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Abstract

In this project we investigate the behavior of layer potentials in regions of high cur-
vature in two dimensions, in particular an asymptotically collapsing ellipse. Layer
potentials arise in boundary integral methods and o↵er several advantages numer-
ically but can be a↵ected by regions of high curvature. Such phenomena appear
in slender body theory. In this thesis we propose two approaches to address this
challenge. We propose a modification of quadrature rules using asymptotic meth-
ods, and a spectral method when one can find the analytic Fourier coe�cients. We
apply these techniques to several problems: Laplace’s problems (interior Dirichlet
and exterior Neumann), and a scattering problem.
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Chapter 1

Introduction

Boundary integral equation (BIE) methods can be used to solve elliptic boundary
value problems based on partial di↵erential equations [13, 22, 18]. The solution to
a boundary value problem is then represented as a layer potential, an integral over
the boundary involving a kernel (related to the fundamental solution of the elliptic
PDE at stake) and a continuous density related to the boundary value problem’s
data. Boundary integral methods are advantageous methods: they allow us to
reduce the problem by one dimension, and solutions of boundary value problems
can be approximated using high order numerical methods [26, 14, 16, 20, 10, 7, 19].
However, BIE methods often lead to working with dense matrices which can be
costly to invert.

Boundary integral methods are commonly used in electromagnetism [15], and fluid
dynamics [21, 23]. An important component of these applications is that it is im-
portant to compute accurately the field (electromagnetic, fluid velocity, etc.) close
to the boundary. Such evaluations are required for applications such as deformable
drops in Stokes flow, and holography of colloids and droplets [21, 27].

One of the challenges of BIE method is the close evaluation problem [13, 14]. This
refers to large errors occurring due to approximating nearly singular integrals: the
integrals of nearly singular kernels exhibits a peaked behavior which is then under-
resolved numerically. BIE methods can present weakly singular integrals, and/ or
nearly singular integrals. There exist high-order quadrature rules to approximate
weakly singular integrals [14, 10, 16, 20, 26, 7, 19]. Nearly singular integrals are
more challenging [25, 3]. Recent work [5, 6] provides techniques to e�ciently ap-
proximate nearly singular integrals such as using asymptotics to characterize the
nearly singular behavior, or using spectral methods when the integrand can be
written as a rational trigonometric function.

Motivated by slender body theory [24], in this thesis we investigate BIE with re-
gions of high curvature. Regions of high curvature yield nearly singular behaviors
which a↵ect the accuracy of standard numerical methods. We propose to address
this challenge by using asymptotic and spectral methods. In particular we pro-
vide 2 techniques: a local correction to standard quadrature rules using an inner
asymptotic expansion of the integrand [11, 5], and a spectral method based on
Fourier Series [7]. We focus on investigating 3 problems in two dimensions: the

1



interior Dirichlet Laplace (Chapter 2), the exterior Neumann Laplace (Chapter
3), and the exterior Helmholtz problem (Chapter 4). Chapter 5 presents our con-
cluding remarks. The appendices provide additional results: appendix A gives a
proof of the representation formula, appendices B, D, and E detail calculations for
the inner asymptotic expansion for the Laplace problems and scattering problem,
appendix C details additional calculations used in Chapter 3, appendix F presents
calculations for the matched asymptotics for the interior Dirichlet Laplace prob-
lem. Finally, appendices G and H detail results using a body-fitted grid for the
exterior Neumann Laplace and exterior Helmholtz problems.

2



Chapter 2

Interior Dirichlet Laplace

We study Laplace’s equation in a domain whose boundary has regions of high
curvature, in particular, a narrow ellipse. We consider here a specific problem
for which we know the solution using Gauss Law [25]. We seek to find u 2
C2(D) [ C1(D̄) satisfying

�u = 0 in D,

u = f on B. (2.1)

Here D is an elliptical domain, B is the boundary and f is a smooth data (source).

Figure 2.1: Ellipse for the Interior Dirichlet Laplace problem (2.1). Here x is a
point in D, y is a point on B and ny is the unit outward normal at y.

It is well known that the solution of problem (2.1) can be represented as the
double-layer potential [13],

u(x) =

Z

B

@G

@ny

(x, y)µ(y)d�y, x 2 D, (2.2)

where ny is the unit outward normal at y, and d�y is the di↵erential boundary
element. In (2.2), G(x, y) denotes Green’s function for Laplace’s equation,

G(x, y) = � 1

2⇡
log |x� y|, (2.3)

and µ is the continuous density function that satisfies the following Boundary
Integral Equation (BIE),

� 1

2
µ(x) +

Z

B

@G

@ny

(x, y)µ(y)d�y = f(x), x 2 B, (2.4)
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where
@G

@ny

(x, y) =
1

2⇡
ny ·

x� y

|x� y|2 .

Note, in the BIE x lies on the boundary.

2.1 Parameterization

We are interested in solving (2.1) accurately and studying the e↵ect of the cur-
vature on its accuracy. We make use of explicit parameterization y = y(t) =
hy1(t), y2(t)i where 0  t  2⇡. For the BIE, we write x 2 B, x = y(s) for
s 2 [0, 2⇡], µ(y(t)) = µ(t) and f(x) = f(s). The BIE then becomes

� 1

2
µ(s) +

1

2⇡

Z 2⇡

0

n(t) · y(s)� y(t)

|y(s)� y(t)|2 |y
0(t)|µ(t)dt = f(s), 0  s  2⇡, (2.5)

where ny = n(y(t)) = n(t) is the unit outward normal, and |y0(t)| is the Jacobian.

The kernel of the double-layer potential in (2.5) is given by

K(s, t) = n(t) · y(s)� y(t)

|y(s)� y(t)|2 |y
0(t)|. (2.6)

To describe the ellipse, we introduce the parameterization,

y(t) = h✏ cos(t), sin(t)i, 0  t  2⇡. (2.7)

The outward normal vector is

n(t) =
hcos(t), ✏ sin(t)i

|y0(t)| =
hcos(t), ✏ sin(t)ip
✏2 sin2(t) + cos2(t)

. (2.8)

We rewrite (2.6) and find that

K(s, t; ✏) =
hcos(t), ✏ sin(t)i

|y0(t)| · y(s)� y(t)

|y(s)� y(t)|2 |y
0(t)| (2.9)

=
✏

�1� ✏2 � (1� ✏2) cos(s+ t)
. (2.10)

The above expression is exact and, K(s, t; ✏) is nearly singular [25] when s+ t = ⇡
or s+ t = 3⇡ since cos(s+ t) = �1 then

K(s, t; ✏) = � 1

2✏
.

It follows that
lim
✏!0

K(s, t; ✏) ! �1.

Figure 2.2 shows the behavior of the kernel with di↵erent values of ✏. When
s+ t = ⇡ the kernel has a sharp peak. Although it is not shown in Figure 2.2, the
same peaked behavior appears for s + t = 3⇡. We notice that as ✏ ! 0 the peak
becomes more prominent. Such behavior makes the Boundary Integral Equation,
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� 1

2
µ(s) +

1

2⇡

Z 2⇡

0

✏

�1� ✏2 � (1� ✏2) cos(s+ t)
µ(t)dt = f(s), 0  s  2⇡,

(2.11)
hard to solve with numericcal methods.

Figure 2.2: Plots showing the behavior of the kernel for a fixed s = ⇡

16 with various
values of ✏.

2.2 Numerical Investigation

We use a quadrature method to discretize the BIE (2.11), in particular with the
Periodic Trapezoid Rule (PTR). We start by setting N equally spaced quadrature
points on 0  t  2⇡. The boundary integral equation (2.11) when using the
Periodic Trapezoid Rule then becomes

� 1

2
µ(si) +

1

N

NX

j=1

K(si, tj; ✏)µ(tj) = f(si), i = 1, . . . , N. (2.12)

Here si =
(2⇡)i
N

and tj =
(2⇡)j
N

i, j = 1, . . . , N . The Periodic Trapezoid Rule
is used to compute an approximation of the density µ to the BIE (2.11). To obtain
this approximation, we solve the system,

✓
�1

2
IN + P

◆
µN = fN , (2.13)

where P is the matrix obtained from the discretization of the double-layer poten-
tial on B discretized using the Periodic Trapezoid Rule (2.12). Here µN and fN
represent the discretization of µ and f at the quadrature points.

To investigate the e↵ect of ✏ using the method, we compare the approximation
with an exact solution and study the error. To obtain an exact solution, we use
Gauss’ law [25] for the double-layer potential,

5



Z

B

@G

@ny

(x, y)d�y =

8
><

>:

�1, x 2 D

�1
2 , x 2 B

0, x 2 E

(2.14)

If we assume µ to be constant (µ = µo) then the BIE gives us

�1

2
µo +

1

2⇡

Z 2⇡

0

K(s, t; ✏)µodt = f(s), 0  s  2⇡.

Using Gauss’ Law, we find

� 1

2
µo �

1

2
µo = �µo = f(s), 0  s  2⇡ (2.15)

is satisfied if f(s) = �µo. We choose f = 1, so that µo = �1. Using f = 1, we
compare the approximations obtained numerically to the exact solution µ = �1.

2.3 Numerical Results

Figure 2.3a shows the approximation of µ for di↵erent values of ✏ using PTR. As
✏ ! 0, the error of the approximation grows. The approximation overestimates
the exact solution, µ = �1. Figure 2.3b shows a log-log plot of the error versus
N in which it can be observed error decreases as N increases. The error is O (1)
for PTR and it does not do a good job capturing the peak of the kernel. Recall
that the kernel K(s, t; ✏) is nearly singular when s + t = ⇡ or s + t = 3⇡ which
corresponds to the anti-diagonals observed in the heatmap of the PTR matrix P
in Figure 2.4. We computed the condition number of the matrix (�1

2IN + P ) to
be 85, 56055. We notice that the condition number is much bigger than 1 which
means the matrix (�1

2IN + P ) is sensitive to the inverse calculation. Our focus is
on the accuracy of the solution rather than cost of inverting a matrix. Since the
kernel is nearly singular, it is challenging to solve the boundary integral equation
accurately.

6



(a) (b)

Figure 2.3: (a) The Periodic Trapezoid Rule approximation of µ for di↵erent values
of ✏ and a fixed N = 32. (b) A log-log plot of the error vs. N for the PTR with
✏ = 0.001.

(a)

Figure 2.4: Heatmap of the matrix P given in (2.13).

2.4 Inner Asymptotic Expansion

We seek to improve the approximation of the Periodic Trapezoid Rule by perform-
ing an asymptotic approximation where the kernel is nearly singular, i.e. s+ t = ⇡
and s + t = 3⇡. We start by looking at the integral of the boundary integral
equation

I =

Z 2⇡

0

K(s, t; ✏)µ(t)dt. (2.16)

We evaluate the integral at a neighborhood around the point y(t) = y(⇡ � s),
where we seek to introduce an inner asymptotic expansion. On the boundary
both angles s+ t = ⇡ and s+ t = 3⇡ correspond to the same point on the ellipse.
Thus we can use the approximation we get about y(t) = y(⇡� s) for both points,
as seen in Figure 2.5.

7



Figure 2.5: Neighborhood around point y(⇡ � s) on the ellipse where we seek to
determine the inner asymptotic expansion.

We consider the interval [⇡ � s��t, ⇡ � s+�t], and the integral

I1 =

Z
⇡�s+�t

⇡�s��t

K(s, t; ✏)µ(t)dt (2.17)

where �t = 2⇡
N

is fixed.

To obtain an inner asymptotic expansion for I1 we do a series of substitutions.
We shift by substituting t = ⌧ + ⇡ � s with dt = d⌧ leading to

I1 =
1

2⇡

Z �t

��t

K(s, ⌧ + ⇡ � s; ✏)µ(⌧ + ⇡ � s)d⌧. (2.18)

Next, we scale by ✏ according to ⌧ = ✏T with d⌧ = ✏dT and obtain

I1 =
1

2⇡

Z �t
✏

��t
✏

K(s, ✏T + ⇡ � s; ✏)µ(✏T + ⇡ � s)✏dT. (2.19)

Using Mathematica (Appendix B), we expand the kernel K and the density µ in
(2.19) about ✏ = 0 to obtain

K(s, ✏T + ⇡ � s; ✏) =
1

(�2� T 2

2 )✏
+

(�12T 2 � T 4)✏

6(4 + T 2)2
+O(✏3), (2.20)

µ(✏T + ⇡ � s) = µ(⇡ � s) + ✏Tµ(⇡ � s) +O(✏2). (2.21)

Because we scale by ✏, we integrate the leading order terms of the expansion and
find that

I1 =
1

2⇡

Z �t
✏

��t
✏

µ(⇡ � s)�
�2� T 2

2

�
✏
✏dT +O(✏) = �

arctan(�t

2✏ )µ(⇡ � s)

⇡
+O(✏). (2.22)

At the points where the nearly singular behavior happens, y(s + t) = y(⇡) and
y(s + t) = y(3⇡), we replace PTR with the inner asymptotic expansion given in
(2.22). For all other points we use the Composite Trapezoid Rule to obtain an

8



approximation for µ. We call this method the Modified Trapezoid Rule (MTR),
and when applied to (2.11) yields

�1

2
µ(si)+

1

N

NX

j=1
si+tj 6=⇡

si+tj 6=3⇡

K(si, tj; ✏)µ(tj)+
X

si+tj=⇡

si+tj=3⇡

 
�
arctan(�t

2✏ )µ(⇡ � s)

⇡

!
= f(si),

i = 1, . . . , N

(2.23)

We use the MTR to obtain an approximation of the BIE (2.11) by solving the
system, ✓

�1

2
IN +M

◆
µN = fN , (2.24)

where M is the matrix obtained from the discretization of the double-layer poten-
tial on B obtained using the Modified Trapezoid Rule.

2.5 Numerical Results

We use the exact solution for f = 1 given by µ = �1 to verify our approxima-
tion obtained for MTR. Figure 2.6a shows the approximations of µ by MTR for
✏ = 10�2, 10�4, and 10�6. MTR is accurate because it makes a correction on
the points where the kernel is nearly singular. Figure 2.6b shows the heatmap of
the matrix M in (2.24). The correction of the inner asymptotic expansion along
the anti-diagonals s + t = ⇡ and s + t = 3⇡ leads to much smaller values since
it accounts for the nearly singular behavior. We notice that the condition num-
ber of matrix (�1

2I + M) is 1.064731. The condition number is much closer to
1 which means there is no problem solving (2.24). Here we notice that the con-
ditioned number of (�1

2IN + M) is better than the condition number of matrix
(�1

2IN +P ). Recall that we focus on the accuracy of the solution rather than cost
of inverting the matrix. Figure 2.7a contains the log-log plot of the error with
respect to ✏. It can be observed that as ✏ decreases, the error decreases for the
MTR. In contrast the error of PTR increases as ✏ decreases. Considering we are
interested in studying the regions of high curvature, we focus on the error as ✏
gets smaller. The error plots in Figure 2.7b, shows the errors for both PTR and
MTR with respect to N . MTR requires fewer discretization points to obtain an
accurate approximation because of the correction made on the points where the
kernel is nearly singular.

We can see from Figure 2.7a as ✏ ! 0 MTR approximation is more accurate
than PTR approximation. We notice that the error for MTR increases and the
error for PTR decreases. MTR is O(✏) and the error grows linearly with ✏. For a
large enough ✏, PTR achieves spectral convergence. We can observe from Figure
2.7b that MTR requires very few points to obtain an approximation of µ. MTR
provides an e�cient local correction to improve PTR from approximating the BIE
(2.11). In the next sections we seek for an alternative method to recover spectral
accuracy.
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(a) (b)

Figure 2.6: (a) The approximation µ using the Modified Trapezoid Rule (MTR)
with N = 32 and ✏ = 10�2, 10�4, and 10�6. (b) Heatmap of the MTR matrix.

(a) (b)

Figure 2.7: (a) Log-log plot of the error with respect to ✏ for N = 32. (b) Log-log
plot of the error with respect to N with ✏ = 0.001.

2.6 Spectral Method

Since we have a closed curve and periodic functions, we are able to use a Fourier
spectral method as an alternative approach. The Fourier series provides a direct
method to solve the Boundary Integral Equation. Recall that the BIE we are
solving is

�1

2
µ(s) +

1

2⇡

Z 2⇡

0

K(s, t; ✏)µ(t)dt = f(s) s 2 [0, 2⇡] (2.25)

We represent the unknown µ(s) with its Fourier series

µ(s) =
1X

n=�1
µ̂ne

ins, where µ̂n =
1

2⇡

Z 2⇡

0

µ(s)e�insds, (2.26)

10



and write f(s) =
1X

n=�1
f̂ne

�ins, with f̂n =
1

2⇡

Z 2⇡

0

f(s)e�insds.

We derive an equation for µ̂n for n = �1, . . . ,1. By multiplying the BIE (2.25)
by 1

2⇡e
�ins and integrating with respect to s we get

� 1

2

1

2⇡

Z 2⇡

0

e�insµ(s)ds+
1

2⇡

Z 2⇡

0

h 1

2⇡

Z 2⇡

0

K(s, t; ✏)e�insµ(t)dt
i
ds

=
1

2⇡

Z 2⇡

0

e�insf(s)ds, (2.27)

leading to

� 1

2
µ̂n +

1

2⇡

Z 2⇡

0

h 1

2⇡

Z 2⇡

0

K(s, t; ✏)e�insµ(t)dt
i
ds = f̂n. (2.28)

Now we substitute

µ(t) =
1X

n0=�1

µ̂n0ein
0
t (2.29)

into (2.28) and find

� 1

2
µ̂n +

1X

n0=�1

µ̂n0


1

2⇡

Z 2⇡

0

1

2⇡

Z 2⇡

0

K(s, t; ✏)e�insein
0
tdtds

�
= f̂n. (2.30)

Let us define

k̂nn0 =
1

2⇡

Z 2⇡

0

1

2⇡

Z 2⇡

0

K(s, t; ✏)e�insein
0
tdtds, n, n0 2 N. (2.31)

Then (2.30) simplifies to

� 1

2
µ̂n +

1X

n0=�1

µ̂n0 k̂nn0 = f̂n. (2.32)

If k̂nn0 and f̂n are known then we can solve for µ̂n. We investigate the expression
of k̂nn0 in our case. We begin by looking at the kernel

K(s, t; ✏) =
✏

�1� ✏2 � (1� ✏2) cos(s+ t)
.

Since K depends only on s+ t we can assume that

K(s, t; ✏) =
1X

m=�1
k̂me

im(s+t). (2.33)

11



Then k̂nn0 becomes, using equation (2.31) and (2.33)

k̂nn0 =
1

2⇡

Z 2⇡

0

1

2⇡

Z 2⇡

0

1X

m=�1
k̂me

im(s+t)e�insein
0
tdtds

=
1X

m=�1
k̂m

✓
1

2⇡

Z 2⇡

0

ei(m�n)sds

◆✓
1

2⇡

Z 2⇡

0

ei(m+n
0)tdt

◆
. (2.34)

Note that

1

2⇡

Z 2⇡

0

ei(m�n)sds =
1

2⇡

1

i(m� n)

h
ei(m�n)s

i2⇡
0

=
1

2⇡

1

i(m� n)
(ei(m�n)2⇡ � 1)

=

⇢
1, m� n = 0
0, m� n 6= 0.

(2.35)

Similarly,

1

2⇡

Z 2⇡

0

ei(m+n
0)tdt =

⇢
1, m+ n0 = 0
0, m+ n0 6= 0.

(2.36)

Now that we have evaluated the integrals we find k̂nn0 = knn = k̂n. We can include
these coe�cients into the BIE to obtain

� 1

2
µ̂n + µ̂�nk̂n = f̂n, n = �1, . . . ,1 (2.37)

To be able to solve for µ̂n we need to find the Fourier coe�cient of the kernel, k̂n.

2.6.1 Finding the Fourier Series coe�cients of the kernel

Since K(s, t; ✏) is a rational trigonometric function there exist results [12] which
allow us to find analytically the Fourier coe�cients of a rational trigonometric
function. We will use this technique to find the coe�cients of the kernel (2.10),

K(s, t; ✏) =
⇣ �✏

1 + ✏2

⌘⇣ 1

1 + 1�✏2

1+✏2
cos(s+ t)

⌘
=
⇣ c0
1 + c1 cos(s+ t)

⌘
, (2.38)

with c0 =
�✏

1+✏2
and c1 =

1�✏
2

1+✏2
. Note that 0 < c1 < 1 for 0 < ✏ < 1.

Let x = s + t. According to Geer [12], we can find the Fourier coe�cients k̂m as
follows

k̂m =
1

2⇡

Z
⇡

�⇡

K(x; ✏)e�im(x)dx (2.39)
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=
1

2⇡

Z
⇡

�⇡

c0
1 + c1 cos(x)

(cos(mx)� i sin(mx)) dx

=
1

2⇡

Z
⇡

�⇡

c0
1 + c1 cos(x)

cos(mx)dx

=
c0
⇡

Z
⇡

0

1

1 + c1 cos(x)
cos(mx)dx

= c0Im,1 where Im,1 = ⇢m
1 + ⇢2

1� ⇢2
form � 0, and ⇢ =

p
1� c21 � 1

c1
.

We obtain

k̂m = c0
1 + ⇢2

1� ⇢2
⇢|m|, 8m 2 N. (2.40)

Plugging these coe�cients into (2.37) and truncating the system to include only
N terms, we obtain

� 1

2
µ̂n + µ̂�nk̂n = f̂n, n = �N

2
, . . . ,

N

2
� 1. (2.41)

Equation (2.41) is a linear system which can be written as follows

2

666666666664

�1
2 0 · · · 0

0
. . . . .

.
k̂N

2 �1

. . . . .
.

0
... �1

2 + k̂0
...

. .
.

. .
. . . . 0

0 k̂�N
2

0 · · · 0 �1
2

3

777777777775

2

666666666664

µ̂�N
2

...

...

µ̂N
2 �1

3

777777777775

=

2

666666666664

f̂�N
2

...

...

f̂N
2 �1

3

777777777775

.

We solve the system such that
Aµ̂N = f̂N (2.42)

where A is the matrix given above. The system is then solved for µ̂N and then we
use inverse FFT to find µ.

Figure 2.8a shows the resulting density, µ, for di↵erent values of ✏. The resulting
µ using the Fourier series approximates the exact solution as ✏ ! 0. One of
the conditions of obtaining the Fourier coe�cients is that c1 < 1. Using the
expression for c1, we notice that as ✏ ! 0 we get that c1 ! 1 which means the
Spectral method requires N to be larger to obtain good accuracy. Figure 2.8b
shows a log-log plot of the error. As ✏ ! 0 the error increases. This is due to
the condition on c1. Although the spectral method is a↵ected by the curvature,
it is more accurate than PTR and MTR. The Fourier series provides an accurate
approximation for our problem but is limited to a rational trigonometric kernel.
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(a) (b)

Figure 2.8: (a) The approximate µ using the Spectral method with N = 32 and
✏ = 10�2, 10�4, and 10�6. (b) Log-log plot of the error as ✏ is varied and N = 32.

2.7 Comparison and Conclusion

In our results, we found that for N = 32 and ✏ = 0.1, the Spectral method has
15 digits of accuracy, PTR has a O(1) error, and MTR has 4 digits of accuracy.
Although the Spectral method is more accurate than MTR and PTR, it is limited
to a rational trigonometric kernel. We were able to use a Fourier series approxi-
mation because the kernel to our problem has an explicit form so that the Fourier
coe�cients were accessible. The PTR approximation was inaccurate but does not
restrict to a specific kernel and boundary curve. The method we propose, MTR
o↵ers accuracy and can be applied to other problems, and other boundary curves.
MTR focuses on providing a correction where the kernel is nearly singular through
the use of an inner asymptotic expansion. We expanded on matched asymptotics
for this problem but confronted complications since one of the integrals blows
up (Appendix F). In the following chapters, we use a similar technique as MTR
to solve the exterior Neumann Laplace problem and a scattering problem (see
Chapters 3 and 4).
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Chapter 3

Exterior Neumann Laplace

We study the exterior Neumann Laplace problem in a domain whose boundary
has regions of high curvature. We seek to find u 2 C2(E) [ C1(Ē) satisfying

�u = 0, x 2 E,

@u

@nx

= f, x 2 B. (3.1)

Here E := R2 \ D̄ is the exterior and B is the boundary represented in Figure 3.1.
E is an unbounded domain.

Figure 3.1: Ellipse and notations for the exterior Neumann Laplace problem.

The solution to problem (3.1) can be represented as the single-layer potential,

u(x) =

Z

B

G(x, y)µ(y)d�y, x 2 E, (3.2)

where the Green’s function G(x, y) is given by

G(x, y) = � 1

2⇡
log |x� y|, (3.3)

and µ(y) is a continuous density that satisfies the following Boundary Integral
Equation (BIE),
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1

2
µ(x)�

Z

B

@G

@nx

µ(y)d�y = f(x), x 2 B, (3.4)

where
@G

@nx

= � 1

2⇡
nx ·rx(log |x� y|) = � 1

2⇡
nx ·

x� y

|x� y|2 .

Substituting this expression into the BIE, we obtain

1

2
µ(x) +

1

2⇡

Z

B

nx ·
x� y

|x� y|2µ(y)d�y = f(x), x 2 B. (3.5)

3.1 Parameterization

We aim to solve (3.5) accurately and study the e↵ect of the curvature on its
accuracy. We make use of explicit parameterization y = y(t) = hy1(t), y2(t)i
where 0  t  2⇡. For the BIE, x 2 B, x = y(s) for s 2 [0, 2⇡], µ(y(t)) = µ(t)
and f(x) = f(s). The BIE then becomes

1

2
µ(s) +

1

2⇡

Z 2⇡

0

n(s) · y(s)� y(t)

|y(s)� y(t)|2 |y
0(t)|µ(t)dt = f(s), 0  s  2⇡, (3.6)

where nx = n(y(s)) = n(s) and |y0(t)| is the Jacobian.
After plugging in the parameterization for the ellipse, we determine the kernel of
the integral operator in (3.6) to be

K(s, t; ✏) =
hcos s, ✏ sin si

|y0(s)| · y(s)� y(t)

|y(s)� y(t)|2 |y
0(t)| (3.7)

= �
✏
p

1 + ✏2 � (�1 + ✏2) cos(2t)
p
2(�1� ✏2 + (�1 + ✏2) cos(s+ t))

p
cos2(s) + ✏2 sin2(s)

. (3.8)

This expression presents similar behaviors as the ones from the kernel obtained for
the interior Dirichlet Laplace problem. In particular, K(s, t; ✏) is nearly singular
when s+ t = ⇡ or s+ t = 3⇡. When cos(s+ t) = �1,

K(s, t; ✏) =

p
1 + ✏2 � (�1 + ✏2) cos(2(⇡ � s))

2
p
2✏
p

cos2(s) + ✏2 sin2(s)
, (3.9)

and so

lim
✏!0

K(s, t; ✏) ! 1. (3.10)

Figure 3.2 shows the behavior of the kernel. We observe when s+ t = ⇡ the kernel
has a nearly singular peak. As ✏ ! 0, the values of the kernel at s+t = ⇡ becomes
more singular.
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Figure 3.2: Plot showing the behavior of the kernel for a fixed s = ⇡

16 with various
values of ✏.

3.2 Numerical Investigation

Like before, we use the Periodic Trapezoid Rule to discretize the BIE (3.5). The
BIE when using PTR then becomes

1

2
µ(si) +

1

N

NX

j=1

K(si, tj; ✏)µ(tj) = f(si), i = 1, ....N. (3.11)

Here si =
2⇡i
N

and tj = 2⇡j
N
, i, j = 1, . . . , N . We rewrite (3.11) as the following

system; ✓
1

2
IN + PE

◆
µN = fN , (3.12)

where PE is the matrix obtained from the discretization of the adjoint double-layer
potential using PTR.

To determine the accuracy of the method we use an exact solution. Contrary
to the interior Dirichlet Laplace problem, there is no explicit expression for the
source f to provide an exact solution to equation (3.5). Instead we use an exact
solution of (3.1) directly. We consider uexact =

x�xo
|x�xo|2 as a solution to the exterior

Neumann problem with xo 2 D and use it to find f =
@uexact

@nx

|B. We introduce a

Cartesian grid to approximate of the single-layer potential

u(x) =

Z

B

✓
� 1

2⇡
log |x� y|

◆
µ(y)dy (3.13)

using our approximation of µ from (3.12), we evaluate uexact on the same grid and
compute the error. We have tried using a body-fitted grid but obtained a large
error due to the curvature of our problem (See Appendix G). A Cartesian grid
works best for this problem.

3.2.1 Numerical Results

Figure 3.3a shows the approximation of µ using PTR. The peaks in the plot cor-
respond to t = 0 and t = ⇡. The anti-diagonals on the heatmap in Figure 3.3b
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correspond to s+ t = ⇡ and s+ t = 3⇡. Here, the condition number of (12IN +PE)
is 13.79133, which means that the matrix is sensitive to the inverse calculation.
Recall that we care about the accuracy of the approximation and not on compu-
tational cost.

Figure 3.3c is a log plot of the absolute error. We notice that the error is larger
near x = 0. This is consistent with the behavior of the peaks that appear in the
plot of µ. From the heatmap, we observe that the kernel is nearly singular at
s + t = ⇡ and s + t = 3⇡. Using the same approach as in Chapter 2, we seek to
provide a correction at the points where the kernel is nearly singular.

(a) (b)

(c)

Figure 3.3: (a)Periodic Trapezoid Rule approximation of µ with ✏ = 0.1 and
N = 32. (b) Heatmap of the matrix PE for ✏ = 0.01 and N = 32.(c) Log plot
of the absolute (|u � uexact|) error using a log10 scale for PTR with ✏ = 0.1 and
N = 32.

3.3 Inner Asymptotic Expansion

We seek to improve the approximation of the Periodic Trapezoid Rule by intro-
ducing an asymptotic expansion at the points where the kernel is nearly singular:
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y(s + t) = y(⇡) and y(s + t) = y(3⇡). We start by looking at the adjoint of the
double-layer potential

I =
1

2⇡

Z 2⇡

0

K(s, t; ✏)µ(t)dt, (3.14)

where K(s, t; ✏) is given in (3.7). Similar to Chapter 2 the integral is evaluated
neighborhood around the point y(t) = y(⇡ � s). We introduce a shift so that the
nearly singular behavior happens at t = 0 and then rescale by ✏ to obtain

I1 =
1

2⇡

Z �t
✏

��t
✏

K(s, ✏T + ⇡ � s; ✏)µ(✏T + ⇡ � s)✏dT. (3.15)

Using Mathematica (see Appendix D for details) we expand the kernel K and the
density µ in (3.15) about ✏ = 0, take the leading order terms of the expansion,
and find

I1 =
1

2⇡

Z �t
✏

��t
✏

 p
2
p

1 + cos(2s)

(4 + T 2)
p

cos2(s)✏
+

p
2T sin(2s)

(4 + T 2)
p

cos2(s)
p
1 + cos(2s)

!
⇥

µ(⇡ � s)✏dT +O(✏)

=
arctan(�t

2✏ )

⇡
µ(⇡ � s) +O(✏). (3.16)

We notice that the expansion obtained is the same expansion obtained for the
interior Dirichlet problem up to a sign. Therefore, the kernel for this problem has a
similar behavior to the kernel of the interior Dirichlet problem. After obtaining the
inner asymptotic expansion we replace PTR with the inner asymptotic expansion
given in (3.16). For all other points we use the Composite Trapezoid Rule to
obtain an approximation for µ. The Modified Trapezoid Rule (MTR) applied to
(3.5) yields

1

2
µ(si) +

1

N

NX

j=1
si+tj 6=⇡

si+tj 6=3⇡

K(si, tj; ✏)µ(tj) +
X

si+tj=⇡

si+tj=3⇡

 
arctan(�t

2✏ )

⇡
µ(⇡ � si)

!
= f(si),

i = 1, . . . , N.

(3.17)

We solve for µ with the system
✓
1

2
IN +ME

◆
µN = fN , (3.18)

where ME is the matrix of the Modified Trapezoid rule.

As above, we use uexact =
x�xo

|x�xo|2 with xo 2 D to obtain µN and then approximate
the single-layer potential, u.
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3.4 Numerical Results

Figure 3.4a is the approximation obtained using MTR. We find that µ is still
peaked at t = 0 and t = ⇡, but the MTR is compensating for the approximation
of µ compare with the results using PTR the peaks are smaller. Figure 3.4b shows
the heatmap of matrix ME. An improvement is observed along the anti-diagonals
indicated by the color scale of the heatmap. The condition number of matrix
(12I + ME) is 4.378945. The correction provided a better conditioned matrix.
Figure 3.4c is a plot of the absolute error which shows the error using MTR has
improved slightly. We observe the same error as before near x = 0.

(a) (b)

(c)

Figure 3.4: (a) Modified Trapezoid Rule approximation of µ with ✏ = 0.01 and
N = 32. (b) Heatmap of matrix ME for MTR with ✏ = 0.01 and N = 32. (c) Log
plot of the absolute error (|u � uexact|) using a log10 scale for PTR with ✏ = 0.1
and N = 32.

3.5 Spectral method

Similarly to Chapter 2, since we have a closed curve and periodic function we are
able to use a Spectral method. We consider a Fourier spectral method. We start
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with the BIE

1

2
µ(s) +

1

2⇡

Z 2⇡

0

K(s, t; ✏)µ(t)dt = f(s), s 2 [0, 2⇡]. (3.19)

We substitute

µ(s) =
1X

n=�1
µ̂ne

ins with µ̂n =
1

2⇡

Z 2⇡

0

µ(s)e�insds (3.20)

and we assume f(s) =
1X

n=�1
f̂ne

ins with f̂n =
1

2⇡

Z 2⇡

0

f(s)e�insds.

Just as we have done for the interior Dirichlet problem, we substite these Fourier
series representations into (3.20) and find

1

2
µ̂n + µ̂�nk̂n = f̂n, n = �1, . . . ,1. (3.21)

We need to find the Fourier coe�cients of the Kernel k̂n.

Recall the kernel expression is

K(s, t; ✏) = �
✏
p
1 + ✏2 � (�1 + ✏2) cos(2t)

p
2(�1� ✏2 + (�1 + ✏2) cos(s+ t))

p
cos2(s) + ✏2 sin2(s)

. (3.22)

The kernel is not a rational trigonometric function thus the Fourier coe�cients k̂n
cannot be computed analytically. The expression of the kernel here is more com-
plicated. Accurately computing these Fourier coe�cients numerically will require
a large number of points on the boundary. Thus, this method is not very e�cient.

3.6 Comparison and Conclusion

The exterior Neuman problem for a narrow ellipse has a challenging kernel expres-
sion. Furthermore, we do not have an exact solution for the BIE. We attempted
to use a body-fitted grid to obtain an approximation of u, but the grid failed
to capture the regions of high curvature. A Cartesian grid was preferred due to
the curvature of our problem. The heatmap of matrix PE had large values along
s + t = ⇡ and s + t = 3⇡. We introduced a correction at the points where the
kernel is nearly singular and the heatmap of MTR showed a slight improvement.
We considered a Fourier spectral method. The Fourier coe�cients k̂n are not avail-
able because we do not have a kernel of a rational trigonometric form. However,
the method can be implemented but requires a large number of points on the
boundary which is costly. An extension worth exploring is matched asymptotics
to improve the accuracy of the MTR.
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Chapter 4

Extension to Scattering Problem

We study the exterior Helmholtz problem in a domain whose boundary has regions
of high curvature. We seek to find u 2 C2(E) [ C1(Ē) satisfying

�u+ k2u = 0, in E := R2 \ D̄
u = f, on B (4.1)

lim
|r|!1

p
r

✓
@

@r
� ik

◆
u(x) = 0, with r = |x|.

The last equation in (4.1) is the Sommerfeld radiation condition [8, 4]. Above, f
denotes the source, and k is the wavenumber associated with the source. We seek
to solve (4.1) outside an ellipse as represented in Figure 4.1

Figure 4.1: Notations and sketch for the scattering problem.

The solution of problem (4.1) can be represented as a combination of the double-
and single-layer potential [17],

u(x) =

Z

B

✓
@G

@ny

(x, y)� ikG(x, y)

◆
µ(y)d�y, x 2 E, (4.2)

where G(x, y) is the Green’s function to Helmholtz equation in 2D is given by
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G(x, y) =
i

4
H(1)

0 (k|x� y|). (4.3)

where H(1)
0 (·) denotes the Hankel function of the first kind. The density µ, satisfies

the following BIE

1

2
µ(x) +

Z

B

✓
@G

@ny

(x, y)� ikG(x, y)

◆
µ(y)d�y = f(x), x 2 B. (4.4)

4.1 Parameterization

We make use of explicit parameterization y = y(t) = hy1(t), y2(t)i where
0  t  2⇡ and for x 2 B, we write x = y(s) for s 2 [0, 2⇡], µ(y(t)) = µ(t) and
f(x) = f(s). The BIE then becomes

1

2
µ(s)�

Z 2⇡

0

⇣ik
4
H(1)

1 (k|y(s)� y(t)|)n(t) · y(s)� y(t)

|y(s)� y(t)|

+
k

4
H(1)

0 (k|y(s)� y(t)|)
⌘
|y0(t)|µ(t)dt = f(s) (4.5)

where 0  s  2⇡, ny = n(y(t)) and |y0(t)| denoting the Jacobian.

After plugging in the parameterization for the ellipse, we rewrite (4.5) as

1

2
µ(s)�

Z 2⇡

0

[L(s, t; ✏) + ikM(s, t; ✏)]µ(t)dt = f(s) (4.6)

with

L(s, t; ✏) =
ik

4
H(1)

1 (kr(s, t; ✏))
✏ cos(t)(cos(s)� cos(t)) + ✏ sin(t)(sin(s)� sin(t))

✏(cos(s)� cos(t)))2 + (sin(s)� sin(t))2

=
ik

4
H(1)

1 (kr(s, t; ✏))
✏

�1� ✏2 + (�1 + ✏2) cos(s+ t)
, (4.7)

M(s, t; ✏) =
i

4
H(1)

0 (kr(s, t; ✏))
q
✏2 sin2(t) + cos2(t), (4.8)

where r(s, t; ✏) =
p
✏2(cos(s)� cos(t))2 + (sin(s)� sin(t))2).

Contrary to the Laplace problems we have a singular kernel when s = t, we get a
log singularity because of the Hankel functions. Because we have a log singularity,
we are not able to use the Periodic Trapezoid Rule to approximate the BIE. We
use an alternative quadrature method that is able to treat the log singularity of
the kernel, called Kress quadrature [17].

In equation (4.7) we notice that the rational expression is the same expression
as the kernel for the interior Dirichlet Laplace problem. Just like the interior
Dirichlet Laplace problem we have a nearly singular behavior when s+ t = ⇡ and
s+ t = 3⇡. When cos(s+ t) = �1 we obtain
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L(s, t; ✏) = � ik

4
H(1)

1 (kr(s, t; ✏))
1

2✏
, (4.9)

which leads to

lim
✏!0

L(s, t; ✏) = �1. (4.10)

Figure 4.2 shows the behavior of the kernel with di↵erent values of ✏. We observe
that there is a sharp peak occurring at s+ t = ⇡ and s+ t = 3⇡ which means the
kernel is nearly singular at those points. We observe a singularity occurring at
s = t and as ✏ ! 0, the peak at s+ t = ⇡ and s+ t = 3⇡ gets sharper. The kernel
is challenging because we have to work with both a singular and nearly singular
behaviors.

Figure 4.2: Plot showing the behavior of the kernel for s = ⇡

64 and ✏ = 10�2, 10�3,
and 10�4.

4.2 Kress quadrature

We use Kress quadrature [17] to discretize the BIE (4.6)

1

2
µ(s)�

Z 2⇡

0

[L(s, t; ✏) + ikM(s, t; ✏)]µ(t)dt = f(s). (4.11)

Kress quadrature treats logarithmic singularities by breaking up the kernel,
L(s, t; ✏) + ikM(s, t; ✏) as follows:

L(s, t; ✏) = L1(s, t; ✏) ln

✓
4 sin2

✓
s� t

2

◆◆
+ L2(s, t; ✏) (4.12)

and (4.13)

M(s, t; ✏) = M1(s, t; ✏) ln

✓
4 sin2

✓
s� t

2

◆◆
+M2(s, t✏) (4.14)

where ln
�
4 sin2

�
s�t

2

��
is used to treat the singularity.
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Here we define L1, L2, M1 and M2 as;
for s 6= t

L1(s, t; ✏) :=
k

2⇡
(cos(t)(✏ cos(s)� ✏ cos(t)) + ✏ sin(t)(sin(s)� sin(t)))

J1(k, r(s, t; ✏))

r(s, t; ✏)
(4.15)

L2(s, t; ✏) := L(s, t; ✏)� L1(s, t; ✏) ln

✓
4 sin2

✓
s� t

2

◆◆
(4.16)

M1(s, t; ✏) := � 1

2⇡
J0(kr(s, t; ✏))

q
✏2 sin2(t) + cos2(t) (4.17)

M2(s, t; ✏) := M(s, t; ✏)�M1(s, t; ✏) ln

✓
4 sin2

✓
s� t

2

◆◆
(4.18)

for s = t

L2(s, s; ✏) :=
1

2⇡

�✏ sin2(s) + ✏ cos2(s)

✏2 sin2(s) + cos2(s)
(4.19)

M2(s, s; ✏) :=
⇥ i
2
� C

⇡
� 1

2⇡
ln(

k2

4
(✏2 cos2(s) + sin2(s)))

⇤q
✏2 sin2(s) + cos2(s)

(4.20)

where C is Euler’s constant. Combining the terms, we define

K1(s, t; ✏) = L1(s, t; ✏) + ikM1(s, t; ✏), K2(s, t; ✏) = L2(s, t; ✏) + ikM2(s, t; ✏), and
we discretize the BIE (4.11) as,

µ(n)
i

�
2n�1X

k=0

[R(n)
|i�k|K1(si, tk)+

⇡

n
K2(si, tk))]µ

(n)
k

= 2f(si), i = 0, · · · , 2n�1, (4.21)

with the quadrature weights

R(n)
k

:= �2⇡

n

n�1X

m=1

1

m
cos

✓
mk⇡

n
� (�1)k⇡

n2

◆
, k = 0, · · · , 2n� 1. (4.22)

This results in the following system

(IN �H)µN = 2fN , (4.23)

where H is the matrix obtained from the Kress quadrature discretization.

In order to estimate the accuracy of the method we use an exact solution. Similar
to the exterior Neumann Laplace problem, there is no explicit expression for the
source, f , to provide an exact solution to equation (4.5). Here we use an exact

solution of (4.1) directly. We consider uexact =
i

4H
(1)
0 (k|x � x0|) as a solution to

the exterior Helmholtz problem with xo 2 D and use it to find f = uexact|B. We
use a Cartesian grid to approximate uexact and obtain an approximation of the
single- and double-layer potential

u(x) =

Z

B

✓
@G

@ny

(x, y)� ikG(x, y)

◆
µ(y)dy. (4.24)
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We have tried using a body-fitted but obtained a large error due to the curvature
of our problem (See Appendix H). Similar to the exterior Neumann problem we
found that a Cartesian grid works best for this problem since it captures the
curvature of our problem.

4.3 Numerical Results

Figure 4.3a represents the approximation of µ using Kress quadrature. The peaks
in the plot correspond to t = 0, ⇡. Figure 4.3b represents the heatmap of the
absolute value of matrix H. We observe big values along the anti-diagonals which
correspond to where the kernel is nearly singular (s+ t = ⇡ and s+ t = 3⇡). The
condition number of matrix (IN � H) is 2.931205. We notice that the condition
number is bigger than 1 which means the matrix is sensitive to inverse calculation.
In Figure 4.3c is a log plot of the error (|u � uexact|). We notice that the error
is bigger near x = 0 which is consistent to the behavior observed in the plot of
µ. In Figure 4.3d we observe as ✏ ! 1 the error increases and as ✏ ! 0 the error
decreases. For small values of ✏ we get an accuracy of O(1). Next we seek to
improve the approximation by making a correction at the points where the kernel
is nearly singular.
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(a) (b)

(c) (d)

Figure 4.3: (a) Approximation of µ with ✏ = 0.001, N = 120 and k = 5. (b)
Heatmap of the absolute value of matrix H with ✏ = 0.001, N = 64 and k = 5. (c)
Log plot of the absolute error (|u�uexact|) using a log10 scale for Kress quadrature
with ✏ = 0.01 and N = 120. (d) Log-log plot of error (||u � uexact||1) vs. ✏ with
N = 128.

4.4 Inner Asymptotic expansion

We seek to make a correction to Kress quadrature by introducing an asymptotic
expansion at the points where the kernel is nearly singular y(s + t) = y(⇡) and
y(s+ t) = y(3⇡). We start by looking at the single- and double-layer potential

I =

Z 2⇡

0

(L(s, t; ✏) + ikM(s, t; ✏))µ(t)dt (4.25)

Similar to Chapter 2 the integral is evaluated at a neighborhood around the point
y(t) = y(⇡ � s). After a series of substitutions, we introduce a shift so that the
nearly singular behavior happens at t = 0 and then rescale by ✏ to obtain

I1 =
1

2⇡

Z �t
✏

��t
✏

(L(s, ✏T +⇡� s; ✏)+ ikM(s, ✏T +⇡� s; ✏))µ(✏T +⇡� s)✏dT. (4.26)
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Using Mathematica (see Appendix E for details) we expand the kernel and density
in (4.26) about ✏ = 0. We provide asymptotic expansions only for L since it is the
only part of the kernel that exhibits a near singular behavior, we obtain

Z �t
✏

��t
✏

L1(s, ✏T + ⇡ � s; ✏)µ(✏T + ⇡ � s)dT =
k2�t✏ cos2(s)µ(⇡ � s)

2⇡
+O(✏),

(4.27)

and

Z �t
✏

��t
✏

L2(s, ✏T + ⇡ � s; ✏)µ(✏T + ⇡ � s)dT =
2 arctan(�t

2✏ )µ(⇡ � s)

⇡
+O(✏).

(4.28)

We notice that the expansion obtained for L2 is similar to the expansion of the
interior Dirichlet problem. We plug in Kress quadrature with the expansion ob-
tained in (4.27) and (4.28), and for all other points we used Kress quadrature. We
rewrite (4.21) and add the asymptotic terms for s + t = ⇡ and s + t = 3⇡. We
solve the following system for µ,

(IN �MH)µN = 2fN , (4.29)

where MH is the matrix obtained by the discretization of the Modified Kress
method. We use µN to obtain an approximation for u, the single- and double-
layer potential.

4.5 Numerical Results

Figure 4.4a is a plot of µ with di↵erent values of ✏. We see that µ is still peaked
at t = 0, ⇡. Figure 4.4b is the heatmap of the absolute values of matrix MH .
The color scale of the heatmap is significantly smaller. The condition number of
matrix (IN �MH) is 1.123853, compared to the condition number obtained from
the system using Kress quadrature matrix, (IN �MH), this matrix is much better
conditioned. Figure 4.5a is a plot of the log of the error (|u� uexact|). We observe
a small correction, and the same error as before near x = 0. In Figure 4.5b we
observe that as ✏ ! 0 the approximation of the Modified Kress method o↵ers more
accuracy than Kress quadrature. Overall, we observed that the Modified Kress
method makes correction at the points where the kernel is nearly singular.
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(a) (b)

Figure 4.4: (a) Approximation of µ with ✏ = 0.001, N = 120 and k = 5. (b)
Heatmap of the absolute value of matrix H with ✏ = 0.001, N = 64 and k = 5.

(a) (b)

Figure 4.5: (a) Log plot of the absolute error (|u � uexact|) using a log10 scale
for Kress quadrature with ✏ = 0.01 and N = 120. (b) Log-log plot of error
(||u� uexact||1) vs. ✏ with N = 128.

4.6 Conclusion

The exterior Helmholtz problem for regions of high curvature is challenging due
to a singular kernel in the BIE and the nearly singular behaviors that appear.
Because the kernel is singular, PTR does not work, and we use Kress quadrature
to obtain an approximation. We o↵er a correction to Kress quadrature using
an inner asymptotic expansion and the results show improvement. Future work
includes using a spectral method and matched asymptotics for this problem.
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Chapter 5

Summary

We have investigated the behavior of layer potentials in regions of high curvature
and made modifications to two quadrature methods (PTR and Kress quadrature)
using an inner asymptotic expansion. Regions of high curvature produce nearly
singular behavior of the kernel which produces a large error when approximat-
ing a layer potential. Using the information where the kernel is nearly singular,
we made a correction to improve the existing method. The numerical results of
the modified method showed improvements on the existing methods. A spectral
approximation was obtained but was limited to a rational trigonometric kernel.
A spectral approximation could still be obtained for kernels that did not have
a rational trigonometric form however required a large number of points on the
boundary which is costly. Future work would include doing an extension of the
problems presented in Chapters 3 and 4 and conducting matched asymptotics to
improve the modified methods. Another extension of the modified method would
be to implement the method for other boundaries with regions of high curvature
i.e. a cylindrical rod or an elliptical star.
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Appendix A

Proof of Representation formula

In this section we establish the representation formula which represents the solu-
tion of Laplace’s equation in 2D via layer potentials. To proof the representation
formula, we will use the solution to the Laplace equation and Green’s second iden-
tity. Consider D to be a 2D domain, B is the boundary and u 2 C2(D) \ C1(D̄)
is harmonic solution in D. It satisfies �u = 0. The fundamental solution of the
Laplace equation is given by

w(r) = � 1

2⇡
log(r) = � 1

2⇡
log(|x� y|), x, y 2 D. (A.1)

If we apply u and v = � 1
2⇡ log(r) to Green’s second identity where x 2 D is

fixed and the take the integration with respect to y 2 B then the identity has a
singularity of v at x = y. So we exclude a small disk from D, denoted as K✏(x)
centered at x and radius ✏ > 0 so that K✏(x) ⇢ D. Figure 1 illustrates the domain
and boundary which we are working in:
D : domain which is represented in yellow
B : boundary represented in blue
S✏ : circle which is the boundary of the disk K✏(x) represented in black
B✏ : B [ S✏ the union of the 2 boundaries in pink.
D✏ : Is D minus the disk K✏(x) represented in green.
K✏(x) : disk of radius ✏ and center x represented in orange

Now we apply u and v = � 1
2⇡ log(r) to Green’s second identity on the domain



D✏ = D \K✏(x) with boundary B✏ = B [ S✏(x) to get
Z

D✏

h⇣
� 1

2⇡
log(r)

⌘
�u� u�

⇣
� 1

2⇡
log(r)

⌘i
dy =

Z

B✏

h⇣
� 1

2⇡
log(r)

⌘@u
@n

� u
@

@n

⇣
� 1

2⇡
log(r)

⌘i
d�y (A.2)

=

Z

B

h⇣
� 1

2⇡
log(r)

⌘@u
@n

�u
@

@n

⇣
� 1

2⇡
log(r)

⌘i
d�+

Z

S✏

⇣
� 1

2⇡
log(r)

⌘@u
@n

d� (A.3)

Now looking at the left hand side integral of (A.2)

lim
✏!0

[

Z

D✏

⇣
� 1

2⇡
log(r)

⌘
�udy] !

Z

D

⇣
� 1

2⇡
log(r)

⌘
�udy (A.4)

Since u has continuous partial derivatives in D we can assume @u

@n
= |ru · n|  M

for some constant M and all points in y 2 B are in a fixed neighborhood of x then
����
Z

S✏

⇣
� 1

2⇡
log(r)

⌘@u
@n

d�y

���� 
M

2⇡
log(✏)

Z

S✏

d�y =
M

2⇡
log(✏)(2⇡✏) ! 0 as ✏ ! 0.

(A.5)
Now we consider part of the integral of equation over the disk of equation (A.3)

Z

S✏

u
@

@n

⇣
� 1

2⇡
log(r)

⌘
d�y (A.6)

The outward unit normal to S✏ is ny =
x�y

r
and

� 1

2⇡

@

@ny

(log(r)) = � 1

2⇡
ry(log(r)) · ny = � 1

2⇡

x� y

r
·
⇣
� x� y

r2

⌘
=

1

2⇡r
(A.7)

Using polar coordinates centered at x we obtain
Z

S✏

u
@

@n

⇣ 1

2⇡
log(r)

⌘
d� =

Z 2⇡

0

1

2⇡✏
u(x+ ✏!)✏d✓ (A.8)

where ! = (r, ✓). Taking the limit as ✏ ! 0 we get

lim
✏!0

h Z

S✏

u
@

@n

⇣
� 1

2⇡
log(r)

⌘
d�y

i
=

1

2⇡

Z 2⇡

0

u(x)d✓ = u(x) (A.9)

Taking equation (A.3) as ✏ ! 0 we get the following result

u(x) =

Z

B

⇣
� 1

2⇡
log(r)

⌘@u
@n

d�y�
Z

B

u
@

@n

⇣
� 1

2⇡
log(r)

⌘
d�y�

Z

D

✓
� 1

2⇡
log(r)

◆
�udy

(A.10)
The solution is composed of the single-layer potential which is the first integral
over B and a double-layer potential which is the second integral over B. The
volume potential which is the integral over D vanishes if we let u satisfy Laplace
equation such that �u = 0 so that we get

u(x) =

Z

B

⇣
� 1

2⇡
log(r)

⌘@u
@n

d�y �
Z

B

u
@

@n

⇣
� 1

2⇡
log(r)

⌘
d�y. (A.11)

which is the representation formula.



We expand the kernel to order ϵ, about ϵ=0 and then integrate:

Series�
ϵ

-1 - ϵ2 - �1 - ϵ2� Cos[π + ϵ * T]
, {ϵ, 0, 5}�

1

�-2 - T2

2
� ϵ

+
�-12 T2 - T4� ϵ

6 �4 + T2�2
+
�-480 T4 - 52 T6 - 3 T8� ϵ3

360 �4 + T2�3
+

�-11424 T6 - 864 T8 - 82 T10 - 5 T12� ϵ5

15120 �4 + T2�4
+ O[ϵ]6

1

2 * π
* Integrate�

1

�-2 - T2

2
� ϵ

* (μ[π - s]) * ϵ, 
T, -
δ

ϵ
,

δ

ϵ
��

ConditionalExpression�-
ArcTan� δ

2 ϵ
� μ[π - s]

π
, Re�

ϵ

δ
� ≠ 0 || Im�

ϵ

δ
� >

1

2
|| Im�

ϵ

δ
� < -

1

2
�

������� �� ������� ����������� ������� �������

Appendix B

Interior Dirichlet Inner
Asymptotic Expansion



Appendix C

Checking that u satisfies Laplace
equation

Checking that u= x-x0
x-x0 2 is a

solution to the Laplace equation
Since we knowwe are solving a 2D problem then the elements of u are
u = � x1-y1

(x1-y1)2+(x2-y2)2
, x2-y2
(x1-y1)2+(x2-y2)2

}

-----------------------------------------------------------------------------------------------------------
------------------

We first check if the first element u = x1-y1
(x1-y1)2+(x2-y2)2

satisfies the Laplace equation

*Obtaining the second derivative ux1

D�
x1 - y1

(x1 - y1)2 + (x2 - y2)2
, x1�

-
2 (x1 - y1)2

�(x1 - y1)2 + (x2 - y2)2�2
+

1

(x1 - y1)2 + (x2 - y2)2

Simplify�-
2 (x1 - y1)2

�(x1 - y1)2 + (x2 - y2)2�2
+

1

(x1 - y1)2 + (x2 - y2)2
�

-(x1 - y1)2 + (x2 - y2)2

�(x1 - y1)2 + (x2 - y2)2�2

*Obtaining the second partial derivative ux2
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D�
x1 - y1

(x1 - y1)2 + (x2 - y2)2
, x2�

-
2 (x1 - y1) (x2 - y2)

�(x1 - y1)2 + (x2 - y2)2�2

*Obtaining the second derivative ux1 x1

D�
-(x1 - y1)2 + (x2 - y2)2

�(x1 - y1)2 + (x2 - y2)2�2
, x1�

-
4 (x1 - y1) �-(x1 - y1)2 + (x2 - y2)2�

�(x1 - y1)2 + (x2 - y2)2�3
-

2 (x1 - y1)

�(x1 - y1)2 + (x2 - y2)2�2

Simplify[%16]

2 (x1 - y1) �x12 - 3 x22 - 2 x1 y1 + y12 + 6 x2 y2 - 3 y22�

�x12 + x22 - 2 x1 y1 + y12 - 2 x2 y2 + y22�
3

*Obtaining the second partial derivative ux2 x2

D�-
2 (x1 - y1) (x2 - y2)

�(x1 - y1)2 + (x2 - y2)2�2
, x2�

-
2 (x1 - y1)

�(x1 - y1)2 + (x2 - y2)2�2
+

8 (x1 - y1) (x2 - y2)2

�(x1 - y1)2 + (x2 - y2)2�3

Simplify[%18]

2 (x1 - y1) �-(x1 - y1)2 + 3 (x2 - y2)2�

�(x1 - y1)2 + (x2 - y2)2�3

**Checking that ux1 x1 + ux2 x2 = 0

2 (x1 - y1) �x12 - 3 x22 - 2 x1 y1 + y12 + 6 x2 y2 - 3 y22�

�x12 + x22 - 2 x1 y1 + y12 - 2 x2 y2 + y22�
3

+
2 (x1 - y1) �-(x1 - y1)2 + 3 (x2 - y2)2�

�(x1 - y1)2 + (x2 - y2)2�3

2 (x1 - y1) �-(x1 - y1)2 + 3 (x2 - y2)2�

�(x1 - y1)2 + (x2 - y2)2�3
+
2 (x1 - y1) �x12 - 3 x22 - 2 x1 y1 + y12 + 6 x2 y2 - 3 y22�

�x12 + x22 - 2 x1 y1 + y12 - 2 x2 y2 + y22�
3

Simplify[%20]

0

Thus we conclude that ux1 x1 + ux2 x2 = 0

------------------------------------------------------------------------------------------------------------------------------------------
----

Nowwe check that u = x2-y2
(x1-y1)2+(x2-y2)2

satisfies the Laplace

2 checkingLaplaceSolution.nb
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equation
*Obtaining the second derivative ux1

D�
x2 - y2

(x1 - y1)2 + (x2 - y2)2
, x1�

-
2 (x1 - y1) (x2 - y2)

�(x1 - y1)2 + (x2 - y2)2�2

*Obtaining the second derivative ux1 x1

D�-
2 (x1 - y1) (x2 - y2)

�(x1 - y1)2 + (x2 - y2)2�2
, x2�

-
2 (x1 - y1)

�(x1 - y1)2 + (x2 - y2)2�2
+

8 (x1 - y1) (x2 - y2)2

�(x1 - y1)2 + (x2 - y2)2�3

Simplify[%305]

2 (x1 - y1) �-(x1 - y1)2 + 3 (x2 - y2)2�

�(x1 - y1)2 + (x2 - y2)2�3

*Obtaining the second partial derivative ux2

D�
x2 - y2

(x1 - y1)2 + (x2 - y2)2
, x2�

1

(x1 - y1)2 + (x2 - y2)2
-

2 (x2 - y2)2

�(x1 - y1)2 + (x2 - y2)2�2

Simplify�
1

(x1 - y1)2 + (x2 - y2)2
-

2 (x2 - y2)2

�(x1 - y1)2 + (x2 - y2)2�2
�

(x1 - y1)2 - (x2 - y2)2

�(x1 - y1)2 + (x2 - y2)2�2

*Obtaining the second derivative ux2 x2

D�
(x1 - y1)2 - (x2 - y2)2

�(x1 - y1)2 + (x2 - y2)2�2
, x2�

-
4 �(x1 - y1)2 - (x2 - y2)2� (x2 - y2)

�(x1 - y1)2 + (x2 - y2)2�3
-

2 (x2 - y2)

�(x1 - y1)2 + (x2 - y2)2�2

Simplify[%311]

2 (x2 - y2) �-3 x12 + x22 + 6 x1 y1 - 3 y12 - 2 x2 y2 + y22�

�x12 + x22 - 2 x1 y1 + y12 - 2 x2 y2 + y22�
3

**Checking that uy1 y1 + uy2 y2 = 0

checkingLaplaceSolution.nb 3
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Appendix D

Exterior Neumann Inner
Asymptotic Expansion

◼ Exterior Neumann - Asymptotic expansion/ calculation
----------------------- Kernel simplification

-----------------------------------

�(ϵ * Cos[s] * (Cos[s] - Cos[t])) + �ϵ * Sin[s] * �Sin[s] - Sin[t]��� *

�ϵ2 * �Sin[t]�2 + (Cos[t])2�
1
2 �

�ϵ2 * (Cos[s] - Cos[t])2 + �Sin[s] - Sin[t]�2� * �ϵ2 * �Sin[s]�2 + (Cos[s])2�
1
2

�ϵ Cos[s] (Cos[s] - Cos[t]) + ϵ Sin[s] �Sin[s] - Sin[t]�� Cos[t]2 + ϵ2 Sin[t]2

Cos[s]2 + ϵ2 Sin[s]2 �ϵ2 (Cos[s] - Cos[t])2 + �Sin[s] - Sin[t]�2�

Simplify�
�ϵ Cos[s] (Cos[s] - Cos[t]) + ϵ Sin[s] �Sin[s] - Sin[t]�� Cos[t]2 + ϵ2 Sin[t]2

Cos[s]2 + ϵ2 Sin[s]2 �ϵ2 (Cos[s] - Cos[t])2 + �Sin[s] - Sin[t]�2�
�

-
ϵ 1 + ϵ2 - �-1 + ϵ2� Cos[2 t]

2 �-1 - ϵ2 + �-1 + ϵ2� Cos[s + t]� Cos[s]2 + ϵ2 Sin[s]2

---------------------------- Inner Asymptotic Expansion

----------------------------------
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Series�-
ϵ 1 + ϵ2 - �-1 + ϵ2� Cos[2 (ϵ * T + π - s)]

2 �-1 - ϵ2 + �-1 + ϵ2� Cos[ϵ * T + π]� Cos[s]2 + ϵ2 * Sin[s]2
, {ϵ, 0, 3}�

2 1 + Cos[2 s]

�4 + T2� Cos[s]2 ϵ
+

2 T Sin[2 s]

�4 + T2� Cos[s]2 1 + Cos[2 s]
+

1

2
-

1

Cos[s]2

�-12 T2 - T4� 1 + Cos[2 s]

6 �4 + T2�2
- �-1 + 2 T2 Cos[2 s] + Cos[2 s]2 + 2 T2 Cos[2 s]2 +

T2 Sin[2 s]2� � 2 -2 -
T2

2
(1 + Cos[2 s])3/2 +

1 + Cos[2 s] Tan[s]2

2 �-2 - T2
2
� Cos[s]2

ϵ +

1

2
-

1

Cos[s]2

T �-12 T2 - T4� Sin[2 s]

6 �4 + T2�2 1 + Cos[2 s]
+ �-9 T Sin[2 s] - 4 T3 Sin[2 s] -

12 T Cos[2 s] Sin[2 s] - 2 T3 Cos[2 s] Sin[2 s] - 3 T Cos[2 s]2 Sin[2 s] +

2 T3 Cos[2 s]2 Sin[2 s] + 3 T3 Sin[2 s]3� � 6 -2 -
T2

2
(1 + Cos[2 s])5/2 +

T Sin[2 s] Tan[s]2

2 �-2 - T2
2
� Cos[s]2 1 + Cos[2 s]

ϵ2 +
1

2

-
1

Cos[s]2

�-480 T4 - 52 T6 - 3 T8� 1 + Cos[2 s]

360 �4 + T2�3
-

��-12 T2 - T4� �-1 + 2 T2 Cos[2 s] + Cos[2 s]2 + 2 T2 Cos[2 s]2 + T2 Sin[2 s]2�� �

�12 �4 + T2�2 (1 + Cos[2 s])3/2� - �3 - 36 T2 Cos[2 s] - 8 T4 Cos[2 s] - 6 Cos[2 s]2 -
84 T2 Cos[2 s]2 - 12 T4 Cos[2 s]2 - 60 T2 Cos[2 s]3 + 3 Cos[2 s]4 - 12 T2 Cos[2 s]4 +
4 T4 Cos[2 s]4 - 42 T2 Sin[2 s]2 - 16 T4 Sin[2 s]2 - 48 T2 Cos[2 s] Sin[2 s]2 +
4 T4 Cos[2 s] Sin[2 s]2 - 6 T2 Cos[2 s]2 Sin[2 s]2 + 20 T4 Cos[2 s]2 Sin[2 s]2 +

15 T4 Sin[2 s]4� � 24 -2 -
T2

2
(1 + Cos[2 s])7/2 +

1

2 Cos[s]2

�-12 T2 - T4� 1 + Cos[2 s]

6 �4 + T2�2
- �-1 + 2 T2 Cos[2 s] + Cos[2 s]2 + 2 T2 Cos[2 s]2 + T2 Sin[2 s]2� �

2 -2 -
T2

2
(1 + Cos[2 s])3/2 Tan[s]2 -

3 1 + Cos[2 s] Tan[s]4

8 �-2 - T2
2
� Cos[s]2

ϵ3 + O[ϵ]4

1

2 * π
* Integrate�

2 1 + Cos[2 s]

�4 + T2� Cos[s]2 ϵ
+

2 T Sin[2 s]

�4 + T2� Cos[s]2 1 + Cos[2 s]
* (μ[π - s]) * ϵ, 	T, -

δ

ϵ
,

δ

ϵ
��

ConditionalExpression�
ArcTan	 δ

2 ϵ

 μ[π - s]

π
, Re�

ϵ

δ
� ≠ 0 || Im�

ϵ

δ
� >

1

2
|| Im�

ϵ

δ
� < -

1

2
�
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1

2 * π
* Integrate�

2 1 + Cos[2 s]

�4 + T2� Cos[s]2 ϵ
* (μ[π - s]) * ϵ, 	T, -

δ

ϵ
,

δ

ϵ
��

ConditionalExpression�
ArcTan	 δ

2 ϵ

 μ[π - s]

π
, Re�

ϵ

δ
� ≠ 0 || Im�

ϵ

δ
� >

1

2
|| Im�

ϵ

δ
� < -

1

2
�

1

2 * π
* Integrate�

2 T Sin[2 s]

�4 + T2� Cos[s]2 1 + Cos[2 s]
* (μ[π - s]) * ϵ, 	T, -

δ

ϵ
,

δ

ϵ
��

0
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Appendix E

Exterior Helmholtz Inner
Asymptotic Expansion

A�er analyzing the kernel we know that the parts of the kernel that need a correction are L1 and L2 for
when i ≠ j.

----------------------------------------- L1when i ≠ j --------------------------------------------------------------------

We start with the inner asymptotic expansion for L1

We start by simplifying the kernel

��������� Simplify��ϵ * Cos[s] - ϵ * Cos[t]�2 + �Sin[s] - Sin[t]�2�

��������� �ϵ Cos[s] - ϵ Cos[t]�2 + �Sin[s] - Sin[t]�2

��������� TrigReduce��ϵ Cos[s] - ϵ Cos[t]�2 + �Sin[s] - Sin[t]�2�

���������
1

2
�2 + 2 ϵ2 - Cos[2 s] + ϵ2 Cos[2 s] - 2 Cos[s - t] -

2 ϵ2 Cos[s - t] - Cos[2 t] + ϵ2 Cos[2 t] + 2 Cos[s + t] - 2 ϵ2 Cos[s + t]�

��������� Simplify�
1

2
�2 + 2 ϵ2 - Cos[2 s] + ϵ2 Cos[2 s] - 2 Cos[s - t] -

2 ϵ2 Cos[s - t] - Cos[2 t] + ϵ2 Cos[2 t] + 2 Cos[s + t] - 2 ϵ2 Cos[s + t]��

��������� -2 �-1 - ϵ2 + �-1 + ϵ2� Cos[s + t]� Sin�
s - t

2
�
2

���������

Simplify�
k ϵ �-1 + Cos[s - t]�

2 2 π -�-1 - ϵ2 + �-1 + ϵ2� Cos[s + t]� Sin� s-t
2

�
2

*

BesselJ�1, k -2 �-1 - ϵ2 + �-1 + ϵ2� Cos[s + t]� Sin�
s - t

2
�
2
� �

���������

k ϵ BesselJ�1, 2 k -�-1 - ϵ2 + �-1 + ϵ2� Cos[s + t]� Sin� s-t
2

�
2
� �-1 + Cos[s - t]�

2 2 π �1 + ϵ2 - �-1 + ϵ2� Cos[s + t]� Sin� s-t
2

�
2

We now do a series expansion
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��������� Assuming�ϵ > 0 && δ > 0, �Series�

k ϵ BesselJ�1, k ϵ2 �Cos[s] - Cos[π + ϵ * T - s]�2 + �Sin[s] - Sin[π + ϵ * T - s]�2 �

Sin�
s - �π + ϵ * T - s�

2
�
2

	

2 2 π -�-1 - ϵ2 + �-1 + ϵ2� Cos[π + ϵ * T]� Sin�
s - �π + ϵ * T - s�

2
�
2

, {ϵ, 0, 3}�
�

��������� � -
4 + T2

k �-24 Cos[s] - 6 T2 Cos[s]�

Floor�
Arg�

k -4 ϵ Cos[s]-T2 ϵ Cos[s]+ 4+T2 ϵ2 �Cos[s]+Cos�s-T ϵ��
2
+�Sin[s]-Sin�s-T ϵ��

2

4+T2
�

2 π
�

-
k �-24 Cos[s] - 6 T2 Cos[s]�

4 + T2

Floor�
Arg�

k -4 ϵ Cos[s]-T2 ϵ Cos[s]+ 4+T2 ϵ2 �Cos[s]+Cos�s-T ϵ��
2
+�Sin[s]-Sin�s-T ϵ��

2

4+T2
�

2 π
�

k2 Cos[s]2 ϵ

4 π
+
k2 T Cos[s] Sin[s] ϵ2

4 π
+

1

32 π

�-2 k2 T2 Cos[s]2 - 4 k4 Cos[s]4 - k4 T2 Cos[s]4 + 2 k2 T2 Sin[s]2� ϵ3 + O[ϵ]4 �

We now integrate taking leading order terms

��������� Assuming�ϵ > 0 && δ > 0,

�Integrate� -
4 + T2

k �-24 Cos[s] - 6 T2 Cos[s]�

Floor�

Arg�

k -4 ϵ Cos[s]-T2 ϵ Cos[s]+ 4+T2 ϵ2 �Cos[s]+Cos�s-T ϵ��
2
+�Sin[s]-Sin�s-T ϵ��

2

4+T2

�

2 π
�

-
k �-24 Cos[s] - 6 T2 Cos[s]�

4 + T2

Floor�

Arg�

k -4 ϵ Cos[s]-T2 ϵ Cos[s]+ 4+T2 ϵ2 �Cos[s]+Cos�s-T ϵ��
2
+�Sin[s]-Sin�s-T ϵ��

2

4+T2

�

2 π
�

*

k2 Cos[s]2 ϵ

4 π
* (μ[π - s]) * ϵ, �T, -

δ

ϵ
,

δ

ϵ

�
�

��������� �
k2 δ ϵ Cos[s]2 μ[π - s]

2 π
�

------------------------------------------------- L2 when i ≠ j ---------------------------------------------------

Expanding L2
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We start by simplifying the kernel

��������� Simplify�
ⅈ k ϵ Sin� s-t

2
�
2

2 -�-1 - ϵ2 + �-1 + ϵ2� Cos[s + t]� Sin� s-t
2

�
2

*

HankelH1�1, k * 
ϵ2 �Cos[s] - Cos[t]�2 + �Sin[s] - Sin[t]�2�
1
2��

��������� ⅈ k ϵ HankelH1�1, k ϵ2 �Cos[s] - Cos[t]�2 + �Sin[s] - Sin[t]�2 � Sin�
s - t

2
�
2

�

2 �1 + ϵ2 - �-1 + ϵ2� Cos[s + t]� Sin�
s - t

2
�
2

��������� TrigReduce�

ⅈ k ϵ HankelH1�1, k ϵ2 �Cos[s] - Cos[t]�2 + �Sin[s] - Sin[t]�2 � Sin�
s - t

2
�
2

	

2 �1 + ϵ2 - �-1 + ϵ2� Cos[s + t]� Sin�
s - t

2
�
2

�

��������� - ⅈ -k ϵ HankelH1�1, k ϵ2 �Cos[s] - Cos[t]�2 + �Sin[s] - Sin[t]�2 � +

k ϵ Cos[s - t] HankelH1�1, k ϵ2 �Cos[s] - Cos[t]�2 + �Sin[s] - Sin[t]�2 � �

2 2 -�-1 - ϵ2 - Cos[s + t] + ϵ2 Cos[s + t]� Sin�
s

2
-
t

2
�
2

��������� Simplify[%263]

��������� ⅈ k ϵ HankelH1�1, k ϵ2 �Cos[s] - Cos[t]�2 + �Sin[s] - Sin[t]�2 � Sin�
s - t

2
�
2

�

2 -�-1 - ϵ2 + �-1 + ϵ2� Cos[s + t]� Sin�
s - t

2
�
2

We now do a series expansion

��������� Assuming�ϵ > 0 && δ > 0, �Series�

ⅈ k ϵ HankelH1�1, k�
ϵ2 �Cos[s] - Cos[π + ϵ * T - s]�2 + �Sin[s] - Sin[π + ϵ * T - s]�2��

Sin�
s - �π + ϵ * T - s�

2
�
2

	

2 � -�-1 - ϵ2 + �-1 + ϵ2� Cos[π + ϵ * T]� Sin�
s - �π + ϵ * T - s�

2
�
2

, {ϵ, 0, 3}�
�

��������� �
2

π �4 + T2� ϵ
+

1

6 π �4 + T2�5/2

12 T2 4 + T2 + T4 4 + T2 + 368 k2 4 + T2 Cos[s]2 - 96 EulerGamma k2 4 + T2 Cos[s]2 +

extHelmAsympt.nb 3
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184 k2 T2 4 + T2 Cos[s]2 - 48 EulerGamma k2 T2 4 + T2 Cos[s]2 +

23 k2 T4 4 + T2 Cos[s]2 - 6 EulerGamma k2 T4 4 + T2 Cos[s]2 -

320 k2 Cos[s] �4 + T2� Cos[s]2 - 160 k2 T2 Cos[s] �4 + T2� Cos[s]2 -

20 k2 T4 Cos[s] �4 + T2� Cos[s]2 - 96 k2 4 + T2 Cos[s]2 Log[ϵ] -

48 k2 T2 4 + T2 Cos[s]2 Log[ϵ] - 6 k2 T4 4 + T2 Cos[s]2 Log[ϵ] -

96 k2 4 + T2 Cos[s]2 Log�-
k �-24 Cos[s] - 6 T2 Cos[s]�

12 4 + T2
� -

48 k2 T2 4 + T2 Cos[s]2 Log�-
k �-24 Cos[s] - 6 T2 Cos[s]�

12 4 + T2
� -

6 k2 T4 4 + T2 Cos[s]2 Log�-
k �-24 Cos[s] - 6 T2 Cos[s]�

12 4 + T2
� ϵ + O[ϵ]2 +

-
4 + T2

k �-24 Cos[s] - 6 T2 Cos[s]�

Floor�
Arg�

k -4 ϵ Cos[s]-T2 ϵ Cos[s]+ 4+T2 ϵ2 �Cos[s]+Cos�s-T ϵ��
2
+�Sin[s]-Sin�s-T ϵ��

2

4+T2
�

2 π
�

-
k �-24 Cos[s] - 6 T2 Cos[s]�

4 + T2

Floor�
Arg�

k -4 ϵ Cos[s]-T2 ϵ Cos[s]+ 4+T2 ϵ2 �Cos[s]+Cos�s-T ϵ��
2
+�Sin[s]-Sin�s-T ϵ��

2

4+T2
�

2 π
�

1

2
ⅈ k2 Cos[s]2 ϵ +

1

2
ⅈ k2 T Cos[s] Sin[s] ϵ2 -

1

16
ⅈ k2 �2 T2 Cos[s]2 + 4 k2 Cos[s]4 + k2 T2 Cos[s]4 - 2 T2 Sin[s]2� ϵ3 + O[ϵ]4 +

Floor�
1

2 π
Arg�

1

4 + T2
k -4 ϵ Cos[s] - T2 ϵ Cos[s] +

4 + T2 
�ϵ2 �Cos[s] + Cos[s - T ϵ]�2 + �Sin[s] - Sin[s - T ϵ]�2� ��

-
k2 Cos[s]2 Log�- 12 4+T2

k �-24 Cos[s]-6 T2 Cos[s]�
� ϵ

π
-

k2 T Cos[s] Log�- 12 4+T2

k �-24 Cos[s]-6 T2 Cos[s]�
� Sin[s] ϵ2

π
+

1

8 π
Log�-

12 4 + T2

k �-24 Cos[s] - 6 T2 Cos[s]�
�

�2 k2 T2 Cos[s]2 + 4 k4 Cos[s]4 + k4 T2 Cos[s]4 - 2 k2 T2 Sin[s]2� ϵ3 + O[ϵ]4 +
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Floor�
1

2 π
Arg�

1

4 + T2
k -4 ϵ Cos[s] - T2 ϵ Cos[s] +

4 + T2 
�ϵ2 �Cos[s] + Cos[s - T ϵ]�2 + �Sin[s] - Sin[s - T ϵ]�2� ��

-

k2 Cos[s]2 Log�- k �-24 Cos[s]-6 T2 Cos[s]�

12 4+T2
� ϵ

π
-

k2 T Cos[s] Log�- k �-24 Cos[s]-6 T2 Cos[s]�

12 4+T2
� Sin[s] ϵ2

π
+

1

8 π
Log�-

k �-24 Cos[s] - 6 T2 Cos[s]�

12 4 + T2
�

�2 k2 T2 Cos[s]2 + 4 k4 Cos[s]4 + k4 T2 Cos[s]4 - 2 k2 T2 Sin[s]2� ϵ3 + O[ϵ]4 �

We now integrate taking leading order terms

��������� Integrate�
2

π �4 + T2� ϵ
* (μ[π - s]) * ϵ, �T, -

δ

ϵ
,

δ

ϵ

�

��������� ConditionalExpression�
2 ArcTan� δ

2 ϵ
� μ[π - s]

π
, Re�

ϵ

δ
� ≠ 0 || Im�

ϵ

δ
� >

1

2
|| Im�

ϵ

δ
� < -

1

2
�
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Appendix F

Asymptotic Matching for the
Interior Dirichlet Laplace
problem

From previous work we found that the boundary integral equation for a narrow
ellipse is

� 1

2
µ(s) +

1

2⇡

Z 2⇡

0

k(s, t; ✏)µ(t)dt = f(s), 0  s  2⇡, (F.1)

with

k(s, t; ✏) =
✏

�1� ✏2 � (1� ✏2) cos(s+ t)
(F.2)

F.1 Inner Expansion

We first wish to obtain an inner expansion of the integral,

I =
1

2⇡

Z 2⇡

0

k(s, t; ✏)µ(t)dt (F.3)

such expansion is obtain in a similar way as the inner expansion for the modified
trapezoid method one di↵erence is that instead of considering�t we now introduce
a generic parameter � which satisfies the asymptotic relation, 0 < ✏ ⌧ � < 1. We
then consider � =

p
✏ so that

Iinner(s, t; ✏, �) =
1

2⇡

Z
⇡�s+�

⇡�s��

k(s, t; ✏)µ(t)dt (F.4)

In order to calculate the inner expansion we nee d to make some substitutions.
First we let

t = ⌧ + ⇡ � s (F.5)

dt = d⌧ (F.6)

so that

Iinner =
1

2⇡

Z
�

��

✏

�1� ✏2 � (1� ✏2) cos(⌧ + ⇡)
µ(⌧ + ⇡ � s)d⌧ (F.7)



Now we let

⌧ = ✏T (F.8)

d⌧ = ✏dT (F.9)

so that

Iinner =
1

2⇡

Z �
✏

��
✏

✏

�1� ✏2 � (1� ✏2) cos(✏T + ⇡)
µ(✏T + ⇡ � s)✏dT (F.10)

Expanding to second order ✏ for ✏ = 0,

Iinner =
1

2⇡

Z �
✏

��
✏

⇣ 1�
�2� T 2

2

�
✏
+

(�12T 2 � T 4)✏

6(4 + T 2)2

⌘
(µ(⇡ � s) + ✏Tµ0(⇡ � s) +

✏2T 2

2
µ00(⇡ � s))✏dT

(F.11)

= �
arctan( �

2✏)µ(⇡ � s)

⇡
� �3✏

6⇡(�2 + 4✏2)
µ(⇡ � s)�

✏2(2�
✏
� 4 arctan( �

2✏)

2⇡
µ00(⇡ � s) +O(✏2)

(F.12)

Expanding for large �

✏
, we find

Iinner ⇠ �1

2
µ(⇡�s)+

2✏

⇡�
µ(⇡�s)� ✏�

6⇡
µ(⇡�s)+

�✏

⇡
µ00(⇡�s)� ✏2µ00(⇡�s)+O(✏2)

(F.13)
since �✏2µ00(⇡ � s) is a second order ✏ term we obtain

Iinner ⇠ �1

2
µ(⇡ � s) +

2✏

⇡�
µ(⇡ � s)� ✏�

6⇡
µ(⇡ � s) +

�✏

⇡
µ00(⇡ � s) +O(✏2) (F.14)

F.2 Outer Expansion

Next we seek an outer expansion such that

Iouter(s, t; ✏, �) =
1

2⇡

Z
⇡�s+�

0

k(s, t; ✏)µ(t)dt+
1

2⇡

Z 2⇡

⇡�s+�

k(s, t; ✏)µ(t)dt (F.15)

Expanding k about ✏,

k(s, t; ✏) = � ✏

1 + cos(s+ t)
+O(✏3) = �✏k1(s, t) +O(✏3) (F.16)

Replacing k by this expansion,

Iouter(s, t; ✏, �) =
1

2⇡

Z
⇡�s+�

0

✏(�k1(s, t; ✏))µ(t)dt+
1

2⇡

Z 2⇡

⇡�s+�

✏(�k1(s, t; ✏))µ(t)dt+. . .

(F.17)
which can be written as

Iouter =
1

2⇡

Z 2⇡

0

✏(�k1(s, t; ✏))µ(t)dt+
1

2⇡

Z
⇡�s��

⇡�s+�

✏(�k1(s, t; ✏))µ(t)dt+. . . (F.18)



Now we compute the leading-order behavior for the second integral in (F.18) so
that

I1(s, t; ✏, �) =
1

2⇡

Z
⇡�s��

⇡�s+�

✏(�k1(s, t; ✏))µ(t)dt (F.19)

In order to compute the leading behavior we have to make a few substitutions,
first we let

t = ⌧ + ⇡ � s (F.20)

dt = d⌧ (F.21)

we obtain

I1 =
1

2⇡

Z ��

�

�✏

✓
1

1 + cos(⌧ + ⇡)

◆
µ(⌧ + ⇡ � s)d⌧ (F.22)

let

⌧ = ✏T (F.23)

d⌧ = ✏dT (F.24)

we obtain

I1 =
1

2⇡

Z �
✏

� �
✏

✏

✓
1

1 + cos(✏T + ⇡)

◆
µ(✏T + ⇡ � s)✏dT (F.25)

Expanding to second order ✏ about ✏ = 0

I1 =
1

2⇡

Z �
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2

T 2✏2
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1

6
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120
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(F.26)

After factoring the outer expansion is

I1 =
1

2⇡

Z �
✏

��
✏

⇣ 2

T 2
µ(⇡ � s) +

1

6
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⌘
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(F.27)

When we integrate we notice that

I1 =

Z �
✏

��
✏

2

T 2
µ(⇡ � s)dT ! 1 (F.28)

thus, we are not able obtain an outer expansion and we are not able to do an
asymptotic matching. For the interior Dirichlet Laplace prooblem we are only
able to obtain an inner asymptotic expansion.



Appendix G

Body-fitted grid for the exterior
Neumann problem

In order to estimate the accuracy of the method we seek an exact solution. Con-
trary to the interior Dirichlet Laplace problem, there is no straight forward source
f to provide an exact solution to equation (50). Here we use an exact solution
of (3.1) directly. We consider uexact =

x�xo
|x�xo|2 with xo 2 D as a solution to the

exterior Neumann problem to find f =
@uexact

@nx

. We create a grid by extending

along the normal on the boundary as shown in Figure H.1. We use a body fitted
grid to evaluate outside of the ellipse. We use the points to approximate uexact

which will give an exact solution and approximate the single-layer potential

u(x) =

Z

B

✓
� 1

2⇡
log |x� y|

◆
µ(y)dy. (G.1)

Figure G.1: Grid of the ellipse with ✏ = 0.5 and N = 32.

Numerical Results
Figure G.2a shows the approximation using PTR. The peaks on the plot corre-
spond to where the kernel is nearly singular s + t = ⇡ and s + t = 3⇡. The
diagonals on the heatmap in Figure G.2c correspond to s+ t = ⇡ and s+ t = 3⇡.



The values along the diagonals are very large this is due to the kernels’ behavior
at these points. The condition number for matrix PE is greater than 1, thus the
matrix is sensitive to inverse calculation. Recall that we care about the accuracy
of the approximation and not so much on computational cost. Figure G.2b shows
the log of the absolute error using PTR. The error is large. The regions of high
curvature a↵ect our approximation as we see in figure G.2b the error increases as
it approximates the regions a↵ected by the curvature of the ellipse.

(a) (b) (Discussion in progress)

(c) The conditon number of PE is 1.437235e+00.

Figure G.2: (a) Periodic Trapezoid Rule approximation of u with ✏ = 0.2 and
N = 64. (b) plot of the absolute error of the approximation using PTR with
✏ = 0.2 and N = 64. (c) Heatmap of the matrix PE for ✏ = 0.01 and N = 32.

Summary
The exterior Neuman problem for a narrow ellipse has a challenging kernel ex-
pression. Furthermore, we do not have an exact solution for this problem. We
use a body-fitted grid to obtain an approximation of the single-layer potential and
obtain a large error. We obtained a large error due to the curvature of our problem
and thus conclude that the body fitted grid is not capturing the behavior of our
problem. in the regions of high curvature we obtain a large error. A new grid will
be implemented that better suits the curvature of our problem.



Appendix H

Body-fitted grid for the exterior
Helmholtz problem

In order to estimate the accuracy of the method we seek an exact solution. Similar
to the exterior Neumann Laplace problem, there is no straight forward source f
to provide an exact solution to equation (89). Here we use an exact solution of
(69) directly. The challenge is that we do not have an exact solution for this

problem. We consider uexact =
i

4H
(1)
0 (k|x� x0|) with xo 2 D as a solution to find

f = uexact|B. We use the body-fitted grid to evaluate outside of the ellipse and use
the points obtained to approximate uexact which will give an exact solution and
solve the single- and double- layer potential

u(x) =

Z

B

✓
@G

@ny

(x, y)� ikG(x, y)

◆
µ(y)dy. (H.1)

Figure H.1: Grid of the ellipse with ✏ = 0.5 and N = 32.

Numerical Results
Figure H.2a is the plot of µ using Kress quadrature. We no longer have a singu-
larity. Figure H.2b is a heatmap of the matrix H, we have big values along the
diagonals which correspond to where the kernel is nealy singular s + t = ⇡ and
s + t = 3⇡. Figure H.2c correspond to a log surface plot of the error there are



parts where the error is large along our grid of the boundary. A correction needs
to be made so that we can improve the approximation.

(a) (b)

(c) (In review)

Figure H.2: (a) Exterior Helmholtz approximation of µ with ✏ = 0.001, N = 120
and k = 5. (b) Heatmap of matrix H with ✏ = 0.001, N = 64 and k = 5. (c) The
log of the error using ✏ = 0.2, N = 128 and k = 5.

Summary
The BIE of the exterior Helmholtz problem has a weakly singular integral which
makes the problem challenging. Since the kernel of the exterior Helmholtz problem
is singular PTR does not work. The Hankel function of the first kind has a log
singularity thus we use Kress quadrature to obtain an approximation of the double-
and single- layer potential. We obtained a large error due to the curvature of our
problem and thus conclude that the body fitted grid is not capturing the behavior
of our problem. in the regions of high curvature we obtain a large error. Anew
grid will be implemented that better suits the curvature of our problem.
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