannot be merged into a more

efficient BLAS Level-3 operation. To overcome this limitation, we designed an optimization

technique that can significantly improve its efficiency. The key idea is that we let several

BLAS Level-2 checksums recalculation operations being executed on the GPU concurrently
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using CUDA concurrent kernel execution feature. CUDA allows each GPU executes multiple

kernel functions concurrently [29] as long as two requirements are met:

1. Each kernel function must be assigned to a separated CUDA stream, which means

each of them must not have any data dependency between each other;

2. There is enough GPU computation resources available for other kernel functions to

execute.

The recalculation of each column checksums are independent form each other, so

any number of them can be concurrently executed. For each GPU, there is a designed max

number N of concurrent kernel execution, determined by its compute capability number.

Moreover, depending on the resource usage of each kernel function and the total resources

available on GPU, the max number of concurrent kernel execution in resources perspective

could be different:

M =
total resources on GPU

Max resources usage of each kernel function

So, the actual number of concurrent checksums recalculation is:

P = min(N,M)

In practice, the cuBLAS library used in MAGMA is not open sourced, so it is

only possible to use profiling tools such as nvprof to get the resources usage, however, it’s

still hard to accurately estimate the max number of concurrent execution given resources

usage of each function. So, for simplicity, we just create N CUDA Streams to maximize

the efficiency of checksums recalculation. Since all checksums recalculation operations are

identical, we distribute them evenly among N CUDA streams.
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2.6.2 Optimization 2

To further lower the overhead of our Enhanced Online-ABFT, we turn our focus on

the checksums updating operations. Unlike checksums recalculation operations, checksums

updating operations are not on the critical path. So, once the input data are verified,

checksums updating can be executed concurrently with original updating operations and

it can be assigned to either CPU or GPU as shown in Figure 2.2. If we put it on GPU

as shown in Figure 2.2(a)(this concurrent relation is not shown), we can create a separate

stream for it and utilize CUDA concurrent kernel execution feature. So it is possible that

the execution can be partially/completely overlapped and the total overhead of it can be

reduced. On the other hand, since CPU is idle most of the time in MAGMA’s Cholesky

decomposition, it is also possible to take the advantage of this and concurrently update

checksums on CPU while GPU is performing other operations as shown in Figure 2.2(b),

so the overhead can also be reduced. However, in this case, we need to ensure that CPU

can complete its job close to the completion time of GPU. Otherwise, it may not be worth

to assign it to CPU.

To choose between CPU and GPU for checksums updating operation, we need to

determine in which way we can achieve lower overhead. We designed an estimation model

to help us make this decision. First we define:

PGPU = Peak performance of GPU(GFLOPS)

PCPU = Peak performance of CPU(GFLOPS)

R = Data transfer rate between CPU and GPU
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The number of FLOPS of the original MAGMA’s Cholesky decomposition with n×n matrix

input can be estimated as:

NCho = n3/3

For checksums updating, the number of FLOPS is:

NUpd = 2n3/(3B)

In which, B is the block size. Moreover, the number of FLOPS for checksums recalculation

is:

NRec = 2n3/(3B)

Finally, if CPU is chosen for checksums updating, the extra data transfer overhead is:

Dupd = n3/(3KB2)

In which, K is number of iterations that we preform data correction verification once. It will

be discussed in optimization 3. So, if we assign checksums updating to GPU, the estimated

execution time is:

TPick GPU =
NCho +NUpd +NRec

PGPU

If we let CPU concurrently do checksums updating, the estimated execution time is:

TPick CPU = max(
NCho +NRec

PGPU
,
NUpd

PCPU
+
Dupd

R
)

So, the decision depends on the peak performance of specific CPU and GPU and the data

transfer rate between them.
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2.6.3 Optimization 3

As our Enhanced Online-ABFT can handle more kinds of silent errors than the

Online-ABFT, it inevitably brings more overhead. Let’s look at the read/write pattern

of MAGMA’s Cholesky decomposition: Each block is updated O(1) times and read O(n)

times on average. As a result, the Online-ABFT verifies each block O(1) times on average

and our Enhanced Online-ABFT verifies each block O(n) times on average. Each block is

verified more times, so it brings more overhead. The overhead of checksums encoding and

checksums updating are still the same as in Online-ABFT. To lower the overhead in our

Enhanced Online-ABFT, we focus on data verification process, since it is the only part that

brings extra overhead. As shown in Table 2.1, due to the extra number of verification in

SYRK and GEMM, the overhead of our Enhanced Online-ABFT increases.

Table 2.1: Verification Comparison

Operation
Online-ABFT Enhanced Online-ABFT

verify # of blocks verify # of blocks

POTF2 LA O(1) A′ O(1)

TRSM LB O(n) LA,B′ O(n)

SYRK A′ O(1) A,LC O(n)

GEMM B′ O(n) B,LC,LD O(n2)

We noticed that memory errors may not occur so frequently as our verification

frequency. Verifying data correctness in every iteration may over protect the data. So,

inspired by the work [56], we designed an optimization, which allows Enhanced Online-

ABFT to adjust its protection strength. The basic idea is that instead of verifying input

data in every iteration, now we only verify it once for every K iterations. Although both

SYRK and GEMM bring more overhead, we can only apply this optimization to GEMM
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and keep SYRK as same as before, since errors in the input of SYRK can propagate and

cause unrecoverable situations or fail-stop failure if not corrected immediately. Moreover, it

is also safe to apply this optimization to TRSM. There is a trade off between the overhead

and the error correction capability. For systems with low error rate, we can increase K to

lower the overhead. On the other hand, we need to keep K low for systems with high error

rate. By properly adjusting K, we can achieve minimum overhead and still get enough fault

tolerance capability.

2.7 Overhead Analysis

In this section, we analyze the overhead of our Enhanced Online-ABFT Cholesky

decomposition and compare it with the overhead of Online-ABFT Cholesky decomposition.

We show that our relative run-time and space overhead is similar to the overhead of Online-

ABFT Cholesky decomposition. Table 5.1 defines the parameters we use. The overhead of

different steps of our fault tolerance algorithm are shown as follow:

Table 2.2: Description of each symbol

Symbol Description

n input matrix size

B matrix block size

K Verify data every K iterations

1. Overhead of checksums encoding

This step is done before the Cholesky decomposition and it is the same for both

Online-ABFT and Enhanced Online-ABFT. Each block in the input matrix is mul-

tiplied by the two checksum vectors to get the checksums. The number of floating
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point operations is: Oencode = 1/2 × 4 × B2 × (n/B)2 = 2n2. The whole Cholesky

decomposition takes n3

3 , so the relative overhead is 6
n .

2. Overhead of checksums updating

This step is done after each operation during the Cholesky decomposition, which is

also same in both ABFTs. Checksum matrix is updated as same as the input matrix.

The overhead of each operation in checksums updating is (Table 2.3):

Table 2.3: Overhead of Checksums Updating

Operation Oupdating Relative overhead

POTF2 2Bn 6B
n2

TRSM 2n2 6
n

SYRK 2n2 6
n

GEMM 2
3Bn

3 2
B

Since POTF2 brings little overhead, it is ignored here. So the total relative overhead

of checksums updating is: 12
n + 2

B .

3. Overhead of checksums recalculation

(a) Online-ABFT

This step is done after each operation in Cholesky decomposition. The checksums

are recalculated after each block is updated. The overhead of each step is shown

in Table 2.4). Both the overhead of POTF2 and SYRK is ignored here, so the

total relative recalculation overhead is: 12
n .

(b) Enhanced Online-ABFT

This step is done before each updating operation in Cholesky decomposition.
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Table 2.4: Overhead of Checksums Recalculation of Online-ABFT

Operation Orecal online Relative overhead

POTF2 4Bn 12B
n2

TRSM 2n2 6
n

SYRK 4Bn 12B
n2

GEMM 2n2 6
n

The checksums are recalculated for each block that will be read or updated. The

overhead of each step is shown in Table 2.5. After ignoring the minor overhead

brings by the POTF2, the total relative recalculation overhead is: 6K+6
nK + 2

BK

Table 2.5: Overhead of Checksums Recalculation of Enhanced Online-ABFT

Operation Orecal enhanced Relative overhead

POTF2 4Bn 12B
n2

TRSM 2n2 6
n

SYRK 2n2

K
6
nK

GEMM 2n3

3BK
2
BK

4. Overhead of checksums verification

It step is used for verify the correctness of each operation in Cholesky decomposition.

It only brings slight overhead, thus it can be ignored here.

5. Space overhead

For both ABFTs, checksums are stored in a checksums matrix, of which the size is:

2
Bn

2 and relative space overhead is: 2
B .

6. Overhead of data transfer

If we choose to update checksums on GPU, it only brings slight data transfer overhead,
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which can be ignored here. If we choose to update checksums on CPU, it involves

some data transfer overhead:

(a) Initial checksums transfer: 2n2

B ;

(b) Checksums updating related transfer: n2

2 ;

(c) Verification related transfer: n2

2B (Online-ABFT) or n3

3KB2 (Enhanced Online-

ABFT)

Table 2.6: Overall Overhead

Overall Relative overhead n→∞
Online-ABFT 30

n + 2
B

2
B

Enhanced Online-ABFT 24K+6
nK + 2K+2

BK
2K+2
BK

7. Summary

The overall relative overhead is shown in Table 2.6. Block size B is determined by

MAGMA’s implementation and it is usually fixed. So, we can see with fixed B, if the

matrix size is close to the block size, it will affect the relative overhead. In that case,

the relative overhead will decrease with the increasing of the input matrix size. When

the input matrix size is relatively large, the relative overhead of both ABFTs will con-

tinue decrease and converging to a small constant. So, The Enhanced Online-ABFT

Cholesky decomposition should behave similar to the original MAGMA Cholesky de-

composition and current state-of-the-art Online-ABFT Cholesky decomposition with

slight lower efficiency.
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2.8 Experimental Evaluations

2.8.1 Experiments Environments

Our Enhanced Online-ABFT Cholesky decomposition is built based the latest

MAGMA version 1.6.2. It is linked with the cuBLAS 7.0 [7] on GPU and ACML 5.3.0 [1]

on the CPU. We implemented the double precision version Cholesky decomposition. The

routine interface is not changed. For best performance, all checksums-related operations are

also implemented with ACML-equivalent and cuBLAS-equivalent subroutines in MAGMA.

Table 2.7: Fault Tolerance Capability Comparison on Tardis with 20480× 20480 Cholesky
decomposition

No Error Computation Error Memory Error

Enhanced Online-ABFT 10.6572s 10.6614s 10.6678s

Online-ABFT 10.5067s 10.5244s 22.625s

Offline-ABFT 10.4489s 21.3942s 21.2631s

Table 2.8: Fault Tolerance Capability Comparison on Bulldozer64 with 30720 × 30720
Cholesky decomposition

No Error Computation Error Memory Error

Enhanced Online-ABFT 8.84598s 8.9253s 8.91492s

Online-ABFT 8.64649s 8.69622s 21.4162s

Offline-ABFT 8.64265s 21.4472s 21.3511s

We evaluated our implementation on two heterogeneous systems: Tardis and Bull-

dozer64. Tardis is a cluster system with 4 GPU nodes. The GPU node is equipped with

two 16 cores 2.1GHz AMD 6272 Opteron Processors with 64GB DRAM and a NVIDIA

Tesla M2075 GPU with 6GB memory. The micro-architecture of the GPU is Fermi. Bull-

dozer64 is a heterogeneous system equipped with four 16 cores 2.1GHz AMD 6272 Opteron
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Processors with 64GB DRAM and a NVIDIA Tesla K40c GPU with 12GB memory. The

micro-architecture of the GPU is Kepler.

We tested our implementations with several different input matrix sizes from the

largest our GPU memory allows to relatively small sizes. For Tardis system, the test is

from 5120 × 5120 to 23040 × 23040. For Bulldozer64 system, the test is from 5120 × 5120

to 30720× 30720. As for the block size, MAGMA chooses different block sizes for different

GPUs. For Fermi GPU, the default block size is 256 × 256 and for Kepler GPU, it uses

larger block size 512× 512.

2.8.2 Fault Tolerance Capability Comparison

This subsection compares the fault tolerance capability of our Enhanced Online-

ABFT with Offline-ABFT and Online-ABFT by injecting different type of errors. As we

can see in Table 2.7 and 2.8, all three ABFTs have similar execution time when there is no

error. When a computating error is injected, it soon propagates to other areas and cause

unrecoverable situation for Offline-ABFT. So it needs to repeat the whole decomposition

again, which doubles its execution time. Since Online-ABFT can correct computating error

in a time manner, its execution is not affected. When we injected a storage error between

checksum verification and data access, both Offline-ABFT and Online-ABFT cannot correct

it, so they need to re-do the decomposition again, which costs twice of the time. However,

our Enhanced Online-ABFT can correct both types of errors without affecting execution

time.
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Figure 2.5: Optimization 1

2.8.3 Optimization 1

We show the result of our first optimization technique. In this optimization, we

use the CUDA concurrent kernel execution feature to let several checksums recalculations

execute concurrently on GPU. We show the relative overhead of our Enhanced Online-

ABFT before and after we apply this optimization.As we can see in Figure 2.5, blue line

and red line represents the relative overhead before and after we apply this optimization. As

we can see, optimization 1 reduces the relative overhead by about 2% on Tardis and about

10% on Bulldozer64. Note that the relative overhead is reduced a lot more on Bulldozer64.

This is because Bulldozer64 is equipped with a more powerful and advanced GPU, which

could allow more checksums recalculations to be executed together, so it has much more

efficiency.

2.8.4 Optimization 2

In this section, we show our test result on applying our second optimization tech-

nique, which aims to let CPU or a separate GPU CUDA stream concurrently do checksums
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Figure 2.6: Optimization 2

updating with original updating and checksums recalculations. Determined by our testing

system, we choose CPU to update checksums on Tardis system and choose GPU to update

checksums on Bulldozer64 system. As shown in Figure 2.6, our optimization 2 reduces

the relative overhead by about 5% on Tardis on average and about 8% on Bulldozer64 on

average.
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Figure 2.7: Optimization 3
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2.8.5 Optimization 3

In this section, we show the benefit brings by the our third optimization technique.

This optimization aims to adjust the frequency of checksums verification in our Enhanced

Online-ABFT. We only let our Enhanced Online-ABFT verify data correctness for every K

iteration. We show the overhead change as we adjust K to be 1, 3, and 5. As we can see in

Figure 2.7, the relative overhead of our Enhanced Online-ABFT has reduced significantly

as we adjusting K.
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Figure 2.8: Relative Overhead

2.8.6 Overhead Comparison

In this section, we compared the relative overhead between Offline-ABFT Cholesky

decomposition, Online-ABFT Cholesky decomposition, and our Enhanced Online-ABFT

Cholesky decomposition. As shown in Figure 2.8, the overhead of our Enhanced Online-

ABFT is close to constant when the matrix size is large. our Enhanced Online-ABFT only
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Figure 2.9: Performance on Tardis

introduced less than 6% overhead on Tardis and less than 4% overhead on Bulldozer64. It

is only slightly higher than Offline-ABFT and Online-ABFT.

2.8.7 Performance Comparison

Figure 2.9 compares the performance of the Original MAGMA’s Cholesky decom-

position, CULA’s Cholesky decomposition, Offline-ABFT Cholesky decomposition, Online-

ABFT Cholesky decomposition, and our Enhanced Online-ABFT Cholesky decomposition.

Figure 2.9 indicates that the performance of Enhanced Online-ABFT is comparable to

Offline-ABFT and Online-ABFT. Also, even with both computation error and memory

error tolerance capability, our Enhanced Online-ABFT is still faster than CULA on both

systems.

2.9 Summary

This paper presented a new ABFT scheme for Cholesky decomposition that can

correct both computing and storage errors. Several optimization techniques were also de-

veloped to reduce the fault tolerance overhead. Experimental results demonstrate that our
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fault tolerant Cholesky decomposition can achieve better performance than the state-of-

the-art Cholesky decomposition routine in CULA R18.
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Chapter 3

Fault Tolerant One-sided Matrix
Decompositions with Full
checksum ABFT

3.1 Introduction

In the last chapter, we introduced Enhanced On-line ABFT, which is the first

ABFT designed for one-sided matrix decompositions on heterogeneous systems with GPUs.

It can efficiently tolerate errors propagations in between matrix operations with computa-

tional and memory error protection, but it still has several other major limitations e.g., error

propagations can occur during a single operation. Specifically, the current state-of-the-art

ABFT designs have the following limitations:

1. Insufficient protection. Most current ABFT one-sided matrix decompositions [180,

50, 53, 65] only maintain single-side checksum protection, i.e., maintain checksum

either by row or column, and thus they only protect a part of the matrix. Though full

checksum protection based on both row and column checksums can provide better

protection, it is only applied to LU decomposition and limited to CPU [184]. The

study of full checksum protection for other matrix decomposition methods on GPU
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platform is non-existent. In addition, one single soft error in the GPU’s memory

system (DRAM and on-chip memory) caused by multiple bit-flips can propagate along

a row (column) during major computations of matrix decompositions and thus corrupt

the row (column), but it cannot be protected by either NVIDIA GPU’s default Error-

Correcting Code (ECC) [20, 21, 22, 23, 26] or current ABFT approaches.

2. Inefficient checking scheme. ABFT checking scheme determines when to perform

correctness check. It plays a pivotal role in determining the ABFT checking overhead.

Using traditional ABFT checking scheme designed for single-side checksum [65, 180,

50, 53], full checksum based ABFT incurs unnecessary protection overhead due to

redundant correctness check.

3. Lack of PCIe communication protection. PCIe is one the most important uncore

component in heterogeneous systems with GPUs. Matrix decompositions heavily rely

on it to transfer large-sized sub-matrices between CPU and GPU or inter-GPU. Soft

errors can also affect PCIe and thus disrupt communication [59, 138, 141]. However,

none of the previous ABFT approaches protect PCIe communication.

4. Inefficient checksum calculation on GPU. Checksum calculation [50, 53] requires

the multiplication of a regular-sized matrix and a tall-and-skinny matrix based on an

underlying linear algebra library [7]. However, the underlying library is very inefficient

for the above type of matrix multiplication as GPU is significantly underutilized in

this case.
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3.1.1 Our Contribution

By overcoming the above limitations, we design an efficient ABFT approach to

provide stronger protection for three major one-sided matrix decomposition methods in-

cluding Cholesky, LU, and QR on heterogeneous systems with GPUs.

1. Full matrix protection. We prove that full checksum protection is also applicable

for Cholesky and QR decomposition. Based on full checksum protection, we are able

to provide full matrix protection for all three core one-sided matrix decomposition

methods except for a trivial step of QR that computes triangular factor. In addition,

since the full checksum encodes the matrix in two dimensions, the protection comes

along with the benefit of tolerating errors that accumulate along one row or column,

which is usually caused by GPU memory error during matrix decompositions.

2. Efficient checking scheme. We study the error propagation pattern caused by

computation, memory system, and communication error that occurs in all major op-

erations of matrix decompositions. It helps us tell the sensitivity of a matrix oper-

ation to soft errors. We provide an efficient ABFT checking scheme by prioritizing

the checksum verification according to the sensitivity of matrix operations, i.e., per-

forming more verifications on more sensitive operations and less verifications on less

sensitive ones.

3. Protection for PCIe communication. By carefully reordering checksum verifica-

tion, communication, and computation, our new ABFT checking scheme can protect
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Table 3.1: Notation in algorithms and formulations in this chapter.

c(A) Column checksum(s) of matrix/matrix block A.

r(A) Row checksum(s) of matrix/matrix block A.

recal c(A) Recalculated column checksum(s) of matrix/matrix block A.

recal r(A) Recalculated row checksum(s) of matrix/matrix block A.

Ac Matrix/matrix block A with its column checksum(s).

Ar Matrix/matrix block A with its row checksum(s).

Af Matrix/matrix block A with its full checksum(s).

n Input matrix size (n× n).

NB Matrix blocks size (NB ×NB).

K Number of DRAM/on-chip memory error(s) that cause 1D error in TMU.

soft errors that occur in the communication over PCIe. It brings negligible overhead

in error-free executions and less than 1% recovery overhead when error occurs.

4. Optimized kernel for ABFT on GPU: Based on the characteristics of its cal-

culation and GPU architecture, we design an innovative highly optimized checksum

encoding kernel on GPUs. Experiments show that our optimized kernel improves per-

formance of checksum calculation by 1.7x on average and up to 1.9x compared with

the existing best works [50, 53].

3.2 Backgrounds

3.2.1 Blocked Matrix Decomposition

Efficient one-sided matrix decomposition algorithms commonly follow blocked fash-

ion as it delivers better performance. During the decomposition, the input matrix is divided

logically into matrix blocks. Such matrix block is a basic unit in the decomposition process.

one or multiple blocks can form a panel and a trailing matrix. The decomposition is an

iterative process of update operations. In each update operation, sub-matrices composed

of a part of the matrix blocks are used to update a sub-matrix composed of some blocks.
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Update part is a sub-matrix that gets updated during the update operation. Reference part

is a sub-matrix that only gets referenced during the update operation.

Matrix decompositions share three similar major update operations in one itera-

tion: (1) Panel decomposition (PD), (2) Panel update (PU), and (3) Trailing matrix update

(TMU). The decomposition starts from the top left corner of the input matrix and itera-

tively works towards bottom right corner until done. Fig. 3.1 shows one iteration of LU

decomposition. In this iteration: first, column panel A·1 is decomposed into L·1 and U11;

then, row panel A12 is updated into U12; finally, trailing matrix A22 is updated into A′22.

Due to data dependencies, these three steps have to be done in order. In implementations

on modern heterogeneous systems with GPUs, e.g., the state-of-the-art MAGMA library

[171, 172, 69]. these three steps are assigned to different computation units based on their

specialties. PD follows irregular computation pattern, so it is assigned to CPUs. PU and

TMU are highly parallelizable, so they are assigned to GPUs.

U
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r(A)
r(U

)
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r(U
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Figure 3.1: Full checksum LU decomposition.
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3.2.2 Checksum Error Detection and Correction

ABFT is based on the idea that if we encode the input matrix with checksum, and

perform a checksum maintaining algorithm along with the matrix operation, the relationship

between checksum and the input matrix will still hold for resulting matrix, which can be used

for error detection and correction. The key difference between online and offline ABFT is

that online ABFT can maintain checksum relation during matrix decomposition (i.e., after

each update operation). Offline ABFT, on the other hand, can only maintain checksum

relation in the end of decomposition. In this subsection, we show how checksums are used

in online ABFT [65, 50, 181]. We also adopt the similar general mechanism in this work.

Before the matrix decomposition, we first encode the input matrix with checksums.

The checksum is the sum of matrix elements along either rows or columns. So the checksum

can be used for error detection by verifying this relationship. To correct errors, the first step

is to get error location and magnitude. The first step in turn requires two checksums encoded

by two different checksum weights must be used. A usual choice of the two checksum weights

are: v1 = [1, 1, 1...1]T and v2 = [1, 2, 3...n]T . In practice [50, 53], each matrix block, not the

whole input matrix, is usually used as a unit for checksum encoding, error detection and

correction on heterogeneous systems with GPUs, since this fine-grained checksum encoding

can be easily integrated with the original heterogeneous GPU version matrix decomposition

implementations and it can significantly strengthen the fault tolerance protection density.

For matrix block A, the column and row checksums are calculated as: c(A) =

v1
T

v2
T

 · A
and r(A) = A ·

[
v1v2

]
.
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During matrix decompositions, using properly designed checksum maintaining al-

gorithms, we can update checksums along with each update operation during the matrix

decomposition, so that checksum relation is maintained after each update operation and we

can use that to detect and correct errors on-line.

Upon error detection and correction, we check if the checksum relation still holds

by calculating the checksums again on each relevant matrix block (i.e., recal c(A) and

recal r(A)) and comparing them with the checksums we maintained. We use the column

checksum verification as an example here (row checksum verification is similar): we compare

recal c(A) with c(A) to see whether they are close enough (within round-off error) by

calculating: δ = c(A)− recal c(A). For instance, if we find that |δ1,i| > ec, where ec is the

round-off error bound of column checksums, then an error is detected on the ith column of

the matrix block. By calculating round(δ2,i/δ1,i) = j (round to the nearest integer), we get

the row index j of the error and δ1,i gives us the difference between the correct value and

corrupted value. With both row and column index of the error and the magnitude of the

error, we can correct the error.

Due to round-off error, the maintained checksums usually do not precisely match

with corresponding matrix blocks even if no error occurs. To distinguish checksum mismatch

caused by error or round-off error, we need to quantify to what degree a round-off error can

develop (i.e., bound). For example, for full checksum protected TMU (Cf ← Cf−Ac×Br),

based on [89], round-off error bound for column and row checksum can be derived from priori

norm based error bound as follows:

ec = |c(C)− recal c(C)| γn ‖Ac‖1 ‖B
r‖1
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er = |r(C)− recal r(C)| γn ‖Ac‖∞ ‖B
r‖∞

In the above equations, γn = nu/(1− nu), in which u is the unit round-off error (in IEEE

754 double bit floating point standard, u ≈ 10−16).

3.2.3 Full Checksum LU Decomposition

One of the most challenging part of designing online ABFT is maintaining check-

sums during matrix decompositions. Previous works were only able to maintain single-side

checksums (i.e., either row or column checksum) during matrix decompositions [180, 50, 53,

65]. They usually only protect a part of the matrix and cannot tolerate errors that accu-

mulate along one row or column, which is usually caused by memory error during matrix

decompositions.

Recently, [184] made an improvement to online ABFT that can maintain full check-

sum for LU. It works as follows: (1) Before the decomposition, the input matrix is first

encoded with full checksum; (2) During the decomposition, full checksum is maintained

for trailing matrix, and single-side checksum is maintained for all panels; (3) In the end of

decomposition, all decomposed matrices are protected by either column or row checksum.

For example, Fig. 3.1 shows one iteration of full checksum LU. Before this iteration, un-

decomposed part, trailing matrix A·· (white part), has full checksum encoded. After the

iteration, single-side checksum is maintained and extended for partially decomposed matrix
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(gray part). Full checksum is maintained for the new smaller trailing matrix, which will be

used for the next iteration (sub-matrix A′22).

1. Af·1 → Lc·1 × U r11

2. Ar12 → L11 × U r12

3. A′f22 ← Af22 − Lc21 × U r12

The full checksum brings two major benefits: wider protection coverage and

stronger protection. Wider protection coverage means all parts of the matrix in LU are

protected by checksums. Stronger protection means it can tolerate an erroneous row or

column checksum in matrix [184], whereas single-side checksum can only tolerate one error

at a time, since full checksum encode matrix on both matrix dimensions, which record more

redundant information than single-side checksum [50, 180, 65]. In LU, full checksum is

maintained for the trailing matrix, which is used in the majority computation (i.e., TMU)

of one-sided matrix decompositions. So, it greatly strengthens the protection to LU. If we

can maintain full checksum for TMU in other one-sided matrix decompositions, we can also

provide wider and stronger protection for them. However, it is still unclear whether it can

also be applied to other one-sided matrix decompositions, since maintain full checksum is

non-trivial.

3.3 Full Checksum for Cholesky and QR

In previous works [50, 53, 180, 65], the common way to maintain checksums during

matrix decompositions is updating the checksums during decompositions as if the checksums

are an extended part of the original input matrix. That’s to say, we update checksums
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by applying the same operation as the corresponding update operation. In this way, the

checksum relation is naturally preserved during error-free executions. However, due to

the characteristic of one-sided matrix decompositions, usually only single-side checksums

were able to be maintained in this way. Maintaining full checksum, on the other hand, is

challenging. In this work, we develop full checksum maintaining algorithm for Cholesky and

QR decomposition by leveraging the algorithmic knowledge and developing deep-customized

update operations for checksums that are not naturally preserved. Note that although in

this paper we focus on implementations on heterogeneous systems with GPUs, our full

checksum for matrix decompositions can actually be applied to any computing systems.

The design details are discussed as follows.

Table 3.2: Single and full checksum Cholesky decomposition.

Single-side Checksum Full Checksum

PD Lc11 ← Ac11 Lc11 ← Ac11

PU Lc21 ← Ac21 × L
−1
11 Lc21 ← Ac21 × L

−1
11

TMU A′c22 ← Ac22 − Lc21 × (L21
T ) A′f22 ← Af22 − Lc21 × (L21

T )
r

*A11/21/L11/21 is panel before/after current iteration. A22/A′22 is

trailing matrix before/after current iteration.

3.3.1 Full Checksum for Cholesky Decomposition

In Cholesky, similar to LU, there are three major steps in each iteration: PD, PU,

and TMU. In existing ABFT approaches [180, 50, 53], only single-side checksum (column

checksums for lower triangular Cholesky decomposition or row checksums for upper trian-

gular Cholesky decomposition) is maintained for Cholesky as shown in the second column of

Table 3.2. Since Cholesky only decomposes half of the matrix (upper or lower triangular),

it does not naturally preserve checksums for the other dimension.
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together with it checksum c(L21), so 
that full checksum can be maintained 
for the new trailing matrix A’22.

Figure 3.2: Full checksum Cholesky decomposition.

To maintain full checksum for Cholesky, we need to modify the TMU. Using lower

triangular Cholesky as an example, as shown in Fig. 3.2, since the input matrix is sym-

metrical, column panel L21 also serves (logically transposed) as row panel LT21 during TMU.

Also, column checksum of column panel c(L21) is also the row checksum r(LT21) when it is

logically transposed to row panel. As proved in [102], if we encode one matrix with column

checksums and the other matrix with row checksums, the resulting multiplied matrix will

have full checksum encoded and the basic computation of TMU is matrix-matrix multipli-

cation. So, by transposing the column checksum of column panel to get row checksum, we

can maintain full checksum for TMU as shown in right part of Fig. 3.2. We derive the

equations for maintaining full checksum for Cholesky decomposition in the third column of

Table 3.2 (red symbols show the modifications).
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Figure 3.3: Full checksum QR decomposition.

Table 3.3: Single and full checksum QR decomposition.

Single-side Checksum Full Checksum

PD V·1& Rr11 ← Ar·1 V c
·1 & Rr11 ← Af·1

CTF T ← V·1 T ← V·1

TMU A′r·2 ← Ar·2 − V·1T TV TAr·2 A′f·2 ← Af·2 − V c
·1T

TV TAr·2
*A·1 is panel before current iteration, V and R are panels after
current iteration. T is triangular factor matrix. A·2/A′·2 is trailing
matrix before/after current iteration.

3.3.2 Full Checksum for QR Decomposition

There are three major steps in each iteration of QR decomposition: PD, computing

triangular factor (CTF), and TMU. In exiting QR decomposition with ABFT [180], only

row checksum is used to protect row panel R as shown in the second column of Table 3.3.

To maintain full checksum for QR, we need to maintain full checksum for TMU.

So we need to be able to maintain column checksum for the first matrix operand and

row checksum for the last matrix operand in the matrix-matrix multiplication used in TMU

[102] (i.e., column checksum of Householder vectors V·1 and row checksum for trailing matrix

A·2). The challenge lies in maintaining checksum for PD, since only row checksum can be

maintained for decomposed upper triangular matrix R as shown in previous works [180].
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Algorithm 3 FT-xGEQRF2

1: input: panel P f , size: (m+ 1)× (NB + 1).
2: output: Householder vectors V c.
3: output: Upper triangular matrix Rr.
4: for j = 1 : NB do
5: x = Pj:m,j
6: v = x+ sign(x1) ‖x1:last−1‖2 ec1
7: vlast = vlast − Pj−1,j

8: Plast,j:last = Plast,j:last − Pj−1,j:last

9: v = v/ ‖v‖2
10: Pj:m+1,j:NB+1 = Pj:m+1,j:NB+1 − 2vvT1:last−1Pj:m,j:NB+1

11: V c ← v
12: Rr ← upper triangular part of P
13: end for

However, column checksum cannot be naturally maintained for Householder vectors V in

PD, due to its orthogonality [180].

In this work, we develop a new checksum maintaining algorithm for PD of QR that

can maintain both column checksums for Householder vectors V·1 and row checksums for the

upper triangular part R11. To maintain column checksum for Householder vectors, we need

to capture information during PD, so the new checksum maintaining algorithm needs to be

integrated with the computation of original PD. The pseudo code of PD integrated with our

new checksum maintaining algorithm is shown in Algorithm 3. Before the PD, we first

encode full checksum for panel. Then, we modify the Householder generating algorithm in

lines 6∼8 in order to preserve its column checksums. This only brings O(1) extra operation

for each Householder vector generation. With checksum-ed Householder vector, we slightly

modify line 10 to include column checksums. In the end we stored Householder vector

together with its column checksums, so that resulting panel will have column checksums for

Household vectors. With column checksums maintained, we can maintain full checksum for

TMU with slight modification as shown in red symbols in the third column of Table 3.3
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and red part in Fig. 3.3. Note that the computation of triangular factor is very irregular,

which makes it hard to maintain checksums. To avoid catastrophic error propagation, we

need to make sure T is correct before using. Error in T can be detected by verifying the

orthogonality of (I − V T TV T ). Since there is no checksum associated with T , we have

to recover the corrupted T by re-computing it using V as shown in [180]. The runtime

overhead for the verification and re-computation can be shown to be insignificant.

3.4 Fault Model

In this work, we focus on tolerating three types of soft errors caused by faults in

three important hardware components in heterogeneous systems with GPUs: CPU/GPU

logic parts, CPU/GPU memory system, and PCIe.

1. Computation error occurs during update operations. It is caused by fault in the

logic part of CPUs/GPUs, and results in calculation error (e.g., 1 + 1 = 3). It can

be observed as a standalone wrongly computed matrix element in the result. When a

wrongly computed result is used to update other matrix elements, it can cause more

errors.

2. Memory system error occurs anytime when the matrix is stored in the CPU/GPU

memory system. It can occur in both off-chip memory (DRAM) or on-chip memory

(cache, registers, or shared memory). It is caused by faults in memory system, and

results in a error in the storage cell of memory. In this work, we only consider errors

with multiple bit-flips in a word as many memory systems are equipped with ECC

that cannot tolerate that kind of error. Error propagation can occur when a corrupted

58



Table 3.4: MUD of major update operations in one-sided matrix decompositions.

TMUPUPDOperation
Reference 

Part Update Part Reference Part Update PartUpdate 
Part

Element 
Location

Example 
element 

that brings 
maximum 

MUD

2D 1D 1D 0D2DMUD

element is used to update other matrix elements. The difference between the off-chip

memory error and on-chip memory error is that the initial corrupted matrix element

is always observable for off-chip memory error. For on-chip memory error, on the

other hand, the initial corrupted element is not always observable as some wrongly

cached/loaded matrix elements may only get referenced, so there is no data write

back.

3. Communication error occurs during data transfer between CPU and GPU or inter-

GPU through PCIe. It is caused by faults in PCIe related hardware components, and

results in a bit being wrongly transfered (e.g., bit 1 is sent, but bit 0 is received).

Some PCIe Buses also have ECC that can protect single bit error in a word. So, in

this work, we only consider multiple-bit error in a word. When communication error

occurs, it can be observed as a standalone corrupted matrix element that appear in

the receiver side after data transfer.

We assume that no more than one fault strikes the same matrix block between two

neighbor checksum verifications. This is a relative rare case and can be hard to tolerate.
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3.5 Systematic Error Propagation Study

Error propagation patterns in one-sided matrix decompositions was studied in

[184, 65]. However, none of them was systematic enough. [65] focused on all three update

operations in LU, but it failed to distinguish the errors in reference and update part. [184]

did propagation study caused by error that occurs in both reference and update part,

but they only carefully studied TMU and overlooked the details in other operations. In

this work, we present a systematic error propagation study focusing on all major update

operations and considering errors in both reference and update part.

3.5.1 Update Patterns

We first analyze the computation patterns in each operation, which can help us

characterize their error propagation patterns later. We define a term to quantify the com-

plexness of the computation: Maximum Update Dimensions (MUD). MUD can be used to

quantify elements or an update/reference part. MUD of an element x, denoted as MUD(x),

equals the maximum number of dimensions of any area where element x can directly or indi-

rectly update in an update operation. Here the number of dimensions is defined as follows:

MUD(x) = 0D means x only updates itself; MUD(x) = 1D means elements in whole or

partial of one row or column get updated by x; MUD(x) = 2D means elements beyond one

row or column get updated by x; In addition, the MUD of an update/reference part A is

defined as: MUD(A) = max
xij in A

(MUD(xij)). This gives us a quantifiable term to measure

the complexity of each operation in matrix decompositions. According to the algorithm

of each operation, we summarize the MUD of each update/reference part of each update

operation in Table 3.4. Each small box represents one element. Red boxes represent
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Table 3.5: Error propagation patterns of major update operations in matrix decompositions.

Operation
Computation

error
Memory error Communication

errorReference part Update part

PD 2D - 2D -

PU 1D† 2D 1D† -

TMU 0D∗† 1D† 0D∗† -

Panel broadcast - - - 0D∗†

∗ tolerable by single-side checksum
† tolerable by full checksum
In non-tolerable cases, errors are detectable but need local in-memory recompute to
recover.

sample elements in corresponding update/reference part that bring the maximum MUD.

Light gray/dark gray boxes represent elements that are directly/indirectly updated by red

element.

3.5.2 Error Propagation Patterns

Error propagation happens when corrupted data is referenced for update operation,

and then causes more data corruption. This is common in matrix decompositions, since

elements in matrix are repeatedly referenced and updated. We define three levels of error

propagation as follows:

• 0D: a single standalone error with no error propagation;

• 1D: an error propagates to entire/part of one row/column;

• 2D: an error propagates beyond one row or column.

Higher degree of error propagation means the update operation is more sensitive to errors.

With update pattern analyzed in Table 3.4, we characterize the error propagation

patterns. Note that we only consider the error propagation occurs within one operation.
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Error propagation across multiple operations can almost definitely cause 2D error propa-

gation which is not tolerable. It is interesting to see that if an element is used to update

certain other elements, the corruption to the element can also propagate in the same way

as the update pattern. Depending on the type of soft error and when an error occurs, the

exact error propagation pattern may be different, but we only consider the worst case where

all related elements may be corrupted. So, MUD(x) actually also indicates what level of

error propagation would happen if x is corrupted. The corruption of x can be caused by

all three kinds of soft error mentioned in our fault model. While MUD(x) indicates the

error propagation pattern caused by a specific element, MUD(A) indicates the worst case

scenario considering all elements in it. It is the highest level of error propagation that can

be caused by error in any element of A. According to our conclusion in Table 3.4, we

summarize degree of error propagation as in Table 3.5. Compared with previous works,

[65] did not distinguish the errors in reference part and update part and they only consider

the worst case, so it rated the error propagation level as follows: PD (2D), PU (2D), and

TMU (1D). [184] successfully rated the different cases for TMU, but failed to look into PD

and PU, in which they simply rated all of them as 2D. Our systematic study gives much

more details that can help us design new ABFT checking scheme with more appropriate

protection.

3.6 New ABFT Checking Scheme

ABFT checking scheme determines when to perform checksum verification. It

plays a pivotal role in determining the ABFT checking overhead. ABFT checking schemes

can be classified into two categories: prior-operation check ABFT [50, 53] performs check on
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input data before each update operation; post-operation check ABFT [184, 180, 65] performs

check on output data after each update operation. However, none of them are truly suitable

for full checksum one-sided matrix decompositions, because they incur unnecessary ABFT

verification overhead due to redundant verification when used with full checksum.

In this section, based on our previously designed full checksum one-sided matrix

decomposition and systematic error propagation study, we design a new ABFT checking

scheme that brings lower ABFT checking overhead.

3.6.1 New ABFT Checking Scheme Design

Table 3.5 summarizes the protection capability of single-side and full checksum

scheme. In addition to 0D error propagation, full checksum scheme can also tolerate 1D error

propagation. When designing ABFT checking scheme, full checksum offers the following

benefits:

1. It can avoid local re-computation for 1D error propagation cases, which significantly

reduces recovery cost;

2. It also makes ABFT more tolerable to memory errors including DRAM and on-chip

memory of CPU/GPU;

3. Since TMU can only have 0D/1D error propagation, we can partially eliminate or

postpone its correctness check to reduce ABFT checking overhead without sacrificing

protection strength. In addition, we can put more protection to operations that can

lead to 2D propagations (e.g., PD and PU) to reduce the possibility of 2D propaga-

tions.
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Algorithm 4 shows our new ABFT checking scheme. Since both PD and PU

can have 2D propagation (i.e. high sensitive), we put correctness check both before and

after their operations. This protection is stronger than previous works, in which they

only put correctness check before [50, 53] or after [184, 180, 65] PD and PU. In addition,

we postpone the post-operation correctness check of PD and PU to the time after their

decomposed/update panel has been broadcasted. This further helps detect and correct

communication error to avoid further propagation. Previous works [184, 180, 65] check the

panel before panel broadcast. If an error occurs during communication, it may propagate

to the next operation. Since we only postpone the correctness check, it does not bring

extra ABFT checking overhead. Finally, we totally eliminate all correctness check of input

before TMU. The reason is as follows. TMU relies on the decomposed panel and updated

panel from previous PD and PU. Since we already put correctness check after those two

operations, no 2D or 1D propagation can exist on those two panels before TMU. The only

possible error propagation is 0D, which could be caused by memory errors while those two

panels are stored in DRAM after PD/PU and before TMU. However, it can only leads to

1D propagation during TMU, so we discard all correctness check before TMU. After TMU,

we propose a heuristic checking approach to protect TMU with low overhead, which will be

discussed in the next subsection.

3.6.2 Heuristic Checking for TMU

After TMU, there is no need to check the whole output. We don’t need to worry

about 0D propagation, since part of the result that needs attention will be verified before

use in the next iteration, so that any 0D propagation will be fixed before use. For 1D
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Figure 3.4: Heuristic checking for TMU.

propagation in TMU, we propose several heuristic checking rules for efficient handling.

(1) for 1D memory (DRAM) error propagation, it must come from the memory errors in

row/column panel, so we can detect them by checking row and column panel instead of the

expensive correctness check to trailing matrix as shown in Fig. 3.4a. In case of error, we

can just fix the corresponding rows/columns in trailing matrix. (2) for 1D on-chip memory

propagation, it also comes from row/column panel, but it cannot be observed in them since

memory is not corrupted (only the cached data in on-chip memory is corrupted). The only

observable fact is part of one row/column of trailing matrix is incorrect. So, we leave it to

the column/row panel check of the next iteration. Once we detect multiple errors occur to

the same row/column of a matrix block before PD or PU, its likely that’s caused by the

on-chip memory error occurred in previous TMU, then we check the whole row/column to

fix it as shown in Fig. 3.4b. Note that one rare case is ignored in this heuristic checking

where multiple not-yet-detected on-chip 1D error propagations accumulate within the same

matrix blocks that becomes 2D propagation, which needs re-compute of multiple iterations

to fix. However, we can easily overcome this problem by periodically check the correctness
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Algorithm 4 New ABFT checking scheme

1: ngpu ← total number of GPUs
2: for j = 1 : N/NB do
3: [GPUj%ngpu → CPU] Transfer panel
4: [CPU] Check the panel to be decomposed with heuristic checking for TMU
5: [CPU] Panel Decomposition
6: [CPU → GPU1...ngpu] Panel Broadcast
7: [GPU1...ngpu] Check decomposed panel
8: [GPU1...ngpu] Check the panel to be updated with heuristic checking for TMU
9: [GPU1...ngpu] Panel Update

10: [GPU1...ngpu] Check updated panel
11: [GPUj%ngpu → GPU1...ngpu] Panel Broadcast
12: [GPU1...ngpu] Trailing Matrix Update
13: [GPU1...ngpu] Heuristic panel checking for TMU
14: end for

of trailing matrix based on the on-chip memory error rate to avoid 2D propagation. For

simplicity, we omit the overhead for this correctness check in our analysis. It can be shown

that even if we add this correctness check, the overall ABFT checking overhead is still lower

than previous works, in which they need to check the trailing matrix in every iteration.

3.6.3 Distinguish Communication Error with Other Kinds of Error

Once each GPU received decomposed/update panel, it checks the correctness of

the panel. If error is detected, the error could cause by computation/memory error during

the last PD/PU or communication error during the panel broadcast. Distinguish commu-

nication error with other kinds of error, we count the number of GPUs that received panel

with corrupted elements (i.e., corrupted panel). If all GPUs received corrupted panel, its

very likely that the corruption is caused by error during last PD/PU, and the worse case is

2D error propagation, which is not correctable by ABFT. So, to be safe, we initiate local

in-memory restart of the last PD/PU, and then broadcast again. We only need to make a

copy of the panel before PD, which only brings slight overhead. Otherwise, if only some of
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the GPU received corrupted panel, they must be caused by communication error, so we let

each GPU correct those errors using checksum.

3.6.4 Distinguish 1D and 2D Error Propagation in PU

Computation/memory error in PU can cause either 1D error or 2D error propaga-

tion. 1D error propagation is actually correctable, although we only have single side check-

sum for the panel. According to Table 3.4, error is always propagated to one row/column

for column/row panel and we always maintain column/row checksum for column/row panel

as shown in section 3.3. 2D error propagation in updated panel, on the other hand, needs

local in-memory restart of the last PU. The possibility of causing two different error prop-

agation patterns are overlooked in previous works [180, 65] where they treat all cases as

2D error propagation. To distinguish the two cases, we calculate the error row and column

index in a matrix block. If the calculated error locations do not reside in the same row

(for column panel) or column (for row panel), it must be caused by 2D error propagation.

Otherwise, we treat it as 1D error propagation.

3.6.5 Fault Tolerance Overhead Analysis

To compare the ABFT checking overhead, Table 3.6 compared the number of

matrix blocks needed to be checked for correctness in one iteration. We assume the size of

current un-decomposed sub-matrix is j× j for simplicity. Given matrix block size NB, and

we define b = j/NB. K is the number of memory/on-chip memory error that causes 1D

propagation. As we can see, when K is small, the new ABFT checking scheme has much

lower checking overhead than both existing checking schemes.
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Table 3.6: ABFT verification comparison (one iteration).

Checking scheme
PD PU TMU

Total
before after before after before after

prior b 2b b2 + 2b b2 + 5b

post b b b2 b2 + 2b

Ours b 2b b (K+2)b (K+6)b

3.7 Checksum Encoding Optimization

Checksum encoding procedure is one of the key operations in our fault tolerant

matrix decompositions. It is used for initializing checksums before decomposition and re-

calculate checksum for each ABFT check. The most common choice of implementation[50]

is to use general matrix-matrix multiplication (GEMM) in highly optimized linear alge-

bra libraries [7, 18]. However, input size of matrix of the checksum encoding makes the

computation to be memory intensive rather than compute intensive. Implementations of

GEMM are usually optimized for computing intensive workloads, so it causes GPU being

inefficiently utilized during checksum encoding, which brings considerable high overhead

for ABFT on GPUs. So, instead of using GEMM, we design a new computing kernel on

modern GPUs dedicated for checksum encoding.

3.7.1 Algorithm-level Optimization

In our ABFT scheme, in order to both detect and recover errors, we encode

matrices with two checksums each with different weights: v1 = (1, 1, 1, ..., 1)T and v2 =

(1, 2, 3, ..., n)T . So, the column checksums of NB ×NB matrix block A can be calculated

as: c(A) =

[
v1v2

]T
A and row checksum can be calculated similarly. To optimize, since

weights in v1 are all 1s, so we reduce the first checksum encoding into simple summation.
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For v2, we hard-code its weights into the kernel to avoid unnecessary memory accesses. This

allows us to reduce 25% of the flops and O(2NB2) global memory accesses.

3.7.2 Memory Access Optimization

Optimization for memory access has been one of the most important aspects for

GPU computing [120, 117, 119]. Checksum encoding is a memory-bound computation. So,

improving its memory access efficiency is even more critical for high performance. The

first challenge is ensuring full coalescing memory access given different matrix storing types

or checksum types in ABFT. To optimize, we divide input matrix into smaller tiles and

use threads to load tiles of data to shared memory and registers in a coalesced way. The

tile loading style ensures efficient coalesced memory access regardless of the input matrix

storage type or checksum encoding type. The choice of tile size can affect concurrency on

GPU. We pick its size using off-line profile. The details is omitted here.

Even coalesced, long global memory access latency [149, 118, 115] can become

another factor limiting the performance of memory-bound computations on GPU. Due to

the high shared memory and register usage, the number concurrent active threads is low

[116], which limits their abilities to hide memory access latency. To overcome this limitation,

we use data prefetching to efficiently hide this latency. To optimize, instead of loading

current tile and consuming it in current iteration, we now load the current tile in previous

iteration and process it in current iteration. While we are processing current tile, we load

the next tile, so that we can hide next tile loading time using current tile’s processing time.

As an example, Fig. 3.5 shows the checksum encoding on the first two tiles. By adjusting

the tile size, we can achieve good latency hiding effect and overall performance.
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Figure 3.5: Checksum encoding w/ and w/o data prefetch.

3.8 Overhead Analysis

In this section, we analyze the overhead of our new ABFT scheme applied to

Cholesky, LU and QR decomposition on heterogeneous system with GPUs. We show that

relative performance and space overhead of all three decompositions are only small con-

stants.

3.8.1 Performance Overhead

Checksum Encoding

Input matrix is first encoded before decomposition. Checksums are computed

using our optimized checksum encoding algorithm. Compute full checksum for one block

takes: 8NB2flops. Cholesky decomposition only references half of the matrix (upper or

lower triangular), so we only encode half of the matrix. LU and QR decomposition use the

whole matrix, so the entire matrix is encoded. The relative checksum encoding overhead is:

OCho enc = TCho enc
TCho

= (1/2)×(n/NB)2×6NB2

(1/3)n3 = 9
n

OLU enc = TLU enc
TLU

= (n/NB)2×6NB2

(2/3)n3 = 9
n

70



OQR enc =
TQR enc

TQR
= (n/NB)2×6NB2

(4/3)n3 = 9
2n

Checksum Updating

Checksum updating operations simply follows each original operation but with

smaller input size. We maintain full checksums for those operations, so the relative overhead

is:

OCho upd/LU upd/QR upd =
TCho upd/LU upd/QR upd

TCho/LU/QR
≈ 6

NB

Checksum Verification

Derived from Table 3.6, we compute the relative verification overhead of our new

ABFT scheme:

OCho ver = TCho ver
TCho

= 24(K+4)n2

(1/3)n3 = 72K+288
n

OLU ver = TLU ver
TLU

= 24(K+4)n2

(2/3)n3 = 36K+144
n

OQR ver =
TQR ver

TQR
= 24(K+6)n2

(4/3)n3 = 18K+108
n

Overall Performance Overhead

By summarize the above calculation, we derive the overall relative overhead of each

decomposition as shown in Table 3.7. When matrix size is large, the relative overhead is

close to a small constant.

Table 3.7: Overall Overhead.

Matrix Decomposition Overall Relative Overhead

Cholesky 72K+297
n + 6

NB

LU 36K+153
n + 6

NB

QR 36K+225
2n + 6

NB
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Table 3.8: ABFT protection strength and overhead comparison based on LU decomposition.

Fault→ Mem.4
PD (CPU)

Panel
broadcast⊗

Mem.4
PU (GPU)

Panel
broadcast⊗

Mem.4
TMU (GPU)

Comp.∩
Mem.†

Comp.∩
Mem.†

Comp.∩
Mem.†

Ref. Upd. Ref. Upd. Ref. Upd. Ref. Upd. Ref. Upd. Ref. Upd.

Prior (single) - Y� R, 3% - R, 3% R, 5% Y� Y� N N N N N Y� Y� N Y�

Post (single) - R, 3% R, 3% - R, 3% R, 8% R, 8% N N N N N N Y� Y� N Y�

Post (full) - R, 3% R, 3% - R, 3% R, 8% R, 8% R, 8% R, 8% R, 8% R, 8% R, 8% R, 8% Y� Y� Y, 3% Y�

Ours (full) - Y� R, 3% - R, 3% Y � Y� Y � Y� R, 8% Y� Y� Y� Y� Y� Y, 3% Y�

Notations: (1) 4, DRAM memory fault between two operations; †, DRAM and on-chip memory fault during update

operations; Also, we distinguish memory faults that occurs to the reference part and update part of an update

operation; ⊗, PCIe fault during panel broadcast; ∩, computation fault in CPU/GPU during update operations. (2)

Y�, errors are fixed by ABFT with < 1% overhead in addition to fault free execution; Y, errors are fixed by ABFT

with certain overhead in addition to fault free execution; R, errors are detected but need local restarting to fix with

certain overhead in addition to fault free execution; N, errors are not detected and causes incorrect final results and

need a complete restart.

3.8.2 Memory Space Overhead

Memory space overhead mainly comes from encoding checksums. We maintain full

checksums for input matrix, so the relative overhead brought by the checksum encoding is:

Ochk space =
2× 2× n× n/NB

n2
=

4

NB

3.9 Experimental Evaluation

We evaluate our implementation on HPCC, a heterogeneous system. It is equipped

with one 32-core Intel Haswell CPUs, 128 GB DRAM, and eight NVIDIA Tesla K80 GPUs

with each having 12 GB memory, where GPUs are connected through PCIe. Our fault toler-

ant matrix decomposition is built based on MAGMA [17] 2.3.0 that is linked with cuBLAS

9.0 [7] and Intel MKL 2018.1.163 [18], where cuBLAS and Intel MKL are respectively basic

linear algebra libraries on GPU and CPU. We implemented the double precision Cholesky,

LU, and QR decompositions for multi-GPUs.
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3.9.1 Fault Tolerance Protection Strength Test

This evaluation aims to compare two checksum encoding techniques combined with

different ABFT checking schemes based on erroneous executions caused by soft errors in

terms of two aspects: fault tolerance capability and recovery overhead. Evaluating based

on real-world soft errors is not possible because we cannot know when errors occur, let

alone if the protection approach is triggered. Thus we simulate erroneous executions caused

by soft errors via fault injection in source code level. We simulate four kinds of faults in

total: (1) computation error, (2) off-chip memory error, (3) on-chip memory error, and (4)

communication error. Computation errors are simulated by flipping one bit in an element of

the output matrix block via XOR operation. The other three kinds of errors are simulated

by flipping two or more bits in the same way considering ECC can correct the error resulting

from one bit flip. It should be noted that we always choose significant enough bits to be

flipped such that it will make value alteration distinguishable from round-off errors based

on a known round-off error bound [89]. It should be noted that the simulation of each kind

of error also depends on good timing: (1) for computation error, we inject a fault to an

element in the matrix immediately after a target operation; (2) for off-chip-memory error,

we inject a fault to an element before an operation; (3) for on-chip-memory error, we inject

a fault to an element before an operation and then change it back after the operation but

before ABFT correctness check; and (4) for communication error, we inject a fault to an

element immediately after it is received. Note we only inject one fault that causes one kind

of error in one execution and thus can observe if the ABFT protection is effective.
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We compare single-side checksum prior-operation check ABFT [50], single-side

checksum post-operation check ABFT [180, 65], full checksum post-operation check ABFT

[184], and full checksum ABFT with our new ABFT checking scheme (note full checksum

prior-operation check ABFT is non-existent). The evaluation is based on Cholesky, LU,

and QR decomposition, but only the result of LU is shown in Table 3.8 due to space

limit considering the evaluation with each shows very similar result (omitted results can be

provided upon request).

Table 3.8 shows full checksum provides more comprehensive protection against

the above considered errors than single-side checksum. We observe that single-side checksum

fails to tolerate errors occurring in PU as it is lack of checksum protection on updated panel.

Also single-side checksum provides very limited protection against memory errors in TMU

since it cannot tolerate errors causing 1D error propagation. Instead, full checksum tolerates

all kinds of listed errors.

Table 3.8 also shows ABFT checking scheme incurs up to 7% less overhead to

recover from a soft error than post-operation checking scheme, which is shown by comparing

our ABFT approach with the ABFT approach based on full checksum and post-operation

check. The efficiency of our ABFT checking scheme results from following techniques: (1) it

detects and corrects errors more timely as it prioritizes checksum verifications on sensitive

operations like PD and PU, which doesn’t require local restart in many cases; (2) it tolerates

errors in PCIe communication with much less overhead than existing work via postponing

checksum verification after panel broadcast; and (3) based on our error propagation study,

we can recover from 1D error propagation with far less overhead, which was previously
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recovered with a more expensive method used to correct 2D error propagation, i.e., local

restart.

3.9.2 Fault Tolerance Coverage Analysis

To compare the protection coverage of our new full checksum ABFT with existing

works in a statistical view, we use a probability model to estimate the expected fault recovery

overhead needed for each approach given hardware error rates. We define the following cases

that can occur during each operation with calculations of probability of each case. In the

equations, OP represents operation, which can be replace with PD, PU , or TMU . OP ′

represent the operation before current the operation.

Table 3.9: Notation in Probability Model.
R1 Floating point calculation error rate.

R2(T ) Off-chip memory error (per matrix element) in a given time period of T .

R3(T ) On-chip memory error (per matrix element) in a given time period of T .

R4 PCIe data transfer error (per matrix element) between CPU-GPU and GPUs.

n the size of current trailing matrix.

nb block size.

TOP (n, nb) Time complexity of OP .

AOP (n, nb) Actual time cost of OP on a given platform.

MOP U or R(n, nb) Memory footprint of update part/reference part of OP in terms of number of matrix elements.

MOP BC(n, nb) The amount of data transfered after OP in terms of number of matrix elements.

A: No calculation error occurred during an update operation P (A) = (1−R1)TOP (n,nb);

B: A calculation error occurred during an update operation. P (B) = TOP (n, nb) × (1 −

R1)TOP (n,nb) ×R1;

C: No off-chip memory error occurred among matrix elements in the update/reference part

of an operation (in between update operations) P (C) = (1−R2(AOP (n, nb)))MOP U or R(n,nb);
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D: An off-chip memory error causes one matrix element in the update/reference part of an

operation being wrongly stored (in between update operations) P (D) = MOP UorR(n, nb)×

(1−R2(AOP (n, nb)))MOP U or R(n,nb)−1 ×R2;

E: No off-chip/on-chip memory error occurred among matrix elements in the update/reference

part of an operation (during an update operation)(P (E) = 1−R2 or 3(AOP (n, nb)))MOP U or R(n,nb);

F: An off-chip/on-chip memory error causes one matrix element in the update/reference

part of an operation being wrongly stored (during an update operation) P (F ) = MOP U (n, nb)×

(1−R2 or 3(AOP (n, nb)))MOP U or R(n,nb)−1 ×R2 or 3;

G: No error during broadcasting P (G) = (1−R4)MOP BC(n,nb);

H: PCIe error causes one matrix element being wrongly transfered during broadcasting

P (H) = MOP BC(n, nb)× (1−R4)MOP BC(n,nb)−1 ×R4;

In our analysis, we assume at most one faulty case can occur to one operation at

the same time. We calculate four possible outcome that each operation can have:

• Fault Free: None of the error we consider in the work occurred during the operation;

• ABFT Fixable: An error is detected and can be recovered by ABFT;

• Local Restart: An error is detected but cannot be recovered by ABFT. Local restart

(only restart the faulty operation) is needed to recover;

• Complete Restart: An error has occurred, but it is not detectable until the very

end of computation. The whole computation needs to restart to recover;
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We use one iteration of LU decomposition as an example here. We set T1 =

1e − 13, T2 = 1e − 9, T3 = 1e − 9, T4 = 1e − 11, n = 10240, and nb = 256. The

values chosen here are only for illustration propose. Actual error rate highly depends on

multiple factors of hardware platform. The off-chip memory error is set to be linearly

proportional to storage time. The on-chip memory error is set to be linearly proportional

to operation’s execution time. The recovery overhead for each case is based our experiment

in the previous subsection. Fig. 3.6, 3.7, 3.8 shows the probability of four outcomes of the

three operations. We truncated the probability of fault free execution to better zoom in to

the part with faults. Fig. 3.9, 3.10, 3.11 shows expected time cost for fault recovery given

the probability of four outcomes of the three operations. We can see that by combining

the full checksum and our new checking scheme, the new ABFT brings wider coverage and

lower or similar fault recovery overhead compared with previous works.

3.9.3 Performance Boost of Checksum Encoding

Our specialized designed kernel boosts the performance of checksum encoding sig-

nificantly and thus also reduces the overall fault tolerance overhead. We evaluate the per-

formance boost of checksum encoding by comparing the checksum encoding performance

using our kernel and that of the default in the same ABFT framework on different matrix

sizes. Fig. 3.12 shows our kernel achieves 1.7x speedup on average and up to 1.9x speedup.
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Figure 3.6: Probability of four possible outcomes of PD.
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Figure 3.7: Probability of four possible outcomes of PU.
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Figure 3.8: Probability of four possible outcomes of TMU.
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Figure 3.9: Expected Recovery Overhead of PD.
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Figure 3.10: Expected Recovery Overhead of PU.

0.0%

5.0%

10.0%

15.0%

20.0%

Single post check
ABFT

Single prior
check ABFT

Full post check
ABFT

Full new check
ABFT

Ex
pe

ct
ed

 fa
ul

t 
re

co
ve

ry
 o

ve
re

ha
d

Figure 3.11: Expected Recovery Overhead of TMU.
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Figure 3.12: Performance of new checksum encoding kernel vs. default (GEMM).
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Figure 3.15: Overhead comparison of QR decomposition.
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This positive result demonstrates our kernel makes far more efficient use of GPU to encode

checksums.

3.9.4 Scalability and Overhead Comparison

A practical ABFT approach should incur low overhead and demonstrate good scal-

ability. To evaluate the effectiveness of our new ABFT approach, we compare following four

methods: (1) single-side checksum prior-operation check ABFT, (2) single-side checksum

post-operation check ABFT, (3) our new ABFT approach without the optimized checksum-

encoding kernel, and (4) our new ABFT approach with the kernel. The ABFT approach

used in [184] shows similar overhead to single-side checksum prior-operation check ABFT,

so it is omitted here. The comparison is based on weak scaling of the three decomposi-

tion methods. For LU and QR, we fix matrix size per GPU as 10240x10240, so the whole

matrix size is (num. of gpus× 10240)× 10240 For Cholesky, since the input matrix needs

to be symmetric, we adjust the matrix size so that the workload on each GPU is close to

10240x10240. For simplicity, we also round the matrix size to be multiplies of block size set

by MAGMA, which only brings less than 2% negligible workload change. The whole input

matrix size is round(
√
num. of gpus× 10240× 10240).

Fig. 3.13, 3.14, and 3.15 respectively shows the comparison result for Cholesky,

LU, and QR decomposition. Note this evaluation is based on error-free execution and thus

the measured overhead only comes from error detection, i.e., no overhead is spent on error

recovery.

Regarding overhead, we observe following phenomenon: (1) prior-operation check

incurs 20% more overhead than post-operation check, which is because the amount of in-
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put data of an operation verified by prior-operation check is usually more than that of

output data verified by post-operation check; (2) our optimized checksum encoding kernel

reduces the overall fault tolerance overhead by 3-5%; and (3) the overhead our new ABFT

approach based on the kernel is around 10% for QR and 15% for Cholesky and LU, which

is comparable to the overhead of post-operation check ABFT.

Regarding scalability, we find that the overhead of our new ABFT based on the

optimized kernel remains constant in the weak scaling for each decomposition method.

3.10 Summary

We provide an efficient ABFT approach that provides stronger protection for three

major one-sided matrix decomposition methods including Cholesky, LU and QR on het-

erogeneous systems. First, we provide full matrix protection by using checksums in two

dimensions. Second, our checking scheme is more efficient by prioritizing the checksum ver-

ification according to the sensitivity of matrix operations to soft errors. Third, we protect

PCIe communication by reordering checksum verifications and decomposition steps. Fourth,

we accelerate the checksum calculation by 1.7x on average via optimizing the multiplication

of a regular-sized matrix and a tall-and-skinny matrix on GPU architecture. Evaluation

results demonstrate that our ABFT approach provides stronger protection yet with no more

overhead.
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Chapter 4

Energy Efficient One-sided Matrix
Decompositions with Algorithmic
Slack Reclamation

4.1 Introduction

Improving the energy efficiency of commonly used libraries is an effective approach

to energy efficient scientific computing. Unfortunately, existing libraries are focused on per-

formance, inconsiderate of energy savings opportunities that do not adversely impact perfor-

mance. For example, MAGMA decomposes a program to tasks and schedules sequential and

less parallelizable tasks on CPU and larger more parallelizable ones on GPU. Consequently,

MAGMA achieves better performance than its counterpart libraries for homogeneous CPU

computing. Yet, inherent in the DAG-based task scheduling in MAGMA, processing units

scheduled with tasks on non-critical paths unavoidably experience idle time, i.e., slack. The

slack can be further exploited for energy savings by leveraging hardware power-aware tech-

niques including Dynamic Voltage and Frequency Scaling (DVFS). DVFS has been used to

save energy on CPU by scaling down CPU speed during underused execution phases [84]

[145] [144] [158], and now is also available on memory [63] [66] and GPU cards [129] [24].
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Numerical linear algebra libraries are used in a wide spectrum of high performance

scientific applications. These libraries solve systems of linear equations, linear least square

problems, and eigenvalue/eigenvector problems. Among numerical linear algebra opera-

tions, dense matrix factorizations can sometimes take a large portion of execution time or

even dominate the whole scientific application execution.

This paper presents GreenLA - an energy efficient linear algebra software package

for heterogeneous scientific computing on GPU-accelerated systems. At the initial stage of

the project, we analyzed highly optimized dense matrix factorization algorithms including

Cholesky, LU and QR factorizations. Then we developed GreenLA to exploit algorith-

mic knowledge of linear algebra operations to predict slack on CPU and GPU, and use

application-level DVFS strategies to reclaim the slack for energy savings. Compared to OS

level solutions that rely on online learning and prediction for DVFS scheduling decisions,

GreenLA accurately pinpoints and fully reclaims the slack, achieving more energy savings

with less overhead. As a software package, GreenLA can work in place of existing numerical

linear algebra library MAGMA. Moreover, GreenLA can be freely enabled or disabled, less

intrusive than the OS level solutions.
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The main contributions of this paper are:

• This paper develops GreenLA - an energy efficient linear algebra software package that

effectively leverages the algorithmic characteristics of the linear algebra operations

to maximize energy savings. GreenLA exploits linear algebra algorithmic knowledge

combined with light-weight online profiling to accurately predict the length of tasks

and slacks, and hence can maximize the reclamation of slacks via algorithm-based

DVFS scheduling.

• GreenLA saves up to three times more energy than the best existing energy saving

approaches that do not modify the library source codes;

• GreenLA achieves comparable performance to the highly optimized linear algebra li-

brary MAGMA but needs less energy than MAGMA.

• GreenLA is transparent to applications. With the same programming interface as the

existing library MAGMA, existing MAGMA users do not need to modify their source

codes to benefit from GreenLA.

The remainder of this paper is organized as follows. Section II introduces back-

ground knowledge. We present GreenLA design in Section III and its implementation in

Section IV. Evaluation methodology and experimental results are provided in Sections V

and VI respectively. Section VII discusses the related work and Section VIII concludes the

paper.
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4.2 Dense Matrix Factorizations on CPU-GPU Heteroge-
neous Systems

Dense matrix factorizations solve systems of linear equations, linear least square

problems, and eigenvalue/eigenvector problems, etc. The commonly used algorithms include

Cholesky, LU and QR factorizations. These algorithms decompose the coefficient matrix A

in a linear system Ax = b into simpler forms, such as LLT and PLU . Consequently the

solution x can be calculated using forward and backward substitutions. Widely accepted

heterogeneous computing libraries including MAGMA [17] provide routines of these matrix

factorizations as standard functionality.

Although each suitable for different problem classes, Cholesky, LU and QR fac-

torizations share similar algorithmic characteristics. Figure 4.1 illustrates the main steps

of highly-optimized dense matrix factorizations on CPU-GPU heterogeneous systems in

a global view. Factorizing a panel matrix is a Level 2 BLAS [4] operation and involves

diagonal matrices factorization and panel factorization. Due to the low computational

complexity and high sequentiality, panel factorization is performed on the CPU, shown as

the green/yellow boxes. Updating a trailing matrix is a Level 3 BLAS operation with high

computation complexity and high degrees of parallelism. It is performed on the GPU for

performance efficiency, shown as the white boxes.

Figure 4.1 also demonstrates how a dense matrix factorization proceeds on a CPU-

GPU platform with data movement between CPU and GPU in a local view. As mentioned,

factorizing the panel matrices is executed on the CPU; and updating the trailing matrix

is massively parallelized on the GPU. The panel matrices calculated on the CPU are of-
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Figure 4.1: Global View and Local View of Dense Matrix Factorizations on CPU-GPU
Heterogeneous Systems.

floaded to the GPU and used by the GPU to update the trailing matrices. For the sake

of performance, the next panel matrix that is updated on the GPU is immediately copied

back to the CPU before the entire trailing matrix finishes. As such, panel factorization is

simultaneously executed on the CPU as the rest of trailing matrix is updated on the GPU.

These processes proceed by a submatrix block, starting from the left upper corner of the

global matrix and finishing when the whole global matrix is fully factorized.

4.3 GreenLA Energy Saving Methodology

At the coarse level, the matrix factorization algorithms repeatedly assign two de-

pendent types of tasks to CPU and GPU respectively. In each iteration slack presents on

both CPU and GPU. GreenLA reclaims the slack for energy savings with three main com-

ponents. First, it identifies the critical path and slack on the non-critical paths on the CPU

and GPU by analyzing the heterogeneous algorithms. Second, it uses algorithmic knowledge

to predict and quantify the slack. Third, it exploits DVFS on the CPU and GPU to fully
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reclaim the slack on the non-critical paths for energy savings. The following subsections

present detailed design of each components.

4.3.1 Critical Path and Slack Analysis

For task-parallel applications, a slack refers to a time period when one computer

component idly waits for another. Typical causes of slack include load imbalance, inter-task

or interprocess communication, and memory access stalls. Due to the pervasive presence in

applications and systems, slack has been recognized as important energy saving opportuni-

ties in HPC. In a task-parallel application, a Critical Path (CP) is a particular sequence of

tasks spanning from the beginning to the end of the execution where the total slack amounts

to zero. While slack on the non-critical paths is usually exploited for energy savings, it is

non-trivial to fully reclaim them without impacting application performance [160].

As shown in Figure 4.1, slack is present on the CPU and GPU in the heterogeneous

matrix factorization algorithms. Specifically, the CPU must wait for the next updated panel

from the GPU, and the GPU must wait for the factorized panel from the CPU. In addition,

either the CPU waits for the GPU to finish updating the trailing matrix or the GPU waits

for the CPU to finish factorizing the panel matrix. Moreover, the slack varies over iterations

as the task sizes change. Being able to accurately quantify and predict the slack is necessary

before reclaiming them for optimal energy savings.

4.3.2 Online Algorithmic Slack Prediction

For energy saving purposes, we must first know where and when the slack occurs

and for how long they last. Given an application, one method to obtain such knowledge

is to instrument the source code with timing functions and run the instrumented program
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with various problem sizes to collect the profiles. Alternatively, OS-level profiling can be

performed with hardware performance counters on processors. Neither method is portable,

and both methods require extensive profiling. In GreenLA, we investigate an online algo-

rithmic slack prediction approach that accurately predicts the varying slack at runtime with

minimum profiling.

Given the heterogeneous matrix factorization algorithms, the slack on the CPU

and GPU is mainly impacted by the software and hardware parameters.

• Problem size: the sizes of the panel matrix and trailing matrix scheduled on the CPU

and GPU respectively based on the algorithmic characteristics;

• CPU compute capacity : the number of floating point operations the CPU are able to

perform in one second for the assigned tasks;

• GPU compute capacity : the number of floating point operations the GPU are able to

performance in one second for the assigned tasks.

• Data transfer speed : the number of bytes the GPU are able to transfer between CPU

memory and GPU memory.

Figure 4.2 plots the difference between CPU and GPU task execution time for the

first 100 iterations of LU factorization with various problem sizes and compute rates. For

instance, 10240 and 20480 are two global matrix sizes, and high low means that the CPU

runs at the highest speed and the GPU runs at the lowest speed. A non-zero difference

between the execution time indicates that either CPU or GPU waits for the other in the
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Figure 4.2: The difference between CPU and GPU execution time for the first 100 iterations
of LU Factorization. The difference varies over iterations, and is a function of problem size
and the CPU and GPU compute rates.

current iteration. Appropriately adjusting the compute rate of CPU or GPU can narrow

and even eliminate the time difference.

In GreenLA, we leverage our prior knowledge about the factorization algorithms

to quantitatively predict the slack between CPU and GPU in each iteration. Two major

factors that will affect the behavior of slack are the CPU/GPU execution time and the data

copy time between CPU and GPU.

We first focus on the execution time. We use LU factorization as an example here.

It would be similar for Cholesky and QR factorization. Assuming the execution time of

the first iteration of a N × N with block size nb factorization are known, we denote the

CPU time for the N × nb panel factorization as TCPU0 , and the GPU time for the N ′ ×N ′

trailing updating as TGPU0 where N ′ = N − nb. We can use the algorithmic information to

predict the execution time of the remaining iterations. For now we consider fixed compute

capacity for the CPU and GPU. As the time complexities of panel factorization and trailing

updating are O(N3) for a matrix size N , the execution time for iteration k and k + 1 have

the following relation.
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TCPUk+1

TCPUk

=
O(N3

k+1)

O(N3
k )

=
(N − (k + 1)× nb)× nb2

(N − k × nb)× nb2

= 1− nb

N − k × nb
(4.1)

TGPUk+1

TGPUk

=
O(N3

k+1)

O(N3
k )

=
(N − (k + 1)× nb)2 × nb

(N − k × nb)2 × nb

=

(
1− nb

N − k × nb

)2

(4.2)

Similarly, we can also predict the data copy time between CPU and GPU. Assum-

ing the data copy time of the first iteration is TCOPY0 for transferring a panel to GPU from

CPU and then transfer it back. Assuming the data transfer speed is constant, we can use

TCOPY0 and the size change of panel over iterations to predict future data copy time. In

LU factorization, the space complexity of panel needed to be transferred is O(N2), the data

copy time for iteration k and k + 1 have the following relation:

TCOPYk+1

TCOPYk

=
O(N2

k+1)

O(N2
k )

=
(N − (k + 1))× nb2

(N − k)× nb2

= 1− 1

N − k
(4.3)

Since, CPU must wait for data copy is done before it can starts it computation,

the slack during iteration k can be quantified as follows:

slackk =
∣∣ TCPUk + TCOPYk − TGPUk

∣∣; 0 ≤ k < N

nb
(4.4)

A positive value indicates that the GPU have slack time to wait for the CPU,

while a negative value indicates that the CPU has slack to wait for the GPU. Value zero
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means that the CPU and GPU finish the current iterations at the same time. The initial

slack is the time difference for the first iteration, i.e., k = 0.

slack0 =
∣∣ TCPU0 + TCOPY0 − TGPU0

∣∣ (4.5)

From Equations 5.1-5.6, we can quantify the slack for the rest CPU-GPU tasks,

provided with the execution time of the first iteration. This algorithmic slack prediction

is accurate and lightweight compared to OS level slack prediction. By using the prior

algorithmic knowledge, only minimal profiling is necessary.

4.3.3 CP-Aware Slack Reclamation

With predicted slack over the iterations, we explore CP-aware slack reclamation

to save energy [104] [142] [160]. To adjust the time it takes for CPU or GPU, we can

either adjust the computation time or data copy time. However, since it is usually hard to

accurately adjust data transfer speed and it also brings much less energy saving benefit than

computation, we focus on adjusting the execution time. Specifically, we employ properly

reduced compute capability on the processing units on the non-critical path such that the

total slack amount to zero. We exploit DVFS, an effective power-saving hardware technology

available on the CPU and GPU for this purpose. DVFS-capable processing units have

multiple performance/power states. Prior studies [85] [36] [33] show that running these

processing units at lower states during slack significantly reduces power and energy without

impacting overall application performance. As shown in Figure 4.2, with different inputs

and power states, even within one run, slack can reside at either CPU side or GPU side.

We apply accordingly either CPU DVFS or GPU DVFS depending on the source of slack.
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In order to quantitatively evaluate GreenLA, we theoretically analyze the upper

bound of possible energy savings for heterogeneous matrix decomposition algorithms. The-

oretically, the maximum energy savings is as follows:

∆Esys =
Enew
Eold

=
(Pnews + Pnewd + Pother)× Tnew

(P olds + P oldd + Pother)× Told
(4.6)

Tnew = T ′new + TDV FS (4.7)

Here, Ps and Pd are the static power and dynamic power respectively consumed

by the CPU and GPU, where Pd is a function of processor frequency for DVFS-capable

components. Pother is the power consumption of other computer components. Tnew is

the execution time of GreenLA including the overhead brings by the DVFS, while Told is

the execution time of the original heterogeneous factorization. We denote Pd = nPtotal,

Ps + Pother = (1− n)Ptotal, where n is a ratio of dynamic CPU/GPU power Pd within the

total system power costs. By assuming Tnew = Told and adopting Pd =∝ f2.4 from [73], we

can simplify Equation 4.7 as:

∆Esys =
nPtotal

fnew

fold

2.4
+ (1− n)Ptotal

nPtotal + (1− n)Ptotal
= 1− n

(
1− fnew

fold

2.4
)

= 1− n

1− nb

N

N
nb∑
1

(
min(TCPUk , TGPUk )

max(TCPUk , TGPUk )

)2.4
 (4.8)
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Figure 4.3: Offline and Online Framework of GreenLA.

4.4 GreenLA Design and Implementation

We present the design and implementation details of GreenLA, including strict and

relaxed slack reclamation and coupled GPU DVFS.

Figure 4.3 illustrates the architecture and main components of GreenLA. It min-

imally profiles the application offline to obtain the execution time of the first CPU-GPU

tasks at different power states and first data copy time. Such data is used to derive the

slack time during the first iteration. GreenLA uses online algorithmic slack prediction to

accurately obtain the slack for the rest of the CPU-GPU tasks. In cases where an available

frequency is unable to eliminate a slack, we split the slack and use two consecutive available

frequencies.

4.4.1 Strict Slack Reclamation

With strict slack reclamation, we apply DVFS on the non-critical path in each

iteration of the factorization algorithm. By properly lowering the frequency of the processing
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Table 4.1: Notation in Algorithms and Formulation.

task One task of CPU-GPU dense matrix factorizations
fl The lowest CPU/GPU core frequency set by DVFS
fh The highest CPU/GPU core frequency set by DVFS

f ′l
The lowest GPU core frequency paired with the
highest GPU memory frequency set by DVFS

fideal The optimal ideal frequency to eliminate slack
T Execution time of a task running at fh
Tx Execution time of a task running at fx

slack
Amount of time that a task can be delayed by w/o
increasing the total runtime of the application

flower The neighboring frequency smaller than fideal
fupper The neighboring frequency greater than fideal
fSet The frequency set consisting of all used frequencies

CP
One task trace consisting of tasks to finish the
application with the total slack of zero

LastFreq Frequency used after the last frequency scaling
r Ratio between two durations at split frequencies

units to just eliminate the slack, we can reduce power consumption without impacting

performance for the current iteration.

Prior studies have shown that the execution time of compute-intensive workloads

is proportional to the frequency of processing units. Based on this observation, we derive the

ideal target frequency for the processing units on the non-critical path for given current and

targeting execution time. In GreenLA, we take into account the available discrete frequencies

provided by CPU/GPU DVFS. In cases that the ideal target frequency is not equivalent

to an available frequency, we use a weighted sum of two available neighboring frequencies

and run the processing units at each frequency for a ratio of duration. Table 4.1 lists the

notation used in the algorithms and formulation henceforth.

Algorithm 1 details the selection of the CPU or GPU frequency if slack occurs and

Algorithm 2 presents the frequency approximation [179] [144] with CP-aware energy efficient

DVFS scheduling. For simplicity and readability, we use five helping functions in these

two algorithms: SetFreq(), GetApproxRatio(), GetSlack(), GetCurFreq(), and GetOptFreq().
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Algorithm 1 CPU/GPU DVFS Scheduling
CPU GPU DVFS(CP , fSet, task, k)
1: if (task ∈ CP ) then
2: SetFreq(fh)
3: else
4: slack ← GetSlack(task, k)
5: if (slack > 0) then
6: fideal ← GetOptFreq(task, slack)
7: LastFreq ← GetCurFreq()
8: fSet ← fSet ∪ fideal ∪ LastFreq
9: if (TCPU < TGPU ) then /* CPU DVFS */

10: Call CP SSR(slack, fSet) or CP RSR(slack, fSet)
11: else if (TCPU > TGPU ) then /* GPU DVFS */
12: Call GPU DVFS(slack, fSet)
13: end if

Algorithm 2 Strict CP-aware Slack Reclamation
CP SSR(slack, fSet)
1: if (fl ≤ fideal ≤ fh) then
2: if (fideal /∈ fSet) then
3: r ← GetApproxRatio(Tlower, Tupper, slack)
4: SetFreq(flower, fupper, r)
5: else SetFreq(fideal)
6: else if (fideal < fl) then
7: SetFreq(fl)
8: end if

Of these, SetFreq() is a wrapper of CPU/GPU DVFS APIs that set specific CPU/GPU

frequencies and GetCurFreq() is used to inquire the current frequency in use. The other

three functions are more complex and will be detailed next.

These three functions use prior knowledge of the mapping between frequency and

execution time for the CPU and GPU tasks. Specifically, GreenLA records runtime of the

first CPU-GPU tasks at different frequencies by instrumenting timestamps in the source

codes, and use them to estimate the runtime and slack for the rest of the CPU-GPU tasks
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Algorithm 3 Relaxed CP-aware Slack Reclamation
CP RSR(slack, fSet)
1: if (fl ≤ fideal ≤ fh) then
2: if (fideal /∈ fSet) then
3: r ← GetApproxRatio(Tlower, Tupper, slack)
4: if (r < RlxFctr) then
5: if (LastFreq 6= fupper) then
6: SetFreq(fupper)
7: LastFreq = fupper
8: else Do Nothing
9: else SetFreq(flower, fupper, r)

10: else SetFreq(fideal)
11: else if (fideal < fl) then
12: SetFreq(fl)
13: end if

using Equations 5.1-5.6. Given T , Tlower, Tupper, and slack of each pair of CPU-GPU tasks,

we split frequency with ratio r and the ideal frequency fideal can be solved as follows:

T + slack = Tlower × r + Tupper × (1− r)

fideal × (T + slack) = fh × T

where T 7→ fh, Tlower 7→ flower, Tupper 7→ fupper

subject to f ′l ≤ flower < fideal < fupper ≤ fh

(4.9)

The resulting target frequency fideal is compared against the available frequencies

(i.e., line 2 in Algorithm 2). If it matches an available frequency, the matched available

frequency can be used directly. Otherwise, neighboring frequencies flower and fupper are

assigned in accordance with the ratios r and 1− r individually. In case that fideal is lower

than the lowest available frequency, the lowest available frequency is adopted, as sketched

in Algorithm 2.
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4.4.2 Relaxed Slack Reclamation

In contrast to strict slack reclamation that applies DVFS at each iteration of the

algorithms, relaxed slack reclamation forms multiple iterations into groups and apply DVFS

at the group level. Relaxed slack reclamation offers two advantages. First, it reduces the

time and energy overhead incurred by frequent DVFS scheduling [158]. Second, it reclaims

extra slack on the CPU and GPU caused by data dependencies, in addition to the slack

caused by workload imbalance that strict reclamation targets. In each iteration, the GPU

waits for the factorized panel from the CPU, and the CPU waits for the updated panel

from the GPU. The slack is reclaimed by relaxed slack reclamation but not by strict slack

reclamation.

We use a relaxation factor (RlxFctr in Algorithm 3) to determine the number of

iterations in a group for scheduling decisions. As shown in Algorithm 3, if the calculated

split frequency ratio r is less than RlxFctr (e.g., 0.05), the duration at flower is negligible

according to Equation 4.9. In this case, we run the processing units at fupper. The selection

of RlxFctr is based on algorithmic characteristics. Slack varies with iterations and the

variation rate provides us the criteria of choosing an appropriate RlxFctr for the optimized

energy efficiency. Note that even with a constant RlxFctr, the number of iterations in a

group may vary over time during a run.

4.4.3 Coupled GPU Core and Memory DVFS

DVFS can be applied to power-scalable hardware components, including CPU,

GPU, and memory. It is noteworthy that on today’s architectures such as GPU, core and

memory frequencies are coupled and have to be switched simultaneously as a combination
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Algorithm 4 GPU Core/Memory DVFS Scheduling
GPU DVFS(slack, fSet)
1: if (f ′l ≤ fideal ≤ fh) then
2: Call CP SSR(slack, fSet) or CP RSR(slack, fSet)
3: else if (fl ≤ fideal < f ′l ) then
4: r ← GetApproxRatio(Tl, T

′
l , slack)

5: SetFreq(fl, f
′
l , r)

6: else if (fideal < fl) then
7: SetFreq(fl)
8: end if

[24], which differs from CPU DVFS where only core frequency is scaled. Table 4.2 lists

memory-core frequency pairs for two NVIDIA GPU.

Table 4.2: GPU Mem.-Core Freq. Pairs (Unit: MHz).

NVIDIA Kepler Tesla K20c NVIDIA Kepler Tesla K40c

Memory Freq. Core Freq. Memory Freq. Core Freq.

2600

758

3004

875
705

810
666

745
640

666
614

324 324 324 324

As discussed earlier, in our scenario, slack may occur either on the CPU side or on

the GPU side. Algorithm 1 strategically makes CPU/GPU DVFS decisions depending on

the source of slack. In particular, for the case of eliminating slack from GPU side, due to

the coupled core and memory frequencies of GPU, a combined GPU core/memory DVFS

scheduling strategy is necessary. Line 3-7 in Algorithm 4 details the combined strategy,

where split frequency ratio r is calculated similarly as Equation 4.9. Equation 4.10 shows

the calculation, and the difference is that scaling down to fl pairs with memory frequency

reduction to the lowest.
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T + slack = Tl × r + T ′l × (1− r)

fideal × (T + slack) = fh × T

where T 7→ fh, Tl 7→ fl, T
′
l 7→ f ′l

subject to fl ≤ fideal < f ′l

(4.10)

In our experiments, GPU tasks that update the trailing matrices involve con-

siderable computation and memory accesses. Therefore simultaneously decreasing GPU

core/memory frequencies has dual performance impact on computation and memory ac-

cesses. Our approach takes care of these scenarios since the dual slowdown has been recorded

in T ′, which is the runtime of a task at the lowest core and memory frequencies.

4.5 Evaluation

In this section we detail the evaluation of GreenLA on a GPU-accelerated heteroge-

neous system: a linear algebra library of dense matrix factorizations (Cholesky, LU and QR)

with an energy efficient CPU/GPU DVFS co-scheduling approach via online algorithmic

slack prediction.

4.5.1 Evaluation Methodology

For comparison purposes, we present a state-of-the-art OS level method for slack

prediction, and another type of classic DVFS scheduling strategy for saving energy. We

stress the difference in other approaches against ours, and argue that our solution can

outperform in both the accuracy of slack prediction and the amount of energy savings in

our scenario.
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OS Level Slack Prediction. As another important slack prediction method, OS level slack

prediction either work for a specific type of applications sharing similar features, e.g., with

stable/slowly-varying execution characteristics, or require considerable training to obtain

accurate prediction results. Online prediction mechanism presented in [128] [145] [144] is

based on a simple assumption that task behavior is identical every time a task is executed. It

is however defective for applications with variable workloads, such as matrix factorizations,

where the remaining unfinished matrices become smaller as the factorizations proceed. Ex-

ecution time shrinks and slack varies as the workloads become lighter, which invalidates the

above prediction mechanism.

Regardless of the simplest prediction above, several enhanced history-based work-

load prediction algorithms have been proposed to handle the variation in HPC runs and pro-

duce more accurate prediction results [175] [62] [99] [86]. The RELAX algorithm employed

in CPU MISER [86] exploits both prior predicted profiles and current runtime measured

profiles: W ′i+1 = (1−λ)W ′i +λWi, where λ is a relaxation factor for adjusting the percentage

of dependent information on the current measurement. This enhanced prediction can also

be error-prone for dense matrix factorizations, since using a fixed λ cannot handle length

variation of iterations of the core loop due to the shrinking remaining unfinished matrices.

The use of 2-D block cyclic data distribution further brings complexity to the prediction.

Moreover, statistical predictive models have been adopted for accurate workload predic-

tion, e.g., Hidden Markov Models (HMM) used in [186] and Predictive Bayesian Network

(PBN) used in [125]. Using offline training and learning based on historical records, results

with high accuracy were achieved (average prediction error 3.3% via HMM and 0.43% via
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PBN). Although effective offline, online slack prediction for HPC applications using statis-

tical models can be costly: Considerable amount of execution traces are required to train

the statistical predictive models for accurate slack prediction. For instance, the training

dataset in [186] was obtained by running applications on one server and evaluated on one

different server, which can be impractical for HPC runs as discussed earlier.

Race-to-halt Energy Saving. As the name suggests, race-to-halt (or race-to-idle) is an energy

saving strategy that enforces power-scalable processors (e.g., CPU and GPU) to race when

workloads are ready for processing, and to halt when no tasks are present and the processors

are idle/waiting. In other words, race refers to executing the workloads at the highest

frequency and voltage of the processors for the peak performance until the finish of the

workloads, and halt implies that processor frequency and voltage are switched to the lowest

level from the end of the last executed workload to the start of the next workload. This

straightforward solution can effectively save energy without incurring performance loss due

to the following inferences: (a) The peak performance of processors is guaranteed during

computation as in original runs; (b) the peak performance of processors is not needed when

no tasks are being executed and processors are waiting for data. As discuss earlier, in our

scenario, slack can arise at either CPU side or GPU side, depending on various factors.

In either case, the peak performance of the idle/waiting processors is not necessary. Per

race-to-halt, we apply to them the lowest power state during the slack and switch back to

the highest one until the next workload is available. race-to-halt is CP-free such that no

CP detection is required before any energy saving decisions are made. Thus it is generally

lightweight and easy to implement.
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We implemented OS and library level approaches using race-to-halt and online

HMM-enabled statistical slack prediction individually. Further, we implemented relaxed

slack reclamation to compare with the default strict slack reclamation. Evaluated metrics

include slack prediction accuracy, and energy and performance efficiency. For readability,

we henceforth denote different test cases as follows:

• MAGMA: The original MAGMA runs of different-scale CPU-GPU Cholesky, LU and QR

factorizations without any energy saving approaches;

• OS r2h: The OS level implementation [6] based on a CPU race-to-halt workload pre-

diction algorithm similar to the RELAX algorithm;

• lib r2h: The library level implementation based on algorithmic race-to-halt on both

CPU and GPU;

• OS cpsr str: The OS level implementation based on online HMM-enabled statistical

slack prediction, with strict slack reclamation for each iteration;

• OS cpsr rlx: The OS level implementation based on online HMM-enabled statisti-

cal slack prediction, with relaxed slack reclamation (RlxFctr = 0.05) for blocked

iterations;

• lib cpsr str: The library level implementation based on online algorithmic slack

prediction, with strict slack reclamation for each iteration;

• lib cpsr rlx: The library level implementation based on online algorithmic slack

prediction, with relaxed slack reclamation (RlxFctr = 0.05) for blocked iterations.
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Among all energy saving solutions, lib cpsr rlx empirically achieves the optimal

energy efficiency with negligible performance loss, and thus we adopt it as our GreenLA in

the comparison against MAGMA later.

4.5.2 Experimental Setup

We applied all above test scenarios to CPU-GPU Cholesky, LU and QR factoriza-

tions (MAGMA version 1.6.1) with multiple global matrix sizes each (ranging from 5120 to

20480). However, due to limit space, we only show the result for input size of 20480×20480.

For other input matrix sizes, the results are similar. All experiments were performed on

a power-aware many-core CPU-GPU server. Table 5.3 lists hardware configuration of the

experimental platform. The total system dynamic and static/leakage energy consumption

of the above runs was measured using nvidia-smi tool [24] provided by NVIDIA, and follow-

ing [131], we used PowerPack [87], an integrated software/hardware framework for profiling

and analysis of power/energy costs of HPC systems and applications. A separate meter

node with PowerPack deployed was used to collect power/energy costs of all hardware com-

ponents of the system, and the data was recorded in a log file and accessed after the above

runs.

4.6 Results

Next we present experimental results of our evaluation via fine-grained comparison.

We first demonstrate the performance and energy efficiency of our approach by comparing

to the widely used numerical linear algebra MAGMA library.
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Table 4.3: Hardware Configuration for Experiments.

Component CPU GPU

Processor
2×10-core Intel Xeon 2496 CUDA-core NVIDIA
Ivy Bridge E5-2670 Kepler GK110 Tesla K20c

Peak Perf. 0.4 TFLOPS 1.17 TFLOPS

Core&Mem. Core:1.2-2.5(↑by0.1)GHz
See left column of Table 4.2

Freq. Gear Mem.:Not DVFS-capable

Memory 64 GB RAM 5 GB RAM

Cache
64 KB L1, 256 KB L2, 13 SMX units, 64 KB and

25.6 MB L3 48 KB read-only d-cache

OS Fedora 21, 64-bit Linux kernel 3.17.4

Pwr. Meter PowerPack nvidia-smi with -ac option

Table 4.4: Average Error Rates of Slack Prediction for Four Runs Each of Cholesky/LU/QR
Factorization.

OS Level Statistical
Benchmarks & Slack Prediction Library Level Algorit-
Test Scenarios Base Iter. Base Iter. hmic Slack Prediction

(First 10%) (First 20%)
Cholesky

10.51% 6.62% 0.96%
(5120 - 20480)

LU
9.95% 5.45% 0.16%

(5120 - 20480)
QR

11.29% 5.77% 0.52%
(5120 - 20480)

4.6.1 Average Error Rate of Slack Prediction

We first showcase the accuracy of slack prediction of the OS level statistical ap-

proach with two training datasets and our library level algorithmic approach. Table 4.4

summarizes the average error rate of slack prediction of the two approaches. As stated

in section 4.3, HMM-based statistical slack prediction requires a group of base iterations

(usually the first few iterations of a HPC run) to serve as an online training dataset. The

prediction accuracy is highly associated with the size of the training dataset according to

Table 4.4: The more base iterations are used, the more accuracy is achieved. However, the

highest accuracy of the OS level approach is 5.45% for LU, while our library level approach

can be as accurate as having a 0.16% error rate for LU. This low error rate of slack predic-

106



tion can greatly facilitate forthcoming energy saving. For further comparison, we select the

OS level statistical approach with higher slack prediction accuracy for more experiments.

4.6.2 Total Energy Saving Comparison

As shown in Figure 4.4, our library level CP-aware slack reclamation approaches

could save more energy than current state-of-the-art approaches. Current approaches could

only either save less energy or even costs extra energy. For example, OS level race-to-halt

only slows down CPU when CPU utilization is below a threshold, while library level race-

to-halt reduces both CPU and GPU speed when no corresponding workloads are running

according to algorithmic characteristics. Due to high online probing overhead, the OS level

race-to-halt approach incurs even more energy consumption, while the more lightweight

library level race-to-halt approach can save minor energy savings (up to 3.6%) as shown in

Figure 4.4. Other two approaches we compared are OS level approaches statistical slack

prediction OS cpsr str and OS cpsr rlx. Since the two solutions produced inaccurate slack

prediction, the inaccuracy results in inappropriate timing and duration of DVFS, which

cannot eliminate possible slack – saving less energy than the optimal, or incurs performance

loss due to overdue or overdone DVFS – consuming even more energy than the original run.

As shown in Figure 4.4, those two approaches consumed more energy(1%–2%). Even if the

OS level slack prediction can achieve the same accuracy as our library level approaches,

the OS level solutions can waste much more energy saving opportunities than our library

level approaches due to the considerable amount of iterations used for training, compared

to only execution information of the first iteration needed by our library approach. On

the other hand, our library level CP-aware slack reclamation approaches could save several

107



times more energy. specifically, the energy saved from our approach is 2.5x of the energy

saved using current best approach in Cholesky factorization, 1.5x in LU factorization and

3x in QR factorization. Moreover, different than our strict slack reclamation, which tries

to reclaim all slacks using DVFS, our relaxed slack reclamation only tries to apply DVFS

when split frequency ratio is larger than the RlxFctr, which eliminated some unnecessary

power state adjustments. The reduced number of power adjustment brings less DVFS

performance overhead, which further saves more energy for the overall application. Note

that, the Cholesky, LU and QR factorizations are very compute intensive. Based on the

energy efficiency model in [61], their heterogeneous implementations in MAGMA have really

high computation efficiency, which make them hard to save more energy. Although there

are many hardware components involve the execution process, we only focus on reducing

the energy consumption of CPU and GPU.

4.6.3 CPU Energy Saving Comparison

Now, we focus on the energy saving on the CPU side. Note that since we only focus

on reducing the energy cost of CPU, the energy measurement here does not include RAM

energy consumption. We can see from Figure 4.5 the single core CPU energy comparison of

Cholesky, LU and QR factorization using different energy saving solutions. As mentioned

before, OS level race-to-halt only adjust the performance/power state of the CPU, which

also introduce more probing overhead, it cost more energy on the CPU side (7%–8%). As

for the OS level online HMM-enabled statistical slack prediction approaches, they need first

10%–20% iterations to do online training on the CPU, which not only brings more overhead,

but also wastes valuable slack reclamation(energy saving) opportunities. However, thanks to
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Figure 4.4: The total amount of energy saved in percentage using several different energy
saving solutions. Right two bars in each group show the result of our approach, which can
save up to 3x more energy than the current best solution.

the high accurate algorithmic slack prediction, our library level CP-aware slack reclamation

approaches could save more energy on the CPU side when the slack resides on CPU.

4.6.4 GPU Energy Saving Comparison

Next, we focus on the energy saving on the GPU side. As we can see from Fig-

ure 4.6, even GPU is assigned more computation tasks, it usually finish its tasks faster than

the CPU, so slacks are more likely to occur on the GPU side, and thus it can save more

energy. For library level race-to-halt approach, since it rely on algorithmic execution time

prediction, it can save energy to some degree. But it still waste some energy in ”halt” state,

so it saves less energy than our approach. As for OS level race-to-halt, it does not adjust

the performance/power of the GPU at all and poor CPU side adjustment brings more per-

formance overhead, so the overall execution time is prolonged, which results higher GPU
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Figure 4.5: The amount of energy saved in percentage on single core CPU using several
different energy saving solutions. Positive values indicate energy saving. Negative values
indicate extra energy cost. Our approaches(right two bars in each group) shows more energy
saving on CPU than existing state-of-the-art solutions.

energy consumption. Similar as on the CPU, OS level online prediction approach suffers

from inaccurate slack prediction, which leads to higher GPU energy consumption. Our

approaches, on the other hand, could save up to 16% energy on the GPU.

4.6.5 Time Overhead

All kinds of performance loss is observed from the experiments as shown in Fig-

ure 4.7. Typical performance degrading factors for OS level solutions consist of dynamic

monitoring overhead (OS r2h), online training overhead (OS cpsr str and OS cpsr rlx),

DVFS overhead (all solutions), and performance loss from overdue or overdone DVFS due

to inaccurate slack prediction (OS cpsr str and OS cpsr rlx). On the other hands, ob-

served performance loss for library level solutions is from frequency approximation errors
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Figure 4.7: Execution time of Cholesky, LU and QR factorization using several different
energy saving solutions. Right two bars in each group show our results, which have similar
performance than existing state-of-the-art solutions.
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and DVFS overhead. Among all approaches, OS cpsr str has the highest performance

loss (up to 14.4%, due to overdone DVFS from inaccurate slack prediction), while our

lib cpsr str/lib cpsr rlx incurs minor performance loss (as low as 1.2%).

4.7 Summary

Energy efficiency is becoming a critical factor of concern when achieving paral-

lelism in high performance scientific computing in this era. The growing prevalence of het-

erogeneous architectures nowadays brings more concerns on saving energy for the emerging

systems. Essentially fulfilling energy efficiency requires accurate slack prediction with mi-

nor performance degradation. Existing energy efficient approaches span from OS level to

application level, which can either be inaccurate or cost-inefficient due to variable execu-

tion patterns of the target applications and lengthy training of the employed prediction

model. In this paper, we propose a lightweight energy efficient approach for widely used

numerical linear algebra software that utilizes algorithmic characteristics to obtain accu-

rate slack prediction and thus gain the optimal energy savings. Experimental results on a

many-core CPU-GPU platform demonstrate that our library level solution can achieve up

to 8.5% energy saving than original implementation with negligible performance loss (as

low as 1.2%), which 3x more energy savings compared to classic race-to-halt and workload

prediction approaches.

Although the currently achieved energy savings are moderate, provided a limited

amount of slack for the target applications, more energy can be saved by reducing the minor

performance loss incurred by our approach. It is practical and worthwhile since careful

and fine-grained DVFS analysis is able to further decrease the number of DVFS switches
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and errors of frequency approximation. Possible energy savings can also be obtained from

improved application characteristics that facilitate power reduction, such as CPU workload

centralization and idle/unused core isolation, etc. We are also interested in investigating

the energy impact of matrix factorization block sizes. It is possible that the optimal block

size for performance differs from the optimal block size for energy costs. There may exist a

trade-off between them. We further plan to extend the work to more scientific applications

on other emerging hardware and architectures in the near future.
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Chapter 5

Energy Efficient and Fault Tolerant
One-sided Matrix Decompositions
with Bi-directional Algorithmic
Slack Reclamation and ABFT

5.1 Introduction

In previous chapters, we introduced several effective approaches for optimizing

energy efficiency [54] and reliability [50, 52] for one-sided matrix decompositions on hetero-

geneous systems with GPUs. However, none of the previous work is able to optimize both at

the same time. One major challenge is that many energy efficiency and fault tolerance op-

timizations are not compatible with each other. For example, fault tolerance approach such

as ABFT brings performance overhead, which in turns decrease energy efficiency. Energy

saving approach as such overclocking or undervolting can decrease system reliability and

can cause serious error propagation in matrix decompositions, which is beyond tolerable for

ABFT.
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In this work, we propose PowerLA, enhanced one-sided matrix decompositions that

are both energy efficient and fault tolerance. Specifically, our contributions are listed as

follows:

• We extend clock frequency range used in DVFS based slack reclamation energy-saving

approach to further include overclocking frequencies. This enables us to get more

energy saving.

• We carefully design an optimization to incorporate overclocking and ABFT to ensure

execution correctness.

• We propose a novel bi-directional slack reclamation, which allows slacks to be re-

claimed by both processors at the same time. This greatly improves flexibility when

reclaiming slacks.

• We implement our optimization on three core one-sided matrix decompositions and

evaluate our implementation on our energy aware heterogeneous computing systems

with GPUs. Results show that our proposed work can obtain more energy saving with

fault tolerance capability at the same time.

5.2 PowerLA Design

5.2.1 Challenges of Building Fault Tolerant and Energy Efficient Matrix
Decompositions

As mentioned before, both reliability and energy efficiency are important for one-

sided matrix decompositions on heterogeneous systems with GPU. However, many of the

approaches in energy saving and fault tolerance are not naturally compatible with each
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Table 5.1: Notation in algorithms and formulations in this chapter
TOPk Prediced/measured execution of OP in kth iteration.

slackk Slack length in kth iteration.

PD Panel Decomposition.

PU Panel Update.

TMU Trailing Matrix Update.

CHK UPD Checksum update.

CHK V RF Checksum verification.

fDEV ICEBASE The baseline clock frequency on DEV ICE.

fDEV ICEMIN The minimum clock frequency on DEV ICE.

fDEV ICEMAX CORRECT The maximum clock frequency on DEV ICE that does not affect execution correctness.

fDEV ICESAFE The maximum clock frequency on DEV ICE that does not cause system/process crash.

PDEV ICEdyn base The dynamic power of DEV ICE at fDEV ICEBASE clock frequency.

nb Matrix blocks size (nb× nb).

Overclocking
Test

Calculate Error 
Rate

V

V

Offline profiling

Online profiling

Measure exec. 
time of 

PD&TMU
Matrix Decomposition 

with Bi-directional Slack Reclamation + ABFT

1st iteration 2nd iteration - last iteration

Overclocking upper bound

Platform-specific computational efficiencyDerive 
algorithmic 

slack 
prediction 

model

Algorithmic slack predictor

Execution time relations

Figure 5.1: Overview of PowerLA

other. For example, many works have been done to utilize slacks to improve the energy

efficiency of applications such as race-to-halt and slack reclamation-based energy-saving

approaches [105, 143, 165, 54]. They have been proven that their proposed approaches

can save considerable energy compared with the original design without any energy saving

optimizations. However, none of them can be integrated with fault tolerance techniques,

such as ABFT without brings more energy cost or performance overhead. The key reason

is that fault tolerance needs to be added to tasks that are on both critical and non-critical

path, which prolong the total execution time and further makes an impact on energy and

performance. On the other hand, other energy saving approach as such overclocking or

undervolting can enable more control on energy saving and performance, but they can also
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decrease system reliability, which can cause serious error propagation in matrix decompo-

sitions making them beyond tolerable for ABFT if not carefully tuned.
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On CPU

Slow down CPU 
to reclaim slack

TMU’ TMU PU
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Speedup GPU to 
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(a) Single direction slack reclamation 

(b) Bi-directional slack reclamation 
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ABFT overhead

ABFT 
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Figure 5.2: Single direction slack reclamation vs. Bi-direction slack reclamation.

5.2.2 Bi-directional Slack Reclamation: Bringing Fault Tolerance and En-
ergy Saving Together

In this work, we aim to build one-sided matrix decompositions that are both

fault tolerant and energy efficient. The core part of our work is the novel bi-directional

slack reclamation. Similar to original slack reclamation proposed in previous works, our

bi-direction slack reclamation also aims to minimize slacks by adjusting the task execution

length. However, unlike previous works, which only adjust tasks on non-critical paths to-

wards one direction, our bi-directional slack reclamation (Fig. 5.2) adjust tasks on both

critical and non-critical path in two directions (i.e., speed up or slow down). Since tasks are

already running on the highest processor power state, speedup tasks furthermore usually

are not applicable since most DVFS strategies do not allow setting clock frequencies beyond

the highest. For our bi-directional slack reclamation, to enable more flexible adjustment we

allow both DVFS and overclocking as available power state selections for slack reclamation.
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Figure 5.3: Workflow of Cholesky Decomposition.

In this way, we can allow tasks execution length to be adjusted in both directions even if

it was already running on the high power state. Compared with original slack reclama-

tion that was introduced in previous works, our bi-directional slack reclamation brings two

major advantages: (1) It enables us to speed up tasks on critical path, which brings poten-

tial performance improvement for the entire execution of matrix decompositions that can

potentially allow us to add fault tolerance without bringing high fault tolerance overhead;

(2) Bi-directional slack reclamation brings more energy saving than single direction slack

reclamation since reclaiming slacks in two directions gives more flexibility, which allows us

to save energy on both CPU and GPU when reclaiming a single slack.

Bi-directional slack reclamation cannot work by itself to enable fault tolerant and

energy saving for matrix decomposition. It needs to work with three other key components

that will be discussed in the following sections: slack identification and prediction (section

5.5), bi-directional slack reclamation strategies (section 5.4), and overclocking and fault

tolerance integration (section 5.5 and 5.5.2).
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Figure 5.4: Slack can occur on either side during matrix decompositions.

5.3 Slacks in One-sided Matrix Decompositions on Hetero-
geneous Systems with GPUs

To enable slack reclamation, we need to identify slacks in matrix decompositions

first. To utilize the concurrent execution feature between CPUs and GPUs, in the current

design of MAGMA, part of the workload of TMU that PD will depends on later is done in

ahead of rest part. In this way, PD on CPU can be done in concurrent with the rest part

of TMU. The execution overlap between CPU and GPU can potentially benefit the overall

performance of matrix decompositions.

Figure 5.10 demonstrates how a dense matrix decomposition proceeds on a CPU-

GPU platform with data movement between CPU and GPU in a local view. As mentioned,

decomposing the panel matrices is executed on the CPU; and updating the trailing matrix

is massively parallelized on the GPU. The panel matrices calculated on the CPU are of-

floaded to the GPU and used by the GPU to update the trailing matrices. For the sake

of performance, the next panel matrix that is updated on the GPU is immediately copied

back to the CPU before the entire trailing matrix finishes. As such, panel decomposition is

simultaneously executed on the CPU as the rest of trailing matrix is updated on the GPU.
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Figure 5.5: Slacks in Matrix Decompositions (Matrix size: 10240*10240)
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These processes proceed by a sub-matrix block, starting from the left upper corner of the

global matrix and finishing when the whole global matrix is fully decomposed.

Since the workload and the computation power of CPU and GPU can vary, they

may finish assigned computation tasks at different times. With implicit synchronizations

(i.e., data copies between CPU and GPU), idle may occur to processors that finish earlier.

This kind of idle time is called slack. Fig. 5.5 show how slacks change as matrix Cholesky,

LU, and QR decompositions make processes on our test platform. Slack brings potential

energy waste if not carefully taken care of.

5.3.1 Slack Prediction

To reclaim slack, we first need to know where slacks can occur. We have exam-

ined the workflow of matrix decompositions in state-of-the-art MAGMA library and figure

out that slack can occur to either CPU and GPU after panel decompositions and trailing

matrix update. In addition, we also need to know when slacks occur and how long they

can last. One method to obtain such knowledge is to instrument the source code with

timing functions and run the instrumented program with various problem sizes to collect

the profiles. Alternatively, OS-level profiling can be performed with hardware performance

counters on processors. Neither method is portable, and both methods require extensive

profiling. In this work, we propose an algorithmic slack prediction and clock frequency

adjustment strategy similar to our previous work [54].
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Given the heterogeneous matrix decomposition algorithms, the slack on the CPU

and GPU is mainly impacted by the software and hardware parameters.

• Problem size: the sizes of the panel sub-matrix and trailing sub-matrix scheduled on

the CPU and GPU respectively based on the algorithmic characteristics;

• CPU compute capacity : the number of floating point operations the CPU is able to

perform in one second for the assigned tasks;

• GPU compute capacity : the number of floating point operations the GPU is able to

perform in one second for the assigned tasks.

• Data transfer speed : the number of bytes the GPU are able to transfer between CPU

memory and GPU memory.

Our algorithmic slack prediction aims to leverage algorithmic knowledge to accu-

rately predict the slack on CPU/GPU. The algorithmic knowledge that we need to consider

for matrix decompositions including CPU/GPU execution time and data copy time.

We first focus on the execution time. Assuming the execution time of the first

iteration of a N × N matrix with block size nb decomposition are known, we denote the

CPU time for the panel decomposition as TPD0 , and the GPU time for trailing matrix

updating as T TMU
0 . We can use the algorithmic information to predict the execution time

of the remaining iterations. For now, we consider fixed compute efficiency for the CPU and

GPU. As the time complexities of panel decomposition and trailing matrix updating are

O(N3) for a matrix size N , the execution time for iteration k and k + 1 have the following

relation.
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Table 5.2: The ratio of execution time and data transfer time of panel decompositions
and trailing matrix update between kth and k + 1th iterations of the three core matrix
decompositions.

Computation & Checksum Update Data Transfer (CPU⇐⇒GPU) Checksum Verfication

PD-Cholesky 1 1 1

TMU-Cholesky (1 + k)(1− 1
B−k−1) N/A 1− 1

B−k−1

PD-LU 1− 1
B−k 1− 1

B−k 1− 1
B−k

TMU-LU 1− 1
B−k −

1
B−k−1 + 1

B2−(2k+1)B+k(k+1)
N/A 1− 1

B−k −
1

B−k−1 + 1
B2−(2k+1)B+k(k+1)

PD-QR 1− 1
B−k 1− 1

B−k 1− 1
B−k

TMU-QR 1− 1
B−k −

1
B−k+1 + 1

B2+(2k+1)B+k(k+1)
N/A 1− 1

B−k −
1

B−k+1 + 1
B2+(2k+1)B+k(k+1)

TPDk+1

TPDk
=
O(N3

k+1)

O(N3
k )

(5.1)

T TMU
k+1

T TMU
k

=
O(N3

k+1)

O(N3
k )

(5.2)

Based on the design of Cholesky, LU, and QR decomposition on the heterogeneous

system with GPU [17], we are able to derive the theoretical ratio of the execution time of

panel decompositions and trailing matrix update. As shown in Table 5.2, we derive the

ratio between two neighbor iteration, where B = n
nb . We can see that most of the ratios

are not constant and their values not only depend on application settings (i.e., nb) but also

vary between different iterations (i.e., depend on k). So, it is very hard to capture this

information from system-level efficiently.

Similarly, we can also predict the data copy time between CPU and GPU. Assum-

ing the data copy time of the first iteration is TCOPY0 for transferring a panel to GPU from

CPU and then transfer it back. Assuming the data transfer speed is constant, we can use

TCOPY0 and the size change of panel over iterations to predict future data copy time. The

data copy time for iteration k and k + 1 have the following relation. We also show that in

Table 5.2.
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TCOPYk+1

TCOPYk

=
O(N2

k+1)

O(N2
k )

(5.3)

Finally, we also prediction the time overhead brings by ABFT in a similar way. The

ABFT overhead usually comes with two parts: updating checksum, and verifying checksum.

Since their algorithms are usually different, we use two different relation equations to do

prediction. Assume the execution time of checksum updating operation and checksum

verification operation are TCHK UPD
0 and TCHK V RF

0 . The data copy time for iteration k

and k + 1 have the following relation. We also show that in Table 5.2.

TCHK UPD
k+1

TCHK UPD
k

=
O(N3

k+1)

O(N3
k )

(5.4)

TCHK V RF
k+1

TCHK V RF
k

=
O(N2

k+1)

O(N2
k )

(5.5)

Since, CPU must wait for data copy is done before it can starts it computation,

the slack during iteration k can be quantified as follows:

slackk =
∣∣ TCPUk + TCOPYk − TGPUk

∣∣; 0 ≤ k < N

nb
(5.6)

where TCPUk = TPDk +TCHK UPD
k +TCHK V RF

k and TCPUk = T TMU
k +TCHK UPD

k +

TCHK V RF
k . A positive value indicates that the GPU has slack time to wait for the CPU,

while a negative value indicates that the CPU has slack to wait for the GPU. Value zero

means that the CPU and GPU finish the current iterations at the same time. The initial

slack is the time difference for the first iteration, i.e., k = 0.
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slack0 =
∣∣ TCPU0 + TCOPY0 − TGPU0

∣∣ (5.7)

From Equations 5.1-5.6, we can quantify the slack for the rest CPU-GPU tasks,

provided with the execution time of the first iteration. This algorithmic slack prediction

is accurate and lightweight compared to OS level slack prediction. By using the prior

algorithmic knowledge, only minimal profiling of the first iteration is necessary.

5.4 Slack Reclamation Strategies

5.4.1 Clock Frequency Adjustment

Once slacks are predicted the next step is to adjust the clock frequency of CPU

and GPU to reclaim slacks. Since we adjust both CPU and GPU clock frequency to reclaim

slack, we introduce term reclaim split ratios rCPU and rGPU . It is used to decide how

much of the slack is reclaimed by CPU or GPU. Since most matrix operations in matrix

decompositions are computed intensive, we can assume that execution time is inversely

proportional to the processor clock frequency: T ∝ 1
f , so we can derive the ideal clock

frequencies for CPU and GPU used to reclaim the slack of length slackk at kth iteration

with reclaim split ratio of rCPU and rGPU .

fCPUADJUST =
TCPUk

TCPUk + rCPU · slackk
· fCPUBASE

fGPUADJUST =
TGPUk

TGPUk + rGPU · slackk
· fGPUBASE

In the next subsection, we will discuss the detail about how to adjust those two

ratios to improve energy saving and performance.
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5.4.2 Strict Slack Reclamation

In this subsection, we discuss how to adjust slack reclamation ratios to optimize

energy saving. We introduce two strategies: strict slack reclamation and relaxed slack

reclamation.

Our first slack reclamation strategy is strict slack reclamation. This strategy aims

to reclaim the slack as much as possible to minimize processor idle cycles. In other word,

our goal is to adjusting rCPU and rGPU such that their sum as close as possible to 100%.

For example, assuming the slack is on the CPU side (similar for slack residing on the GPU

side), the task on GPU is on the critical path. In this case, we can only adjust rGPU above

zero (speedup). Otherwise, it may impact performance. rCPU , on the other hand, can be

adjusted both above zero (slow down) or below zero (speedup).

Note that rCPU and rGPU can only be adjusted in a way such that the resulting

clock frequencies are available (within hardware allowable adjusting range) on target pro-

cessors. Clock frequencies also need to be applicable, which means they need to be lower

than fmax correct if fault tolerance is not applied and lower than a certain frequency if fault

tolerance is not applied (will be discussed later). In either case, we refer rCPUmin/max and

rGPUmin/max as their range, which can be easily obtained from the applicable clock frequency

range of CPU and GPU.

If rCPUmax + rGPUmax < 100%, the slack cannot be completely reclaimed. In this case,

the only choice would be having rCPU = rCPUmax and rGPU = rGPUmax to reclaim slacks as much

as possible. The theoretical energy saving for kth iteration can be calculated as:

∆E = (PGPUdyn base+P
GPU
static+P

CPU
static)∗rGPUmax ∗slackk+PCPUdyn base∗TCPUk (1−(

fCPU
ADJUST

fCPU
BASE)

1.4
)
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The theoretical performance (execution time) improvement for kth iteration can

be calculated as:

∆T = rGPUmax ∗ slackk

If rCPUmax + rGPUmax 100%, the slack can be completely reclaimed. In this case, set

rCPU+rGPU = 100% to eliminate the whole slack, wheremax(1−rmaxCPU , rGPUmin )rGPUmin(rGPUmin , 1−

rCPUmin ). The theoretical energy saving for kth iteration can be calculated as:

∆E = (PGPUdyn base+PGPUstatic +Pstatic)
CPU ∗ rGPU ∗slackk +max(PCPUdyn base ∗TCPUk (1−

(
fCPU
ADJUST

fCPU
BASE)

1.4
), PCPUdyn base ∗ (100%− rGPU ) ∗ slackk)

To optimize energy saving, we can adjust rGPU and pick the value that leads to

maximum energy saving. The theoretical performance (execution time) improvement for

kth iteration can be calculated as:

∆T = rGPU ∗ slackk

5.4.3 Relaxed Slack Reclamation

A more aggressive energy saving strategy is to release that requirement of reclaim-

ing slacks as much as possible. In terms of tuning rCPU and rGPU , this eliminates the

restriction of rCPU + rGPU = 100%. There is no guarantee that this strategy can lead

to better energy-saving or performance, but relaxed slack reclamation does enable wider

optimization search space for rCPU and rGPU .

If choosing optimization in favor of energy saving, we can adjust rCPU and rGPU

and pick the value that leads to maximum energy saving.

∆E = (PGPUdyn base+PGPUstatic +Pstatic)
CPU ∗ rGPU ∗slackk +max(PCPUdyn base ∗TCPUk (1−

(
fCPU
ADJUST

fCPU
BASE)

1.4
), PCPUdyn base ∗ rCPU ∗ slackk)
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The theoretical performance (execution time) improvement for kth iteration can

be calculated as:

∆T = min(rGPUmax ∗ slackk, (1− rCPUmin ) ∗ slackk

In order to tune our bi-directional slack reclamation for energy saving, we need to

know the dynamic power and static power consumed by the processors. However, we cannot

directly measure those power values except the total power consumption of the processors.

So, we choose to estimate the dynamic power and static power by solving the unknown

variables in Pdyn = C · V 2 · f + Pstatic given different pairs of real total power consumption

and clock frequencies measurements. The estimation results are also shown in Fig. 5.6, in

which we achieve 98.2% prediction accuracy on the GPU and 97.1% prediction accuracy on

the CPU.

5.5 Integrating Overclocking and Fault Tolerance

5.5.1 Overclocking on CPUs and GPUs

Common slack reclamation based energy saving approaches are based on reducing

the speed (i.e., clock frequency) of processors. This is based on the approximate relation

between power and clock frequency of processors: Pd =∝ f2.4 [73]. For example, assuming

execution time is inversely linearly proportional to frequency, if we reduce the clock fre-

quency by half, the execution time is doubled. However, the power consumption is only

about 1/5 of the original, which compensates the extra energy consumption cost by extra

execution time. The total dynamic energy is reduced by about 60%. On the other hand,

it is easy to see that if we increase the clock frequency of a processor, more energy will be

consumed.
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Figure 5.6: Processor power consumption under different clock frequencies

However, if we further push the clock frequency beyond a certain level, the power

consumption will no longer increase due to the power limit set by the hardware or user

settings. Fig. 5.6(a) shows the power change pattern as we increase the clock frequency

on our testbed GPU. It is easy to see that energy consumption will decrease given that

power is fixed and execution time reduces with the increase of clock frequency. To maintain

the higher clock frequencies with fixed power consumption, the voltage supply will decrease

according to the relation: Pdyn = C · V 2 · f , where P is power, C is dynamic capacitance

(usually near constant), V is supplied voltage, and f is clock frequency. However, limited

by the hardware we cannot apply the power limit for our testbed CPU as shown in Fig.

5.6(b).

A proper voltage supply is key to maintain system stability at a certain clock

frequency. Usually, there is a threshold voltage – Vmin. Once the voltage drops below that
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Figure 5.7: Error during TMU under different clock frequencies on GPU.
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Figure 5.8: Error during PU under different clock frequencies on GPU.
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Figure 5.9: Error during PD under different clock frequencies on CPU.
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the system could not perform correctly. According to previous studies, [113, 114], Vmin is

determined by both the characteristics of hardware and the program running on it.

An unreliability processor can have multiple kinds of hardware fault. One of the

most common kinds of hardware fault is the transient fault. It can randomly occur to

any arbitrary component of a processor in a certain frequency depending on the degrees

of overclocking. Transient fault rate can increase as we push the processor to higher clock

frequencies or decrease if we lower the clock frequency since transient faults are usually not

caused by permanent hardware damage.

If hardware transit faults occur and cause errors in the software level, they are

usually classified into two categories: hard error and soft error. If the error causes processes

or system crash, it is classified as a hard error. If the error causes incorrect calculation

results, it is classified as a soft error. Fig. 5.7 (a) - 5.9 (a) show the CPU/GPU error

type distribution under different clock frequencies for TMU, PU, and PD. The results are

obtained from testing each operation with a small-sized input 10000 times given different

clock frequencies. The reason we choose a small input size is that it is easier for us to

distinguish different error type since shorter execution time can reduce the possibility that

multiple errors occur during a single run. The distribution indicates how many runs obtain

correction results, contain soft errors, or crashed. We adjust the clock frequency from the

lowest possible frequency at fmin. fbase is the baseline clock frequency used throughout

this work and it is also the highest clock frequency that the processor will be automatically

adjusted to. Beyond that, the clock frequencies are considered at overclocking frequencies.

As long as the clock frequency is lower than fmax correct, the processor can still operate
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normally without have hardware faults. Beyond fmax correct and below fsafe the processor

begins to have soft errors but does not leads to process or system crash. However, beyond

fsafe we would experience process or system crash. Our GPU shows these clock frequencies

as different value, however, our CPU does not exhibit any soft error before it begins to have

crashes.

In this work, we only aim to handle soft errors caused by overclocking. For doing

that, we restrict the processor clock frequency to be under a certain frequency threshold,

so that possibility of hard error (e.g., crash) is insignificant or negligible.

Depending on where the transient fault occurs, it may manifest itself as different

kinds of soft error. For example, the calculation error is usually caused by faults in the

logic part of ALU or FPU. Memory storage error is usually caused by faults (e.g., bit flips)

in the storage cells of DRAM, cache, or registers. For matrix operations, matrix elements

sometimes can be repeatedly accessed in order to obtain final results. If an element whose

value is corrupted by software gets repeatedly referenced, it may cause error propagation

i.e., accumulated error in the result matrix. Depending on the cause of the error and the

computation pattern (i.e., how data is used/reused) of a matrix operation, the error pattern

can be different. Here we define three degrees of error pattern: 0D, 1D, and 2D.

• 0D: a single standalone error with no error propagation;

• 1D: an error propagates to entire/part of one row/column;

• 2D: an error propagates beyond one row or column.

Higher degree of error propagation means the update operation is more sensitive to errors.

So, here we further study the error rate of those three type of error propagation in CPU
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and GPU still using our previous testing method. The results are shown in Fig. 5.7 (b) -

5.9 (b).

5.5.2 Choosing Suitable Clock Frequencies

To handle soft errors, we choose to use ABFT since it brings much lower fault tol-

erance overhead compared with more general application-level duplication based approaches

such as DMR (100% overhead) or TMR (200% overhead). ABFT is an application-specific

approach and it is usually designed for matrix operations including matrix decompositions

focused in this work. It is based on the idea that if we encode a certain amount of matrix

information in checksums before a matrix operation and apply the same matrix operation

also to checksums, the checksum relation would still hold for the result matrix. By verifying

the checksum relations, we are able to detect or even correct errors in the result matrix.

Depending on how much information is encoded in checksums, the error tolerance

strength is different. Currently, there are two common ways to do checksum encoding (i.e.,

checksum scheme). (1) Single side checksum scheme encodes matrices along either rows or

columns (i.e., calculate the sum of elements of every row or column). Since it only encodes

matrix in one dimension, it brings relative lower overhead. However, it can only efficiently

tolerate 0D error pattern. (2) Full checksum scheme encodes matrices along both rows and

column at the same time. Since it encodes matrices in both dimensions, it brings stronger

protection i.e., both 0D and 1D error pattern. However, it also brings higher fault tolerance

overhead.

Since there is a limitation on how many errors it can correct for a certain check-

sum design and the number of errors can increase with the raising of the processor clock

133



frequency, it is important that we determine clock frequencies and checksum designs that

can ensure all errors can be detected and corrected with high confidence. Otherwise, an

undetected or uncorrected error would cause serious error propagation later, which requires

recovery with high overhead. In this work, we find that it is useful to estimate the max

possible processor clock frequencies given two checksum designs. In order to do that, we

first define an error rate function R given clock frequency that can be derived from Fig.

5.7 (b) - 5.9 (b):

λf,error type = R(f, error type)

where λ is the error rate of a certain error type. The error type can be 0D, 1D,

or 2D. f is the processor clock frequency. Assuming the rate is constant for a given clock

frequency, we can treat the distribution of probability errors occur during a period of time

as Poisson distribution. So, we can calculate the probability of have error less or equal than

k during a period of time T using the CDF of Poisson distribution function:

P (# of errors in error typek) =

k∑
i=0

e−λf,error typeT (λf,error typeT )i

i!
(5.8)

Based on equation 5.8, we can define a function F that output the max possible

clock frequency that leads to less to equal to k errors error type during time period of T

with at least probability of p:

fmax = F (k, error type, T, p)
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For single side checksum, it can only tolerate up to one 0D error propagation.

Since we are encoding checksum for each nb× nb matrix block individually, it can tolerate

up to m
nb ×

n
nb 0D error propagations for matrix size of m× n. However, it cannot tolerate

any 1D or 2D error propagations.

So, the max possible clock frequency is estimated as:

fmax single = min(F (
m

nb
× n

nb
, 0D,TOP , p0), (5.9)

F (0, 1D,TOP , p1), F (0, 2D,TOP , p2)) (5.10)

Similarly, we can also estimate the max possible clock frequency for full checksum

as:

fmax full = min(F (
m

nb
× n

nb
, 0D,TOP , p0), (5.11)

F (
m

nb
× n

nb
, 1D,TOP , p1), (5.12)

F (0, 2D,TOP , p2)) (5.13)

where TOP is the execution time of this matrix operation, which can be obtained

from our algorithmic prediction model. p0, p1, p2 can be set as desired. Higher probabilities

such as 99% indicate that from 99% of the case ABFT can handle all errors. However,

higher probabilities also impose a stricter rule on clock frequency adjustment, which brings

a trade-off here.
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5.6 Experiments

In this section we detail the evaluation of PowerLA on a GPU-accelerated hetero-

geneous system: a linear algebra library of dense matrix decomposition (Cholesky, LU, and

QR).

Table 5.3: Hardware Configuration for Experiments.
Component CPU GPU
Processor Intel Core i7-6700K NVIDIA GeForce GTX 750 Ti
Peak Perf. 92 GFLOPS (single) 1389 GFLOPS (single)

Original Clock 0.8-4.2(↑by0.1)GHz 980-1331(↑by 13)MHz
Overclocking 4.2-4.4(↑by0.1)GHz 1331-1500(↑by 13)MHz

Memory 8 GB RAM 2 GB RAM

5.6.1 Evaluation Methodology

Since PowerLA brings performance, fault tolerance, and energy efficiency optimiza-

tion, we compare our works with the state-of-the-art works among three aspects.

• Original MAGMA: The matrix decompositions with the state-of-the-art performance

on heterogeneous systems with CPUs and GPUs without fault tolerance and energy

saving optimizations.

• FT-Single: Matrix decompositions with single side checksum ABFT.

• FT-Full: Matrix decompositions with full checksum ABFT.

• SR: The matrix decompositions with algorithmic slack reclamation.

• BSR-V1(ours): Matrix decompositions with our strict bi-directional algorithmic slack

reclamation without applying fault tolerance.
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Figure 5.10: Energy consumption and performance comparison for Cholesky decomposition.

• BSR-V2(ours): Matrix decompositions with our relaxed bi-directional algorithmic

slack reclamation without applying fault tolerance.

• BSR-Single-V1(ours): Matrix decompositions using our strict bi-direction algorith-

mic slack reclamation with single side checksum ABFT.

• BSR-Single-V2 (ours): Matrix decompositions using our relaxed bi-direction algo-

rithmic slack reclamation with single side checksum ABFT.

• BSR-Full-V1 (ours): Matrix decompositions using our strict bi-direction algorithmic

slack reclamation with full checksum ABFT.

• BSR-Full-V2 (ours): Matrix decompositions using our relaxed bi-direction algorith-

mic slack reclamation with full checksum ABFT.
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5.6.2 Experimental Setup

All experiments were performed on a power-aware CPU-GPU server with Ubuntu

16.04 running on it. Table 5.3 lists hardware configuration of the experimental plat-

form. The CPU overclocking is achieved by: 1) Setting the maximum overclocking fre-

quency in BIOS; 2) Setting the CPU power state governor to keep it always at the highest

clock frequency (sudo cpupower frequency-set --governor performance); 3) Adjust-

ing the max CPU clock frequency (CPU set max clock - sudo cpupower frequency-set

-u <clock> , where <clock> is in Hz). The CPU and DRAM energy and power consump-

tion are measured by reading the associated register counters in Intel CPUs via MSR (Linux

perf API). GPU overclocking is achieved by 1) Setting a max graphics clock frequency offset

in NVIDIA X Server Settings GUI; 2) Setting the power management to keep GPU always

running at the highest clock frequency (also done in NVIDIA X Server Settings GUI); 3)

Querying the available GPU clock frequencies (nvidia-smi -q -d SUPPORTED CLOCKS); 4)

Setting the graphics clock frequency (nvidia-smi -ac <graphics clock>, <memory clock>,

where the clock unit is in Mhz). The GPU and DRAM energy and power consumption are

measured using NVIDIA Management Library (NVML) API. We keep memory clock fre-

quencies of CPU and GPU at their default value in our experiments and only modify the

core clock frequencies.

We applied all above test scenarios to Cholesky, LU, and QR decomposition on

the MAGMA library with multiple global matrix sizes each (ranging from 5120 to 10240).

However, due to limit space, we only show the result for the input size of 10240 × 10240.

For other input matrix sizes, the results are similar.

138



-15%

-10%

-5%

0%

5%

10%

15%

FT
-S

in
gle

FT
-F

ul
l

SR

BS
R-

V1
 (O

ur
s)

BS
R-

V2
 (O

ur
s)

BS
R-

Si
ng

le
-V

1 
(O

ur
s)

BS
R-

Si
ng

le
-V

2 
(O

ur
s)

BS
R-

Fu
ll-

V1
 (O

ur
s)

BS
R-

Fu
ll-

V2
 (O

ur
s)

En
er

gy
 Sa

vin
g

CPU Energy Saving GPU Energy Saving

(a) Energy consumption comparison

0

2

4

6

8

10

12

14

Or
ig

ni
al

FT
-S

in
gle

FT
-F

ul
l

SR

BS
R-

V1
 (O

ur
s)

BS
R-

V2
 (O

ur
s)

BS
R-

Si
ng

le
-V

1 
(O

ur
s)

BS
R-

Si
ng

le
-V

2 
(O

ur
s)

BS
R-

Fu
ll-

V1
 (O

ur
s)

BS
R-

Fu
ll-

V2
 (O

ur
s)

Ex
ec

ut
io

n 
Ti

m
e 

(s)

Computation ABFT Overhead

(b) Performance comparison

Figure 5.11: Energy consumption and performance comparison for LU decomposition.

5.6.3 Results

Energy Consumption Comparison

We first compare the energy consumption of each design. Fig. 5.10(a) - 5.12(a)

show the energy impact bring by different designs on Cholesky, LU, and QR decomposition.

In these figures, positive values represent the percentage of energy saving and negative values

represent the percentage energy of more energy cost compared with the baseline. The

baseline is chosen as the original MAGMA version running on a clock frequency of fbase

for CPU and GPU during the entire execution. Comparing with fault tolerant only designs

(i.e., FT-single and FT-full), our new designs can save 11.0% - 15.9% total energy. In

addition, comparing with energy saving optimization only design (i.e., SR), our new designs

can save 2.8% - 3.6% extra energy, which is equal to 51.1% - 84.4% more energy saving.
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Figure 5.12: Energy consumption and performance comparison for QR decomposition.

Performance Comparison

Fig. 5.10(b) - 5.12(b) show the performance impact bring by different designs

on Cholesky, LU, and QR decomposition. Comparing with fault tolerant only designs

(i.e., FT-single and FT-full), our new designs can achieve 8.2% - 15.0% performance

improvement. In addition, comparing with energy saving optimization only design (i.e.,

SR), our new designs can achieve 2.2% - 9.8% performance improvement.

5.7 Summary

Energy efficiency and fault tolerance are becoming critical factors of concern when

achieving parallelism in high performance scientific computing in this era. Matrix decompo-

sitions on heterogeneous systems with GPU have become key components in many scientific

applications. Many works have been proposed for improving their energy efficiency and re-

liability. However, not much work has been focused on optimizing both energy efficiency

and reliability at the same time since they do not naturally compatible with each other.
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In this work, we proposed a novel bi-directional slack reclamation, which allows both fault

tolerance and energy saving to be applied to matrix decompositions at the same time. Ex-

periment results show that compared with original slack reclamation, our work not only

enables fault tolerance but also bring higher energy saving.
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Chapter 6

Related Work

6.1 Algorithm Based Fault Tolerance for Soft Errors

Today’s computing systems have been used widely in academic and industrial fields

to solve various challenging problems. However, many kinds of faults can occur in comput-

ing systems, which may negatively affect the process of computation or the correctness of

calculation results. One of the most challenging error to tolerate is soft error. Soft error

leads to incorrect results yet without aborting the computation process, which makes it

hard to be detect and correct.

[83, 45] have shown future supercomputers will be highly susceptible to soft errors,

especially the ones that lead to silent data corruption (SDC). In [94], a large-scale study of

GPU error rate shows that two-thirds of the tested GPU hardware exhibit pattern-sensitive

soft errors in GPU memory or logic parts. In [155], it is shown that GPUs exhibit high

soft error susceptibility and soft errors arise more frequently as the workload increases. In

addition, many GPU undervolting and overclocking based energy saving approaches [113]

greatly impacts the system reliability and thus cause the frequent occurrences of soft errors.

142



One common general appraoch to tolerate soft error is to use Triple Modular

Redundancy (TMR) [133]. TMR works in following way: it first either performs three

identical computations with each on one hardware platform at the same time or performs

the computation for three times on the same hardware, then compares the three results

obtained, and finally reports the assumed correct result based on majority voting. Though

it is a general approach that can be applied to any application, it introduces very high

overhead (i.e., 200%). In order to address this issue, fault tolerance built at application

level is desirable, since it can leverage the semantics and structure of a specific application

with low fault tolerance overhead.

Algorithm-based fault tolerance (ABFT) technique represents a middle ground be-

tween application-level fault tolerance and system-level fault tolerance. It was first proposed

by Huang and Abraham [102], which tolerate soft errors for matrix operations with far less

overhead. Huang and Abraham proved that for many matrix operations the relationship

between input matrix and its checksum holds in the final computation results, which can

be used for error detection and correction in the end of computation. Suppose an n-by-n

matrix is given. Its decomposition complexity is O(n3), the error detection complexity is

only O(n2), and the overhead of error recovery is far less than that of TMR considering the

recovery does not require re-execution.

In recent years, ABFT has been extended by many researchers in recent years.

For example, in [39], Banerjee et al. proposed an ABFT scheme that works on hypercube

multiprocessor. In [146], Sao and Vuduc explored a self-stabilizing fault tolerance approach
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for iterative methods. Among them the most relevant related works to our work are the

ABFT protected one-sided matrix decomposition [184, 180, 50, 53, 65, 185].

6.2 Energy Saving for Matrix Operations

The growing prevalence of heterogeneous architectures has motivated a large body

of energy efficient approaches[136], but few of them were designed specifically for numerical

linear algebra operations, such as dense matrix factorizations extensively used in HPC. Some

efforts presented next can also be applied to heterogeneous systems with similar techniques.

OS-level Scheduling. Liu et al. [129] proposed several power-aware techniques for a

CPU-GPU heterogeneous system including two static/dynamic mapping algorithms and

one aggressive voltage reduction scheme. Decent power and energy savings were achieved

(more than 20%) towards several matrix workloads, but our work targets different matrix

algorithms with less slack and thus less energy saving opportunities. Their work focused on

time-sensitive applications that require significant computational capacity, such as real-time

scoring of bank transactions, live video processing, etc. Our work can also meet fine-grained

timing requirements of applications, which is guaranteed by respecting tasks on the critical

path. Hong et al. [97] proposed an integrated power and performance model to statically

determine the optimal number of processors for a given application running on GPU, based

on the intuition that using more cores is not necessary for applications reaching the peak

memory bandwidth. By using fewer GPU cores, average 11% energy savings can be achieved

for memory bandwidth limited applications. The proposed system can be used by a thread

scheduler for online energy saving decision-making. This approach was also evaluated on

different applications than us – the more energy savings do not demonstrate their strength.
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Library-level Scheduling. Alonso et al. [34] incorporated two energy saving techniques

at library level to schedule the computation of dense linear algebra operations on a hybrid

platform of a multicore CPU and multiple GPU. Specifically, idle threads were blocked

when no tasks to process, and busy-waiting threads were also blocked by synchronization

primitives when waiting for a device to finish its work. Due to lack of consideration of

algorithmic characteristics of dense linear algebra operations, the reported average energy

cost reduction was around 4% for Cholesky and 7% for LU. Anzt et al. [38] applied energy

efficient techniques on GPU-accelerated iterative linear solvers for memory-intensive sparse

linear systems, and demonstrated that considerable energy savings (17.8% on average) can

be fulfilled without harming performance noticeably, by setting CPU to a low power state

during the time when GPU is running while CPU is busy-waiting. However, the proposed

solution cannot work for our scenario where CPU and GPU frequently interact with data

movement. Note that there exists more slack for sparse linear algebra operations and more

energy savings are expected compared to dense ones.

Online and Offline Workload Prediction. There exist numerous solutions that pre-

dict workload and slack, facilitating energy saving decision-making, spanning from online

to offline. Zhu et al. [186] proposed a power-aware consolidation scheme of scientific work-

flow tasks for energy and resource cost optimization. The pSciMapper framework consists

of online consolidation and offline analysis for resource usage prediction (e.g., CPU uti-

lization) using Hidden Markov Model (HMM), with reported average prediction error of

moderate 3.3%. However, the drawback of this approach is considerable slowdown around

15%, which is unacceptable in HPC nowadays. For comparison purposes, we also adopt
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HMM-based slack prediction in an online fashion instead, and experimental results indicate

a higher prediction error (up to 11.29%) can be incurred. Li et al. [125] applied a Predictive

Bayesian Network to identify daily workload patterns and adjust resource provisioning ac-

cordingly for cloud datacenters. The prediction algorithm was evaluated to be considerably

effective (only 0.43% average prediction error was observed). Our work differs from this

offline workload prediction – GreenLA is able to achieve energy savings online for HPC runs

using negligible amount of training dataset from the earlier stage of the runs. Tse et al.

[174] proposed a novel Monte Carlo simulation framework that supports multiple types of

hardware accelerators (FPGA and GPU) and provided scheduling interfaces to adaptively

perform load balancing at runtime for performance and energy efficiency. The energy sav-

ings achieved is however from performance gain obtained from the collaborative simulation

framework, not from an energy efficient strategy.
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Chapter 7

Conclusions

To enabled fault tolerance for one-sides matrix decomposition on heterogeneous

systems with GPUs, we design the first ABFT for one-sided matrix decompositions on het-

erogeneous systems with GPUs – Enhanced On-line ABFT. By designing a novel ABFT

checksum maintaining algorithm for GPUs, our Enhanced On-line ABFT effectively tol-

erates errors during matrix decompositions. It is also the first Online-ABFT scheme that

can correct both computing and storage errors. To further enable stronger error propaga-

tion protection, we propose Full checksum ABFT. Full checksum ABFT enables also much

wider and stronger error protection for matrix decompositions benefited from our novel

full checksum scheme specially designed for one-side matrix decompositions. This stronger

error protection can efficiently reduce and tolerate error propagations during matrix decom-

positions. To reduce fault tolerance overhead, we give the first systematic study of error

propagation pattern caused by computation, memory system, and communication error

that occurs in all major operations of matrix decompositions. Based on the study results,

we provide an efficient ABFT checking scheme by prioritizing the checksum verification ac-

cording to the sensitivity of matrix operations, which leads to strong error protection with
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low fault tolerance overhead. To accurately predict the slacks in one-sided matrix decom-

positions and maximize energy saving, we propose a novel algorithmic slack reclamation

energy saving approach for one-sided matrix decompositions on GPUs. Our work exploit

algorithmic knowledge of linear algebra operations to predict slack on CPU and GPU, and

use application-level DVFS strategies to reclaim the slack for energy savings. Finally, we

propose PowerLA, enhanced one-sided matrix decompositions that are both energy efficient

and fault tolerance.
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