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Abstract

Cognitive Constraint Modeling (CCM) is an approach to
reasoning about behavior that (1) provides a framework for
investigating the hypothesis that skilled behavior is the
optimal solution to a constraint satisfaction problem defined
by objective, environmental, knowledge, and architectural
constraints, (2) derives predictions of behavior from formal
specifications of theory, (3) supports reasoning using both
dependency-based and cascade-based ontologies for
expressing temporal relationships between processes. A
software tool that demonstrates the potential advantages of
CCM is described.  The tool, called CORE, can be used to
partially automate the generation of behavioral predictions
given a specification of the constraints. We explore the
application of CORE to dual-task data previously modeled
with EPIC and ACT-R.

Introduction
When people acquire a skill they are able to adapt their

behavior so as to incrementally improve the value of some
utility function.  With practice, the scope for improvement
attenuates and performance asymptotes.  It may asymptote
at a level that is consistent with constraints imposed by the
environment or perhaps at a level determined by the
knowledge that is brought to the task.  The bounds may
instead be imposed by the human cognitive architecture.
More plausibly, the asymptote may be determined by a
combination of constraints, including the stochastic and
temporal profiles of the task environment and the human
cognitive, perceptual, and motor systems.  The approach to
the asymptote is bounded by a multiplicity of constraints
(Simon, 1992).

There has of course been much work aimed at modeling
skilled behavior and its acquisition (e.g. Anderson and
Lebiere, 1998; Meyer and Kieras, 1997; Taatgen and
Anderson, 2003). The purpose of the current paper is to
provide an initial demonstration of how models of skilled
behavior can be generated by the formal derivation of
behavior descriptions from multiple constraints, and in
particular, how this approach supports reasoning about

asymptotic bounds on skilled behavior.  The specific
objectives of the paper are:

(1) To introduce the hypothesis that skilled behavior is the
optimal solution to a constraint satisfaction problem defined
by architecture, task environment, and knowledge
constraints.

(2) To introduce a formal modeling approach, called
CCM, that directly supports reasoning about the optimal
bounds on skilled behavior.  By using deductive inference
and constraint satisfaction algorithms, CCM computes the
necessary consequences of the constraints imposed by the
task environment, by strategic knowledge, and by the
cognitive architecture.  These constraints may determine, for
example, which cognitive and environmental processes can
execute in parallel and which have sequential dependencies.

(3) To specify two ontologies which provide alternative
information processing vocabularies for the cognitive and
task theory, and the resulting descriptions of behavior.  The
first is a straightforward formalization of temporal
dependencies, implicit in existing work based on CPM-
GOMS. The second is a richer ontology that permits
specifying sets of communicating information processes,
where both the processes, inter-process communication
channels and buffers are subject to resource constraints.
This framework has much in common with McClelland's
cascade model (McClelland, 1979).  Both ontologies are
formally defined by a set of declarative axioms that are part
of the model specification.

The paper has the following structure. We first introduce
the background to our work on CCM and then describe a
reasoning tool, called CORE (Constraint-based Optimal
Reasoning Engine).  We describe the application of CORE,
using the temporal dependency axioms, to reasoning about a
dual task experiment first reported by Schumacher, Lauber,
Glass, Zubriggen, Gmeindl, Kieras, Meyer (1999) and
subsequently modeled by Byrne and Anderson with ACT-
R/PM (Byrne and Anderson, 2001). In doing so we show
that CORE is flexible enough to support inference about the
implications of both central and peripheral bottleneck
theories of dual task performance. CORE requires 42
simple, universally quantified, declarative statements to
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specify the task, strategies, architecture, and axioms
required to reason about the dual task. We also report that
the optimal schedule for Schumacher et al.’s task suggests
that participants may have been using a strategy not
previously considered.  Lastly, we introduce, and describe
the benefits of, the cascade-based axioms.

Background
Predicting how long it will take people to perform a task is

difficult, but important.  It is difficult because human
performance depends on a multiplicity of complex
interacting constraints that derive from the environment,
from human psychology, and from knowledge that people
bring to the task. Skilled performance of a routine task
usually involves the execution of a number of parallel but
interdependent streams of activity: For example, one hand
may move to a mouse; while the other finishes typing a
word; and the eyes begin to fixate on a menu while the
required menu label is retrieved from memory.  Each of
these processes takes a few hundred milliseconds, but
together they form behaviors that take many seconds.
Importantly, the details of how processes are scheduled, of
how they are ordered, and of the implications of their inter-
dependencies, has significant consequences for the overall
time requirement.

There are a number of scientific and engineering tools that
support the prediction of skilled performance time.  Many of
these tools share a common intellectual origin in the Model
Human Processor (MHP: Card, Moran & Newell, 1983).
Card et al. introduced the MHP as an engineering model in
which human cognition was described as a set of
communicating processors each of which had parameters
(e.g. for cycle time) derived from human experimental
psychology. More recent engineering tools, particularly
CPM-GOMS (Gray, John, Atwood, 1993), have also
utilized the processor and process framework.  EPIC, a
production system architecture that synthesizes more recent
results in cognitive and perceptual psychology (Meyer and

Kieras, 1997) was also influenced by the work of Card et al.
(1983).  Most recently, ACT-R/PM (Byrne and Anderson,
1998) extended the ACT-R architecture with a set of EPIC-
like perceptual-motor modules.

The strength of these strands of work is evident in the
range of experimental findings for which explanations can
be offered; for the successful efforts at delivering
scientifically validated tools to applied practitioners (e.g.
Gray, John, Atwood, 1983); and for the rigor that is evident
in the insistence that theory be expressed computationally
(e.g. Byrne and Anderson, 2001; Meyer and Kieras, 1997).
However, there are issues.  Below we have listed three that
were significant in motivating the work reported in this
paper.

(1) It is difficult to inspect and modify architectural
assumptions (Cooper and Shallice, 1995).  Cognitive
architectures embody architectural assumptions in
underlying code, and are not easy to change. This would not
be a problem if the details of an architectural theory were
stable and comprehensive enough to be applied to a wide
range of tasks. But in the forseeable future the modeler will
find it valuable to easily manipulate and add architectural
assumptions that are still under debate in the field.

(2) Model predictions can be a function of theoretically-
irrelevant or implicit assumptions. Current approaches force
modeling at certain fixed levels of abstraction. In general,
computational cognitive architectures force computational
completeness in order to incrementally simulate behavior.
But one consequence is that modelers must specify the
details of procedural knowledge and the representations
used in long term and short-term memory, which may not
be intended as theoretical commitments.

(3) It is difficult to predict the asymptotic bound on skilled
behavior. Though learning architectures such as ACT-R/PM
could in principle automatically asymptote to the
appropriate skilled behavior, the mechanism is an open
research problem and puts a robust learning theory on the
critical path to efficiently modeling skilled behavior.

Stimuli

Audition

Vision

Cognition

Goal

Motor

Figure 1: A CCM-d prediction of performance on Schumacher et al.’s  (1999) Experiment 3 task.

Time (hundredths of a second)
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CORE: A tool to support reasoning about behavior
CORE takes as input a set of mathematically stated

constraints on behavior and outputs a prediction.  In this
respect it shares some similarities to the work of Duke and
Duce (1999). One of the formats for the output, a CPM-
GOMS-like Pert chart, is illustrated in Figure 1.  The
prediction in the Figure is for a dual task behavior studied
by Schumacher et al. (1999) and subsequently modeled in
ACT-R/PM by Byrne and Anderson (2001).  Each box
represents a process.  Task 1 (light gray processes) is to
respond to a tone (high or low) with a left-finger key press,
and task 2 (dark gray) is to respond to a pattern with a right-
finger key press.  In the Figure, time is represented on the
horizontal access and each row represents a different
resource or processor, perception at the top, through
cognition and goal, to motor actions.  The task processes
represent the temporal extent of the representation of each
task on the goal.

Following Card et al. (1983) constraints are described in
terms of the temporal and resource properties of a
distributed set of processors, each with its own processing
capabilities. Each processor is defined in terms of a set of
parameters and a defined set of processes.  Each process has
parameterized limits (min, max) on its duration.  The
duration of motor movements can be automatically
determined by a calculation of Fitts's Law.  The duration of
cognitive and perceptual processes may be directly
determined from the empirical literature (e.g. estimates of
the time required to switch attention), or by functions that,
for example, model hypotheses about the behavior of
retrieval mechanisms.

The relationships between the processes represented in
Figure 1 are an attempt to reproduce the assumptions
adopted by Byrne and Anderson (2001).  The processing
sequence for each stimulus is: attend to the stimulus,
perceive the stimulus, select a response, transmit a
command to the motor system.  The duration of the select
process is determined by ACT-R/PM’s retrieval function.

The lines between processes in Figure 1 represent
temporal dependencies .  A dependency is a type of
constraint that specifies that one process must be scheduled
after another has finished.  While the particular prediction
illustrated in Figure 1 has been constrained by
dependencies, cognitive constraint modeling is not limited
to dependency-based representation of theories.  The
constraints that specify the meaning of dependencies are the
essence of a set of CCM axioms that we call CCM-d (CCM-
dependency).  CCM-d provides a formal specification of the
CPM-GOMS modeling framework (Vera et al., 2004).  (An
alternative set of axioms, called CCM-c, for CCM-cascade,
is described later in the current article.)

Representing a theory
Constraints on behavior are specified to CORE in terms of

relationships between events in the environment, tasks, and
psychological processes.

The semantics of the language for expressing statements is
a subset of second-order predicate calculus.  An entity is
represented as a set of elements where each element is either
an ordered pair, or a triple where the first element is ‘++’.
For example, the following reads, there exists a cognitive
process called initclick that must be scheduled after process
Uj.

 ∃ Pi: { (isa,process) (name,initclick) (resource,cognition)
(++,after,Uj) } ⊆  Pi (1)

Each pair consists of an attribute and a value.  A set must
only contain a single element with a particular attribute (e.g.
there must only be, at most, one pair that matches the
pattern (name,_) ).  Each triple consists of the symbol ‘++’,
an attribute, and a value.  For triples, there are no
restrictions on the attribute or value.  Triples support the
expression of sets in which an attribute can have multiple
values.  The features in (1) are specified as a subset of Pi

(⊆).  Further features may complete the specification of this
process.

Sets that represent processes, must have a start attribute
and a duration attribute.  This can be represented with the
statement that all Pis that contain the pair (isa,process), must
also contain a start time Si and a duration Di.

∀ Pi:  { (isa,process) } ⊆  Pi

→  { (start,Si), (duration,Di) } ⊆  Pi (2)

Relationships between the start times and durations of
processes are represented with simple integer-arithmetic
constraints.  The following represents the assumption that a
motor process is a necessary consequence of an
initialization process, that a motor process cannot occur
before its initialization process, and that the maximum
temporal gap between the two processes is 300ms. This
constraint must hold irrespective of the task.

∀ Pj: { (isa,process) (name,initclick)
(start,Sj) (duration,Dj) } ⊆ Pj

→
∃ Pi: { (isa,process) (name,click) (start,Si) } ⊆ Pi

∧ Sj + Dj ≤  Si

∧ Si  - ( Sj + Dj ) ≤  300 (3)

Given a set of axioms, statements of this form can be used
to represent theoretical assumptions about the task
environment, about instruction taking, about the strategies
that people deploy, and about the human cognitive
architecture.

Crucially, universally quantified constraints specified in a
predicate calculus are not production rules.  The constraints
may appear to possess a similar surface form to production
rules but, in fact, the semantics are very different.  Most
importantly, unlike production rules, these declarative
statements of theory are statements of what must be true
irrespective of context. They are not elements of a
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procedure that generates the description.  The constraint
must hold for every circumstance where its antecedent is
met.  The generation of a model with these constraints is
entirely monotonic and the order of expansion can be (and
often is) different to the predicted order of behavior.

Generating a prediction
Given constraints on behavior, CORE can be used to

generate a prediction.  This is a two-phase process.
Phase 1. CORE derives the necessary implications of the

theory.  For example, given a Pi (as defined in statement 1)
above and rule (2), CORE would derive that the initclick
process must have a start and duration:

∃ Pj: { (isa,process) (name,initclick) (resource,cognition)
(++,source,Ui) (start,Sj) (duration,Dj) } ⊆ Pj(4)

Subsequently, with rule (3), CORE can derive that there
must be a motor click process, with a start time and duration
constrained by the given equations.

Arithmetic constraints on the start time, duration, and
costs of a process are posted to a constraint store that is
implemented in a Sicstus Prolog variant of Constraint Logic
Programming for Finite Domains ( CLP FD: Jaffar &
Lassez, 1987).  Much of the power that CORE provides is a
direct consequence of CLP FD functionality (Vera et al.,
2004).  Importantly, the scheduling algorithms provided by
CLP FD make it possible for an analyst using CORE to
focus on the declarative specification of theory without
worrying about the theory-irrelevant algorithms by which
behavioral implications will be derived.

At the end of phase 1 the values of the start, duration, and
other parameters, such as cost, are constrained by the posted
equations, but their values are not yet uniquely determined.

Phase 2. Phase 2 involves making a prediction by finding
a particular behavior that is consistent with the set of
constraints, i.e. phase 2 must identify a consistent set of
values for variables that were posted to the CLP FD
constraint store (e.g. start time, duration, cost).  This is
achieved by calling a function that uses constraint
satisfaction to achieve variable assignment.  This function
can be configured to use a range of scheduling algorithms.
Two are particularly important for the purposes of reasoning
about cognition: greedy scheduling and optimal scheduling.

Greedy scheduling.  Scheduling proceeds with the tick of
a clock.  On each tick, a process is selected that can be
scheduled immediately.  The process is assigned the
appropriate start time.  Greedy scheduling can be used to
model ACT-R/PM and EPIC.  A greedy scheduling
algorithm is not guaranteed to give an optimal schedule.

Optimal scheduling.  Using CLP FD, a branch-and-
bound algorithm can be used to generate a schedule with the
greatest utility.  We have used a utility function that is
maximal when cost is minimized.  Cost is defined as the
sum of the total duration of the schedule and the durations
of the buffers required to store information.  As we illustrate
below the ease with which CORE can be used to generate

predictions of the optimal behavior, given the theoretical
assumptions, is one of its key advantages.

Reasoning about dual task performance
In Schumacher et al.’s (1999) experiment (Experiment 3)

participants were required to respond to a tone and a visual
pattern with key presses that depended on whether the tone
was high or low and whether the pattern contained a
particular feature.  The tone and the pattern were presented
with a small gap of between 50 and 1000ms (Stimulus
Onset Asynchrony).  Participants were asked to prioritize
the tone task.  The tone task response times were, on
average, unaffected by SOA. In contrast, the mean pattern
task response time, at a short SOA (50ms), was less than the
sum of the tone task and pattern response times at long
SOAs (> 500ms). This finding has been taken as evidence
that some elements of tone and pattern task were performed
in parallel at short SOAs.  Byrne and Anderson were
interested in modeling Schumacher’s data using ACT-R/PM
in order to demonstrate that cognitive parallelism is not
required to explain these results.  They argued that the
results can be modeled with either the EPIC or ACT-R/PM
assumptions and that Schumacher’s data provides evidence
for strategic deferment of the pattern task response.

Specification and Inference
We demonstrate that the theoretical assumptions of Byrne

and Anderson (2001) and separately of Schumacher et al.
(1999) can be precisely expressed as a small set of predicate
calculus constraints, and that CORE can be used to support
reasoning about their behavioral consequences.

We used 42 universally quantified constraints to capture
the theoretical assumptions underlying the architecture and
strategies deployed in Byrne and Anderson’s model (see
www.cf.ac.uk/psych/howesa/ccm).  Together with the
CCM-d axioms, these constraints are a mathematically-
complete specification of the theory underlying Figure 1.
They capture constraints on the task environment, the
strategy, the architecture, and in addition the axioms of
CCM-d. (It would in fact be possible to use many fewer
constraints but we attempted to write them in a way that was
general enough to enable reuse.)  We selected parameters to
fit the performance time and ran the model with a greedy
scheduling algorithm to check its performance.  It produced
the same pattern of results as reported by Schumacher and
modeled by Byrne and Anderson (2001).

One of the constraints that is particularly important for the
predictions made by Anderson and Byrne’s model states
that the duration of retrieval is sensitive to whether the
retrieval request is issued when the tone task overlaps in
time with the pattern task.  This relies on an implementation
of the ACT-R retrieval time function, retrieval_time(B,S,T),
where B is the base level activation, S is the source
activation, and T is the returned retrieval duration.  The
source activation is lower per task when there are multiple
concurrent tasks.
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Subsequently, we modified the specification in order to
remove the ACT-R/PM assumption that there is a central
bottleneck on human cognition and permit EPIC-like
concurrent cognitive processing.  Only a handful of changes
were required to make this alteration, demonstrating the
claim that CORE facilitates reasoning about the
consequence of different architectural assumptions.  First,
the tone task and pattern task cognitive processes were
assigned to separate resource streams, and second, an
unlock process was introduced and its duration adjusted to
fit the data.

The fact that ACT-R and EPIC resource assumptions can
be captured with such similar sets of constraints is
unsurprising given their shared intellectual history (though
it would be interesting to compare the Lisp code).  In
general, the space of theories that can be represented with
CCM is determined by the requirement that theories are
described in terms of processes, processors, the relationships
between them, and by the axioms (CCM-d or CCM-c).

Skill and optimal constraint satisfaction
In order to explore the hypothesis that skilled behavior is

the optimal solution to a constraint satisfaction problem, we
switched from greedy scheduling to optimal scheduling (a
parameter change in the input specification). CORE
generated a novel prediction.  In the behavior for a task with
a 50ms SOA and a simple pattern, rather than choose to
schedule the pattern selection process so that it was
concurrent with the tone task, CORE chose a schedule in
which selection (i.e. retrieval) is deferred until after the tone
task has finished.  The benefit is that by deferring selection,
the overall time requirement is slightly reduced.  This is
because even though the selection process starts later (after
the tone click in Figure 1) it has a much shorter duration
(only 30ms compared to the 250ms). The resulting
difference in the overall time cost of the schedules is
marginal but the qualitative difference in the strategies is
dramatic.  The analysis exposes a necessary consequence of
ACT-R’s retrieval function and the assumption that people
adapt strategies to reduce time cost.

The example illustrates the way in which CORE can
facilitate the exposure of a logically required implication of
a set of theoretical assumptions. Byrne and Anderson’s
ACT-R model does not make this prediction because it does
not optimize over the total cost of the behavior. Optimal
scheduling exposes the possibility that participants
strategically defer retrieval so as not to incur the costs of
concurrent processing.

Our analysis also raises a question about a fundamental
assumption embedded in the ACT-R retrieval function: That
retrieval time is not dynamically adjusted with changes in
source activation occurring during retrieval.  I.e. the
sensitivity of the retrieval time function to source activation
is limited to the value of the source activation at the time of
the retrieval request.  An alternative assumption would be
that retrieval could take advantage of increases in source
activation that occur after a retrieval request is made but
before a chunk is delivered. With this alternative
assumption, deferred retrieval in the Schumacher task would
carry no advantage.  Which assumption provides a better
model of human retrieval is an empirical question that is not
answered by Schumacher’s data.

Cognition as cascading information processing
CORE is flexible enough to accept theory specifications

expressed relative to a range of different sets of axioms.  For
the work reported above we used axioms that were based on
the notion of a dependency (CCM-d).  However, there are
intrinsic limitations of dependency-based axioms (Vera et
al., 2004) and we have therefore been working on the
specification of a set of axioms that is based in part on the
idea of a cascade as a mechanism for representing
overlapping, communicating processes. Our formalization
builds on McClelland's (1978) original cascade assumptions
to explicitly include the declaration of resource-limited
communication channels and buffers between processes.

Figure 2 illustrates a prediction derived by CORE using
CCM-c axioms.  The start times and durations of the
processes are the same as in Figure 1.  The difference
between the figures is that the relationships between
processes are expressed in terms of cascades. These capture
the resource requirements and temporal constraints on the
inter-process communication channels. The cascades are
represented in Figure 1 as the lightest gray bars that run
between the processes.  One advantage of cascades is that
they prevent cognitively implausible process orderings that
would be legal using CCM-d. For example, the process
ordering init(x), init(y), click(y), click(x) is legal in CCM-d
but cognitively implausible because it assumes no cost to
buffering information between the cognitive intention and
the motor action.

Discussion
We have introduced a framework and a tool for making

inferences about the implications of formally specified
theories of skilled behavior. The tool uses a constraint logic-
programming environment to support the inference of the

Stimuli

Audition

Vision

Cognition

Goal

Motor

Time (hundredths of a second)

Figure 2: A CCM-c prediction of performance on Schumacher et al.’s  (1999)  experiment 3 task.
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asymptotic bound on skilled behavior given a specification
of the constraints on the task environment, on perception, on
cognition, and on action.

Our investigations are at an early stage.  We have so far
explored the potential of dependency and cascade axioms on
only a handful of tasks.  In addition to the dual task
described in the current paper we have also used CORE to
generate predictions for a range of applied tasks including a
call-center accounts advise task, and a laboratory version of
an Automated Teller Machine.

Our aim in conducting this work was not to recast ACT-
R/PM and EPIC in a formal language.  The aim was to
provide a tool that could assist in the prediction of the
asymptotic bound on skilled behavior given constraints on,
not only, objective and environment but also on strategies
and architecture.  We concur with Simon (1992) that an
analysis of the optimal adaptation given all of these sources
of constraint provides a more accurate estimation of
behavior.  While the extent to which we can achieve our aim
is yet to be determined, we have presented arguments for the
scientific merit of deductive inference in exploring the
asymptotic bound on skilled behavior. We have shown that
by deriving the optimal schedule of behavior for these
constraints, logically implied but previously unexplored
predictions of behavior can be exposed.  The fact that a
novel prediction was generated for a task that has been the
subject of a number of published studes illustrates that the
benefits of cognitive constraint modeling go beyond
redescription of existing theory.

One potential concern is that if we were to write a set of
constraints to capture the range of behaviors exhibited by,
for example ACT-R, we would generate a set that was as
large and formidable as ACT-R’s Lisp code.  Our response
is twofold.  First, we note that CCM is not a simple subset
of ACT-R, it includes functionality, particularly
optimization, that is not present in simulation architectures.
Second, we point out, again, that our aim is not to recast
ACT-R or EPIC in a formal language.  More particularly,
our aim, at present, is not to build a simulation architecture,
rather it is to provide a tool for supporting reasoning about
psychological theory.  Much of the complexity of the ACT-
R and EPIC implementations may be related to the
simulation-based framework in which they are cast.

Our current work is aimed at further developing the
generality of CORE.  Most importantly, we need to take full
advantage of the constraint satisfaction engine, CLP FD,
that is used for the calculation of arithmetic parameters.  In
the present implementation of CORE, this engine is not used
to reason about the symbolic inter-process constraints.  We
also need to work on using constraint satisfaction techniques
that support reasoning about statistical distributions rather
than just integer values.

In conclusion, we have introduced a constraint-based
framework for reasoning about human behavior and argued
for the utility of a specific tool called CORE.  Our
investigation suggests that partially automatic algorithms
can be used to generate predictions of optimal human

behavior from concise, theory-relevant, and readily
modifiable, specifications of  psychological theory.
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