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Abstract

Even though impressive progress has been made in the area of optimizing and parallelizing scientific
programs with arrays, the application of similar techniques to programs with general (cyclic) pointer data
structures has remained difficult. In this paper we introduce a new approach that leads to improved analysis
and transformation of programs with recursively-defined pointer data structures.

Our approach is based on providing a mechanism for the abstract description of data structures (ADDS),
which makes explicit the important properties, such a dimensionality, of pointer data structures. As illustrated
with numerous examples, the ADDS definitions are both natural to specify, and general enough to handle both
simple and complex pointer data structures.

We illustrate how an abstract data structure description can improve analysis by presenting an alias analysis
approach that combines an alias analysis technique, path matriz analysis, with information available from an
ADDS declaration. Given this improved alias analysis technique, we provide a concrete example of applying
a software pipelining transformation to loops involving pointer data structures.

1 Introduction and Motivation

One of the key problems facing optimizing compilers for imperative programming languages is alias resolution, that
is, detecting when two distinct memory accesses may refer to the same physical memory location. The effectiveness
of many compiler analysis techniques and code-improving transformations rely upon accurate alias resolution.
Given the current trend towards vector, RISC, and superscalar architectures, where optimizing compilers are
even more important for efficient execution, the need for more accurate analysis and alias resolution will grow.

Scientific codes have often been the target of optimizing and parallelizing compilers. Such codes typically use
arrays for storing data, and loops with regular indexing properties to manipulate these arrays. A good deal of
work has been done in the area of analysis and transformation in the presence of arrays and loops and as a result
numerous techniques, such as invariant code motion, induction variable elimination, loop unrolling, vectorizing,
prefetching, and various instruction scheduling strategies such as software pipelining and delay slot filling, have
been developed [DH79, RG82, PW86, ASU87, ZC90, Kri90]. Unfortunately, codes that utilize dynamically-
allocated pointer data structures are much more difficult to analyze, and therefore there has not been as much

*This work supported in part by FCAR, NSERC, and the McGill Faculty of Graduate Studies and Research.
tThis work supported in part by NSF grant CCR8704367 and ONR grant N0001486K0215.



progress in this area. This is problematic, since numerous data structures in imperative programs—linked-lists and
trees for example—are typically built using recursively-defined pointer data structures. Furthermore, such data
structures are used not only in symbolic processing, but also in some classes of scientific codes (e.g. computational -
geometry [Sam90] and so-called tree-codes [App85, BHS6]).

The goal of this paper is to: (1) investigate why the analysis of pointer data structures is more difficult than
the analysis of array references, (2) suggest a new mechanism for describing pointer data structures, and (3)
show how better descriptions of such data structures lead to improved analysis and transformation of imperative
programs. To motivate the problem, let us first consider the following two code fragments!.

while p <> NULL
for i =1ton { p->data = p->data + g->data;
ali] = ali] + b[j]; . P = p->next;

The left code fragment adds the element b[j] to each element of array a. Since arrays have the property that a[i]
and a[j] refer to different locations if i # j, the compiler can immediately determine from this code fragment
that each iteration references a different location of a. Further, arrays are usually statically allocated, and it is
straightforward to determine that the arrays a and b are different objects, and thus any reference to b1 will
never refer to the same location as a[i]. These two observations allow the compiler to perform a number of
optimizations, including (1) loading b[j] into a register once before the loop begins, and (2) transforming the
loop by perhaps unrolling or applying software pipelining.

Now let us consider the other code fragment which operates on a linked-list. This program traverses a list P,
and at each step adds the value q->data to the node currently being visited. In this case, the properties of the
structure are not obvious from the code fragment. For example, unless we can guarantee that the list is acyclic,
we cannot safely determine that each iteration of the loop refers to a different node p. This makes the application
of loop transformations difficult. Secondly, since the nodes are dynamically allocated, it is much more difficult. to
determine if p and q ever refer to the same node. Thus the compiler will be unable to detect if g->data is loop

invariant.

There are currently two options for dealing with these problems: (1) assume the worst case, that the list is
possibly cyclic (p~>data of one iteration may share the same location with p->data of another iteration) and that
at some iteration p->data may refer to the same location as q->data, or (2) analyze other parts of the program
in an attempt to automatically discover the underlying structure of the list p, and to determine the relationship
between p and q.

Although approach (1) is far more common, there has been significant work on approach (2). One class
of solutions has been the development of advanced alias analysis techniques (also called structure estimation
techniques), that attempt to statically approximate dynamically-allocated data structures with some abstraction.
The most commonly used abstraction has been k-limited graphs [JM81], and variations on k-limited graphs [LH388a,
LH88b, HPR89, CWZ90]. The major disadvantage of these techniques is that the approximation introduces cycles
in the abstraction, and thus list-like or tree-like data structures cannot be distinguished from data structures that
truly contain cycles. The work by Chase et al. [CWZ90] has addressed this problem to some degree; however, their
method fails in the presence of general recursion. This is a serious drawback since many programs heavily utilize
recursion. Another method, path matriz analysis, was designed to specifically deal with distinguishing tree-like
data structures from DAG-like and graph-like structures [HN90, Hen90]. This analysis uses the special propertles
exhibited by tree-like structures to provide a more accurate analysis of list-like and tree-like structures even in the
presence of recursion. However, it has the disadvantage that it cannot handle cyclic structures. Other approaches
include one based on more traditional dependence analysis [Gua88] (this method assumes the structures do not
have cycles), and abstract interpretation techniques (designed for list-like structures commonly used in Scheme
programs) [Har89].

Although these methods have made some progress, there remain serious problems to address, particularly in
the context of general-purpose imperative programming languages. One of the most serious problems is that such
“imperative” pointer data structures often have a complex structure. For example, consider the above pointer
loop once again. The linked-list formed by the next fields may be part of a larger, more complicated structure.

!Treat a, b, p, and q as local variables, where a and b are arrays of size n and p and q are pointers.



It could be, for example, a list linking together the leaves of a tree, the forward pointers of a doubly-linked list,
or many other possibilities, all of which confound existing analysis techniques.

2 Ouwur Approach

It is our belief that we can provide a more effective option by carefully studying commonly used pointer data
structures, and exploiting the important regular properties exhibited by these structures. The problem then is how
to capture the “important” properties of-a wide range of recursive pointer data structures. Current imperative
programming languages provide no mechanisms for expressing this kind of information.

Based on our successful experience of developing alias analysis techniques for tree-like structures (i.e. a subset
of structures that have nice properties), and the failure of other techniques to find accurate information for general
structures, we believe that a lack of appropriate data structure descriptions is the most serious impediment to
the further improvement of analysis techniques. Thus, our first task was to develop mechanisms that can be used
to describe a wide variety of pointer data structures commonly used in imperative programs. These mechanisms
need to: (1) be simple to use for the programmer, (2) handle a wide variety of complex pointer data structures,
and (3) provide information that can be effectively utilized by the compiler. The properties captured by such
data structure descriptions can then be used to improve the effectiveness of existing analysis and transformation
techniques, and provide a basis for the development of pointer-specific optimization techniques.

Asking the programmer to specify some properties of his or her data structures should not be considered a
radical change in our way of thinking about programming in imperative programming languages. In the domain
of scientific programs we do not find it strange to provide programmers with both one-dimensional and two-
dimensional array data types (even though these are both implemented as one-dimensional arrays in memory).
In addition, in the pointer data structures domain, programmers often convey quite a bit of implicit mforma.txon
about their data structures. For example, con51der the following two recursive type declarations:

type BinTree type TwoWayList
{ int data; ‘ { int data;
BinTree *left; TwoWayList #*next;
BinTree *right; TwoWayList *prev;
}; };

Even though these type declarations appear identical to the compiler, the naming conventions imply very different
structures to readers of a program. In addition, each structure has some very nice properties which the compiler
could exploit. For example, a binary tree naturally subdivides into two disjoint subtrees, and a doubly-linked
list has the property that a traversal in the forward direction using only the next field always visits a new node
(likewise for traversals using only the prev field). The idea is simply to make this implicit information explicit to
the compiler. Positive side-effects may be increased human understanding of programs, and the compiler’s ability
to generate run-time checks.

Note that Fortran 90 has taken a similar stance in its treatment of pointers to variables. Variables accessible
through pointers must be explicitly declared as either pointers or targets [MR90]. This simple declaration greatly
improves the accuracy of alias resolution in the presence of pointers.

However, the presence of such a description mechanism alone is not enough. Side-effects in imperative programs
often rearrange the components of a data structure, causing a temporary but intentional invalidation of the
properties we wish to exploit. Application of optimizing transformations during such a time would be incorrect,
and intolerable. Hence some form of data structure analysis is still necessary, not only to ensure correctness but
to enhance debugging as well.

In the remainder of this paper we present our viewpoint that:

1. recursive pointer data structures, regardless of their overall complexity, typically contain substructures that
exhibit regular properties that can be exploited for the purpose of compiler analysis and transformation,
and '

2. the ability to express these properties explicitly is an important first step towards the long-term goal of
efficient compiler analysis and alias resolution in the presence of general (cyclic) pointer data structures.



The organization of this paper is as follows. In sections 3 and 4 we address the problem of capturing the
regular properties of recursive pointer data structures. In section 3, we present a new technique for the abstract
description of data structures (ADDS). We include in section 3 a wide range of examples using our technique,
and we outline how the technique is applied to both simple and complex pointer data structures. In section 4
we define the properties of ADDS data structures more formally. In section 5 we provide concrete examples of
how the information provided by ADDS can be used to improve the analysis and transformations of programs.
Finally, in section 6 we present our conclusions.

3 ADDS - Abstract Description of Data Structures

The optimization of codes involving data structures requires knowledge about the properties exhibited by that
structure, e.g. shape, size, and method of element access. With arrays, these properties are readily identifiable.
The shape of an array is fixed and declared at compile-time, its size is known at the time of creation (and often
at compile-time), and locations are referenced using integer indices. The latter property is especially useful in
optimizing loops. For example, given a statement S of the form i = i + ¢ (¢ # 0), one is guaranteed that a[i]
refers to different elements of a before and after the execution of S. Contrast this with user-defined pointer data
structures, in which none of these properties are made explicit. Given a simple traversal statement 7" such as
P = p->next, the compiler cannot readily determine whether p denotes a different node after the execution of T,
or the same node.

Our goal in this section is to present a formalism for expressing the shape of a recursive pointer data structure, a
formalism we shall call ADDS (abstract description of data structures). In developing this formalism we considered
a wide variety of pointer data structures currently used in imperative programs, along with our previous experience
in developing alias analysis techniques. We first give a Jhigh-level summary of how one develops an abstract
description, and then we give illustrative examples that include both simple and complex data structures.

3.1 Dimensions and Directions in Pointer Data Structures

Suppose you have a recursive pointer data structure and you need to describe its shape. Consider the structure
In its general form, and select a node as the “origin”—it doesn’t matter which node you choose, though some
choices make more sense than others (e.g. the root of a tree versus a leaf). Next, think of your structure as having
“dimensions,” different paths emanating from the origin, with typically one dimension per path. Finally, select
a node n other than the origin, and for each recursive pointer field f in n, decide which dimension f traverses
and in which “direction.” The “forward” direction implies traversing f moves one unit away from the origin,
and “backward” implies traversing f moves one unit back towards the origin. A field is limited to traversing one
dimension in only one direction?.

By default, a structure has one dimension D, where it is assumed that all recursive pointer fields traverse D in
an “unknown” direction. The idea is to override this default and provide more specific information. For example,
we can specify that a singly linked-list has one dimension X, and one recursive pointer field next that traverses X
in the forward direction. As illustrated below, a two-way linked-list is best described as having a single dimension
X, with next traversing forward along X and prev traversing backward along X:

next

O O O O

‘prev
X b

Y
>

To differentiate a list from a more general DAG-like list, e.g.

2This restriction can be overcome by the programmer without too much difficulty.
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we introduce the notion of a field f traversing “uniquély forward,” which implies that for any node n, at most
one node n’ (n’ # n) points to n using f. Syntactically, the declaration of a two-way linked-list would then look
like:

~ ' N
>

type TwoWayList [X]
{ int data;
TwoWayList *next is uniquely forward along X;
TwoWayList *prev is backward along X;

};

A binary tree can be thiought of as having two dimensions 1eft and right, but for reasons soon to be apparent,
we shall consider a binary tree as having only one dimension, down. The important property of a binary tree (and
of trees in general) is that for any node n, all subtrees of n are disjoint. This information can be expressed by
saying that the left and right fields “combine” to traverse down in a uniquely forward manner. More formally,
left and right exhibit the property that at most one left or one right points to any node n, but not both.
The motivation for choosing one dimension to describe a binary tree is to support the notion of parent pointers,
a field that refers from either a left or right child back to its parent. Thus, pictorially we view such a binary tree
as:

Its ADDS declaration would be:

type PBinTree [down]

{ int data;
PBinTree *left, *right is uniquely forward along down;
PBinTree *parent is backward along down;

};

" The flexibility of the ADDS technique is illustrated by more exotic recursive pointer data structures. Typically
such structures exhibit multiple dimensions, where dimensions are either “independent” (disjoint) or “dependent.”
For example, an orthogonal list [Sta80], used to implement sparse matrices, has two dependent dimensions X and
Y (much like the two-dimensional array it represents):
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We say X and Y are dependent since one traversal along X and another traversal along Y may lead to a common
substructure. For example, traversing along X from r4 and along Y from ¢3 may lead to the same node. One can
also think of this property at the node level. Each node n may be accessed by traversing from some node along
the X dimension, and from a different node along the Y dimension. This indicates that there is a dependency
between the two dimensions. However, even though the dimensions are dependent, notice that orthogonal lists
still possess regular properties. For example, traversing forward along X, or forward along Y, is always guaranteed
to visit a new node. Further, each row is disjoint, so that parallel traversals of different rows along X will never
visit the same node (likewise for columns and the Y dimension). These properties are captured by the following
ADDS declaration, which specifies that the fields across and down are uniquely forward3:

type OrthList [X][Y]
{ int data; ‘
OrthList =*across is uniquely forvard along X;
OrthList #*back is backward along X;
OrthList #*down is uniquely forward along Y;
OrthList #*up is backward along Y;
};

A data structure that has two independent dimensions is a list of lists. Con51der the following which illustrates
a list of lists, including back pointers along each dimension:

back acros

X

>~
r

Note that each node may be accessed by traversing along either the X dimension or the Y dimension, but not both.
Thus, any node that can be reached by a forward traversal along X cannot be reached by a forward traversal along
Y, and vice versa. Hence X and Y are independent, which is conveyed using || in the following ADDS declaration:

3Unless otherwise stated (via | 1), dimensions are assumed to be dependent. Such conservative nature js intentional.



type ListOfLists [X][Y] where X || Y
{ int data;
ListOfLists =across is uniquely forvard along X;
List0fLists #*back is backward along X;
ListOfLists *down is uniquely forward along Y;
List0fLists #up is backward along Y;
};

An interesting three-dimensional structure that has both dependent and independent dimensions is the two-
dimensional range tree [Sam90], used to answer queries such as “find all points within the interval x1...x2” or
“find all points within the bounding rectangle (x1,y1) and (x2,y2).” As illustrated below, it is a binary tree of
binary trees, where the leaves of each tree are linked together into a two-way linked list:

down
| Q

N
,—%& O/f?&

leaves

N
>

The dimensions down and leaves are dependent (each leaf node can be reached by traversing along the down
dimension and along the leaves dimension). However, observe that sub is independent of both down and leaves.
That is, any node that can be accessed by a forward traversal along sub, cannot be accessed by a forward traversal
along down or along leaves. This leads to the following declaration?:

type TwoDRangeTree [down][sub][leaves] where sub||down, subl|leaves

int data;

TwoDRangeTree #*left, *right is uniquely forward along down;

TwoDRangeTree #subtree is uniquely forward along sub;

TwoDRangeTree #*next is uniquely forward along leaves;
' TwoDRangeTree *prev is backward along leaves;

};

Lastly, let us consider a common cyclic data structure, the circular linked-list:

( :,: next : : E D

This type of structure can be problematic, since a single field (next) is used for what are essentially two purposes,
(1) traversing uniquely forward and (2) circling around. One declaration is thus:

type CircularList [X]
{ int data;
CircularList #next is unknown along X;

};

This is equivalent to saying nothing at all (the default), and the unknown nature of next prevents the compiler
from performing possible optimizations (e.g. given the statement p = q->next the compiler must conservatively
assume that p and q are aliases). One solution is the use of a more explicit declaration that more accurately
reflects the properties of a circular list:

4Note that the field pairs (left, right) and (next, prev) could be overloaded to save storage; this is accomplished using a variant
record (union), without loss of generality.



type CircularList [X]
{ int data;
int  un_type;
union { CircularList #next is uniquely forward along X;
CircularList =around is unknown along X;
} un;

};

Obviously, this may require some rather clumsy coding practices. A second solution is to declare next as traversing
X in a “circular” direction:

type CircularList [X]
{ int data;
CircularList #*next is circular along X;

};

This solution appears more desirable, since the declaration does not require a change in the coding of the program.
However, one needs to know the length of the list in order to perform accurate alias analysis. This implies
information must be collected and maintained at run-time, and so is beyond the scope of this paper. Hence the
circular direction is equivalent to the unknown direction, and thus is not present in ADDS.

3.2 Speculative Traversability

In all cases, a data structure described using ADDS is required to be speculatively traversable [HG91]). This
property allows one to traverse past the “end” of a data structure without causing a run-time error. It can
be automatically supported by the compiler, and places no additional burden on the programmer (except good
programming practices—they must use the name NULL and not an arbitrary integer). This property is analogous
to computing an array index outside the bounds of an array, but not actually using it. It is often important for
performing loop transformations.

3.3 Summary of ADDS

In summary, ADDS is a technique for abstractly describing the important properties of a large class of useful
data structures. Once known, these properties can be exploited by the compiler for analysis and transformation
purposes. By default, a structure has one dimension D, and all recursive pointer fields traverse D in an unknown
fashion. The programmer may refine this by describing (1) additional dimensions, (2) the interaction between
dimensions, and (3) how the various fields traverse these dimensions. As illustrated with our examples, the choice
of dimensions and directions is quite intuitive. Even though predefined types such as “list” or “tree” would be
easier to use, these lack the flexibility to describe such data structures as the TwoDRangeTree. Instead, ADDS
should be used to build such higher-level data structures into a programming language. In the next section we
give a more formal definition of the properties of ADDS data structures.

4 Properties of ADDS Data Structures

In this section we present an overview of the formal properties of ADDS data structures. These definitions are
not crucial to the understanding of the ideas, but they do show that our ADDS approach has some well-specified
properties. For each definition we summarize the importance of the property being defined. If the reader is
comfortable with the intuitive definitions presented in section 3, this section can be safely skipped.

Let N be a data structure declaration with n recursive pointer fields, n > 1. Let k be the number of
programmer-specified dimensions over N, 1 <k < n. The dimensions of N are denoted by di, ..., di, and
the recursive pointer fields of N are denoted by fi, ..., fn. A recursive pointer field f may traverse along only
one dimension d, and in only one of three directions: forward, backward, or unknown. pN denotes a dynamically-
allocated node of type N, and pN.f is either NULL® or denotes the dynamically-allocated node of type N reached

5Think of NULL as denoting a typeless node that is dynamically-allocated by the system at startup.



by traversmg the pointer stored in field f of pN. Traversmg a series of non-NULL fields is denoted using a regular
expression notation, e.g.

e pN(.f)? denotes the node pN.f.f,
o pN(.f)* denotes any one of the nodes pN.f, pN.f.f, ...,
o pN((.f) +(.9))* denotes any one of the nodes pN, pN.f, pN.g, pN.f.f, pN.f.g, pN .g.f, pN.g.g, ....

For any such regular expression R, R denotes a list of nodes which may or may not contain duplfca.tes. If this list
is finite (i.e. for all fields f in R, there exists a node pN’ denoted by R such that pN'.f is NULL), then there
are no duplicates. Otherwise R denotes an infinite list of nodes, in which case there must be duplicates.

All nodes pN can be thought of as forming a single data structure pDS of type N. pDS is considered well-
behaved if it adheres to the abstraction defined for N. In cases where pDS is not well-behaved (e.g. pDS is
under modification) the abstraction must be ignored at these points in the program®. The definitions presented
here assume a well-behaved data structure.

Def 4.1: if N is speculatively traversable, then for all fields f and for all nodes pN, if pN.f = NULL then
pN.f.f is a valid traversal and also yields NULL.

[Implication: legal to traverse past what would normally be thought of as the “end” of a structure.]

Def 4.2: if f traverses d in the forward direction, then for all nodes pN, the list of nodes denoted by pN(.f)*
is finite.
[Implication: traversing f never visits a node twice (fis acychc).]

Def 4.3: if f traverses d in a umquely forward direction, then Def 4.2 holds for f, and for all distinct nodes
pN and pN’, either

1. pN.f = pN’.f = NULL, or
2. pN.f £ pN'.f.
[Implication: traversing f from different nodes never visits the same node (f is acyclic and list-like).]

Def 4.4: if f traverses d in an unknown direction, then there may exist a node pN such that the list of nodes
denoted by pN(.f)* is infinite.
[Implication: traversing f is unpredictable, could visit a node twice (fis pot’.entlally cyclic).]

Def 4.5: if a field b traverses d in the backward direction, then there exists a field f that traverses d in the
forward direction.

Def 4.6: if f traverses d in a uniquely forward direction and b traverses d in the backward direction, then for all
nodes pN, either:

1. pN.f = NULL,
2. pN.f.b = NULL, or
3. pN.f.b = pN.
[Implication: traversing f then b forms a cycle, otherwise f or b is NULL]

Def 4.7: if f and g (f # g) traverse d in a combined uniquely forwald direction, then Def 4.3 holds for f,
Def 4.3 holds for g, and for all distinct nodes pN and pN’,

1. pN.f # pN’.g or pN.f = pN’.g = NULL, and
2. pN.g #pN'.f or pN.g = pN'.f = NULL.
(Implication: f and g separate a structure into disjoint substructures (tree-like).]

Def 4.8: if fields f1, fo, ooy fm (2 < m < n) traverse d in a combined uniquely forward direction, then for all f;
and f;, 1 <i,j <mandi#j, Def 4.7 holds for fi and f;.

[Imphcatlon generalization of Def 4.7—the m fields separate a structure into m disjoint substructures.]

8The problem of detection is discussed in the next section.




Def 4.9: (a) let d; and d; be dimensions of N (i # j). If d; and d; are independent, then for any field f
traversing d; in a uniquely forward direction, for any field g traversing d; in the forward direction, and for .
all distinct nodes pN and pN’,

1. pN.f # pN'.g or pN.f = pN’.g = NULL, and
2. pN.g # pN'.f or pN.g = pN’.f = NULL.

(b) Further, for any field b traversing d; in the backward direction, either

3. pN.f = NULL, or
4. for all pN” in the set denoted by pN.f(.g)*, pN".b = pN or pN".b = NULL.

(Implication: (a) di and d; separate a structure into disjoint substructures, (b) uniquely forward/backward cycles
hold across an independent dimension.]

Def 4.10: let d; and d; be dimensions of N (i # j). If d; and d; are not independent, then they are dependent
and Def 4.9 does not hold for d; and d;.

(Implication: d; and d; could refer to a common substructure.]

5 Amnalysis and Transformations using ADDS

In this section we show how the properties of ADDS data structures can be used for improving both data structure
analysis and optimizing/parallelizing transformations. The major difference between our approach, and previous
analysis approaches, is that we are using information available in the ADDS declarations to guide the analysis.
This synergy between the abstract data structure descriptions and the analysis technique provides a more general
and more accurate approach. For example, by using information about the dimensionality and direction of field
traversals, the abstraction approximations are freed from estimating needless cycles (such as those formed by the
forward and backward directions along the same dimension), and can therefore avoid making needless conservative
approximations.

In section 5.1 we present a new approach to alias analysis that combines existing techniques with information
provided by an ADDS declaration, and in section 5.2 we present a new application of software pipelining that is
made possible by our improved analysis.

5.1 Data Structure Analysis

As discussed earlier, a description mechanism such as ADDS is simply not enough by itself. Imperative programs
routinely rearrange components of a data structure, and it is during these points in a program that the abstraction
must be ignored to ensure correctness. Qur approach then is a combined one, in which safe analysis techniques are
used in conjunction with ADDS declarations. In particular, we are developing an approach to the static analysis
of ADDS data structures that is an extension of path matriz analysis [HN90, Hen90], called general path matriz
analysis.

Path matrix analysis was originally designed to automatically discover and exploit the properties of acyclic
data structures. General path matrix analysis computes, for each program point, a path matrix PM which
estimates the relationship between every pair of live pointer variables. The entry PM (r,s) denotes an explicit
path or alias, if any, from the node pointed to by r to the node pointed to by s. The analysis does not attempt
to express all possible paths between two nodes, since cyclic data structures would soon overwhelm the matrix.
Instead, the paths explicitly traversed by the program are captured in the PM, while the remaining paths and
aliases are deduced from the current state of the matrix and the ADDS declarations.

Each new path matrix is generated from the current path matrix. The process is controlled by “pointer rules,”
which are applied on the basis of the program statement under analysis. For example, there is a rule to handle
pointer statements of the form A = B->f. This is one of the more complex rules, since it must handle DAG and
cyclic structures. However, the ADDS declaration can be used to simplify this rule, thus making the analysis
more efficient. For example, if f is an acyclic field (i.e. Def 4.2 or 4.5 applies to f), then the rule developed in
[Hen90] can be used, where detection of a cycle denotes a break in the abstraction.
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As a more concrete examplé, consider the following code fragment. The pointer variable head denotes a
two-way linked-list of points, where each point contains its x and y coordinates. The code below shifts the origin
from (0,0) to (head->x,0) by subtracting the x-coordinate of this first point from all remaining points.

p = head->next; [ [head [ p T 9}
while p <> NULL

p

= =71 =7

{ p->x = p->x - head->x; head = ==
P = p->next; p, — —

If the compiler fails to discover that next traverses a list in the forward direction (i.e. in an acyclic manner, see
Def 4.2), then its analysis of the above code will be overly conservative—the compiler will assume that head and
all values of p are potential aliases for the same node. This is expressed above in path matrix form (p’ is used to
summarize the iterative values of p).

Suppose the programmer declared their two-way linked-list using the ADDS declaration TwoWayList, as
shown in section 3. If general path matrix analysis agrees that the structure is well-behaved at this point, the
compiler can use the acyclic nature of the next field (Def 4.2) to infer that the statement p = p->next always
traverses to a distinct node. The result are the following path matrices, which denote (from left to right): just
before the loop, after one iteration, and after the loop analysis has reached a fixed point.

| [Fead | 7] | [head ] p [ ¢ ] l [Read | » | 7]
Tead = oai head = nert” | nexrt | - head = nextT | nextT
> — P = P =

p ' nert | = P next =

An empty entry does not necessarily mean there is no path; it does however guarantee that the two pointers are
not aliases. Thus the ADDS declaration and the general path matrix analysis have captured the desired property
in PM, namely that head and p are never aliases.

5.2 Transformations
Optimizing and parallelizing transformations come in many forms, including:

e fine-grain transformations (e.g. improved instruction scheduling),
e loop transformations (e.g‘loop unrolling or software pipelining), and

e coarse-grain transformations (e.g. parallel execution of code blocks).

The application of such transformations typically requires accurate alias resolution. As we discussed in the
previous section, the ADDS approach allows us to develop more accurate alias analysis techniques. This will
clearly aid in fine-grain transformations where dependency analysis is crucial. In addition, loop transformations
typically require the data structure to exhibit list-like properties, and coarse-grain transformations typically
require tree-like properties. Such properties are all expressible using ADDS declarations.

Earlier work [HG91] has shown the applicability of loop unrolling [DH79] on scalar architectures. For example,
a simple loop to initialize every node of a linked-list showed 47% speedup on the MIPS architecture for a list
of size 100 with 3-unrolling (see [HG91] for more details and timings). In this section we present an example
of a more powerful loop transformation, software pipelining [RG82, AN88a, AN88b, Lam88, EN89]. Given the
current trend towards machines supporting higher degrees of parallelism, e.g. VLIW and superscalar, this type
of optimization will offer greater speedups.

Once again, consider the code fragment from the previous section. In pseudo-assembly code, the loop looks
as follows: :



v
S1  if p==NULL goto done / @
S2 load p->x,R1 \ /
S3 load head->x,R2 @
S4 sub R1,R2,R3
S5 store R3,p->x
S6 load p->next,p
S7 goto S1 @
As we saw earlier, if the compiler’s analysis is overly conservative, then the compiler will incorrectly assume that
head and all values of p are potential aliases for the same node. In this case the data dependency graph shown
above is constructed, with false loop-carried dependencies from S5 to S2 and S3. The result is that the loop
appears to exhibit very little parallelism.
However, if the structure is declared as a TwoWayList, general path matrix analysis will be able to determine
that in fact head and p are never aliases. This will eliminate the false dependencies, and the loop now appears
as a sequence of nearly independent iterations.
To exploit this parallelism, we now apply software pipelining. First we need to minimize the effect of the
loop-carried dependence from S6 to S1. By renaming, we can move S6 above S2, calling it S1.6, and then replace
S6 with a copy statement. The result is a semantically equivalent loop (shown on the left).
»
S1  if p==NULL goto done S0 load head->x,R2
51.6 load p->next,p¢ S1  load p->next,pf
52 load p->x,R1 S2 if p==NULL goto done
$3 load head->x,R2 $3 load p->x,Ri v
S4 sub R1,R2,R3 S4 sub R1,R2,R3
85 store R3,p->x S5 store R3,p->x
S6 move p‘,p S6 move pf‘,p
S7 goto S1 S7 goto S1

Note the next iteration of the loop can begin as soon as S1.6 of the current iteration completes, allowing the loop
bodies to nearly overlap in execution. However, the result of the analysis enables the application of additional
optimizing transformations. Since head and p are never aliases, head->x is loop invariant, and S3 can be moved
outside and above the loop. Also, since the list is speculatively traversable, it is safe to swap S1 and S1.6 (Def 4.1),
further increasing the available parallelism”. The code on the right incorporates these transformations {producing
yet another semantically equivalent loop). This loop can now be pipelined as follows (columns denoted different
iterations, rows denotes statements executing in parallel):

TIf the architecture supports delayed branch slots, it would be wiser to leave S1.6 where it is, and use it to fill such a slot.
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s1

s2 s1

s3 s2 s1
sS4 s3 s2 s1

C[LSS sS4 S3 s2 s1

S5 sS4 383 S2

S5 sS4 s3
S5 sS4
S5

The boxed “statement” represents the new parallel pipelined body of the loop. As a result, the code exhibits
a theoretical speedup of 5. Note that the copy statement S6 is removed as part of the pipelining process, via
(enhanced) copy propagation [NPW91].

In general, software pipelining can lead to even larger speedups, depending on the characteristics of the loop
body. However, the actual speedup also depends heavily on the underlying machine architecture.

6 Conclusions

As we have demonstrated with numerous examples in this paper, many recursively-defined pointer data structures
exhibit important properties which compilers can exploit for optimization purposes. These properties are known
to the programmer, and in imperative programming languages are often conveyed implicitly via appropriate
identifiers. We have proposed an abstract description technique, ADDS, which allows the programmer to state
such properties explicitly. The description of a recursive pointer data structure using ADDS is quite intuitive,
and does not place an excessive burden on the programmer. -

Combined with an extended form of path matrix analysis, called general path matriz analysis, this approach
enables accurate analysis and alias resolution, and hence the application of numerous optimizations. As we have
seen, software pipelining is just one such optimization.

ADDS represents an important first step in our long-term goal of efficient compiler analysis of codes involving
general, cyclic pointer data structures. ADDS represents a simple extension of most any imperative programming
language.
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