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Modeling homophily in dynamic networks 
with application to HIV molecular surveillance
Victor DeGruttola1*, Masato Nakazawa2, Tuo Lin1, Jinyuan Liu3, Ravi Goyal4, Susan Little4, Xin Tu1† and 
Sanjay Mehta5† 

Abstract 

Background Efforts to control the HIV epidemic can benefit from knowledge of the relationships between the char-
acteristics of people who have transmitted HIV and those who became infected by them. Investigation of this rela-
tionship is facilitated by the use of HIV genetic linkage analyses, which allows inference about possible transmission 
events among people with HIV infection. Two persons with HIV (PWH) are considered linked if the genetic distance 
between their HIV sequences is less than a given threshold, which implies proximity in a transmission network. 
The tendency of pairs of nodes (in our case PWH) that share (or differ in) certain attributes to be linked is denoted 
homophily. Below, we describe a novel approach to modeling homophily with application to analyses of HIV viral 
genetic sequences from clinical series of participants followed in San Diego. Over the 22-year period of follow-up, 
increases in cluster size results from HIV transmissions to new people from those already in the cluster–either directly 
or through intermediaries.

Methods Our analytical approach makes use of a logistic model to describe homophily with regard to demographic, 
clinical, and behavioral characteristics–that is we investigate whether similarities (or differences) between PWH 
in these characteristics are associated with their sequences being linked. To investigate the performance of our meth-
ods, we conducted on a simulation study for which data sets were generated in a way that reproduced the structure 
of the observed database.

Results Our results demonstrated strong positive homophily associated with hispanic ethnicity, and strong nega-
tive homophily, with birth year difference. The second result implies that the larger the difference between the age 
of a newly-infected PWH and the average age for an available cluster, the lower the odds of a newly infected person 
joining that cluster. We did not observe homophily associated with prior diagnosis of sexually transmitted diseases. 
Our simulation studies demonstrated the validity of our approach for modeling homophily, by showing that the esti-
mates it produced matched the specified values of the statistical network generating model.

Conclusions Our novel methods provide a simple and flexible statistical network-based approach for modeling 
the growth of viral (or other microbial) genetic clusters from linkage to new infections based on genetic distance.

Keywords Homophily, Dynamic networks, Viral genetic linkage
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Introduction
Many complex systems, such as disease transmission 
among individuals in a population, can be represented 
as networks, in which nodes and edges represent enti-
ties in the systems and the connections among them. 
Systems that evolve over time (e.g., links among entities 
are formed over time), can be represented as dynamic 
networks. One common process underlying formation 
of connections is homophily, i.e. the tendency of nodes 
in a dynamic network that share features to be linked. 
Below we describe a novel approach to model homoph-
ily and apply this approach to modeling HIV transmis-
sions among persons with HIV (PWH). We represent 
PWH as nodes in a network, and potential transmissions 
as links between two nodes. HIV molecular surveillance 
techniques applied to HIV genetic sequences are used 
to establish these links. We refer to the resulting net-
work as a viral genetic linkage network. As in previously 
reported analyses, two PWH are considered linked if the 
genetic distance between their HIV sequences is less than 
a given threshold [23, 25]. Previous studies have shown 
that a short genetic distance between two infected PWH 
implies proximity in a transmission network–in the sense 
that either one of the infected people directly transmitted 
the virus to the other or indirectly transmitted it through 
a small number of intermediaries [2]. This belief arises 
from the fact that HIV evolves rapidly and therefore 
infections with similar genetic sequences are likely linked 
by recent transmission events [24].

Public health officials can make use of information on 
how homophily affects growth of viral genetic linkage 
networks over time. They can do so by providing addi-
tional support (such as pre-exposure prophylaxis or 
PrEP) to currently uninfected individuals who are likely 
to join fast-growing genetic clusters, i.e. groups of PWH 
each of whom is genetically linked to at least one other 
member of the group but not to any PWH outside the 
group. (Such groups are referred to as components in 
network science literature).

Analyses investigating homophily are intended to 
help direct field resources in ways that can best con-
tain the HIV epidemic by reducing disease trans-
mission. The modeling of homophily in networks is 
directly related to one of the four “pillars” (Diagnose, 
Protect, Treat, and Respond) outlined in the Ending the 
HIV Epidemic plan by the Centers for Disease Control 
and Prevention (CDC); the Respond pillar focuses on 
identifying and then acting on outbreaks by providing 
prevention and treatment services [11]. Molecular epi-
demiology, which relies on genetic linkage described 
above, is a key tool to identify fast-growing clusters of 
related transmissions, and to direct responses to these 
potential outbreaks [6, 23, 29, 32].

A limitation of this approach is that linked infections 
between PWH can only be observed if both source and 
recipient partners can be identified. However, public 
health responses associated with viral genetic linkage 
analyses are often coupled with HIV partner notifica-
tion to provide treatment services to persons who may 
be living with HIV infection and unaware or prevention 
services to those who are vulnerable to HIV. Therefore, 
identifying characteristics that may influence newly-
infected people to link to existing genetic clusters could 
help in identifying persons who are at high risk of acquir-
ing HIV in the future–and thereby in guiding provision 
of biomedical prevention resources, such as pre-exposure 
prophylaxis (PrEP) to them. Amirkhanian noted that 
“Network interventions are feasible and powerful for 
reducing unprotected sex and potentially for increasing 
HIV testing uptake” [3].

Estimating homophily in transmission dynamics 
requires identifying the characteristics (e.g., age, race/
ethnicity, neighborhood of residence) that tend to link a 
newly infected individual with specific viral genetic clus-
ters of PWH–either because such characteristics are sim-
ilar in this collection of people (an example of homophily) 
or because they are different (an example of heterophily). 
Both can occur within the population under study. For 
example, some newly linked young people might tend 
to link preferentially to clusters of people of their age, 
whereas others might link preferentially to clusters of 
older people. This could lead to differences between the 
age of newly linked individuals and the mean age of the 
people in the cluster–and hence a bimodal distribution in 
the ages of people in clusters themselves. We discuss how 
to model such possibilities below.

Below we describe the use of a logistic model to 
describe homophily associated with demographic and 
behavioral characteristics in a dynamic HIV transmis-
sion network. The goal is to provide information about 
their impact on the nature of forward transmission by 
identifying characteristics of individuals who may be 
infected by PWH in the cluster. Our use of independ-
ent logistic regression in this setting is not standard; we 
formally justify this use in the Supplementary Notes and 
provide further discussion about this issue in “Results” 
section. The latter also describes a simulation study that 
further demonstrates the validity of our inferential pro-
cedures. We note that logistic models have previously 
been used to investigate a question that differ from ours 
(how to describe homophily) but is also based on molec-
ular epidemiological data: what characteristics of newly 
diagnosed individuals are associated with their join-
ing (or linking to) existing clusters? see [5, 18, 26, 31]. 
Li et al. used logistic regression directly to address this 
question [18]; whereas, Rich et  al. make use of a suite 
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of machine-learning models (including main-effects 
boosted logistic regression) to do so. Billock et  al. [5] 
use logistic regression to address another issue of rele-
vance for public health interventions–predicting which 
clusters will grow–from routine HIV surveillance data 
in North Carolina. Similarly, Wertheim et  al. investi-
gated the possibility of identifying individuals or clus-
ters of individuals most likely to give rise to future HIV 
cases [31]; and Denis et al. used phylogenetic analyses to 
investigate the role of unsuppressed infection on linkage 
to new cases [10].

Our study complements the studies described above; 
we do not model growth of clusters or predict which 
newly diagnosed PWH will join a cluster. Instead, our 
analyses conditions on the fact that a linkage has taken 
place to address the question of what combination of fac-
tors–associated with both the newly linked case and the 
specific cluster it joins–are associated with the event of 
linkage. This analysis addresses an important gap in the 
literature: how to enable public health departments to tar-
get characteristics of people likely to become infected by 
those in growing clusters-without the need for individual 
contact tracing. We also demonstrate that this assessment 
of homophily can be accomplished using straightforward 
logistic regression analyses; the underlying mathematical 
justification requires more sophisticated mathematics, 
but implementation of the method does not.

Background
An example of identification of homophily in an HIV 
transmission network arose in the demonstration of 
greater viral genetic linkage among Black PWH who have 
the same income levels compared to those with differ-
ent income levels [16]. In addition, vulnerability to HIV 
infection among Black men who have sex with men has 
been observed to increase when individuals enter high-
risk sexual networks characterized by high density and 
racial homogeneity [3, 14]; such behavioral dynamics 
might be expected to result in homophily in transmis-
sion networks. Similarly among persons who inject drugs 
(PWIDs), homophily by ethnicity [1] and injecting behav-
iors [33] has been observed.

Our statistical approach makes use of a logistic model 
for the analysis of homophily. This flexible model allows 
for consideration of the extent to which similarities and 
differences in characteristics (demographic, behavio-
ral, biological) are associated with viral genetic linkage 
between HIV genetic sequences. The use of a logistic 
model has connections to a widely used family of network 
models: exponential random graph models (ERGMs) and 
their dynamic counter parts, separable temporal ERGMs 
(STERGMs) [17, 27]. For both of these models, the prob-
ability of a link between two nodes can be written as a 

logistic model [13, 17]. Hunter et  al. [13] demonstrates 
this connection by formulating the probability of a link 
between nodes i and j–denoted as P(Yij = 1|ycij) where ycij 
is the rest of the network–using network change statis-
tics. They show that:

where θ is the vector of model coefficients, g(y) is a vector 
of network statistics, and δg (y)ij is the change in the value 
of the network statistic g(y) that would occur if yij were 
changed from 0 to 1 while leaving all of the rest of y fixed. 
Network statistics are statistics that describe properties 
of networks, such as number of links, degree distribu-
tion, or number of triads (sets of 3 nodes all of which are 
linked to the others).

Although ERGMs provide a flexible approach, they were 
developed to model social networks [27]. and have limita-
tions in modeling the growth of HIV genetic clusters. In our 
setting, a newly infected individual links to a single cluster 
based on their characteristics and that of the cluster. To the 
authors’ knowledge, this paradigm of a single individual 
linking to a group can not be modeled with an ERGM. Fur-
thermore, as viral samples from newly infected individuals 
are sequenced over time, the network size grows. Parameter 
estimates of ERGMs, however, are valid only for a fixed pop-
ulation size [28]. A similarity between our approach and the 
formulation of ERGMs is the role played by logistic models, 
but our use of such models is developed and justified in a 
different way (see Supplementary Notes). These methods 
provide a statistical network approach for modeling the 
growth of viral (or other microbial) genetic clusters through 
linkage to new infections based on genetic distance.

Clusters of HIV infection tend to grow at highly vari-
able rates [25]. Associations between characteristics of 
newly linked individuals and HIV viral genetic clusters 
may strengthen, stabilize, or weaken over time. Our logis-
tic model can accommodate such phenomena by treating 
the relevant parameters as time varying, though we do 
not investigate this possibility in our illustrative example.

Study population
Between July 1, 1996 and March 31, 2018, ART-naïve 
adult and adolescent ( ≥ 16 year-olds) PWH were pro-
spectively recruited to an observational research study 
referred to as the University of California San Diego 
Primary Infection Resource Consortium (PIRC). For 
details, see Little et al. [20]. Data collected at the base-
line visit included: HIV genotype (partial pol sequence), 
testing for bacterial sexually transmitted infections 
(STIs) (gonorrhea [GC], chlamydia [CT], and syphilis), 
and routine labs needed for clinical care. Baseline par-
ticipant characteristics are presented in Table 1.

(1)logit[P(Yij = 1|ycij)] = θT ∗ δg (y)ij ,
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HIV viral genetic linkage network construction
Population HIV partial pol nucleotide consensus 
sequences were derived for PIRC participants (Geno-
Sure� MG, LabCorp Specialty Testing Group, South 
San Francisco or Viroseq v.2.0; Celera Diagnostics, 
Alameda, CA). If more than one HIV sequence was 
available for a participant, only the earliest was included 
in this analysis. We inferred the HIV network by com-
puting all pairwise genetic distances between par-
tial pol sequences from each participant (i.e., network 
node) and connected nodes for which the correspond-
ing genetic distance was less than 1.5% using HIV-
TRACE [23]. For further details and information about 
accessing sequences, see Little et  al. [19, 20]. As par-
ticipants were infected, diagnosed, and sequenced over 
time, the HIV viral genetic linkage network is dynamic. 
The network changes at each time a PIRC individual is 
sequenced for the first time. We denote the PIRC par-
ticipants with sequences as {PWH1, . . . ,PWHn} and the 
time of sequence collection for participant PWHi as ti . 
Note, these times correspond to when individuals are 
added to the viral genetic linkage network. To create 
the initial HIV dynamic network, Little et al. [20] iden-

tified PWH–i.e., nodes–that did not link to any earlier 
nodes in the network, which began in 1996. These were 
defined as “seeds” and followed over time. For each 
seed or cluster that arose from a seed, we counted the 
number of incident nodes that subsequently linked to 
that seed or cluster.

Network homophily analysis
Little et  al. [20] used the network described above to 
investigate factors associated with growth of clusters 
through their linkage to people newly infected with 
HIV (Newly Linked Cases or NLCs), where linkage is 
defined by degree of genetic similarity between the 
sequence of virus from the NLC and sequences from 
members of the cluster. This analysis informs us about 
characteristics of clusters that are most likely to grow, 
but provides no information regarding the features of 
the NLC and of the members of a given cluster (con-
sidered jointly) that increase the probability that the 
NLC will link to that cluster–which is our goal in this 
section.

In following each seed–or cluster that grew from a 
seed, we model the linkage event process over time t . 
For each PWHi , we have a set of ki clusters available for 
joining at time ti . Let xij denote a p× 1 vector of clus-
ter-level covariates that characterize the jth cluster that 
is available at time ti 1 ≤ j ≤ ki  . As we describe below, 
individual-level covariates can include factors like 
demographics, clinical characteristics (that may change 
over time), and behavioral characteristics. Cluster-level 
covariates are summaries of these covariates over the 
members of a cluster.

For a cluster seed (cluster of size 1), xij is the covariate 
for PWHi , who defines the jth cluster. For a cluster of size 
larger than 1, xij represents a function of the covariates 
for all of the PWH within cluster j. Each newly infected 
PWHi either joins one of the clusters available at that 
time ti or forms its own cluster. In the former case, the 
number of clusters at time ti , is unchanged, but one of 
the clusters will have a new member, which we denote 
the ith newly linked case ( NLCi ). The covariate for NLCi , 
denoted by xiNLC , will be incorporated into the covariate 
for the cluster that was joined.

Given 
{

x
i
1
, xi

2
, ..., xiki

}

 and xiNLC , we let mi = ki + 1 . Con-
sider a mi-dimensional random vector 
z
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i
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where d(·, ·) is a function (scalar or vector-valued)–speci-
fied by the investigator– of the cluster covariate and the 
covariate for the NLC. Our interest lies in assessing the 
degree to which the value of this function–which we 
denote the homophily covariate–impacts the probability 
that xiNLC joins cluster j, 
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Table 1 Baseline Participant Characteristics for San Diego PIRC 
Cohort

Gonorrhea, Chlamydia and Syphilis were not assessed for 377, 378, and 374 
participants, respectively

Number of Participants N = 1119

Race/Ethnicity; n (%)

   White (non-Hispanic) 560 (50.0)

   Black (non-Hispanic) 89 (8.0)

   Hispanic 341 (30.5)

   Other/Unknown 129 (11.5)

Birth Year; median (IQR) 1973 (1965,1982)

Gonorrhea; n(%)1 49 (6.6)

Chlamydia; n(%)1 62 (8.4)

Syphilis; n(%)1 28 (3.8)

Clustered; n(%)1 532 (47.5)
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We fit ki independent logistic regression models as follows:

where n is the total NLCs during the period 
1996 ≤ ti ≤ 2018.

The log-likelihood function is given by:

where the indicator I
(

∑ki
j=1

zij = 1

)

 ensures that the log-
likelihood only includes the events in which the NLCi 
joins a cluster at time ti . In the Supplement Note, we 
show that our approach is equivalent to modeling the 
linkage event process as a series of multinomial models 
(in which the dimension of the multinomial vector grows 
with ki over time) conditioning on I(·) = 1 . This result 
justifies our approach, which is simpler to implement.

Figure 1 presents a schematic of the process by which 
newly sequenced persons with HIV (PWH) join existing 
clusters or else form the seeds of new clusters. In the left 

zij | d
i
j ∼ Bern

(

ξ ij

)

, ξ ij =
exp

(

γ0 + γ
⊤
1 d

i
j
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,

panel, PWH7 is the newly linked case (NLC); there are 3 

clusters CA , CB , and CC that PHW7 can join–as indicated 
by the presence of dashed lines. Also displayed are the 
modeled probabilities that PHW7 joins each one of the 

clusters, based on the covariates of PHW7 and of the 
members of that cluster. The solid lines indicate that pairs 
of PWH have a genetic distance below a threshold. The 
right panel shows that PWH7 linked to Cluster CB ; it also 
provides a representation of a similar scenario for PWH8 
as described above for PWH7 . Newly sequenced PW can 
also form seeds of new clusters, as illustrated by PWH6.

To test the hypothesis that homophily is a driver of 
the linkage process, we create a homophily covariate 
(denoted as d(·, ·) in the previous section), which char-
acterizes the similarity or difference in characteristics 

Fig. 1 A schematic of the process whereby newly sequenced persons with HIV (PWH) join clusters or else form the seeds of new ones. In the left 
panel, PWH7 is the newly linked case (NLC); and clusters CA , CB , and CC are available for PHW7 to join–as indicated by dashed lines. Probabilities 
that PHW7 will join each one of these clusters are also shown. Solid lines indicate that a the genetic distances between a pair of PWH is below a 
threshold. The right panel shows that PWH7 linked to Cluster CB ; it also displays the same scenario for PWH8 as was displayed for PWH7 in the left 
panel. Newly sequenced PWH can also form seeds of new clusters, as illustrated by PWH6
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of NLC’s and the clusters available for them to join. For 
binary outcomes, like Hispanic Ethnicity (HE), we model 
the homophily covariate as:

where rj,i is the proportion of the members of cluster j 
who are of HE at time ti ; and xil = 1 if NLCi is positive 
for HE and 0, if negative. As described above, the NLC 
is not included in the cluster membership when comput-
ing this proportion. We also define a homophily covari-
ate for the absolute value of the difference between the 
age of the NLC and the average age of the members of 
clusters j at time ti for j = 1, 2, . . . , ki . This covariate is 
calculated as the absolute value of the difference in birth 
year ( BY i ) between NLCi and the mean for each of the 
clusters j at time ti , ( BYj,i), j = 1, . . . , ki . Our homophily 
covariate, denoted birth year difference (BYD), is defined 
as BYDj,i = (BYi − BYj,i).

For diseases gonorrhea, chlamydia, and syphilis, STI 
categorical homophily covariates were created based on 
Table 2, which defines three categories of homophily: pos-
itive, neutral and negative. In this table, r is the proportion 
of cluster members that are STI positive; once again, the 
NLC was excluded from calculation of r. For this analysis, 
cases with the neutral homophily category were excluded. 
The reason for this choice is that homophily is harder to 
interpret in settings when clusters are mixed in STI status.

Parameter estimation is based on maximum likelihood; 
and hypothesis tests of the null hypothesis that the homo-
phily covariate has the null value (does not impact risk of 
joining particular clusters), on the likelihood ratio test. 
We first consider univariate models to examine whether 
each predictor was associated with cluster growth and 
then include those with p-value<0.05 in a multivariable 
model including STI individually and then jointly.

HEj,i = r
xij
j,i(1− rj,i)

xij−1

Results
Baseline participant characteristics are presented in 
Table 1. Age and ethnicity were available for all partici-
pants; but, as indicated in the table, there was a fairly 
large group of individuals for whom STI information 
was not available.

Homophily and sociademographic characteristics
Figure  2 provides a histogram of the differences in age 
between the newly linked cases and the clusters to which 
they were linked. The plot shows that the newly linked 
cases tended to be younger than those in the cluster of 
linkage; the 25% and 75% percentiles of this distribu-
tion are -6.0 and 1.75. We also note that the plot is uni-
modal. Figure 3 displays the boxplots for this difference 
for clusters that achieved different maximum sizes during 
follow-up. No strong relationship between cluster size 
and this distribution is evident in this figure. In order to 
accommodate the possibility that linkage could increase 
with both small and large values of BYD compared to 
values in the middle range, we can also use functions of 
it—for example quadratic—in the model in “Network 
homophily analysis” section.

As shown in Table  3, there was strong positive homo-
phily associated with hispanic ethnicity (HE), and strong 
negative homophily, with birth year difference (BYD). The 
second result implies that the larger the difference between 
the age of the NLC and the average age for an available 
cluster, the lower the odds of the NLC joining that cluster. 
In addition, there was a significant interaction between 
BYD and HE on the odds of linkage. The results from the 
multivariable model imply that with BYD=0 and when 
NLC links to a single PWH, the odds of linkage increases 
by a factor of 3.90 (95% CI 2.86, 5.37) if the NLC and PWH 
available for linkage share the same HE compared to when 
they differ. If the NLC links to a cluster of two people of 
different HE, the odds of linkage is √3.90=1.97 compared 
to when neither share HE with the NLC. The table also 
shows that for two people of the same HE, for each addi-
tional year of difference in BYD, the linkage odds are multi-
plied by a factor of 0.90 (0.88, 0.93). There was a significant 
interaction between BYD and HE for negative homophiliy; 
the odds ratio (95% confidence interval) associated with 
BYD by HE interaction was 0.93 (0.89, 0.96), p <0.001. This 
result imples that that for NLC and PWH with the same 
HE, the odds ratio associated with BYD effect is 0.90 x 
0.93= 0.84—which is close to the univariate effect. When 
we included a quadratic as well as linear effect of BYD 
along with HE in a model, the quadratic effect was nearly 0 
and was associated with a high p-value.

The Hosmer Lemershow test for the multivariable 
model implies a reasonable fit (Chi-square statistic = 
8.57, df = 4, p-value = 0.073). However, the first two 

Table 2 Definition of Homophily Status-categorized as Positive, 
Neutral, and Negative–for STIs. Positive status implies increased 
probability of linkage; negative, the opposite; neutral implies no 
effect

a  r is the proportion of cluster members (excluding the newly linked case) that 
are STI positive

Infection Status Proportion r of Cluster 
membersa that are STI 
positive

Homophily Status

Non-Infected 0 < r < 100 Neutral

Non-Infected r = 0 Positive

Non-Infected r = 100 Negative

Infected 0 < r < 100 Neutral

Infected r = 0 Negative

Infected r = 100 Positive
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percentile groups—obtained, as is traditional for this 
test, from the ordered values of estimated probabilities 
of NLC joining a single PWH or a cluster–had relatively 
few observed linked events (5 and 37, respectively, 
Table  4). Collapsing these two categories, yielded a 

Hosmer Lemershow test that showed stronger support 
for the model fit (Chi-square statistic = 5.83, df = 3, 
p-value = 0.1204, Table  5, BYD and HE were strongly 
associated with negative homophiliy and positive 
homophily respectively. The odds ratio (95% confidence 

Fig. 2 A histogram of the differences in age between the newly linked cases and the clusters to which they were linked

Fig. 3 Boxplots for this difference for clusters that achieved different maximum sizes during follow-up
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interval) associated with BYD was 0.86 (0.84, 0.87), p <
0.001 for both univariate and multivariable models.

Homophily and sexutally transmitted infections
Table  6 shows the frequency distribution of linkages by 
homophily type (postive, neutral, or negative) and spe-
cific sexualy transmitted disease. The upper panel of 
Table 7 shows that, when investigated individually, none 

of the STI homophily covariates impacted the probability 
of linkage. While the current syphillis indicator had a rel-
atively high odds ratio (1.55), the small number of study 
participants in this category (28) provided limited power; 
and the 95% confidence interval did not exclude the null 
value. An additional homophily covariate was consid-
ered: the presence or absence of any STI; once again no 
significant effect was observed. These effects remained 

Table 3 Impact of Hispanic Ethnicity and Birth Year Difference on the Odds of linkage between pairs of sequences. Logistic Model 
Results with All Cases

Univariable Models Multivariable Models

 Effect OR OR 95% CI p OR OR 95% CI p

Abs(�BY) 0.86 (0.84, 0.87) <0.001 0.90 (0.88, 0.93) <0.001

Hispanic 2.44 (1.99, 3.02) <0.001 3.90 (2.86, 5.37) <0.001

Abs(�BY)☓Hispanic 0.93 (0.89, 0.96) <0.001

Table 4 Hosmer Lemershow Test of Goodness of Fit for the Multivariable Model with 6 Bins for the Estimated Probability of Linkage. 
Similarity of observed and predicted values implies good fit of model to data

P(Y=1) Observed (Y=0) Observed (Y=1) Predicted (Y=0) Predicted (Y=1)

[7.37e-08,0.000832] 23144 5 23139 10.02

(0.000832,0.00196] 24286 37 24289 33.82

(0.00196,0.00334] 22082 73 22096 58.71

(0.00334,0.00548] 22589 107 22598 97.74

(0.00548,0.0097] 24155 177 24154 177.56

(0.0097,0.0234] 21509 308 21488 329.14

Table 5 Hosmer Lemershow Test of Goodness of Fit for the Multivariable Model with 5 Bins (the first two sparse bins were collapsed)

P(Y=1) Observed (Y=0) Observed (Y=1) Predicted (Y=0) Predicted (Y=1)

[7.37e-08,0.00196] 47430 42 47428 43.85

(0.00196,0.00334] 22082 73 22096 58.71

(0.00334,0.00548] 22589 107 22598 97.74

(0.00548,0.0097] 24155 177 24154 177.56

(0.0097,0.0234] 21509 308 21488 329.14

Table 6 Frequency distribution of linkages by homophily status and sexually transmitted disease

Infection Status of 
NLC

Cumulative Cluster 
Proportion

Categorical 
Homophily

Chlamydia Gonorrhea Syphilis Any STI

Negative 0<r<100 Neutral 212 218 91 163

Negative r=0 Positive 404 424 588 391

Negative r=100 Negative 6 3 1 5

Positive 0<r<100 Neutral 51 34 18 100

Positive r=0 Negative 36 31 12 49

Positive r=100 Positive 1 0 0 2
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qualitatively the same after adjustment for HE and differ-
ence in BYD, although the estimated odds ratio for syph-
illis is somewhat reduced.

Simulation study
To investigate the performance of our methods based on 
a simulation study, we generated a collection of data sets 
in a manner intended to reproduce the structure of the 
observed database. We found the most natural approach 
to simulation of data was to assume that the joining of 
an NLC to one of the clusters available at the time of the 
sequencing of the NLC follows a between-subject multi-
nomial distribution response model (see Eq. 2 below and 
Supplementary Notes for details).

We define the multinomial response model 
Multib

(

η
i, 1

)

 as:

Then we maximize the log-likelihood function given by:

Nonetheless, in our example, the analyses are based 
on logistic regression, which implicitly assumes a dif-
ferent data-generating model: independent Bernoulli. 

(2)

z
i | di ∼ Multib

(

η
i
)

,

η
i =

(

ηi1, η
i
2, . . . , η

i
ki
, ηiki+1

)

ηij =
exp

(

β0 + β1d
i
j

)

1+�i
, 1 ≤ j ≤ ki , ηiki+1 =

1

1+�i
,

�i =
ki
∑

j=1

exp
(

β0 + β1d
i
j

)

,

ki+1
∑

j=1

zij = 1, 1 ≤ i ≤ n.

l =
n

∑

i=1

li =
n

∑

t=1

ki
∑

j=1

zij log
(

ηij

)

.

Because of the difference in parameterization of the 
data generating and the data analysis models, we cannot 
evaluate the validity of our approach by comparing the 
estimated and data generating parameters directly. Two 
approaches were taken to address this issue: 1) Show-
ing analytically that data generated from the between-
subject multinomial response model can be modeled 
in an equivalent way by independent logistic regression 
(see the Supplementary Notes), and 2) Demonstrating 
through simulation that the estimated probabilities of 
linkage to different clusters derived from multinomial 
and logistic regression models are very nearly identical. 
We summarize results briefly below and provide details 
in the Supplementary Note.

Our simulations starts with 5 clusters, to which addi-
tional simulated NLC’s are added at each time step; 
the total number of clusters after the cluster joining 
process has reached its conclusion is set to 10. We 
conducted two simulation studies: Study 1 generated 
covariate data for the 5 original clusters and for the 
newly link cases from different normal distributions. 
Study 2 simulates data for one continuous and one 
binary covariate, based on the observed distributions 
of birth year and ethnicity in our data. As detailed in 
the Supplement Note, we simulated the continuous 
cluster-level covariates from 10 normal distributions, 
each with a different mean, and the binary cluster-level 
covariate from 10 Bernoulli distributions, again, each 
with different mean. To make the 10 distributions of 
the simulated cluster-level covariates s similar to those 
of the study data, the 10 normal means have average of 
1973 and the 10 Bernoulli means have average of 35%. 
The number of Monte Carlo simulations was 500.

Table 7 Univariable and Multivariable Logistic Model Results without Neutral Cases. Abbreviations: OR: odds ratio, p: p-value; Abs(�
BY): the absolute value of the birth-year difference, CI: confidence interval, STI: sexually transmitted infection

Effect OR OR 95% CI p OR OR 95% CI p
Univariable Models

Gonorrhea 0.90 (0.66, 1.26) 0.53

Chlamydia 0.88 (0.63, 1.28) 0.49

Active Syphilis 1.55 (0.93, 2.83) 0.12

Any STI 1.11 (0.84, 1.49) 0.49

Multivariable Models
Chlamydia Gonorrhea

STI 0.9 (0.66, 1.27) 0.54 0.87 (0.62, 1.25) 0.42

Abs(�BY) 0.81 (0.79, 0.83) <0.001 0.81 (0.79, 0.83) <0.001

Hispanic 3.29 (2.52, 4.37) <0.001 3.47 (2.65, 4.60) <0.001

Syphilis Any STI
STI 1.27 (0.76, 2.33) 0.4 1.07 (0.81, 1.44) 0.66

Abs(�BY) 0.83 (0.82, 0.85) <0.001 0.81 (0.79, 0.83) <0.001

Hispanic 2.77 (2.20, 3.52) <0.001 3.28 (2.51, 4.35) <0.001
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Results of these simulation studies clearly demonstrate 
that the two approaches described above yield equivalent 
results. As expected the approach using the multinomial 
distribution yielded estimates that were very close to the 
true values. The codes used for simulation studies in this 
paper are available on GitHub (https:// github. com/ tuoli 
n123/ Homop hily).

Sampling density
Often observational studies lack complete coverage of 
transmission networks, which has implications for analy-
ses and interpretation of results [22]. For example, Volz 
et al. considered the issue of sampling fraction for analy-
ses of clusters defined phyogenetically, and note that the 
extent of observed clustering is most sensitive to the frac-
tion of infections sampled [30]. Although our clustering 
is based on pairwise genetic distance thresholds, extent 
of clustering in our analysis would be impacted by sam-
pling as well. Therefore, in Supplementary Notes, we 
investigate conditions under which our methods yield 
consistent estimates of homophily–through both simula-
tion and more theoretical considerations. We note that a 
reduced extent of clustering need not necessarily induce 
bias in estimates of homophily. For example, for the set-
ting of stratified sampling (random selection of partici-
pants within strata, such as those defined by ethnicity), 
estimates of parameters that describe homophily appear 
to remain valid. Our simulation results, described in 
detail in Supplementary Notes, support this claim. None-
theless, if sampling depends on network features, like 
links between nodes, then this property does not hold.

Discussion
Our proposed method allows for longitudinal evalua-
tion of homophily in dynamic networks. Because of the 
somewhat surprising result that analyses of homophily 
in dynamic networks can be based simply by fitting inde-
pendent logistic regression models to data at each time 
of linkage, these analyses can be performed with simple, 
commonly available software. No expertise in mathemat-
ical statistics or network analyses are required to con-
duct these analyses–though such expertise was required 
to validate the procedure and demonstrate connections 
to existing network models (e.g. Exponential Random 
Graph Models). The focus of our example is on newly 
identified cases of HIV infection that genetically link to 
clusters of HIV infected individuals. The method could 
apply to any other dynamic network in which ties are cre-
ated or dissolved over time. To incorporate dissolution of 
ties we could consider a polytomous logistic regression 
model in which events of both linkage and dissolution of 
linkage are modeled. Our approach depends on construc-
tion of homophily covariates; as we demonstrate, these 

can be quite general. Here we analyzed covariates of dif-
ferent types to illustrate the flexibility of the approach.

Knowledge of how characteristics of newly linked cases 
of HIV infection impact probability of joining clusters 
with particular characteristics provides useful information 
about transmission dynamics. The homophily covariates 
may consider both similarity and dissimilarity in these 
characteristics—and both types of covariates should be 
considered. We know that both homophily and heteroph-
ily may be present and could be detected through model 
choices and evaluation of their fit. An example arises 
when there are some people who preferentially select 
partners based on similarity of age, and others based on 
difference in age, see for example [9]. In constructing 
homophily covariates, knowledge of relevant sociological 
factors as well as in-depth investigation of patterns within 
the observed data may be useful. For example, preferences 
for similarity or for difference in age may be associated 
with other demographic characteristics.

Our analysis based on data from recently infected PWH 
demonstrates a very strong effect of homophily with regard 
to Hispanic Ethnicity (HE). In univariable PWH who share 
the same ethnicity status have 2.44 times of the odds of 
being linked compared to those with different HE status. 
Univariable models also show a strong effect of being in 
the same or nearly the same birth cohort. In multivariables 
models, the effect of sharing HE status is even stronger. 
We also found a significant interaction with HE status and 
birth year; the birth year effect is even greater among those 
with the same HE. After investigating a variety of ways to 
model STI homophily, we failed to detect any significant 
effect–for each of the 3 STIs individually and for all of 
them jointly. We note that STI status was determined by 
history at a baseline survey and was not updated over time, 
and also that a fairly large amount of STI data was missing.

As noted above, homophily may also provide informa-
tion about transmission of other infections. For example, 
SARS-CoV-2 has spread more rapidly in certain neigh-
borhoods and certain ethnic/racial and social groups [7]–
which may have resulted from homophily in transmission 
networks [12]. In Japan, Andalibi et  al. [4] showed that 
viral transmission networks of SARS-CoV-2 demonstrated 
age homophily, as well as homophily between sympto-
matic and asymptomatic cases, possibly suggesting a viro-
logic effect on transmission. Groups of people who share 
characteristics (e.g., vacationed at a ski resort [8]) also may 
be more likely to transmit to each other–either in single 
transmission or superspreader events. In another exam-
ple, sexually transmitted infections (STIs) were shown to 
have been transmitted at greater rates between partners 
of similar education status in an analysis of five African 
cities [15]. These examples highlight how knowledge of 
homophily and heterophily, such as would be revealed in 

https://github.com/tuolin123/Homophily
https://github.com/tuolin123/Homophily
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analyses using our methods, could provide insights about 
transmission dynamics.

Understanding of transmission dynamics can aid in tar-
geting prevention resources. For example, knowing the 
features of individuals that make them more likely to join 
certain clusters, because they share (or are dissimilar in) 
those features, could help prioritize prevention resources 
to people in clusters with characteristics that make them 
most likely to experience future growth from linked inci-
dent infections. These characteristics may be defined 
by clinical, demographic, behavioral, and other factors. 
Similarly, knowing the features of those most likely to 
join growing clusters may also help in prioritizing PrEP. 
Together, the knowledge of the clinical and demographic 
factors associated with growing clusters and the factors 
associated with persons linking to those clusters provides 
a blueprint for how to direct limited prevention resources 
in the most efficient manner.

Despite its potential to advance knowledge on HIV 
transmission dynamics, ethical concerns about molecular 
epidemiological studies have been raised; in particular, 
Mutenherwa et  al. conducted interviews with scientists 
from diverse backgrounds to explore their perspectives 
on ethical issues associated with research on viral genetic 
analyses to reveal transmission dynamics [21]. They 
found that fear of loss of privacy and disclosure of HIV 
transmission were among the most cited as key ethical 
concerns. We note that our homophily analysis would 
allow public health efforts to focus on characteristics of 
PWH who link to growing clusters rather than attempt 
contact tracing of PWH included in such clusters. This 
may reduce the extent of loss of privacy, but still requires 
the building of the transmission network itself.

Limitations to our analyses include the incompleteness of 
coverage of the San Diego HIV transmission network under 
study. Although our analyses are robust to some forms of 
partial sampling of the transmission network of interest (e.g. 
stratified sampling), sampling that depends on network fea-
tures–such as detection of sequences from PWH that relies 
on contact tracing–can induce bias. Such dependence of 
sampling on network features will generally induce bias in 
any analyses of molecular epidemiological data; and strati-
fied sampling will often induce bias as well–for example by 
reducing the extent of clustering. But our analyses do not 
depend on observed cluster sizes serving as unbiased esti-
mates of the underlying truth in the population as a whole.

In summary, we have provided a simple approach 
(based on logistic models) to analyzing the factors that 
cause PWH to preferentially join clusters with given 
characteristics. Such information can help enable public 
health departments to target characteristics of people 
likely to become infected by those in growing clusters-
without the need for individual contact tracing.
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