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Abstract

In understanding the quantum physics of a black hole, nonperturbative aspects of gravity
play important roles. In particular, huge gauge redundancies of a gravitational theory at the
nonperturbative level, which are much larger than the standard diffeomorphism and relate
even spaces with different topologies, allow us to take different descriptions of a system. While
the physical conclusions are the same in any description, the same physics may manifest itself
in vastly different forms in descriptions based on different gauge choices.

In this paper, we explore the relation between two such descriptions, which we refer to
as the global gauge and unitary gauge constructions. The former is based on the global
spacetime of general relativity, in which understanding unitarity requires the inclusion of
subtle nonperturbative effects of gravity. The latter is based on a distant view of the black
hole, in which unitarity is manifest but the existence of interior spacetime is obscured. These
two descriptions are complementary. In this paper, we initiate the study of learning aspects
of one construction through the analysis of the other.

We find that the existence of near empty interior spacetime manifest in the global gauge
construction is related to the maximally chaotic, fast scrambling, and universal dynamics of
the horizon in the unitary gauge construction. We use the complementarity of the gauge
choices to understand the ensemble nature of the gravitational path integral in global space-
time in terms of coarse graining and thermality in a single unitary theory that does not involve
any ensemble nature at the fundamental level. We also discuss how the interior degrees of
freedom are related with those in the exterior in the two constructions. This relation emerges
most naturally as entanglement wedge reconstruction and the effective theory of the interior
in the respective constructions.
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1 Introduction and Grand Picture

A black hole is a special object. When described in the global spacetime of general relativity, it

has a spacetime region from which nothing can escape to spatial infinity without encountering a

singularity. When viewed from a distance, the large redshift caused by a strong gravitational field

makes the density of states exponentially large even at the quantum level [1,2], while at the same

time a classically diverging redshift factor makes the intrinsic scale of dynamics reach the string

scale near the horizon, causing the breakdown of the classical spacetime description [3]. This string

scale dynamics seems to exhibit a variety of universal behaviors as explored in Refs. [4–8].

These two seemingly different pictures, however, can be different manifestations of the same

physics [9–11]. The basic idea is that the two pictures give equivalent physical conclusions af-

ter taking into account huge gauge redundancies of gravitational theory at the nonperturbative

level [12,13], which are much larger than the standard diffeomorphism and relate even spaces with

different topologies [12,14]. The special features of the ultraviolet (UV) string dynamics manifest

in one way of fixing the redundancies are related with the existence of large interior spacetime in

the infrared (IR) manifest in another fixing [9, 10]. The two constructions are complementary. In

the construction based on global spacetime, one can use semiclassical techniques to understand

certain important aspects of the black hole physics [15–19]. In the other construction based on a

distant view, one may find a restriction on the applicability of semiclassical theory based on the

(non-)existence of approximate linear operators representing the excitations [11].

The gist of this paper is to explore the relation between the two constructions described above

and initiate the study of learning aspects of one construction through the analysis of the other.

From the quantum gravity point of view, a black hole is special in that an appropriate treatment

of the nonperturbative gauge redundancies is vital in obtaining the correct physics (although a

similar situation may also occur in cosmology [20, 21]). It is, therefore, particularly important

in the black hole physics not to conflate pictures deriving from different gauge fixings. We thus

begin our discussion with short descriptions of the two constructions based on two different ways

of fixings the nonperturbative gauge redundancies.

“Global gauge” construction

This construction starts from the conventional global spacetime picture of general relativity. Per-

turbative quantization may begin with equal-time hypersurfaces that extend smoothly to both the

exterior and interior of the black hole [22, 23]. In this picture, the black hole manifestly has the

interior region, as implied by general relativity.

The problem, however, is to see its compatibility with unitarity [24–26]. First, explicit semi-

classical calculation seems to indicate that radiation emitted from the black hole is maximally
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entangled with modes in the interior, violating the unitarity of the S-matrix [24]. Second, even if

we postulate that Hawking radiation somehow carries information about collapsing/infalling mat-

ter to save unitarity, it then leads to the problem of cloning: the information about fallen matter

is duplicated to Hawking radiation, violating the no-cloning theorem of quantum mechanics [27].

Finally, depending on hypersurfaces one chooses, the interior of the black hole can be viewed as

having an ever increasing spatial volume [28,29]. The existence of such large space does not seem

to be consistent with the Bekenstein-Hawking entropy [1,2], bounding the number of independent

black hole states by the horizon area.

Recently, there has been significant progress in addressing these issues. In particular, new sad-

dles in the gravitational path integral, called replica wormholes, were discovered which contribute

to the calculation of entropies [18,19]. Because of this contribution, naively orthogonal black hole

microstates ∣ψI⟩ (I = 1,⋯,K) develop overlaps of the form

∣⟨ψI ∣ψJ⟩∣2 = δIJ +O(e−S0), (1)

where S0 is the coarse-grained entropy of the system, in this case the black hole. While these

overlaps are exponentially suppressed, for K > eS0 they add up and after appropriate “diagonaliza-

tion” lead only to eS0 independent states; all the other states are either null or not independent.

Due to this phenomenon, seemingly independent interior states are actually not independent, and

as a result the von Neumann entropy of Hawking radiation follows [15–17] the Page curve [30].

It is plausible that a part of this reduction of state space is associated with the nonperturbative

gravitational gauge redundancies [12–14], although a part of them may not. This reduction also

implies that for an old black hole, the degrees of freedom in the interior are not independent of

those in the exterior, as anticipated earlier [31].

A puzzling feature of this analysis is that the path integral gives

⟨ψI ∣ψJ⟩ = δIJ , (2)

which is inconsistent with Eq. (1) if both are taken at face value. Reference [18] interpreted this to

mean that the gravitational path integral actually computes the average of a quantity over some

ensemble, which makes the two equations compatible. This, however, brings the question: what

ensemble does the path integral represent? In this paper, we will discuss how the relevant ensemble

can emerge in a consistent unitary theory of gravity.

Summarizing, the basic idea of the construction is to start from a description that is highly

redundant but is based on familiar global spacetime of general relativity. The price to pay is that

in order to see truly independent degrees of freedom—and hence unitarity of the theory—one must

take into account huge nonperturbative gravitational gauge redundancies, including those relating

different spatial topologies [12–14]. If this is done carefully, however, one can see the correct physics

as demonstrated recently [15–19].
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“Unitary gauge” construction

An alternative construction is to start from a manifestly unitary description [3, 30, 32]. This

naturally arises in a “distant description” of a black hole. When viewed from a distance, the

black hole carries Hawking cloud around it, whose intrinsic energy scale (local, or Tolman [33,34],

temperature) increases toward the horizon because of large gravitational blueshift. This scale

reaches the string scale on a surface a microscopic distance away from the classical horizon. This

surface is called the stretched horizon [3], at which the semiclassical description of spacetime

breaks down. Since the dynamics around the stretched horizon cannot be described by a low

energy theory, one may consistently assume that the physics there, which is responsible for the

Hawking phenomenon, is unitary.

A virtue of this picture is that it is intuitive. The evolution is unitary by construction (or

one can say, as suggested by the AdS/CFT correspondence [35–37]), and the interpretation of

the Bekenstein-Hawking entropy is simple: it basically comes from qubits of a Planck density on

the stretched horizon. Most of the gravitational gauge redundancies are regarded as being fixed,

leaving only the standard diffeomorphism and perhaps a little more.

The issue in this picture is to understand how the interior spacetime of a black hole, whose

existence is implied by the equivalence principle, may emerge [26, 38, 39]. In this description, the

stretched horizon behaves—in a sense—as a surface of regular material such as a piece of coal.

While this makes unitarity manifest, the existence of interior spacetime is obscured; we know that

the surface of a piece of coal does not allow for an object to fall freely into it. What is special

about the stretched horizon, making it distinct from a regular material surface?

This problem was addressed in Refs. [9–11]. There are two important characteristics that

emerge when a black hole is formed. First, because of large gravitational redshift, energy gaps

between different black hole microstates become exponentially small, as measured in the asymptotic

region. This means that the density of states becomes exponentially large [1, 2]. Second, the

intrinsic energy scale (the local temperature of Hawking cloud) becomes large, of order the string

scale, near the stretched horizon. The dynamics at such energies is believed to be maximally

quantum chaotic [4], fast scrambling [5, 6], and not to have a feature discriminating low energy

species, such as a global symmetry [7, 8]. These dynamical features play a crucial role in the

emergence of the interior spacetime.

Because of the dynamical properties described above, the state of a black hole quickly becomes

a typical state in the relevant microcanonical ensemble, which treats all low energy species in a

universal manner. The prescription in Refs. [9–11] then allows us to erect an effective theory of

the interior on each microstate, which can describe the fate of an object falling into the black

hole. This construction does not work for a regular material surface because of the lack of the

typicality and universality, hence singling out the stretched horizon. An important point is that
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the construction of the effective theory is restricted to the modes in the near black hole region,

called the zone, whose characteristic frequencies ω are sufficiently, e.g. of O(10), larger than the

Hawking temperature, TH. This structure makes it possible, unlike the scenarios discussed in

Refs. [40–46], that the operators describing the interior are state independent, i.e. standard linear

operators defined throughout the space of microstates, up to exponentially suppressed corrections

of order e−ω/TH . In fact, Ref. [11] argued that the existence of such globally defined operators is

necessary for the emergence of semiclassical physics, which has an intrinsic ambiguity of O(e−ω/TH).
An erection of an effective theory of the interior involves coarse graining: many different states

in the microscopic theory correspond to a single state in the effective theory. This coarse graining is

the root of the apparent uniqueness of the infalling vacuum, despite the existence of exponentially

many black hole microstates. In this paper, we will see that this also elucidates the ensemble

nature of the gravitational path integral in the global gauge construction.

The effective theory erected over the state of the system at a given time (without invoking

boundary time evolution in the language of holography [47–49]) describes only the causal region

associated with the black hole zone at that time [9], giving a specific realization of the idea of black

hole complementarity [3,50]. For an old black hole, the erection of the effective theory must involve

Hawking radiation emitted earlier, as suggested in Ref. [31], although the detailed realization is

different from that contemplated there: the degrees of freedom describing the second exterior of the

effective two-sided geometry must also involve black hole “soft mode” degrees of freedom [9–11,51].

The non-local identification of degrees of freedom needed here is understood to come from gauge

fixing adopted by the unitary gauge construction.

To analyze the relation between this picture and the results of Refs. [15–19] adopting entangle-

ment wedge reconstruction [52–57], we need to take into account the effect of time evolution [11].

As we will see in this paper, this reveals a structure of bulk reconstruction that is not manifest

in the simplest entanglement wedge consideration: the amount of information one can reconstruct

from radiation at a given time depends on the spacetime location within the entanglement wedge.

This feature originates from the fact that the reconstruction employs a quantum information the-

oretic protocol [5] which, unlike the erection of an effective interior theory, uses boundary time

evolution. We elucidate this relation in detail and discuss properties of the entanglement wedge

reconstruction that are contrasted with those of the effective interior theory, which uses the black

hole soft modes in addition to radiation degrees of freedom.

Outline of the paper

In this paper, we mainly analyze the unitary gauge construction to understand features of the

global gauge construction. In Section 2, we begin with discussion of the unitary gauge construc-

tion, reviewing relevant aspects of the description in Refs. [9–11]. In section 3, we find that this
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construction exhibits the same ensemble property as that found in Ref. [18], providing an under-

standing of an origin of the ensemble nature of the gravitational path integral. In Section 4, we

investigate reconstruction of the interior. We discuss two possible ways to reconstruct the interior—

effective theories of the interior and entanglement wedge reconstruction—and study their relation.

Finally, we conclude in Section 5. The two appendices contain details of the stretched horizon,

soft modes, and the analysis of signal propagation and scrambling times.

Throughout the paper, we focus on a spherically symmetric, non-near extremal black hole in

asymptotically flat or AdS spacetime.1 We adopt natural units c = h̵ = 1, and we use ls to denote

the string length.

Note added: While completing this paper, Ref. [60] appeared which has some overlap with

Section 3 of this paper.

2 Unitary Gauge Construction

In this section, we discuss the unitary gauge construction. This is mostly a review of the de-

scription of an evaporating black hole in Refs. [9–11], with the focus on aspects relevant to our

discussion. The description has several important elements. First, it is based on the unitary gauge

construction. Namely, the system is described from a distant perspective, and the degrees of free-

dom outside the stretched horizon comprise the entire system [3].2 Here, the stretched horizon

is defined as the surface at which the blueshifted, local Hawking temperature becomes the string

scale; see Appendix A for details. This implies that the quantum mechanical evolution is unitary

among the degrees of freedom outside the stretched horizon. In the context of holography, this

corresponds to a description based on the boundary Hamiltonian,3 which we may regard as the

“fundamental” description.

Second, modes of a low energy quantum field in the black hole zone region (rs ≤ r ≤ rz in

Appendix A) are decomposed into hard and soft modes. The hard modes have frequencies ω and

gaps among them ∆ω sufficiently, e.g. a factor of O(10), larger than the Hawking temperature TH

(as measured at the same location), while the soft modes have smaller frequencies. Semiclassical

theory is supposed to describe the physics of the hard modes, while the soft modes represent the

1We, however, expect that our basic argument applies to a near extremal black hole as well. We also expect that
a similar analysis applies to the cosmological horizon of de Sitter spacetime, where the global gauge and unitary
gauge constructions correspond to the treatments in Refs. [58, 59] and [10,20], respectively.

2In the distant description, the distribution of the degrees of freedom associated with the black hole (soft modes)
is peaked toward the stretched horizon, so one may say “on and outside the stretched horizon” instead of “outside
the stretched horizon.” In this paper, we adopt the latter for brevity.

3The boundary here need not be the conformal boundary of AdS or an asymptotic infinity in flat spacetime, but
can be the holographic screen in Refs. [61–63], although in the latter case a fully unitary description may require
an ad hoc introduction of extra ingredients, such as a superposition of different geometries.
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black hole microstates associated with the semiclassical (black hole) vacuum. This separation of

modes is not quite necessary if we are only interested in basic consequences of unitarity, e.g. the

Page curve, since for this purpose an excitation of the hard modes can be safely ignored. It is,

however, crucial if we want to discuss the emergence of effective semiclassical spacetime describing

the black hole interior [11] as we now see.

2.1 Semiclassical spacetime from approximate state independence

Consider the space HM of pure states in which the energy E in a spatial region is bounded by

E < M , where M is sufficiently large that a typical state in HM is a black hole vacuum state.

We then consider the space of all states that are obtained by acting appropriately smoothed hard

mode (semiclassical) operators on any of the microstates in HM and have energies smaller than

M + δE. This space, denoted by BδEHM , has dimension eSexc dimHM , where Sexc is the entropy of

the possible semiclassical excitations. One can then show [46] that a typical state ∣ψ⟩ in HM+δE

can be written as

∣ψ⟩ = sin θ ∣ψexc⟩ + cos θ ∣ψvac⟩ (3)

with

sin2θ ∼ e−(
δE
TH

−Sexc)
. (4)

Here, ∣ψexc⟩ and ∣ψvac⟩ are elements of BδEHM and its complement HM+δE/BδEHM , respectively.

Assuming that semiclassical excitations are well within the Bekenstein bound [64, 65], i.e. Sexc <
δE/TH with (δE/TH − Sexc)/Sexc È 1, and that a semiclassical excitation has entropy of order a

few or larger, we obtain

a few ≲ Sexc <
δE

TH

⇒ sin2θ ≪ 1. (5)

We thus find that a state having excitations over a semiclassical black hole background is atypical

in the microscopic Hilbert space.

The direct application of the above analysis is limited to the excitations outside the horizon,

which raise the energy of the state as measured in the asymptotic region. However, the conclusion

that a semiclassically excited state is microscopically atypical also persists for the states describing

the interior obtained by the prescription in Refs. [9–11]. This is because such states are produced

by “evolving” the states described above by an operator that is approximately unitary over the

relevant timescale. This operator does not commute with the boundary Hamiltonian and induces

components whose energies measured in the asymptotic region are lower than that of the cor-

responding vacuum state. However, the evolution still brings the original vacuum states to the

vacuum states in the interior, and so for the excited states as well, preserving the atypicality of

the excited states at the microscopic level.
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This atypicality of excited states is in stark contrast with the claim in Ref. [46], which is derived

from the picture in Refs. [40–42]. In particular, unlike the scenarios considered in Refs. [40–46],

the structure described above implies that the Hilbert space for semiclassical excitations, Hexc,

built on each of the orthogonal microstates of the black hole and radiation emitted from it need

not overlap significantly with each other. Indeed, from genericity consideration, we expect that

states representing the same semiclassical excitation but built on different orthogonal microstates

A and B have overlap

A⟨Ψ(M)∣O(A)†
δE O

(B)
δE ∣Ψ(M)⟩B ≈ O( 1√

eSbh(M)+Srad

e
− δE

2TH ), (6)

where ∣Ψ(M)⟩A,B represent the microstates of the black hole and radiation, on which semiclassical

theories are built [9–11], and Sbh(M) and Srad are the coarse-grained entropies of the black hole and

radiation, respectively. O(A,B)
δE are the suitably normalized operators that excite an appropriately

smoothed semiclassical mode of energy δE in the black hole region.

While the overlap in Eq. (6) is suppressed by the large exponential factor e−(Sbh(M)+Srad)/2,

this by itself is not enough to suppress the overlap between Fock spaces built on different mi-

crostates. To see this, we can consider the probability for the state O(A)
δE ∣Ψ(M)⟩A to overlap with

the corresponding semiclassical state built on some other microstate orthogonal to ∣Ψ(M)⟩A:4

eSbh(M)+Srad

∑
B=1,B≠A

∣A⟨Ψ(M)∣O(A)†
δE O

(B)
δE ∣Ψ(M)⟩B∣

2
≈ O(e−

δE
TH ). (7)

We find that the exponential factor associated with the microstate entropies indeed disappears.

However, the exponential factor e−δE/TH associated with the energy of the excitation remains. This

implies that Fock spaces of hard modes built on different orthogonal microstates are orthogonal up

to corrections exponentially suppressed in δE/TH. This allows us to treat the microscopic Hilbert

space as

H ≈ Hexc ⊗Hvac, (8)

where the elements of Hvac cannot be discriminated as quantum degrees of freedom in semiclassical

theory. In other words, semiclassical theory is the theory describing the physics associated with

the Hexc factor, which is insensitive to the microscopic physics occurring in the Hvac part. The

structure of Hilbert space described here is depicted in Fig. 1.

4Recall that ∣Ψ(M)⟩A,B represent microstates of the black hole and radiation with the black hole put in the
semiclassical vacuum, so that a generic state in the Hilbert space of dimension eSbh(M)+Srad has the black hole of
mass M . Note that since black hole evaporation is a thermodynamically irreversible process [66, 67], most of these
microstates do not become a state with a larger black hole in empty space when evolved backward in time—there
is always junk radiation around it. This, however, does not change the fact that there are eSbh(M)+Srad independent
microstates relevant for the discussion here.
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Figure 1: The Fock spaces built on microstates of a black hole of mass M , which dominate the
microcanonical ensemble HM , do not significantly overlap with each other because of the energy
restriction imposed on hard modes. Furthermore, the collection of excited states, BδEHM , forms
only an exponentially small subset of the microcanonical ensemble, HM+δE, of the same energy.

The structure of the Hilbert space given above makes it possible that for an operator OIJ in

the semiclassical theory, we can define global operator ÔIJ in the microscopic Hilbert space which

acts linearly throughout the space of all microstates:

ÔIJ =
eSbh(M)+Srad

∑
A=1

OIJ ∣ΨI(M)⟩A A⟨ΨJ(M)∣, (9)

where A runs over orthogonal vacuum microstates, I and J are the indices specifying semiclassical

states (regardless of the microstate), and ∣ΨI(M)⟩A is the semiclassical state I built on microstate

A. In Ref. [11], it was conjectured that the emergence of semiclassical physics requires the existence

of these approximately state-independent operators.5 These operators obey the algebra of the

semiclassical theory throughout the microstates, up to corrections of order e−Eexc/TH where Eexc

is the energy of the semiclassical excitation. These corrections are the intrinsic ambiguity of the

semiclassical theory, requiring Eexc to be sufficiently larger than TH.

2.2 Black hole interior from chaotic dynamics at the horizon

Another important ingredient of the description in Refs. [9–11] is the proposed UV-IR relation, in

particular the role chaotic dynamics at the horizon plays for the emergence of interior spacetime.

It is widely believed that the dynamics of the stretched horizon in a distant picture is maximally

quantum chaotic [4]. It is also expected that this dynamics does not respect any global symmetry [7,

8]. The claim of Refs. [9–11] is that these properties of the stretched horizon dynamics are crucial

5This can be viewed as an extension of an analogous leading-order statement about the geometry [68, 69] to
higher order in the Newton constant expansion, including matter excitations.
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for the emergence of interior spacetime. In fact, together with the exponential degeneracy of states,

the appearance of such dynamics can be viewed as the quantum mechanical analog of gravitational

collapse in classical general relativity.

To see how this works, consider a system with a black hole, whose mass M is determined by

the maximal precision of

∆ ≈ O(2πTH) (10)

allowed by the uncertainty principle. At a given time t, the state of the system—with the black

hole being put in the semiclassical vacuum—is given by

∣Ψ(M)⟩ =∑
n

eSbh(M−En)

∑
in=1

eSrad

∑
a=1

cnina∣{nα}⟩∣ψ
(n)
in

⟩∣φa⟩, (11)

where the state is assumed to be normalized

∑
n

eSbh(M−En)

∑
in=1

eSrad

∑
a=1

∣cnina∣2 = 1. (12)

The three factors in the right-hand side of Eq. (11) represent states of the hard modes, soft modes,

and modes outside the zone region (far modes), respectively. The notations and basic properties

for these states are the following:6

• ∣{nα}⟩ are orthonormal states of the hard modes, with n ≡ {nα} representing the set of all

occupation numbers nα (≥ 0). The index α collectively denotes the species, frequency, and

angular-momentum quantum numbers of a mode, and En is the energy of the state ∣{nα}⟩ as

measured in the asymptotic region (with precision ∆).

• ∣ψ(n)
in

⟩ are orthonormal states of the soft modes entangled with ∣{nα}⟩. Because of the energy

constraint imposed on the black hole, these states have energies M − En, with precision ∆.

Assuming that the density of hard mode states is negligible compared with that of the soft

modes (which is justified as we are only interested in states that do not yield significant

backreaction),7 the density of soft mode states is given by the standard Bekenstein-Hawking

formula, implying that in runs over the n-dependent range

in = 1,⋯, eSbh(M−En). (13)

With the black hole put in the semiclassical vacuum, any extra attribute a hard mode state

may have, e.g. a charge or angular momentum, is compensated by that of the corresponding

6By construction, the system of a black hole and radiation evolves unitarily with the state taking the form of
Eq. (11) at each moment in time. In particular, the entanglement entropy between the black hole and radiation
SvN
hard+soft = S

vN
rad follows the Page curve [30], where SvN

A is the von Neumann entropy of subsystem A.
7In fact, we expect that the logarithm of the dimension of the hard mode Hilbert space, ln dimHhard, is much

smaller than Sbh(M −En) and Srad throughout the history of the black hole.
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soft mode states (within the precision allowed by the uncertainty principle). This implies

that soft mode states associated with different hard mode states are virtually orthogonal:

⟨ψ(m)
im

∣ψ(n)
jn

⟩ = δmnδimjn . (14)

• ∣φa⟩ represents the set of orthonormal states representing the system in the far region r > rz.

We assume that these are fully specified by the states of Hawking radiation emitted earlier,

i.e. emitted from r ≈ rz to the asymptotic region before time t, although this assumption is

not essential. Srad in Eq. (11) is then the coarse-grained entropy of the early radiation.

The spatial distribution of the soft modes is determined by the blueshifted local Hawking

temperature; see Appendix A. It is peaked toward the stretched horizon, at which the local tem-

perature is of order the string scale and the dynamics is maximally chaotic.8 We thus expect that

the coefficients cnina in Eq. (11) take generic values in the spaces of the hard and soft modes. In

particular, statistically on average

∣cnina∣ ∼
1√
Stot

, (15)

where

Stot ≡ (∑
n

eSbh(M−En)) eSrad = (∑
n

e
−En
TH ) eSbh(M)eSrad . (16)

With cnina being complex numbers, their phases are uniformly distributed and the variance of cnina

is comparable to the average of ∣cnina∣. Furthermore, because of the fast scrambling nature of the

dynamics [5,6], these configurations are reached quickly. The standard thermal nature of the black

hole is then obtained upon tracing out the soft modes:

Trsoft∣Ψ(M)⟩⟨Ψ(M)∣ = 1

∑m e
−Em
TH

∑
n

e
−En
TH ∣{nα}⟩⟨{nα}∣⊗ ρφ,n, (17)

where ρφ,n are reduced density matrices for the early radiation, whose n-dependence is small and

of order 1/
√
eSbh(M). Note that in order to obtain the correct Boltzmann factor, ∝ e−En/TH , it is

essential that the coefficients cnina take generic values across all low energy species, i.e. for n to

run over all low energy species [10].9

The form of the state in Eq. (11) with the statistic properties described above allows for the

following coarse-grained description of the dynamics of the hard modes. Given the state of the

8Recall that this dynamics cannot be described by a low energy theory. In fact, the internal dynamics near the
stretched horizon is expected to be nonlocal in the spatial directions along the horizon [5,6]. This nonlocality arises
presumably from gauge fixing performed to go to the unitary gauge description.

9Here, low energy species mean those below the local Hawking temperature. In particular, near the stretched
horizon they include all species below the string scale 1/ls.
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system at time t, Eq. (11), we can define a set of coarse-grained states each of which is entangled

with a specific hard mode state:

∥{nα}⟫∝
eSbh(M−En)

∑
in=1

eSrad

∑
a=1

cnina∣ψ
(n)
in

⟩∣φa⟩, (18)

where we have used the same label as the corresponding hard mode state to specify the coarse-

grained state, which we denote by the double ket symbol. Using Eq. (15), the squared norm of the

(non-normalized) state on the right-hand side of Eq. (18) is given by

eSbh(M−En)

∑
in=1

eSrad

∑
a=1

∣cnina∣2 =
e
−En
TH

(∑m e
−Em
TH )

[1 +O( 1√
eSbh(M−En)eSrad

)] (19)

for generic black hole and radiation microstates. Here, the second term in the square brackets

represents the size of statistical fluctuations over different microstates. The normalized coarse-

grained state ∥{nα}⟫ is thus given by

∥{nα}⟫ = e
En
2TH

√
∑
m

e
−Em
TH

eSbh(M−En)

∑
in=1

eSrad

∑
a=1

cnina∣ψ
(n)
in

⟩∣φa⟩, (20)

up to a fractional correction of order e−(Sbh(M−En)+Srad)/2 ∼ e−Stot/2 in the overall normalization.

With this coarse graining, the state of the system in Eq. (11) can be written as

∥Ψ(M)⟫ = 1√
∑m e

−Em
TH

∑
n

e
− En

2TH ∣{nα}⟩∥{nα}⟫ (21)

regardless of the values of cnina, which takes the form of the standard thermofield double state of

the two-sided black hole [70,71]. We can therefore build the effective theory describing the interior

on this state, as described in Refs. [9–11] and will be discussed further in Section 4. Note that in

order to obtain the correct Boltzmann-weight coefficients, ∝ e−En/2TH , it is crucial that the hard

and soft modes are well scrambled, so that cnina take values statistically independent of n. This

construction, therefore, works only for a black hole stretched horizon, which does not have a low

energy structure. A regular material surface does not admit an analogous construction because of

the lack of this universality and hence does not have near empty interior spacetime. The coarse

graining described here is the origin of the apparent uniqueness of the infalling vacuum, despite

the existence of exponentially many black hole microstates.

We stress that the meaning of the coarse graining here is that a single state ∥{nα}⟫ in the

semiclassical, effective theory—the left-hand side of Eq. (20)—corresponds to multiple different

microstates—the right-hand side of Eq. (20)—that depend on the state of the black hole and

radiation represented by the coefficients cnina. This introduces a statistical nature in the description

of the interior spacetime, despite the fact that the microscopic theory is a single unitary theory

that does not have any ensemble aspect at the fundamental level.
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3 Ensemble from Coarse Graining

In this section, we will see how the unitary gauge construction of the previous section can elucidate

the origin of the ensemble nature of the gravitational path integral encountered in the global

gauge construction. In discussing this, we will ignore the existence of hard modes and the energy

constraint imposed on the hard and soft mode system, mainly because the analysis of Ref. [18],

which we will discuss here, does not consider these elements.

As we have seen in the previous section, the separation between the hard and soft modes as

well as the energy constraint imposed on them are vital in understanding the emergence of the

interior. These are, however, not critical in seeing physics associated with unitarity (and hence

one could get the correct Page curve without taking these elements into account, as was the case

in recent studies). One way to see this is to perform the Schmidt decomposition in the space of

soft-mode and radiation states for each n in the state of Eq. (11):

∣Ψ(M)⟩ =∑
n

Nn
∑
in=1

cnin ∣Hn⟩∣Sn,in⟩∣Rn,in⟩, (22)

where ∣Hn⟩, ∣Sn,in⟩, and ∣Rn,in⟩ represent the states of the hard modes, soft modes, and radiation,

respectively, and

Nn = min{eSbh(M−En), eSrad}. (23)

We see that the entanglement necessary for interior spacetime has to do with the index n, while

that responsible for unitarity has to do with the summations of indices in. In fact, after the Page

time (when the unitarity becomes an issue), Nn is given by eSbh(M−En), so that the entanglement

between the black hole and radiation comes mostly from the vacuum index i0 shared between the

soft-mode and radiation states. In particular, hard modes play only a minor role.

This justifies our neglect of hard modes in the discussion in this section. We will only reinstate

them and the energy constraint in the next section, when we discuss reconstruction of the interior.

3.1 Ensemble in the global gauge construction

In Ref. [18], some of the gravitational path integrals are calculated at the nonperturbative level for

a simple model of an evaporating black hole. The authors considered an entangled state between

the black hole (soft mode) microstates and early radiation

∣Ψ⟩ = 1√
K

K
∑
I=1

∣ψI⟩∣I⟩ (24)

and computed the trace of powers of the reduced density matrix ρR of the radiation, which is the

same as that of the reduced density matrix ρ of the black hole. Here, ∣ψI⟩ and ∣I⟩ (I = 1,⋯,K) are

12



an a priori complete set of black hole microstates and the states of the radiation entangled with

them. The result they obtained is

Tr(ρN) ≈
⎧⎪⎪⎨⎪⎪⎩

1
KN−1 for K≪ eSbh

1
e(N−1)Sbh

for K≫ eSbh ,
(25)

where Sbh is the coarse-grained entropy of the black hole.

A puzzling feature of this result is that while the K black hole microstates satisfy

⟨ψI ∣ψJ⟩ = δIJ (26)

by construction, Eq. (25) implies

∣⟨ψI ∣ψJ⟩∣2 = δIJ +O(e−Sbh) (27)

because

Tr(ρ2) = 1

K2

K
∑
I,J=1

∣⟨ψI ∣ψJ⟩∣2. (28)

If taken literally, the two equations (26) and (27) are incompatible. Reference [18] suggested that

this apparent contradiction might arise because the “true” quantum amplitude is, in fact, given

by

⟨ψI ∣ψJ⟩ = δIJ +O(eSbh/2)RIJ , (29)

where RIJ is a random variable with mean zero, while the gravitational path integral computes

some type of average over RIJ so that

⟨ψI ∣ψJ⟩ = δIJ , ∣⟨ψI ∣ψJ⟩∣2 = δIJ +O(e−Sbh). (30)

If Eqs. (26, 27) are interpreted to mean Eq. (30), then there is no real inconsistency.

The idea that the gravitational path integral may in fact be computing some coarse-grained

version of quantities, averaged over some microscopic information, has attracted much attention

recently [58, 72–86]. But if so, what kind of average is it taking and over what ensemble? The

(1 + 1)-dimensional gravity theory studied in Ref. [18] is indeed known to be dual to an ensemble

of 1-dimensional quantum theories [87–89], but the concept that the dual of a gravitational theory

be an ensemble of theories seems to be at odds with what is known for such dualities in higher

dimensions [13]. Below, we see that the statistical nature of the path integral found in Ref. [18]

can arise from coarse graining [9–11] needed to erect an effective theory of the interior.
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3.2 Interpretation in the unitary gauge construction

Let us take the unitary gauge construction. Consider microstates of the form of Eq. (11), in which

the black hole is put in the semiclassical vacuum. As we have seen in Section 2.2, coarse-grained

states of the soft modes and early radiation corresponding to states in the effective second exterior

are given by Eq. (18). For our purpose, it is sufficient to focus on the vacuum microstates, i.e. the

states in which the hard modes are not excited: ∀α,nα = 0.10 These states are given by

∥Ω⟫ =
√
z
eSbh(M)

∑
i=1

eSrad

∑
a=1

cia∣ψi⟩∣φa⟩, (31)

where we have denoted {∀α,nα = 0} by Ω and dropped the specification of Ω in the index i, soft

mode states ∣ψi⟩, and coefficients cia; z = ∑n e−En/TH is a factor associated with the normalization.

Different microstates correspond to different values of the coefficients cia. We introduce the index

A to specify the microstate so that

∣Ω⟩A =
√
z
eSbh

∑
i=1

eSrad

∑
a=1

cAia∣ψi⟩∣φa⟩. (32)

Here and below, we drop the argument M of Sbh.

We now show that the ensemble of soft mode (black hole) microstates defined by the collection

of randomly selected states ∣ψ⟩I (I = 1,⋯,K)

∣ψ⟩I =
eSbh

∑
i=1

dIi ∣ψi⟩,
eSbh

∑
i=1

∣dIi ∣2 = 1 (33)

has precisely the feature in Eq. (30), and the reduced density matrices obtained from the en-

semble in Eq. (32) reproduces the result in Eq. (25). This implies that, while the unitary gauge

construction cannot see possible null states that have already been projected out in going to the

construction, the ensemble remaining in it is still able to explain the puzzling feature of the gravita-

tional path integral described in Section 3.1. Specifically, the ensemble nature of the gravitational

path integral arises from the fact that the exponentially dense spectrum of microstates caused

by a large redshift makes the semiclassical path integral unable to resolve these microstates. In

particular, the phenomenon does not require an ensemble of different quantum theories.

We first note that the ensemble in Eq. (33) practically contains the double exponential number

Nbh,eff of “independent” states

Nbh,eff ≈ eeSbh ≫ eSbh . (34)

10The argument below, however, also applies to the collection of microstates in which the hard modes take an
excited configuration.
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To see this, one can compute an inner product of different microstates

I⟨ψ∣ψ⟩J =
eSbh

∑
i=1

dI∗i d
J
i . (35)

Since we statistically expect that ∣dIi ∣ ∼ 1/
√
eSbh with dIi having random phases, it is exponentially

suppressed for I ≠ J

I⟨ψ∣ψ⟩J ≈ O( 1√
eSbh

). (36)

This is the case even if ∣ψ⟩I and ∣ψ⟩J are not orthogonal, unless ∣(dIi − dJi )/dIi ∣ ≪ 1 for the majority

of i (which requires a double exponential coincidence). Moreover, when we average Eq. (35) over

the space of microstates using the Haar measure, we get

I⟨ψ∣ψ⟩J = ∫ dU U(I)⟨ψ∣ψ⟩U(J) = ∫ dU
eSbh

∑
i=1

d
U(I)∗
i d

U(J)
i = 0 (37)

if I ≠ J (barring a possible double exponentially suppressed coincidence). Here, U(I) represents

the state obtained by acting a unitary rotation U on the state I in the space of microstates of

dimension eSbh . Therefore, if the gravitational path integral is indeed computing the average over

the space of microstates, it is meaningful to consider “independent” (overcomplete) microstates

∣ψ⟩I (I = 1,⋯,K) with K≫ eSbh , as was done in Ref. [18].

The computation of the second quantity in Eq. (30) goes similarly. We obtain

∣⟨ψI ∣ψJ⟩∣2 = ∫ dU
eSbh

∑
i,j=1

d
U(I)∗
i d

U(J)
i d

U(J)∗
j d

U(I)
j = δIJ +O(e−Sbh). (38)

We thus find that the feature in Eq. (30) is reproduced by the ensemble of black hole microstates

in Eq. (33).

Let us now consider microstates of the black hole and radiation system given in Eq. (32).

Remember that we are ignoring hard mode excitations, so the states in Eq. (32) with the hard

mode vacuum attached (which we omit here) are the appropriate microstates for the system. For

each microstate A, the reduced density matrix of the black hole is given by

ρA = Trrad∣Ω⟩AA⟨Ω∣ = z
eSbh

∑
i,j=1

eSrad

∑
a=1

cAiac
A∗
ja ∣ψi⟩⟨ψj ∣. (39)

Thus,

Tr(ρNA ) = zN
eSbh

∑
i1,⋯,iN

eSrad

∑
a1,⋯,aN

cAiNa1c
A∗
i1a1c

A
i1a2c

A∗
i2a2 ⋯ cAiN−1aN

cA∗iNaN . (40)

Note the staggered structure for the summations of i and a indices.
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To evaluate this, we can consider ρA as a matrix in the (i, j) space

(ρA)ij ≡ z
eSrad

∑
a=1

cAiac
A∗
ja , (41)

which is an eSbh × eSbh Hermitian matrix of

rank (ρA)ij = min{eSbh , eSrad}. (42)

Using the statistical properties of the coefficients cAia discussed around Eqs. (15, 16), we find that

this matrix has the following elements after diagonalization:

(ρA)ii ≈ O( 1

eSrad
) > 0 (i = 1,⋯, eSrad) (43)

for Srad < Sbh, and

(ρA)ii =
1

eSbh
(1 + δi) (i = 1,⋯, eSbh) (44)

for Srad > Sbh. Here,

δi ∈ R, ∣δi∣ ∼
1√
eSrad

, (45)

and the signs of δi are random. We thus obtain

Tr(ρN) = ∫ dV Tr (ρNV (A)) ≈
⎧⎪⎪⎨⎪⎪⎩

1
e(N−1)Srad

for eSrad ≪ eSbh

1
e(N−1)Sbh

for eSrad ≫ eSbh ,
(46)

where V represents unitaries acting on the space of microstates of dimension eSbh+Srad .

To connect this with the analysis of Ref. [18], we note that the soft mode states entangled with

different radiation states ∣φa⟩, i.e.

∣ψa⟩A ≡ 1

∑e
Sbh

j=1 ∣cAia∣2
eSbh

∑
i=1

cAia∣ψi⟩ (a = 1,⋯, eSrad) (47)

can all be regarded as independent even if eSrad > eSbh , as discussed above (unless eSrad is double ex-

ponentially large, eSrad ≳ eeSbh ). This implies that the number of terms in the maximally entangled

state of Ref. [18] should be identified as eSrad :

K ≈ eSrad (48)

regardless of the relative size between eSrad and eSbh . The expression in Eq. (46) can then be

written as

Tr(ρN) ≈
⎧⎪⎪⎨⎪⎪⎩

1
K(N−1) for K≪ eSbh

1
e(N−1)Sbh

for K≫ eSbh ,
(49)
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reproducing Eq. (25).

We emphasize that the result here is obtained in a single unitary theory without invoking

an ensemble over different Hamiltonians at the fundamental level. The semiclassical gravitational

path integral simply cannot resolve exponentially degenerate black hole microstates and hence gives

results corresponding to the average over these states. This implies that while the semiclassical

gravitational path integral cannot probe details of each microstate, it knows it is dealing with a

collection of states. Indeed, this is consistent with the fact that the Bekenstein-Hawking entropy

can be read off using the Euclidean path integral method [90].

4 Reconstructing the Interior

In this section, we discuss reconstruction of the interior of an evaporating black hole. We first review

the description of Refs. [9–11] and see how the black hole interior emerges in the unitary gauge

construction without invoking time evolution as viewed from asymptotic infinity. We then study

how this picture is related with entanglement wedge reconstruction, in particular that involving

entanglement islands in the global spacetime picture [15–19]. We find that reconstruction is not

uniform throughout the entanglement wedge. In particular, the amount of information one can

reconstruct from a given radiation state depends on the spacetime position within the entanglement

wedge.

4.1 Effective theory of the interior: reconstruction without time evo-
lution

Suppose that the semiclassical vacuum state is given by Eq. (11) at time t. Here, t is the time

measured at asymptotic infinity, which we refer to as the boundary time. With the coarse graining

in Eq. (20), this state can be written as Eq. (21). The question of the interior is if there is a

description in which a small excitation falling into the black hole, represented by excitations of

hard modes in the zone, sees a smooth horizon and near empty spacetime inside it.

Such a description, if it exists, cannot be the one based on time evolution generated by the

boundary Hamiltonian. In that description, a small object falling into the black hole is absorbed

into the stretched horizon once it reaches there, whose information will be later sent back to

ambient space by Hawking emission. To describe the object’s experience, we need a different time

evolution operator associated with the proper time of the object.

A small object in the zone can be described by standard annihilation and creation operators
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acting on the hard modes

bγ =∑
n

√
nγ ∣{nα − δαγ}⟩⟨{nα}∣, (50)

b†γ =∑
n

√
nγ + 1 ∣{nα + δαγ}⟩⟨{nα}∣. (51)

We thus consider a future evolution of a state obtained by acting appropriately smoothed creation

operators b†γ on a vacuum microstate ∣Ψ(M)⟩. We are interested in a time evolution operator that

makes the object’s experience manifest.

At the coarse-grained level, we can define “mirror” operators [40]

b̃γ =∑
n

√
nγ ∥{nα − δαγ}⟫⟪{nα}∥, (52)

b̃†γ =∑
n

√
nγ + 1 ∥{nα + δαγ}⟫⟪{nα}∥, (53)

which can be used to form annihilation and creation operators for infalling modes:

aξ =∑
γ

(αξγbγ + βξγb†γ + ζξγ b̃γ + ηξγ b̃†γ), (54)

a†
ξ =∑

γ

(β∗ξγbγ + α∗ξγb†γ + η∗ξγ b̃γ + ζ∗ξγ b̃†γ), (55)

where bγ and b†γ are the operators in Eqs. (50, 51), ξ is the label in which the frequency ω with

respect to t is traded with the frequency Ω associated with the infalling time, and αξγ, βξγ, ζξγ,

and ηξγ are the Bogoliubov coefficients calculable using the standard field theory method [70, 71].

The generator of the time evolution we are looking for would then be given by

H =∑
ξ

Ωa†
ξaξ +Hint(aξ, a†

ξ). (56)

The question is if we can find microscopic operators that realize this and have appropriate prop-

erties to play the role of quantum operators in a semiclassical theory.

This was studied in Ref. [11], in which such operators were given. The simplest possibility is

to use Eq. (20) in Eqs. (52, 53) to get

b̃γ = z ∑
n

√
nγ e

En−+En
2TH

eSbh(M−En− )

∑
in−=1

eSbh(M−En)

∑
jn=1

eSrad

∑
a=1

eSrad

∑
b=1

cn−in−ac
∗
njnb

∣ψ(n−)
in−

⟩∣φa⟩⟨ψ(n)
jn

∣⟨φb∣, (57)

b̃†γ = z ∑
n

√
nγ + 1 e

En++En
2TH

eSbh(M−En+ )

∑
in+=1

eSbh(M−En)

∑
jn=1

eSrad

∑
a=1

eSrad

∑
b=1

cn+in+ac
∗
njnb

∣ψ(n+)
in+

⟩∣φa⟩⟨ψ(n)
jn

∣⟨φb∣, (58)

where z = ∑m e−Em/TH , n± ≡ {nα±δαγ}, and En± are the energies of the hard mode states ∣{nα±δαγ}⟩
as measured in the asymptotic region. Since b̃†γ decreases the energy, this “intermediate” operator
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can be defined only state dependently [38]. However, because of the restriction to the hard modes,

the final, physically relevant operators—appropriately smoothed bγ, b
†
γ, aξ, and a†

ξ operators in the

physical region—can be promoted to global, state-independent (linear) operators acting throughout

the space of microstates [11] as in Eq. (9);11 for example, following Eq. (9)

a†
ξ =

eSbh(M)+Srad

∑
A=1

aA†
ξ , (59)

where an appropriate smoothing is implied. Here, aA†
ξ is given by Eq. (55) with b̃γ and b̃†γ replaced

with b̃Aγ and b̃A†
γ , which are obtained by taking cnina’s in Eqs. (57, 58) to be those of a specific

microstate, cAnina, and A runs over a set of orthogonal microstates. Note that the operators in

Eqs. (57, 58) involve both soft mode and radiation degrees of freedom. This construction works

regardless of the age of the black hole, i.e. both before and after the Page time.

If the black hole is younger, i.e. before the Page time, one can use the Petz map to obtain

operators that act only on the soft modes

b̃γ = z eSrad∑
n

√
nγ e

En−+En
2TH

eSbh(M−En− )

∑
in−=1

eSbh(M−En)

∑
jn=1

eSrad

∑
a=1

cn−in−ac
∗
njna ∣ψ

(n−)
in−

⟩⟨ψ(n)
jn

∣, (60)

b̃†γ = z eSrad∑
n

√
nγ + 1 e

En++En
2TH

eSbh(M−En+ )

∑
in+=1

eSbh(M−En)

∑
jn=1

eSrad

∑
a=1

cn+in+ac
∗
njna ∣ψ

(n+)
in+

⟩⟨ψ(n)
jn

∣. (61)

We, however, cannot obtain analogous operators acting only on radiation [11].12

The existence of linear operators reproducing the correct semiclassical algebra throughout the

space of microstates (up to the intrinsic ambiguity of order e−Eexc/TH) implies that there is a sector

in the microscopic theory which encodes the experience of the object in near empty spacetime after

it crosses the horizon. This allows us to erect an effective theory of the interior at time t. Since the

effective theory is obtained by coarse-graining the region outside the zone (radiation), it describes

only a limited spacetime region: the causal domain of the union of the zone and its mirror region

on the spatial hypersurface at t in the effective two-sided geometry.

This limitation of the spacetime region solves the problem of an infinite volume. The maximal

interior volume one can consider is now that of hypersurfaces bounded by the codimension-2

surfaces given by the intersections of the horizon and future-directed light rays emitted from r = rz

and its mirror; see Fig. 2. Since the state of the black hole in the effective theory is given by the

11The non-injective nature of b̃†γ discussed in Ref. [38] leads to only exponentially suppressed effects in the
description based on the global linear operators.

12The Petz map was used in Ref. [18] to construct interior operators acting only on radiation. This was possible
because the analysis did not consider the energy constraint imposed on the black hole system, i.e. the hard and
soft modes. Indeed, if this constraint were not imposed, then the Petz map construction analogous to Eqs. (60, 61)
would work to give operators acting only on radiation after the Page time [11].
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Figure 2: Within the spacetime region described by the effect theory of the interior (diamond
at the center), the interior hypersurface having the maximal volume (Σ in red) is bounded by
the codimension-2 surfaces given by the intersections of the horizon and future-directed light rays
emitted from r = rz and its mirror. The volume of this hypersurface is finite.

thermofield double form at the time when the effective theory is erected—regardless of the age of

the original one-sided black hole—this volume is finite. For a black hole in (d + 1)-dimensional

flat spacetime, for example, it is given by Vmax ≈ O(rd+), where r+ is the horizon radius. The

amount of entropy of semiclassical matter one can place in this volume, without causing significant

backreaction to the geometry, is indeed much smaller than the Bekenstein-Hawking entropy of the

black hole. A similar statement also applies to a large AdS black hole, where Vmax ≈ O(rd−1
+ l) with

l being the AdS radius.

The fact that an effective theory represents only a limited spacetime region implies that the

picture of the whole interior, as described by general relativity, can be obtained only by using

multiple effective theories erected at different times. In the global gauge construction, this is

manifested in the fact that seemingly independent interior states are not actually independent, as

we have seen in Section 3.

4.2 Entanglement wedge reconstruction: reconstruction with time evo-
lution

There has been significant recent progress in understanding the interior of an evaporating black hole

in the global gauge construction [15–19]. The analyses employ either holographic entanglement
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wedge reconstruction [52–57], which builds on relations between bulk quantities and boundary

quantum entanglement [91–94], or Euclidean gravitational path integral including the effect of

replica wormholes [18, 19]. According to these analyses, operators acting on early radiation are

sufficient to reconstruct a portion of the black hole interior after the Page time. On the other

hand, we have seen that our construction of the effective theory must involve soft mode degrees

of freedom in addition to early radiation. How can the relation between the two approaches be

understood in the unitary gauge construction?

A key ingredient is the boundary time evolution. In general, entanglement wedge reconstruction

assumes that we know the time evolution operator of the boundary theory, in the models in AdS

spacetime discussed in Refs. [15–19] the Hamiltonian of a system consisting of boundary conformal

field theory and any auxiliary theory coupled to it. In addition, in these models it is assumed

that the information leaked from the boundary conformal field theory—representing the bulk

with a black hole—to the auxiliary system—a system storing Hawking radiation—is effectively

irreversible. These conditions allow us to reconstruct a portion of interior spacetime given the

state of radiation at some time after the Page time, using the boundary time evolution [11].

Let us discuss how this works in more detail. It uses the fact that given the complete knowledge

about radiation after the Page time tPage, the information that was fully scrambled into the black

hole can be recovered from it once the appropriate amount of quanta emitted after the scrambling

is added to it [5]. Suppose we want to reconstruct the interior using the state of radiation at time

t (> tPage). Suppose also that the state of the system at some time tw (tPage < tw < t) takes the form

of Eq. (11) with some hard modes corresponding to an infalling object being excited:

f({b†γ}) ∣Ψ(M)⟩ =∑
n

eSbh(M−En)

∑
in=1

eSrad

∑
a=1

dnina∣{nα}⟩∣ψ
(n)
in

⟩∣φa⟩, (62)

where the coefficients dnina are different from those of the vacuum because of the excitations,

{dnina} ≠ {cnina}, and f is a function specific to the object. Our interest is to reproduce the fate

of this object given the state of radiation at time t (> tw).

We split the hard modes at time tw into two classes: one that will (eventually) collide with

the stretched horizon and be scrambled into the soft modes and the other that will leave the zone

propagating into asymptotic space without being absorbed into the black hole.13 We label these

two classes of modes by indices β and γ, respectively

{α} = {β} + {γ}, (63)

and denote the occupation numbers of them by µβ and νγ:

{nα} = ({µβ},{νγ}) . (64)

13The first class includes the modes which are initially outgoing but will be reflected back due to the potential
barrier responsible for the graybody factor and absorbed into the stretched horizon.
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Note that the energies measured in the asymptotic region satisfy

En = Eµ +Eν , (65)

where n = {nα}, µ = {µβ}, and ν = {νγ}.

With this convention, the state in Eq. (62) can be written as

f({b†γ}) ∣Ψ(M)⟩ =∑
µ
∑
ν

eSbh(M−Eµ−Eν)

∑
i
(µ,ν)=1

eSrad

∑
a=1

dµν i
(µ,ν)a∣{µβ}⟩∣{νγ}⟩∣ψ

(µ,ν)
i
(µ,ν)

⟩∣φa⟩. (66)

We now take t − tw to be (sufficiently) larger than the scrambling time tscr [5, 6]:14

t − tw > tscr ≈
1

2πTH

lnSbh. (67)

The modes represented by β are then scrambled into the soft modes by the time t, which we

describe as follows.15 For each ν

∣{µβ}⟩∣ψ(µ,ν)
i
(µ,ν)

⟩ Ð→ U (ν)∣{µβ}⟩∣ψ(µ,ν)
i
(µ,ν)

⟩ ≡ ∣ψ(ν)
iν

⟩, (68)

where U (ν) is a unitary evolution operator, and the index iν depends on µ = {µβ} and i(µ,ν)

iν = iν(µ, i(µ,ν)). (69)

This evolution can indeed be unitary because the change of the coarse-grained entropy is

Sµ + Sbh(M −En) Ð→ Sbh(M −En +Eµ) ≈ Sbh(M −En) +
Eµ
TH

, (70)

so that the process increases the entropy as long as the Bekenstein bound, Sµ < Eµ/TH, is satisfied.

Some of the β modes scrambled into the soft modes are further emitted to the asymptotic space

as Hawking radiation, but we treat this separately later.

As we see in Appendix B, the scrambling time is always of the order of or larger than the signal

propagation time between the stretched horizon and the edge of the zone

tscr ≳ tsig. (71)

14More precisely, the explicit expression of the scrambling time in Eq. (67) is applicable to ingoing Eddington-
Finkelstein time: vscr ≈ (1/2πTH) lnSbh [15, 95]. The boundary scrambling time tscr is in general smaller: tscr ≈
vscr−tsig, where tsig is the signal propagation time between the stretched horizon and the location where information
is extracted, in this case the edge of the zone. We ignore this subtlety here, since the difference between vscr and
tscr is at most of O(1): 1 < vscr/tscr ≈ O(1).

15As we see in Appendix B, the scrambling time is always of the order of or larger than the signal propagation
time between the stretched horizon and the edge of the zone, so the modes reflected back by the potential barrier
are also scrambled by t > tw +O(tscr).
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Thus, by the time t, the modes represented by ν are all emitted as radiation. We describe this as

∣{νγ}⟩∣φa⟩ Ð→ V (ν,a)∣{νγ}⟩∣φa⟩ ≡ ∣φν,a⟩ (72)

for each (ν, a).
Substituting Eqs. (68) and (72) into Eq. (66), we find that the state (of the soft and far modes)

at time t becomes

∣Ψ⟩t ∼∑
ν
∑′

iν

eSrad

∑
a=1

dνiνa∣ψ
(ν)
iν

⟩∣φν,a⟩, (73)

up to effects discussed below. Note that iν is a function of µ and i(µ,ν), Eq. (69), so that the

summation over iν is, in fact, the summations over µ and i(µ,ν)

∑′

iν

=∑
µ

eSbh(M−Eµ−Eν)

∑
i
(µ,ν)=1

(74)

and we have defined dνiνa ≡ dµν i(µ,ν)a. The actual state at t contains hard modes at that time, which

were a part of soft or far modes at time tw. With the chaotic dynamics at the stretched horizon,

the population of these modes is dictated by thermality, and the state takes the standard form of

Eq. (11). Since the number of hard modes is much smaller than that of soft modes, however, the

effect of the appearance of these modes on the other sectors is minor, so we ignore it.

There is one important effect which we have not yet taken into account: conversion of soft

modes into radiation outside the zone through Hawking emission.16 This is the effect that allows

us to reconstruct the interior based only on radiation, through the Hayden-Preskill protocol [5].

Notice that the soft mode states ∣ψ(ν)
iν

⟩ and radiation states ∣φν,a⟩ in Eq. (73) contain the structure

needed to reconstruct µ and ν and the degrees of freedom entangled with them. In these states,

let us separate the degrees of freedom, Irec, needed for our reconstruction at t, and the rest, Ijunk.

The fact that the Hayden-Preskill protocol works implies that the emission process can be written

as

∑
ν
∑′

iν

eSrad

∑
a=1

dνiνa∣ψ
(ν)
iν

⟩∣φν,a⟩ Ð→ ∑
r
∑
j

∑
b

crbcjb∣ψj⟩∣φr,j,b⟩, (75)

where r and j are the indices for Irec and Ijunk, respectively, and b represents the radiation degrees

of freedom that are not directly associated with r or j. The point is that the degrees of freedom

represented by r are now fully contained in radiation states.

This allows us to reconstruct the interior region that can be described by the effective theory

erected at tw on radiation at time t. Specifically, denoting the unitary causing the evolution in

Eq. (75) by W , we can reproduce the effect of acting bγ on the state at tw by operators acting on

the state at t

Bγ =WV U bγ U
†V †W †, (76)

16This process occurs at the edge of the zone; see Refs. [9, 96].
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and likewise for b†γ: (Bγ, bγ) → (B†
γ, b

†
γ). Here, U and V are given by the unitaries in Eqs. (68, 72)

as U = ⊕νU (ν) and V = ⊕(ν,a)V (ν,a), where it is understood that U (ν) and V (ν,a) come with the

projection operators onto the states with the corresponding values of ν and (ν, a). Reflecting the

fact that Irec can be fully accessed in radiation states, Bγ and B†
γ operate only on the radiation

component when acted on a state at time t.

A similar construction also works for the infalling mode operators:

Aξ =WV U aξ U
†V †W †, (77)

and likewise for a†
ξ: (Aξ, aξ) → (A†

ξ, a
†
ξ). As discussed in Section 2.1, the Fock spaces obtained by

acting A†
ξ’s on different, orthogonal vacuum microstates are orthogonal up to the exponentially

suppressed ambiguity. We can therefore form global, approximately state-independent operators

as in Eq. (9):

Âξ =
eSbh+Srad

∑
A=1

A(A)
ξ PA, (78)

and similarly for Â†
ξ. Here, A runs over a set of orthogonal states that were vacuum microstates

at tw, and PA is the projection operator onto the Fock space built on A. The fact that complete

information about the black hole vacuum state is available in radiation after the Page time allows

us to take PA to act only on the radiation component. The global operators in Eq. (78) can thus

be defined within the space of radiation states at time t.

The construction described above works as long as t − tw is larger than a time of order the

scrambling time tscr; more precisely,

t − tw ≳ vscr − tsig ≡ t − tw,max. (79)

Here, vscr is the ingoing Eddington-Finkelstein time needed to recover the information after an

object hits the stretched horizon, while tsig is the boundary time it takes for a signal to propagate

from the stretched horizon to the location where the information is extracted (see Appendix B).

This implies that we can reconstruct the interior region that can be described by any effective

theory erected before tw,max, using operators that act on radiation at time t. This gives the

entanglement wedge of the radiation obtained in Refs. [15–17,95,97–106]; see Fig. 3.17

While the entanglement wedge represents the spacetime region one can reconstruct from the

radiation, the amount of information one can reconstruct, or the size of code subspace [108–110]

17Here, we have focused on the interior portion of the entanglement wedge. (We have also ignored possible
stretching inside the horizon.) Depending on the setup, e.g. how and where soft and hard modes are converted or
extracted to radiation, the entanglement wedge may contain an exterior region as in Refs. [97, 100, 105, 107]. This
can occur because the relevant far mode degrees of freedom may be able to represent hard mode operators there,
e.g. with the outgoing hard modes escaping the zone directly while ingoing hard modes first converted into soft
modes (at the stretched horizon) and then escaping.
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Figure 3: Operators (Aξ, Bγ) acted on radiation states at time t which have the same effect as
operators of the effective interior theory (aξ, bγ) erected at time t − tscr (or earlier). This implies
that one can reconstruct the entanglement wedge Erad from radiation states at time t. The blue
shaded region is the interior region relevant to an object that is in the zone at time t and falls into
the black hole. The red arrow indicates a light signal propagating from the stretched horizon to
the edge of the zone.

one can erect, is not uniform throughout the entanglement wedge.18 This feature inherits from the

use of the Hayden-Preskill protocol—and more fundamentally the boundary time evolution—in

the reconstruction. Because of the scrambling and quantum error correcting nature of the black

hole dynamics, one can arbitrarily choose which information Irec to reconstruct [5]. However, there

is an upper bound on the amount of information one can reconstruct, coming from the fact that in

order to reconstruct an object carrying entropy Sobj, one has to collect O(Sobj) Hawking quanta,

which takes a time of O(Sobj/TH). If Sobj ≳ lnSbh, this time is longer than the scrambling time tscr.

This implies that an object having entropy larger than O(lnSbh) can be reconstructed only if

it is located sufficiently in the past within the entanglement wedge. Or equivalently, to reconstruct

such an object which is absorbed by the stretched horizon at time t0, one needs to use radiation at

some time later than t0 +O(tscr). Specifically, to reconstruct an object carrying Sobj which enters

the stretched horizon at time t0, one needs to use the state of radiation at time t with

t − t0 ≳
⎧⎪⎪⎨⎪⎪⎩

1
2πTH

lnSbh for Sobj ≲ lnSbh

1
2πTH

Sobj for Sobj ≳ lnSbh.
(80)

18A similar issue was discussed in Refs. [15, 111] in a setup without the energy constraint.
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This structure is not visible if we only compute the location of the entanglement wedge by the

quantum extremization procedure.

As can be seen in the discussion above, there are certain drawbacks in the entanglement wedge

reconstruction using only radiation degrees of freedom. First, since the reconstruction involves time

evolution backward in time, the expressions for the bulk operators in terms of boundary operators

acting on radiation are highly complicated, and the reconstructed operators are extremely fragile;

i.e., a small deformation of the boundary operators destroys the success of the reconstruction.

Furthermore, since the reconstructed spacetime region is that described by effective theories erected

more than the scrambling time in the past, the reconstructed operators do not describe the interior

region that is relevant to the fate of an object located in the zone region at the time when the state

is given. In order to erect an effective theory that is capable of describing future evolution of such

an object, we need to use operators that act both on the soft modes and radiation as discussed in

Section 4.1.

5 Conclusions

The information problem of black holes boils down to the tension between the unitarity of the

evolution as viewed from a distance (e.g. the S-matrix) and the existence of near empty spacetime

inside the horizon. In this paper, we have promoted the idea that there are two complementary

descriptions of an evaporating black hole at the quantum level—the global gauge and unitary gauge

constructions—and that we can understand aspects that are mysterious in one description better

by using the other description.

In the global gauge construction, one begins with the global spacetime of general relativity, so

that the existence of interior spacetime is given. The challenge then is to understand the unitarity

of the evolution, as illustrated by the original, “naive” calculation by Hawking [24]. This issue

has recently been addressed successfully, at least in simple models of gravity in low dimensions,

by the discovery of new saddles in the gravitational path integral [18, 19]. Entanglement wedge

reconstruction was employed to understand which degrees of freedom carry information about the

interior [15–17]. We note, however, that entanglement wedge reconstruction does not explain how

the interior emerges; the existence of the interior is assumed. It simply says that if the interior exists

(and it does by construction), then the degrees of freedom whose entanglement wedge contains a

portion of the interior can be used to reconstruct it by the protocol of Ref. [5].

In the unitary gauge construction, one instead begins with a manifestly unitary description.

This description corresponds to the picture of a black hole as viewed from a distance. Since the

(stretched) horizon in this picture behaves as a physical membrane [3], there is no problem in

understanding unitarity; the only difference from a regular material surface in this respect is that
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we do not (yet) know the explicit microscopic dynamics of the surface. The fact that the stretched

horizon behaves as a material surface, however, brings the question of the interior [26]; what is

special about the stretched horizon, allowing an object to fall through it without even noticing it?

This issue was addressed in Refs. [9–11] by providing explicit constructions of operators that make

the fate of the fallen object manifest. Special dynamical properties of the horizon—maximally

chaotic, fast scrambling, and universal—are crucial for the success of the constructions, singling

out the stretched horizon. The constructed operators, which include the generator of infalling

time evolution, are linear throughout the space of microstates and satisfy the algebra of standard

quantum field theory in near empty spacetime, up to exponentially small ambiguities. It is therefore

plausible that the infalling object indeed experiences the smooth horizon.

The fact that the two, seemingly very different constructions lead to the same physical conclu-

sions implies that they are different descriptions of the same system. It is reasonable to expect that

this is a manifestation of enormous nonperturbative gauge redundancies of a gravitational theory

discussed in Refs. [12–14]. In this context, the appearance of a horizon seems to be indicative of

the situation where the nonperturbative redundancies play an important, leading role in under-

standing the correct physics. And as such, similar issues are also expected to arise in inflationary

cosmology [10,20,21]. It is interesting to understand the full implications of these nonperturbative

redundancies, which would indeed have a fundamental importance in quantum cosmology.
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A Stretched Horizon and Soft Modes

In this appendix, we show that

• The stretched horizon—the location at which the classical description of spacetime breaks

down—can be defined either as a surface on which the local Hawking temperature becomes

the inverse string length or a surface whose proper distance from the mathematical horizon

is the string length; and these two definitions agree.

• The mass and entropy of a black hole can be viewed as being carried by the soft modes—modes

whose frequencies are of order the local Hawking temperature or smaller.
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We focus on a spherically symmetric black hole in d + 1 dimensions (d ≥ 3) which is not near

extremal.

The metric is given by

ds2 = −f(r)dt2 + 1

f(r)dr
2 + r2dΩ2

d−1. (81)

The mathematical (outer) horizon, r = r+, is then given by the largest real positive root of f(r):

f(r+) = 0. (82)

The temperature and entropy of the black hole are given by

TH = f
′(r+)
4π

(83)

and

Sbh =
rd−1
+

4GN

vol(Ωd−1), (84)

respectively, where GN is the Newton constant, and vol(Ωd−1) = 2πd/2/Γ(d/2) is the volume of the

(d − 1)-dimensional unit sphere. The local temperature is defined as

Tloc(r) = TH√
f(r)

= f ′(r+)
4π

√
f(r)

. (85)

A.1 Stretched horizon

We can define the stretched horizon, r = rs, using the condition on the local temperature:

Tloc(rs) ≈
1

2πls
, (86)

where ls is the string length. By writing rs = r+ + δr, we obtain

Tloc(r+ + δr) = 1

4π

f ′(r+)√
f(r+ + δr)

= 1

4π

√
f ′(r+)
δr

(87)

at the leading order in δr, so that

δr ≡ rs − r+ ≈ f ′(r+) l2s
4

. (88)

Alternatively, we may define the stretched horizon as a surface which is a string length away

from the mathematical horizon:

∫
rs

r+

dr√
f(r)

≈ ls. (89)

In this case, the leading order expansion gives

∫
rs

r+

dr√
f(r)

= ∫
r++δr

r+

dr√
f ′(r) (r − r+)

= 2
√
δr√

f ′(r+)
. (90)

This again leads to Eq. (88).
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A.2 Soft modes as black hole microstates

Let us integrate the entropy and local energy densities of the soft modes from the stretched horizon,

r = rs, to the edge of the black hole region, r = rz. This gives

S ∼ N ∫
rz

rs
Tloc(r)d

rd−1dr√
f(r)

∼ N T dH r
d−1
+

f ′(r+)
d+1
2 δr

d−1
2

∼ Nr
d−1
+

ld−1
s

∼ r
d−1
+
GN

, (91)

E ∼ N ∫
rz

rs
Tloc(r)d+1 r

d−1dr√
f(r)

∼ N T d+1
H rd−1

+

f ′(r+)
d+2
2 δr

d
2

∼ TH rd−1
+

GN

√
f ′(r+)δr

∼ M√
−gtt(rs)

, (92)

where we have assumed that the integrals are dominated at r = rs (which is justified for a realistic

black hole) and used Eqs. (83) and (88); N is the number of low energy species below the string

scale, which satisfies the relation
ld−1
s

N
∼ GN, (93)

and M in the last expression in Eq. (92) is the mass of the black hole.

The location of the edge of the zone, r = rz, is determined by analyzing the effective potential

V`(r) appearing in the scalar equation of motion

[− d2

(dr∗)2
+ V`(r) − ω2]χωLd = 0, (94)

where r∗ is the tortoise coordinate, dr∗ = dr/f(r), and χωLd are the modes of a scalar field ϕ

defined by

ϕ(t, r,Ω) = 1

r
d−1
2

∑
ω,Ld

χωLd(r)YLd(Ω) e−iωt. (95)

The explicit form of the potential is given by

V`(r) =
d − 1

2

f(r)2

r2
(rf

′(r)
f(r) + d − 3

2
) + `(` + d − 2)f(r)

r2
. (96)

This will be analyzed later to determine rz.

The results in Eqs. (91, 92) show that the entropy and energy carried by the soft modes correctly

reproduce, parametrically, the entropy and energy of the black hole, with the latter being measured

at the stretched horizon, where most of the soft modes reside. This allows us to view that the

entropy and energy of the black hole are indeed carried by the soft modes.

A.3 Examples

We now discuss explicit examples, applying the results so far. This elucidates some issues that

were not discussed explicitly, e.g. how we should choose the edge of the black hole region rz.
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The metric of (d + 1)-dimensional AdS Schwarzschild spacetime (d ≥ 3) is given by

f(r) = 1 − r
d−2
+
rd−2

+ r
2

l2
− rd+
l2rd−2

, (97)

where l is the AdS radius. The black hole mass is given by

M = (d − 1) (1 + r
2
+
l2

) rd−2
+

16πGN

vol(Ωd−1). (98)

The temperature and entropy of the black hole are given by

TH = d r
2
+ + (d − 2)l2

4πr+l2
, Sbh =

rd−1
+

4GN

vol(Ωd−1). (99)

A.3.1 Flat space (or small AdS) black hole

This case is obtained by taking the l/r →∞ limit, leading to

f(r) = 1 − r
d−2
+
rd−2

, M = (d − 1) rd−2
+

16πGN

vol(Ωd−1), (100)

TH = d − 2

4πr+
, Sbh =

rd−1
+

4GN

vol(Ωd−1). (101)

The stretched horizon is located at

rs − r+ ≈
d − 2

4

l2s
r+
. (102)

The effective potential in Eq. (96) has a peak around r− r+ ≈ O(r+), suggesting that we should

take rz near this peak:19

rz ≈ (d
2
)

1
d−2

r+. (103)

We can indeed view the surface r = rz as the boundary between the near black hole and asymp-

totically flat regions.

A.3.2 Large AdS black hole

For a large AdS black hole r+ ≫ l,

f(r) = r
2

l2
− rd+
l2rd−2

, M = (d − 1) rd+
16πGNl2

vol(Ωd−1), (104)

TH = d r+
4πl2

, Sbh =
rd−1
+

4GN

vol(Ωd−1). (105)

19We can define the zone radius rz precisely as the radius satisfying lim`→∞ V ′
` (rz) = 0 and lim`→∞ V ′′

` (rz) < 0,
although the precise value of rz is not important anyway.
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The stretched horizon is at

rs − r+ ≈
d

4

r+l2s
l2
. (106)

In this case, the effective potential in Eq. (96) monotonically increases with r, so we can take

rz ≈∞. (107)

In fact, the integrals in Eqs. (91, 92) converge with rz → ∞ because of the AdS nature. We can,

therefore, view the entire AdS system as the near black hole region. This is consistent with the

fact that in order to make a large AdS black hole evaporate, we need to couple the AdS spacetime

with an auxiliary “bath” system, as in Refs. [15, 16,112].

B Scrambling Time vs Signal Propagation Time

In this appendix, we show that in all cases under consideration the scrambling time is larger, or

of the same order, compared with the signal propagation time.

B.1 General consideration

As in Appendix A, we consider a spherically symmetric black hole in d + 1 dimensions (d ≥ 3):

ds2 = −f(r)dt2 + 1

f(r)dr
2 + r2dΩ2

d−1. (108)

We also use the ingoing Eddington-Finkelstein coordinates, whose metric is

ds2 = −f(r)dv2 + 2dvdr + r2dΩ2
d−1, (109)

where

v = t + r∗, (110)

and r∗ is the tortoise coordinate defined by

dr∗ = dr

f(r) . (111)

We define the signal propagation time as the time it takes for a radially outgoing light ray to

propagate from the stretched horizon rs to the radius re at which information is extracted (in the

case of spontaneous Hawking emission, re is the edge of the zone rz). Here, rs and rz are defined

in Appendix A. We denote the signal propagation time in boundary time t by

tsig =∆r∗, (112)
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where ∆r∗ is the distance between rs and re in the tortoise coordinate. In ingoing Eddington-

Finkelstein time, this quantity is given by

vsig = tsig +∆r∗ = 2tsig. (113)

On the other hand, the calculation of the entanglement wedge of radiation gives us the scrambling

time vscr [15, 95]. This is the length of time in the ingoing Eddington-Finkelstein coordinates

between the time at which an object hits the stretched horizon and the earliest time at which its

information can be extracted at radius re. The corresponding quantity in boundary time is thus

tscr = vscr −∆r∗. (114)

From Eqs. (113, 114), we obtain the expression

tscr = vscr − vsig + tsig. (115)

Since tscr > 0, this leads to

vscr − vsig > −tsig. (116)

In this appendix, we demonstrate that the scrambling and signal propagation times satisfy stronger

inequality

vscr ≥ vsig, (117)

as expected from causality. We explicitly show this up to fractional corrections of order 1/(lnSbh).
Here, Sbh is the entropy of the black hole, and we assume lnSbh ≫ 1. Using Eqs. (113, 114), the

inequality can be translated into

tscr ≥ tsig. (118)

B.2 General analysis

Here we try to make as much progress as possible in a model independent manner.

B.2.1 Signal propagation time

The signal propagation time vsig in the Eddington-Finkelstein coordinates is given from Eq. (109)

as

vsig = 2∫
rz

rs

dr

f(r) . (119)

For a flat space or small AdS black hole, the integral in Eq. (119) is dominated by the near horizon

region and so we can approximate it as

vsig ≈ 2 ∫
re−r+

δr

dx

f ′(r+)x
= 1

2πTH

ln
re − r+
δr

≈ 1

2πTH

[ln
re − r+
l2sTH

+O(1)] . (120)
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For a large AdS black hole, where rz = ∞, the integral in Eq. (119) saturates above x ∼ r+ and

hence

vsig ≈
⎧⎪⎪⎨⎪⎪⎩

1
2πTH

ln re−r+
δr ≈ 1

2πTH
ln re−r+

l2sTH
for re − r+ ≲ r+

1
2πTH

ln r+
δr ≈ 1

2πTH
ln r+

l2sTH
for re − r+ ≳ r+

(121)

at the leading logarithmic level. Here, we have assumed l≫ ls.

B.2.2 Scrambling time

The scrambling time for a flat space (or small AdS) black hole was calculated in Ref. [15] under

the setup that Hawking radiation is extracted at some radius re in the zone using all the modes

available there. The resulting expression for the scrambling time is20

vscr =
1

2πTH

[ln
Sbh

cevap

+O(1)] . (122)

The coefficient cevap in Eq. (122) represents the number of available species when the system is

viewed in 2 dimensions through the Kaluza-Klein decomposition, which can be evaluated as

cevap ∼ Ne

`max

∑
`=0

`d−2 ∼ Ne`
d−1
max, (123)

where we have used the fact that the number of independent states with a fixed orbital quantum

number ` goes as `d−2 in d + 1 dimensions, and Ne is the number of species available at r = re in

the original (d + 1)-dimensional theory. The maximal value of ` in Eq. (123) is determined by the

condition that the energy cost of angular momentum is not larger than the Hawking temperature

in the original theory as

`max ∼ r+TH√
f(re)

∼
√

r2
+TH

re − r+
. (124)

The scrambling time for a large AdS black hole was computed in Ref. [95]. The expression

found there can be written in the form21

vscr =
1

2πTH

[ln
Sbh

cevap

+O(1)] (125)

for re − r+ ≲ r+. The scrambling time for re − r+ ≫ r+ was not calculated in Ref. [95], but we expect

that it is still given by the fundamental expression in Eq. (125) as long as there is an available

angular momentum mode, i.e. cevap/Ne ≳ O(1). (If this is not the case, our result below would

apply only to re − r+ ≲ r+.) For large values of re for which cevap/Ne ≲ O(1), the information

extraction occurs through freely propagating radiation, so we expect that vscr is constant there (at

the leading logarithmic level) because of the AdS nature of spacetime.

20Here and below, we assume that the spatial dimension d is not extremely large.
21We disagree with the statement in Ref. [95] that the leading term of vscr is not given by the logarithm of the

entropy of the horizon of the black hole. We find that it can still be written in the standard form in terms of the
temperature and the entropy of the entire horizon.
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B.3 Comparison

We now compare the scrambling time to the signal propagation time. All the expressions below

are given at the leading logarithmic level.

B.3.1 Flat space (small AdS) black hole

Consider a flat space (or small AdS) black hole. Properties of this black hole are given in Eqs. (100 –

103).

The signal propagation time and the scrambling time are given by Eqs. (120) and (122) as

vsig ≈ 1

2πTH

ln
re − r+
f ′(r+)l2s

≈ 2r+
d − 2

ln
r+(re − r+)

l2s
(126)

and

vscr ≈
1

2πTH

ln
Sbh

cevap

≈ (d − 1)r+
d − 2

ln
r+(re − r+)

l2s
, (127)

respectively. Taking the ratio, we obtain

vscr

vsig

≈ d − 1

2
. (128)

We indeed find vscr/vsig ≥ 1 for d ≥ 3.

B.3.2 Large AdS black hole

We now discuss a large AdS black hole. Properties of this black hole are given in Eqs. (104 – 107).

The signal propagation time is given by Eq. (121) as

vsig ≈
⎧⎪⎪⎨⎪⎪⎩

1
2πTH

ln re−r+
f ′(r+)l2s

≈ 2l2

d r+
ln (re−r+)l2

r+l2s
for re − r+ ≲ r+

1
2πTH

ln r+
f ′(r+)l2s

≈ 2l2

d r+
ln l2

l2s
for re ≳ r+.

(129)

The scrambling time is given by Eq. (125) with the consideration about the value of cevap/Ne:

vscr ≈
⎧⎪⎪⎨⎪⎪⎩

(d−1)l2
d r+

ln (re−r+)l2
r+l2s

for re ≲ r3
+

l2

(d−1)l2
d r+

ln r2
+

l2s
for re ≳ r3

+

l2 .
(130)

By taking the ratio, we obtain

vscr

vsig

≈

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

d−1
2 for re − r+ ≲ r+
d−1

2
ln[(re−r+)l2/r+l2s ]

ln(l2/l2s )
≳ d−1

2 for r+ ≲ re ≲ r3
+

l2

d−1
2

ln(r2
+
/l2s )

ln(l2/l2s )
≳ d−1

2 for re ≳ r3
+

l2 ,

(131)

and hence vscr/vsig ≥ 1 for d ≥ 3.
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