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Fractional Chern insulators (FCIs) realized in fractional quantum Hall systems subject to a periodic potential
are topological phases of matter for which space group symmetries play an important role. In particular, lattice
dislocations in an FCI can host non-Abelian topological defects, known as genons. Genons can increase the
ground state degeneracy of the system and are thus potentially useful for topological quantum computing. In
this work, we study FCI edges and how they can be used to detect genons. We find that translation symmetry
can impose a quantized momentum difference between the edge electrons of a partially-filled Chern band.
We propose layer-resolved lattice contacts, which utilize this momentum difference to selectively contact a
particular FCI edge electron. The relative current between FCI edge electrons can then be used to detect the
presence of genons in the bulk FCI. Recent experiments have demonstrated graphene is a viable platform to
study FCI physics. We describe how the lattice contacts proposed here could be implemented in graphene
subject to an artificial lattice, thereby outlining a path forward for experimental dectection of non-Abelian
topological defects.

Introduction. Non-Abelian topological physics has excited
intense interest in the condensed matter community, in part
for its potential application to quantum computing [1, 2]. Tra-
ditionally, the emphasis has been to discover non-Abelian
topological phases, whose emergent quasiparticles are non-
Abelian anyons. Non-Abelian anyons have an internal degen-
erate state space that can encode quantum information, and
satisfy exotic braiding statistics such that their adiabatic ex-
change can result in a unitary rotation within the ground state
subspace. While more than three decades of searching for
non-Abelian anyons has resulted in some progress [3–6], it
has also emphasized the difficulty of conducting such experi-
ments. An attractive alternative is to engineer extrinsic defects
with non-Abelian braiding statistics and ground state degener-
acy. Such topological defects are potentially more experimen-
tally manageable because their location and number can be
controlled. Majorana zero modes (MZMs) in topological su-
perconductors [7], defects with Ising anyon fusion and braid-
ing statistics, have been the focus of these studies due to their
relative experimental accessibility [8–20]. Unfortunately, the
braiding statistics of MZMs do not support universal quantum
computation [21], thus most Majorana-based quantum com-
puting proposals rely on resource-expensive distillation pro-
tocols [22–27]. It therefore remains desirable to engineer al-
ternative, more computationally powerful topological defects.

One potential alternative are genons- topological de-
fects whose presence effectively changes the genus of the
sytem [28–31]. Genons can increase the ground state degen-
eracy of an otherwise Abelian topological phase, enhancing
the computational power of the system. One system in which
genons are predicted to appear are fractional Chern insula-
tors (FCIs) [32–37]. An FCI is a topological phase occur-
ing at partial filling of a band with non-trivial Chern number
C ∈ Z/{0}. The fractional quantum Hall (FQH) effect is
a special case of an FCI, in which all bands (Landau levels)
have C = 1. Applying a periodic potential (e.g. a lattice) to

a QH system can result in bands with |C| > 1. The ground
state of a partially filled Chern-C band can be mapped to a
|C|-layer FQH state in which different lattice sites are anal-
ogous to layers [38–42]. Lattice symmetries are thus inter-
woven with internal component labels of the FCI; translations
have a non-trivial action on layer index which can result in
genons localized at lattice dislocations [40].

Recent experiments have demonstrated that FCIs can be re-
alized in graphene, where the periodic potential arises from
a Moiré pattern formed by interference between the graphene
and dielectric lattices [43]. These experiments indicate that
graphene is a viable platform in which to pursue non-Abelian
physics, however the Moiré potential is not readily applicable
to genons as it is difficult to controllably insert lattice dislo-
cations into the Moiré superlattice. Alternatively, the lattice
potential can be engineered, e.g., by patterning holes into a
neighboring metallic gate or dielectric [44–46]. An artificial
lattice is an appealing route towards realizing FCIs hosting
genons because (1) the lattice itself can be used to tune to the
desired phase, and (2) there is no additional cost associated
with patterning dislocations.

Even after genons have been engineered, there remains a
final hurdle of how to detect their presence, which is the focus
of this work. To understand why this is challenging, it is help-
ful to consider the analogy of an FCI in a Chern-2 band to a
bilayer QH system, depicted in Fig. 1. When the FCI ground
state satisfies the microscopic lattice symmetries, sublattices
are analogous to layers. Crucially, under this mapping unit
cell translations and plaquette-centered rotations interchange
the two sublattices, therefore lattice dislocations play the same
role as layer-exchange defects in the bilayer system (left-most
inset). In the bilayer case, layer-exchange defects can be de-
tected using the difference in the edge current of the two lay-
ers [47], which in turn can be measured by separately con-
tacting each layer’s edge. In the FCI case, the difference in
the current associated with the edge electrons again carries a
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FIG. 1. Analogy between a bilayer QH system (left panel) and an
FCI in a C = 2 band (right panel). Both systems contain a pair of
genons (stars) and a blue and yellow region to selectively contact the
two edge electrons (white and green lines). A genon in the bilayer
system exchanges the layers. Right panel. An FCI (green) with two
layer-resolved lattice contacts (blue and yellow). Each lattice con-
tact gaps out one of the FCI’s edge electrons, rerouting that electron
along the exterior of the contact and allowing for selective voltage-
bias and current measurement. The FCI is in a partially-filled C = 2
band subject to a square lattice potential, such that it realizes the
two-component (mml) phase. The two components, ‘layers’, are
localized on the blue and yellow sublattices. The contacts are in a
C = 1 band. The unit cell area of the rectangular lattice is half that
of the bulk, and is lattice-matched with the bulk along the interface.

signature of the genon; however, we must devise a way to se-
lectively contact edge electrons residing in the same physical
sample.

In this work, we study FCI edges in a partially filled C > 1
band and propose layer-resolved lattice contacts that can be
used to detect genons. The main idea is depicted in the left
panel of Fig. 1. Essentially, a local translation symmetry along
the edge constrains the allowed perturbations from electon
tunneling between the FCI (green) and lattice contacts (blue
and yellow). By appropriately designing the lattices in the
three regions, the two contact interfaces can gap out differ-
ent edge electrons of the FCI, thereby spatially separating
them and allowing independent measurement of their elec-
trical properties. The relative current can then be used to
detect genons in the bulk [47], providing a path forward for
experimental detection of non-Abelian topological defects in
graphene.

The remainder of this paper is organized as follows. We
briefly review the mapping of an FCI ground state to a |C|-
layer QH state. We next study the FCI edge physics, elucidat-
ing the additional constraints translation symmetry imposes
on electron tunneling across the interface. We then discuss
how the lattice itself can be used as a tuning parameter to
simultaneously realize different phases in the same sample.
Finally, we synthesize the above discussion to propose layer-
resolved lattice contacts and illustrate how these contacts pro-
vide the missing link in experimental dectection of genons.

Preliminaries. Consider a square lattice with unit cell area
a2 and perpendicular magnetic field such that the flux den-
sity is φ = p/q with p and q coprime integers. Chern bands
are characterized by topological invariants C and S given by
theTKNN Diophantine equation [48]

ne = Cφ+ S, (1)

where ne is the electron density per unit cell. In Appendix A,
we review how the single particle orbitals of the band can be
mapped to a |C|-layer QH system at flux density φ̄ = φ+S/C

with effective magnetic length ¯̀
B = a/

√
2πφ̄. Recall that

in the Landau gauge A = B(−y, 0) of a continuum Lan-
dau level, single-particle states are uniquely labeled by their
momentum kx. The key point is that in an appropriate ba-
sis, single particle orbitals |k̃x, β〉 of a Chern-C band have a
continuum index k̃x ∈ R analogous to this momentum, and
an internal index β ∈ ZC analogous to “layer.” Transla-
tions and C4 rotations factor into continuum and internal parts
Tj = T̃j ⊗ τj , j = x, y; C4,l = C̃4,l ⊗ γ4,l, l = p, s de-
noting plaquette-centered and site-centered rotations, respec-
tively (C4,s = TxC4,p). The continuum parts, denoted with a
tilde, transform k̃x just as in a continuum Landau level at flux
density φ̄. When S and C are coprime, the internal parts, de-
noted with a greek letter, act non-trivially on the layer index:
τxτy = e2πiS/Cτyτx. In the limit that φ̄→ 0, the system has a
continuum limit and admits a field theoretic description. This
is the precise sense in which a Chern-C band is like a |C|-
layer QH system, with lattice symmetries acting as internal
symmetries on the layer index [38–42].

For concreteness, we consider a partially filled C = 2,
S odd band whose ground state realizes an Abelian, C4-
symmetric (mml) state. At the topological level the system
is described by the Lagrangian

L =
1

4π

∫
dx
{
KIJaI,µ∂νaJ,νε

µνλ + 2tIAµ∂νaI,λε
µνλ
}
,

(2)

where KIJ is a 2 × 2 universal matrix describing the phase,
t = (1, 1) is the charge vector, aJ are the Chern-Simons
gauge fields, and A is the external electromagnetic vector
potential. The topological field theory must then be supple-
mented with the symmetry action. The electron current in
layer I is jµe,I = 1

2π∂νaI,λε
µνλ, while the electron operator

ψe,I generates a corresponding flux in aI . We demand that
the ψe,I transform under the lattice symmetries just like the
single-particle orbitals of a C = 2 band; specifically they
transform under translations as τj = σj where σx/y are Pauli
matrices, and under rotations as γ4,p = (τx + τy)/

√
2. This

implicitly defines the action of the symmetry on the Chern-
Simons fields, as detailed below. Note that by a change of
basis in the layer space β, we could have instead chosen
(say) τx = σz; this corresponds to a distinct implementa-
tion of the symmetry (in fact, it corresponds to a “topologi-
cal nematic” state [28]). Our choice is C4 symmetric. When
|m − l| ≥ 2, interchanging the layers permutes the anyons,
and consequently [49] such twists defects are genons with
quantum dimension d =

√
|m− l| [28, 40]. For our choice

τj = σj , a lattice dislocation with a Burger’s vector along ei-
ther x or y permutes the layers, so will carry this degeneracy.

FCI edge states. The interplay of translation symmetry and
the component labels of the many-body state has interesting
implications for FCI edge states. The Lagrangian associated
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FIG. 2. Edge states for the Hofstadter model near φ = 1/2 on the
infinite cylinder. The two halves of the cylinder differ by filling
a band with C = 2, S = −1, with left and right movers corre-
sponding to opposite edges. The edge state momentum difference at
ε = 0 is π

a
(1 + 1/q) for flux density p/q. As p/q → 1/2, the edge

state momentum difference approaches quantization, corresponding
to the limit that the system admits a field theory description (see Ap-
pendix B).

with the edge of the system is [50]

Ledge =
1

4π

∫
dx {KIJ∂tφI∂xφJ − VIJ∂xφI∂xφJ} , (3)

where the matrix KIJ is that of the bulk theory, while the
edge potential VIJ is non-universal. We continue to work
in the basis with t = (1, 1), so that I and J are layer in-
dices. For concreteness, consider an edge along the (u, v)

direction with translation symmetry T(u,v) = T̃(u,v) ⊗ τ(u,v),
e.g., (u, v) = (1, 0) corresponds to an x-edge. The “in-
ternal” part of the translation acts on the electron operators
ψe,I ∼ exp {iKIJφJ} as τ(u,v) (ψe,1, ψe,2)

T . This implies,
for example, that x translation interchanges the bosonic edge
modes for an (mml) phase: τxφ1/2 = φ2/1.

Translation symmetry imposes additional constraints on
the allowed perturbations to the FCI edge theory. Consider
a translationally invariant interface between two phases de-
scribed by KL and KR. When these phases are not related by
anyon condensation, only perturbations arising from electron
tunneling across the interface are allowed. These perturba-
tions take the form

tgh cos
(
gIK

L
IJφ

L
J − hIKR

IJφ
R
J

)
, (4)

where gI and hI are integer vectors satisfying∑
I gI =

∑
I hI from charge conservation. In the con-

tinuum QH effect, Eq. (4) can gap out the edge modes
eigIK

L
IJφ

L
J , eihIK

R
IJφ

R
J when the left and right scaling di-

mensions are equal (gIKL
IJg

T
J = hIK

R
IJh

T
J ) and the total

scaling dimension is less than two. For the FCI interface
considered here, Eq. (4) must additionally be invariant under
the component translation symmetries of the left and right
phases, τL/R(u,v).

An alternative way of understanding this additional con-
straint is that the interplay of translation symmetry and layer
index introduces a difference in the edge momenta that is not
present for the analogous FQH state. Consider the (mml)
state with τx/y = σx/y . An edge along the (1, 1) direction
has τ(1,1) = σz . When VIJ is a symmetric matrix, the layer-
exchange symmetry implies that for a bilayer FQH state we

Artificial Lattice

Graphene

FCI

ν = 1 / 3

C = 2

0 1

2
1
ne

1

2

1
ϕ

FIG. 3. Left panel. The FCI can be engineered in graphene subject to
an artificial lattice, e.g. by patterning holes in a neighboring dielec-
tric or metal gate (see Appendix D). Right panel. Flux density versus
electron density phase space. The dot-dashed blue line corresponds
to the FQH phase ν = 1/3. The dashed green line corresponds to an
FCI at quarter filling of a C = 2, S = −1 band (shaded region). The
pair of points depict that for the different lattices shown in Fig. 1, the
green and blue/yellow regions can be tuned to distinct phases for the
same global backgate voltage and magnetic field.

would expect the edge electrons associated to the two layers
to have the same momenta; this implies that for an FCI, both
edge electrons ψe,1/2 have the same k̃(1,1). However, the in-
ternal part of the translation introduces a quantized momen-
tum difference of π/

(√
2a
)
:

T̃(1,1) ⊗ τ(1,1)

 ψe,1

ψe,2

 = eik̃(1,1)
√
2a

 ψe,1

−ψe,2

 . (5)

This momentum difference will no longer be quantized in the
presence of disorder or non-symmetric perturbations to VIJ ,
however, provided these are small effects, the edge momenta
will be roughly separated by π over the lattice spacing along
the edge. In Fig. 2, we plot this momentum difference for the
Hofstadter model and show that it approaches quantization in
the limit φ→ −S/C [51, 52].

When the system satisfies plaquette-centered C4 sym-
metry, the (1,−1) edge has component translation
τ(1,−1) = γ−14,pτ(1,1)γ4,p = −σz , and the momenta of the
edge electrons are swapped compared to Eq. (5) (assuming
k̃(1,1) = k̃(1,±1)). For the (331) state, there is an MZM at
the corner, which interchanges the two layers of the FCI (see
Appendix C). Due to the presence of gapless edge modes,
these corner MZMs are not exponentially localized the way
that topological defects in the gapped bulk are.

Lattice as a tuning parameter. We now focus on the partic-
ular realization of an FCI in graphene subject to an artificial
lattice, depicted in the left panel of Fig. 3. Insulating phases
correspond to lines in the flux density φ versus electron den-
sity ne plane [43]. The phase of the system can be tuned by:
(1) applying a voltage to the sample to vary ne, (2) applying
a perpendicular magnetic field to vary φ, and (3) changing the
unit cell area of the lattice to change (ne, φ) simultaneously.
The third option provides a convenient way of realizing dis-
tinct phases within the same sample by defining the artificial
lattice differently in separate spatial regions. Here, we always
consider edges defined by the artificial lattice, as the physical
graphene edge is too dirty for translationally invariant physics
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to apply.
Consider the right panel of Fig. 1: the unit cell area in

the green region is twice as large as the unit cell area in the
blue/yellow regions. Therefore, for the same magnetic field
and backgate voltage, 2(ne, φ)blue/yellow = (ne, φ)green. When
these points lie on lines characterizing distinct phases, the
green region is in a different phase than the blue/yellow re-
gions. The right panel of Fig. 3 shows an example. The
dashed green line corresponds to an FCI at quarter filling of a
C = 2, S = −1 band (shaded region). A possible ground
state of this phase is the Abelian (331) state, which hosts
genons at lattice dislocations. The dot-dashed blue line cor-
responds to the FQH phase ν = 1/3. When the green region
is tuned to the point (3/10, 9/10), the blue/yellow regions are
at (3/20, 9/20). Generally, for large φ FCI phases have larger
energy gaps than competing FQH phases [43], therefore for
these parameter values we would expect the bulk and lattice
contacts to be in an FCI and FQH phase, respectively.

Layer-resolved lattice contacts. We now propose the layer-
resolved lattice contacts shown in Fig. 1. We assume the
bulk region (green) is in the (331) state, with parameter val-
ues given by the green dot in Fig. 3. We further assume the
ground state is plaquette-centered C4-symmetric, where the
layer basis corresponds to the blue and yellow sublattices (see
insets). The two contacts (blue and yellow) are in the ν = 1/3
state corresponding to the blue dot in Fig. 3, and are held at
the same chemical potential. The FCI-contact interface is as-
sumed to be long enough that translation symmetry is pre-
served, and located in the middle of the edge so that corner
physics may be neglected.

The white and green lines indicate the edge electrons ψe,1/2
associated with the FCI layer index. These edge electrons are
eigenstates of the translation operators T(1,±1), and thus have
well-defined momenta. Due to theC4 symmetry, the edge mo-
mentum of ψe,1/2 along the yellow contact interface is equal
to the edge momentum of ψe,2/1 along the blue contact inter-
face. If the energy gaps of the (331) and ν = 1/3 phases are
compatible such that for an appropriate value of the chemical
potential the lattice contact’s edge electron has the same mo-
mentum as either ψe,1/2, then ψe,1 and ψe,2 can be gapped
out along opposite contacts. By tuning a global backgate,
the electrochemical potential can be adjusted so that the con-
tact’s edge electron has the necessary momentum, which can
be checked by the tuning procedure described in Appendix D.
Electron tunneling gaps out ψe,1/2 along the τ(1,±1) = ±σz
invariant edges. We do not show the edge electron associ-
ated with the filled C = −1 band (solid black line in Fig. 3);
generically this edge electron’s momentum will be different
than that of the ψe,1/2 and does not change under C4 rotation,
thus it can be safely ignored. Effectively, gapping out an FCI’s
edge electron along the contact’s interface reroutes that edge
electron along the exterior of the contact, spatially separating
the FCI’s two edge electrons. A current measurement or volt-
age applied to the outer edge of the lattice contact will only
affect one of the FCI’s edge electrons, which is why we call
these layer-resolved lattice contacts.

Given the ability to separately contact the two edge elec-
trons of an FCI, we can use their relative current to detect

2

4

1

3

FIG. 4. Detecting genons using FCI edges. The two edge electrons
(white and green lines) are interchanged at a genon (star), resulting
in a signature in the differential conductance dIr/dVr [47]. When
all contacts are held to the same chemical potential, electrodes 1 and
3 selectively couple to one of the FCI’s edge electrons, while 2 and
4 couple to the other. By measuring the voltage drop between 1 and
3, as well as 2 and 4, we can determine the relative current Ir . The
differential conductance dIr/dVr can then be determined by varying
the voltage applied to any of the four electrodes.

genons localized at lattice dislocations in the bulk. Figure 4
generalizes one of the experimental proposals in Ref. 47 for a
conventional bilayer QH system with layer exchange defects.
Let I1/2 denote the current associated with ψe,1/2. The rel-
ative current Ir = I1 − I2 is inverted across a genon. The
layer-resolved lattice contacts allow separate control of the
voltage and measurement of the current for the two edge elec-
trons, thereby allowing readout of their relative conductance,
dIr/dVr. The relative conductance peaks for small edge-
genon separation; therefore by comparing multiple samples
that vary this separation distance, we can obtain spatial reso-
lution of the relative conductance and detect the genon. The
quantum point contact interferometer of Ref. 47 can be simi-
larly generalized to the FCI context.

There are many other choices for the FCI and lattice con-
tact phases; the two phases can be realized simultaneously for
constant magnetic field and backgate voltage provided the line
connecting (ne, φ)green and (ne, φ)blue/yellow intersects the ori-
gin. For an FCI-contact interface along the (1, 0) direction
with internal translation τx = σx, the FCI edge electron oper-
ators ψe,1±ψe,2 are translation eigenstates. By tuning a lattice
contact to gap out the odd combination, the associated current
I1− I2 can be measured on that contact, allowing for an alter-
nate realization of the experiment depicted in Fig. 4, see Ap-
pendix D. Finally, while we focused here on a C4-symmetric
FCI, the proposal could be generalized to other lattices.

Summary and Outlook. In this work, we proposed layer-
resolved lattice contacts for FCI edges. The lattice contacts
utilize the interplay of translation symmetry with internal
component labels of the FCI state to selectively couple to one
of the FCI’s edge electrons. Lattice contacts facilitate genon
detection in the bulk by measuring the differential conduc-
tance associated with the relative current between the edge
electrons, which in our proposal becomes a standard four ter-
minal conductance measurement. The experimental proposal
in this paper could be realized using graphene subject to an
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artificial lattice.
For the example considered in this paper, the genons are

MZMs; more exotic topological defects are possible for
(mml) phases with |m− l| > 2 [28]. Important open ques-
tions include determining the energy gaps, ground states, and
symmetries, of different fractionally filled Chern bands. We
have assumed there exist compatible phases for the FCI bulk
and lattice contacts such that by tuning the electrochemical
potential, the lattice contact’s edge electron has the same mo-
mentum as one of the FCI’s edge electrons; more detailed
numerics are necessary to identify which candidate phases
satisfy this propertry. Additionally, the role of disorder, and
whether it causes FCI edge modes to equilibrate, could affect
the experiment proposed in Fig. 4. More broadly, FCIs real-
ized with an artificial lattice provide a playground for studying
interfaces of different topological phases, including the trans-
fer and sharing of information across the interface.
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Appendix A: Chern band as |C|-layer QH system

In this Appendix, we review how the single-particle orbitals
of a Chern band characterized by C and S at rational flux
density φ = p/q can be identified with Landau-gauge orbitals
of a |C|-layer QH system at flux density φ̄ = φ + S/C [38–
42].

Magnetic translations by lattice vectors do not commute
due to the non-integer flux density:

TxTy = ei2πφTyTx, (A1)

where Tx/y = ei(kx/y−eAx/y/c)a. It is therefore useful to con-
sider a magnetic unit cell (MUC) containing p flux quanta,
such that translations along the MUC, e.g., Tx, T qy , do com-
mute. This choice of MUC corresponds to the gauge choice
A = (0, Bx, 0), for which translations act on the single-
particle momentum states as

Tx|kx, ky〉 = eikxa|kx, ky〉 (A2)

Ty|kx, ky〉 = eikya|kx + φGx, ky〉. (A3)

In the above, kx ∈ [0, Gx), ky ∈ [0, Gy), and Gx = 2π/a,
Gy = 2π/qa.

A partial Fourier transform on the momentum eigenstates
results in Wannier orbitals

|kx, b〉 =

∫ Gy/2

−Gy/2

dky√
2π
eikybqaeiϕ(kx,ky)|kx, ky〉, (A4)

where b denotes the y coordinate. Wannier orbitals sat-
isfy twisted boundary conditions |kx +Gx, b〉 = |kx, b+ C〉.
There are several choices for the phase ϕ(kx, ky) [39], which
will not be important for the present discussion.

A convenient basis change on Eq. (A4) allows us to map the
single-particle orbitals to Landau-gauge orbitals of a |C|-layer
QH system at effective flux density φ̄ and effective magnetic
length ¯̀

B = a/
√

2πφ̄. We denote the new basis by |k̃x, β〉,
where

k̃x = kx +Gx
b

C
∈ R, β = b− Cb b

C
c ∈ ZC . (A5)

Translations act on single particle states in this new basis as

Tx|k̃x, β〉 = eik̃xaei2πβ/C |k̃x, β〉 (A6)

Ty|k̃x, β〉 = |k̃x + φ̄Gx, β + S〉. (A7)

Translations factor into a continuum and internal part,
Tj = T̃j ⊗ τj for j = x, y. We see that T̃j tranforms k̃x as
in a continuum Landau level at flux density φ̄, while the layer
index β is acted on by

τx = e−2πiβ̂/C , τy = |β + S〉〈β|. (A8)

The square lattice additionally has a plaquette-centered (p)
and site-centered (s) C4 symmetry, related by C4,s = TxC4,p.
Plaquette-centered C4 symmetry satisfies C−14,pTxC4,p = Ty
and C−14,pTyC4,p = T−1x . These rotations factor into contin-
uum and internal parts, C̃4,s/p ⊗ γ4,s/p, where the continuum
part C̃4,p has the same action as C4 acting on Landau-gauge
orbitals in a continuum Landau level, while the internal part
γ4,p acts on the layer indices as

γ4,p =
∑
β,β′

1√
C
|β〉e2πiββ

′/C〈β′|. (A9)

In the limit that a/¯̀
B → 0, equivalently when φ → − S

C ,
the bands become flat and the system has a Landau level-
like continuum limit. Given any |C|-layer FQH state in this
limit, an analogous FCI state is given by replacing the Landau-
gauge orbitals with the single-particle basis states |k̃x, β〉.
This construction is particularly simple on the cylinder, for
which the nith Landau-gauge orbital sits at the nith lattice site
in the compact direction. For example, on a cylinder compact
in the x-direction with circumference Lx, the (lmn) wave-
function is
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Ψlmn{zi, wj} = ΩzΩw
∏
i<j

(
e2πzi/Lx − e2πzj/Lx

)l (
e2πwi/Lx − e2πwj/Lx

)m∏
i,j

(
e2πzi/Lx − e2πwj/Lx

)n
e−

∑
i(y

2
i+v

2
i )/2`

2
B ,

(A10)

where zi = xi+ iyi is the complex coordinate of the ith electron in the top layer, wj = uj + ivj is the complex coordinate of the
jth electron in the bottom layer, and Ωz/w are normalization factors. We can rewrite the wavefunction in the occupation basis as

Φlmn{li,mj} = Ωl,m

∫ ′∏
i

′∏
j

dxidyidujdvjψ
∗
k̃x,li

(xi, yi)ψ
∗
k̃x,mj

(uj , vj)Ψlmn{zi, wj}, (A11)

where Ωl,m is a normalization factor, the primes on the
products denote they are restricted to {i|li ∈ {li}} and
{j|mj ∈ {mj}}. We have written the Landau-gauge wave-
function as ψ∗

k̃x
, and defined k̃x,li = Gxli/Lx.

The many-body state is then

|lmn〉 =
∑
{li,mj}

Φlmn ({li,mj})
′∏
i

′∏
j

|k̃x,li , 0〉|k̃x,mj , 1〉.

(A12)

In writing Eq. (A12), we only relied on the fact that the con-
tinuum variable k̃x is analogous to momentum in a Landau
level. This fixes the definition of k̃x, but we are free to rotate
the basis of the layer index (the basis of the τj) provided that
k̃x is unaffected. We refer to the layer basis as the single-
particle basis choice in Eq. (A12), for which β = 0, 1 corre-
sponds to the layer indices l,m of the many-body state. When
the τj in the layer basis are given by Eq. (A8), translations
along y permute the layers while translations along x do not;
this corresponds to the topological nematic states proposed in
Ref. 40. We show below that if in the layer basis τx = σx and
τy = σy , then the (mml) many-body ground state preserves
C4 symmetry. Whereas for a QH system the different compo-
nents correspond to different layers or spin species, for an FCI
the components are associated with different lattice sites (e.g.,
a checkerboard arrangement for the C4-symmetric layer basis
and a stripe arrangement for the topological nematic states).

As the continuum translation operators T̃j act on the sin-
gle particle basis in the same way as magnetic translations on
Landau-gauge orbitals, we know that translations acting on
the many-body state |lmn〉 can only differ in the actions of
the internal part of translation τj . When τx = σz and τy = σx
(i.e., for the basis given in Eq. (A8) with C = 2 and S odd),

τx|lmn〉 = (−1)|{mj}||lmn〉, (A13)
τy|lmn〉 = |mln〉. (A14)

In this basis, τy exchanges the layers, but τx does not: this
many-body state does not preserve the microscopic C4 sym-
metry of the lattice.

Conversely, if we rotate the component basis by the unitary
U = (1− iσy)(1− iσz)/2, then τx = σx and τy = σy . When

this corresponds to the layer basis, we have

τx|lmn〉 = |mln〉, (A15)

τy|lmn〉 = (−i)|{li}|i|{mj}||mln〉. (A16)

Assuming both layers have equal occupation, i.e.
|{li}| = |{mj}|, then both τx and τy exchange the lay-
ers. When l = m, this many-body state is a C4 eigenstate.

Appendix B: Translation symmetry for FCI edge states

In this Appendix, we investigate the action of translation
symmetry on edge states of an FCI in more detail. For con-
creteness, we consider the (mml) phase with the internal part
of translation in the layer basis along the (1, 0) and (0, 1) di-
rections given by σx and σy , respectively. We consider two
types of edges, as shown in Fig. 5: ‘A-type’ edges run along
the (1, 0) and (0, 1) directions, while ‘B-type’ edges run along
the (1, 1) and (1,−1) directions.

More explicitly, the internal part of translation acts on the
electron operators for A-type edges as

σx

 ψe,1

ψe,2

 =

 ψe,2

ψe,1

 (B1)

σy

 ψe,1

ψe,2

 =

 −iψe,2
iψe,1

 , (B2)

and on the electron operators for B-type edges as

±σz

 ψe,1

ψe,2

 = ±

 ψe,1

−ψe,2

 . (B3)

In the main text, we argued that for symmetric edge poten-
tial VIJ = VJI the edge electrons should have momentum
difference π/(

√
2a) along a B-type edge. Along an A-type

edge with τz = σx, the component translation eigenmodes are
the symmetric and antisymmetric combinations of the elec-
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BA

FIG. 5. The left half of the sample has ‘A-type’ edges, oriented along
the (1, 0) and (0, 1) directions, with corresponding internal transla-
tions τx = σx and τy = σy . The right half has ‘B-type’ edges,
oriented along the (1, 1) and (1,−1) directions, with internal trans-
lations τx/y = ±σz . When translation symmetry is preserved along
the edges, the interface has a gapless edge mode due to the lattice
mismatch.

tron operators,

Tx/y

 ψe,1 + ψe,2

ψe,1 − ψe,2

 = eik̃x/ya

 ψe,1 + ψe,2

−ψe,1 + ψe,2

 , (B4)

indicating that the momentum separation of the edge electrons
is π/a. Therefore, when translation symmetry is preserved,
an interface between an A-type and B-type edge of the same
bulk phase, as depicted in Fig. 5, cannot simultaneously gap
out both edge electrons.

We can check the momentum difference of the edge elec-
trons explicitly for the bilayer checkerboard tight binding
model [53]. This model has two bands with Chern numbers
C = ±2, where each site on a square lattice has both an a and
a b orbital,

H = t1
∑
〈i,j〉

(
eiφija†i bj + h.c

)
+
∑
〈〈i,j〉〉

tij

(
a†iaj − b

†
i bj

)
.

(B5)

Equation (B5) describes a bilayer checkerboard lattice.
We work with the parameters φx = φ−x = π/4,
φy = φ−y = −π/4, and second nearest neighbor hoppings
t++ = t−− = t2, and t+− = t−+ = −t2. On the infinite
plane, the Hamiltonian can be written in momentum space as

H =
∑
~k

(
a†~k
, b†~k

)
H~k

 a~k

b~k

 , (B6)

H~k =
√

2t1 (cos kx + cos ky)σx

−
√

2t1 (cos kx − cos ky)σy − 4t2 sin kx sin kyσz.
(B7)

In order to investigate the edge modes, we can put the
model on a strip finite in x and infinite in y. The Hamilto-

-π - π

2

π

2
π
ky

-2 2

2 2

ε(ky)

- π

2
- π

2 2

π

2 2

π

2

kv

-2 2

2 2

ε(kv)

FIG. 6. Energy versus momentum for the bilayer checkerboard lat-
tice model on the infinite strip with edges parallel to the y-axis (0, 1)
(left panel) and with edges parallel to the v-axis (1, 1) (right panel).
Right and left movers correspond to opposite edges. The edge state
momentum difference is quantized to π/a, where a is the lattice
spacing along the edge (i.e., a = 1 for the y edge and a =

√
2

for the v edge).

nian then is given by

H =

n∑
x=1

∑
ky

{
t1a
†
x,ky

(
eiπ/4bx+1,ky + eiπ/4bx−1,ky

+ e−iπ/42 cos kybx,ky

)
+ h.c.

+t22i sin ky

[
a†x,ky

(
ax+1,ky − ax−1,ky

)
− b†x,ky

(
bx+1,ky − bx−1,ky

) ]}
.

(B8)

We plot the energy spectrum of Eq. (B8) in the left panel
of Fig. B. As expected, the momentum difference of the edge
modes is π/a. Adding an orbital-dependent edge potential

Ha =

n∑
x=1

∑
ky

µa(x)a†x,kyax,ky , (B9)

affects both edge modes, therefore we conclude that the edge
modes are mixtures of the two orbitals.

Additionally, we can consider an infinite strip with B-type
edges. Denoting the (1, 1) coordinate by v and the (1,−1)
coordinate by u, the Hamiltonian is given by

H =

n∑
u=1

∑
kv{

2t1

[
cos

(
kv√

2
+
π

4

)(
a†u,kvbu+ 1√

2
,kv + b†u,kvau− 1√

2
,kv

)
+ cos

(
kv√

2
− π

4

)(
a†u,kvbu− 1√

2
,kv + b†u,kvau+ 1√

2
,kv

)
+ t2

[
a†u,kv

(
au+

√
2,kv

+ au−
√
2,kv
− 2 cos(

√
2kv)au,kv

)
− b†u,kv

(
bu+
√
2,kv

+ bu−
√
2,kv
− 2 cos(

√
2kv)bu,kv

) ]}
.

(B10)

We plot the energy spectrum of Eq. (B10) in the right panel
of Fig. B. Now, the lattice spacing along the edge is

√
2a,

and we see that the momentum difference of the edge modes
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is π/
√

2a. Adding the orbital-dependent edge potential of
Eq. (B9) only affects one left-moving and one-right moving
mode, thus we conclude that each edge mode can be identi-
fied with a single orbital.

For these parameter values, the flux is tuned exactly to
φ = 1/2 = −S/C, which is why the edge momentum differ-
ence is well quantized to π/a (π/

√
2a) for A-type (B-type)

edges. We now further investigate the edge momentum differ-
ence as φ→ −S/C for the Hofstadter model [51, 52].

The Hofstadter model describes a perpendicular magnetic
field applied to a square lattice (with lattice constant a):

H = −t
∑
〈m,n〉

{
c†ncme

i2π
∫ n
m
~A·d~̀ + h.c.

}
. (B11)

Working in Landau gauge ~A = (0, Bx, 0) at flux density
Ba2 = φ = p/q, we can write the Hamiltonian in momen-
tum space on the infinite plane as

H =
∑
~k

~c†~k
H~k~c~k, (B12)

where~c~k =
(
c~k,1, c~k,2, . . . , c~k,q

)T
andH(~k) is a q×q matrix,

defined by

H(~k)m,n = cos (kya+ 2πnφ) δm,n + ei
kxa
q δm+1,n + h.c.

(B13)

The magnetic unit cell has q sites in the y direction, one site
in the x direction. Near φ = 1/2, energy spectrum has three
bands, with the middle band having C = 2, S = −1. By
placing the model on a cylinder infinite in x, such that half
of the y sites sit at chemical potential µ1 between the bot-
tom two bands and half of the y sites sit at chemical potential
µ2 between the top two bands, we can investigate the edge
states of the Chern 2 band. We plot the energy spectrum of
the infinite plane and for the infinite cylinder in Fig. 7, at flux
densities φ = p/q = 1/2 + m/n for p/q = {2/3, 3/5, 4/7}
and m/n = {1/6, 1/10, 1/14}. We see that as φ → 1/2, the
Chern-2 band becomes flatter, and the difference in edge state
momenta becomes closer to π/a. At zero energy, the differ-
ences in edge momenta are π/a(1 + 1/3), π/a(1 + 1/5), and
π/a(1+1/7), respectively. Therefore, we see as φ→ −S/C,
the edge state momentum difference approaches quantization
at π/a. This agrees with the perturbation theory discussion of
the Hofstadter model in Ref. 41.

Appendix C: Corner MZMs

In this Appendix, we discuss corner MZMs in a C4-
symmetric (331) state. A similar argument holds for (mml)
states with |m − l| = 2. The edge Lagrangian written in
terms of the charged (+) and neutral (−) boundary modes
ψ± ∼ ei(φ1±φ2) is

L0 =

∫
dx {v−ψ−∂xψ− + v+ψ+∂xψ+} . (C1)

- π - π
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π
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π
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- 1

1
ε(ky)

- π - π
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π
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- 2
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- π - π
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π
2

π
ky

- 1

1
ε(ky)

- π - π
2

π
2

π
ky

- 1

1
ε(ky)

=2/3ϕ

ϕ=4/7

=3/5ϕ

- π - π
2

π
2

π
ky

- 2

2

ε(ky)

- π - π
2

π
2

π
ky

- 2

2

ε(ky)

FIG. 7. Energy spectrum for the Hofstadter model near φ = 1/2.
Left panel. Edge state momentum difference for the same setup as
described in Fig. 2 at φ = 2/3, 3/5, and 4/7. Right panel. Energy
plotted against ky for different values of kx for the infinite plane. As
φ→ 1/2, the middle band becomes flatter.

Note that ψ− is a fermion (has scaling dimension 1/2).
The component plaquette-centered component C4 symmetry
γ4,p = (σx + σy) /

√
2 implies that the edge modes transform

as

γ4,p

 φ1

φ2

 =

 φ2 − π
8 + 2πb

φ1 + π
8 + 2πc

 . (C2)

The constants b = (3j − k)/8 and c = (3k − j)/8
for j, k ∈ Z come from the compactness of the fields
φ1/2(x) + 2π = φ1/2(x). Different values of b and c corre-
spond to different symmetry fractionalization classes [49].

The boundary Lagrangian [54, 55] that enforces the C4

symmetry at a corner (e.g., the Northwest corner at z = 0)
is

Lb =− v−
{
e−iα−ψW

− (0)ψN
−(0) + eiα− ψ̄W

− (0)ψ̄N
−(0)

}
− v+

{
e−iα+ ψ̄W

+ (0)ψN
+(0) + eiα+ψW

+ (0)ψ̄N
+(0)

}
.

(C3)

The phase factors α± are defined by Eq. (C2), and are unim-
portant for the present discussion. Equation (C3) describes
Andreev reflection of the neutral edge electron ψ−, indicat-
ing Majorana zero modes (MZMs) at the corner of the sys-
tem. For b = c = 0, ψ+ is invariant under γ4,p (the charged
mode is insensitive to the MZM), while ψ− transforms as
γ4,pψ− → ψ̄−e

−π4 .
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Alternatively, when the system satisfies site-centered C4

symmetry, then

γ4,s

 φ1

φ2

 =

 φ1 + π
8 + 2πb

φ2 − π
8 + 2πc

 . (C4)

In particular, the rotation symmetry does not interchange the
layers. The boundary Lagrangian that enforces this symmetry
is

Lb =− v−
{
e−iα− ψ̄W

− (0)ψN
−(0) + eiα−ψW

− (0)ψ̄N
−(0)

}
− v+

{
e−iα+ ψ̄W

+ (0)ψN
+(0) + eiα+ψW

+ (0)ψ̄N
+(0)

}
,

(C5)

where α± are redefined compared to Eq. (C3). In this case,
both ψ± satisfy normal reflection, therefore there is no corner
MZM.

Finally, we note that a system with plaquette-centered C4

symmetry with A-type edges should not be interpreted as hav-
ing corner MZMs, as all translation interchange the edge com-
ponents and thus there is nothing special about the corner
compared to the middle of the edge. More explicitly, we could
write a boundary Lagrangian to enforce the translation sym-
metry at the midpoint of a (1, 0) or (0, 1) edge. Comparing

σx

 φ1

φ2

 =

 φ2 + 2πb

φ1 + 2πc

 (C6)

σy

 φ1

φ2

 =

 φ2 − π
4 + 2πb

φ1 + π
4 + 2πc

 , (C7)

to Eq (C2), we see this boundary Lagrangian has the same
form as Eq. (C3), up to a redefiniton of the phases α±. An
equivalent statement is that in the case of B-type edges with
plaquette-centered C4 symmetry, there is a boundary entropy
of ln

√
2 associated with the corners that is not present mid-

edge. For A-type edges, the corners and mid-edges have the
same boundary entropy. We only identify a corner MZM
when there is a ln

√
2 boundary entropy difference between

a mid-edge point and the corner [55–57].

Appendix D: Experiment

In this Appendix, we provide more details of the experi-
mental proposal and additional tests of the layer-resolved lat-
tice contacts.

The left panel of Fig. 8 illustrates one approach to engineer-
ing an artificial lattice applied to graphene. The lattice is pat-
terned into a metal gate (third layer). The potential from this
lattice can be made larger by increasing the voltage difference
between two metal gates, separated by a dielectric (yellow).
A sacrificial graphene layer (s-G) screens the metal gates to
avoid introducing additional noise. For large enough poten-
tial difference V , only the periodic potential from the artificial

a-G

s-G

hBN

hBN

V

2

1

FIG. 8. Left panel. Artificial lattice proposal: a dielectric layer (yel-
low) separates two metal gates (gray) held at a potential difference
V . The bottom metal gate has a square lattice patterned into it, which
applies a periodic potential to all lower layers. A sacrificial graphene
layer (s-G) is used to screen noise from the metal gates, so that only
the periodic potential from the artificial lattice is applied to the ac-
tive graphene layer (a-G) hosting the FCI. The graphene layers are
sandwiched between hexagonal Boron Nitride (h-BN), and a graphite
bottom gate (black) varies the electron density of the sample. Right
panel. The same experiment as in Fig. 4, using lattice contacts for A-
type edges. The white line now depicts the edge electron associated
with ψe,1 − ψe,2, which can be gapped out by appropriately tuning
the chemical potential of the contacts. The current associated with
this edge electron is the relative current Ir = I1 − I2.

lattice passes through the screening layer to affect the active
graphene layer (a-G). The electron density of the system can
be tuned using a graphite bottom gate (black).

In order to ascertain that the layer-resolved lattice contacts
are working as intended, we propose the following calibration
experiments. Each experiment could be first done with
the bulk and contacts in filled C = 2 and C = 1 bands,
respectively, then applied to the fractional case discussed
in the main text. Here, we assume that in both cases the
energy gaps of the bulk and contacts are compatible so that
the relative chemical potential can be used to tune the lattice
contact’s edge momentum equal to the momentum of either
of the bulk’s edge electrons.

Testing interface length. The layer-resolved lattice contacts
rely on the contact-bulk interface being long enough so that
translation symmetry is preserved. To test this lengthscale,
two bulk phases can be engineered such that their lattices
are rotated by π/4 from each other, corresponding to an
interface between an A-type and a B-type edge, as depicted
in Fig. 5. When translation symmetry is preserved, there is
a gapless edge mode running along the interface, since the
two phases have different momentum separation. When the
interface is too short to preserve translation symmetry, the
interface should be gapped out since the lattice orientation is
unimportant for the physics.

Testing separation from corners. The next test is for the setup
shown in Fig. 1: all edges are B-type, with the West and
South edges corresponding to blue and yellow sublattices,
respectively. By changing the displacement of the lattice
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contacts from the Southwest corner (by using different sam-
ples), we can check that the corner physics is not affecting
the lattice contacts. When the lattice contact is far away from
the corners, the momentum difference between the two edge
states should be π/(

√
2a). When the contact is at the corner,

there is no momentum difference between the two edge
states. By varying the lattice contact displacement from the
edge and measuring the amount by which we need to tune the
lattice contact’s chemical potential to change from gapping
out one edge mode to gapping out the other, we can measure
the length scale over which the corner physics is important.
Once the lattice contacts are far-enough separated from the
corner, the momentum difference between edge states will
be fixed. A potential difficulty of this experiment is that
we need to compare different samples, thus this calibration
will only work if the edge potential does not vary strongly
between samples. Up to four displacements can be tested on
the same sample by placing lattice contacts on different edges.

Testing layer-selectivity. The final calibration test is again
for the setup in Fig. 1, where one lattice contact controls
voltage and the other measures current. When the contacts
are equilibrated with the FCI edge, the current injected at
the contact should be equal to the voltage measured at that
edge multiplied by the expected Hall conductance. For a
long contact, this should only happen when the contact’s and
FCI’s edge electrons have the same momentum. When the
system is tuned so that the contacts gap out opposite edge
electrons, varying V on the blue contact should not affect

the I measured on the yellow contact. When the contacts are
tuned such that they should gap out the same edge electron,
varying V on the blue contact should directly affect the I
measured on the yellow contact. The first case corresponds to
the lattice contacts held at the same electrochemical potential
for the geometry shown (South and West edges corresponding
to opposite sublattices). The electrochemical potential of
one contact can then be tuned (using an additional gate) to
achieve the second case.

Lattice contacts for A-type edges. The layer-resolved lattice
contacts proposed in the main text use B-type edges for the
FCI. Alternatively, we can design lattice contacts for A-type
edges for the FCI, as shown in the right panel of Fig. 8. From
Appendix B, we know that the edge translation eigenstates are
ψe,± = ψe,1 ± ψe,2 for τx = σx. When the contact is tuned
to gap out ψe,−, a current measurement gives the exciton
current Ir, which should carry the signature of the genon. It
is still important in this case that the FCI-contact interface is
long enough that translation symmetry is preserved, and that
the contact is unaffected by corner physics.

Short contacts. When the FCI-contact interface is too short to
preserve translation symmetry, we can still selectively couple
to the different FCI layers of an (lmn) phase with l 6= m by
using the lattice to tune the contacts into different phases. In
this case, the allowed perturbations at the interface are subject
to the same conditions as for conventional QH systems. Short
contacts can also be used when the ground state of the system
spontaneously breaks the microscopic symmetry of the lattice.
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