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Event Detection in Continuous Video: An Inference
in Point Process Approach

Zhen Qin and Christian R. Shelton

Abstract—We propose a novel approach towards event de-
tection in real-world continuous video sequences. The method
1) is able to model arbitrary-order non-Markovian dependen-
cies in videos to mitigate local visual ambiguities, 2) conducts
simultaneous event segmentation and labeling, and 3) is time-
window free. The idea is to represent a video as an event
stream of both high-level semantic events and low-level video
observations. In training, we learn a point process model called
piecewise-constant conditional intensity model (PCIM) that is
able to capture complex non-Markovian dependencies in the
event streams. In testing, event detection can be modeled as
the inference of high-level semantic events, given low-level image
observations. We develop the first inference algorithm for PCIM
and show it samples exactly from the posterior distribution. We
then evaluate the video event detection task on real-world video
sequences. Our model not only provides competitive results on
the video event segmentation and labeling task, but also provides
benefits including being interpretable and efficient.

Index Terms—video event detection, event segmentation and
labeling, video understanding, dependency modeling, video gram-
mar, point process.

I. INTRODUCTION

EVENT detection systems aim at identifying and local-
izing the classes of the events present in a video, such

as a person sitting down, independently of the background.
It is a key step towards real-world video understanding and
has applications such as video indexing, video retrieval, and
anomaly detection [33]. The large corpus of literature [34]
usually model video event detection as a classification or
labeling problem. Given coherent constituent parts from video
segmentation in the temporal domain, a feature vector can
be generated for each segment and serves as input for a dis-
criminative classifier [18]. Another popular approach involves
generating segmentation candidates via sliding windows and
perform analysis at multiple temporal scales [20] [2].

However, video segmentation is an unsolved computer
vision problem, and sliding windows approaches can be ex-
pensive. Also, visual ambiguity is unavoidable in real-world
videos. By only looking at local visual features (either from
a segmented clip or a time window), events of the same
label might look quite different (when performed by different
characters, or if the event has intrinsic intra-class variance),
and events of different labels might look similar (for example,
“punching” and “shaking hands” both consist of putting one’s
arm forward, see Fig. 1).
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Fig. 1: (Left & Middle) Punching, (Right) Shaking Hand.
Based only on visual features, the same action can look differ-
ent, while different actions can possess similar appearances.

Contextual information could help to disambiguate, and we
focus on modeling temporal context in this work. For example,
if followed by the “person running” or “person falling down”
events, we should be more certain that the event before is
“punching”, instead of “shaking hand”.

We propose a new approach to explore temporal dependen-
cies among events and visual observations in video: In training,
given both observed low-level events (local visual features)
and annotated high-level semantic events, we can build a point
process model to learn complex dependencies in video event
streams. In testing, the detection of high-level events can be
modeled as an inference problem, given the observed low-
level events. See Fig. 2 for an illustration of an event stream
representation of video. This modeling approach allows us
to leverage the machine learning and statistics literature on
dependency modeling in point process.

We use a state-of-art point process model, called a
piecewise-constant conditional intensity model (PCIM) [17].
PCIM captures the dependencies among the types of events
through a set of piecewise-constant conditional intensity func-
tions. A PCIM is represented as a set of decision trees (see
Fig. 3 for an example), which provide model interpretability
and allow for efficient model selection. In training, by applying
PCIM learning on annotated videos, PCIM is able to learn
the complex dependencies in the (annotated) video event
streams, with the extra benefit of providing a meaningful video
grammar.

In testing, the video event detection task we are interested
in requires an inference algorithm for PCIM. An inference
algorithm allows localizing and labeling high-level semantic
events given only low-level visual observations in unannotated
testing videos. An exact inference algorithm is able to take
advantage of the rich dependencies learned in training, thus
mitigating local visual ambiguities in video event detection.
Also, inference in point process provides both time and label
of inferred events, allowing automatic simultaneous event seg-
mentation and labeling, without the need of sliding windows.

However, no inference algorithm has been proposed for
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Fig. 2: A sample event stream representation of video. The events above the video clip are the semantic high-level events. ws
are the low-level visual observations. Note for high-level events we use bars for a clearer illustration, in practice each of them
is represented as two points (starting time and ending time with event labels). See text for more details.

PCIM that can condition on evidence (visual observations).
Correctly filling in incomplete event streams from a PCIM is
challenging, due to the complex non-Markovian dependencies
between past and future evidence.

In this paper, we propose the first general inference al-
gorithm for PCIMs, based on thinning for inhomogeneous
Poisson process [26]. This inference algorithm can be used in
the video event detection task, as well as any other tasks using
PCIMs. Our formulation is an auxiliary Gibbs sampler that
alternates between sampling a finite set of virtual event times
given the current trajectory, and then sampling a new trajectory
given the set of evidences and event times (virtual and actual).
Our method is convergent, does not involve approximations
like fixed time-discretization, and the samples generated can
answer any type of query. We propose an efficient state-vector
representation to maintain only the necessary information for
diverging trajectories, reducing the exponentially increasing
sampling complexity to linear in most cases. We show empir-
ically our inference algorithm converges to the true distribution
and permits effective query answering for PCIM models with
both Markovian and complex non-Markovian dynamics.

We apply the PCIM inference algorithm to the video event
detection task and show competitive results over state-of-arts
on real-world long continuous videos. Our modeling approach
is able to learn complex temporal dependencies in video, and
exploit these dependencies to mitigate local visual ambiguities
in event detection. The major contributions of our work are:
• A novel approach for video event segmentation and

labeling via inference in point process, which does not
rely on video pre-segmentation or sliding windows;

• The use of a PCIM to learn complex dependencies in
video and provide meaningful video grammars; and

• The first exact inference algorithm for PCIMs that can be
used for event detection and other tasks. [35] described
a preliminary piece of this inference algorithm.

A. Related Work
We first describe related work in machine learning that

models temporal dependencies. A dynamic Bayesian network

(DBN) [10] models temporal dependencies between variables
in discrete time. Continuous-time models have drawn attention
recently in applications ranging from social networks [11][13]
to genetics [8] to biochemical networks [15]. Continuous Time
Bayesian Networks (CTBN) [29] are homogeneous Markovian
models of the joint trajectories of discrete finite variables,
analogous to DBNs. Non-Markovian continuous models allow
the rate of an event to be a function of the process’s history.
Poisson Networks [36] constrain this function to depend only
on the counts of the number of events during a finite time
window. Hawkes processes [19] define the rate to be the sum
of a kernel applied to each historic event, requiring the modeler
to choose the form for the kernel.

A PCIM defines the intensity function as a decision tree,
with internal nodes’ tests mapping time and history to leaves.
Each leaf is associated with a constant rate. A PCIM is able
to model non-Markovian temporal dependencies, and is an
order of magnitude faster to learn than Poisson networks.
Successful applications include modeling supercomputer event
logs and forecasting future interests of web search users [17].
While PCIMs have drawn attention recently [31] [44] and
have potential usage in a wide variety applications, there is
no general inference algorithm.

Inference algorithms developed for continuous systems are
mainly for Markovian models (or specifically designed for
a particular application). For CTBNs, there are variational
approaches such as expectation propagation [12] and mean
field [8], which do not converge to the true value as com-
putation time increases. Sampling based approaches include
importance sampling [14] and Gibbs sampling [37] [38] that
converge to the true value. The latter is the current state-of-
the-art method designed for general Markov Jump Processes
(MJPs) and its extensions (including CTBNs). It uses the
idea of uniformization [16] for Markov models, similar to
thinning [26] for inhomogeneous Poisson processes. We note
that our inference method for PCIM generalizes theirs to non-
Markovian models.

Modeling temporal dependencies in general event streams
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has wide applications. For example, users’ behaviors in online
shopping [45] and web searches [27], as well as electronic
health records [44] can all be viewed as a stream of events
over time. Event streams in video is a specific case of general
event streams.

To identify and recognize events or actions in video, com-
puter vision researchers mainly focused on the classification
or labeling problem given pre-segmented video clips [34].
Feature representations used in the literature are generated
using local features such as Space Time Interest Points (STIP)
[24], Dense Trajectories [41], Fisher Vectors [32], and more
recently, deep learned representations [18] [21] [42] [47],
among many others. Some work explore contextual informa-
tion and temporal structure within complex video events [1]
[40] [48] [23], largely motivated by the popular TRECVID
MED challenge [30]. Our model learns dependencies both
within and among high-level events, and can also be applied
to the complex event detection task.

However, real-world videos are continuous, and the task
of video segmentation is an unsolved problem [9]. Also,
most existing methods entail shot boundary detection, i.e., the
segmentation of a video into continuously imaged (usually
in terms of motion) temporal segments, which rarely maps
to individual high-level events [5]. Recently, some work tries
to address the problem of simultaneous video segmentation
and labeling [20] [7] [6]. These methods mostly use the time-
consuming sliding window approaches, which process each
segment independently at multiple time scales. Post-processing
such as duration priors and non-max suppression is required
[6]. It is very difficult for these approaches to handle local
visual ambiguities in real-world videos, since each event/video
segment is processed independently from the others. High-
level contexts at video level, such as temporal dependencies,
have rarely been explored.

Some work explores Markovian dependencies among events
[22], which is limited for real-world videos with complex
dependencies. [50] models dependencies among events in a
video based on Conditional Random Fields (CRF). However,
it can only explore dependencies up to some fixed order
(chosen manually), and the computation becomes infeasible
when the order of dependency specified increases. Also, it
assumes a long video has been segmented before doing depen-
dency modeling. Recently, recurrent Neural Network (RNN)
based methods are drawing more attention [46]. They focus
more on sequence dependency modeling, instead of temporal
modeling. Temporal modeling using PCIM has the advantage
of being able to easily model cases such as ”someone enters
the office around 8am everyday”, regardless of (potentially
unbounded number of) events happened in between. Explicitly
modeling time can also be beneficial in real-world videos
with timestamps (such as videos from surveillance cameras).
It is also easier for humans to interpret and generate rules
from the decision tree representation of PCIM. Furthermore,
RNN based approaches tend to be training data hungry. Our
idea of using event stream models explicitly address temporal
dependencies in the continuous-time domain and is the first to
do so, to the best of our knowledge.

II. BACKGROUND ON PCIM

We first briefly review the background on Piecewise-
constant conditional intensity model (PCIM).

Assume events are drawn from a finite label set L. An event
then can be represented by a time-stamp t and a label l. An
event sequence x = {(ti, li)}ni=1, where 0 < t1 < . . . < tn.
We use hi = {(tj , lj) | (tj , lj) ∈ x, tj < ti)} for the history
of event i, when it is clear from context which x is meant.
We define the ending time t(y) of an event sequence y as the
time of the last event in y, so that t(hi) = ti−1. A conditional
intensity model (CIM) is a set of non-negative conditional
intensity functions indexed by label {λl(t|x; θ)}|L|l=1. The data
likelihood is

p(x|θ) =
∏
l∈L

n∏
i=1

λl(ti|hi; θ)1l(li)e−Λl(ti|hi;θ) (1)

where Λl(t|h; θ) =
∫ t
t(h)

λl(τ |h; θ)dτ . The indicator function
1l(l

′
) is one if l

′
= l and zero otherwise. λl(t|h; θ) is the

expected rate of event l at time t given history h and model
parameters θ. Conditioning on the entire history causes the
process to be non-Markovian. The modeling assumptions for
a CIM are quite weak, as any distribution for x in which the
timestamps are continuous random variables can be written
in this form. Despite the weak assumptions, the per-label
conditional factorization allows the modeling of label-specific
dependence on past events.

A PCIM is a particular class of CIM that restricts λ(h) to
be piecewise constant (as a function of time) for any history,
so the integral for Λ breaks down into a finite number of
components and forward sampling becomes feasible. A PCIM
represents the conditional intensity functions as decision trees.
Each internal node in a tree is a binary test of the history,
and each leaf contains an intensity. If the tests are piecewise-
constant functions of time for any event history, the resulting
function λ(t|h) is piecewise-constant. Examples of admissible
tests include
• Was the most recent event of label l?
• Is the time of the day between 6am and 9am?
• Did an event with label l happen at least n times between

5 seconds ago and 2 seconds ago?
• Were the last two events of the same label?

Note some tests are non-Markovian in that they require
knowledge of more than just which event was most recent.
See Fig. 3 for an example of a PCIM model.

The decision tree for label l maps the time and history to a
leaf s ∈ Σl, where Σl is the set of leaves for l. The resulting
data likelihood can be simplified:

p(x|S, θ) =
∏
l∈L

∏
s∈Σl

λ
cls(x)
ls e−λlsdls(x). (2)

S is the PCIM structure represented by the decision trees;
the model parameters θ are rates at the leaves. cls(x) is the
number of times label l occurs in x and is mapped to leaf s.
dls(x) is the total duration when the event trajectory for l is
mapped to s. Together, c and d are the sufficient statistics for
calculating the likelihood.



ACCEPTED VERSION. APPEARED IN IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL 26, NO 12, PAGES 5680-5691, DECEMBER 2017 4

λ = 0.01 λ = 2

λ = 0.5

Are there ≥ 1 A
events in

λA:
Are there ≥ 1 B

events in

λB :

λ = 0.01 λ = 2 λ = 0.1 λ = 0.01

Y N

Y N Y N Y N

Y N

Are there ≥ 1 B
events in

Are there ≥ 1 A
events in

Are there ≥ 1 A
events in

Fig. 3: Decision tree representing S and θ for events of labels
A and B. Note the dependency among event labels (the rate
of B depends on A). [17]

[17] showed that given the structure S, by using a product
of Gamma distributions as a conjugate prior for θ, the marginal
likelihood of the data can be given in closed form, and thus
parameter estimation can be done in closed form. The prior
density is given by

p(λls|αls, βls) =
βαls

ls

Γ(αls)
λαls−1
ls e−βlsλls , (3)

and the posterior density is given by

p(λls|αls, βls, x) = p(λls|αls + cls(x), βls + dls(x)). (4)

Assuming the prior over the model parameters θ is a product
of such priors, the marginal likelihood of data is

p(x|S) =
∏
l∈L

∏
s∈Σl

γls(x), (5)

with
γls(x) =

βαls

ls

Γ(αls)

Γ(αls + cls(x))

(βls + dls(x))αls+cls(x)
. (6)

Then the authors choose to use a simple point estimate
E[λls|x] for the rate, which is αls+cls(x)

βls+dls(x) .
Furthermore, imposing a structural prior allows a closed

form Bayesian score to be used for greedy tree learning. The
local structure Sl can be chosen independently for each l by
using a factored structural prior

p(S) ∝
∏
l∈L

∏
s∈Σl

κls (7)

and the prior and the marginal likelihood that also factor over
l. Given the current structure Sl (initialized as a single root),
a new structure S

′

l is considered by choosing a leaf s and
expand it with a test to get a set of new leaves {s1, · · · , sm}.
The gain in the posterior of the structure is

p(S
′

l |x)

p(Sl|x)
=
κls1γls1(x) · · ·κlsmγlsm(x)

κlsγls(x)
. (8)

The new structure with the largest gain is chosen if the gain
is larger than 1.

III. EVENT DETECTION IN VIDEO AS INFERENCE IN
POINT PROCESS

We apply PCIM to event localization and labeling in video.
We first show how to represent videos as event streams. A
PCIM can be learned from training videos, represented by

event streams, to encode nonlinear temporal dependencies be-
tween high-level events and low-level observations. In testing,
an inference algorithm can be used to infer high-level events
given low-level visual observations. This framework is among
the first to encode temporal context for the event detection in
long continuous video task.

A. Representation

Assume there are M high-level events in a video dataset,
each of which is an event with high-level semantics, such as “a
person sitting down” and “a person working on a laptop”. We
generate 2M event labels to be used in PCIM: {s1, . . . , sM}
and {e1, . . . , eM}. si indicates the starting of a high-level
event type i and ei indicates the ending of a high-level event
type i. These are the event types that are labeled in training
and to be inferred in testing.

Given a video, we divide it into segments of fixed length,
and a feature vector is generated for each of the segments.
This step is flexible, any existing video descriptors might
be applied here. Then we learn a dictionary (e.g. using K-
means clustering), so that each segment can be assigned to
one visual word in {w1, . . . , wK} and a time (we use the
middle time of each segment in the video). Together with the
starting and ending of high-level events, we have an event
stream representation of a video. See Fig. 4 for an example.

t

w2 w2 w7 w5 w6 w8 w15 w4 w8s1 e1 s3 e3

Frame 5 Frame 60 Frame 200 Frame 230

Fig. 4: An illustration of an event stream representation for
video. Low-level observations are represented as regularly
spaced events from a dictionary (the ws). s1 and e1 indicate
the starting and ending of “entering room”. s3 and e3 indicate
the starting and ending of “sitting down”.

There are several benefits for this representation: First, by
using fixed-length segment, we do not assume semantic video
pre-segmentation. Second, the usage of starting and ending of
high-level events enables automatic temporal localization and
labeling. Note that even though the low-level visual words are
regularly sampled, each word is sparse across the timeline,
which is suitable for a continuous-time model.

B. Training

Given an event stream representation of video, training can
be done by directly feeding the training data into the PCIM
learning algorithm. The resulted PCIM encodes temporal
dependencies between both high-level events and low-level
visual observations. There are three types of dependencies a
PCIM can learn:

Dependency between high-level events. Global dependencies
between high-level events can be modeled, which helps to
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mitigate visual ambiguities by utilizing temporal context. For
example, after a person working on laptop, the probability of
a person standing up should be higher than the person sitting
down. PCIM is also able to learn the dependency between s
and e for each high-level events, which encodes the temporal
range distribution of each event type.

Dependency between high-level and low-level events. This
type of dependency can be treated as local dependency. Certain
low-level observations indicate the appearance of high-level
events, or as a generative model, the high-level events “cause”
low-level features. In testing, low-level visual words are ob-
served, and are responsible for proposing high-level events.

Dependency between low-level events. This kind of de-
pendency provides interesting information about how low-
level observations can be correlated from a video grammar
perspective. But for the event detection problem, it is not very
useful as in testing all low-level observations are observed.

C. Testing as Inference

Given a PCIM learned from training data, we can model
the problem of event detection in video as the inference of
high-level events, given low-level observations. In other words,
all the ws are observed, while the ss and es are completely
unobserved. We can then apply our new inference algorithm,
ThinnedGibbs, detailed in Sec. IV, to infer the starting and
ending times of the high-level events. See Fig. 5 and Fig. 6
for an illustration.

t

w1 w2 w2 w5 w6 w8 w15 w14 w3

s1, e1, ...
sM , eM ,

Fig. 5: In testing, the low-level events are fully observed, while
the high-level events are not observed (in parentheses).

t

w1 w2 w2 w5 w6 w8 w15 w14 w3

s5 e5 s1 e1 s3 e3

Fig. 6: After running inference, each sample would fill in the
unobserved intervals for high-level events, which indicate their
starting and ending times.

IV. AUXILIARY GIBBS SAMPLING FOR PCIM

In this section we introduce our new inference algorithm
for PCIM, called ThinnedGibbs, based on the idea of thinning
for inhomogeneous Poisson processes. We handle incomplete
data in which there are intervals of time during which events
for particular label(s) are not observed.

λ = 0.1

Are there ≥ 1 l
events in

λl:

Y N

λ = 2
t t+1 t+2

R

Fig. 7: A simple PCIM with a partially observed trajectory.
The vertical solid arrow indicates an evidence event. Areas
between parentheses are unobserved. History alone indicates
there should be events filled in, while the future (no events in
R) provides contradictory evidence.

A. Why Inference in PCIM is Difficult

Filling in partially observed trajectories for PCIM is hard
due to the complex dependencies between unobserved events
and both past and future events. See Fig. 7 for an example.
While the history (the event at t) says it is likely that there
should be events in the unobserved area (with an expected
rate of 2), future evidence (no events in R) is contradictory: If
there were indeed events in the unobserved area, those events
should stimulate events happening in R.

Such a phenomenon might suggest existing algorithms such
as the forward-filtering-backward-sampling (FFBS) algorithm
for discrete-time Markov chains. However, there are two
subtleties here: First, we are dealing with non-Markovian
models. Second, we are dealing with continuous-time systems,
so the number of time steps over which to propagate is infinite.

B. Thinning

Thinning [26] can be used to turn a continuous-time process
into a discrete-time one, without using a fixed time-slice
granularity. We select a rate λ∗ greater than any in the inho-
mogeneous Poisson process and sample from a homogeneous
process with this rate. To get a sample from the original
inhomogeneous process, an event at time t is thinned (dropped)
with probability 1− λ(t)

λ∗ .
This process can also be reversed. Given the set of thinned

event times (from the inhomogeneous process), the extra
events can be added by sampling from a Poisson process with
rate λ∗−λ(t). The cycle can then repeat by thinning the new
total set of times. At each cycle, the times (after thinning) are
drawn from the original inhomogeneous process. We will use
this type of cycle in our sampler.

The difficulty is that a PCIM is not an inhomogeneous
Poisson process. The intensity depends on the entire history of
events, not just the current time. For thinning, this means that
we cannot independently sample whether each event is to be
thinned. Furthermore, we wish to sample from the posterior,
conditioned on evidence. All evidence (both past and future)
affect the probability of a specific thinning configuration.

C. Overview of Our Inference Method

To overcome both of these problems, we extend thinning to
an auxiliary Gibbs sampler in the same way that [37], [38]
extended Markovian-model uniformization [16] (a specific
example of thinning in a Markov process) to a Gibbs sampler.
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To do this we introduce auxiliary variables representing the
events that were dropped. We call these events virtual events.

As a standard Gibbs sampler, our method cycles through
each variable in turn. In our case, a variable corresponds to
an event label. For event label l, let xl be the sampled event
sequence for this label. Let Yl be all evidence (for l and other
labels) and all (currently fixed) samples for other labels. Our
goal is to sample from p(xl | Yl).

Let vl be the virtual events (the auxiliary variable) asso-
ciated with l and zl = xl ∪ vl (all event times virtual and
non-virtual). Our method first samples from p(vl | xl, Yl) and
then samples from p(xl | zl, Yl). The first step adds virtual
events given the non-virtual events are “correct.” The second
step treats all events as potential events and drops or keeps
events. The dropped events are removed completely. The kept
events, xl, remain as the new sampled trajectory for label l.

The proof of correctness follows analogously to that of [38]
for Markovian systems. But, the details for sampling from
p(vl | xl, Yl) and p(xl | zl, Yl) differ. We describe them next.

D. Sampling Auxiliary Virtual Events with Adaptive Rates

Sampling from p(vl | xl, Yl) amounts to adding just the
virtual (dropped) events. As the full trajectory (xl for all l)
is known, the rate at any time step for a virtual event is
independent of any other virtual events. Therefore, the process
is an inhomogeneous Poisson process for which the rate at t is
equal to λ∗−λl(t|h) where h is fully determined by xl and Yl.
Recall that λl(t|h) is piecewise-constant in time, so sampling
from such an inhomogeneous Poisson process is simple.

The auxiliary rate, λ∗, must be strictly greater than the
maximum rate possible for irreducibility. We use an auxiliary
rate of λ∗ = 2 max(λ(t|h)) to sample virtual events in the
unobserved intervals. This choice trades off well between
mixing time and computational complexity in the experiments.

A naı̈ve way to pick λ∗ is to find λmax: the maximum
rate in the leaves of PCIM, and use 2λmax. However, there
could be unobserved time intervals with a possible maximum
rate much smaller than λmax. Using λmax in those regions
would generate too many virtual events, most of which will be
dropped in the next step leading to computational inefficiency.
We therefore use an adaptive strategy.

Our adaptive λ∗(t|h) cannot depend on xl (this would break
the simplicity of sampling mentioned above). Therefore, we
determine λ∗(t|h) by passing (t, h) down the PCIM tree for
λl. At each internal node, if the branch does not depend on
xl, we can directly take one branch. Otherwise, the test is
related to the sampled events, and we take the maximum rate
of taking both branches. This method results in λ∗(t|h) as a
piecewise-constant function of time (for the same reasons that
λl(t|h) is piecewise-constant).

Consider Fig. 8 as an example. When sampling event l = A
on the interval [1, 5), we would not take the left branch at the
root (no matter what events for A have been sampled), but
must maximize over the other two leaves (as different xl values
would result in different leaves). This results in a λ∗ = 4 over
this interval, which is smaller than 6.

Are there ≥ 1 B
events in [t-5,t)?

λA

Y N

λ = 3
1 3 8

A

5
B

λ∗ = 4 λ∗ = 6

λ = 2 λ = 1

Y N

Are there ≥ 1 A
events in [t-1,t)?

Fig. 8: Adaptive auxiliary rate example. When sampling A,
the branch to take at the root does not depend on unobserved
events for A. If the test is related to the sampled event, we take
the maximum rate from both branches. The red arrows indicate
the branches to take between time [1, 5], and λ∗ = 2 × 2 in
that interval, instead of 6.

E. The Naı̈ve FFBS Algorithm

Once these virtual events are added back in, we take zl
(the union of virtual and “real” sampled events) as a sample
from the Poisson process with rate λ∗, ignoring which were
originally virtual and which were originally “real.” We thin
this set to get a sample from the conditional marginal over l.

The restriction to consider events only at times in zl
transforms the continuous-time problem into a discrete one.
Given zl with m possible event times (zl,1, zl,2, . . . , zl,m), let
b = {bi}mi=1 be a set of binary variables, one per event, where
bi = 1 if event i is included in xl (otherwise bi = 0 and the
event is not included in xl). Thus sampling b is equivalent to
sampling xl (zl is known) as it specifies which events in zl
are in xl. Let Y i:jl be the portion of Y between times zl,i and
zl,j , and bi:j = {bk|i ≤ k ≤ j} We wish to sample b (and
thereby xl) from

p(b | Y ) ∝

(∏
i

p(Y i−1:i
l , bi | b1:i−1, Y 1:i−1

l )

)
p(Y m:∞

l | b)

(9)
where the final Y m:∞

l signifies all of the evidence after the
last virtual event time zl,m and can be handled similarly to
the other terms.

The most straight-forward method for such sampling con-
siders each possible assignment to b (of which there are 2m).
For each interval, we multiply terms from Eq. 9 of the form
p(Y i−1:i

l , bi | b1:i−1, Y 1:i−1
l ) =

p(Y i−1:i
l | b1:i−1, Y 1:i−1

l )p(bi | b1:i−1, Y 1:i
l ) (10)

where the first term is the likelihood of the trajectory interval
from zl,i−1 to zl,i and the second term is the probability
of the event being thinned, given the past history. The first
can be computed by tallying the sufficient statistics (counts
and durations) and applying Eq. 2. Note that these sufficient
statistics take into account b1:i−1 which specifies events for l
during the unobserved region(s), and the likelihood must also
be calculated for labels l′ 6= l for which λl′(t|h) depends on
events from l. The second term is equal to λl(t|h)

λ∗(t) if bi = 1

(and 1 − λl(t|h)
λ∗(t) if bi = 0). The numerator’s dependence on

the full history similarly dictates a dependence on b1:i−1.
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Fig. 9: Dotted events are the virtual events that we sample
as binary variables (bi is 1 if event i is kept). The state
diagram below the trajectory indicates the state of the test
as we diverge (keep or drop a virtual event). Though there
are 23 possible configurations, state merges can reduce the
exponentially increasing complexity to linear in this case.

This might be formulated as a naı̈ve FFBS algorithm: To
generate one sample, we propagate possible trajectories for-
ward in time, multiplying in Eq. 10 at each inter-event interval
to account for the evidence. Every time we see a virtual
event, each possible trajectory diverges into two (depending on
whether the virtual event is to be thinned or not). By the end,
we have all 2m possible trajectories, each with its probability
(Eq. 9). We sample one trajectory as the output, in proportion
of the calculated likelihoods. As we explicitly keep all possible
trajectories, the sampled trajectory immediately tells us which
virtual events are kept, so no actual backward pass is needed.

F. An Efficient State-Vector Representation

The naı̈ve FFBS algorithm is not practical, as the number of
possible trajectories grows exponentially with the number of
auxiliary virtual events, m. We propose a more efficient state-
vector representation to only keep the necessary information
for each possible trajectory. The idea takes advantage of the
structure of the PCIM and leads to state merges, similar to
what happens in FFBS for hidden Markov models (HMMs).

The terms in Eq. 10 depend on b1:i−1 only through the
tests in the internal nodes of the PCIM trees. Therefore, we
do not have to keep track of all of b1:i−1 to calculate these
likelihoods, but only the current state of such tests that depend
on events with label l. For example, a test that asks “Is the last
event of label l?” only needs to maintain a bit as the indicator.
The test “Are there more than 3 events of label q in the last 5
seconds?” for q 6= l has no state, as b1:i−1 does not affect its
choice. By contrast, a test such as “Is the last event of label
q?” does depend on b, even if q 6= l.

As we propagate forward, we merge b1:i sequences that
result in the same set of states for all internal tests inside
the PCIM. See Fig. 9 as a simple example. Though there
are 8 possible trajectories, they merge to only 2 states that
we can sample from. Similar to the FFBS for an HMM, we
need to maintain the transition probabilities in the forward
pass and use them in a backward sampling pass to recover the
full trajectory, but such information is also linear.

Note that this conversion to a Markov system for sampling is
not possible in the original continuous-time system. Thinning
allowed this by randomly selecting a few discrete time points
and thereby restricting the possible state space to be finite.

The state space depends on the actual tests in the PCIM
model. See Tbl. I for the tests we currently support and their
state representations. The LastStateTest and StateTest are used
to support discrete finite variable systems, such as a CTBN.
We can see that for tests that only depend on the current time
(i.e. TimeTest), the diverging history does not affect them,
so no state is needed. For Markovian tests (LastEventTest
and LastStateTest), we only need a Boolean variable. For the
non-Markovian test (EventCountTest), the number of possible
states does grow exponentially with the number of virtual
events maintained in the queue. This is the best we can do and
still be exact. It is much better than growing with the number
of all virtual events. However, note that commonly lag2 = 0
and n is small. In this case, the state space size at any point
is bounded as

(
m′

n

)
, where m′ is the maximum number of

sampled events in any time interval of duration lag1 (which
is upper bounded by m). If n is 1, this is linear in the number
of samples generated in during lag1 time units.

As noted above, if the test is not related to the sampled event
(for example, we are sampling event l=A and the test is “are
there ≥ 3 B events in the last 5 seconds?”), the state of the test
is set to null. This is because the evidence and sampled values
for B (which is not the current variable for Gibbs sampling)
can answer this test without reference to samples for l.

See Alg. 1 for the algorithm description for resampling
event l. The complete algorithm iterates this procedure for
each event label to get a new sample. The helper function
UpdateState(s,b,t) returns the new state given the old state (s),
the new time (t), and whether an event occurs at t (b). Samp-
ProbMap(M) takes a mapping from objects to positive values
(M) and randomly returns one of the objects with probability
proportional to the associate value. AddtoProbMap(M,o,p)
checks to see if o is in M. If so, it adds p to the associated
probability. Otherwise, it adds the mapping o→ p to M.

G. Extended Example

Fig. 10 shows an example of resampling the events for label
A on the unobserved interval [0.8, 3.5). On the far left is
the PCIM rate tree for event A. Box (a) shows the sample
from previous iteration (single event at 2.3). Dashed lines
and λ show the piecewise-constant intensity function given
the sample. Box (b) shows the sampling of virtual events. For
this case λ∗ = 3 for all time. λ∗ − λ is the rate for virtual
events. The algorithm samples from this process, resulting
in two virtual events (dashed). In box (c) all events become
potential events. The state of the root test is a queue of recent
events. The state of the other test is Boolean (whether A is
more recent). On the bottom is the lattice of joint states over
time. Solid arrows indicate bi = 1 (the event is kept). Dash
arrows indicate bi = 0 (the event is dropped). Each arrow’s
weight is as per Eq. 10. The probability of a node is the sum
over all paths to the node of the product of the weights on the
path (calculated by dynamic programming). In box (d) a single
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TABLE I: Tests and their corresponding state representations.

Test Example State Representation Property
TimeTest Is the time between 6am and 9am? Null independent of b
LastEventTest Is the last event of type A? Boolean Markovian
EventCountTest Are there ≥ n events of type A in

[t− lag1, t− lag2]?
A queue maintaining all the times of A between
[t− lag2, t], and the most recent n events between
[t− lag1, t− lag2].

Non-Markovian

LastStateTest Is the last sublabel of var A=0? Boolean Markovian
StateTest Is the current sublabel of var A=0? Null independent of b
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Fig. 10: Extended Example, see Section IV-G

Fig. 11: The toroid network and observed patterns [12].

path is sampled with backward sampling, shown in bold. This
path corresponds to keeping the first and last virtual events
and dropping the middle one.

V. EXPERIMENTS

A. ThinnedGibbs Validation

We perform inference with our method on both Markovian
and non-Markovian models, and compare the result with the
ground-truth statistics. For both we show our result converges
to the correct result. Ours is the first that can successfully
perform inference tasks for non-Markovian PCIMs.

1) Verification on the Ising Model: We first evaluate our
method, ThinnedGibbs, on a network with Ising model dynam-
ics. The Ising model is a well-known interaction model with
applications in many fields including statistical mechanics,
genetics, and neuroscience [8]. The model is Markovian and
has been tested by several prior inference methods for CTBNs.

Using this model, we generate a directed toroid network
structure with cycles following [12]. Nodes can take values −1

# of samples
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e
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100

10−1

10−2

10−3

Fig. 12: Number of samples versus KL divergence for the
toroid network. Both axes are on a log scale.

and 1, and follow their parents’ states according to a coupling
strength parameter (β). A rate parameter (τ ) determines how
fast nodes toggle between states. We test with β = 0.5 and
τ = 2. The network and the evidence patterns are shown in
Fig. 11. The network starts from a deterministic state: at t = 0
variables 1 − 5 are +1 and 6 − 9 are −1. At t = 1, variable
1− 3 have switched to −1, 4− 5 remain +1, and 6− 9 have
switched to +1. The nodes are not observed between t = 0 and
t = 1. We query the marginal distribution of nodes at t = 0.5
and measure the sum of the KL-divergences of all marginals
against the ground truth. We compare with the state-of-the-art
CTBN Auxiliary Gibbs method [38]. Other existing methods



ACCEPTED VERSION. APPEARED IN IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL 26, NO 12, PAGES 5680-5691, DECEMBER 2017 9

Algorithm 1: Resampling event l
input: The previous trajectory (xl,Yl)
output: The newly sampled x

′

l

for each unobserved interval for l do
Find piecewise constant λ∗(t|h) using Yl
Find piecewise constant λ(t|h) using xl, Yl
Sample virtual events vl with rate λ∗(t|h)− λ(t|h)

Let zl = xl ∪ vl, m = |zl|, and s0 be the initial state
AddtoProbMap(S0,s0,1.0)
for i← 1 to m do

for each {(si−1, ·)→ p} in Si−1 do
pkeep = p(Ei−1:i, bi = 1 | si−1, E1:i−1)
pdrop = p(Ei−1:i, bi = 0 | si−1, E1:i−1)

skeepi ← UpdateState(si−1, true, zl,i)
sdropi ← UpdateState(si−1, false, zl,i)
AddtoProbMap(Si,(s

keep
i , zl,i), p×pkeep)

AddtoProbMap(Si,(s
drop
i , ∅), p×pdrop)

AddtoProbMap(Ti(s
keep
i ), (si−1, zl,i), p×pkeep)

AddtoProbMap(Ti(s
drop
i ), (si−1, ∅), p×pdrop)

Update Sm by propagating until ending time
x
′

l ← ∅ and (s
′

m, t)← SampProbMap(Sm)
if t 6= ∅ then

x
′

l ← x
′

l ∪ {t}
for i← m− 1 to 1 do

(s
′

i, t)← SampProbMap(Ti+1(s
′

i+1))
if t 6= ∅ then

x
′

l ← x
′

l ∪ {t}
return x

′

l

either produce similar or worse results [3]. For example, the
mean field variational approach [8] produce error that is above
the error range of the methods we use. We vary the sample
size between 50 and 5000, and set the burn-in period to be
10% of this value. We run the experiments 100 times, and plot
the means and standard deviations.

Results in Fig. 12 verify that our inference method indeed
produces results that converge to the true distribution. Our
method reduces to that of [38] in this Markovian model.
Differences between the two lines are due to slightly different
initializations of the Gibbs Markov chain and not significant.

2) Verification on a Non-Markovian Model: We further
verify our method on a much more challenging non-Markovian
PCIM (Fig. 13). This model contains several non-Markovian
EventCountTests. We have observations for event A at t =
0.4, 0.6, 1.8, 4.7 and for event B at t= 0.1, 0.2, 3.4, 3.6, 3.7.
Event A is not observed on [2.0, 4.0) and event B is not
observed on [1.0, 3.0).

In produce ground truth, we discretized time and converted
the system to a Markovian system. Note that because the time
since the last A event is part of the state, as the discretiza-
tion becomes finer, the state space increases. For this small
example, this approach is just barely feasible. We continued
to refine the discretization until the answer stabilized. The
ground-truth expected total number of A events between [0, 5]
is 22.3206 and the expected total number of B events is
11.6161. That is, there are about 18.32 A events and 6.62
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events in [t-0.5,t)?

λA

Is the most recent
event label B?
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Fig. 13: Non-Markovian PCIM and evidence. End time is 5.
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Fig. 14: Number of samples versus the inferred expected
number of events. The horizontal axis is on a log scale.

B events in the unobserved areas. Note that if the evidence is
changed to have no events these numbers drop to 1.6089 and
8.6866 respectively and if the evidence after the unobserved
intervals is ignored the expectations are 22.7183 and 8.6344
respectively. Therefore the evidence (both before and after the
unobserved intervals) is important to incorporate in inference.

We compare our inference method to the exact values, again
varying the sample size between 50 and 5000 and setting the
burn-in period to be 10% of this value. We ran the experiments
100 times and report the mean and standard deviation of
the two expectations. Our sampler has very small bias and
therefore the average values match the true value almost
exactly. The variance decreases as expected, demonstrating the
consistent nature of our method. See Fig. 14. We are not aware
of existing methods that can perform inference on this type of
model to which we could compare.

B. Experiments on Event Detection

We tested our proposed event detection approach on three
challenging datasets: Hollywood [25], UCLA office [39], and
PKU-MMD [28]. The Hollywood dataset is a human action
dataset from movies, the UCLA dataset is from a video camera
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TABLE II: Comparison of the event detection result on the
Hollywood dataset. In each cell, the first number is precision
and the second number is recall. Seg means the method
requires video pre-segmentation.

Events SVM(seg) Hoai[20](seg) SSM[7] Ours
AnswerPhone 0.62/0.30 0.64/0.32 0.64/0.43 0.62/0.50
HugPerson 0.46/0.29 0.46/0.29 0.51/0.33 0.45/0.35
Kiss 0.39/0.46 0.40/0.48 0.44/0.59 0.45/0.55
SitDown 0.36/0.35 0.36/0.36 0.39/0.38 0.41/0.40
Overall 0.45/0.34 0.47/0.36 0.50/0.42 0.48/0.45

recording students’ daily activities in an office, and the PKU-
MMD dataset is a recent large-scale benchmark dataset for
continuous multi-modal human action understanding.

1) Evaluation on Hollywood Dataset: The Hollywood
dataset focuses on realistic human actions including An-
swerPhone, Kiss, SitDown, HugPerson, StandUp, HandShake,
SitUp, and GetOutCar. This dataset has two disjoint subsets
with 219 video sample in the training set and 211 in the
test set. We follow [7] for the experimental setting: we only
focus on the first four classes to be recognized. Since the
dataset contains only pre-segmented clips, new video clips of
longer durations are created with enforced temporal relation-
ships. 1-order dependency (such as SitDown-AnswerPhone)
and 2-order dependency (such as HugPerson-Kiss-SitDown)
are inserted. 40 such video samples were formed (see more
details in [7]). To generate the visual sequences, we use
mean pooling of STIP features to generate a feature vector
for each 20-frame video segment, then use k-means (k is
fixed to 200 for this dataset) to assign a label to each of
the segment. For PCIM structure learning, we fix the bank
of possible PCIM tests as EventCountTests (see Tbl. I) with
(n, lag1, lag2) ∈ {1, 2, 3}×{2, 3, 4, 5, 6}×{0, 1, 2} (omitting
tests for which lag1 ≤ lag2) and LastEventTest for all high-
level and low-level event labels. We show some meaningful
learned dependencies in Tbl. IV. For each run, we set the
burn-in period to be 100 samples, and report the average
performance of the next 20 samples.

We compare with methods that require pre-segmentation
(linear SVM and [20]), as well as state-of-art method that
does simultaneous segmentation and labeling ([7]). Note that
results reported with pre-segmentation is biased since video
segmentation is very challenging itself (for this dataset, we
directly use the segments before concatenation). We perform
5-fold cross validation and the results averaged across 5 runs
are reported in Tbl. II.

Our approach shows competitive performance when com-
paring with state-of-art methods. Though SVM and Hoai[20]
are already reported on segmented videos, they still have
worse performance due to the local visual ambiguities in this
challenging dataset. Methods considering temporal context
(SSM[7] and ours) are able to produce better results. Our
approach is able to learn from the enforced temporal con-
straints and generate more reliable event candidates, leading
to a better overall recall. Also, SSM[7] relies on training
classifiers and doing inference at multiple scales and is more
computationally expensive. During inference, for each video,
our method generates 20 samples in less than a second,

TABLE III: High-level Event Types in the UCLA Office
Datasets.

ID Event Type ID Event Type
1 Enter Room 2 Exit Room
3 Sit Down 4 Stand up
5 Work on Laptop 6 Work on Paper
7 Throw Trash 8 Pour Drink
9 Pick Phone 10 Place Phone Down

TABLE IV: Examples of meaningful structures learned by
PCIM on the Hollywood and UCLA dataset. Time unit used
is 20 frames.

Structure Learned Semantics
if e3 in [t− 1, t) The ending of “SitDown” stimulates
rate of s1 = 0.67 “AnswerPhone”. (Hollywood)
if w57 is last event and Visual words in specific order
if w12 in [t− 1, t) stimulate “Kiss”. (Hollywood)
rate of s2 = 0.33
if s5 in [t− 2, t) The starting of “work on laptop”
rate of w3 = 0.68 tends to generate w3. (UCLA)
if s3 in [t− 5, t− 2) This encodes the duration distribution
rate of e3 = 0.7 of “sit down”. (UCLA)
if e5 in [t− 3, t− 1) The ending of “work on laptop”
rate of s4 = 0.22 stimulates “stand up”. (UCLA)

while the running time of our SSM implementation based on
LibSVM[4] is in the order of minutes.

2) Evaluation on UCLA Office Dataset: The UCLA office
dataset consists of 3 videos of a total length of 32 minutes,
in which actors perform 10 kinds of actions in an office
setting. See Tbl. III for the high-level events types and their
ID numbers. (We also use mean pooling of STIP features [24]
generated for each segment, but other methods are applicable.)

We perform 3-fold cross validation, using 2 videos for
training and 1 video for testing. We use 20 frames as the
segment length and 30 for the dictionary size (K). For PCIM
structural learning and sample size, we use the same setting
as in the Hollywood dataset. PCIM is able to learn 3 major
kinds of meaningful dependencies that are useful for the event
localization and labeling task. We show some examples in
Tbl. IV. It is the combination of these rules that encodes
complex dependencies in video.

We compare with state-of-art method that require pre-
segmentation [50]. This method also considers temporal de-
pendencies in a Conditional Random Field framework. Due to
the complexity of inference, this method can only encode de-
pendencies up to a fixed order. Pre-segmentation of dataset is
highly nontrivial and we notice it requires manual intervention.
Thus we used the segmented data from the authors of [50].
We also compare with an SVM-based approach that classifies
the video segments into one of the ten high-level events plus
the null event. After classification, consecutive segments of the
same labels are merged to one event. This method also relaxes
the necessity of video pre-segmentation, but only considers
local visual evidences.

We report the results in Tbl. V. Comparing with the
Hollywood dataset, this dataset contains real-world continuous
videos with natural high-order temporal dependencies. SVM-
based approaches can produce reasonable overall result for
this dataset. For this dataset, certain dimensions in the feature
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vector are salient. For example, the extracted features contain
location information that is salient for this dataset because
the camera is static and certain events only happen at certain
locations (for example, “pour drink” always happen close to
the drinking machine.) SVM is able to get good result for
most event classes, and tends to confuse between certain pairs
of event types (i.e. “enter room” and “exit room”, “stand up”
and “sit down”, “work on laptop” and “work on paper”.) So
it is a strong baseline for the event detection task on this
dataset. [50] considers temporal dependencies and generate
better results. We observe that, since [50] considers fixed order
event dependencies, when there are null events happening
between actual events (which is common in real-world videos),
the learned dependencies may not be useful. Also, for datasets
with high order dependencies, this model can be limited. On
the other hand, PCIM explicitly models temporal dependencies
of arbitrary order and is able to skip null events.

We can see that, by taking advantage of the complex
temporal contexts, PCIM can produce the best precision by
correcting wrong labels. Note that the discretization of image
features and using uniform weights of different features (in
K-Means clustering based dictionary learning) tend to lose
some salient visual information. On dataset with larger intra-
class variance and without dominating salient visual features,
we expect PCIM to perform even better as visual evidences
alone are less useful.

For recall, PCIM tends to omit event types with few training
instances. PCIM can be treated as a data-driven approach and
needs sufficient data to learn meaningful structures for each
event types. For this particular dataset, events such as “pick up
phone” are very scarce in training data, so PCIM is not able
to learn meaningful structures for such event types. Then in
testing, these events tend to be missing. However, since these
are scarce events (also in testing data), missing them does
not significantly affect the overall performance. When there
is more data (such as videos from streaming surveillance that
could be hundreds of hours long), we expect PCIM to mitigate
such drawbacks as more instances are observed.

We show one example in Fig. 15 in which global temporal
context among high-level events help to produce better result.
In this example, SVM based approach tends to confuse the
events “sit down” and “stand up” by only looking at local
appearance information, because both events involve the actor
performing actions close to the chair. PCIM, on the other
hand, is able to get the correct result, by learning the temporal
context that, a person should not sit down again after he had
already sat down and been working on the laptop. Other typ-
ical cases that PCIM performs better involves differentiating
between events such as “enter room” and “exit room.”

3) Evaluation on PKU-MMD Dataset: The PKU-MMD
dataset is a recent large-scale dataset for human action under-
standing in long continuous video sequences. It contains over
1000 long video sequences in 51 action categories, performed
by 66 subjects in three camera views. In this work we focus on
cross-subject evaluation. For fair comparison and evaluation,
the same dataset partition setting as that in [28] was used,
where the dataset is split into training and testing groups which
consists of 57 and 9 subjects respectively (944 and 132 video

Work on laptop Stand Exit room Truth

Work on laptop StandSit Enter room SVM

Work on laptop Stand Exit room PCIM

Fig. 15: Temporal context information helps to recover wrong
detection by local discriminative methods. The slight time shift
for PCIM is due to its continuous-time nature.

samples respectively).
We use 20 frames as the segment length and 200 for the

dictionary size (K). We compare with methods using state-of-
the-art representations and temporal detection methods. Deep
RGB (DR) [43] represents videos using features derived from
the Temporal Segment Network (TSN). Raw skeleton (RS)
is also tested in the multi-modality benchmark, but note our
method only uses the videos as input. For temporal detection,
we use a three stacked bidirectional LSTM (BLSTM) [49].

We report the same metrics as in [28]: |I∩I
∗|

|I∪I∗| > θ, where
I ∩ I∗ denotes the intersection of the predicted and ground
truth intervals and I ∪ I∗ denotes their union. Mean Average
Precision (mAP) of different actions at different θ is evaluated.
We directly use the evaluation tool provided in the dataset.

We report the results in Tbl. VI. Comparing with state-of-
art methods that rely on more complex representations and
temporal detection method, our model can produce competi-
tive results by using RGB video input alone. Our method can
produce better results at all θ levels comparing to the deep
model using only RGB video input, it can also outperform
the multi-modality approach (DR + RS) at higher θ levels,
showing that our approach can more accurately localize events
in the temporal domain. It would be interesting to extend the
inference in point process for video event detection idea to
multi-modality input.

VI. CONCLUSION

We review PCIM and how it models nonlinear dependencies
in general event streams. We propose the first effective infer-
ence algorithm, ThinnedGibbs, for PCIM. Our auxiliary Gibbs
sampling method effectively transforms a continuous-time
problem into a discrete one. Our state-vector representation
of diverging trajectories takes advantage of state merges and
reduces complexity from exponential to linear for most cases.
Then we show how PCIM can be used to model temporal
context for event detection in video, and how event detection
can be modeled as an high-level event inference problem given
low-level observations. The formulation provides a generic
way to model temporal context in event streams and relaxes
the assumption of video pre-segmentation. It is also flexible in
terms of feature extraction and dictionary learning methods.

We then validate ThinnedGibbs on several tasks, including
sampling from complicated distributions with known statis-
tics and its effectiveness in video event detection. We show
our method generalizes the state-of-art inference method for
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TABLE V: Comparison of the event detection result on the UCLA office dataset. Seg means the method requires video
pre-segmentation. In each cell, the first number is precision and the second number is recall. See event types in Tbl. III.

Event ID 1 2 3 4 5 6 7 8 9 10 Overall
SVM 0.70/0.72 0.65/0.68 0.72/0.79 0.82/0.75 0.84/0.82 0.70/0.75 0.85/0.85 0.83/0.80 0.75/0.75 0.74/0.80 0.75/0.76
CRF[50] (seg) 0.90/0.85 0.90/0.82 0.76/0.76 0.74/0.78 0.84/0.81 0.66/0.70 0.65/0.80 0.72/0.75 0.82/0.81 0.84/0.86 0.79/0.79
Ours 0.95/0.87 0.92/0.84 0.83/0.78 0.79/0.80 0.83/0.80 0.70/0.68 0.65/0.76 0.70/0.72 0.74/0.61 0.75/0.58 0.81/0.77

TABLE VI: Mean Average Precision (mAP) comparison of
the event detection result on the PKU-MMD dataset.

Method θ = 0.1 θ = 0.3 θ = 0.5 θ = 0.7
DR + BLSTM 0.617 0.439 0.221 0.051
DR + RS + BLSTM 0.675 0.498 0.255 0.050
Ours 0.650 0.510 0.294 0.065

CTBN models. We also validate our inference idea on non-
Markovian PCIMs, which is the first to do so. Then we show
that the modeling of temporal context with PCIM can improve
event detection performance in real-world continuous video.
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