UCLA

UCLA Electronic Theses and Dissertations

Title
Grammar Refinement for Grammar-Based Test Input Generation

Permalink
btt_ps://escholarship.orq/uc/item/lz34f7nx]

Author
Fok, Ricky Yu-Taai

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/1z34f7nx
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
Los Angeles

Grammar Refinement

for Grammar-Based Test Input Generation

A thesis submitted in partial satisfaction
of the requirements for the degree

Master of Science in Computer Science

by

Ricky Yu-Taai Fok

2024

© Copyright by
Ricky Yu-Taai Fok
2024

ABSTRACT OF THE THESIS

Grammar Refinement

for Grammar-Based Test Input Generation

by

Ricky Yu-Taai Fok
Master of Science in Computer Science
University of California, Los Angeles, 2024
Professor Miryung Kim, Chair

Grammar-based fuzzing is an effective method of testing software that requires highly struc-
tured inputs. However, these fuzzers require a user-provided input grammar that often does

not exist for niche and emerging domains.

Grammar inference algorithms fill this gap by inferring a grammar using a set of train-
ing example inputs that satisfy a black-box oracle. However, existing grammar inference
algorithms have shown to require on the order of hours to days to infer an input grammar
from a handful of examples. We observe that some software systems such as AWS Cloud-
Formation (CF) and Ansible take inputs that conform to a schema built on top of common
formats like JSON or YAML. Our key insight is that the grammars for these inputs are

simply refinements of the parent grammars of the common formats.

We introduce GRAMREFINE, a grammar inference algorithm that refines the given base
grammars into more precise input grammars. By using the base grammar as a starting
point, we significantly reduce the time needed to infer a grammar and obviate the need for

language-specific heuristics, such as matching parenthesis or specific delimiter usages.

1

We conduct a comprehensive evaluation of GRAMREFINE against the recent state-of-
the-art black-box grammar inference algorithm TREEVADA [4] on AWS CloudFormation
templates, Ansible playbooks, and four sets of MLIR dialects, using a generic JSON grammar
and generic MLIR grammar as the base grammars respectively. GRAMREFINE is on average
654 x faster and achieves 194x greater branch coverage than TreeVada. GRAMREFINE’s
refined grammars creates qualitatively better examples than the base grammars—With more
work to improve input validity (i.e oracle satisfaction), this could eventually translate to
better coverage. GRAMREFINE has the significant potential to improve input coverage and

fault detection, while altering the burden to write a complex grammar by hand.

1l

The thesis of Ricky Yu-Taai Fok is approved.
Jens Palsberg
Achuta Kadambi

Miryung Kim, Committee Chair

University of California, Los Angeles

2024

v

To my father ...
who showed me the wonders of technology
and justified my education above all else.
And to my beautiful wife and son that gave me the strength

to move forward.

TABLE OF CONTENTS

1 Introduction 1
2 Motivation 4
3 Approach 8
3.0.1 Algorithmic Proof for Refinement 10
3.0.2 Clustering subtrees 11
3.0.3 Inferring rules for clusters, 13
3.0.4 Lexer Rule Synthesis 15
3.0.5 Concertizing cluster rule’s parents 17
4 Evaluation 19
4.0.1 Experiment Design Lo 19
4.0.2 Evaluation Metricso o 21
4.0.3 RQI: Precision & Recall 24
4.0.4 RQ2: Refinement Effectiveness 25
4.0.5 RQ3: Refinement Efficiency 26
5 Conclusion 29
5.0.1 Future Work 29
6 Appendix 32
References 33

vi

3.1

3.2

3.3

3.4

4.1

6.1

LIST OF FIGURES

Grammarinator parse tree visualization for Listing 2.1.

Parse tree steps for one recursive call to the clustering algorithm on the CF file

defined in Listing 2.1..

Refined grammar results for one recursive clustering algorithm call on the CF file

defined in Listing 2.1

Parent Cluster Concretization (PPC) applied after Figure 3.3

GRAMREFINE achieves significantly higher results than Treevada. On average,

GRAMREFINE performs 645.4 x faster than Treevada.

Example files of MLIR dialects input domains

vil

10

4.1

4.2

4.3

4.4

LIST OF TABLES

Benchmark subjectso

CF files have no coverage and were incompatible with Treevada. GRAMREFINE

achieves greater recall than Treevada.
Amortized Coverage

Amortized coverage is calculated as the subject program’s branch coverage di-
vided by time in seconds (branches covered per second). GRAMREFINE, on av-

erage, is 160.1x better in amortized coverage than Treevada.

viil

ACKNOWLEDGMENTS

This masters thesis is based on the early findings and works of a conference paper being
prepared for submission. Chapters One, Two, Three, and Four are altered versions of text
from the unpublished paper. Chapter Five details current implementations and algorithm

changes, from the draft under preparation.

The unpublished paper is being advised by Miryung Kim, and is co-authored by myself
and Ben Limpanukorn. Ben collaborated on most parts of the paper, including the imple-
mentation of the clustering algorithm, GRAMREFINE’s runnable scripts, evaluation results,
and a large portion of the writing in the unpublished draft that has been used Chapters
One, Two, Three, and Four. Independent contribution lies in the lexer rule synthesis im-
plementation, which is based on sample code from Hong Jin Kang, initial implementations,
and demos for grammar refinement, and writing and modifying the parts of the unpublished

draft to discuss the earlier findings.

Furthermore, I would first like to express my deepest appreciation to my advisor, Miryung
Kim, for taking a chance in me as well as her valuable guidance throughout this paper and
my time here at UCLA. I would also like to extend my wholehearted gratitude to Ben
Limpanukorn for his unwavering patience and extensive contribution to this collaborative
work. I'd like to acknowledge my committee advisors, Jens Palsberg and Achuta Kadambi,
whom, although may not know, have had a large impact in my educational journey. Many
thanks to all the students and post doctorate fellows in the Software Engineering Analytics
Laboratory for their continuous support. And last, but most definitely not least, I would
like to thank my friends and family for giving me their support during such a difficult time

in my life.

X

CHAPTER 1

Introduction

Fuzzing has demonstrated significant potential in its ability to detect software faults that
are overlooked by human-written test cases. However, many software applications like com-
pilers and infrastructure-as-code (IaC) tools expect highly structured inputs that traditional
fuzzers without domain knowledge struggle to generate. Grammar-based fuzzers, such as
Nautilus [5] and Grammarinator [7], constrain generation with a user-provided context-free
grammar. This method ensures that the generated test inputs conform to the syntactic rules
of the target application expressed in a context-free grammar, increasing the likelihood of

discovering deeper and more subtle bugs.

A drawback of grammar-based fuzzing is the need for the user to provide a grammar.
For common languages such as JSON, Javascript, or C, these grammars may already exist,
but many niche domains extend these base grammar formats, however they do not provide
a refined grammar besides what is implicitly defined by a working implementation of an
input validator. Modern approaches towards grammar-based fuzzing benefit from automated
grammar induction/inference, since writing a context-free grammar is difficult and time
consuming. Treevada [4], Arvada [8] and Glade [6] are examples of such efforts where example

inputs are used induce a grammar that is then used to generate syntactically valid inputs.

One particular instance of this issue is in AWS CloudFormation (CF). CF files use tem-
plates defined in JSON to setup and model AWS resources. These templates follow a speci-
fication that constrains the structure of the JSON file. For example, cloud resources defined

in a CF template must always be contain a "Type" key with a value that corresponds to a

valid resource type identifier such as "AWS: :S3: :Bucket". To generate valid CF templates
with grammar-based fuzzing, the grammar should encode both JSON syntax and CloudFor-

mation’s specific semantic constraints.

Similarly, the Multi-Level Intermediate Representation (MLIR) is an extensible compiler
infrastructure that poses a similar, but more difficult challenge for test input generation [1].
In a previous work, an effort was made to port a general MLIR grammar from Lark [14] to
ANTLR [9]. Although successful, extending this grammar for each of the 60 plus dialects (as
of 2020) is impractical since MLIR is an inherently extensible infrastructure where compiler
engineers define they own custom IR dialects [3]. These dialects are intermediate represen-
tations (IR)s based on MLIR’s base IR, with unique sets of semantics and functionalities,
such as the ”func.func” operation which represents a function definition. For instance, the
Circuit IR Compilers and Tools (CIRCT) project is an extensible compiler for heterogeneous
compilation that defines 26 new MLIR dialects with a total of 145 new operations [3]. The
generic MLIR grammar is therefore incapable of fuzzing CIRCT-specific operations that have

custom semantics.

We observe that the current grammar-based fuzzing techniques are unable to generate test
inputs robustly for a project where the base grammar is refined to specific domain-specific
input constraints. In this paper, we introduce a novel algorithm called GRAMREFINE that
refines a generic base grammar into a specialized grammar for grammar-based fuzzing. At
a high level, GRAMREFINE breaks down a provided set of input examples into parse trees.
These trees are then compared to identify and cluster similar subtrees. These subtrees are
then used to generate new, alternative production rules that are subsequently appended into

the defined generic grammar.

We assess GRAMREFINE’s effectiveness and efficiency by measuring the number of gener-
ated inputs using the refined grammar and the time required to infer a grammar and gener-
ate 1000 inputs, respectively. This evaluation is conducted across four sets of MLIR dialects

(arith, async, krnl, and onnx) and AWS CloudFormation files. Our findings indicate that

GRAMREFINE maintains perfect recall and achieves an average branch coverage per second
that is 194 times greater than that of Treevada. Additionally, we conducted a qualitative
analysis to compare the outputs using GRAMREFINE’s grammar and the base grammar for
their semantic and syntactic quality. In this analysis, GRAMREFINE demonstrated superior

performance, generating more extensive and natural inputs.

The remainder of this paper is organized as follows. Chapter 2 introduces a motivating
example for GRAMREFINE, followed by Chapter 3 where we present the design and imple-
mentation of GRAMREFINE. In Chapter 4, we provide the design of our experiments and
the empirical evaluation results. Finally, we present the conclusions in Chapter 5. In future
work, we aim to enhance the amount of valid generated inputs by addressing fundamental

issues with our implementation.

© o0 N O Ot ks W NN

[et
N = O

CHAPTER 2

Motivation

While learning a context-free grammar can suit many purposes, its most common use is to
generate new test inputs for automated testing. Prior works like Treevada [4], Arvada [8], and
Glade [6] infer a context-free grammar from scratch under the problem setting where only a
set of example inputs and a black-box validator are available. The goal of these algorithms is

to learn the golden grammar, i.e. the grammar implicitly defined by the black-box validator

that serves as an oracle for valid inputs.

Listing 2.1: Example CloudFormation file.

{
"Resources": {
"MyBucket": {
"Type" : "AWS::83::Bucket",
}s
"MyInst": {
"Type" : "AWS::EC2::Instance",
}
¥
}

However, there also exists a set of input domains where the golden grammar is a spe-

cialization of a more general base grammar that is already known and widely available.

For example, AWS CloudFormation (CF) templates [11] and Ansible Playbooks [10] are
a subset of JSON. However, using the base grammar alone for grammar-based fuzzing is
ineffective as the base grammar does not respect the domain-specific constraints, such as
special domain syntax and initial declaration requirements, imposed by the downstream
golden grammar. AWS CF template are used to define and provision AWS infrastructure.
In Listing 2.1 we have a properly formatted CF template that requires each resource defini-
tion, such as "MyBucket" on line 2, to be nested within a "Resources" entry (line 2) and
contain at minimum the "Type" key-value pair (line 4 or 8) whose value must be formatted

as "AWS: :PID::RTYPE" where PID is the product identifier and RTYPE is the resource type.

A general JSON grammar shown in Listing 2.3 can parse CF templates like the one
shown in Listing 2.1, but this grammar is ineffective for grammar-based test generation,
as the grammar does not encode the domain specific semantic constraints imposed by the
CF template validator, cfn-1int [12]. cfn-lint evaluates AWS CloudFormation templates
against the CloudFormation spec and checks for both best practices and potential issues
before deployment [12]. When an issue or warning arises, as shown in a run of cfn-lint on
an invalid CF template in Listing 2.2, cfn-1int will output an error/warning code alongside
the source where the error/warning is coming from. For example, suppose a grammar-based
fuzzer attempts to generate a CF template by following the general JSON grammar (Listing
2.3). In this case, it may start with the object rule on line 8 which only specifies that an
object contains zero or more pairs. At this point, the fuzzer may choose to generate zero
pairs, resulting in an empty object and a trivially invalid template. Even assuming that the
fuzzer exercises the pair rule on line 6, it is still unlikely for the fuzzer to generate a key

whose value is exactly "Resources" as required by the CF template specification.

© 0 N O ot s W N

— = =
N = O

0 N O Ot ke W N

Listing 2.2: c¢fn-lint output when attempting to validate an invalid CF template,
SNSTopic.json.

// QOutput from "cfn-1lint SNSTopic.json"
E1001 Missing top level template section Resources

SNSTopic.json:1:1

E1012 Ref SNSTopic not found as a resource or parameter

SNSTopic.json:29:7

E1012 Ref SNSTopic not found as a resource or parameter

SNSTopic.json:36:9

E1010 Invalid GetAtt SNSTopic.TopicName for resource QueueName

SNSTopic.json:40:21

Listing 2.3: Excerpt from the JSON base grammar. Some rules have been simplified for

clarity.

// A 'key' is a string

key : STRING ;

// A 'value' is a string or an object

value : STRING | object ;

// A 'pair' is a key-value pair of an object
pair : key ':' value ;

// An object contains O or more pair entries

object : '{' pairx '}';

To obtain valid CF files from grammar-based fuzzers, the grammar must encode addi-
tional syntactic constraints specific to CloudFormation. Listing 2.4 shows an excerpt of a

JSON grammar that has been tailored to represent a CF golden grammar. In this grammar,

© o0 N O ot ks W NN

—_
]

specialized versions of the key, value, and pair rules are added. A fuzzer following the
production rule for pair rlist for example, will always generate a key with the concrete
string " Resources” whose value is a set of pair_resource’s. Each pair_resource is then
constrained to always contain at minimum a pair_type entry which corresponds to the

"Type":"AWS::PID: :RTYPE" entry.

Listing 2.4: Excerpt of a theroetical CF golden grammar. Some rules have been simplified

for clarity.

key_rlist : '"Resources"'

value_rlist : '{' pair_resourcex '}' ;
pair_rlist : key_rlist ':' value_rlist ;
pair_resource : key ':' value_resource ;
value_resource : '{' typePair ',' pairx '}' ;
key_type : '"Type"' ;

pair_type : key_type ':' typeSpec ;
value_type : 'AWS::' PID '::' RTYPE ;

PID : 'S3' | 'EC2' ;

RTYPE : 'Bucket' | 'Instance' ;

CHAPTER 3

Approach

At a high level, GRAMREFINE infers a refined grammar from a base grammar and a set of
training examples, using an oracle that returns true if a given input is accepted by the golden
grammar. The golden grammar is implicitly defined by the oracle’s implementation, as it
does not exist explicitly for any of our baselines. We assume the base grammar to accept
all the examples accepted by the oracle (100% recall) but may also accept examples that do

not conform to the golden grammar (low precision).

pair
key ":"| value
— \\\\
STR
|
"Resources" ":" ob’j
pair pair
P NN
key ":"| value key ":"| value
g . | g%.
STR obj B
| o SfR /
"MyBucket" pair "MyTnst" pair
key [":" vafue kTy ":" value
S%R STR STR STR
| ! | !
"Type" "AWS::S3::Instance"”

"Type" "AWS::53::Bucket"

Figure 3.1: Grammarinator parse tree visualization for Listing 2.1.

GRAMREFINE first processes each example from the training set, which include true
examples in a user-specified domain, into parse trees using the respective base grammar.
For instance, our training set for CloudFormation (CF) files comprises true examples sourced

from the PIPR dataset, which will be discussed in more detail in the evaluation [13].

GRAMREFINE then infers the refined grammar by creating parser rules that mirror the
parse-trees of the training set. For each token position in a cluster, GRAMREFINE infers
a generalized lexer rule from the tokens that appear in that position of the cluster. For
example, in a cluster where each subtree contains a terminal node representing mathematical
operators, two nodes representing the operators + and - could be mutually interchangeable.
Thus, GRAMREFINE would infer a production rule such as "MATH.OP : ’+’ | ’-’" which
accepts both the + and - operators as the same token. The new, inferred rules are then

appended to the original grammar.

Step 1, 2, &3 Step 3,4, &5
obj
pair pair ob7j
/ l \ / & \ / o
key ":" value key ":" value pair
7 ¥ 5
STR obj I obj
. STR .
"MyBucket" pair MyThst" pair
— /T T
key [":" value key ":" value "Type" "AWS::S3::Instance”
STR STR STR STR
d | ! !
"Type" "AWS::S3::Bucket" "Type" "AWS::S3::Instance"
Step5 &6
Cluster
Step 1
value value
l l Step 2
STR STR
l Step 3
"AWS::S3: :Bucket" "AWS::S3::Instance"
Step 4
Step 5

Figure 3.2: Parse tree steps for one recursive call to the clustering algorithm on the CF file
defined in Listing 2.1.

3.0.1 Algorithmic Proof for Refinement

One of GRAMREFINE’s main implementation details is that it appends rules to a base
grammar to generate a refined grammar. Because of this, when GRAMREFINE adds rules to

the base grammar, it will not cause the new, refined grammar to reject any previous inputs.

Suppose we add a specialized version of the pair rule, called c_pair, into a base grammar,
and there was an input that was parsed before we added this rule. When we parse with the
new, refined grammar and encounter a part of the input that would have previously matched
the pair rule, the parser now has an additional rule to utilize. Therefore, the parser will

take one of two paths:

1. It matches the input with the pair rule, since the rules of the base grammar still exist.

10

2. It matches the input with the newly defined c_pair rule.

3.0.2 Clustering subtrees

GRAMREFINE clusters subtrees across the parse trees of the training set. Clustering, in this
context, involves identifying and grouping subtrees that have identical interior structures
and nodes. This process allows GRAMREFINE to identify common subtrees that can be
represented with the same rule definitions. In other words, GRAMREFINE finds and groups
subtrees that have exactly matching structures, thereby enabling the creation of generalized
rules for those common subtrees. For example, the subtrees A — B — "Text1" and A —

B — "Text2" have matching structures and will therefore be grouped together.

Algorithm 1 Clustering
Require:
e context < the parameterized context

e recipient < the recipient parse tree
Ensure:
e mutateLocation < a parse-tree node in the recipient test case that represents a
valid mutate location

1: C+ {}

2: for all candidate < walk(recipient) do

3: for all node € candidate do

4: foundC'luster + false

5: for all representativeNode € C' do

6: if exactMatch(representativeNode,node) then

7: Add node to the cluster of representative Node
8: foundCluster < true

9: break
10: end if
11: end for
12: if = foundCluster then
13: Create a new cluster with node as its representative
14: end if
15: end for
16: end for
17: return C

11

Our clustering algorithm traverses every candidate node of all parsed trees and compares
them with the clusters in C'. A candidate node is defined as any node in any parse tree.
We have designed C' as a dictionary where the key is the root node representing a potential
cluster, and the value is a set of subtrees that exactly match the subtree of the key. Given
that each node within the cluster shares an identical structure, determining whether a new
node belongs to the cluster requires an exact match comparison against only one of the trees
within the cluster (the key values of C). If the candidate node’s subtree does not match
with any of the existing clusters, we generate a new cluster with the candidate node as the

representative key value.

After identifying the clusters, GRAMREFINE filters clusters based on two heuristics: clus-
ter size and cluster tree height. The cluster size determines the minimum number of sub
trees within a cluster, which prevents GRAMREFINE from synthesizing rules that are based
on a small or singular instance of the subtree pattern. These one-off rules have no general-
izable properties and do not capture the broader patterns in the dataset. The cluster tree
height determines the minimum height for the subtrees within the cluster, which helps to
eliminate generic and ineffectual rules. Clusters with small heights do not contain sufficient
information. For example, a subtree created for the JSON structure with a key parent node
pointing to a single STRING node, as shown in two instances in Figure 3.2 (Step 1), would be
too shallow and generic, rendering it inadequate without additional context. If we set the
cluster size to be less than 2, such a subtree would be included, compromising the effective-
ness of the clustering process. Figure 3.2’s highlighted subtrees labeled Cluster represent a
cluster found between the two child nodes pair within the "Resources" value object from

Figure 3.1.

12

Original

Single Step Recursive Refined 1/2

Single Step Recursive Refined 2/2

obj:
{0 pair (7,7 pair)* '}
|y

cluster_obj:

cluster_value:
‘{" cluster_ce_pair, ... '}’

Figure 3.3: Refined grammar results for one recursive clustering algorithm call on the CF

file defined in Listing 2.1

3.0.3 Inferring rules for clusters

GRAMREFINE then uses a recursive algorithm to generate rules that create a single, de-

pendant chain of dependencies. This algorithm is applied to each cluster and subsequently

appended to the original grammar.

13

"{" cluster_pair ',' cluster pair '}’ .
. 5 u
! obj: [cluster_ce_pair_value:
pair: Tir pair ('L' pair)* 'l cluster_c@_pair_value_string
~ STRING ":' value ‘{. pair (" pair)*® '} ;
’ ; value:
arr: : STRING
v . % 110 cluster_pair:
[, value (7,7 value)® '] key ':' cluster value } ﬁg?BER
H d | arr
3 "true'
cluster_ce_pair: ‘ . '
valug‘i’RING key ':"[cluster ce pair value } ::iﬁe
| NUMBER = H
| obj P,
| arr Dall"éTRING . value cluster_c@ pair_value_string:
| "true . ""AWS::S3::" ('Instance' | ‘Bucket') '"'
| 'false ’ B
;e arr: STRING:
’ ‘[.[‘.’a%u? (5" valuey* '] ™' (ESC | SAFECODEPQINT)* '™'
STRING: . 3
"' (ESC | SAFECODEPOINT)* '™ ’
B
Cluster Step 3

Algorithm 2 Rule Generation

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:

procedure SYNTHESIZERULE(cluster_data, clusters)

node < firstTree(clusters)
rule_name < createRuleName(node.name, clusterI D)
rule_expression < "7
for all child € getChildren(node) do
if isLiteral(child) or reachedDepthLimit(child) then
rule_expression < child
continue
end if
if isUnlexerRule(child) then
new_element_name < synthesizel.exerRule(child, ST, DT')
else
new_element_name < synthesizeRule(child)
end if
rule_expression < new_element_name
end for
if isEmpty(rule_expression) then
rule_expression < "7
end if
rule < finalizeRule(rule_expression)
insertRule(node.name, rule)
return rule_name

23: end procedure

Algorithm 2) and updates the current rule expression based on the types of nodes encountered
by the generation algorithm (line 6-15 in Algorithm 2). Literals are added directly to the
rule _expression variable, as seen at line 6 in Algorithm 2. For example, all the literals

in Figure 3.2 highlighted as the head nodes in steps 2, 3, and 4 correspond to their color-

For every iteration, GRAMREFINE loops through the current node’s children (line 5 in

matching code snippets in Figure 3.3.

stack. In other words, each rule is built incrementally, with each call within the call stack

Each step in the rule generation process relies on the next rule generation call in the call

contributing to the construction of the final rule expressions.

When encountering leaf nodes (lexer rules), GRAMREFINE calls its lexer rule synthesis

14

algorithm. Lexer rules define the lexical structure of the language, specifying patterns for
tokens such as keywords, identifiers, and symbols. For example, Step 5 in Figure 3.2 shows
the lexer rules in the example parse tree. The lexer rule synthesis algorithm generates a rule

that represents the possible combinations of these tokens throughout the subtrees.

3.0.4 Lexer Rule Synthesis

Listing 3.1: Lexer rule synthesis example using different types CloudFormation type strings

Clustered Tokens
["\"AWS::83::Bucket\"", "\"AWS::83::BucketPolicy\"",
<~ "\"AWS::EC2::Instance\"", "\"AWS::EC2::Instance\"",

<3 "\"AWS::EC2::Host\""]

Token Splitting

Ne) Qo -~ (=} ot H~ w

10
11
12
13
14
15
16
17
18

[u\nn’ "AWS", u::u’ USB"’ n::n’ "Bucket“, u\nu]’
[u\nu’ "AWS", u::u’ USB"’ u::n’ "BucketPolicy", u\nn],
[u\nn, "AWS", u::u’ ch2n, u::n’ “Instance", u\mq
[u\nn’ "AWS", n::u, UEC2H’ u::n, "HOSt", n\mt

Grouping

Group 1

[u\nu’ "AWS", u::u’ USB"’ u::n’ "Bucket", u\uu]’
[u\nn, "AWS", u::u’ ussu’ n::n, "BucketPolicy", n\un]’
Group 2

[u\nn’ "AWS", u::u, ch2n, u::n, “Instance", u\mq
[u\nn’ "AWS", u::u’ "ECQ", u::n’ "HOSt", n\mc

Concatenation

15

19

["\"AWS::83::(Bucket|BucketPolicy)\"",

«s "\"AWS::EC2::(Instance|Host)\""]

To represent these variations, GRAMREFINE employs a custom template generator that
returns a list of all possible cluster-matching strings. In other words, GRAMREFINE generates
multiple lists, each proposing a set of rules that fully represent the possibilities for the lexer
rule. To convert these strings into lexer rules, GRAMREFINE splits each string into identifiers
and symbols, utilizing two metrics to group them: the similarity threshold (ST) and the
difference threshold (DT), as seen in line 11 in Algorithm 2. The ST determines the number
of matching substrings required for clustering, while the DT specifies the allowable number

of unmatched tokens within a group.

Consider the outputs from the different steps for the lexer rule synthesis shown in Listing
3.1. The "Clustered Tokens" represent a set of mutually interchangeable, CF terminal
nodes. When a token is split, we obtain an array of substrings that represents each candidate,
as illustrated in the "Token Splitting" step. When one of these arrays (string arrays), such
as those in lines 5, 6, 7, or 8 in Listing 3.1, has a number of matching substrings greater than
or equal to the ST wvalue compared to another string array, they are grouped together. In
our recurring example, lines 5 and 6 are grouped into an array shown in lines 12 and 13,
and lines 7 and 8 are grouped into an array shown in lines 15 and 16 when using an ST
value of 2. If you theoretically set your ST value to 7, each of the string arrays would be
placed in their own grouping because the 5th indexed items ("Bucket", "BucketPolicy",

"Instance", and "Host") do not match.

In addition to the ST heuristic, we also use the DT heuristic to determine if the string
arrays should be grouped based on the difference in the total number of substrings between
string arrays. In our example, DT is set to zero, meaning that the string arrays in a grouping
must have the same number of substrings. This results in the grouping shown in Listing 3.1.

If you set DT to 1, allowing for one additional substring, a string array exactly like the one

16

in line 5 with an additional substring "Temp” after the substring "Bucket” would also be

grouped into Group 1.

If there was another token that did not match our grouping, such as "None", it would
be placed in its own group. Consequently, instead of "Grouping” containing a single array,
we would have a second array with only the token-split version of "None", representing this

non-group-conforming candidate.

3.0.5 Concertizing cluster rule’s parents

Single Step Recursive Refined PPC

cluster_obj:

"{' cluster pair ',' cluster pair '}’
3

resource_obj:

) key ':' cluster_obj
obj: -
resource obj |
| "{" pair (',' pair)* '}"
| 1 { 1 1 } 1
Cluster Step 1 PPC

Figure 3.4: Parent Cluster Concretization (PPC) applied after Figure 3.3

17

Once the proposed rules are generated, GRAMREFINE needs to synthesize additional rules
for each of the parent nodes of the clusters, otherwise known as Parent Cluster Concretization
(PPC). This process back-propagates until it has made a rule for the root node to ensure
that the clusters appear at the correct depth during fuzzing. These parent rules are then

appended into the grammar.

In our CF example in Listing 2.1, PPC generates the code labeled PPC in Figure 3.4.
The first call of the PPC back-propagation generates resource_obj, referencing our head
cluster rule, cluster_obj. Subsequently, resource_obj is appended as an alternative rule
to the existing obj definition from the original base grammar. This process ensures that our
cluster appears only with the additional parent context. In our example, this means that

our cluster would appear as an object value for the "Resources" key value.

18

CHAPTER 4

Evaluation

We answer the following research questions in our study:

RQ1: How "correct” are the grammars refined by GRAMREFINE in terms of precision and

recall?

RQ2: How effective are the grammars refined by GRAMREFINE for fuzzing in terms of branch

coverage?

RQ3: How efficiently does GRAMREFINE refine grammars?

4.0.1 Experiment Design

Once GRAMREFINE produces a new, refined grammar, we utilize Grammarinator, a test
generation tool that uses the provided grammar to generate 1000 test cases [7]. Note that

the number of test cases generated for evaluation is arbitrary.

In our evaluation of GRAMREFINE, we select 4 sets of MLIR dialects from 2 unique
projects [2] [1], as well as a set of AWS CloudFormation files [11] from the PIPR dataset
[13].

We build a corpus of test cases for each input domain. For the arith and async dialects,
the files were taken from unit tests within the LLVM project, and the krnl and onnx dialects
were sourced from the ONNX-MLIR project [1] [2]. Example test cases for each MLIR dialect
are provided in the Appendix. The CloudFormation templates were sourced from a dataset

of IaC (infrastructure as code) programs called PIPR [13], more specifically the IaC Analysis

19

Table 4.1: Benchmark subjects

Domain Description / Oracle (Subject Program)

Train Test
Inputs Inputs

arith

MLIR files pertaining to the arith dialect and other sup-
porting dialects from llvm-project. Oracle: mlir-opt
—-—convert-arith-to-1llvm

30

737

async

MLIR files pertaining to the async dialect and
other supporting dialects from llvm-project.
Oracle: mlir-opt --async-to-async-runtime
--async-runtime-ref-counting
—-—convert-async-to-1llvm

10

20

krnl

MLIR files pertaining to the krnl dialect and
other supporting dialects from onnx-mlir. Or-
acle: onnx-mlir-opt --convert-krnl-to-llvm
--canonicalize

15

onnx

MLIR files pertaining to the onnx dialect
and other supporting dialects from onnx-mlir.
Oracle: onnx-mlir-opt --shape-inference
—--convert-onnx-to-krnl --canonicalize

30

1,350

cf

CloudFormation templates. Oracle: cfn-lint
--non-zero-exit-code error

30

227

project that converts IaC programs into CloudFormation templates [10]

. Each dataset was

split into a training dataset containing 30 inputs (or approximately 30% of the total inputs if

the dataset has fewer than 100 total inputs) and a testing dataset comprising the remaining

inputs. The training set size was determined by our hardware limitations. We found that a

training set size of approximately 30 was the maximum size possible by measuring the peak

memory usage and inference time of GRAMREFINE and Treevada.

Table 4.1 presents each subject program along with their respective numbers of training

and testing inputs, as well as their descriptions. The table also includes the oracle function

call used to verify the generated input files for each subject program.

Each MLIR project provides a utility executable named <project>-opt which is used

20

to independently invoke and test one or more compilers using the generated fuzzer and
represents the oracle (subject program) for the input domains. To fuzz each set of dialects,
we invoke the <project>-opt executable with a pipeline of selected compiler passes on each

test case generated by sampling from the inferred grammars.

Each MLIR input domain utilizes the same executable to represent their oracle, distin-
guished by different combinations of flags used with the executable. The async-runtime-
ref-counting flag is employed for automatic reference counting in async runtime oper-
ations. The convert-arith-to-1lvm flag converts the arith dialect to the LLVM di-
alect. The async-to-async-runtime flag lowers all high-level async operations to explicit
async.runtime and async.coro operations. The shape-inference flag returns the onnx

shape inference. Finally, the canonicalize flag converts operations to their canonical form.

Conversely, CloudFormation templates are tested using a custom linter named cfn-1lint
[12]. The --non-zero-exit-code error flag is included to ensure that the linter only

returns error codes, excluding optimization and warning codes.

Since there are currently no other grammar refinement algorithms, we compare GRAM-
REFINE against Treevada, the current state-of-the-art grammar inference tool at the time
of writing this paper, performs the best in evaluations [4]. Treevada learns context-free

grammars from a set of positive (valid) examples and an oracle.

4.0.2 FEvaluation Metrics

To evaluate and compare the qualitative potential of GRAMREFINE, we use the following

measures:

21

Precision is the proportion of valid generated inputs over the total amount of gen-
erated inputs. A valid input is an input that is accepted by the oracle. For instance,
running the oracle on example 1 in Listing 4.1 would return a negative result since the

example is an invalid CF file.

Recall is the proportion of inputs in the test set that are accepted by parsing with
the inferred grammar over the total size of the test set. For instance, GRAMREFINE’s
refined grammar would accept an MLIR input from the testing set shown in Listing

4.2.

Coverage measures the branch code coverage of the target program. For MLIR pro-

grams, we use LLVM’s SanitizerCoverage tool [1]°.

Time is number of seconds taken to infer the grammar and generate 1000 inputs using

Grammarinator.

22

1
2

© 0 N O ot s W

10
11
12
13
14
15
16
17
18
19
20

Listing 4.1: Two examples of inputs generated using a GRAMREFINE refined JSON grammar

for CF templates

// Ezample 1

"reddit -compiler -api-api-apiGW",

"Default":"Public"

{ "":"D\n",
ey
"0, BE-T7,
"\b": {
"BuildSpec":
}
}s
"+":true }
// Ezample 2

"DeploymentOption":"DB_NAME",

{ nu:{}’

llII:{
"1":true,
nn. {

"Description":" -

}

b

"v:false}

1.888154589708815e+289"

23

1

10

Listing 4.2: MLIR example input from testing set

"builtin.module" () ({
"func.func" () <{function_type = (index) -> (index, index, index),
<> sym_name = "static_basis"}> ({
“bb0(%argO: index):
%0 = "arith.constant" () <{value = 16 : index}> : () -> index
%1 = "arith.constant" () <{value = 224 : index}> : () -> index
%2 = "arith.constant"() <{value = 224 : index}> : () -> index
%3:3 = "affine.delinearize_index" (},arg0, %0, %1, %2) : (index,
<+ index, index, index) -> (index, index, index)
"func.return" (%3#0, %3#1, %3#2) : (index, index, index) -> ()
) O -> 0
P O -> 0

4.0.3 RQ1: Precision & Recall

Table 4.2 shows the performance of Treevada’s output grammar and GRAMREFINE’s output
grammar. GRAMREFINE retains perfect recall across all input domains, because it refines
the base grammar, only adding alternatives to the existing rules. In contrast, Treevada

learns context-free grammars from scratch from a set of positive (valid) examples [8].

GRAMREFINE was unable to generate any valid inputs for arith, krnl, and cf, and
had 98% fewer valid inputs for async and 99.7% less for onnx compared to Treevada. This
indicates that GRAMREFINE struggles to produce grammars that generate valid inputs when
used to generate inputs for fuzzing. This occurs because the PPC only concretizes the parent
nodes, increasing the likelihood that Grammarinator will select a base rule rather than a
newly added rule from the refinement process. Although Treevada exhibits higher precision
than GRAMREFINE, a detailed inspection of the results reveal that its generated inputs are

largely reproductions of the seed/training inputs that lack diversity and novelty.

24

Treevada Grammar GramRefine Grammar

Recall Precision Time (s) Coverage | Recall Precision Time (s) Coverage
arith | 0.000 0.608 34,528 762 | 1.000 0.000 43 286
async | 0.150 0.951 14,319 453 | 1.000 0.017 34 182
krnl 0.067 0.755 0,288 91 1.000 0.000 7 2
onnx 1.000 0.977 17,848 168 | 1.000 0.003 26 8
of N/A N/A N/A N/A | 1.000 0.000 792 N/A

Table 4.2: CF files have no coverage and were incompatible with Treevada. GRAMREFINE
achieves greater recall than Treevada.

4.0.4 RQ2: Refinement Effectiveness

To assess the effectiveness of the refined grammar, we compare the increase in branch cov-
erage achieved by the generated inputs and the training set between GRAMREFINE and
Treevada. The increase in branch coverage is computed by measuring the coverage achieved
by the 1000 inputs generated with the grammar and subtracting any branches already covered
by the training set. For the arith, async, krnl, and onnx subject programs, Treevada’s
coverage was 2.6x, 2.5x, 4.5x, and 21x faster than GRAMREFINE respectively. Since
most of the generated inputs from GRAMREFINE are invalid, GRAMREFINE is unable to

exercise deeper code within the subject program, resulting in lower branch coverage.

Additionally, we conduct a qualitative analysis of the inputs generated by GRAMRE-
FINE versus those generated by the base grammars. Our qualitative analysis indicates that
GRAMREFINE’s refined grammar produces more coherent and natural inputs than the base
grammar. For example, the base inputs in Listing 4.3 for CF are often brief and lack natu-

ralness compared to the GRAMREFINE inputs in Listing 4.1.

For instance, consider examples 1 & 2 in Listing 4.3 that is produced using the base
grammar: one has a single key-value entry, while the other contains a single boolean value;
neither of which conform to the constraints of a CF template. In contrast, example 1 in

Listing 4.1 produced by using the grammar refined by GRAMREFINE conforms much closely

25

o N O Ot e W N

to a CF template in that they are objects that contain key-value pairs such as "BuildSpec"

and "reddit-compiler-api-api-apiGW" at the correct level of nesting.

Listing 4.3: Four examples of inputs generated using the base JSON grammar.
// Ezample 1

"a":null}

// Ezample 2

true

// Ezample 3
[{"b":-8.424e71},null,{"":[0]},[]]
// Ezample 4

(]

4.0.5 RQ3: Refinement Efficiency

In terms of execution time, GRAMREFINE’s outperforms Treevada in all subject programs,
excluding cf. We could not include an evaluation of TreeVada on cf because its execution
time exceeded our limit of 200 hours. We were able to measure the execution time for cf in
GRAMREFINE. GRAMREFINE’s execution time for the cf program is significantly more that
the MLIR dialect programs, because the cfn-1lint oracle requires 1-2 seconds to validate

each file.

arith’s execution time with Trevada is 34,528 seconds and 43 seconds with GRAMRE-
FINE, which is a 803x increase in performance. For async, krnl, and onnx, GRAMREFINE
outperformed Treevada’s execution time by 421.1x, 755.4x, and 686.5x respectively. Av-
eraging across all subject programs, GRAMREFINE’s execution time outperforms Treevada
by 654.4x. Treevada calls the oracle to test every rule it generates, which take up a signif-
icant portion of execution time (i.e cf oracle cfn-lint). In contrast, GRAMREFINE does

not need to call the oracle when inferring its grammar.

26

Additionally, we observe the amortized coverage of Treevada and GRAMREFINE, calcu-
lated as coverage divided by time as shown in Table 4.4, and presented as a bar graph in
Figure 4.1. We used a log scale in the Figure 4.1 to make the smaller values more visi-
ble. We evaluated both coverage and time metrics separately in RQ1 and RQ2. Although
Treevada significantly outperformed GRAMREFINE in coverage for all subject programs (ex-
cluding cf), GRAMREFINE’s substantial performance increase in time results in amortized
coverage values that are significantly higher for GRAMREFINE. Specifically, GRAMREFINE
is 303.5x%, 169.4x, 134x, and 33.6x faster than Treevada in terms of amortized coverage

for the arith, async, krnl, and onnx subject programs, respectively.

Table 4.3: Amortized Coverage

Category Treevada GramRefine

arith 0.022 6.677
async 0.032 5.422
krnl 0.002 0.268
onnx 0.009 0.302

Table 4.4: Amortized coverage is calculated as the subject program’s branch coverage divided
by time in seconds (branches covered per second). GRAMREFINE, on average, is 160.1Xx
better in amortized coverage than Treevada.

27

—_
(e}

0.01

Amortized Coverage (log scale)
o
—_

0.001

arith async krnl onnx

I Treevada Grammar I8 GramRefine Grammar

Figure 4.1: GRAMREFINE achieves significantly higher results than Treevada. On average,
GRAMREFINE performs 645.4 x faster than Treevada.

28

CHAPTER 5

Conclusion

5.0.1 Future Work

The evaluation of our current research has highlighted several areas requiring significant
improvement. The results, while insightful, indicate that all grammar inference algorithms
struggle to produce a competitive number of valid inputs compared to other tools, including
GRAMREFINE. GRAMREFINE encounters this issue primarily because the PPC process
does not take into account the surrounding context, such as sibling and cousin nodes. The
novel idea of grammar refinement that GRAMREFINE presents is a step towards solving
this problem. Consequently, our findings necessitate significant revisions not only in our
rule synthesis methodology but also in other aspects of our novel algorithm, including the

clustering algorithm.

Clustering Algorithm Since our current algorithm is restricted to exact-matching sub-
trees, the refined grammar captures only a narrow scope of the special rules. For example,
if we modify Figure 3.1 so that the right pair does not exactly match the left pair, GRAM-
REFINE would be unable to cluster these subtrees and consequently, it would never generate

the refined rules shown in Figure 3.3.

This means that GRAMREFINE’s generated inputs often lack critical and descriptive in-
formation, resulting in grammars that do not accurately represent our dataset. For instance,
in our CF example in parse tree form (Figure 3.1), the absence of the cluster identified in
Figure 3.2 would drastically reduce the likelihood of GRAMREFINE generating inputs simi-

lar to the cluster. Although the base grammar can theoretically generate the cluster, as it

29

still conforms to the base grammar, the probability of this occurring is near zero. Further

research is necessary on how to better cluster our parse trees.

Rule Synthesis In general, GRAMREFINE’s main limitation stems from the number of valid
inputs produced, as this directly correlates with branch coverage, as stated in the evaluation
of RQ2. One potential solution is to modify the PPC algorithm to include additional sur-
rounding context. However, this approach makes the rules so concrete that GRAMREFINE
would merely replicate the training set. This is a similar issue that Treevada faces as well.
The goal for all grammar inference algorithms, including GRAMREFINE, is to produce a
grammar capable of generating new inputs that are novel, but also valid, meaning they are

accepted by the oracle.

Another potential solution is to remove the base grammar rules. These rules currently
prevent GRAMREFINE from exercising deeper code in the subject program. Although remov-
ing the original rules might improve the precision of the refined grammar, it would sacrifice
GRAMREFINE’s recall, reducing the diversity of the inputs generated. One alternative to
removing the base grammar is to utilize Grammarinator’s option to associate weights with
each production rule. This allows us to bias generation towards the refined rules over the
base rules. However, a refined alternative does not exist for every base rule, as our current

refinement algorithm only concretizes some parent paths and sub-trees from the training set.

Our unpublished paper aims to investigate these ideas further and evaluate this new

implementation against both GRAMREFINE’s current implementation and Treevada.

Evaluation Due to time constraints, we were unable to measure additional details regard-
ing coverage. Although we measured the number of branches covered that were not already
covered by the dataset, as mentioned in RQ2, we did not determine the specific branches
covered. This limitation prevents us from examining the branches that GRAMREFINE cov-
ered but Treevada did not. We will be addressing this gap in our forthcoming unpublished
paper, where we will provide a comprehensive evaluation of the specific branches covered by

GRAMREFINE compared to Treevada.

30

Conclusion & Summary We present GRAMREFINE, a novel grammar refinement algo-
rithm that removes the need for fully-defined grammars in niche domains. GRAMREFINE
and runs significantly faster than SOTA solutions such as Treevada. While these results
are promising, further research into GRAMREFINE’s clustering algorithm and rule synthesis
methodology is necessary to fully realize the potential of GRAMREFINE’s approach. Con-
tinued investigation into the algorithm’s precision performance, optimizations, and various

use cases remain crucial for demonstrating the effectiveness and impact of this approach.

31

CHAPTER 6

Appendix

Figure 6.1 are example test cases for every MLIR dialect used in GRAMREFINE’s evaluation.

This includes arith,async, krnl, and onnx

arith

async

"builtin.module”() ({
“func.func"() <{function_type = (i64, i64) -> i64, sym_name = "test_addi"}> ({
“bbo(%arge: i64, %argl: i64):
%0 = "arith.addi"(%arge, %argl) : (ie4, i64) -> ie4
"func.return”(%e) : (i64) -> ()
H:O->0
D0 -> 03

"builtin.module"() ({
"func.func"() <{function_type = () -> (), sym_name = "main"}> ({
%0:2 = "async.execute"() <{operandSegmentSizes = array<i32: @, @>}> ({
%8 = "arith.constant"() <{value = 1.234560e+82 : 32}> : () -> 32
"async.yield"(%8) : (f32) -> ()
}) : () -> (lasync.token, !async.value<f32>)

krnl

onnx

"builtin.module" () ({
“func.func"() <{function_type = () -> memref<10xi64>, sym_name =
"test_constants_to_file_return_value"}> ({
%0 = "krnl.global"() {alignment = 4096 : 164, name = “"constant",
shape = [18], value = dense<[1, 2, 3, 4, 5, 6, 7, 8, 9, 1@]>
: tensor<10xi64>} : () -> memref<1Oxi64>

“func.return"(%@) : (memref<10xi64>) -> ()

""builtin.module"() ({
"func.func"() <{function_type = (tensor<3xf32>) -> tensor<3xf32>, sym_name =

"test_add_constant_2"}> ({ ~bb@(%arge: tensor<3xf32>):

%0 = "onnx.Constant"() {value = dense<[®. , 1. , 2.
: tensor<3xf32>} : () -> tensor<3xf32>
%1 = "onnx.Add"(%arg@, %@) : (tensor<3xf32>, tensor<3xf32>) -> tensor<3xf32>
"onnx.Return"(%1) : (tensor<3xf32>) -> ()
H:O0->0
D0 ->0

Figure 6.1: Example files of MLIR dialects input domains

32

1]

2]

[10]

[11]
[12]

[13]

REFERENCES

GitHub - llvm/llvm-project. https://github.com/1lvm/1lvm-project. [Accessed
06-06-2024].

GitHub - onnx/onnx-mlir: Representation and Reference Lowering of ONNX Models in
MLIR Compiler Infrastructure — github.com. https://github.com/onnx/onnx-mlir.
[Accessed 06-06-2024].

CIRCT: Circuit IR Compilers and Tools. https://circt.llvm.org/, 2023. Accessed:
2024-06-02.

Arefin, M. R., Shetiya, S., Wang, Z., and Csallner, C. Fast deterministic black-box
context-free grammar inference. In ICSE ’24: Proceedings of the 46th IEEE/ACM
International Conference on Software Engineering (New York, NY, USA, 2024), ICSE

24, Association for Computing Machinery.

Aschermann, C., Frassetto, T., Holz, T., Jauernig, P., Sadeghi, A.-R., and Teuchert, D.
NAUTILUS: Fishing for deep bugs with grammars. In NDSS (2019).

Bastani, O., Sharma, R., Aiken, A., and Liang, P. Synthesizing program input gram-
mars, 2017.

Hodovan, R., Kiss, A., and Gyiméthy, T. Grammarinator: a grammar-based open
source fuzzer. In Proceedings of the 9th ACM SIGSOFT International Workshop on
Automating TEST Case Design, Selection, and Evaluation (New York, NY, USA, 2018),

A-TEST 2018, Association for Computing Machinery, p. 45-48.

Kulkarni, N., Lemieux, C., and Sen, K. Learning highly recursive input grammars. In
Proceedings of the 36th IEEE/ACM International Conference on Automated Software

Engineering (2022), ASE '21, IEEE Press, p. 456-467.

Limpanukorn, B., Wang, J., Kang, H. J., Zhou, E. Z., and Kim, M. Fuzzing mlir by
synthesizing custom mutations, 2024.

Qiao, F., Mohammadi, A., Cito, J., and Santolucito, M. Statically inferring usage
bounds for infrastructure as code, 2024.

Services, A. W. Aws cloudformation templates, 2024. Accessed: 2024-06-10.
Services, A. W. cfn-lint: Cloudformation linter, 2024. Accessed: 2024-06-11.

Sokolowski, D., Spielmann, D., and Salvaneschi, G. PIPr: A Dataset of Public Infras-
tructure as Code Programs, Nov. 2023.

33

[14] tbennun, kaushikefd, amanda849, blaine fs, ro i, Berke-Ates, and joker eph. GitHub
- spcl/pymlir — github.com. https://github.com/spcl/pymlir. [Accessed 04-06-
2024].

34

