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Abstract

If neutrinos are their own antiparticles, then in the lepton sector the
effects of both CP conservation and CP violation are quite different from -
what they are in the quark sector. To the extent that CP is conserved,
the neutrinos are CP eigenstates possessing intrinsic CP parities. Conse-
quences of these parities are described. If CP is violated, then, for a given
number of generations, the leptonic weak interaction can contain more CP-
violating phases than can the quark weak interaction. Indeed, the leptonic
interaction can already contain a CP-violating phase when there are only
two generations. The origin of the additional leptonic CP-violating phases
is explained. Examples of CP-violating effects produced by these phases,
and the sizes of these effects, are discussed.
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I. INTRODUCTION

If neutrinos have non-zero rest masses, then we must understand why they are
so much lighter than the other fundamental fermions—the quarks and charged lep-
tons. One of the most appealing explanations of this fact, the “see-saw mechanism” !
suggests that neutrinos are Majorana particles; that is, fermions which are their
own antiparticles.?) If neutrinos are their own antiparticles, then there are major
consequences relating to CP, whether CP is conserved or not. Suppose it is con-
served. Then each Majorana neutrino of definite mass carries a quantum number,
its intrinsic CP-parity, which is not carried by a quark or charged lepton. As we
shall discuss, the presence of this quantum number has interesting implications
in a variety of processes. Now suppose CP is not conserved. Recall that in the
standard model, CP violation in the interactions of quarks is attributed to the
presence of complex phase factors in the quark mixing matrix. In a similar way,
CP violation in the interactions of leptons, although not yet observed, may be
attributed to complex phase factors in the lepton mixing matrix. However, if
neutrinos are their own antiparticles, then, for a given number of generations,
the lepton mixing matrix can contain more CP-violating phases than it could if
it were mixing fermions which are not their own antiparticles, such as quarks.
Indeed, the quark mixing matrix cannot contain any CP-violating phases at all
unless there are at least three generations,® but if neutrinos are Majorana par-
ticles, then the lepton mixing matrix can already contain a CP-violating phase
when there are only two generations. Hence, even if only two of the three known
lepton generations mix appreciably, there can still be sizeable CP-violating effects
in the leptonic sector.

In this article we shall examine both the CP-conserving and the CP-violating
. situations. In order to focus on the main points of physics, we shall for the most
part discuss only the simplest possible lepton mixing—that involving two gener-
ations. By considering several illustrative physical processes, we shall show how
the Majorana character of neutrinos affects the CP-related behavior of reactions.
In the course of doing this, we shall try to make very clear why the two-generation
quark mixing matrix cannot lead to any CP-violating effects, but, if neutrinos are
Majorana particles, the equally-small two-generation lepton mixing matrix can.
Examples of the resulting CP-violating phenomena will be discussed.



II. CP-PROPERTIES OF MAJORANA NEUTRINOS WHEN CP IS CONSERVED

A Majorana neutrino is its own antiparticle in the sense that it is its own CPT
mirror-image.?) If CP violation may be neglected, as we shall assume in this sec-
tion, then a Majorana neutrino is also its own CP mirror-image. More precisely,
if |v(p, h)) is a Majorana neutrino with momentum p and helicity A, then

CP|v(B,h)) = 7|v(—p,—h)). (1)

Here, the reversal of p'and 4 is due to the parity operator in CP, and 7j is a phase
factor which represents the intrinsic CP-parity of the neutrino v. Differ:ent neutri-
nos can have different values of 7, but, interestingly enough, the possible values of
this quantum number are not +1 and -1, but +i and -i. An easy way to see this is
to consider the decay of the neutral weak boson into a pair of identical Majorana
neutrinos: Z° — vv. In the standard model, this decay conserves CP. To find the
consequences of this conservation, it suffices to suppose that the outgoing neutri-
nos are nonrelativistic. Since their state clearly must be antisymmetric, it must
be a 3P, state, this being the only nonrelativistic, antisymmetric state with total
angular momentum equal to the spin of the Z°. Now, from Eq. (1) it follows that
if the intrinsic CP-parity of v is 7, then our vv final state, with orbital angular
momentum L = 1, obeys |

CPqu; 3P1> = ﬁz(—l)l‘luu; 3P1>
= -7 |uu; 3P1> . (2)

Hence, since the. Z° has CP= +1, conservation of CP in Z° — vv requires that
—712 = +1. Thus, the permissible values of the intrinsic CP-parity of a Majorana

neutrino are®

i = =i. 3)
Examples of the role played by this quantity in physical processes will be given in
Sections V-VII. '

Quite apart from the phase factor 7, the fact that a Majorana neutrino is
an eigenstate of CP in the CP-conserving case has physical consequences. For
example, suppose there is a very heavy Majorana “neutrino” N which has the
decay mode N — e~ + X, where X is some collection of hadrons. If the interac-
~tion Hamiltonian H is CP-invariant, and |V(s)) is an N at rest with z-axis spin
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projection s, then according to Eq. (1) the NV decay amplitude obeys

(™ (Ber he) X (s b HIN(5) )
= (&7 (B, he) X (7, ho)| (CP) " H(CP)IN(s) )| |
= [{e*(=Fer—he) X(=Fe—ha) HIN(s))| . (4)

Here we have denoted the momenta and helicities of the particles in X collectively
by p- and h., and I)-{ > = CP|X). We see that NV must also have the decay mode
N — e* + X. Indeed, summing over final momenta and helicities, we conclude
that® _ ;
[(N = et X)=T(N — e X). (5)

As a second example, consider the reaction e~ + et — vy + v,, where v, and
v, are two different heavy Majorana neutrinos, and we imagine that they can be
distinguished by their decay modes. If CP is conserved, then Eq. (1) implies that
in the e~e* c.m. frame, where p.~ = —p.+ = p, and p,, = —p., = ¢, the amplitude
for the reaction obeys

[(4(@ hadwa(=G R Tle™ (5 e (=5 )
= (=G ~h)a(@ = o) Tle* (=5, ~ho)e™ (5, —ha) )| ©)

Summing this relation over the final helicities and averaging it over the initial
ones, we see that the angular distribution of the outgoing neutrinos can have no
front-back asymmetry; as many v, particles must be produced with momentum
—{ as with momentum +¢.7

III. A GENERAL FRAMEWORK

In our discussions of specific physical processes, it will be useful to have a general
framework for the treatment of CP effects when neutrinos are Majorana particles.
This we develop in this section and the next. We assume that the weak interactions
are described by the standard model (in which neutrinos are massless) with a
purely-Majorana neutrino mass term added. The neutrinos are then massive,
Majorana particles, and there is just one of them per generation. If there are N
generations, the mass term is

N .
LM = - 2 (V?L)chf'u?'L + h.c.. (7)
1.f'=1



Here 19, = v0;,00;,... is a left-handed “flavor eigenstate” neutrino (we shall
distinguish between flavor and mass eigenstates by writing the former with a
superscript zero), and c¢ denotes charge conjugation. The matrix M (the mass
matrix) is symmetric, and can be diagonalized by a transformation of the form

UTMU =d. (8)

In this relation, d is a diagonal matrix whose diagonal elements are the real,
positive-definite neutrino masses, and U is a unitary matrix.

The leptons couple to the W boson through the left-handed charged weak

current
N

Ja = Zi fL'YaV?L- (9)
/=1

Here €3, = €2,42,... is a gauge or flavor eigenstate charged lepton. Neglecting
charged lepton mixing for simplicity, we may identify the flavor eigenstates Z‘} with
the familiar mass eigenstates ¢; = e, y4,.... Then, if we denote the neutrino mass
eigenstates by v, m = 1,..., N, it can be shown that the weak current may be

rewritten in terms of mass eigenstates as

N

Ja = Z ief—L'YanmeL- - (10)
fim=1

In this expression, U, which is called the lepton mixing matrix, is the same N x N
unitary matrix as appears in Eq. (8). '

Under charge conjugation, a Mé.jorana. field such as the neutrino field v,, goes

into itself apart from a phase factor:®)
C —T — )
v, =Cv,, = A\ Um. (11)

Here C is the charge conjugation matrix, and we shall refer to the phase factor
Am as the creation phase factor.”)

A Majorana neutrino field, like a quark field, may be redefined by multiplying
it by a phase factor. Notice, however, that Eq. (11) implies that under such
a multiplication, the creation ph&e factor associated with the Majorana field
changes. In particular, if v, satisfies Eq. (11) and v, = e~**my,,, then (V)¢ =
N° Y with |

A =e B (12)



Now, if the current of Eq. (10) is to remain unchanged when v,, is multiplied by
e~*m, then, for all f, Uy,, must at the same time be multiplied by e+i¢m. T hus,
when vy, is multiplied by a phase factor, the quantities :

Usm
wfms—U—;—Am, f=1,..., N, (13)

do not change. Moreover, since the “rephasing” £; — ¢} = e~*%1¢; of the charged
lepton field ¢, requires the simultaneous rephasing Usm — Uj},, = e™**/Uy,, of the

Uym for all m, it is clear that the quantities
Wem

Qe = ——; f,m,m'=1,..., N,
W fm? :

‘ (14)
are invariant under rephasing of either the neutrino or the charged lepton fields.
Therefore, physically-meaningful phases can depend on these quantities.

When CP is conserved, the Qmm have a very simple significance. To see what
that is, we note that the weak interaction Hamiltonian in which j, occurs is

N
H= % S WailiivaUsmvme + W iTmEvaUsmtse) - (15)

fim=1

Here g is a real coupling constant. Now, under CP,

Wil ¥aUsmVme — [ﬁ(W)ﬁ(ef)n(,\u'")] Wi ¥aUsmésL, (16)

where 7j(vm) is the CP-parity of v, defined by Eq. (1), and 7(W),#(¢,) are,
respectively, CP phases relating W~ to W+, and ¢; to ¢f. Comparing Egs. (15)
and (16), we see that if M is to be CP-invariant, we must have

. - a /] Vm :
U = Usn [0 L2 an
Now, while 7j(vn) is a physically-significant phase factor, (W), 7(€s), and A

may be chosen to suit our convenience (see Eq. (12), for example). If we choose

them so that SW(Ey) :
T = o), (18)

then, from Eq. (17), the CP-conserving U matrix will be real. This is very similar
to the familiar situation in the quark sector, where phases can be (and customarily
are) so chosen that the CP-conserving quark mixing matrix is real. Regardless

5



of how we choose the adjustable phase factors in Eq. (17), it follows from that
relation that when CP is conserved,

wrm = 1(W)i(€r)i(vm). (19)

Thus, when CP is conserved, Qsmm: is just the relative CP-parity of the two
neutrinos v, and v/ : ’

71(vm)
(V)
IV. THE NUMBER OF CP-VIOLATING PHASES, AND AN ILLUSTRATIVE
MATRIX

When the U matrix does not satisfy the constraint (17), it contains CP-violating

Qf'mm’ = (20)

parameters. How many such parameters can it contain?

Let us first recall the case of quarks. The NV -generatidn quark mixing matrix
V which is the analogue of the lepton matrix U appears in the current

N

Jo = Z id—i;7a‘/ijujL- (21)

1,J=1
Here d; = d,s,b,... runs over the negatively-charged quark mass eigenstates,
and u; = u,c,t,... runs over the positively-charged ones. Now, being N x N

and complex, V' can be fully specified by 2N? real numbers. However, since V
is unitary, these numbers are subject to N? unitarity constraints, so only N? of
them are independent. Furthermore, not all of these N? parameters are physically
significant, since Eq. (21) involves 2NV — 1 arbitrary relative phases between the
2N quark fields. If we change these phases, the phases of the V;; must change also
so that J, remains fixed. Thus, V contains N2 — (2N — 1) = (N —1)? physically-
meaningful parameters. Now, the quark analogue of Eq. (17) implies that when
CP is conserved, V can be taken to be real. Then it is an orthogonal matrix,
and can be specified by V2 real numbers subject to N + 1 N(V — 1) orthogonality
constraints, so that %N (N = 1) of them are independent. Thus, the number of
CP-violating parameters that V can contain is (N — 1)2, the total number of
significant parameters in the general case, minus %N (N =1), the number of such
parameters when CP is conserved. That is,?

{N umber of CP-violating parameters

1
in quark mixing matrix } = §(N -)N=-2). (22
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As is well known, in the convention where V is real when CP is conserved, the
CP-violating quantities in this matrix are complex phase factors. The resulting
complexity of V' can lead to complex relative phases between physical amplitudes
that interfere with each other. It is through these interferences that the CP-
violating phases in V' make their presence felt and produce observable CP-violating

effects.

Like the quark mixing matrix, the lepton mixing matrix U, being unitary,
can be specified by N? independent parameters. Of these, NV are not significant,
since U changes if we multiply any of the N charged lepton fields by a phase
factor. Thus, N(NV — 1) significant parameters remain. Of course, the Majorana
neutrino fields v, can also be multiplied by phase factors, as we have discussed.!©)
However, when such multiplications are performed, not only the Uy,, but also the
creation phase factors A, change. Now, as we illustrate in the following sections,
the A, sometimes appear in reaction amplitudes together with elements of U in
vm-rephasing-invariant quantities such as the wym or Qgmm of Eqs. (13) and (14).
Moreover, these invariant quantities have observable effects. Thus, while we are
indeed free to shift phase factors out of U by rephasing the v,,, any phase factors
that can be removed from U only through such rephasing are actually physically-
significant. Their removal from U does not eliminate them from the probleﬁ, but
merely transfers them to the creation phase factors \,,. Through their presence
in the Am, they still have physical consequences, which get transmitted through
Vm-rephasing-invariant quantities such as the wym.

With these circumstances in mind, let us now count the number of possible
CP-violating phases in the leptonic charged-current weak interaction. As we have
seen, the U matrix contains in general N(N — 1) significant parameters, allowing
for the fact that the charged lepton fields can be rephased. This number of
parameters is not further reduced by the possibility of rephasing the neutrino
fields because, as we have said, such rephasing only moves a significant phase
factor from U to the A,,. Now, if CP is conserved, we may choose the \,, so that
Eq. (18) is satisfied and U is real. Like the CP-conserving quark mixing matrix,
U then contains V(NN — 1) parameters. Thus, the number of CP-violating phases
in the leptonic weak interaction is N(/V — 1), the number of parameters in the



general case, minus ; V(N — 1), the number when CP is conserved. That is,!!)

{Number of CP-violating phases in lepton weak }

1
interaction if neutrinos are Majorana particles | — §N(N = 1. (23)

We see that if neutrinos are Majbra.na particles, then for a given number of
generations, the leptonic weak interaction can involve more CP-violating phases
than the quark weak interaction. A particularly striking example of this phe-
nomenon occurs when there are only two generations. When N = 2, Eq. (22)
shows that there can be absolutely no CP-violating phases in the quark sector,
but Eq. (23) indicates that there can be a CP-violating phase in the lepton sector.
An interesting way to express this state of affairs is to consider the sample 2 x 2

c se'
X= ( —se”% ¢ ) ’ (24)

where ¢ and s are the cosine and sine of some mixing angle §. What we have

unitary mixing matrix

learned is that if X mixes quarks, then the phase factor ¢* has no physical con-
sequences. However, if this same matrix mixes leptons, and neutrinos are their
own antiparticles, then the factor e leads in general to CP violation. Now, can
we see in some simple, concrete way why this is the case? Indeed we can, and by
considering several revealing reactions, we shall.}?)

V. NEUTRINO RADIATIVE DECAY

Assuming that there are just two generations, let us contrast the radiative decay
v2 — 11 + 7 of a heavy neutrino into a lighter one with the analogous decay
¢ — u + v of the charmed quark into the up quark. Both decays go through loop
diagrams. The loops for the quark decay are shown in Fig. 1. There are two, one
with an internal d quark, and the other with an s quark. If the quark mixing
matrix V is the matrix X of Eq. (24), then the combination of V matrix elements
Vi V3, to which the d diagram is proportional is cse?®, while that to which the
s diagram is proportional, V,.V,., is —cse. Thus, the phase factor ¢ in X is
common to the two diagrams, and disappears when their sum is équa.red. As
previously claimed, this factor has no physical consequences. This is, of course,
no accidental feature of the particular sample matrix X. As long as V is 2 x 2,
its unitarity requires that V,.V: = —Vd;V;u. Hence, the two diagrams in Fig. 1
are a.lwayé real relative to each other; their interference is completely insensitive

to any phase factors in V.



What changes when we gd to the neutrino decay? The two neutrino diagrams
which are the analogues of those in Fig. 1 are depicted together as the diagram
S- in Fig. 2. This diagram is present even if neutrinos are Dirac particles (i.e.,
not their own antiparticles). However, if they are Majorana parficles, then a new
diagram, with no analogue in the quark case, is also present. In this diagram,
labelled S, in Fig. 2, the incoming neutrino, “confused” about whether it is a
lepton or an antilepton, turns into an e* or u*, rather than an e~ or u~ as in
diagram S.. At each vertex in S, the term in the Hamiltonian (15) which acts
is the Hermitean conjugate of that which acts at the corresponding vertex in S_.
Thus, where Uym appears in S-, Uj,, appears in S,. Indeed, from Fig. 2 we see
that for a given charged lepton ¢;, the U matrix and creation phase factors impart
to 54 and S- a relative phase factor

(Un/Up)h

(Ur2/Ugr) A
This factor is nothing but the rephasing-invariant quantity Q/,; defined by Egs.
(13) and (14). When N = 2, this quantity is independent of f due to the unitarity
of U, so let us call it simply Q. If U is our sample matrix X,

(25)

Q= e-“‘%. (26)
2

Obviously, if 2 is complex, the interference between S, and S_ will reflect that
fact. Furthermore, Eq. (20) implies that when 2 is complex, the weak interactions
are CP-violating, and it is not hard to show that the converse is true as well. Thus,
when the interactions violate CP, there will be observable consequences arising
out of the Sy — S_ interference. To summarize: Reactions involving Majorana
neutrinos can have more diagrams than the corresponding reactions involving
quarks or Dirac neutrinos. With this greater number of diagrams comes a greater
number of interferences. Through their sensitivity to complex phase factors, the
additional interferences can lead to observable violations of CP that would not

occur in the Dirac case.!®

To what observable effect does a complex 2 lead, and how big is it? First,
from Lorentz invariance and conservation of the electromagnetic current JEM the
vy — v; + v amplitude must always have the form

Al =1 +9) = C:. <V1 |J5M| V2> = C;iﬁxﬂwqu(M + iE‘Ys)U'z- (27)
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Here ¢ is the polarization vector of the photon, g is its momentum, u, and u,
are, respectively, Dirac spinors for the initial and final neutrino, and M and E
are constants. Now, for a given {;, the diagram S_ gives to A(v; — v +v) a
contribution of the form (c¢f. Fig. 2)

., UpUs T (7s)ug, (28)

where I' ;{(‘75) is some combination of gamma matrices and coefficients, involving
vs. From Fig. 2, we see that S_ and S, together then yield®

A(va = i +9) = €01 3 UpUs, [Th(3s) = Q04 (=19) wa. ~ (29)
f

Here the minus sign in front of the S; contribution is due to the photon vertex.

Suppose CP is conserved. Then, from Eq. (20), @ = 7j(11)/7(v2). Thus,
comparing Eqgs. (29) and (27), we see that the decay amplitude will be of purely
electric dipole (o,.q,7s) structure if 14 and v, have the same CP-parity, and of
purely magnetic dipole (¢,,q,) structure if they have opposite CP-parity.14)

Now suppose CP is not conserved, so that  is complex. Then Eq. (29) shows
that, barring an accident (which does not occur as we shall see shortly), the de- |
cay amplitude is neither even nor odd in 4s. That is, both electric and magnetic
dipole terms are present. Furthermore, the simultaneous presence of these two
terms in Eq. (27) does have an observable consequence, although not in the pho-
ton polarization or angular distribution as one might have thought. To see this,
suppose that, in its rest frame, the parent v, is polarized with spin vector §. Let
the angle between the photon momentum ¢ and § be ©. The photon can be
linearly polarized with its electric field (parallel to &) either in the decay plane
formed by § and ¢, or else normal to this plane. The magnetic and electric dipble
amplitudes of Eq. (27) to produce these polarization states, when M or FE is
unity, are given in Table I. We see from this Table that the magnetic and electric
dipole terms have almost indistinguishable consequences. Either can produce a

10



Table I. Amplitudes for production of linearly polarized photons.
Common factors are omitted.

—_——— e
Decay amplitude
Photon n Magnetic Electric
electric field helicity | dipole term dipole term
+ —1COS -?- —1 cos %-
In plane
- —isin 2 isin £
+ cos % cos % '
Normal to plane
- —sin 2 sin

photon with electric field in the decay plane or normal to it. For either of these
polarization states, the photon angular distribution, summed over v, helicity, is
isotropic whether the decay is induced by the magnetic or the electric dipole term.
Now, in principle, a linear combination of magnetic and electric dipole terms could
distinguish itself from either term alone by leading to a non-isotropic distribution
for linearly-polarized photons. However, it turns out that the particular linear
combination which results from the standard model does not do this. It has
been shown'*'%) that this model (including now the contributions from its Higgs
doublet) gives for the quantity I'{(+s) in Egs. (28) and (29)

F{;(‘YS) = F(rf)auVQU[M2(l - ¥s) + Ml‘(l + 75)]- (30)

Here M; and M, are, respectively, the masses of v; and 1, and, in practice,
F(ry) = M}I if we disregard irrelevant overall constants. From Egs. (30) and (29),
we find that the rate I' for decay into photons of polarization € and momentum ¢,

summed over v, helicity, is given by

_iet 14 (MY _ oM ex
=G| (1+(M2) 257 Re Q) (1+iEx & -3) (31)
Here ' "
IGP = Y UnUnhF(ry) (32)
f=12

~ and we are again omitting irrelevant overall factors. Note that |G| does not
depend on the phases in U, due to the unitarity of the latter.

11



We see from Eq. (31) that neither the photon angular distribution nor its polar-
ization depends on the CP-violating phase Q. For linearly-polarized photons (real
€), the angular distribution is isotropic, just as for a pure electric or pure magnetic
dipole amplitude. For circularly polarized photons, i€x e* -5 = (helicity) x -3, so
the distribution is not isotropic, but it does not depend on Q. However, Eq. (31)
shows that the most easily-measured quantity, the total decay rate, does depend

on . Its dependence, through the factor

_ Ml)’ M, o
rcp=1+(M2 257 Re e

can obviously be quite substantial, so long as M, /M, is not too small. For given
values of M), M-, and the mixing angle in U (which enters |G’|2), Ceot(va = v1+9)
has its maximum (minimum) value when CP is conserved and Q = 7j(1)/7i(v2) =
—1(+1). When CP is violated, Q is not real and the decay rate lies somewhere
between its extrema.

In the quark sector, a real mixing matrix implies that CP is conserved. With
Majorana neutrinos, there is no such implication in the lepton sector. If the
mixing matrix U in the leptonic interaction (15) is X, Eq. (24), and we rewrite
 the interaction in terms of the fields v} = €*v; and y’ = ey, then X gets replaced

x’=( € s). (34)
-8 C

However, as Eq. (33) emphasizes, the CP-violating effect in v, — v, + v depends

by the real matrix

on the rephasing invariant 2, given by Eq. (26), and not solely on the phase
factor €' in the mixing matrix. It is not necessary for the mixing matrix to be
complex in order for CP to be violated. Complexity of Q is enough. If we make a
complex mixing matrix real by rephasing the fields, then any CP-violating phase
information will simply be transmitted to 2 through the creation phase factors,
rather than through the mixing matrix.!6)

Can Q be far from real, so that I'cp is far from its CP-conserving values?
In approaching this question, we recall that in the quark sector, CP-violating
effects would be mass-suppressed if all quark masses were small. This is due to
the fact that CP violation depends on mixing, and mixing—a mismatch between
flavor eigenstates and mass eigenstates—requires that the fermions of a given
charge have distinguishable masses. In view of this and the fact that neutrinos

12
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are rather light, it is natural to suspect that CP violation in v, — v, +~ must be
infinitesimal. Fortunately, this suspicion is unfounded. To be sure, the v, — vy +v
decay rate is neutrino-mass suppressed. However, the ratio between this rate and
its CP-conserving values can be far from unity, no matter how light v, and 1,
are. Equation (33) showed that this ratio is quite sensitive to Q if M,/M, is not
tiny, and we now show that 2 can be far from real for arbitrarily light neutrinos.
To do this, we find the values of 2 that may result from the most general 2 x 2
Majorana neutrino mass matrix,

m ei’yl z i‘v: .
M=( ne " mae ) (35)

mze’*  moqet™

where m;;, ma3, and m, are real. A discussion of the mixing matrix which results
from diagonalizing this M has been given by Barroso and Maalampi.!”1® They

~ show that if one follows a diagonalization procedure which yields neutrino mass

eigenfields with A,, = 1, one obtains a mixing matrix which can be written in the
form of the matrix X, Eq. (24). Thus, this “sample” matrix can actually represent
the mixing and CP violation engendered by any 2 x 2 Majorana mass matrix. To
see whether CP violation is mass-suppressed, we have amplified the analysis of
Barroso and Maalampi to explicitly relate the parameters in X to those in the
corresponding M. With 3 and a defined by '

and
_ my — M2
tana = ——tan g, 37
my; + ma; 5 (37)
the mixing angle § in X is given by
tan20 = — 2z S8 (38)
M3 — My COS O
Further, with a; and a; defined by
24
myzsin @sin 2a
tanay = my; cos? @ — my, sin? 8 cos 2a (39)
and | 29 o
tan ag = my, sin 0 sin 2a (40)

myg cos? § — my, sin® @ cos 2a’
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the phase 6 in X is given by

an +02

b=a+ 5

(41)

Now, suppose that m;,,mq,, and m, are all proportional to some mass scale
w. Then the neutrino masses, the eigenvalues of M, are also proportional to w.
However, from Eqgs. (37) - (41) we see that if 3 may vary independently of m,;, my,
and m_, then the phase 6 will vary with 3 in a way which is completely independent
of w. Numerical examples verify that there is no unexpected cancellation in Eq.
(41); for suitable 3, § is very large, no matter how small M; and M, are. Now, in
the present parametrization the A\, = 1, so, from Eq. (26), Q = exp(—2i6). Hence,
2 can indeed be far from real, and consequently the decay rate for v; — v, + 7
can be far from its CP-conserving values, even if v; and vy are very light.

Pal and Wolfenstein have pointed out'? that if neutrinos have Majorana
masses, then the non-standard Higgs multiplets which produce these masses may
also lead to significant contributions to the process v, — v, + v, beyond those we
have considered. Naturally, it will not be possible to use the measured rate for
this process to learn about CP violation in the coupling of leptons to the W if
non-standard Higgs contributions to the rate are too large. Pal and Wolfenstein
considered a model in which these contributions completely dominate those of the
W, but expressed the hope that in more attractive theories of neutrino mass the
W contributions dominate.

VI. NEUTRINO PAIR PRODUCTION

Let us now consider further the reaction e~ + e* — v; + v, where v, and v, are
two distinct heavy neutrinos, and we imagine they can be distinguished through
their decays. If neutrinos are Dirac particles and lepton number is conserved, then
this reaction is really either e~ +e* — v, + 7, or else e~ +e* — U +v,. For either
of these processes, there is in lowest order only one diagram, a W exchange. Any
phases at the vertices of this diagram obviously disappear when the amplitude
is squared. Thus, there can be no CP violation coming from phases in the U
matrix, regardless of the number of generations. By contrast, if neutrinos are
Majorana particles, then the reaction is truly e~ + e* — v, + v, and it arises
from two W-exchange diagrams, shown in Fig. 3. The interference between these
two diagrams makes CP violation possible. From Fig. 3, we see that relative to

14



the diagram S),, the diagram S,; has a phase factor
UZhUaM
UaiUe2 A2 |
This is the same factor as that relating the diagrams S, and S. for vy — v; +~.

= Q2. (42)

When N = 2, it is just Q. Its phase will clearly influence the interference between
Sa1 and Sy2. Here, as in neutrino radiative decay, we see that when neutrinos
are Majorana particles, there can be more diagrams than when they are Dirac
particles, and correspondingly more interferences between diagrams. Through
these additional interferences, phase factors such as that in X, which would be of

i

no consequence in the Dirac case, can lead to physxca.l effects.

The relative phase factor (42) between Sz; and Sy is, of course, a Vm-rephasing-
invariant quantity involving the creation phase factors Am. One might wonder how
the A, would come to occur in this relative phase factor if we did not choose to
rewrite some of the vertex factors in Fig. 3 in terms of charge-conjugate fields.
The answer is that the A, appear in the plane wave expansions of the neutrino
fields,® and consequently will naturally appear in the Feynman amplitudes for
diagrams such as S3; and ;.

To what CP-violating effects can the relative phase between S,, and S, lead?
First, we note that if the energy is large compared to the masses of v; and v;,
then Sy3 is nonvanishing only if the final state is v1(=)vy(+), and Sz, only if it
is vy (+)va( —), where the signs in parentheses denote helicity. Hence, unless we
measure something fairly exotic, the diagrams do not interfere and there can be
no CP violation. Therefore, let us consider energies just above v v, ‘production
threshold.!?)

Suppose first that CP is conserved. If the electron mass is negligible at v,v,
threshold, then S;; and S2, are nonzero only when the initial state, in the c.m.
frame and the notation of Eq. (6), is |e~(p,—)e*(—p,+)). Now, this state is an
eigenstate of CP, and it is easy to see that its CP parity is +1. Note, for example,
that in this state the e~ and e* have the right momenta and helicities to annihilate
into a virtual photon, and the CP of the photon is +1. Turning to the final state,
we note that if this state has orbital angular momentum L, then it too is an
eigenstate of CP, with CP parity 7(v1)i(12)(=1)¢ (¢f. Eq. (2)). Hence, if CP is
conserved,

A(n)i(m)(—=1)* = +1. (43)

15



In applying this constraint, we must remember that the CP parities of Majorana
neutrinos are imaginary. Thus, near threshold the v, and v; will be produced in
a pure p wave if they have the same CP parity, and in a pure s wave if they have
opposite CP parity.

Now suppose that CP is not conserved. From the previous discussion, we
expect that v; and v, will then be produced in both s and p waves. To confirm this,

we have carried out the somewhat tedious but fairly straightforward calculation
of the nonrelativistic limit of the amplitude corresponding to S;; + S5;.2%) We find
that apart from irrelevant overall constants, this nonrelativistic limit is given to
first order in ¢, the c.m. momentum of the outgoing v;, by !

A(e' + €+ — v + V2) = Aa(]- - Qel?) + AP(I + Qel2), (44)

where
As = xxxdx + x18x - xiéx, (45)

and
G-q -q
Ap =~ [ 2M ——=xx}x +X22M xxtx
g .

+><12 M, Fx - x3Fx + x22 M, 35x - xlox] (46)

Here, x is the Pauli spinor for both the e~ and e* (which have opposite helicities
and so identical spins), and x; and x2 are, respectively, the spinors for v; and v,
whose masses are denoted by M, and M,. Since A, is independent of §, it obviously
corresponds to s-wave production, while A,, being linear in §, corresponds to P
wave production. Thus, Egs. (44) and (20) show that when CP is conserved,
the production is indeed pure p wave (s wave) if v; and v, have like (opposite)
CP parity. Furthermore, Eq. (44) confirms that if Q.,, is complex so that CP is
violated, there will be both s- and p-wave production.

If there are only two generationsv, Qe12 is just Q, Eq. (26), and we have already
seen that {2 can be far from +1. Thus, Eq. (44) can involve significant amounts of
both s and p wave. Consequently, the energy-dependence of the 1,1, production
cross section near threshold can differ appreciably from the pure s-wave or pure
p-wave behavior that corresponds to CP conservation.?!) Here, as in neutrino
radiative decay, we see that if neutrinos are Majorana particles, large CP-viola.tipg
effects can occur, even if there are only two generations.
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VII. DOUBLE BETA DECAY AND NEUTRINO OSCILLATION

If neutrinos are Majorana particles, neutrinoless nuclear double beta decay, the
process (A,Z) — (A,Z +2) + 2¢~, can arise from the sum of neutrino exchange
diagrams depicted in Fig. 4. (If neutrinos are Dirac particles and lepton number
is conserved, these diagrams vanish because the exchanged neutrino must then be
a v at the vertex where it is emitted, but a v at the one where it is absorbed.)
It is well-known that, assuming neutrinos are light, the diagram for exchange of
Vm is proportional to its mass M,, because of a chirality mismatch at the two
lepton vertices.??) Given this fact and the vertex factors shown in Fig. 4, we see
that the amplitude for neutrinoless double beta decay (300.) is proportional to

the effective neutrino mass

M.y =

S AU M,

Wem |Uem|* M
> u

. (47)

When CP is conserved, wem is proportional to 7j(vm) (see Eq. (19)), and M.,/
takes the form?3

Meff = . (48)

3 i(Vm) [Uem|* M

Note that the contributions of neutrinos with opposite CP parity interfere de-

structively in M,ss. Thus, the rate for 88, can be much smaller than one would

naively expect for given values of the masses M,,.%4)

In general, the relative phase factor relating two terms (say, the m and m’
terms) in M.sy is Just Wem /wem' = Qemms. When CP is violated, this phase factor
can be complex. As a result, the rate for 33y, can differ from what is allowed
for given values of the M,, and the |U.n|> when CP is conserved.?®) This effect
has been explored quantitatively.?® Note that it can already occur when M,;/,
contains only two terms; that is, when there are two generations.

Bilenky, Hosek, and Petcov!!) have shown that ordinary neutrino flavor oscil-
lation, vy — vy (f,f' = e,u,7,...), is completely insensitive to the extra CP-
violating phases which can occur in U when neutrinos are Majorana particles.?”
However, several authors®® have pointed out that “antineutrino-neutrino oscilla-
tion”, 7y — vy, i sensitive to these phases. In this type of oscillation, a neutrino
mass eigenstate v, is born in the reaction é"}' +n — vm+p, travels down a neutrino
beam line for a time ¢, and then interacts via the reaction vm +n — £, +p. It
is the identities of the initial and final charged leptons that leads one to label the
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process “Zy — vp”. Now, if we think of the intermediate mass eigenstate neutrino
as a virtual particle, then the diagram for the entire process is just the 8., dia-
gram of Fig. 4, except that one of the outgoing leptons is replaced by an incoming
antilepton (which does not change the vertex factor), and the flavors of the two
electrons are generalized to f and f’. Accordingly, the amplitude for 7; — v
is proportional to the quantity in Eq. (47), modified by the flavor generalization
U2, = UpnUpm, and by insertion of the factor exp(—iEt) which describes the
propagation of the neutrino. In this factor E, is the energy of v, for a given

neutrino momentum p,. We have

M.,

A(pr = vp) < |2 AmUsmUspm > Y

v

g~ iEmt e Emt| (49)

v

S wpmUsmUsm
m

We have included a factor of pJ! to show the scale of A(py — vp) relative to the

amplitude for ordinary flavor oscillation. The latter is given by

A(vy = vp) = 3_UpnUpme™ 5 (50)

We see that A(Py — vp) contains phase factors, the wym, not present in
A(vy — vp). When f' = f, for example, these factors can plainly lead to physical
effects, whereas A(vy — vy) is obviously completely insensitive to phases in U.
Indeed, when there are only two generations, A(vy — vy) is insensitive to phases
in U for any f, f’. Apart from the factor exp(—iEmt), the two termsin A(vy — vy)
when N = 2 always have the same or opposite phase, due to the unitarity of U.
By contrast, the corresponding two terms in A(Zy — vy) have phases whose
difference involves the factor Q. If U is the matrix X and the A\,, = 1, one finds
by squaring Eq. (49) that, for example,?®
M;)éVIg {%64 %js‘ + 2c*s? cos[(Ey — Eo)t + 26]} , (31)

where P(J. — v.) is the probability for #. — v.. Remembering that for relativistic

P(o. = v.) x

neutrinos ¢t = z, the distance of travel, we see that the physical consequence of
the CP-violating phase § is a translation of the oscillation pattern in space. When
CP is conserved, so that = exp(—2:8) = #j(1)/7(v2), the pattern is either
not translated at all, or else translated by half a wavelength. A CP-violating
translation of an oscillation pattern would, of course, be very interesting. However,
antineutrino-neutrino oscillation may be extremely difficult to observe because it
is suppressed by order (M/p,)? relative to ordinary flavor oscillation.?®
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VIII. SUMMARY

Whether CP is violated or not, if neutrinos are of Majorana character, there are
significant CP-related implications. If CP is conserved, each neutrino has a well-
defined intrinsic CP parity. The relative values of the CP parities of different
neutrinos influence, for example, the rates for v — vy + v and 38, the energy-
dependence of e* + e~ — vy + v, and the character of the # — v oscillation
pattern. If CP is violated, then, for a given number of generations, there can
be more CP-violating phases than are possible in the Dirac case. This results
from the fact that when neutrinos are Majorana particles, some processes involve
more diagrams, and correspondingly more interferences between diagrams, than
they would in the Dirac case. For Majorana neutrinos, there can already be one
CP-violating phase when there are only two generations. This phase can lead to
rates for v; — vy + v and 30., to an energy-dependence for e* + e~ — y; + vy,
and to a # — v oscillation pattern that all differ appreciably from what is allowed

when CP is conserved.

ACKNOWLEDGMENTS

It is a pleasure to thank R. Cahn, L.L. Chau, L. Hall, and S. Petcov for very
helpful conversations. I am also grateful to J. Gunion, W. Nahm, and M. Suzuki
for noting that, in practice, interference between the diagrams S, and S for
radiative neutrino decay must vanish with the daughter neutrino mass. This
observation triggered the calculations which showed that in the two-generation
case, CP violation in this reaction affects only the rate. Finally, I would like to
acknowledge the warm hospitality of the Fermi National Accelerator Laboratory,
where this work was begun, and of the Lawrence Berkeley Laboratory, where it
has been completed.

REFERENCES

1. M. Gell-Mann, P. Ramond, and R. Slansky, in Supergravity, edited by
D. Freedman and P. van Nieuwenhuizen (North Holland, Amsterdam, 1979),
p. 315; T. Yanagida, in Proceedings of the Workshop on Unified Theory and
Baryon Number in the Universe, edited by O. Sawada and A. Sugamoto
(KEK, Tsukuba, Japan, 1979); R. Mohapatra and G. Senjanovic, Phys.
Rev. Lett. 44, 912 (1980), and Phys. Rev. D23, 165 (1981).

2. For recent general treatments of the physics of massive neutrinos, see S. Bilenky

19



(@1}

10.

11.

12.

and S. Petcov, Rev. Mod. Phys. 59, 671 (1987), and B. Kayser, F. berat—
Debu, and F. Perrier, to be published.

M. Kobayashi and T. Maskawa, Prog. of Theo. Phys. 49, 652 (1973).
B. Kayser and A. S. Goldhaber, Phys. Rev. D28, 2341 (1983).
B. Kayser, Phys. Rev. D30, 1023 (1984).

B. Kayser, N. Deshpande, and J. Gunion, in Neutrino Mass and Low Energy

Weak Interactions, edited by V. Barger and D. Cline (World Scientific, Sin-
gapore, 1985), p. 221.

S. Petcov, Phys. Lett. 139B, 421 (1984).

B. Kayser, Ref. 5, and S. Bxlenky, N. Nedelcheva, and S. Petcov, Nucl.
Phys. B247, 61 (1984).

. See, for example, P. Langacker, Phys. Rep. 72, 185 (1981).

There are a number of statements in the literature to the effect that a Majo-
rana field v,, must be identica] to its charge conjugate v5,, with no phase factor,

and that, therefore, a Majorana field cannot be multiplied by a phase factor.
However, the relation VS, = vy, holds only in the arbitrary phase convention

where the creation phase factor A, is unity.

S. Bilenky, J. Hosek, and S. Petcov, Phys. Lett. 94B, 495 (1980); J. Schechter
and J. Valle, Phys. Rev. D22, 2227 (1980); M. Doi et al., Phys. Lett.
102B, 323 (1981).

Models other than the (minimally extended) standard model under discus-
sion can have more than one Majorana neutrino per generation, and more
than one charged current. There are then more mixing matrix elements than
in the standard model, and there can be even more CP-violating phases than
we have been discussing (see J. Schechter and J. Valle, Ref. 11). For exam-
ple, J. Valle, in Phys. Lett. 138B, 155 (1984), discusses the generation of
a large electric dipole moment for the electron in the left-right symmetric

model when there is only one generation.

20



13.

14.

16.

17.

18.

19.

20.

21.

22.

23.

24

Our discussion of radiative decay has disregarded loop diagrams with inter-
nal Higgs particles which do not affect our main point.

P. Pal and L. Wolfenstein, Phys. Rev. D25, 766 (1982).

. J. Bernabeu, A. Pich, and A. Santamaria, Zeit. fur Physik C30, 213 (1986)
R. Shrock, Nucl. Phys. B206, 359 (1982).

1

J. Bernabeu and P. Pascual, Nucl. Phys. B228, 21 (1983), and J. Bernabeu
et al., Ref. 15, actually prefer the parameterization in which the extra CP-
violating phases peculiar to the Majorana case are put into ‘the creation
phase factors, not the mixing matrix.

A. Barroso and J. Maalampi, Phys. Lett. 132B, 355 (1983). This paper
also gives an illuminating illustration of one’s freedom to position a CP-
violating phase factor either inside or outside of the mixing matrix.

Diagonalization of the N-generation mass matrix, and the CP eigenvalues
and phases which result, are discussed in J. Bernabeu and P. Pascual, Ref.
16, and S. P. Rosen, Los Alamos National Laboratory Report LA-UR-83-
3546.

CP violation in the near-threshold pfoduction of pairs of Majorana particles
predicted by supersymmetric theories, which is very similar to what we shall
discuss here, has been treated by S. Petcovin Phys. Lett. 178B, 57 ( 1986).

Our analysis is inspired by his.
We have assumed v, and v; are light compared to My for simplicity.

S. Petcov, in Ref. 19, found that the related cross section for supersymmetric
particle production can differ quite dramatically from its CP—conserving

values.
See, for example, B. Kayser, Comm. Nucl. Part. Phys. 14, 69 (1985).

L. Wolfenstein, Phys. Lett. 107B, 77 (1981); B. Kayser and A.S. Gold-
haber, Ref. 4.

. D. Chang and P. Pal, Phys. Rev. D26, 3113 (1982).

21



25.

26.

27.

28.

29.

M. Doi et al., Ref. 11. Note, however, that in this paper the case “3 =

[STE]

actually corresponds to CP conservation, with () /7(ve) = —1.

C. Kim and H. Nishiura, Phys. Rev. D30, 1123 (1984); H. Nishiura, Phys.
Lett. 157B, 442 (1985).

An early analysis of CP conservation and violation in ordinary neutrino
oscillation was given by N. Cabibbo in Phys. Lett. 72B, 333 (1978).

J. Schechter and J. Valle, Phys. Rev. D23, 1666 (1981); L.F. Li and
F. Wilczek, Phys. Rev. D25, 143 (1982); J. Bernabeu and P. Pascual,
Ref. 16.

For a discussion of extra CP-violating effects that can occur in muon de-
cay when neutrinos are Majorana particles, see J. Bernabeu, A. Pich, and
A. Santamaria, Ref. 15, and M. Doi et al., Prog. of Theo. Phys. 67, 281
(1982). '

.22



FIGURE CAPTIONS

Figure 1 Loop diagrams for the decay ¢ — u ++. The quark mixing matrix ele-
ment which occurs at each vertex is written next toit. (It is understood that
these diagrams are accompanied by similar ones where the photon attaches
to the W line.)

Figure 2 Loop diagrams for v — v; + . The charged lepton ¢; can be an e
or u. The term in the Hamiltonian (15) which is active at each vertex is
written next to it. In the diagram S., this term has been rewritten in terms

of the charge-conjugate field £ using the identity Umzvals = — “RYaViR
and Eq. (11).

Figure 3 Diagrams for e~ + e* — 1) + v,. The term in the Hamiltonian (15)
which is active at each vertex is written next to it. At vertices where an e+

is absorbed, this term has been rewritten in terms of the charge-conjugate

field ec.

Figure 4 Neutrino exchange diagrams for neutrinoless double beta decay. The
- term in the Hamiltonian (15) which is active at both of the lepton vertices
is written next to them, but at one of them it has been reexpressed in terms

of e°.

23



+M

..;.\ﬁ

ns
«

[ oan3i g

)

+\:

=~u

v/

|

»



< oangi g

ts
Crl
s.;ﬂ«::.,téa.‘__W ~
e\ o A 5
i)
-M _
\
//
, G
:m_w_4-\\w~.\£‘=-\u.~l~\a_ﬂ\\sf..' — % \A\
In

n

dﬂhﬂﬁbdﬁ‘dl\w.slﬁ\: %

)

+M

\

AN

Z

\:,w..\:.sE."m\:\a, A,
7]



i

C/)]

Ny

)

[~

42

~“E_/\~u:5»\:_l.nlc\#am\/\u|[
)

W7}

fﬁﬂé&&:&, -
)

e

N

\

¢ oan@di,

'

\:

<<

M

¢

<[

LTk T2ar Pp

(2

=[S

1N LT Pay




P oangi

d

~,.~..~.:K.:u\~.<(E.~|:\:WM\/I N W.lb
O

AL .:u\\~ c»\bw I-\a—

({4



A m—— .T)WM.I

o x

LAWRENCE BERKELEY LABORATORY
TECHNICAL INFORMATION DEPARTMENT
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

e S,





