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Abstract

Testing the WIMP hypothesis with the LUX dark matter detector

by

Curt Nehrkorn

According to current estimates, the dark matter (DM) in our universe outweighs standard

baryonic matter by a factor of five. Galaxies, including the Milky Way, are enveloped

in dark halos responsible for their past formation and their present rotational dynamics.

Despite the progress made by astrophysicists in identifying DM’s gravitational influence,

its composition is unknown. Uncovering the particle nature of DM is therefore one of

the main projects in fundamental physics. Experiments such as the Large Underground

Xenon (LUX) seek to directly observe DM particles in the galactic halo as they collide

with nuclei in target materials. LUX was operated at the Sanford Underground Research

Facility (SURF) in Lead, South Dakota from April 2013 to May 2016. Though no

evidence for DM events was found, the collected data allowed world-leading constraints

to be placed on the interaction rate between DM particles and nucleons. Here we explore

the WIMP (Weakly Interacting Massive Particle) hypothesis, and go through the signal

models relevant to direct detection experiments like LUX. We describe the design and

operation of the LUX detector, its calibration, as well as expected sources of background

events and techniques employed to mitigate them. Data analysis and the implementation

vii



of models used in the profile likelihood ratio (PLR) procedure for setting frequentist

confidence intervals are also discussed in detail. Finally, LUX limits on spin-dependent

WIMP-nucleon scattering are given special attention.
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Chapter 1

Introduction

The quest to understand dark matter offers nothing in the way of guarantees. The in-

scrutable substance represents one of the greatest mysteries in contemporary physics,

with its composition unknown and its existence occasionally called into doubt. Further-

more, to answer the question asked by taxi drivers and state politicians alike, its detection

would furnish no obvious technological boon.

Still, scientists band together in ever greater numbers, pooling their expertise, re-

sources, and graduate students in an effort to solve the missing mass puzzle. Perhaps

this is no surprise, since illuminating the dark matter would reveal secrets of the universe

at both its smallest and largest scales. And although healthy scientific skepticism is cer-

tainly alive and well, the astrophysical evidence in support of the dark matter hypothesis

is striking in its richness and diversity.

1



Introduction Chapter 1

1.1 Evidence for dark matter

The first hints of dark matter were uncovered in the 1930s, notably by Oort [42] and

Zwicky [43]. The latter is often credited with its discovery, having speculated that the

unexpectedly high velocity dispersion observed among the galaxies of the Coma cluster

could be a result of “dunkle Materie.” To explain this phenomenon, he calculated:

[. . . ] the average density in the Coma system would have to be at least 400

times larger than that derived on the grounds of observations of luminous

matter. If this would be confirmed we would get the surprising result that

dark matter is present in much greater amount than luminous matter. [43]

As is noted in [44], Zwicky’s large estimate is inflated by a factor of 8, due to the value

of the Hubble constant assumed in his calculations.

Zwicky invoked the virial theorem to arrive at his conclusions, which relates the time

averaged total kinetic and potential energies (T and U , respectively) of a stable system.

For gravitationally bound systems,

〈T 〉τ = −1

2
〈U〉τ . (1.1)

For observational purposes, it useful to assume ergodicity and replace the time averages

with ensemble averages (〈〉τ → 〈〉N). We can approximate the Coma cluster as a spherical

gas with uniform density to obtain

U = −3

5

GM2

R
, (1.2)

where G is the gravitational constant, M is the total mass of the cluster, and R the

2
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radius. Making the further approximation that all N galaxies in the cluster have equal

mass m = M/N , we find

〈T 〉τ =
1

2

N∑
i

mi〈v2
i 〉τ (1.3)

=
m

2

N∑
i

〈v2〉N (1.4)

=
M

2
〈v2〉N . (1.5)

Substituting these results into eq. 1.1, we derive an expression for the total mass of the

cluster in terms of velocity dispersion:

M =
5

3

R〈v2〉N
G

. (1.6)

This is the formula used by Zwicky to arrive at the now famous conclusion: the mass

predicted by the gravitational properties of the system far outweighed that deduced from

the system’s luminosity.

Though this line of reasoning might have been the first indication of dark matter’s

existence, it was not until some 40 years later that a consistent picture began to emerge,

connecting the disparate observations of high mass-to-light ratios. The groundbreaking

work of Vera Rubin and others investigating the rotation of galaxies was central to this

endeavor.
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Figure 1.1: Overlaid rotation curves from 21 Sc galaxies, presented by Rubin, Ford, and
Thonnard in their 1980 review paper [1]. Despite differences in their size and luminosity,
the galaxies all feature the same flatness in their rotation curves at high radii, suggesting
the presence of a dark matter halo.

1.1.1 Galactic rotation curves

Whereas Zwicky’s observations concerned the dynamics of galaxy clusters, the most

famous evidence for dark matter comes from a smaller scale: the rotational motion of

galaxies themselves. Rotation curves are the graphs relating the circular velocity of

galactic constituents to their galactic radius (i.e. distance from the center of the galaxy),

which can be notated functionally as v(r). From Newton’s second law, we have:

v(r) =

√
GM(r)

r
, (1.7)

where M(r) denotes the mass enclosed within radius r. As r increases and M(r) ap-

proaches the constant total mass of the galaxy, it follows that v(r) will fall as 1/
√
r.

In practice, these curves are constructed by measuring the Doppler shift of emission
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lines from gas clouds located at a range of galactic radii. In their early work, Rubin

and Ford made use of a spectrograph to map the velocity distribution of H II regions

in M31 [45]. Given the distribution of luminous mass in M31, they expected to observe

the drop-off in the rotation curve at high radius. Instead, the curve remained flat out

to their farthest measurements, implying a mass distribution at odds with the density

profile suggested by luminous matter. Specifically, referring to eq. 1.7, we see that at

high radius M(r) ∝ r (or equivalently, ρ(r) ∝ r−2). This discrepancy was borne out in

subsequent studies, which found similarly flat rotation curves in a survey of many spiral

galaxies (see e.g. Refs. [1, 46]). Fig. 1.1 shows a collection of 21 such rotation curves. In

the discussion section of [1], Rubin et al. summarize:

This form for the rotation curves implies that the mass is not centrally con-

densed, but that significant mass is located at large R. The integral mass

is increasing at least as fast as R. The mass is not converging to a limiting

mass at the edge of the optical image. The conclusion is inescapable that

nonluminous matter exists beyond the optical galaxy. [1]

Later surveys used the 21-cm line from neutral hydrogen to construct galactic rotation

curves out to even higher radii, well beyond the optical disk. Fig. 1.2, taken from [2], is

often showcased as an iconic example from this body of research. However, the original

authors (Begeman et al.) did not see the data as being incontrovertible evidence for dark

matter (hereafter “DM”); instead, they argued that their observations could be more

accurately described by an alternative theory: modified Newtonian dynamics (MOND).
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Figure 1.2: Rotation curve of a dwarf spiral galaxy from [2], a favorite of dark matter
review papers (e.g. Refs. [3, 4]). The solid curve shows the fit of a dark matter halo
model to the data. Contributions to the total curve from individual components of the
galactic model are represented by dotted (gas), dashed (visible matter), and dot-dashed
(dark halo) curves.

A full discussion of MOND is beyond the scope of this work, but the motivation

for the theory warrants mention. In principle, the discrepancies between the observed

luminous mass and the dynamics of galaxies can be resolved by:

(i) Assuming the validity of Newtonian dynamics at galactic scales, and inferring the

presence of invisible mass.

(ii) Assuming that the majority of mass is luminous matter, and introducing modifica-

tions to Newtonian dynamics.

MOND theories follow the latter logical tack; the dark matter hypothesis, the former.

First introduced by M. Milgrom in 1983 [47], MOND demonstrates good agreement with

observed galactic dynamics (e.g. rotation curves) when tuning only one or two free model

6
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Figure 1.3: Bullet Cluster merger, taken from [5]. At left, Magellan images of the
merger, illustrating the distribution of galaxies. At right, Chandra X-ray map of the
intracluster plasma. Green contours show the results of the weak lensing gravitational
mass reconstructions.

parameters [2]. However, the theory runs into problems when confronted with systems

like galaxy clusters.

1.1.2 Bullet Cluster and other hints

The Bullet Cluster (1E 0657–558) arguably constitutes the most dramatic astrophysi-

cal phenomenon in support of the DM hypothesis, and strongly disfavors the simplest

MOND formulations. This system is actually a merger: two galaxy clusters colliding in

the plane of the sky. Galaxies within clusters are sufficiently sparsely distributed that

they are largely unaffected by cluster mergers: they continue on their relative trajectories

unscathed. The intracluster plasma, on the other hand, behaves more like a liquid, and

experiences ram pressure during a cluster merger. The plasma, which is the dominant

source of luminous matter in clusters, is thus separated from the galaxies during the col-

lision. Therefore, if there is no DM, one would expect the mass distribution in the merger
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to match the spatial distribution of the hot plasma, and not that of the galaxies. Under

the DM hypothesis, the DM would dominate the mass of the cluster, and its distribution

(as a similarly collisionless cluster component) would trace that of the galaxies. This

latter hypothesis was resoundingly confirmed in 2006 by Clowe et al. in [5], where weak

lensing data was analyzed to reconstruct the gravitational potential of the merger. The

two peaks of this potential were compared to Chandra X-ray data (which maps the hot

plasma clouds) and the optical images of galaxies. From the original paper:

Both peaks are [. . . ] within 1 σ of the luminosity centroid of the respective

component’s galaxies [. . . ]. Both peaks are also offset at ∼8 σ from the center

of mass of their respective plasma clouds. They are skewed toward the plasma

clouds, and this is expected because the plasma contributes about one-tenth

of the total cluster mass [. . . ] [5]

See Fig. 1.3 for the striking visualization of this result.

Before continuing to an overview of dark matter’s place in the standard model of

cosmology, it is worth noting that there are numerous other astrophysical datasets bol-

stering the case for dark matter. Bertone et. al offer a comprehensive survey in [4], and

J. Feng provides a succinct list of key findings in [7].

1.1.3 ΛCDM

Analogous to the Standard Model of particle physics, the “Lambda cold dark matter”

(ΛCDM) model is a powerful theoretical framework. Its most fundamental formulation is

8



Introduction Chapter 1

a 6-parameter description of Big Bang cosmology, grounded mathematically in Einstein’s

general relativity (GR). To review (closely following [4]), the Einstein field equations,

Rµν −
1

2
gµνR =

8πG

c4
Tµν + Λgµν , (1.8)

relate the geometry of space-time (LHS) to its energy content (RHS). Here, Rµν is the

Ricci tensor, R the Ricci scalar, and gµν the metric tensor. Tµν is the stress-energy ten-

sor, G the familiar Newtonian gravitational constant, and c the speed of light in vacuum.

Finally, Λ is the eponymous “lambda,” referred to as the cosmological constant. The

metric used to solve the field equations is constructed under the assumption of the cos-

mological principle; i.e., the universe is homogeneous and isotropic when considered with

sufficiently coarse granularity (in practice, observational evidence confirms homogeneity

and isotropy at &100 Mpc length scales). The resulting Friedmann-Lemâıtre-Robertson-

Walker (FLRW) metric is characterized by the generic line element:

ds2 = −c2dt2 + a(t)2

(
dr2

1− kr2
+ r2dΩ2

)
. (1.9)

The scale factor a(t) allows for the time-dependent expansion (or contraction) of space,

and k encodes the curvature. Flat geometry corresponds to k = 0, open (hyperbolic)

geometry to k = −1, and closed (hyperspherical) geometry to k = +1. Current observa-

tional evidence supports the hypothesis that k = 0, or at least very nearly so.

Solving 1.8 with 1.9 and substituting the Hubble “constant” H(t) ≡ ȧ(t)/a(t) yields

the Friedmann equation:

H2 =
8πG

3
ρ− k

a2
. (1.10)
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Here, we have absorbed the cosmological constant into the total energy density:

ρ ≡
∑
i

ρi +
Λc2

8πG
, (1.11)

where ρi are the densities of distinct components of the universe (e.g. matter, radiation).

This fluid interpretation of Λ suggests the presence of “dark energy,” an intrinsic energy

density of space. Another tensor component of the solution to 1.8, the acceleration

equation, can be expressed as

ä

a
= −4πG

3

(
ρ+

3p

c2

)
, (1.12)

if we specify an equation of state pΛ = −ρΛc
2 and include this in the total pressure p.

Unlike matter and radiation, for which the proportionality constant w ≡ p/ρc2 ≥ 0, dark

energy exhibits negative pressure, accelerating the expansion of the universe1 (provided

Λ > 0). That the universe is expanding at an accelerating rate was first discovered

from Type Ia supernova observations in 1998 [48, 49], indicating the presence of enough

dark energy to counteract the deceleration generated gravitationally by the matter in the

universe (dark and otherwise).

The accounting of the universe’s energy budget is usually performed in terms of the

critical density ρc:

ρc =
3H2

8πG
, (1.13)

that is, the density required to ensure a flat universe (k = 0; see Eq. 1.10). Abundances

1A note for the non-cosmologists: though positive pressure might naively be expected to encourage
the expansion of space, its effect is the opposite. In a homogeneous universe, there are no pressure
gradients, and thus no corresponding forces.
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Table 1.1: A sample of Planck 2015 ΛCDM fit results, taken from [6]. Note that these
parameters are not the direct output of the likelihood search, which scans over a minimal
set of independent parameters. Instead, these are derived quanitites, calculated from the
minimal set, assumptions (e.g. Ω = 1 and wΛ = −1), and auxiliary measurements.

Parameter Symbol Fit value

Baryonic matter density Ωb 0.0488± 0.0003

Cold dark matter density Ωc 0.2601± 0.0022

Total matter density Ωm = Ωc + Ωb 0.3089± 0.0062

Dark energy density ΩΛ 0.6911± 0.0062

Critical density ρc (8.62± 0.12)× 10−27 kg/m3

of individual species i can then be expressed as fractions of ρc:

Ωi ≡
ρi
ρc

. (1.14)

In a flat universe, we therefore have:

Ω ≡
∑
i

Ωi = 1 . (1.15)

See Table 1.1 for the best estimates of these densities from recent observational data.

In particular, note that dark matter is found to constitute over 80% of matter density at

cosmological scales. On the other hand, the total energy density is dominated by dark

energy (ΩΛ/Ω ∼ 70%). Familiar baryonic matter therefore accounts for a shockingly

small fraction of the stuff in our universe.

Observationally, the most powerful handle on the free parameters in ΛCDM is the

cosmic microwave background (CMB). In the thermal history of the universe follow-

ing the Big Bang, “recombination” refers to the epoch during which temperatures had

decreased sufficiently to permit the binding of free electrons to protons, effectively decou-
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Figure 1.4: Top: Mollweide projection of the Planck 2013 CMB temperature map (Credit:
ESA and the Planck Collaboration). Bottom: Angular power spectrum from [6], showing
the observed DTT

l ≡ l(l + 1)Cl/2π values and the curve predicted by the best-fit ΛCDM
model, with residuals in the bottom panel.
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pling baryons from photons [50, 51]. The relic radiation from this event is visible today

as the CMB, a (nearly) isotropic field of black-body photons sapped of their original

energy as the expansion of space elongated their wavelengths. In the current epoch, the

spectral radiance matches the distribution expected from Planck’s law for a black-body

with T = 2.72548± 0.00057 K [52]. The fine temperature anisotropies in the CMB, now

mapped out in great detail by a succession of experiments with dramatically increasing

sensitivity, are an invaluable source of information regarding density fluctuations in the

early universe, which in turn impose strong constraints on the parameters of ΛCDM [53].

Fig. 1.4 shows two versions of the Planck data. The finely detailed CMB temperature

map dataset is compressed into the more manageable angular power spectrum via Fourier

analysis:

∆T

T
(θ, φ) =

+∞∑
l=2

+l∑
m=−l

almYlm(θ, φ) , (1.16)

where the multipole expansion is done using spherical harmonics Ylm. Assuming Gaus-

sian fluctuations, the m-averaged Cl ≡ 〈|alm|2〉 give the variance of the harmonic coeffi-

cients (which have mean of 0), and thus encode all of the statistical information in the

observed ∆T
T

(θ, φ). The parameters listed in Tab. 1.1 are found by a fit of the model to

the Cl data.

The CMB is not the only probe astronomers have for inferring the parameters of

ΛCDM. The Dark Energy Survey (DES) analyzes the clustering of galaxies and weak

gravitational lensing to constrain the Ωm parameter. Recent results from DES are largely

in agreement with the Planck values [54].
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1.2 Candidates

Dark matter is remarkable for its importance in physics at such disparate length scales—

so far, we have looked at its influence on vast astronomical bodies, but it may also be the

key to understanding the microscopic world of fundamental particles. Supersymmetry

(SUSY), a theoretical extension to the Standard Model (SM), predicts the existence of

a spectrum of as yet undiscovered particles. These particles would be “superpartners”

to the familiar quark, lepton, and boson fields of the SM, and the lightest among them

might be stable. In the framework of Big Bang cosmology, this lightest supersymmetric

particle (LSP) would have been created in the early universe along with the other forms

of matter and energy we see now. Unable to decay or interact with SM particles save

through gravity and the weak force, LSPs would persist in the universe to present day,

perhaps explaining the existence of DM.

The LSP is one of many theoretical candidates that have been proposed to explain the

nature and origin of DM. It falls into the broader category of WIMPs (Weakly Interacting

Massive Particles), which need not necessarily be described by the SUSY framework.

Still, the supersymmetric WIMP is an appealing candidate because of its potential to fit

nicely into two seemingly unrelated physics puzzles: the hierarchy problem of the SM,

and the mystery of dark matter.

14
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1.2.1 WIMPs

WIMPs, in spite of their humble acronym, have gained a devoted following among the-

orists and experimentalists alike. This is due in part to the mathematical coincidence

known as the “WIMP miracle,” wherein if one assumes weak-scale coupling and mass

properties for the WIMP, its production in the early universe would result in roughly

the ΩDM density observed today. This calculation of the thermal relic density is carefully

outlined in the reviews of Jungman et al. [3] and Feng [7], so only the main points will

be summarized here.

In the aftermath of the Big Bang, the hot and dense universe was populated by par-

ticles popping into and out of existence. Our WIMP, χ, would be participating in this

frenzy, annihilating to lighter particles via χχ̄ → ll̄ and similarly being produced via

ll̄ → χχ̄. The production processes occur provided the temperature T is significantly

greater than the WIMP mass mχ, a guaranteed condition in the very young universe. In

this era, the number density n of WIMPs is at a thermal equilibrium value neq deter-

mined by statistical mechanics. Eventually, as time progresses and the universe cools,

T < mχ and the WIMPs become Boltzmann suppressed: neq ∝ e−mχ/T . However, the

universe is not just getting colder; it is also blowing up. The expansion of space, given

by the Hubble parameter H, prevents WIMPs from completely disappearing by reducing

their concentration to the extent that annihilation becomes improbable. This is called

“freeze-out”: the WIMP population drops out of thermal equilibrium because the rate

of annihilation 〈σAv〉—i.e. the thermally averaged annihilation cross section—becomes

15



Introduction Chapter 1

smaller than the rate of spatial expansion H.

Mathematically, these competing processes contribute to the rate of change of WIMP

number density as

dn

dt
= −3Hn− 〈σAv〉

(
n2 − n2

eq

)
, (1.17)

a Boltzmann equation of equilibrium. As Jungman et al. point out, ignoring the second

two terms on the right-hand side leaves a description of the Hubble expansion alone,

which can be solved to yield the expected relationship n ∝ a−3. Reinstating these

terms, we now have the full description of the effects of Hubble expansion as well as χχ̄

annihilation. Since equation 1.17 governs the time evolution of n(t), the relic density can

be calculated from its solution. Figure 1.5 shows approximate solutions calculated by

Feng in Ref. [7] for a 100 GeV WIMP. The fact that the value of 〈σAv〉 which reproduces

the observed DM density is on the order of electroweak scale interactions is a “striking

coincidence” [3]; and as Feng notes, even for those unmoved by SUSY or the hierarchy

problem, it “independently provides a strong motivation for new particles at the weak

scale” [7].

Though WIMPs have been popular candidates for many years now, their conspicuous

absence from experimental DM searches have left some skeptical as to their supposedly

miraculous theoretical motivation. A recent review of the status of WIMPs has found

that most of the simplest formulations of WIMPs (requiring no new particles other than

the WIMP itself) will be put to a final test by current or proposed next-generation

detectors [55].
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Figure 1.5: Comoving (i.e. adjusted for Hubble expansion) number density Y of WIMPs
over time t, calculated from eq. 1.17 by Feng. Figure taken from Ref. [7]. The black solid
curve shows time evolution for a WIMP with 〈σAv〉 that reproduces the observed relic
density Ωχ (right axis). The contours of the colored bands are calculated using alternate
values of 〈σAv〉 (altering the “correct” value by one, two, and three orders of magnitude).
The dashed black curve shows the Boltzmann suppression of WIMP density in the case
of thermal equilibrium.

17



Introduction Chapter 1

1.2.2 Non-WIMP candidates

WIMPs are by no means the only theoretical DM constituent being searched for in current

experiments. Feng’s review comprehensively explores other options, including axions

and sterile neutrinos. Unlike WIMPs, neither of these candidates naturally produce the

correct relic DM density. Still, they address other issues in particle physics, unrelated (at

least at face value) to the gauge hierarchy problem: sterile neutrinos offer an explanation

to the question of neutrino mass, whereas axions have been introduced to tackle the

strong CP problem [7].

Other theories hold that DM can be explained without introducing any new particles

at all. MACHOs (Massive Astrophysical Compact Halo Objects) were proposed as a

particularly reactionary alternative to WIMPs, and would consist of baryonic matter.

However, microlensing surveys have ruled out MACHOs as being significant components

of the halo DM for a wide range of MACHO masses [56]. That said, the recent LIGO

detection of black hole mergers [57] has sparked interest in the possibility of primordial

black holes providing some of the dark matter. Though many mass ranges are ruled out,

primordial black holes in the “intermediate-mass range” (M� < M < 103M�) can still

account for some the DM [58]. Carr et al. conclude that this and the “sublunar” mass

range may soon be ruled out as well, but that Planck-mass scale black holes are viable

candidates and will not be constrained by near-term experiments.

It is possible that some combination of all of these candidates are responsible for

the observed ΩDM. However, observational constraints imposed on a single hypothetical
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species are typically calculated under the assumption that it alone constitutes the DM.

The details of this calculation in the case of WIMP dark matter are explored in the next

chapter.
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Chapter 2

Detection of dark matter

The “discovery” of dark matter, from an astrophysical perspective, has already been ac-

complished. Debate rages over the rightful attribution of this accolade: Fritz Zwicky’s

daughter Barbarina Zwicky continues to wage a fierce battle for her father’s legacy [59],

notwithstanding the tendency of modern authors (including this one) to favor Rubin’s

efforts [60].1Irrespective of this controversy, however, the question of dark matter’s com-

position is decidedly unanswered. If “discovery” describes the ascertaining of DM’s ex-

istence, then “detection” must be the unveiling of DM’s particle nature.

1It appears that B. Zwicky scored a minor victory in the case of Ref. [60]. In the publicly available
online version of the article, the title reads (as of this writing) “How Vera Rubin confirmed dark matter”
instead of “How Vera Rubin discovered dark matter,” as it appeared in the original print edition. (Ad-
ditionally, an online commenter self-identified as “barbarina zwicky” lambasts the author for advancing
a smear campaign against her father.) However, the HTML title field still retains the “discovered,” so
Google searchers will see the original title’s wording in the hyperlink.
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2.1 Detection schemes

Experiments designed to detect dark matter fall into three main categories:

Production: Colliders like the LHC produce exotic particles via high-energy inelastic

scattering. Detectors like CMS and ATLAS are used to reconstruct what particles

were created in the collisions. If a WIMP were generated in such a collision, it

would appear as missing energy in the event reconstruction.

Indirect detection: Cosmic rays are in general a useful probe of astrophysical pro-

cesses. If many DM particles were concentrated in a high-density region (e.g. in

the Sun, after scattering from protons and becoming gravitationally trapped), they

could annihilate and produce a tell-tale resonance in the spectrum of radiation

emanating from this region. Earth- and space-based laboratories are capable of

observing such a signal.

Direct detection: Perhaps the most conceptually straightforward of the three tech-

niques, experiments in this category seek to observe collisions between galactic DM

particles and atoms in a target material. Since the Earth is constantly passing

through the dark halo, a sensitive enough detector should be able to detect such a

collision. To mitigate non-WIMP backgrounds from cosmic rays, direct detection

experiments must be deployed underground, where the rock overburden acts as a

radiation shield.

Figure 2.1 pictorially portrays the three approaches to DM detection. An ideal de-
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Figure 2.1: Illustrative Feynman diagrams for the three approaches to DM detection,
beneath images of representative experiments. At left, the collider search technique is
shown with an LHC graphic (credit: CERN) and diagram with Standard Model (SM)
particles inelastically scattering to produce DM particles (χ). At right, the Feynman
diagram is flipped, and DM self-annihilates to produce SM particles, conceivably visible to
indirect detection observatories like the Fermi LAT (image credit: NASA). Finally, shown
in the center, an image of LUX represents the field of direct detection, schematically
illustrated by a Feynman diagram obtained by rotating the others 90◦, wherein a DM
particle scatters against a SM particle (image credit: Matt Kapust, South Dakota Science
and Technology Authority).
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tection scenario would involve experiments in multiple categories seeing signals: for ex-

ample, a new particle discovery at the LHC could be corroborated by an underground

detector reporting detection of a WIMP with consistent mass and coupling properties.

This would imply that the particle created in anthropogenic high-energy collisions exists

cosmogenically in the galaxy.

Experiments designed for different detection schemes are often said to be “complemen-

tary,” capable not only of validating one another’s results, but also of testing hypotheses

to which the other is insensitive. If, for example, DM particles are too massive to be

produced at the LHC, direct and indirect detection experiments might still be able to

see a signal. In fact, DM searches within just the direct detection category also exhibit

complementarity, due to differences in their target materials. Section 2.2 will explore the

specific mechanisms giving rise to these differences in sensitivity.

2.1.1 A note on the status of the field

Despite the diversity of detectors built to glimpse the dark matter particle, success has

been elusive. There have been a few false alarms, but only one group remains steadfast

in its claim of detecting a WIMP signal: the DAMA/LIBRA direct detection collabo-

ration interprets an observed annual modulation in their event rate as originating from

WIMPs [61] (see section 2.2.4 for an explanation of annual modulation). Though null re-

sults of countless other experiments cast considerable doubt on this conclusion, Bernabei

et al. assert that no systematic effect proposed so far can satisfactorily explain their data.
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They suggest that their sodium-iodide detector is, by a lucky quirk of nuclear physics

and effective field theory, uniquely suited to detecting WIMPs. Efforts are ongoing to

replicate these results using a different NaI detector [62, 63], and the scientific community

is, on the whole, fairly skeptical of the claim.2

As LUX is a direct detection experiment, details of the theory and current status of

the other two search techniques are largely beyond the scope of this work. J. Gaskins

provides a thorough review of indirect detection searches in Ref. [64], and recent LHC

results interpreted as DM constraints can be found in Ref. [28] (CMS) and Ref. [29]

(ATLAS). Suffice it to say here that no one has found anything conclusive yet.

2.2 Principles of direct detection

2.2.1 WIMP-nucleus scattering

The direct detection of WIMPs is contingent on the possibility of WIMP-nucleus scat-

tering. In collisions between WIMPs and nuclei in the target material of a detector, the

kinetic energy of the recoiling nucleus ER can be experimentally measured via a number

of calorimetry techniques. The observed nuclear recoil energy spectrum (and, in turn,

the total event rate) depends on the differential WIMP-nucleus cross section dσ/dER,

a quantity incorporating information from particle physics matrix elements, kinematic

phase space, and also nuclear physics. In their review paper, Jungman et al. symbolically

2David Cline, the late stalwart of many particle physics and DM experiments, minced no words at
the 2014 UCLA Dark Matter conference when he declared the DAMA/LIBRA results “bad science.”

24



Detection of dark matter Chapter 2

express this conceptual compartmentalization as [3]

dσ

dq2
=
G2
F C

v2
F 2(q) , (2.1)

where GF is the Fermi constant, v is the WIMP velocity (in the detector rest frame), q is

the momentum transfer, the dimensionless C encodes the particle physics model input,

and the form factor F 2(q) contains the nuclear physics (sometimes referred to as the

“coherence loss”). This expression can be derived by application of Fermi’s Golden Rule

for two-body elastic scattering3, assuming that the particle physics process is independent

of momentum transfer (dC/dq2 = 0, where the matrix element is embedded in C). In this

section, these components will be examined in a top-down approach: first, the kinematics

of the effective WIMP-nucleus elastic scattering is explored, incorporating the effects of

WIMP velocity distribution models; next, the nuclear physics of form factors is discussed;

and finally, the particle physics of WIMP-quark coupling is reviewed.

2.2.2 Kinematics

In elastic scattering, the momentum transfer is

q = µv
√

2(1− cos θ) , (2.2)

where θ is the scattering angle in the center-of-mass reference frame, and

µ ≡ mAmχ/(mA +mχ) (2.3)

3 Inelastic scattering is also theoretically feasible, whether through excitation of the target nu-
cleus [65], or of the DM particle itself [66].
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is the WIMP-nucleus reduced mass (with mA indicating the mass of a nucleus of mass

number A, and mχ the WIMP mass). Therefore the nuclear recoil energy is

ER =
q2

2mA

=
µ2v2

mA

(1− cos θ) . (2.4)

From this we can see that assuming dC/dq2 = 0 is equivalent to assuming dC/d cos θ = 0,

i.e. that the fundamental WIMP-nucleon scattering cross-section is isotropic. This is a

reasonable assumption, since for cold (non-relativistic) dark matter, we are operating in

the low-momentum exchange regime [67]. Additionally, and of primary interest to direct

detection experimentalists, we can write an expression for the differential cross section

in terms of recoil energy:

dσ

dER
=

dσ

dq2

dq2

dER
(2.5)

=
2mAG

2
F C

v2
F 2(ER) . (2.6)

2.2.3 WIMP event rates in detectors

In practice, we aim to experimentally measure the rate R of WIMP events in our detector

(or, failing that, set statistical upper limits on it). Suppose that we are immersed in a

halo with local mass density ρχ, composed of WIMPs of mass mχ, all moving at the speed

v = vχ (in the detector rest frame). In that case, the differential rate in our detector
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(number of events per unit time per unit energy) will be

dR

dER
= (# nuclei in detector)× (WIMP flux)× (WIMP-nucleus cross section) (2.7)

= (NT )×
(
vχ
ρχ
mχ

)
×
(

dσ

dER

∣∣∣∣
v=vχ

)
(2.8)

= C
2G2

F mANT ρχ
mχ

F 2(ER)
H (vχ − vmin(ER))

vχ
. (2.9)

Eq. 2.9 is written such that C represents our unknown quantity, where everything else is

a physical constant or modeled quantity (with the exception of mχ, the WIMP mass4).

This equation is therefore at the core of hypothesis testing, as it links our theoretical

unknowns with what we actually measure. The Heaviside step function H has been

explicitly included in 2.9 to emphasize that given a fixed recoil energy ER, there exists

a minimum WIMP velocity vmin for which the scattering event can occur. Put another

way, a given velocity v will result in a maximum recoil energy in the case of back-to-back

scattering (cos θ = −1). From eq. 2.4, we see then that

vmin(ER) =

√
ERmA

2µ2
. (2.10)

Fig. 2.2 shows vmin for a variety of WIMP masses, for the commonly used or proposed

target elements Xe, Ge, Ar, Si, and He (listed in descending order of atomic weight). If

we consider a detector with energy threshold ER = 5 keV, these plots show how fast a

WIMP must be moving to induce a signal. As might be expected, lighter WIMPs require

4Experiments will typically set limits on C as a function of WIMP mass by scanning over a range of
mχ, constructing signal models according to eq. 2.9 for each value, and interpolating the results.
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Figure 2.2: Minimum WIMP velocities vmin required to produce nuclear recoils ER for
various WIMP masses and target materials.
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much higher velocities in order to be detected, for all target materials. At a given WIMP

mass, however, the best-suited target material (at least from a kinematic standpoint) is

the one which has mA closest to mχ. This can be verified by solving dvmin/dmA = 0,

which indeed yields mA = mχ. For this reason, xenon detectors have an advantage when

it comes to detecting heavy WIMPs. On the other hand, in the case of light WIMPs

(mχ ∼ O(1GeV)), Xe detectors (and most others) are only sensitive to very high-velocity

particles. Liquid helium detectors are therefore being developed to explore this region of

WIMP parameter space [68].

What about WIMP-electron scattering?

Before taking a more careful approach to modeling the velocity of galactic WIMPs, it is

worth understanding the focus on elastic nuclear scattering. In a generic scenario where

WIMPs couple with equal strength to quarks and leptons, the C quantity should be

roughly the same when describing WIMP-nucleon or WIMP-electron scattering. How-

ever, the factor of mA in eq. 2.6 is replaced by the electron mass me, meaning the

scattering rate from electrons suffers a large (me/mA ∼ 10−5) suppression relative to the

nuclear scattering rate. In this scenario, then, WIMP detectors would be far more likely

to see nuclear recoils than electron recoils.

On the other hand, the possibility of “leptophilic” dark matter has been proposed [69],

in part to explain the discrepancy between the putative DAMA/LIBRA signal and the

null results of other experiments. In this scenario, WIMPs would couple exclusively to

leptons. By construction, tree level WIMP-quark interactions are forbidden; however,
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in most cases allowed by a general effective field theory (EFT) description, coupling to

quarks would arise from virtual lepton loops, and WIMP-nucleus scattering would still

dominate [70]. (In those few cases where loop diagrams do not contribute, Kopp et al.

also found that their leptophilic model was a poor fit to the DAMA/LIBRA data.)

These arguments hold for WIMPs at the GeV to TeV scales, but WIMP-electron

scattering does become a viable detection mechanism for especially light WIMPs (MeV

to GeV scale) [71–73]. This approach is kinematically favorable not only because of the

small electron mass, but because bound electrons have a high typical velocity αc and can

absorb a large fraction of a light WIMP’s kinetic energy in inelastic collisions (ionization,

atomic or band-gap transitions).

2.2.4 Standard Halo Model

Eq. 2.9 is a useful starting point, but requires a major simplifying assumption: namely,

WIMPs at the galactic radius of our solar system travel at a single velocity with negligible

variation. In fact, this assumption was made in the pioneering work of Goodman and

Witten [67], who chose a typical WIMP velocity of v = 200 km/s to assess the feasibility

of direct detection experiments. Looking at Fig. 2.2 again, this would require sub-keV

energy thresholds for most detectors attempting to see < 5 GeV WIMPs.

Since those exploratory calculations of 1985, however, far more sophisticated models

of the galactic dark halo have been developed. These models suggest a probability density

function (PDF) f(v) describing the distribution of WIMP speeds relative to an Earth-
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based detector. Generalizing eq. 2.8 to account for this, we must integrate over all WIMP

velocities that can generate a recoil ER, weighting the integrand by the appropriate PDF:

dR

dER
= (NT )×

(
ρχ
mχ

)
×
(∫ ∞

vmin(ER)

dv f(v) v
dσ

dER

∣∣∣∣
v

)
(2.11)

= C
2G2

F mANT ρχ
mχ

F 2(ER)

∫ ∞
vmin(ER)

dv

v
f(v) . (2.12)

In fact, we can recover eq. 2.9 from eq. 2.12 by specifying

f(v) = δ(v − vχ) . (2.13)

The approximate functional form for f(v) most commonly used by direct detection

experimentalists was first introduced by Druiker, Freese, and Spergel [74] just a few

months after Goodman and Witten’s paper. In the rest frame of the halo, the velocity

PDF is taken to be a Maxwell-Boltzmann distribution, which follows naturally from a few

simplifying assumptions. Most importantly, it can be argued [74, 75] that as the galactic

halo was formed by the gravitational collapse of a diffuse DM cloud, WIMP velocities

were thermally randomized in a process called “violent relaxation” [76]. WIMPs do not,

by definition, interact frequently with baryonic matter, and thus will have preserved this

ancient velocity distribution. This model, which describes the halo as an isotropic and

isothermal sphere, is referred to as the “standard halo model” (SHM).5

In its simplest form, then, the distribution for WIMP velocities in the rest frame of

5Empirically testing the accuracy of the SHM using tracer stars in the galactic halo is the subject
of current research [77]. Preliminary findings hint at a departure from the Maxwell-Boltzmann velocity
distribution, shifted to slightly slower velocities than the commonly assumed model.
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the halo is

f(~v) =
1

N
e−v

2/v20 , (2.14)

where v0 is the most probable speed, and N = π3/2v3
0 is a normalization constant. Note

that this is a multivariate distribution for the 3 velocity components; to obtain the PDF

for the speed v = |~v| used in eq. 2.12, we must integrate over angles:

f(v) =

∫ 4π

0

f(~v) v2 dΩ (2.15)

=
4πv2

N
e−v

2/v20 . (2.16)

Though certainly an improvement over Goodman and Witten’s delta function ap-

proximation, this distribution still ignores a few subtleties. First of all, we expect the

distribution to be cut off at the escape velocity of the galaxy vesc: WIMPs traveling

faster than this speed will not be gravitationally bound to the galaxy, and will therefore

not be present in the equilibrated ensemble. Second, the motion of the Earth relative to

the bulk distribution of the halo must be considered when calculating event rates in an

Earth-bound laboratory. Lewin and Smith systematically tackle both of these mathemat-

ical hurdles in their 1996 review [78], which remains an invaluable reference. However,

integral calculations in Ref. [78] contain a small error involving the geometric projection

of the Earth’s solar orbit onto the galactic plane [79], and more recent calculations (e.g.

Savage et al. [40] and McCabe [8]) are now the standard.

Following the notation of Ref. [8], we can define the distribution of WIMP velocity ~v
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Quantity
Savage et al. [40] McCabe [8]

symbol value [km/s] symbol value [km/s]

Local Standard of Rest ve-
locity

vLSR (0, 220, 0)∗ ~v0 various

Peculiar velocity of Sun
(relative to above)

v�,pec (10, 13, 7)∗ ~v� (11.1, 12.24, 7.25)

Earth’s orbital speed
around Sun

V⊕ 29.8 v⊕ 29.8

Earth velocity relative to
halo

vobs = vLSR + v�,pec + V⊕ ~ve = ~v0 + ~v� + ~v⊕

Galactic escape velocity vesc 650 vesc 544∗

Table 2.1: Astronomical velocities relevant to the calculation of WIMP event rates in
Earth-based detectors. Symbols and quantities from two popular references are shown
for comparison. In this work and in the LUX publications, we use the starred∗ values
(indicated only when values are not in agreement). Vector quantities are shown in Galac-
tic coordinates (x, y, z) = xx̂ + yŷ + zẑ, where x̂ points towards the Galactic Center, ŷ
towards the direction of disk rotation, and ẑ towards the North Galactic Pole [40].

relative to an observer on Earth as

f⊕(~v,~vobs) = f(~v + ~vobs) =

{
1
N
e−(~v+~vobs)

2/v20 |~v + ~vobs| < vesc

0 |~v + ~vobs| > vesc

, (2.17)

where truncating the distribution affects the normalization constant:

N = π3/2v3
0

[
erf(xesc)−

2xesc√
π
e−x

2
esc

]
(2.18)

(using xesc ≡ vesc/v0). The original distribution is simply boosted into the frame of

the observer, whose relative velocity ~vobs is the vectorial sum of the “local standard of

rest” (LSR) velocity (i.e. the circular motion of the galaxy near the solar system), the

“peculiar velocity” of the Sun relative to the LSR, and the time-varying orbital velocity

of the Earth around the Sun. See Table 2.1 for a catalog of useful notation definitions, as
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well as numerical values for the astrophysical parameters of the SHM. Figure 2.3 shows

the Maxwellian speed distribution in the frame of the WIMP halo and of the Earth.

With these adjustments in mind, we can rewrite eq. 2.12 as

dR

dER
= C

2G2
F mANT ρχ
mχ

F 2(ER)

∫ ∞
vmin(ER)

d3~v

v
f⊕(~v,~vobs) , (2.19)

where v is the WIMP velocity in the frame of the detector, and the escape velocity

truncation is taken care of by definition 2.17. The integral over velocities, called ζ(ER)

in Ref. [8] and η(E, t) in [40], yields the average inverse speed of WIMPs that can generate

nuclear recoils of a given energy. Both references provide analytic solutions (Appendix

B of Ref. [8] also considers an optional exponential ramp-down of the distribution near

vesc). Significantly, this quantity is time-varying, since the relative WIMP velocity rises

and falls as the Earth moves in concert with and in opposition to the Sun’s circular

velocity, depending on the time of year. Some experiments seek to exploit this variation,

looking for annual modulation of event rates. In low-background experiments that see

only a handful of signal-like events in a years-long exposure, an average value for vobs is

used instead. This is the strategy used to calculate ζ(ER) in Fig. 2.4. The same target

isotopes are considered as in Fig. 2.2, though the x-axis (ER) range has been expanded

and converted to logarithmic scale. This spectrum would completely define the shape of

differential rate if there were no coherence loss; that is, if the WIMP were incapable of

“seeing” the individual protons and neutrons inside the nucleus.
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Figure 2.3: WIMP speed distributions in the rest frame of the halo (black curve) and
in the rest frame of the Earth (green). For the solid green curve, the annually averaged
Earth velocity is used. Distributions at the time of the Earth’s minimum and maximum
relative speeds are shown as green dashed and green dotted curves, respectively. For
simplicity, the escape velocity truncation has not been included in these calculations.
The region beyond the standard vesc = 544 km/s value is indicated by the shaded red
area under the (halo-frame) f(v) curve, which only accounts for less than 0.7% of the
total probability. The loss of this velocity tail only becomes significant for detectors
where energy thresholds require vmin near vesc. See Fig. 2 of Ref. [8] for a demonstration
of how the uncertainty on vesc affects the sensitivity of various detectors.
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Figure 2.4: SHM mean inverse WIMP speeds for various WIMP masses and tar-
get materials, using the parameters indicated in Table 2.1, and a time-averaged
〈vobs(t)〉 = 230 km/s. If we were to ignore the form factor in eq. 2.19, this spectrum
would determine the shape of the differential rate.
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2.2.5 Form factors

The necessity for the form factor F arises when the wavelength h/q of the momentum

transfer is on the same scale as the effective nuclear radius rn. In this regime, the nucleus

can no longer be treated as a monolithic unit and the particle physics factor C must be

corrected. If the WIMP-nucleus coupling is spin-independent (SI), then this correction

is adequately approximated by the Helm form factor [80].6 As with the choice of the

SHM velocity distribution, this model strikes an attractive balance between simplicity

and accuracy and has become the standard for experimentalists, allowing for consistency

across results. That being said, equally convenient (i.e. having analytical solutions) but

more accurate models have been proposed [82].

Following Lewin and Smith [78] and working in the first Born approximation, the form

factor is given by the Fourier transform of the density of scattering sites in the nucleus.

Spin-dependent (SD) scattering requires a careful and detailed nuclear calculation to

achieve acceptable accuracy, and is given thorough treatment in Chapter 7. For SI

6J. Engel endorses this form factor in Ref. [81] for the purposes of DM searches, noting its similarity
to that derived from the Woods-Saxon density distribution. Confusingly, Jungman et al. therefore dub
it the “Woods-Saxon” form factor, though apparently the jargon has since changed back to “Helm.”
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scattering, as discussed, we will use Helm’s model:

ρ0(r) =


3/(4πr3

n) r < rn

0 r > rn

(2.20)

ρ1(r) =
1

(2πs2)3/2
e−r

2/2s2 (2.21)

ρ(~r) =

∫
ρ0(~r ′)ρ1(~r − ~r ′)d3~r ′ . (2.22)

Essentially, this density model ρ(~r) is just a uniform sphere (ρ0) extending out to the

nuclear radius rn, normalized to unity, and smeared by a gaussian (ρ1) with thickness

parameter s to smooth out the unphysical cut-off at rn. The Fourier transform of the

spherically symmetric distribution,

F (q) =
4π

q

∫ ∞
0

r sin(qr)ρ(r) dr , (2.23)

is given by the product of the individual transforms of ρ0 and ρ1, thanks to the convo-

lution theorem:

F (q) = F0(q)× F1(q) (2.24)

= 3
j1(qrn)

qrn
× e−(qs)2/2 , (2.25)

where the solution is obtained using the spherical Bessel function

j1(x) =
sinx

x2
− cosx

x
. (2.26)

Given values for rn and s, eq. 2.25 can be readily calculated and implemented in Equa-
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Figure 2.5: Nuclear form factors for various detector target isotopes, using the Helm
charge density model.

tion 2.19. (Note that natural units are used here; qrn/~c is the appropriate dimensionless

quantity.)

Figure 2.5 shows the form factors of our usual suite of target materials as a function

of ER (using 2.4 to convert to q). For these calculations, Lewin and Smith’s parameteri-

zation for the nuclear radius are used [78]:

rn =

√
c2 +

7

3
π2a2 − 5s2 , (2.27)
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with

c/[1 fm] = 1.23A1/3 − 0.60 , (2.28)

using a = 0.52 fm and s = 0.9 fm. These values are obtained from fits to muon scattering

data, making the assumption that the nucleon distribution mimics the charge distribution

in the nucleus. Comparing these form factors to the naive recoil spectra specified by the

WIMP velocity model (Fig. 2.4), it is clear that for xenon, the form factor plays a

significant role for WIMPs of mass greater than 50 GeV. The unmodified recoil spectrum

for a 1 TeV WIMP begins falling off near 100 keV, whereas at this momentum transfer,

the form factor suppression is already at the level of a few orders of magnitude. As

we will see in the next section, for SI scattering, this apparent disadvantage for heavier

nuclei is counterbalanced by a boost in the cross section that comes from having so many

nucleons coherently contributing to the matrix element.

2.2.6 Particle interactions

The standard approach to modeling the couplings between WIMPs and the quarks and

gluons in a nucleon is to use an effective Lagrangian, categorizing hypothetical interac-

tions by their properties under parity transformation. The effective operators are thus

scalar (1), pseudo-scalar (γ5), vector (γµ), axial vector (γ5γµ), or tensor (σµν). These

interactions can be connected to a specific particle physics theory, such as SUSY. For

example, J. Engel et al. explicitly calculate coupling coefficients under the minimal
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supersymmetric extension to the SM of the following Lagrangian density [83]:

L =
g2

2M2
W

∑
q

(
χ̄γ5γµχ q̄γµ

[
Vq + Aqγ

5
]
q + χ̄χ Sq

mq

MW

q̄q + χ̄γ5χPq q̄γ
5q

)
. (2.29)

Here, χ and q are the WIMP and quark fields, with q also acting as an index for quark

type, and the operator coefficients Vq, Aq, Sq, and Pq can be calculated by evaluating the

relevant Feynman diagrams (see eq. 3.6 of [83]).

A more general approach, however, is to leave these coefficients as they are, assuming

as little as possible about the fundamental theory. In Refs. [84, 85], for example, all

Lorentz-invariant combinations of operators are considered. As it turns out, in the non-

relativistic limit of direct detection experiments, vector and scalar couplings reduce to

spin-independent (SI) interactions, whereas spin-dependent (SD) interactions arise from

axial vector coupling. Other operators are suppressed at these low energies by momentum

dependent terms, and are not typically considered among the main results published by

direct detection experimentalists (with notable exceptions, discussed below).

Having defined effective WIMP-quark coupling coefficients, the next task is to trans-

late these to WIMP-nucleon coupling parameters. Once again, though, we can either

(i) explicitly relate these coefficients under the assumption of an effective model (scalar,

vector, axial vector), using knowledge of quark structure in nucleons, or (ii) accept

the effective WIMP-nucleon coefficients as given, remaining agnostic to the underlying

theory. Option (ii) is usually adopted by direct detection experiments, but option (i)

is necessary for comparing results to collider searches. Ref. [86] provides a convenient
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framework for this kind of comparison, employing a simplified model in which the WIMP

is a Dirac fermion whose interactions with quarks are governed by s-channel exchange of

a Z ′ mediator.

With effective WIMP-nucleons now in hand, it useful to express the WIMP-nucleon

cross section in the zero momentum transfer limit:

σp,n ≡
∫ 4µ2p,nv

2

0

dσ(q = 0)

dq2
dq2 (2.30)

= 4G2
F µ

2
p,nCp,n , (2.31)

where the subscript p, n indicates either a proton or a neutron. This has been calculated

from the generic eq. 2.1, integrating over the range of possible q. Alternatively, in the

case of SI interactions, we could also write:

σSI
p,n =

4µ2
p,nf

2
p,n

π
(2.32)

using the effective WIMP-proton(neutron) coupling constants fp,n. This standard cross

section can be defined for WIMP-nucleus scattering as well, giving for an isotope with

mass number A and atomic number Z [3]:

σSI
A =

4µ2
A

π
[Zfp + (A− Z)fn]2 (2.33)
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from which, making the typical assumption that fp = fn ≡ fN for SI interactions,

σSI
A =

4µ2
AA

2f 2
N

π
(2.34)

=

(
µAA

µN

)2

σSI
N , (2.35)

plugging in eq 2.32 in the second line. Here, at last, is the oft-touted A2 enhancement

that benefits heavy nuclei in SI scattering sensitivity. For especially heavy WIMPs, µ2
A →

m2
A ∝ A2, and this becomes a A4 boost. This property comes about from the coherent

addition of nucleon matrix elements in SI scattering (it is absent in SD interactions), an

assumption that is valid at low momentum transfer, and corrected for at higher q by the

form factor, as discussed in Sec. 2.2.5.

We can relate σSI
A to CSI

A via 2.31:

CSI
A =

σSI
A

4G2
Fµ

2
A

=
A2σSI

N

4G2
Fµ

2
N

, (2.36)

which allows us to express the differential SI WIMP-nucleus scattering rate (eq. 2.19)

in terms of the WIMP-nucleon zero-momentum transfer cross section:

dR

dER
= σSI

N

A2mANT ρχ
2mχµ2

N

F 2(ER)

∫ ∞
vmin(ER)

d3~v

v
f⊕(~v,~vobs) . (2.37)

This is an appealing form for this expression, as it allows for the construction of

a signal model (for a given WIMP mass) normalized by the physical unknown that

is the WIMP-nucleon cross section for arbitrary target isotopes. This puts all direct

detection experiments on common ground, provided that they use the same astrophysical

parameters (of the SHM) and nuclear form factor calculations. That way, even if either of
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Figure 2.6: Differential event rate for SI scattering, normalized to WIMP-nucleon cross
section σSI

N = 1 zb. A wide range is used on the axes showing both extremes of the
spectra, such that the effects of the form factor bounces can be seen in the heavier nuclei
(for higher mass WIMPs).
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Figure 2.7: Integrated event rate for SI scattering, normalized to WIMP-nucleon cross
section σSI

N = 1 zb. The curves show the total number of expected events in a year-long
exposure of a 1000 kg detector, integrating the spectrum above ER.
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these models carry significant uncertainty, comparisons between direct detection results

are still apples-to-apples. Comparisons to LHC or indirect DM searches, however, must

acknowledge the caveat that direct detection results have some model-dependence.

Figure 2.6 shows the results of eq. 2.37 after fixing σSI
N = 1 zb. Figure 2.7 shows

the total integrated rate as a function of detection threshold ER. For a 50 GeV WIMP,

then, a tonne-scale Xe detector with a 3 keV threshold would expect to see hundreds of

events per year, given σSI
N = 1 zb. The best upper limits on 50 GeV WIMPs are currently

closer to 0.1 zb (10−46 cm2) [20], which would imply tens of events per year. For lighter

WIMPs, the top two panels show the advantages that come with using a low-mass target

nucleus, assuming reasonable (∼ 1 keV) detection thresholds.

So far, we have closely examined only the SI interaction. It is customary to assume

that only SI or SD scattering is possible, and to set limits accordingly (though in principle

both could occur). SD scattering is given special treatment in Chapter 7, and a notable

difference in that analysis is that the WIMP-proton and WIMP-neutron couplings are not

assumed to be identical. The form factors used are also far more complex, necessitating

detailed nuclear modeling.

Not considered in this work, but an area of active research, are non-relativistic EFT

operators other than the vanilla SI and SD ones. As mentioned, these potential inter-

actions (in which WIMPs might couple, for example, to the angular momentum of the

nucleus) would be subdominant to SI and SD coupling; however, SI and SD interactions

could be suppressed by some cancelation mechanism, leaving only these operators as a di-
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rect detection probe. Fitzpatrick et al. thoroughly catalog all possible EFT operators in

Ref. [87], presenting new form factors to describe the relevant nuclear responses. In total,

the 14 operators and pairwise interference of matrix elements lead to a 28-dimensional

space of coupling coefficients. With so many free parameters, it is no wonder that some

authors have devised scenarios in which the DAMA WIMP interpretation squares with

the null results of other experiments [88, 89]. Still, an exhaustive analysis of this pa-

rameter space using inputs from direct and indirect DM searches finds significant tension

with the DAMA claim [90]. Even so, the EFT operators make a compelling case for

supporting a diversity of DM experiments with different target materials.
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The LUX experiment

3.1 Time projection chambers

The LUX detector is a dual-phase time projection chamber (TPC), capable of recon-

structing the 3D position of a particle interaction occurring within its active volume.

“Dual-phase” refers to the use of both liquid xenon (LXe) and gaseous xenon (GXe) in

the detector. In general, the target material need not be xenon; dual-phase argon TPCs

are also employed in DM searches [91, 92] and helium TPCs have been proposed [68].

Single-phase TPCs are commonly used in high energy particle physics detectors, where

they were first developed [93].

Fig. 3.1 illustrates how the LUX TPC operates. First, an incident particle (perhaps a

WIMP!) travels through the liquid target, colliding with a Xe atom and depositing energy

(see Sec. 2.2.2 for the case of WIMP-nucleus elastic scattering). This energy is released by

the recoiling particle in the form of prompt scintillation, ionization, and heat. Whereas
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some detection techniques make use of the thermal excitation channel, this information is

lost in LXe TPCs. Instead, the scintillation photons and ionization electrons constitute

the observable quanta. The former can be detected by photomultiplier tubes (PMTs),

shown in Fig. 3.1 as colored circles at the top and bottom of the TPC cylinder. This

primary signal is referred to as S1. As for the liberated ionization electrons: in the

presence of an induced electric field, some escape recombination with Xe ions and drift

vertically to the surface of the liquid. Here, a stronger electric field is applied (omitted

from the figure) in order to extract the electrons into the gas phase. As this cloud of

electrons is accelerated through the GXe, a second light signal (S2) is generated via

electroluminescence (also called proportional scintillation).

The S1 and S2 signals in the PMTs are read out via amplification and digitization

electronics, resulting in the voltage pulses drawn along the right side of Fig. 3.1. The

total energy deposited in the event can be estimated by the magnitude of these pulse

areas, which are proportional to the energy quanta. The z position of the interaction site

is inferred from the time delay separating the S2 from the S1 (called the “drift time”),

using the drift velocity of electrons in LXe. In the ideal case of perfectly vertical field

geometry, this relationship is simply linear: depth below liquid surface is given by drift

time times drift velocity. Meanwhile, the (x, y) position of the event can be reconstructed

from the distribution of S2 photons incident on the top PMT array. Although electro-

luminescence is an isotropic photon emission process, the proximity of the top PMTs to

the S2 production sites allows for (x, y) localization. In other words, geometric efficiency
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Figure 3.1: Cartoon of the TPC detection principle. Particle collisions produce scintil-
lation and ionization, measured as S1 (prompt photons) and S2 (electroluminescence)
PMT signals, respectively. The shaded blue region represents the LXe, with GXe sit-
uated above. The striped circles are the cathode and anode high voltage grids, which
generate the electric drift field. The LXe within this field is called the “active volume.”
PMTs are arranged in two arrays, one beneath the active volume (in the LXe), and one
above (in the GXe).
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causes the hit pattern illustrated in Fig. 3.1. Again assuming perfectly vertical drift

field lines, the (x, y) position of the S2 production site will match that of the original

interaction.

The data collected from the LUX PMTs is therefore rich in information, capturing

the energy and 3D position of particle collisions within the active volume. Both of these

observables are important for the identification of potential WIMP events. Recoil energy

has been discussed in the previous chapter, and position within the detector is crucial

for rejecting background events originating from radioactive sources outside the detector.

Such events are concentrated near the TPC boundaries, since most gammas and X-rays

are incapable of penetrating deep into the LXe bulk.

Beyond position and energy, however, yet another quantity vital to signal identifica-

tion is available: the ratio of S2 light to S1 light. The distribution of this ratio differs

for electronic recoil (ER) and nuclear recoil (NR) scattering events, where the latter is

the object of most WIMP searches. ERs, on the other hand, occur when the incident

particle scatters off a bound electron. Beta, X-ray, and gamma radiation—responsible for

the vast majority of the background events in LUX that pass selection cuts—all generate

ERs. Thus, distinguishing ERs from NRs is another tool used to mitigate background

noise and enhance sensitivity to DM particles.

51



The LUX experiment Chapter 3

3.2 Liquid xenon physics

As mentioned, an energy deposition in LXe is partitioned into three channels. The

recoiling electron or nucleus travels along a track, leaving ionized and excited Xe atoms1

in its wake, as well as heat. This process is modeled simply by

Edep = fW (ni + nex) , (3.1)

where the total deposited energy Edep is equal to the work function W times the total

number of quanta produced, i.e. the sum of ni (number of electron-ion pairs) and nex

(number of excitons). The quenching factor f accounts for the fraction of energy lost

to heat. In ER collisions, this fraction is small enough to be ignored [95], such that

fER ≡ 1 and the ∼ 5% heat loss is included in the definition of W = 13.7± 0.2 eV [96].

The quenching factor for NRs fNR is significantly smaller than unity, since the recoiling

nucleus will participate in secondary NRs that fall below the excitation threshold W .

The microphysics of this process is described by the Lindhard theory [97], and although

the NR quenching factor varies with Edep, a typical value is fNR ∼ 1/4.

Note that ni and nex refer to the initial quanta produced along the track of the

recoiling particle. Naively, we might expect the number of observed S1 photons to be

directly proportional to nex, since de-excitation of excitons produces the 178 nm light

(“vacuum ultraviolet” or VUV photons) which the PMTs detect as S1. Similarly, we

would expect the size of the S2 signal to go as ni (note that electroluminescence also

1In fact, these excitons are unstable dimers Xe∗2, though the details of this chemistry can be safely
ignored for our purposes. However, it should be noted that S1 pulse shape discrimination between ERs
and NRs can be achieved by exploiting some of these details: Xe∗2 occurs in either a triplet (τ = 3 ns)
or singlet state (τ = 24 ns), which are generated in different proportions for ERs and NRs [94].
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generates 178 nm photons). In this simplified picture, then, the exciton-ion ratio

α ≡ nex

ni

(3.2)

uniquely governs the ratio of S2 and S1 signals. For NRs, this ratio is roughly unity [96],

whereas for ERs, α ∼ 0.2 (energy is primarily funneled into the ionization channel)

[98]. Although this fundamental difference in α plays a significant role in discriminating

between ERs and NRs (based on their charge-to-light ratio), another process also has

an effect: following ionization, some electrons will recombine with Xe ions to produce

another batch of Xe excitons, effectively stealing from the S2 signal and enhancing the

S1.

If a fraction r of the initial electron-ion pairs recombine, then we have:

nγ = nex + r ni = (α + r)ni (3.3)

ne = (1− r)ni (3.4)

where ne and nγ are the number of electrons and photons that escape the interaction

site, respectively. It is these quantities that determine the S1 and S2 signal sizes:

S1 = g1nγ (3.5)

S2 = g2ne . (3.6)

The italicized pulse sizes S1 and S2 are measured in units of “detected photons” (phd),

and are normalized to correct for position-dependent inefficiencies. The S1 gain g1 is the
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probability that a scintillation photon leaving the interaction site will strike a PMT pho-

tocathode and produce a photoelectron (phe); it is therefore a product of the geometrical

light collection efficiency and the averaged PMT quantum efficiency. On the other hand,

the S2 gain g2 depends on the efficiency with which drifted electrons are extracted from

the liquid into the gas phase (ε) as well as the average pulse size (in phd) of a single

extracted electron (SE):

g2 = ε× SE (3.7)

Extraction efficiency depends on the applied electric field, as does SE, which depends

further on detector geometry and GXe pressure. In LUX, g1 ∼ 0.1 phd/photon and

g2 ∼ 12 phd/electron, as derived from calibrations discussed later in this chapter.

The recombination fraction r depends strongly on the ionization density of the track,

and also on electric field. Modeling this quantity in a probabilistic framework—for the

purpose of simulating both WIMP NR signals as well as ER backgrounds—is the subject

of ongoing research. The Noble Element Simulation Technique (NEST) software repre-

sents the most substantive effort in this endeavor [99], and is employed extensively in LUX

analyses. Comprehensive treatments of this topic can be found in Refs. [14, 96, 100–103].

Suffice it to say here that since NRs are typified by shorter tracks with greater ionization

density than ERs, r is to some extent invariant under changes of electric field for nuclear

recoils. As for the more sprawling ER tracks, increasing the electric field has the effect

of improving an electron’s chances of escaping recombination. Thus, the region in S1–S2

space populated by ERs varies significantly with electric field [104]. For both ERs and
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NRs, the effect also depends on Edep. This subtlety holds serious ramifications for the

second LUX exposure, where deformations in the electric field geometry led to spatially

varying charge and light yields.

The effects of recombination can, however, be ignored when reconstructing energy

from the combined S1+S2 detector response. From eqs. 3.3 and 3.4, we can see that

nγ+ne = nex+ni, which makes intuitive sense under the assumption that all excitons and

electron-ion pairs each result in an escaping photon or electron with perfect efficiency.2

In that case, for ERs, we can rewrite eq. 3.1 as:

Edep = W (nγ + ne) (3.8)

= W

(
S1

g1

+
S2

g2

)
. (3.9)

We can do the same for NRs, by restoring the quenching factor f back into the equation.

This is a more complicated procedure, however, since f is itself energy-dependent. This

is where the Lindhard theory enters, which will be discussed briefly later in this chapter.

However, we may not know whether a particular event is the result of an NR or an ER.

Thus, if energy is reconstructed under the assumption of an ER (i.e. f = 1), then this

is reflected in the unit keVee (where “ee” stands for “electron equivalent”). Similarly, if

the energy calculation assumes a NR deposition, then the unit keVnr is used.

2This is known to be a simplification, as so-called Penning effects can quench the photon production
from excitons [105]. These are taken into account in the NEST model [99].
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3.3 The LUX detector

3.3.1 Design and operation

In designing a dark matter detector, the primary goal is sensitivity to WIMP signals. This

means optimizing efficiencies and driving down thresholds, but also reducing potential

backgrounds. Another concern, of course, is that the detector must live in the real world:

pragmatic matters such as cost, ease of operation, and safety must be considered as well.

The LUX detector paper [9] goes through the design choices motivated by these criteria

in detail, highlights of which will be reviewed in this section.

The location of LUX’s deployment is arguably its most fascinating design choice.

While active, the LUX TPC was housed inside a 70,000 gallon water tank, itself nestled

nearly a mile underground in a gold mine turned science lab.3 Background mitigation

drives both of these extreme measures: the 4850 feet of rock overburden shield LUX

from cosmogenic radiation (muons in particular, discussed in Chap. 4), while the water

buffer blocks gamma rays and neutrons emanating from the cavern rock (see Sec. 3.5).

In addition to these dramatic radiation shields, background mitigation was achieved by

careful screening of materials used in the construction of detector components. The

copper used in the major structural elements shown in Fig. 3.2 are an example of this,

as are the titanium cryostats themselves [107].

In order to have a liquid xenon detector, one must have liquid xenon. In its active

3The Sanford Underground Research Facility (SURF, formerly the Homestake gold mine) in Lead,
South Dakota, is home to LUX as well as a number of other low-background experiments. Most aus-
piciously, the cavern occupied by LUX was once host to Ray Davis’s Nobel-winning neutrino experi-
ment [106].
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Anode and electron
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300 kg active liquid xenon
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PTFE reflector panels

Bottom thermosyphon

Figure 3.2: Cross-sectional drawing of the LUX cryostats. Taken from Ref. [9].
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volume (i.e. the region enclosed by the detector walls between the high voltage grids

establishing the drift field), LUX contained ∼ 250 kg LXe kept at roughly 175 K (at

∼ 2 atm). This temperature is far more convenient cryogenically speaking than the

millikelvin levels required by crystal germanium detectors like CDMS. A thermosyphon

(TS) system is used to cool LUX, powered by gravity and a reservoir of liquid nitrogen

situated above the detector. Closed loops of nitrogen gas are thermally coupled to the

reservoir as well as the detector below; gas is thus liquefied at the top of the loop, falls to

the warmer detector, where it evaporates and subsequently rises back up to the reservoir.

The N2 pressure in the TS loops can be adjusted, effectively tuning the cooling power.

Low and high power electric heaters supplement this system, for temperature fine control

and rapid detector warmup, respectively.

Xenon has no naturally occurring long-lived radioactive isotopes, so pure Xe is an

excellent target material. In practice, though, even research-grade Xe contains the un-

stable contaminants 85Kr (11 year half-life) and 39Ar (269 year half-life) in concentrations

problematic for WIMP searches. Both isotopes decay (mostly) via “naked” beta emis-

sion with < 1 MeV Q-values, and would generate an unacceptable number of ER events.

LUX therefore developed and carried out a Xe purification program to reduce the concen-

tration of these contaminants to manageable levels. Using a charcoal adsorption-based

chromatography system to separate the gases, a factor of nearly 40 reduction in 85Kr

concentration was achieved [108].

Even safely ensconced within the LUX detector, Xe is vulnerable to contamination
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from outgassing detector components. Oxygen and other electronegative impurities cap-

ture ionization electrons as they drift to the liquid level, reducing the S2 detection ef-

ficiency. To combat this, Xe was constantly cycled through a circulation system in

the gas phase, passing through a heated zirconium getter before reentering the detector

through a series of heat exchangers [109]. A sampling system in line with the gas cir-

culation plumbing allowed for regular monitoring of Xe purity [110, 111], demonstrating

efficient purification by the getter. Noble contaminants like Kr and Ar, however, cannot

be extracted by the getter—an air leak reintroducing these background sources to the

Xe would necessitate recovery and transportation of the Xe to the gas chromatography

setup. As such, great precautions were taken in procedures involving manipulation of

the circulation system.

Figure 3.3 shows a closer look at the LUX detector internals. PTFE (polytetrafluo-

roethylene) panels surround the TPC, possessing high VUV reflectivity and enhancing

S1 detection efficiency. The five high voltage (HV) grids are also shown, as well as the

field rings that shape the drift field. The bottommost grid shields the PMTs from the

great potential established by the cathode, directly above it. The cathode-gate potential

is responsible for the drift field in the LXe, with the gate grid situated just below the

liquid level. Just above the liquid level, the anode is positioned; the gate-anode potential

creates the extraction field that allows for S2 light production. Finally, the topmost grid

shields the PMT array from the anode. For details on the construction and performance

of the HV grids, see Ref. [112].
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Figure 3.3: Drawing of the LUX detector internals, with critical components labeled.
Taken from Ref. [9].
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The LUX PMT arrays were designed to answer the age-old question: if a WIMP

collides with a Xe nucleus in a TPC but no one is there to see it, does it make any light?

LUX used 122 Hamamatsu R8778 PMTs—61 in the top array and 61 in the bottom—

to detect 178 nm photons emitted in the S1 and S2 light production processes. The

Hamamatsu R7887 PMTs have a typical quantum efficiency of 33%, and were developed

with low radioactivity as a key goal. Information on the LUX PMTs, their commissioning,

and performance can be found in Ref. [113]. In the LUX WIMP searches, the PMTs were

biased to voltages between -1 kV and -2 kV, to achieve gains of ∼ 4×106 (for an average

single photoelectron pulse area of ∼ 16 mVns at the PMT output).

An important distinction should be made between the traditional units of phe (photo-

electrons) and the LUX units of phd (detected photons). It was discovered that a single

VUV photon incident on the R7887 PMT photocathode could induce the emission of two

electrons [114]. In such a scenario, the signal size would be quantified as 2 phe but only 1

phd. The probability of double phe emission can be as high as ∼ 20% for VUV photons,

but is zero for the blue LED light used in gain calibrations. This means the average sin-

gle phe (sphe) size as measured by the LED calibration is lower than the average pulse

size for a single detected VUV photon. Single phd calibrations were therefore performed

using VUV light to calculate the LUX PMT gains (see Ref. [11]).
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Figure 3.4: Flowchart depicting the signal path, starting at the LUX PMTs and traversing
the data acquisition system. Taken from Ref. [10].

3.3.2 Electronics and data acquisition

The design and performance of the LUX analog and digital electronics are documented

in Refs. [10, 115, 116]. As shown in Fig. 3.4, raw PMT signals are shaped and amplified

by two sets of amplifiers and subsequently split into two copies. One copy of the voltage

waveforms passes through the LUX FPGA-based trigger system [10, 116], which generates

a flag when it identifies an event of interest in the datasream. The other copy of the data

is sent to the analog to digital converters (ADCs), where it is written to disk. Each

PMT has its own channel in the recorded data, though as can be seen in Fig. 3.4, PMT

channels are summed into groups for the triggering logic.

Unlike with traditional “online” trigger systems, LUX data can be recorded without

a trigger condition being met. Trigger information is digitized alongside the PMT wave-

forms in dedicated ADC channels, allowing for offline use in compressing the raw data

into blocks of event-level data. Note, however, that the data acquisition system (DAQ)

does allow for online triggering: this was referred to as “VPTG mode,” short for “Valid
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Figure 3.5: Example of a low-energy event (∼ 1.5 keVee) as seen in the raw datas. Each
POD channel corresponds to a single PMT. Taken from Ref. [10].

Pulse Trigger Gate.” This mode was not used for TPC data-taking, the reasoning being

that if an unforeseen systematic bias in the trigger was rejecting events of interest to some

future analysis, potentially valuable data would be lost forever. In the offline triggering

mode, the raw data would always be saved, and such an analysis could still be performed

even if there were a problem with the trigger.

Still, with 122 channels of PMT voltage data being digitized at 100 MHz, it would not

be feasible to store every 14-bit sample over the course of a years-long WIMP search.4

Instead, the ADCs were operated in “POD” mode, meaning “Pulse Only Digitization.”

When the voltage in a certain channel exceeds the POD detection threshold, samples are

written to a memory bank from the buffer until the POD end threshold is reached. A fixed

4This would require roughly an exabyte of storage, and would be wildly impractical from a data
processing perspective.
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number of samples preceding and succeeding this range are also recorded. The thresholds

are tuned to achieve high efficiency for single photoelectron (sphe) digitization while also

rejecting baseline noise. The POD detect threshold of 1.5 mV used in the WIMP searches

resulted in a typical sphe acceptance of > 95% [11].

Figure 3.5 shows an example of a low-energy S1+S2 event as seen in the raw data

output of the ADCs. A small S1 pulse, lasting fewer than 20 samples (0.2 µs), appears

as roughly 5 sphe scattered amongst as many PMT channels. 20 µs later—corresponding

to an event depth of about 3 cm below the liquid level—the taller and broader S2 pulse

can be seen. This channel-wise POD data, written in discrete sequences corresponding to

ADC memory bank downloads, is saved in binary files with the .dat extension. This is

the rawest and least filtered form of the LUX data. Binary files with the .evt extension

are the output of the event-building stage of data processing: this algorithm searches for

trigger channel flags, and collects all PODs occurring within .5 ms of the trigger (before

or after), saving them into an event object. A trigger hold-off of 1 ms ensures that PODs

are not duplicated in separate events. The width of this event window is driven by the

maximum drift time in LUX. .evt files differ from .dat files only in their organization

and their omission of POD data not occurring near a trigger. Further data reduction is

necessary for the purposes of expedient WIMP search analyses.
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Figure 3.6: Schematic of the LUX data processing framework. Taken from Ref. [11].

3.3.3 Data processing framework

The LUX data processing framework (DPF) extracts essential information from the raw

data and saves it in output .rq binary files (“RQs” meaning “reduced quantities”). RQs

are calculated and stored for each event, and include quantities at the event-level (e.g.

number of identified pulses, trigger timestamp), pulse-level (e.g. area, width, type), and

channel-level (pulse area fraction in a given PMT). The DPF has a modular structure:

data reduction algorithms are implemented as modules, called sequentially by a Python

wrapper, and incrementally add condensed information to the output .rq file. In this

way, modules can be written in any programming language, and can be easily swapped

out for alternate versions. In a given data processing run, the choices of which modules

to use (and also what their input parameters should be) are specified in an .xml file.
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The DPF will generate an ID unique to that configuration, which is saved in a MySQL

database. Figure 3.6 shows the organization of the LUX DPF.

Initial modules in the DPF prepare the data for RQ calculation: baselines are sub-

tracted; ADC counts are converted to phd/sample, using PMT gains; PODs from different

channels that overlap in time are summed into the imaginatively named SUMPODs. A

pulse-finding algorithm then scans the SUMPOD data, using boxcar filters of different

widths to ensure identification of both large S2s as well as tiny sphes. Pulse-level quanti-

ties can now be calculated, including area, width, spike count, etc. A pulse classification

algorithm then determines the type of the pulse, which can be “S1” or “S2”, but also

“sphe” or “SE”, “other”, or in some algorithm versions, a merger of two pulses. This

algorithm is crucial to the identification of so-called golden events, which arise predom-

inantly from single-scatter interactions, the signature of a WIMP event. Gammas and

neutrons often scatter more than once in the active volume, thus producing multiple S2s.

Selecting for golden events, which consist of only one valid S2 following one valid S1,

thus immediately rejects a significant number of background events.

Following the identification of S2 and S1 pulses, the position reconstruction module

is run. This module is based on the Mercury algorithm developed for the ZEPLIN-III

DM detector, another LXe TPC [117]. The LUX technique is described in the recently

released Ref. [12]. Essentially, the algorithm makes use of light response functions (LRFs)

and the S2 pulse area fractions in each PMT to search for the maximum likelihood (x, y)

position of S2 generation. The LRFs are calculated in advance for each PMT by iterative
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Figure 3.7: Illustration of position reconstruction in LUX. Panels a) and b) show the
reconstructed positions of events from calibration data, obtained from an iterative fit,
colored according to the fraction of S2 pulse area appearing in the PMT indicated with
an “X”. Panels c) and d) show the corresponding light response functions used in the
reconstruction algorithm. Taken from Ref. [12].

application of the fitting algorithm, using events from calibration data. Figure 3.7 shows

the empirical and parametrized LRFs for two PMTs. Note that the LRFs for the higher

radius PMT (panels b) and d)) exhibit radial asymmetry. This is a result of the highly

reflective PTFE panels significantly altering the distribution of light. Including this

effect in the LRFs represents an improvement of the LUX method over the ZEPLIN-III

algorithm.

Figure 3.8a shows the reconstructed positions of uniformly distributed events se-

lected from a calibration run. Interestingly, the striped pattern is not an artifact of the

reconstruction, but rather a real clustering of electron extraction sites resulting from the

positions of the HV grid wires. Figure 3.8b illustrates the origin of this effect: drifting

electrons are bunched into narrow bands as they pass the gate grid (with wires running

through the page), en route to the liquid-gas boundary, where S2 photon production be-

gins. This phenomenon clearly limits the validity of the assumption that an S2 production

site matches the (x, y) position of the original energy deposition. A further complication
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Figure 3.8: At left: reconstructed (x, y) positions of uniformly distributed calibration
data. The stripes of high event density are the result of gate grid wires concentrating
electron trajectories into tight bands, an effect shown at right. Taken from Ref. [12].

is the geometry of the drift field, which in the first LUX exposure was slightly “fringed.”

Consequently, the radius of S2 production was slightly less than that of the scattering

event. This effect was modeled and accounted for in the data processing, resulting in

a set of corrected coordinates {x, y} as well as a set of raw coordinates {xS2, yS2} (see

Table 3.1). In the second LUX data-taking run, the field geometry was more seriously

distorted, requiring more careful treatment (discussed in Chap. 5).

The final major stage of data processing corrects pulse quantities for spatially varying

detector efficiencies, known as “flat-fielding” in 2D imaging. In LUX, these are called

“area corrections” (since we are correcting pulse areas) as opposed to the aforementioned

“position corrections.” For S1 pulses, this correction normalizes the area to what would

be observed (on average) if the same number of scintillation photons originated at the
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Symbol Unit Description

S1 phd
Total number of detected photons (obtained from
summed pulse area) corresponding to prompt scin-
tillation VUV light.

S2 phd

Total number of detected photons (obtained from
summed pulse area) corresponding to electrolumines-
cence VUV light (proportional to charge). Sometimes
notated S2raw to distinguish from S2.

S1 phd

S1, corrected for position-dependent detector efficien-
cies. Geometrical light collection efficiency dominates
the correction factor (see Sec. 3.4.1). Sometimes no-
tated S1c or S1corr.

S1spike phd
S1 (obtained from counting single photon peaks in
PMT waveforms), corrected for position-dependent
detector efficiencies.

S2 phd
S2, corrected for position-dependent detector efficien-
cies. Electron lifetime dominates the correction factor
(see Sec. 3.4.1). Sometimes notated S2c or S2corr.

rS2 =
{xS2, yS2, zS2} {cm, cm, µs}

Reconstructed position of interaction, in the uncor-
rected S2 coordinate space. Also commonly seen in
cylindrical coordinates {rS2, φS2, zS2}. Note that zS2

is the drift time, sometimes notated as tS2 or tdrift.

r =
{x, y, z} {cm, cm, cm}

Reconstructed position of interaction, corrected for
electric field effects. Also commonly seen in cylindri-
cal coordinates {r, φ, z}.

Table 3.1: LUX reduced quantities and associated units.
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center of the TPC. S1 photon detection efficiency primarily varies with z position; because

of total internal reflection at the liquid-gas interface, most S1 light is predominantly

collected in the bottom PMTs. As such, S1 photons emitted near the bottom PMT array

are ∼ 50% more likely to be detected than those originating near the liquid surface. S2

pulse areas also vary with z (for fixed ne), since longer drift times incur greater losses

of charge to electronegative impurities. This loss is totally cancelled in the correction,

as if the event occurred exactly at the center of the gate grid. Note that some (x, y)

dependence exists as well, to some extent for S1 but more significantly for S2 pulse area

efficiencies. As indicated in Table 3.1, corrected pulse areas are notated in italics: S1

and S2.

Since electron lifetime (a function of LXe purity) can vary over the course of a long

WIMP search exposure, the area corrections must be updated as well. Thus, date-

dependent area correction maps are stored in a database which is queried by the DPF

in the course of determining IQs (important quantities) required by the various data re-

duction modules. The LRFs, for example, can also change over time, as can PMT gains.

These and other detector parameters are calculated and monitored using various calibra-

tion techniques, allowing for consistent and accurate estimation of key event observables

by the DPF.
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3.4 Calibrations

LUX has pioneered a number of novel calibration methods. The inherent difficulty in

calibrating the ER response of LXe detectors lies in one of their great strengths: self-

shielding. Gamma rays from sources external to the detector cannot penetrate far into

the fiducial volume with high efficiency. Thus, for a high statistics calibration of detector

response to events occurring in the central volume, radioactive sources must be introduced

into the Xe itself. This is a frightening prospect, and runs counter to every onsite shifter’s

best instincts. The only ways such calibrations can be executed without compromising

the WIMP search by irrevocably contaminating the Xe are (i) using a short-lived isotope

that decays away rapidly, or (ii) ensuring the isotope is bound in a molecular form that

is efficiently extracted by the getter. Calibrations using metastable krypton-83 (83mKr)

follow the first approach; those using tritium (3H) in the form of tritiated methane

(CH3T) follow the second.

3.4.1 Krypton-83m

83mKr decays to 83Kr in a two-stage process, releasing a total of 41.5 keV. The first

transition of 32.1 keV has a half-life of 1.83 hours; it is followed by a 9.4 keV transition

with a fleeting 154 ns half-life. This decay structure is convenient for a number of reasons.

First of all, the monoenergetic total transition is well outside the range of WIMP scatters,

so there is nearly no risk of contaminating the region of interest (the smaller secondary

transition is never spatially or temporally isolated from the first). Second, the short
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Figure 3.9: At left: relative variation in S1 and S2 pulse areas as a function of position,
obtained from the monoenergetic 83mKr calibration data. At right: effect of applying
pulse area corrections to raw data. The pulse area distributions of uncorrected data are
shown as blue histograms; areas corrected for z-dependent variation only are shown in
red; areas corrected for z and (x, y) variation are shown in black. Taken from Ref. [13].

1.83 hour half-life allows for a quick return to baseline trigger rate following an injection,

leaving the DAQ system free of clutter.

The LUX experience with 83mKr is documented in the newly released Ref. [13]. In

short, it became the workhorse of the WIMP search calibration techniques. Featuring

a monoenergetic signal, distributed uniformly in the LXe, this calibration allowed for

the calculation of the area correction maps referred to in Sec 3.3.3. The results of these

calculations are shown in Fig 3.9. Furthermore, the events shown in Fig. 3.8a are from a

83mKr calibration: these datasets are used in the calculation of the LRFs vital to position

reconstruction. As an added bonus, the double decay structure can be resolved in the S1

pulses for a fraction of events, allowing for studies of the electric field geometry (since

recombination statistics for the low-energy ERs from the first transition are less affected
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Figure 3.10: At left: scatter plot of 3H calibration data, using fitted values of g1 and g2

to convert from S1 to nγ and from S2 to ne, respectively. Contours (lines, in this case)
of deposited energy are drawn, according to eq. 3.9. At right: the same data, collected
into bins of energy, and compared against the theoretical 3H beta spectrum. The fall-off
at low energy shows the detection threshold, driven by the S1 detection efficiency. Taken
from Ref. [14].

by field variation than the higher energy second transitions).

3.4.2 Tritium

Unlike short-lived 83mKr, tritium has a 12.3 year half-life. Additionally, its beta decay

spectrum—with a 18.6 keV Q-value—has significant overlap with the WIMP nuclear

recoil range. This makes it ideal for calibrating ER backgrounds, but it also means

that it must be efficiently removed from the Xe before WIMP search data taking can

resume. In Ref. [14], the LUX technique is described, whereby a six-hour purification

time constant was achieved during removal. Figure 3.10 shows the observed spectrum in

ne–nγ space as well as combined energy space, from which a measurement of the detector

g1 and g2 can be made.

Figure 3.13a shows the tritium ER band. This spectral shape is the primary dis-
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Figure 3.11: At left: ER band from the 3H data, drawn in the traditional discrimination
space of S1 vs. log10(S2/S1). The scatter plot shows the calibration data, and the solid
black line shows a fit to the Gaussian mean of log10(S2/S1) in each S1 bin (solid black
dots). The dashed black lines show the 10% and 90% ER band contours. Analogous
quantities are shown in red for the NR band, as measured by the deuterium-deuterium
neutron calibration. At right: the underlying quanta responsible for the shape of the ER
band (see Sec. 3.2). Taken from Ref. [14].

criminant between low-energy ER backgrounds and NR signal events. In Fig. 3.13b, the

deduced effects of recombination physics are shown. As discussed in Sec. 3.2, the initial

number of ions produced is not necessarily the same as the observed number of electrons,

due to the recombination of electron-ion pairs. In the plot, these numbers quickly di-

verge, as the assumed nion/nex = 5 ratio is taken to be constant, but the reconstructed

ne/nγ is clearly energy dependent. See Ref. [101] for an in-depth exploration of the LUX

ER band and the effects of recombination fluctuations.

3.4.3 Deuterium-deuterium neutron beam

Between the 83mKr and 3H calibrations, a remarkably accurate picture of LUX’s response

to ER events can be constructed. However, in order to refine the expected distribution
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Figure 3.12: At left: spatial distribution of single-scatter events from the DD calibration
data, where the y′ axis is parallel to the direction of the neutron beam. Events within
the indicated box are selected to reduce contamination from neutrons that have been
scattered outside the detector (and thus do not have the 2.45 MeV energy of those in the
collimated beam). At right: the nuclear recoil band, indicated by the black 10%, mean,
and 90% lines calculated from the DD data (comprising the scatter plot). The contours
in red come from simulated data using the model parameters tuned by the calibration
analysis. Taken from Ref. [15].

of WIMP signal events, an NR calibration must also be performed. Following the first

data-taking run, LUX employed a deuterium-deuterium (DD) fusion generator to fire

a collimated beam of 2.45 MeV neutrons into the TPC. The generator was positioned

outside the water tank, but an acrylic tube of air was suspended in the water and aligned

with the beam, to allow neutrons to penetrate into the LXe space. Figure 3.12a shows the

spatial distribution of events observed during the DD campaign, showing the definition

of the beam shape. Closer to the wall, though, events caused by neutrons that have

scattered outside of the TPC contaminate the monoenergetic data; the indicated box

shows a selection used to reduce this background.

Although the neutrons in the beam have a known energy, they scatter off of Xe nuclei

with a known angular distribution, depositing variable amounts of energy. However, if one
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selects for double-scatter events, the reconstructed vertex positions allow for calculation of

the scattering angle of the first interaction. This kinematically constrains the deposited

energy of the first nuclear recoil. Although the S1s of the two interactions overlap,

provided they are sufficiently separated in z, the S2s can be resolved. Thus, events from

the double-scatter sample can be used to deduce the charge yield of NRs as a function

of deposited energy. With this measurement in hand, the single-scatters can then be

examined to determine the light yield. The full analysis is quite nuanced, and presented

in Ref. [15].

The NR band shown in Fig. 3.12b is calculated empirically from the calibration data,

but the result of a simulation is shown as well. Having a reliable NR model for MC

simulations is desirable, since the WIMP recoil spectra are not well approximated by

that of the DD neutrons. Since charge and light yield are effective parameters, more

fundamental parameters of the NR model in NEST must be tuned to reproduce the

data. To review, the observable nuclear recoil energy is expressed as a fraction of the

total:

ENR =
W (ne + nγ)

L
(3.10)

where we have replaced the factor of f with the conventional Lindhard quenching factor

L.5 L is energy dependent, modeled as

L =
k g(ε)

1 + k g(ε)
, (3.11)

5Once again, we are ignoring the effects of biexcitonic quenching for clarity, though these are consid-
ered in the NEST model.
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where ε is a dimensionless form of the energy,

ε = 11.5 (ENR/keVnr)Z
−7/3 , (3.12)

and g(ε) is a measure of the electronic stopping power relative to the nuclear stopping

power, parametrized in Ref. [78] as

g(ε) = 3ε0.15 + 0.7ε0.6 + ε . (3.13)

Finally, k is a constant of proportionality between the electronic stopping power and

the velocity of the recoiling nucleus [15, 97]. This parameter was measured to be

k = 0.1735 ± 0.0060 in the analysis of the DD calibration data. The uncertainty on

k is taken into account in the WIMP signal model used in the limit-setting technique

discussed in Chap. 6.

3.5 Backgrounds

The expected sources of background events in the LUX WIMP search have already been

alluded to. Radioactivity in detector components, in contaminants in the LXe, in the

cavern rock, as well as cosmic rays all have the potential to generate events in the TPC.

However, after narrowing the search region to low-energy single-scatter events in a fiducial

detector volume, many backgrounds are instantly weeded out. What remains are almost

entirely ER backgrounds—Compton scattering gamma rays from detector components,

beta decays from radon daughters in the Xe, beta decays from 85Kr, and cosmogenic

127Xe electron capture decays. NR backgrounds come from neutrons, produced in (α,n)
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reactions (predominantly in the PMTs) or by cosmogenic muon interactions in the water

or cavern rock.

All of these background sources are described in detail in the LUX publication

Ref. [16]. As described there, the neutron background is so small as to be negligible

for the purposes of constructing a background model. The water shield effectively blocks

thermal neutrons and gammas from the cavern rock, and the underground location sup-

presses the muon flux such that only 0.1 events are expected from muon-induced neutrons,

in a 100 kg-year exposure.

The low-energy ER event rate due to Compton scattering of gammas originating in

detector materials is calculated with the Geant4-based [118] LUXSim [119] software,

using the results of the screening assays to estimate the activity of various detector

components. This estimate is refined by performing a fit to the observed high-energy ER

spectrum, where the radioisotopes 238U, 232Th (and their daughters), 40K, and 60Co are

modeled. The concentration of radon daughters, on the other hand, is constrained from

fits to the observed α particle energy spectrum. 85Kr event rates can be deduced from

the observed concentration of natK (as measured by the sampling system), the assumed

abundance of 85Kr and its beta decay spectrum.

While exposed to cosmic rays and thermal neutrons aboveground, the LUX Xe was

activated. Of the unstable isotopes generated in these processes, only 127Xe has the

ability to produce low-energy single-scatter events in the WIMP search data. With a

half-life of 36 days, however, it was only a significant background source during the
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Figure 3.13: Spatial distribution of low-energy background events, predicted by the model
(left) and observed in the first LUX exposure (right). Binning in squared radius ensures
equal projected volume of the bins. The unit DRUee is the differential rate unit, using
the electron equivalent energy scale: events kg−1 day−1 keV−1

ee . Taken from Ref. [16].

first LUX data-taking run (once underground, the Xe experiences no activation, and the

residual 127Xe decays away). Unlike the other intra-Xe background sources, 127Xe decays

via electron capture. Ordinarily, the full energy of the nuclear deexcitation of the 127I

daughter is visible—either 203 keV (53% probability) or 375 keV (47% probability)—

and the event is well outside the low-energy search region. However, the 375 keV nuclear

transition has a 17% chance of occurring via γ emission. With a mean free path of 2.6 cm

in LXe, this gamma has a finite probability of escaping the TPC undetected. In that

case, if the original captured electron came from the L shell or higher, the subsequent

atomic transitions would release X-rays or Auger electrons and result in a clean low-

energy event. Owing to the requirement that the gamma escape, this background source

is not uniformly distributed in the detector volume, but instead concentrated near the

edges (similar to the gamma distribution).
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An additional background source not discussed in Ref. [16] arises from interactions

occurring very close to the PTFE reflector panels, referred to as wall events. Under

ideal conditions, these events would be rejected by a fiducial radius cut. However, due

to the affinity of PTFE to absorb ionization electrons, these events can suffer severe S2

suppression; since (x, y) position reconstruction depends on the S2 signal, the resolution

is poor for these events, and some will statistically leak into the fiducial volume.6 The rate

and distributions of these events are difficult to model from first principles. Therefore,

empirical estimates are calculated using control samples of the search data. This is

discussed briefly in Chap. 6, though a much more complete treatment can be found in

Ref. [120].

Another background to WIMP searches in general is coherent nuclear scattering from

neutrinos. In LUX, these interactions are expected to produce only ∼ 0.2 detectable

events in the full exposure. However, as next-generation experiments grow in size and

sensitivity, neutrinos will eventually become an irreducible background. One might think

that muon-induced neutrons also represent a similar challenge, but unlike neutrinos,

muons can be readily detected. The muon veto system in LUX was designed to observe

muons passing through the water shield, enabling the rejection of coincident events in

the Xe TPC as WIMP signal candidates.

6Ref. [16] catalogs backgrounds to the first published LUX WIMP search, in which a strict radial cut
was enforced. The wall background is only significant for more relaxed fiducial volume definitions.
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LUX muon veto

As discussed in the previous chapter, the LUX water shield effectively blocks gam-

mas and neutrons generated from radioactivity in the cavern rock. The “fast” neutron

(1 MeV < E < 8 MeV) background is created by 238U fission as well as in uranium

and thorium chain (α,n) reactions. The flux of these neutrons near the LUX TPC is

suppressed by ∼ 22 orders of magnitude, thanks to the LUX water tank [16]. In con-

trast, muon-induced neutrons have a much harder energy spectrum, reaching to the GeV

scale [121]—these are only shielded by a factor of ∼ 103 by the water. Still, such neutrons

are significantly rarer than fast neutrons, and are not expected to produce any events in

the TPC. Even so, had LUX discovered a population of NR events during the WIMP

search, being able to demonstrate that these were not muon-related phenomena would

have significantly bolstered a DM detection claim.
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4.1 Cosmic ray muons

A longtime favorite of particle physics outreach demonstrations and undergraduate lab-

oratory experiments, the mu “who ordered that?” lepton is not at all welcome near DM

detectors. Muons are generated in cosmic ray collisions in the upper atmosphere, and

bombard the Earth’s surface with a flux of roughly 1 muon cm−2 min−1. Though not

themselves likely to fake a WIMP signal, the trail of ionization they leave in LUX would

clutter the data acquisition system. Moreover, secondary particles produced in show-

ers from collisions outside the detector include fast neutrons—a dangerous background

source, owing to their propensity to create single-scatter NRs in the TPC.

Moving underground significantly reduces the threat posed by muons: the Davis

cavern at SURF is located 4850 ft below the surface, or 4.3 km.w.e. (kilometers water

equivalent), and enjoys a 107 suppression of the muon flux compared to the surface. That

any muons survive the trip at all is remarkable in itself—unlike high energy electrons,

which rapidly lose energy to bremsstrahlung, the heavier muons are not as susceptible to

braking radiation and can penetrate deep into the Earth (see e.g. Refs. [122, 123]). At

depths greater than 10 km.w.e., the muon flux is dominated by the products of neutrino

interactions with the rock (see Fig. 24.6 of Ref. [122]).

4.1.1 Muon-induced neutrons

At the LUX depth of 4.3 km.w.e., the average muon energy is about 300 GeV. In

Ref. [121], Mei and Hime calculate the differential muon spectrum as a function of depth,
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and from this derive the resulting muon-induced neutron rate and energy distribution.

Neutrons can be generated by a number of mechanisms (see e.g. Ref. [124]), so numerous

physics models must be juggled to make accurate predictions. The LUX estimate of 0.1

single-scatter NRs per 100 kg-year exposure from muon-induced neutrons is calculated

using the Mei and Hime results. Two thirds of this background source arises from neu-

tron production in the water shield itself [16]—by instrumenting the water tank with

PMTs, then, such events can be tagged and vetoed.

4.1.2 Cherenkov Radiation

When a charged particle passes through a medium at a velocity greater than the local

phase velocity of light, a shockwave is generated from the rapid distortion of the electro-

magnetic field. The resulting coherent light is dubbed Cherenkov radiation, and forms

the basis of a wide variety of particle detection techniques (the IceCube detector [125]

being a particularly fascinating example). The Frank-Tamm formula gives the spectral

density of Cherenkov light (per unit length) produced by a particle with charge q traveling

at velocity β through a medium with permeability µ(ω) and refractive index n(ω) [126]:

d2E

dx dω
=
q2

4π
µ(ω)

(
1− 1

β2 n2(ω)

)
ω . (4.1)

With a few approximations, this can be used to estimate the light yield of a typical

muon traveling through the LUX water tank. Specifically, we can take µ(ω) ≈ µ0 (a

valid approximation for water) and fix n = 1.33, since the refractive index of water is

largely independent of wavelength in the UV range to which the water tank PMTs are
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Figure 4.1: Spectrum of Cherenkov light in water from a 300 GeV muon. The UV range
of PMT sensitivity is shaded in orange.

sensitive. Thus, applying the chain rule twice to eq. 4.1 gives the number of photons

emitted per unit track length, per unit wavelength:

d2N

dx dλ
=

2πz2α

λ2

(
1− 1

β2 n2

)
, (4.2)

where α is the fine structure constant, and the charge is now expressed as a multiple of

the elementary charge: q = ze. This equation can be easily integrated over a range of

wavelengths to calculate dN/dx.

For example, consider a 300 GeV (β ∼ 1 − 10−7) muon passing through the LUX

water tank. Figure 4.1 shows the corresponding Cherenkov spectrum calculated from

eq. 4.2, with the shaded area indicating the approximate range of wavelengths to which

the LUX water tank PMTs are sensitive. The integral over this range comes out to ∼ 190

photons per cm of water traversed by the muon. Since the water tank is 6 m tall, this
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comes to a typical yield of ∼ 105 detectable photons emitted by a through-going muon.

The 20 PMTs cover a combined ∼ 0.4% of the total surface area of the tank, so one

would expect 400 photons to strike photocathodes, resulting in a total of ∼ 100 prompt

photoelectrons per muon event (accounting for PMT quantum efficiency). Because of the

reflectivity of the tank walls, a photon has an average of 5–6 chances to strike a PMT

(from the mean of the negative binomial distribution, assuming ∼ 85% reflective walls

and no absorption in the water), so this signal would be boosted to hundreds of detected

photoelectrons per through-going muon. The parameters used in this simple calculation

inform the basic specifications of the LUX muon veto system, since O(102) phe/muon

allows for high efficiency tagging. Indeed, a similar setup was used with great success in

the Super-Kamiokande outer detector [127].

4.2 LUX muon veto system

The LUX muon veto system comprised the LUX water tank (and its internal lining of

reflective Tyvek sheets), 20 Hamamatsu R7081 10” PMTs, HV supply, signal pickoff

box, a dedicated electronics rack with amplifiers and triggering logic modules, 8 ADC

channels, and analysis software integrated into the LUX data processing framework.

4.2.1 Water tank and purification system

Figure 4.2 shows a wide-angle view of the interior of the LUX water tank before it was

filled, capable of holding 70,000 gallons of ultra-pure water. The water is treated before
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Figure 4.2: At left: wide-angle view of the LUX water tank interior. Three of the veto
system vertical PMT strings are visible. Note also the gray, horizontal acrylic tube, which
was raised during DD calibrations to allow neutrons to reach the TPC (see Sec. 3.4.3).
At right: close-up of a Hamamatsu R7081 10” PMT, mounted at the lowest level of one
of the four vertical strings.

being pumped into the tank, and is continuously recirculated through the purification

system, designed by South Coast Water Co. The recirculation purification system in-

cludes a series of deionizing resin beds, with one treatment specifically targeting U/Th

impurities. UV lamps destroy any organic compounds, and two filters (1 and 0.2 µm)

remove particulate contaminants. A membrane degasification system removes dissolved

gases such as O2 and, more importantly, Rn. To help prevent radon contamination of

the water through various entry points in the tank (e.g. flanges with instrumentation

and plumbing feedthroughs), an overpressure purge of N2 is applied, using boil-off gas

from the liquid nitrogen dewars supplying the cryogenic LUX systems.

In addition to these measures, during a fill of the tank, domestic water is processed

through additional water softening, filtration, and reverse osmosis units before entering

the recirculation purification system. During the WIMP search campaigns, the LUX
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water was kept at nearly 18 MΩ-cm resistivity, at ∼ 23 ◦C. For reference, pure water

at 25 ◦C has 18.2 MΩ-cm resistivity [128]. The dissolved O2 concentrations (measured

as a tracer of radon gas) were reduced to below the detection threshold of the system

(< 1 ppb).

4.2.2 PMTs

Twenty Hamamatsu R7081 10” PMTs were used to instrument the water tank. A water-

tight housing protected the electronics base, to which positive bias voltage was supplied.

This allowed the photocathode to be grounded, and safely exposed to the water (see

Ref. [113]). The performance of the LUX veto system PMTs was characterized prior to

their installation by M. Hanhardt in Ref. [129]. The veto system PMTs were arranged

in four vertical strings along the interior of the water tank, each string consisting of four

suspended PMTs facing radially inward (towards LUX) and a fifth on the floor facing

upward. Because positive high voltage was supplied, a single RG-58 cable attached to

the PMT base carried both the bias HV and the fast signal pulses. Outside the water

tank, a “pickoff” circuit capacitively separated the AC signal from the DC voltage. The

signal was then routed to the amplification, triggering, and digitization electronics.

4.2.3 Electronics and data acquisition

A schematic of the veto system analog electronics system, which featured both custom-

built amplifiers and standard NIM products, is shown in Fig. 4.3. Annotated photos of the
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Figure 4.3: Schematic of the veto system electronics.

Amplifiers

Discriminators

Multiplicity logic unit

Figure 4.4: Annotated photos of the veto system electronics rack.
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main components are shown in Fig. 4.4. The system functioned similarly to the signal

processing electronics of the TPC PMTs (see Sec. 3.3.2), with copies of the amplified

signals being sent to both trigger logic and ADCs. Unlike the TPC signals, however, the

veto data was digitized in VPTG mode; i.e., a trigger condition must be met for data to

be stored.

The veto system trigger was configured with the goal of flagging muon events with

high efficiency while rejecting the many pulses due to noise and other backgrounds. The

amplified signals of each veto PMT were passed on to discriminators that would generate

a NIM pulse when a threshold of −30 mV (approximately the height of a sphe pulse) was

surpassed. These 20 discriminator signals were collected by a LeCroy 380A multiplicity

logic unit, which would in turn generate a NIM pulse when a configurable coincidence

requirement was reached. This signal was then sent to the LUX VPTG logic, permitting

veto PMT data to be recorded by the Struck ADCs. The diagram in Fig. 4.3 omits a

hardware component that was added to the veto circuitry: the trigger hold-off. Shown

in gory detail in Fig. 4.5, this component imposed a mandatory dead-time following any

veto trigger, preventing pulses from being double-counted.

Another distinction between the veto system and TPC signals was the ganging scheme:

whereas each of the 122 TPC PMTs was allotted its own digitizer channel, the 20 veto

PMTs received only 8 ADC channels. Channels were therefore summed according to the

vertical position of the PMT: the top row was summed into one channel, the same for

the second highest row, and etc., though the bottom (upward facing) PMTs were left
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Figure 4.5: Annotated photo of the electronics responsible for the hardware trigger hold-
off for the veto system.

as individual channels. This channel grouping can actually be seen at the right edge of

zoomed inset of Figure 4.4, where four green-labeled LEMO cables enter a fan-in/fan-out

module, and a single while-labeled cable (destined for the digitizers) emerges. Note that

this channel ganging was used for the data acquisition, but not in the triggering logic.

4.2.4 Commissioning and operation

Early underground commissioning of the water tank PMTs consisted of HV bias and tank

light-tightness tests. These diagnostics revealed a problem with a crimp in the PMT base,

which caused sparking and open circuits in a number of channels. Luckily, this was readily

fixed, and all 20 PMTs were operational when the tank was filled with water. Testing for
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Figure 4.6: Single photoelectron spectra of water tank PMT (South 3) at three different
bias voltages.

light tightness was painstaking work, requiring one person watching the PMT count rate

(note the brown Ortec unit in Fig. 4.4) while another crawled between the tank surface

and the floor grating, shining a flashlight at potential light leak locations.

Other tests probed the response of the veto system: the trigger rate at various coin-

cidence levels was examined, and single photoelectron calibrations were performed using

blue LEDs mounted in the water tank (see Fig. 4.6). For the second LUX exposure, an

intermediate bias voltage was chosen, to ensure that the majority of single photoelectron

pulses passed the relatively high POD threshold imposed at the ADCs.1 The coincidence

threshold for the trigger was set to N > 3 in a 400 ns time window. The system was

online throughout data-taking of this science run.

During the first underground LUX exposure, the veto system operation was more

exploratory and intermittent. Though useful data was collected, continuous performance

1Subsequent studies of saturation effects imply that this choice might interfere with more detailed
analyses of muon events; at the time, though, it was feared that the veto system might miss events worth
vetoing.
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Figure 4.7: At left: replacement high voltage supplies for the veto PMTs. At right: the
bottom West PMT makes a break for it, as captured by a submersible camera.

was hampered by the failure of two high voltage supplies, necessitating the procurement

of a tertiary backup option. Figure 4.7a shows this setup, consisting of 10 Bertan positive

HV NIM modules. (For the later science run, a new HV supply with both positive and

negative capabilities was acquired and used to bias both the LXe and water PMTs.)

Additionally, not all PMTs survived the entire LUX experience. One channel became

too noisy to be useful, and another PMT was unable to be biased to high voltage without

tripping. Most spectacularly, the floor-mounted PMT at the bottom of the West string

became detached from one of its ballast weights, allowing it to float freely until becoming

entangled in the PMT above it (see Fig. 4.7b). Rather than drain the entire water tank to

rescue this PMT, it was deactivated for the remainder of LUX activities. Its dedicated

ADC channel was, however, put to good use—the multiplicity count (as measured by

the logic unit in the trigger system) was digitized, allowing for validation studies and
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Figure 4.8: At left: PMT quantum efficiency, taken from the Hamamatsu data sheet. A
parameterization of this curve was implemented in the Geant4 model. At right, a plot
of simulated quantum efficiency, shown as a validation of the implementation.

convenient analysis cuts.

4.2.5 Preliminary analysis

Despite some of the setbacks experienced in the first LUX run, the veto system performed

its stated purpose in the second run, flagging events with significant light production in

the water tank (though, no such events passed selection cuts in the WIMP search).

Beyond this, though, efforts are ongoing to extract physics information from the wealth

of data collected. As can be seen in Figures 4.8 and 4.9, geometry and material properties

in the Geant4 simulations have been updated to better match reality. This allows for

calculations of expected system response to muon events much more sophisticated than

the back-of-the-envelope estimate shown in Sec. 4.1.2.
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Figure 4.9: Top: Visualization of a simulated photon (green) reflecting off the Tyvek-
lined tank walls. The veto PMT photocathodes are shown as pink hemispheres. At
bottom right: experimentally measured reflectivity of different Tyvek products, obtained
from the Daya Bay experiment. A parameterization of the green “thin tyvek” curve was
implemented in the Geant4 model. At bottom left, a plot of simulated reflectivity,
shown as a validation of the implementation.
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Figure 4.10: Waveforms of the LUX TPC and veto PMT channels in a coincident muon
event, shown respectively as gray-scale and color curves. Accounting for a trigger time
offset, the events are simultaneous. The mess of LXe PMT waveforms shows a massive
S1 pulse, followed immediately by a sprawling wake of extracted electrons; meanwhile
the water PMTs exhibit a crisp, high-coincidence level Cherenkov signal.

The early studies of the veto data itself revealed a puzzling pileup of legitimate events

with small time separation. These occasional bursts of light in the tank were hypothesized

to be the result of flashing PMTs—sparking of some sort in the base of a PMT, as seen

in Super-Kamiokande—though this was never confirmed. This phenomenon, as well

as electronics noise and saturation effects, make the study of the veto system data a

nontrivial exercise. Still, an encouraging result of the early work was the identification of

coincident muon events in the LUX TPC and veto system (see Fig. 4.10 for an example).

More recent studies leveraging the full power of the Geant4 simulations show promising

progress in the effort to see interesting physics in the veto data, and will be presented in

forthcoming publications.
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LUX Results

In short: LUX did not find WIMPs.

The LUX detector was operated underground for over three years, though this metric

hardly captures the tremendous effort invested. Hundreds of person-years were spent

in LUX’s conception, construction, and operation, while countless more went towards

the analysis of the WIMP search data. Notwithstanding LUX’s “failure” to detect dark

matter, the endeavor is still regarded as a success. First of all, the technologies and

expertise developed for LUX, ranging from cryogenics to calibrations, will be vital tools

in the larger next-generation detectors. Furthermore, the very absence of an observed

dark matter signal, combined with the unprecedented sensitivity of LUX, allowed for new

statistical constraints to be placed on WIMP properties. This information has bearing on

theoretical models of DM, on past detection claims, and the direction of future searches.

However, it is no small task to extract this information from the raw LUX data. With
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hundreds of millions of triggers to sift through, a variety of selection criteria must be

imposed to narrow the sample down to events of interest. This process is the focus of

this chapter.

5.1 LUX WIMP search timeline

Three primary results have been published by the LUX collaboration. These results

are presented as upper limits on WIMP-nucleon scattering cross section as a function of

WIMP mass, under the assumption of spin-independent (SI) coupling. As discussed in

Chap. 2, LXe detectors like LUX are most sensitive to WIMPs in this coupling scenario,

which is why exclusions on SI cross section are the first analyses to be performed. The

first two LUX publications reporting SI WIMP limits—Refs. [17, 18]—concern the data of

a months-long exposure taken in the spring and summer of 2013, within a year of LUX’s

underground deployment, known as Run3. A preliminary, rapid analysis was reported in

Ref. [18]. Improvements to the analysis were made in Ref. [17], including an expanded

fiducial volume, refined background model, more sophisticated statistical analysis, and

superior calibration information. This “re-analysis” of the Run3 data will be referred to

as WS2013 (as in Ref. [20]), where WS stands for “WIMP search”.

Following the data-taking period of WS2013, the first tritium and DD neutron cali-

brations were carried out (see Secs. 3.4.2 and 3.4.3). Additionally, a grid “conditioning”

campaign was attempted, with the goal of raising the grids to higher voltages than at-

tainable in WS2013 due to the onset of light production. The conditioning, in which
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Parameter WS2013 value WS2014–16 value

HV grid voltages [kV]
(B, C, G

∥∥ A, T)
−2, −10, −1.5

∥∥ +3.5, −1 −2, −8.5, +1
∥∥ +7, −1

Nominal drift field −0.18 kV/cm −0.21 kV/cm

Nominal extraction
field (in liquid) in gas

(−3.07) −6.02 kV/cm (−3.68) −7.21 kV/cm

εee (electron extraction
efficiency)

(49± 3)% (73± 4)%

g2 [phd/ne] 12.1± 0.8 18.9± 0.8 – 19.7± 2.4

g1 [phd/nγ] 0.117± 0.003 0.100± 0.002 – 0.097± 0.001

Table 5.1: LUX detector parameters in WS2013 and WS2014–16. In the first row, the
voltages are given in ascending order of grid height in the TPC: bottom PMT shield (B),
cathode (C), gate (G, with ‖ indicating the position of the liquid surface), anode (A), top
PMT shield (T). Drift field magnitudes are listed as “nominal” values, calculated from
an idealized geometry. In reality, deviations from these values arise from grid geometry
effects [11] and due to charge accumulation on the PTFE reflector panels (observed
only in WS2014–16 [19]). The S2 gain g2 (and related quantity εee) and S1 gain g1 are
calculated via a “Doke plot” analysis, described in Refs. [11, 17]. Ranges are shown for
WS2014–16 values to reflect their variation over the course of exposure.
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grids were held at high voltages in a burn-in style approach (see Ref. [112]), was in some

respects successful. Notably, the electron extraction efficiency was improved, due to the

greater potential difference achievable between the gate and anode grids.

Table 5.1 shows the differences between the WS2013 detector conditions and those of

the longer exposure, termed WS2014–16, taken following the grid conditioning campaign.

The improvement in εee can be seen, along with a corresponding boost in S2 gain g2.

A marginal increase in the cathode-gate potential difference was also achieved, though

this was negligible compared to an unanticipated consequence of the grid conditioning:

charge buildup on the PTFE reflector panels surrounding the TPC. This effect severely

altered the drift field geometry, introducing a major challenge to the WS2014–16 analysis.

Nevertheless, the WS2014–16 dataset was combined with WS2013 to produce the limits

shown in Ref. [20]. All three papers, at the time of their publication, reported world-

leading constraints on SI WIMP–nucleon cross section. The final LUX limit was only

recently surpassed by the XENON1T [130] and PandaX-II [131] collaborations.

5.2 WS2013

The WS2013 analysis, first presented in Ref. [17], is also thoroughly documented in

Ref. [11]. However, key elements will be summarized here, as they form the backbone of

the more complex WS2014–16 analysis.
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Figure 5.1: 2D histogram of all ∼ 93 million WS2013 triggers, plotted in a simple pa-
rameter space spanned by the total pulse area and total pulse length of the event. Pulse
length is measured in ADC samples (= 10 ns = .01 µs). The color scale is omitted, but
measures logarithmic event density (red is high, blue low). See text for descriptions of
outlined regions.
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Figure 5.2: For each bin in the 2D parameter space of Fig. 5.1, an average quantity is
calculated. At left: the total pulse area of the prior event. At right: the number of S2
pulses per event (including single electrons) identified by the pulse classifying algorithm.
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5.2.1 Data quality

The WS2013 dataset contains 95 live days of data. Figure 5.1 visualizes the collected

events in a 2D histogram: on the x-axis, the sum of the lengths of all pulses in the

event; on the y-axis, the sum of the pulse areas. In spite of the simplicity of the reduced

quantities considered, this perspective offers a quick view of the various event types

common in the LUX data. There are too many features to enumerate in detail, though

a few populations of interest are labeled in the plot, and explained here:

(A) sphe: Events containing only one single photoelectron pulse. As expected, then,

the total area is ∼ 1 phd. Similar narrow streaks with small total pulse area can be

seen to the right; these are simply events consisting of N sphe pulses. Ordinarily,

the LUX trigger would not flag these pulses for event construction because it is

tuned to identify S2 pulses; however a coincident trigger from the veto system

would cause an event to be built.

(B) SE: Events containing one pulse due to the S2 of a single extracted electron. As

can be seen, SE pulses are typically 25 phd in area, 1.5 µs in length.

(C) 1×SE+N×sphe: Events containing a single SE pulse in addition to some number

of sphes.

(D) 2×SE+N×sphe: Events containing two SE pulses in addition to some number of

sphes.

(E) e-train: The events in populations (B–D) often fall in the broader category of the
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“electron train” (or just “e-train”). In this phenomenon, seen by XENON10 as

well [132], a large S2 pulse will precipitate a prolonged period (milliseconds) of

frequent liquid electron S2s. This effect is thought to be caused by a combination of

mechanisms. For one, electrons not initially extracted will thermalize at the liquid

surface, and can be randomly emitted into the gas until absorbed by electronegative

impurities. Another cause might be secondary ionization electrons, generated by

the photoionization of impurities as a result of the initial large S2 [133].

(F) Sub-cathode S1s: Interactions occurring below the cathode grid, in the “reverse

field region.” Ionization electrons will not drift upwards, but instead towards the

bottom PMT shield grid, so no S2 is generated. However, due to the proximity of

the events to the bottom PMT array, the S1 pulse is often quite large.

(G) 83mKr: Standard S1+S2 events generated during the monoenergetic krypton cali-

bration runs.

(H) High energy: Large pulse area ERs due to single and multiple scatters.

(I) Maximum event length: High energy events that mark the start of an electron

train. Because PODs are distributed throughout the maximum 1 ms event window,

the distribution is cut off at the right edge, and this population is effectively an

overflow bin.

(J) Gas events: S1s and S2s arising from interactions in the gaseous Xe between the

anode and top PMT shield grid. Gas S1 pulses are wider than their LXe coun-
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terparts, and often conjoined with the S2 that results from ionized electrons being

dragged down to the anode. Since the electric field here is weaker than between

the gate and anode, the proportional scintillation is correspondingly less intense.

The plots in Fig. 5.2 show the means of other event quantities for each bin in the

area–length parameter space. In particular, the e-train events are discernible by the

large number of S2s and SEs they contain, and by the greater than average size of

preceding events. Other, more colorfully named event topologies were also discovered

in the LUX data, including “electron burps” and “the snowman.” These, and many of

the populations listed above, are rejected with very high efficiency by the event selection

criteria of the analysis.

5.2.2 Event selection

The most important ingredient to event selection is the requirement of a single scatter,

utilizing the pulse finding and classification described in Sec. 3.3.3. The definition of

single scatter events, which are also called “golden events,” is:

1. One valid S1, followed by one valid S2 within the 1000 µs event window.

2. S1 must register in ≥ 2 PMTs, corresponding to at least 2 raw sphe.

3. S2> 55 digital photons, as measured by a ”spike count” of PMT traces. (A stronger

threshold is used in the analysis cuts.)

4. Additional S2s prior to the S1 and additional S1s subsequent to S2 are allowed.
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5. S2 pulse area > S1 pulse area.

About 95% of triggers are rejected by the golden event requirements. The efficiency of

the golden event classification for NRs is discussed in great detail in Sec. 5.2.3.

Fake single scatters can be caused by the misreconstruction of noisy events. Par-

ticularly problematic are events falling in the tail of an electron train, where random

coincidences of single photoelectrons can mimic an S1 pulse and be paired with a small

(several electrons) S2. A cleanliness cut was developed to mitigate this kind of event,

based on the total pulse area of the S1 and S2 pair (“good area”) relative to the total area

of other pulses in the event (“bad area”). Also, periods of detector instability (including

abnormal trigger rates) were excluded from the final data sample.

Finally, defining a fiducial volume and energy range narrows the sample to a region

of interest (ROI) for the WIMP search. In the WS2013 analysis, the fiducial volume

was a cylinder of radius 20 cm and an extent in depth given by the drift time range

[38, 305] µs (corresponding to z positions between 8.5 and 48.6 cm above the bottom

PMT array).1 A [1,50] phd S1 window limits the ROI to roughly < 10 keVee. Note

that despite the two-PMT coincidence requirement for S1 pulses, position-dependent

area corrections can result in S1< 2 phd. A threshold of S2raw > 165 phd was also

introduced, corresponding to 6.7 extracted electrons, targeting wall background events

with incomplete charge collection. Following all of these cuts, 591 events remain in the

final WS2013 dataset.

1Recall from Chap. 3 that in WS2013, corrected position coordinates were used, accounting for a
small distortion of the drift field.
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Figure 5.3: Schematic of the NR simulations validating the DD results.

5.2.3 NR model and efficiency

To assess the cost to signal detection efficiency that comes with all of the above cuts,

simulated NR events were passed through the DPF and subjected to the selection. As

discussed in Sec. 3.4.3, the NEST model was carefully tuned to reproduce the measured

NR signal yields in LXe. A validation of the final model parameters was performed using

the strategy shown in Fig. 5.3. First, DD neutrons are propagated through the water

tank and into LUX, in an energy-only LUXSim run. This means recording all energy

depositions in the LXe: their positions, their type (ER or NR), and the kinetic energy of

the recoiling particle. Gammas can be produced in some inelastic interactions, and need

not be fully simulated. The output of this simulation is processed, with single-scatter
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NRs being identified (via a clustering algorithm) and stored for further use.

The output of the first stage is then used as input for another LUXSim run, this

time invoking the FastSim technique. In this simulation, the NRs are passed through

NEST, which generates the number of electrons and photons escaping the interaction

site, according to the tuned Lindhard theory and appropriate recombination statistics.

Then, rather than proceed with the computationally expensive task of tracking optical

photons, a 83mKr-based lookup table is used to simulate the response of each PMT to the

S1 and S2. This is the FastSim component—the mapping of photons to a raw S1, and

likewise for ionization electrons and raw S2, as a function of interaction position. Finally,

a further simulation of signal processing and noise converts the PMT records into the

LUX .evt file format, which allows the simulated data to be analyzed in the DPF just

like actual data. The results of this validation of the NR model are shown in Ref. [15].

For the WIMP search efficiency calculation, a simpler simulation scheme was under-

taken. NRs were sprinkled throughout the fiducial volume at a range of energies, and the

NEST+FastSim+DPF sequence was carried out. The fraction of NR events passing cuts

at each sampled energy therefore determined the estimated efficiency. This process was

repeated for 6 versions of the NR model: the nominal Lindhard result of the DD analysis,

four more Lindhard models derived from the ±1σ and ±2σ uncertainties on the model

parameters, and a distinct model parameterization following the work of Bezrukov [134].

The results are shown in Fig. 5.4, alongside the charge yield measurements of the DD

calibration.
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Figure 5.4: Signal yields and detection efficiency for NRs, as a function of recoil energy
(taken from Ref. [17]). In all three panels, the simulation results are shown as a solid
black curve (best-fit Lindhard), green and yellow bands (±1σ and ±2σ Lindhard) and
dashed curve (Bezrukov). In the top two panels, the DD measurements of charge and
light yield are shown as black circular markers with error bars—these measurements
determine the model parameters used in the simulations. In the bottom panel, the
NR detection efficiency is calculated as described in the main text. The other curves
show the efficiencies of individual selection criteria (for the nominal Lindhard model):
in red, S2 detection efficiency; in green, S1 detection efficiency (including the two-PMT
coincidence requirement); in blue, combined S1 and S2 detection efficiency. The final
efficiency curves account for the additional thresholds on S1 and S2raw. In the WIMP
signal models, LUX is assumed to be 0% efficient at detecting signals below 1.1 keVnr,
the lowest energy probed by the DD light yield measurement—this region is therefore
grayed out in the bottom panel.
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As can be seen, S1 detection and the imposed thresholds drive the total efficiency,

which falls to 10% at 2 keV. Above ∼ 7 keV, efficiency is 100%, until the S1 < 50 phd

upper bound kicks in at roughly 30 keV. Not included in this efficiency estimation is

the probability for a valid single-scatter NR to fail the golden selection, due to effects

not reproduced in the waveform simulation. To estimate this extra loss of acceptance,

thousands of waveforms from calibration datasets were visually inspected in a “hand-

scanning” effort to search for golden events missed by the DPF classification. This

resulted in an additional (97.5± 1.7)% efficiency, taken to affect all energies equally.

5.2.4 Limits

The 591 events of the final WS2013 data sample are shown in the top panel of Fig. 5.5,

in the traditional ER/NR discrimination space of S1 –log10S2. The majority of events

clearly populate the ER band, with a handful falling below the NR mean. The latter

group are most likely due to the wall background, as evidenced by their high radius. A

profile likelihood ratio statistic is used for hypothesis testing to produce the upper limits

shown in the bottom panel, which will be discussed in great detail in the next chapter.

Essentially, probability models are calculated in the space of observed quantities that

allow discrimination between background and signal: position (r and z) and energy (S1

and S2 ). From these signal and background models, the likelihood of the data under the

hypothesis of the presence of a WIMP signal can be assessed, allowing for the construction

of confidence intervals. These tests are performed independently at a range of WIMP
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Figure 5.5: Top: final data from the WS2013 analysis, plotted in S1 –log10S2 space. Data
points with gray markers fall at the edge of the fiducial volume (r > 18 cm), whereas solid
black points are located more radially inward. The blue lines indicate the mean (solid),
10th and 90th percentile (dashed) contours of the ER band. The red contours show the
same quantities for the NR model. Grey curves show the combined energy scale. Bottom:
90% confidence level upper limits on SI WIMP-nucleon cross section. The black curve
shows the WS2013 result (expected sensitivity bands in green and yellow), whereas the
gray curve shows the result from the first analysis [18]. Both figures taken from Ref. [17],
which also contains the references for the other experimental limits shown.
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masses, generating the curves shown Fig. 5.5.

Note that the strongest limits on cross section are obtained for intermediate WIMP

masses (20–100 GeV), with a sharp drop in sensitivity at lower masses, and a gradual de-

crease at higher masses. This can be understood from the calculations shown in Chap. 2,

in particular Figures 2.6 and 2.7. As WIMP mass decreases, the recoil spectrum falls off

at smaller energies. Comparing to Fig. 5.4, it is clear that the spectra of small WIMPs

(< 10 GeV) are limited to energies in the low-efficiency regime of LUX. On the other

hand, since the local WIMP mass density ρχ is fixed in the signal model, increasing mχ

necessarily decreases the number density nχ (i.e. heavier WIMPs means fewer WIMPs).

So although the NR spectrum remains fairly constant at higher WIMP mass, sensitivity

falls linearly due to decreasing flux of particles through the detector.

5.3 WS2014–2016

In an ideal world, the techniques developed and refined for the WS2013 analysis would

have been directly transferrable to the WS2014–16 data. In reality, producing the SI cross

section upper limits was not as simple as pressing “go” on the established machinery—

many areas of the analysis required substantial reworking. In some cases, this was due

to desirable improvements in the calibrations, data pipeline, and processing algorithms.

For example, a blinding protocol was introduced to prevent bias when analyzing this un-

precedentedly large dataset (which a priori could well have contained WIMP events). On

the other hand, the complications arising from the distorted electric drift field geometry
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WS2013 analysis WS2014–16 analysis

Livetime 95 days 332 days

Fiducial mass 145 kg 101 kg

Fiducial drift range [38, 305] µs [40, 300] µs

Fiducial radius range r < 20 cm rS2, wall(φS2, zS2)− rS2 > 3 cm

S1 thresholds [1,50] phd [1,50] phd

S2raw threshold > 165 phd > 200 phd

Blinding scheme – salting

Observed counts
(after cuts)

591 1221

Model PDF observables {r, z, S1, log10S2} {rS2, φS2, zS2, S1, log10S2}

Background model
components

127Xe, 37Ar,
γ Comptons (low-z, other),

β decays, Wall

Accidental coincidences, 8B νs,
γ Comptons (low-z, other),

β decays, Wall

Table 5.2: Key quantities and features of the two WIMP search analyses. Note that
the WS2014–16 fiducial mass is averaged over the exposure (since the mapping of S2
coordinates to real space coordinates was time varying, but the fiducial volume definition
was fixed in S2 coordinates, the true fiducial volume changed over time as well).
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Figure 5.6: Edges of the LUX TPC active volume in the S2 coordinate system, as de-
duced from 83mKr calibration data. Taken from Ref. [19]. Recall from Sec. 3.3.3 that
reconstructed (x, y) position measures the point of electron emission at the liquid surface.

necessitated a wide-ranging “fix it in software” effort. An overview of the differences be-

tween the WS2013 and WS2014–16 analyses is shown in Table 5.2, with details elucidated

in this section.

5.3.1 Electric drift field

As has been alluded to already, the LUX drift field in WS2013 was not perfectly uniform,

exhibiting a nonzero radially inward component. This is thought to be a result of geomet-

rical effects alone, as seen in XENON100 [135]. In contrast, a much stronger and more

variable radial component was observed in WS2014–16. A new LUX publication [19]

delves into this topic in detail, the main points of which will be discussed here.
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Figure 5.7: Field lines and equipotential contours calculated from a 2D electrostatic
model of the LUX detector, for WS2013 (left) and WS2014–16 (right). Taken from
Ref. [19].

The change in the LUX drift field was discovered following the grid conditioning

campaign, via inspection of the reconstructed spatial distribution of the homogeneous

83mKr calibration data. Figure 5.6 illustrates the difference between the WS2013 and

WS2014–16 fields, as mapped out by the observed edges of the detector. Whereas, in

WS2013, an ionization electron created at low-z would drift by at most a few centimeters

inward, the same electron could be forced ∼ 10 cm away from the wall before reaching the

liquid level. Figure 5.7 illustrates how such a phenomenon might occur, showing the field

lines calculated from a 2D electrostatic model of the WS2013 and WS2014–16 detector.

The WS2013 results show the small “fringing” effect, caused entirely by geometric effects.

The WS2014–16 model, however, includes patches of negative charge density distributed

on the PTFE reflectors (the TPC walls), resulting in the more extreme distortion.
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As described in Ref. [19], charge accumulation on the PTFE panels is the leading hy-

pothesis explaining the observed electron drift trajectories. During the grid conditioning

campaign, frequent electrical discharges in the GXe (an intended effect of the burn-in

process) produced high energy VUV light, inducing the creation of electron-hole pairs in

the PTFE (an unintended consequence). These charges would migrate under the influ-

ence of the applied field, with holes being removed faster than electrons [136, 137]. This

would explain the negative charge build-up, as well as the observed gradual evolution of

the field over time.

5.3.2 Position reconstruction implications

Since position reconstruction is a key element of background reduction and discrimina-

tion, the deformed geometry of the field lines created a corresponding wrinkle in the

data analysis. To review: the (x, y) position of events is determined from the observed

distribution of S2 light in the top PMT array (see Sec. 3.3.3 and Ref. [12]). This calcu-

lation identifies the location of electrons as they are extracted from the liquid, which in

WS2014–16 might differ substantially from the (x, y) position of the actual energy depo-

sition. The simple correction used on the WS2013 data [11] is not sufficient to account for

the magnitude and variability of the distortion—azimuth-, depth-, and time-dependent

as it was. Instead, a full 3D electrostatic model of the detector was constructed using

the comsol Multiphysics software package [138], replete with tiles of tunable charge

density on the PTFE panels. 83mKr calibration data were compared to the simulated
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trajectories of electrons in the field model, enabling the inference of the charge distribu-

tion on the PTFE walls. A Metropolis-Hastings algorithm was implemented to perform

these fits. 83mKr calibrations were therefore carried out frequently over the course of the

WS2014–16 exposure, from which the time evolution of the charge density distribution

was estimated.

Field maps were generated from the 83mKr-based fits of the PTFE charge density.

Electron trajectories were simulated from a 3D grid of starting points in the active volume,

for which a number of quantities were calculated and recorded. Most importantly, the

(x, y) position of the drifted electron upon reaching the liquid surface was saved, as

well as the time of travel. These simulated quantities are precisely the observable S2

position coordinates; thus, the field maps provide a means of converting {r, φ, z} ↔

{rS2, φS2, zS2}. Additionally, the simulated electric field strength was calculated at each

grid point. Figure 5.8 visualizes the data stored in the field maps, where for each grid

point in real space, a corresponding rS2 coordinate and field value is stored.

Originally, a variety of approaches were considered for dealing with the issue of the

WS2014–16 fields in analysis. One choice concerned the position reconstruction: should a

field map-based correction be applied to the data, in an attempt to map observed events

from S2 space to their true positions? Or, conversely, should the data be left alone, and

compared against models that have been transformed into the S2 coordinate space? In

the end, the latter approach was settled on. It was decided that there was too great a

danger of accepting spurious high radius events if an un-squishing procedure were applied
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Figure 5.8: An example of field map data: the regular grid of points in real space (at
left) is transformed into S2 space (at right), with field strength values indicated. Taken
from Ref. [19].

to the raw reconstructed positions of the data. Thus, the fiducial volume was defined in

the S2 coordinate space, with a drift time cut (as in WS2013) and a radial cut (harsher,

including only 101 kg of LXe, while WS2013 contained 145 kg; see Table 5.2). There is

a steep rise in 210Pb related backgrounds near the PTFE wall. The field distortions in

WS2014–6 allow more of this background to be reconstructed in the central LXe volume,

necessitating a harsher cut. An analysis tagging 210Pb chain events identified the position

of the wall in S2 space: rS2, wall(φS2, zS2), a function of azimuth and depth. Events passing

the fiducial cut were required to occur at least 3 cm radially inward (as measured in S2

space) from the wall. Note that this translates to a more stringent cut towards the

bottom of the detector, where 3 cm in S2 space might correspond to double that length

in true coordinates.

In order to construct the probability models used to test background and signal hy-

potheses against the WIMP search data, an interpolation of the field map data was imple-
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Figure 5.9: Demonstration of the c3po field map interpolation algorithm. At left, r2–z
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into the program. At right, the calculated S2-space position distributions are shown,
based on an August, 2016 field map.
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dependence of Edrift on (x, y) position.

mented capable of mapping arbitrary points in real space to S2 space. A fast interpolation

program was written in C++, using trilinear interpolation as the core algorithm. How-

ever, since some grid points in the field map contain undefined values2, a backup weighted

average algorithm was implemented (since trilinear interpolation requires 8 surrounding

grid points to be defined). This failsafe approach uses inverse distance as a weighting

function, averaging the values of only those grid points within a small sphere centered

on the point of interest. The interpolation algorithm gained the moniker c3po, short

for “Curt’s Post-Processing Position Offset Corrections”.3 Figure 5.9 shows the results

of c3po, where points have been sampled uniformly from within the WS2013 fiducial

volume (r < 20 cm) and transformed into S2 space using one of the WS2014–16 field

2This was a result of the simulated test charge failing to reach the liquid surface, often due to being
trapped in a pocket of field line loops close to the TPC edges.

3Credit goes to E. Pease for the software branding.
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maps. The same algorithm can be also used to interpolate the electric field strength at

these positions in the detector (using the values calculated from the comsol model), as

shown in Fig. 5.10. As can be seen, the field strength correlates strongly with z-position,

with limited (x, y) dependence.

5.3.3 Addressing field variation effects on electron-ion recom-

bination

The charge and light yields of LXe depend on electric field strength, particularly in the

case of ER energy depositions. Thus, a further complication of the spatially varying

fields in WS2014–16 is position dependence of the energy response, throwing a wrench

in the calculation of the area corrections described in Sec. 3.3.3. Disentangling the

effects of the field variation and the usual geometric inefficiencies proved to be a great

challenge. The technique developed to address this, leveraging information from both

83mKr and 3H calibration datasets, is summarized in Ref. [20] and thoroughly documented

in Ref. [139]. Essentially, the strategy exploits the differences in field effects on electron-

ion recombination at different scales of energy deposition: the low-energy tritium β

decays and the smaller of the two 83mKr transitions are less affected than the higher

energy 83mKr transition, which varies significantly with field (the ratio of charge to light

yields changes by a factor of ∼ 3 for a 30 keV ER deposition occurring in either extreme

of the WS2014–16 field; see e.g. Fig. 1 of Ref. [140]). The resulting area corrections

successfully accounted for the geometric effects alone, leaving the field effects intact.
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(Because the field effects are a function of not only position, but also interaction type

and energy, no universally applied correction could accurately counteract them.) The

importance of this pillar of the WS2014–16 analysis is difficult to overstate; without it,

the energy resolution of the detector would be unacceptably degraded.

The ER band reckoned over the entire fiducial volume is substantially smeared out,

and the NR band slightly smeared out, due to the electric field variations of 50–600 V/cm

in WS2014–16. Unaddressed, this smearing would cause a reduction in the discrimination

power of the S1 and S2 observables. To address this smearing, the TPC was not treated

as a single homogenous volume as it had been in WS2013, but was segmented into chunks,

within which the field variation was less drastic. Boundaries in the data were thus defined

in drift time (4 “z-slices”) as well as calendar date (4 “date bins”), with unique ER and

NR models defined for each (16 chunks, in total). The choice of these divisions was driven

by the 83mKr-based monitoring of the fields and by the timing of calibration runs (see

Refs. [19, 103] for details). Figure 5.11 shows the time evolution of the modeled charge

density and field strength in each z-slice.

For each date bin, a unique 3H dataset was used to tune the empirical NEST ER

models for each z-slice. In practice, this meant varying detector gains as well as Xe

response parameters in order to reproduce the observed bands in S1 –S2 space. As can

be seen in Table 5.3, the fit parameters included global detector quantities allowed to

change between date bins but fixed for all z-slices within a date bin: g1 (S1 gain), εee

(electron extraction efficiency), τe (electron lifetime, a measure of Xe purity), and the
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Date Bin 1 (9/11/2014 – 1/1/2015)
[40, 105] µs [105, 170] µs [170, 235] µs [235, 300] µs

Edrift [V/cm] 322± 37 233± 28 170± 21 121± 14
Fr × 103 9.3± 1.5 8.6± 1.1 7.8± 1.0 7.5± 0.7
g1 [phd/nγ] 0.103
εee 0.67± 0.01
τe [µs] 735
SE (mean) [phd] 26.4
SE (width) [phd] 5

Date Bin 2 (1/1/2015 – 4/1/2015)
[40, 105] µs [105, 170] µs [170, 235] µs [235, 300] µs

Edrift [V/cm] 347± 62 207± 44 124± 26 78± 14
Fr × 103 10.0 10.0 10.0 10.0
g1 [phd/nγ] 0.099
εee 0.70
τe [µs] 947
SE (mean) [phd] 26
SE (width) [phd] 5.4

Date Bin 3 (4/1/2015 – 10/1/2015)
[40, 105] µs [105, 170] µs [170, 235] µs [235, 300] µs

Edrift [V/cm] 332± 17 256± 14 152± 9 97± 6
Fr × 103 10.5± 0.7 9.6± 0.6 9.0± 0.6 8.1± 0.6
g1 [phd/nγ] 0.097
εee 0.708± 0.004
τe [µs] 871
SE (mean) [phd] 25.8
SE (width) [phd] 5.6

Date Bin 4 (10/1/2015 – 5/2/2016)
[40, 105] µs [105, 170] µs [170, 235] µs [235, 300] µs

Edrift [V/cm] 382± 47 286± 34 156± 19 86± 12
Fr × 103 10.7± 1.4 9.6± 1.3 8.9± 1.2 8.7± 1.3
g1 [phd/nγ] 0.097
εee 0.703± 0.010
τe [µs] 1635
SE (mean) [phd] 25.3
SE (width) [phd] 5.6

Table 5.3: NEST parameters for the WS2014–16 ER and NR models. Data transcribed
from Ref. [41]. Where shown, error bars do not represent formal uncertainties, but
rather heuristic ranges of values yielding good agreement between model and calibration
data; these parameters do not enter into the profile likelihood as constrained nuisance
parameters.
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Figure 5.11: Time evolution of the modeled electric charge density and field. At left, the
average charge density on the PTFE walls, with an exponential fit shown in red. The
indicated discontinuity marks the time of a test where the cathode grid was grounded. At
right, the drift field strength in each z-slice over time. Both figures taken from Ref. [19].

mean and width of SE (single electron size). Furthermore, two NEST parameters were

allowed to vary between z-slices: the field strength Edrift and the “Fano-like prefactor”

Fr [99]. The first of these is easily understood: since the electric field strength governs

the average recombination fraction, this NEST parameter affects the mean of the ER

band (greater field → more electrons → bigger S2 for a given S1, on average). Though

Edrift is also the physical quantity thought to cause the behavior of the observed ER

bands, the NEST fits were not originally intended to give a valid estimate of the true

field strengths; rather, Edrift was treated as an arbitrary knob to tune in order to create

an accurate empirical model. However, it was found that the best fit Edrift values from

the 3H NEST modeling were in good agreement with the entirely independent estimates

of the 83mKr-based comsol models [19]. This is seen as a validation of both simulation

models, and of the description of the WS2014–16 fields in general.

In contrast, the fit values of Fr (the other NEST parameter in Table 5.3) are not
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Figure 5.12: ER (blue) and NR (red) bands, shown as the mean and 10th/90th percentile
S2 values for a given S1, calculated from NEST models of each WS2014–16 exposure
segment. The calibration data (3H for ER, DD for NR) is shown as histograms in each
panel. Note that the NEST fitting procedure was performed with ER calibration data
only; the resulting parameters were used in the NR model, and found to be in good
agreement with the DD calibration data (of which multiple z-positions were available
only in the first and final DD datasets).

interpreted as having physical significance. This parameter is tuned to adjust the simu-

lated width of the ER band, as a proxy for the actual variation of Edrift within a z-slice.4

Figure 5.12 shows the simulated ER and NR bands, for each of the date and z-slice bins,

along with the calibration data used to create the models.

4The Fano-like factor in the NEST model accounts for non-Poissonian fluctuations in the recombina-
tion fraction r, and depends proportionally on the number of electron-ion pairs initially produced. The
constant of proportionality is the prefactor notated here and in Ref. [20] as Fr. Note that in Ref. [99],
where this model is specified, the prefactor is given by C, and Fr refers to the factor itself.
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5.3.4 Additional selection cuts

The WS2014–16 analysis employed many of the same selection cuts as in WS2013: the

golden event filter and the S1 thresholds were unchanged (see Table 5.2), and the cleanli-

ness cut weeding out electron train events was tweaked only slightly. The S2raw threshold

was raised to 200 phd to mitigate the wall background, now a more threatening back-

ground than in WS2013 because of the position reconstruction issues. The fiducial volume

definition was discussed in Sec. 5.3.2. Additional cuts on S2 pulse shape were developed

to eliminate pathological events arising from misreconstructed gas events and merged

multiple scatters [20, 103]. Unlike the NR efficiencies of WS2013, the efficiencies of these

pulse shape cuts were assessed empirically using 3H calibration data, and included in

the signal and background models as a scaling of the simulated event weights. Finally,

events were rejected if they had S2> 104 phd, or if they fell significantly higher than the

ER band mean or below the NR band, as these events are not easily modeled, and are

considered far from the WIMP region of interest.

5.3.5 Blinding scheme

To prevent bias in the development of selection cuts, the LUX data was “salted” with

fake NR events. As opposed to a more traditional blinding scheme, this approach allows

for the data to be inspected throughout the exposure. The knowledge that a WIMP-

like signal should be present in the search data is intended to counteract the tendency

(subconscious or not) of analysts to “sculpt” the data to match a prior expectation. In
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principle, the advantage of salting lies in the ability to identify background populations

throughout the run, avoiding a nasty surprise when one “opens the box.” Great care was

taken to make the salt indistinguishable from real events, as documented in Refs. [20, 103].

In summary: a salt generation program paired real S1 and S2 waveforms from different

3H calibration events such that the resulting hybrid event mimicked an NR interaction.

These waveforms were periodically injected into the .evt files before data processing

(the .dat files were therefore salt-free, and were stored under lock and key). A database

of salt events was maintained and accessible by a non-LUX secret keeper. Once the

selection cuts were finalized, a list of events was passed on to the secret keeper, who

revealed which of the events were salt.

The final dataset of 1221 events observed in WS2014–16 is shown in Fig. 5.13. All

cuts have been applied, and 54 salt events have been removed. However, the unsalting

procedure did not go exactly as planned—following the removal of the salt events, a

number of events remained obstinately in the NR band. The waveforms of these events

were given extra scrutiny, and two pathological populations were discovered as a result.

These included spurious events likely due to light occurring external to the TPC, as well

as events with a gas-like S1. Knowing of the existence of salting inhibited intense scrutiny

of the candidates, which could have been undertaken prior to unmasking the salt. New

cuts on S1 pulse shape were developed to exclude these populations (which were clearly

inconsistent with energy depositions in the LXe); both cuts were found to have > 99%

acceptance of valid ER and NR calibration events, irrespective of energy. These cuts
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removed a further 19 events from the dataset [103], leaving the final 1221 events shown

in Fig. 5.13.

5.3.6 Limits

The likelihood models constructed for the WS2014–16 limit-setting were necessarily more

complex than the WS2013 versions, owing to the segmented structure of the data (z-slices

and date bins). This topic is discussed in detail in the next chapter. The background

sources considered in the hypothesis testing were the same as WS2013, with a few ex-

ceptions: 127Xe was neglected (owing to its short half-life, it had decayed away before

the start of the exposure) as was 37Ar (no evidence for it was observed); 8B solar neutri-

nos and accidental coincidences were added to the models. The WIMP search data was

found to be consistent with the background-only hypothesis (with some small tension at

low WIMP masses, discussed in Sec. 6.3), and 90% confidence level upper limits were

placed on the SI cross section as in WS2013. Additionally, the WS2013 and WS2014–

16 datasets were considered in a unified analysis, with their combined statistical power

shown in Fig. 5.14.
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Figure 5.13: Final data from the WS2014–16 analysis, plotted in S1 –log10S2 space. Data
points with hollow markers fall at the edge of the fiducial volume (rS2,fid. − rS2 < 1 cm),
whereas solid black points are located more radially inward. The blue lines indicate
the mean (solid), 10th and 90th percentile (dashed) contours of the ER band. The red
contours show the same quantities for the NR model. Green curves show the combined
energy scale. Multiple instances of the dashed curves indicate the deviation of the ER
and NR models over the 16 exposure bins. The salt has been removed from this data, as
have pathological events discovered after the unblinding. Taken from Ref. [20].
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Figure 5.14: Upper limits on SI WIMP-nucleon cross section, derived from the WS2014–
16 and WS2013 datasets (thick black line, with expected sensitivity shown as green
and yellow bands). The kink at ∼ 40 GeV arises from the power constraint applied
at −1σ. The WS2014–16 result (before combination with WS2013) is also shown, as a
gray line. Note that WS2014–16 outperforms the earlier result for higher masses (due
to the greater exposure), but because of background events at small S1, WS2014–16 is
less constraining of light WIMPs than WS2013. The grey shaded areas show regions of
favored CMSSM parameter space [21]. Taken from Ref. [20], which contains references
to the other experimental results shown.
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Chapter 6

Profile Likelihood Statistics

The constraints placed on WIMP-nucleon scattering cross sections shown in Chapters 5

and 7 are calculated using a frequentist limit-setting procedure. This chapter explores

the details of this statistical analysis, including the construction of the LUX likelihood

models.

6.1 Introduction

In the field of particle physics, frequentist confidence intervals are the quantities cus-

tomarily used when presenting results. A detection claim is often accompanied by a

calculated allowed region in the signal model parameter space; for a null result, a cor-

responding excluded region is shown. Frequentist (or “classical”) confidence intervals

are calculated according to the Neyman construction [141], possessing different proper-

ties than their more intuitive Bayesian counterparts: credible intervals. Feldman and
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Cousins discuss these techniques in their seminal paper [22]. As in that reference, we

review both procedures, as it is perhaps easiest to understand the frequentist interval by

identifying its differences from the Bayesian interval.

6.1.1 Frequentist and Bayesian intervals

Following the notation of Ref. [22], we consider an experiment that measures a random

variable x (the “observable”) distributed according to a model parametrized by µ, an

unknown. In the case of continuous x, this model is mathematically expressed as a

probability density function (PDF) f(x|µ), such that the probability of measuring a

value of x in the range [x1, x2] is

P (x ∈ [x1, x2]) =

∫ x2

x1

f(x|µ)dx . (6.1)

The parameter of interest (POI) µ in our physics model could in principle take any

value, but we expect there to exist a single true value µt that describes our universe.

Now suppose that we conclude our data-taking run, perform an analysis, and measure

a value x0 for x. We would like to use this information to make a statistical inference

of µt. In both the frequentist and Bayesian prescriptions, the probability density of

observing x = x0 is

L(x0|µ) ≡ f(x0|µ) , (6.2)

called the likelihood function. At this point, the Bayesian and frequentist approaches

diverge: whereas frequentists bristle at the notion of defining a PDF for µt (which in

their philosophy is a fixed constant of nature, not a random variable), this is precisely
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what Bayesians do.1 Indeed, a simple application of Bayes’ Theorem gives the posterior

PDF

f(µt|x0) =
L(x0|µt)f(µt)

f(x0)
, (6.3)

where f(x0) is a constant of normalization (i.e., the integral of the numerator over the

domain of µt). With a suitable assumption for a prior PDF f(µt), the Bayesian credible

interval [µ1, µ2] for a given confidence level α must satisfy

P (µt ∈ [µ1, µ2]) =

∫ µ2

µ1

f(µt|x0) = α . (6.4)

For example, we might choose α = 0.9 and opt to set an upper limit µUL ≡ µ2 (with

µ1 = 0); we would report that there is a 90% probability that µt < µUL given our dataset

and assuming some prior PDF.

To reiterate, the concept of associating a probability with a model parameter’s true

value is strictly Bayesian. Feldman and Cousins take issue with this approach in rare

event searches primarily because of the ambiguity and subjectivity inherent in choosing

a “non-informative” prior PDF. In the Neyman construction, this issue is sidestepped by

considering the probability of the derived interval covering a fixed parameter value.

Switching to the frequentist framework, we now consider the same experiment mea-

suring x and making inferences on µ. The frequentist interval [µ1, µ2] that we calculate

must satisfy, for a fixed µ, the property

P (µ ∈ [µ1, µ2]) = α , (6.5)

where the interval bounds µ1 and µ2 are the random variables (derived from the observed

1The author declines to take sides in this ideological debate.
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value x0). In other words:

1. Suppose our universe is described by µ0. Thus, an ensemble of experiments (iden-

tical to ours) will observe different x0 (values of x) distributed with probabilities

f(x0|µ0).

2. Each experiment in the ensemble will calculate an interval [µ1, µ2] using their re-

spective measured values x0, with confidence level α. In this sense, the bounds µ1

and µ2 are random variables that vary with x0.

3. If the intervals are calculated according to the Neyman construction, then a fraction

α of the experiments in the ensemble will produce intervals for which µ0 ∈ [µ1, µ2].

This is the frequentist definition of the probability statement P (µ0 ∈ [µ1, µ2]) = α.

4. Other techniques might yield intervals that, for some values of µ0, “undercover”

(P (µ0 ∈ [µ1, µ2]) < α) or “overcover” (P (µ0 ∈ [µ1, µ2]) > α).

Figure 6.1 shows illustrations of the Neyman technique, which guarantees (by con-

struction) correct coverage. In this procedure, for all possible values of µ, bounds of x

are chosen such that: ∫ x2(µ)

x1(µ)

f(x|µ)dx = α . (6.6)

Then, for an observed value x0, the confidence interval is given by the union of values

of µ for which x0 ∈ [x1(µ), x2(µ)]. The visualizations make this much more intuitive.

The range [x1(µ), x2(µ)] is called the “acceptance region” because if it contains x0,

then we accept the hypothesis µ (with confidence level α). Note that x1(µ) and x2(µ)
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Figure 6.1: At left: illustration of a confidence belt, taken from Ref. [22]. The inter-
ceptions of the x = x0 line with the edges of the belt determine the confidence interval
bounds. At right: 3D visualization of a confidence belt, taken from Ref. [23]. Note that
Cranmer uses θ instead of µ to represent the model parameter, so that the green band
in the x–θ plane represents the confidence belt (as shown in the left plot). Blue regions
under the PDF curves indicate the integrated areas that equal α, the bounds of which
determine the edges of the belt.

are not uniquely determined by eq. 6.6, though choosing a value for one fixes the value

of the other. As Feldman and Cousins put it [22], “one has total freedom to make this

choice, if the choice is not influenced by the data x0” (emphasis theirs). The key insight

of their work was identifying an ordering principle by which to construct acceptance

intervals using likelihood ratios. Namely, for a given µ0, values of x are ranked by

λ = L(x|µ0)/L(x|µ̂(x)), where µ̂(x) maximizes the likelihood function. Values of x are

incrementally added in order of decreasing λ to the acceptance region until the integrated

probability reaches α. This prescription has a number of attractive properties (detailed

in [22]), and is closely related to the profile likelihood ratio (PLR) used in more complex

analyses.
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6.1.2 Profile likelihood ratio test statistic

Our trusty experiment with one observable and one model parameter, an apt character-

ization of counting experiments with well-defined backgrounds, falls short of describing

complex datasets of multiple observables. In LUX, we consider energy (S1, S2) as well as

position (r, φ, z) observables for hundreds of events passing selection cuts, resulting in

a high-dimensional data space. In principle, we could define a restrictive signal region,

count the number of events, and calculate a Feldman-Cousins (FC) style limit. One limi-

tation of this approach is that it does not account for uncertainties in our model (though

see Ref. [142] for a technique allowing for this). Another is that we would be throwing

out information that might enable better discrimination between signal and background

events. Using the profile likelihood ratio addresses both of these issues, allowing for the

construction of powerful confidence intervals with good coverage properties in reasonable

computation time.

Before going into detail about the PLR, it’s time for a notation update! Table 6.1

summarizes the terminology used in the following section. Note in particular that instead

of µ, our model parameters are now denoted by σ, the “parameter of interest” (POI),

and a number of other “nuisance parameters” (NPs) θ, whose values are also unknown

but not of primary concern. In LUX analyses, the POI is often a WIMP-nucleon cross

section, so σ is a convenient choice. The NPs are typically the expected event rates

of various background sources, which are estimated from auxiliary measurements but

have associated uncertainties. The likelihood of a dataset D as a function of these model
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Symbol Description Acronym LUX example

σ Parameter of interest POI WIMP-nucleon cross sec-
tion

θ Nuisance parameters NPs Background rates

x Observables: quantities
measured for each event

– S1, S2, position

f(x)
Probability density func-
tion (sometimes referred
to simply as “model”)

PDF S1–S2 distribution of ERs
from Compton scattering

D = {xe} Dataset: collection of ob-
servables for each event e

– WS2013, or an MC
pseudo-experiment thereof

L(D | σ,θ)

Likelihood function (the
D is often dropped, as
in the below definitions,
with dataset dependency
implied)

–

Extended unbinned likeli-
hood (product of PDFs
evaluated at each event,
with a Poisson factor)

σ̂, θ̂

Maximum likelihood esti-
mators: values of model
parameters that maximize
L

MLEs Best-fit rate of Rn and Kr
beta decays in WS2014–16

ˆ̂θ(σ)

Conditional maximum
likelihood estimators: val-
ues of NPs that maximize
L with σ fixed

CMLEs

Best-fit rate of wall events
in WS2014–16, assuming
presence of 10 GeV WIMP
signal

λ(σ) ≡
L(σ, ˆ̂θ)/L(σ̂, θ̂)

Profile likelihood ratio for
test hypothesis σ

PLR –

qσ ≡ −2 ln(λ(σ))
PLR test statistic: asymp-
totic behavior like chi-
squared test

TS –

α Confidence level CL Traditionally 90% for di-
rect detection upper limits

Table 6.1: Notation used in this chapter pertaining to the statistical modeling of LUX
data.
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parameters is expressed as L(D | σ,θ). The structure of the LUX likelihood functions will

be discussed in the following sections, but the definition remains the same as before: the

likelihood of a dataset is its probability given certain values of the model parameters. For

a given dataset, the likelihood can be maximized by scanning over the space spanned by

σ and θ; the resulting maximum likelihood estimators (MLEs) for the model parameters

are called σ̂, θ̂. Holding σ fixed to a test hypothesis value and varying the θ to maximize

L yields the conditional maximum likelihood estimators (CMLEs) ˆ̂θ.

The PLR test statistic q is defined as

qσ ≡ −2 ln(λ(σ)) , (6.7)

where λ is the PLR itself:

λ(σ) =
L(H0)

L(H1)
=
L(σ, ˆ̂θ)

L(σ̂, θ̂)
. (6.8)

In general, a test statistic (TS) maps a dataset to a single real number that, when com-

pared against a reference TS distribution, indicates the compatibility between the data

and a hypothesis. This enables us to go about setting acceptance regions as in Sec. 6.1.1,

where our single observable served as our effective TS. The PLR is the optimal quantity

from which to construct a TS for the same reason the FC ordering principle is ideal (see

Neyman-Pearson Lemma [143]). In 6.8, the numerator represents the likelihood of the

null hypothesis (H0) specified by σ, while the denominator corresponds to the alternative

hypothesis (H1) defined by the unconditional MLEs, i.e. the “best-fit” hypothesis. Note

that the nuisance parameters are “profiled” out: λ is independent of θ. In other words,
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the value of the TS depends only on the dataset and the test hypothesis σ:

λ : {D, σ} → [0, 1] (6.9)

=⇒ q : {D, σ} → [0,∞] . (6.10)

As the test σ approaches σ̂, q approaches zero (λ → 1), indicating good agreement

between the data and the test hypothesis. On the other hand, high q (i.e. λ� 1) implies

a poor fit of the test hypothesis to the data. In isolation, however, these statements are

not very helpful; we need a distribution f(qσ|σ) in order to quantify the compatibility of

σ with D. Here, f(qσ|σ) is the distribution of the TS for datasets where σ is true.

Equipped with such a PDF (sometimes called a “sampling distribution”), we could

calculate the p value of our observed data Dobs under a test hypothesis σ:

p(σ) =

∫ ∞
qσ,obs

f(qσ|σ) dq , (6.11)

where qσ,obs is the observed value of the TS, and p(σ) is the probability of observing

a dataset at least as “extreme” as ours, if the test hypothesis is true.2 In the case of

the PLR, “more extreme” means yielding a worse fit of the test hypothesis. Figure 6.2

shows a cartoon of how this calculation is performed. The red distribution is integrated

to find the p value for the observed data under the test hypothesis σ. One might also be

interested in how a typical dataset corresponding to an alternate hypothesis compares to

2A common source of confusion arises when referring to σ as the “null hypothesis.” In hypothesis
testing, “null” does not necessarily mean “no signal” (as it often does in the discussion of “null results”
for direct detection experiments). In fact, when setting upper limits, it means the opposite: the null
hypothesis is the presence of signal (with strength parameterized by σ), which we are trying to reject at
a certain CL. Since “test” seems more intuitive than “null” anyway, the former will continue to be used
instead.
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Figure 6.2: Illustration of a test statistic PDF. For the PLR test statistic, higher q
indicates greater disagreement between the data and test hypothesis.
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the test hypothesis and to the data. For example, when setting upper limits, it is desirable

to know the expected limits; i.e., the confidence interval generated by the typical signal-

free dataset. To this end, the blue distribution shows f(qσ) for an ensemble of datasets

where the true POI is not σ, but some alternative value σalt (but qσ is still calculating

by fixing the POI to σ in the numerator of λ). The blue shaded region shows where 50%

of the distribution is contained, so its rightmost edge denotes the median qσ value for

datasets drawn from the σalt model. The integral of f(qσ|σ) can also be performed from

this median qσ to calculate the typical p(σ) value for datasets where σalt is true. More

generally, other quantiles of f(qσ|σalt) can be used to determine the range of “expected”

p(σ) values (assuming σalt is true).

Now that we can calculate p values for different σ hypotheses, we can “invert” these

tests to find a confidence interval using the Neyman construction. Figure 6.3 illustrates

this procedure, wherein p(σ) for the observed data is calculated over a range of test

hypotheses. Values of σ are rejected when p(σ) < 1−α, which in this example corresponds

to the range [σUL,∞].

A potential pitfall of naively reporting confidence intervals calculated from the raw

PLR TS is that a lucky downward fluctuation in the background rate might result in a

confidence interval which is too good; that is, we might exclude cross sections to which

we are insensitive. Figure 6.4 shows an example of this, where the observed p-value

reaches 10% at nearly the same cross section as the −2 standard deviation quantile of

background-only trials. For this reason, some experimentalists modify the definition
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f(qσ)

qσ
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p(σ)

σ
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Figure 6.3: Inverted hypothesis testing for confidence interval construction. In the left
panel, calculations of p(σ) are performed as in Fig. 6.2, at multiple values of σ. This
information is condensed in the p value curve in the right panel, from which σUL may
be found by solving p(σ) = 1 − α. In addition to the p value curve obtained from
the observed dataset, a blue curve is shown representing the median p(σ) values of an
ensemble of datasets drawn from a fixed alternate hypothesis. For example, when setting
an upper limit, this alternate hypothesis would be that the signal cross section is zero.

of the acceptance region by dividing the p value under the null hypothesis by the p

corresponding to the alternate hypothesis (CLs method [144]). LUX results do not follow

this approach; instead, we “power constrain” [145] the limits to some quantile of the

expected distribution. Unlike CLs, this method has well defined coverage properties.

Instead of modifying the confidence interval, a pre-decided floor is enforced such that the

reported limit can be no smaller than this.

6.1.3 Applying the PLR to LUX

The asymptotic properties (in the limit of many events per dataset) of qσ mimic a chi-

square distribution [146], but in the intermediate regime of LUX data, no convenient

analytic form for f(qσ|σ) is available. As such, the distributions f(qσ|σ) and f(qσ|σalt)
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Figure 6.4: p-value curve for 100 GeV WIMP, neutron-only spin-dependent coupling.
The solid black line shows pobs as a function of the POI (here abbreviated “xsec”). The
dashed black line shows p for a median dataset drawn from the background-only model,
and the green and yellow bands show the ±1- and ±2- s.d. quantiles.

must be assembled via Monte Carlo (MC) simulation. The pseudocode in Algorithm 1

explicitly walks through the computational steps necessary to calculate the LUX upper

limits on WIMP-nucleon cross section σ. The procedure is repeated in a scan over

potential masses; the mχ-dependent limits are often interpolated to produce a smooth

curve. Note (e.g. line 7 of code) that in the simulations performed to build the PDFs

for qσ, the NPs are set to the CMLE values calculated for the observed data under

the test hypothesis. This is a short-cut: the truly frequentist thing to do would be

to generate data from models defined by all θ, not just ˆ̂θ(σ); however the curse of

dimensionality usually renders this approach computationally impossible. Using ˆ̂θ(σ) to

generate pseudo-experiments is known to statisticians as “hybrid resampling” [147, 148]

and to physicists as the “profile construction” [23, 149], and turns out to be a good
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Figure 6.5: p(σ) values for a two-sided PLR TS. The best-fit σ̂ falls near the peak of the
curve.

approximation of the full Neyman construction.

Another subtlety not yet considered concerns the range of values one allows σ̂ to

take in the ML fits. This actually relates to the freedom to choose a one-sided upper

limit or two-sided confidence interval, mentioned in Sec. 6.1.1. One advantage of the FC

technique is that this transition between limits and allowed regions is handled seamlessly.

The analogous approach using the PLR is to allow σ̂ > σ when calculating qσ. This

effectively yields a two-sided limit, since we are comparing the test hypothesis (σ) to

an alternative hypothesis (σ̂) that can have either more or less signal strength; both

scenarios are considered “extreme”. A one-sided PLR test, on the other hand, restricts

the definition of incompatibility to mean σ̂ < σ. This is discussed in detail in Ref. [146].

Two-sided PLR intervals have become the default choice for presenting results, because

like the FC approach, they will return upper limits for small σ̂ but then transition to

allowed regions when σ̂ is large. Figure 6.5 shows how p(σ) behaves in the latter scenario.

So far, we have described the PLR limit-setting procedure with only an abstract
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Algorithm 1: PLR procedure for setting upper limits.

Data: WS dataset Dobs = {xe}
Result: 90% CL upper limit on WIMP–nucleon cross section σ(mχ)

// iterate over WIMP masses

1 for mχ ∈ [5, 105] GeV do

2 Calculate MLEs (σ̂obs, θ̂obs) from L(Dobs|σ,θ);

// iterate over test hypotheses

3 for σ ∈ [σmin, σmax] do

4 Calculate CMLEs ˆ̂θobs(σ) ;

5 qσ,obs = L(σ, ˆ̂θobs(σ))/L(σ̂obs, θ̂obs);

// build pdf for test statistic with MC trials

6 for i = 1 to NMC do

7 Generate dataset Di from L(σ, ˆ̂θobs(σ));

8 Calculate MLEs and CMLEs from L(Di|σ,θ);

9 qσ,i = L(σ, ˆ̂θi(σ))/L(σ̂i, θ̂i);

10 Update qσ histogram to build f(qσ|σ);

11 end

// repeat for alternative (background-only) hypothesis

12 for i = 1 to NMC do

13 Generate dataset Dalt
i from L(0, ˆ̂θobs(0));

14 Calculate MLEs and CMLEs from L(Dalt
i |σ,θ);

15 qσ,i = L(σ, ˆ̂θi(σ))/L(σ̂i, θ̂i);

16 Update qσ histogram to build f(qσ|0);

17 end

18 pobs(σ) =
∫∞
qσ,obs

f(qσ|σ) dqσ;

19 Calculate pexp(σ) using quantiles of f(qσ|0) as lower integration bounds;

20 end

21 Interpolate pobs vs. σ curve to solve pobs(σUL) = 0.1 (i.e. 1− α);

22 Repeat with pexp to find expected upper limits;

23 end

24 Plot mχ vs. σUL, showing both observed and expected limits;
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notion of what the LUX likelihood function actually is. The exact structure will be

examined in the following sections, but this equation serves as a helpful introduction:

L(Dobs|σ,θ) = e−nexp(σ,θ)

(
nexp(σ,θ)nobs

nobs!

) nobs∏
e=1

ftot(xe|σ,θ) , (6.12)

where the observed dataset Dobs consists of nobs events, with observables xe. This is the

generic form of an extended unbinned likelihood function. The factor before the product

is just the Poisson probability of observing nobs events when expecting nexp, hereafter

expressed simply as Poiss
(
nobs

∣∣nexp

)
. (This factor is what “extended” refers to). Note

that nexp is determined by the model parameters; this dependence is shown explicitly in

eq. 6.12, but will be omitted in future equations to preserve clarity.

The product over events constitutes the “unbinned” nature of the likelihood: the

probability density of each event is considered via the total PDF ftot, which depends

parametrically on σ and θ. Typically, in rare event searches, this PDF is the weighted

sum of various contributions, including the signal model fs and various background model

components fb (recall that all PDFs fi(x) are normalized to unity, by definition):

ftot(x) =
1

ns +
∑

b nb

[
nsfs(x) +

∑
b

nbfb(x)

]
. (6.13)

Here, again, everything implicitly depends on σ and θ. In fact, in many analyses, one

can take the POI σ to be the average number of signal events (ns), and the NPs to be

the average number of background events of each type: θ = {nb}. This is essentially the

approach taken in the LUX analyses.
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6.2 LUX WS2013 Likelihood

In the analysis of the WS2013 dataset, the extended unbinned likelihood takes the fol-

lowing form:

LWS2013(Dobs |σ,θ) = Poiss
(
nobs

∣∣nexp

)
×

nobs∏
e=1

1

nexp

[
ns(σ, kLind.)fs(xe|g2,DD) +

∑
b

nbfb(xe)

]
×

∏
i∈constr.

Gauss
(
θi
∣∣θexp
i ,∆θi

)
.

(6.14)

Here, the POI σ is the WIMP-nucleon cross section, and θ are the nuisance parameters.

As before, nobs is the number of events (each with observables x) in the dataset Dobs,

the nb are the NPs for expected counts in each background population, and ns is the

expected number of signal events, a function of POI σ and NP kLind. (Lindhard k [97]).

We therefore define nexp = ns +
∑
nb, and the first factor in the likelihood becomes the

familiar “extended” Poisson term. The subsequent product over events represents the

probability of the dataset under the full model: a weighted sum of background PDFs

fb(x) and signal PDF fs(xe|g2,DD), where the latter is conditional on the NP for S2 gain

during the DD calibration. Finally, the second product enforces Gaussian constraints on

a subset of the NPs, encoding knowledge from auxiliary analyses into the likelihood.3 A

summary of NPs from WS2013, including their constraints and MLEs, can be found in

Tab. 6.2, adapted from Ref. [17].

As shown in the table, the WS2013 backgrounds were grouped into six broad cate-

3These constraints on model parameters might smack of Bayesian priors, but a frequentist interpre-
tation of them can be found in [23].
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Parameter Constraint Fit value

(θi) (θexp
i ±∆θi) (θ̂i)

Lindhard k 0.174± 0.006 · · ·
S2 gain ratio: g2,dd/g2,ws 0.94± 0.04 · · ·
Low-z-origin γ counts: nγ,bottom 172± 74 165± 16

Other γ counts: nγ,rest 247± 106 228± 19

β counts: nβ 55± 22 84± 15
127Xe counts: nXe-127 91± 27 78± 12
37Ar counts: nAr-37 · · · 12± 8

Wall counts: nwall 24± 7 22± 4

Table 6.2: Nuisance parameters in the WS2013 likelihood model. Constraints are Gaus-
sian with means and standard deviations indicated. Event counts are after cuts and
analysis thresholds. The best-fit model has zero contribution from the signal PDF. In
this case the signal-model parameters simply float to the central values of their con-
straints, and so are not listed.

gories: Compton scattering caused by gammas originating from beneath the LXe (nγ,bottom),

other Comptons (nγ,rest), beta decays from Rn and Kr contamination in the LXe itself

(nβ), residual cosmogenic 127Xe (nXe-127), 37Ar (nAr-37), and misreconstructed events oc-

curring near the walls of the detector (nwall). In principle, though, a much more detailed

background model could be constructed. For example, the contribution from each bolt

and screw in the detector could be modeled individually and added to the likelihood model

with an associated NP weight. However, doing so would not only drastically slow down

the ML fitting algorithm, it would not considerably improve discrimination. Besides,

the WS data is not sensitive to small shifts in the radioactivity of individual detector

components. Backgrounds are simulated in this way (piece by piece) to estimate their

strength and PDFs, but similar ones are grouped together to simplify the final model. In

fact, all Compton backgrounds were originally modeled with a single normalization NP,
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since they have the same recoil distribution. However, this approached failed to yield

a good fit to the data. It was discovered that a higher than expected rate of Compton

events were occurring in the lower portion of the detector [17]. As such, the Compton

model was broken in two to account for this uncertainty; one population describes the

low-z gammas, the other describes the rest.

Apart from the constraint factors, the main departures of eq. 6.14 from the simplest

case analysis discussed in Sec. 6.1.3 are the NPs affecting the signal model. Varying the

kLind. parameter in the NR model within its uncertainties was found to affect the WIMP

detection rate (i.e. events per unit cross section) by shifting the S1–S2 distribution

into or out of the region of interest determined by the selection cuts. This effect was

parameterized and included in the model (see Fig. 6.6). Note that the shape of the

signal model fs(S1, log10 S2) is assumed to be unaffected by kLind., though this is an

approximation. On the other hand, the g2 value (S2 gain) is allowed to float as a NP, as

this detector parameter is thought to have drifted during the time between the WIMP

search exposure and the NR calibration (DD neutron beam). Since this systematic effect

represents an uncertainty in the shape of the signal S1–S2 PDF (and not simply the

normalization), allowing it to float in the ML fits introduces a grave computation slow-

down. A new PDF fs must be built (via MC generation) every time the NP is incremented

beyond a certain step size. With that said, the uncertainty on this model parameter is

constrained with a standard deviation of just ∼ 4%, and its inclusion as a NP has a

negligible effect on the calculated limit. It is therefore frozen at its nominal value in the
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combined WS2013+WS2014–16 analysis to save CPU cycles (discussed in Sec. 6.4).4

In WS2013, the PDFs and events are defined in four observables:

x = {r, z, S1, log10 S2} , (6.15)

where the position variables r and z have been corrected (via a transformation of the

raw reconstructed coordinates that accounts for E-field fringing). Adopting the notation

of Ref. [20], the italicized pulse areas S1 and S2 have also been corrected for geometry

dependent efficiencies (i.e. light collection and electron lifetime). Signal events (NRs from

WIMP scattering) populate different regions in observable space than background events.

The choice of which observables to include in an analysis is guided by maximizing this

discrimination. We could, for example, elect to consider only S1 and S2 in our analysis,

since after all, ERs and NRs are distinguished via these variables. On the other hand,

some background events originate from radiation sources external to the LXe, and are

concentrated near the edges of the fiducial volume. This spatial information can be used

to further discriminate between signal and background events, which is why r and z are

included in the likelihood models. See Appendix B for a brief study on the discriminating

power of just the S1 and S2 observables.

Most of the PDFs are decomposed into lower-dimensional functions:

f(x) = f(r, z)× f(S1, log10 S2) , (6.16)

since the position observables are typically uncorrelated with the energy response ob-

4In general, including more NPs in an analysis or relaxing the constraints on them tends to weaken
the resultant PLR limits. As Cowan et al. explain [146]: “This reflects the loss of information about
[the POI] due to the systematic uncertainties.” Thus, since g2,DD is constrained so tightly, fixing it to
its nominal value does not result in a substantial (unfair) gain in sensitivity. Specifically, the expected
WS2013 limit for 50 GeV WIMPs improves by less than 2% when this NP is fixed.
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Figure 6.6: WS2014–16 dependence of ns on kLind., shown for two WIMP masses. This
introduces uncertainty on the WIMP detection rate at a given signal cross section in the
likelihood model. Note that the small uncertainty on kLind. (see Tab. 6.2) means that the
NP is effectively constrained to within ∼4% of the nominal value. Even for small WIMP
masses, where the effect is most prominent, this translates to only ∼20% uncertainty in
the detection rate.
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servables. In particular, we have:

fs(x|g2,DD) = unif(r2)× unif(z)× fχ(S1, log10 S2 | g2,DD) (6.17)

fγ,bottom(x) = fγ,bottom(r, z)× fER(S1, log10 S2 ) (6.18)

fγ,rest(x) = fγ,rest(r, z)× fER(S1, log10 S2 ) (6.19)

fβ(x) = unif(r2)× unif(z)× fER(S1, log10 S2 ) (6.20)

fXe-127(x) = fXe-127(r, z)× fXe-127(S1, log10 S2 ) (6.21)

fAr-37(x) = unif(r2)× unif(z)× fAr-37(S1, log10 S2 ) . (6.22)

Because our position coordinates are corrected, some of the event populations have spatial

PDFs that are conveniently uniform in the fiducial volume. This includes the WIMP

signal model as well as background contaminants that are dissolved within the LXe

(i.e. other nobles elements: Ar, Kr, and Rn). Other spatial PDFs are non-trivial,

and have been estimated with MC simulations generated with the Geant4-based [118]

LUXSim [119] software. These nonuniform PDFs are implemented as 2D histograms

with 20 bins in radius (r ∈ [0, 20] cm) and 40 bins in height (z ∈ [6.54, 48.6] cm).

The energy response PDFs are calculated using MC data from the Noble Element

Simulation Technique (NEST) [99] package. Here, fER denotes the distribution gener-

ated from seeding NEST with electron recoils uniform in energy (E ∈ [0, 20] keV). In

our low-energy region of interest, this is a reasonable approximation for Compton and

radon/krypton beta spectra. fXe-127(S1, log10 S2 ) and fAr-37(S1, log10 S2 ) are also gen-
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erated from NEST-simulated ERs, but each have specific recoil spectra. Similarly, the

WIMP NR model fχ(S1, log10 S2 | g2,DD) is generated from NEST trials, using the recoil

spectrum relevant to the WIMP mass being tested and interaction type (SI or SD).

The final background PDF implemented for WS2013 describes “wall” events: in-

teractions occurring on the PTFE panels with suppressed charge yield (i.e. small S2).

Since the statistical uncertainty of position reconstruction scales as S2−1/2, the (recon-

structed) low-radius tail of this population can leak into the fiducial volume. Unlike the

other models, the wall model was empirically constructed using sideband samples of the

WIMP-search data. The final PDF is defined as:

fwall(x) = fwall(r| log10 S2 )× fwall(S1, log10 S2 )× fwall(z) . (6.23)

The radial model fwall(r| log10 S2 ) is actually implemented analytically as a Gaussian

centered at the wall radius (r = 23.65 cm) with sigma given by a fitted function of

S2 : σ = (a log10 S2 + b)−1. The remaining PDFs are inferred from the sideband data

(smoothed with a kernel density estimation technique) and implemented as histograms

(Ref. [120] has more details).
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6.3 LUX WS2014–16 Likelihood

The structure of the WS2014–16 likelihood function differs from that of WS2013 in that

it consists of multiple channels:

LWS2014−16(Dobs |σ,θ) =
∏
t∈d.b.

Poiss
(
ntobs

∣∣ntexp

)
×

ntobs∏
e=1

1

ntexp

[
nts(σ, kLind.)f

t
s(xe) +

∑
b

ntbf
t
b(xe)

]
×

∏
i∈constr.

Gauss
(
θi
∣∣θexp
i ,∆θi

)
.

(6.24)

The WS2014–16 exposure is segmented into four discrete time periods (or “date bins”)

within which detector conditions were reasonably stable. The index t refers to these date

bins. Each date bin is modeled separately with unique signal and background PDFs (now

labeled by t), though the NPs were kept as global quantities. That is, the total expected

counts ns,b =
∑

t n
t
s,b are allowed to float, but the ratios nts,b/ns,b are fixed. As such, there

are no date bin-specific NPs or constraints. NP values and constraints are reproduced

from Ref. [20] in Tab. 6.3.

As a result of the challenges posed by the distorted field geometry in WS2014–16, the

models describing signal and background distributions become necessarily more complex.

Most strikingly, the spatial distributions must mimic the warped detector shape as it

appears in uncorrected S2 coordinate space. A decision was made early in the analysis

to use the raw reconstructed position variables for the data (as opposed to attempting a

correction, as in WS2013), and transform the models into this coordinate space. In the

notation of Ref. [20], rS2 = {rS2, φS2, zS2} are the spatial observables: reconstructed S2
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Parameter Constraint Fit Value

(θi) (θexpi ±∆θi) (θ̂i)

Lindhard k [15] 0.174± 0.006 -

Low-z-origin γ counts 94± 19 99± 14

Other γ counts 511± 77 590± 34

β counts 468± 140 499± 39
8B counts 0.16± 0.03 0.16± 0.03

PTFE surface counts 14± 5 12± 3

Random coincidence counts 1.3± 0.4 1.6± 0.3

Table 6.3: Model parameters in the best fit to WS2014–16 data for an example 50 GeV c−2

WIMP mass. Constraints are Gaussian with means and standard deviations indicated.
Fitted event counts are after cuts and analysis thresholds.

radius, azimuth, and event drift time. (The introduction of the third spatial dimension is

necessary, owing to the axial asymmetry of the field deformation). Thus, simulations from

LUXSim are transformed into S2-space (using a mapping derived from 83mKr calibration

data) before being binned and smoothed into histogram PDFs.

The electric field strength varied significantly within the fiducial volume, resulting

in position-varying light and charge yield. This field variation is primarily correlated to

z-position. So, in addition to the segmentation by calendar date, the data are further

divided into four bins corresponding to interaction height in the detector (these bins are

termed “z-slices”). Within a z-slice of a given date bin, electric field variation is small

enough that good separation between fER and fNR is achieved. Therefore, instead of a

single PDF describing the energy response of the detector to a given population (as in

WS2013), there are now 4[date bins]× 4[z-slices] = 16.

153



Profile Likelihood Statistics Chapter 6

Bringing all of this together, we have our observables:

x = {rS2, φS2, zS2, S1, log10 S2 } , (6.25)

and, for most models,

f t(x) = f t(rS2)× f t(S1, log10 S2 | zS2) , (6.26)

where

f t(S1, log10 S2 | zS2) ≡ f t,z(S1, log10 S2 ) =


f t,1(S1, log10 S2 ) zS2 ∈ z-slice 1

f t,2(S1, log10 S2 ) zS2 ∈ z-slice 2

f t,3(S1, log10 S2 ) zS2 ∈ z-slice 3

f t,4(S1, log10 S2 ) zS2 ∈ z-slice 4

.

(6.27)

The NR signal model is implemented in this way, as are the ER background distributions

(for γs and βs). In WS2014–16, 127Xe is not included in the background model (this

cosmogenic isotope had decayed away), and 37Ar is also omitted (no evidence for it was

seen in the data). However, an NR background from coherent nuclear scattering from 8B

solar neutrinos is included (using this same PDF structure), even though the expected

rate was calculated to be only 0.16 events for the entire exposure.5

Another new model was introduced in WS2014–16 to describe accidental coincidences

of random, uncorrelated S1 and S2 pulses. This model is constructed empirically, using

the distributions of isolated S1 and S2 pulses, and assuming a uniform spatial distribution:

f tacc.(x) = f tunif.(rS2)× facc.(S1, log10 S2 ) . (6.28)

Note that f tunif.(rS2) describes a uniform (in “true” coordinates) 3D spatial distribution

5In retrospect, it would have been more prudent to model the NR background contribution of neutrons
(originating from (α,n) reactions in detector components, or from cosmic muon spallation). A moderately
higher rate (on the order of ∼0.5 total events) is expected from these sources [16].
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that has been mapped into the t-specific S2 coordinate system. This PDF is also used

for the signal, 8B, and β models.

Finally, the most cumbersome background model implemented in the WS2014–16

likelihood again describes the population of wall events. The PDF formulation is similar

to Eqn. 6.23, though now that we are in S2 coordinate space, the correlations are more

intricate. For example, in S2 space, the position of the wall (and thus the center of the

radial distribution) is not at a constant rS2. Rather, wall position depends strongly on

{φS2, zS2} and evolves in time. The wall model is constructed according to:

f twall(x) = f twall(rS2| log10 S2 , φS2, zS2)× f twall(S1, log10 S2 )× f twall(φS2, zS2) . (6.29)

Because of technical issues, the PDF was not actually implemented in this separable,

conditional format. Instead, it was evaluated on a 5D grid and stored as a finely binned

histogram object. This technique was shown to be reliable, albeit inelegant: each date

bin required its own 5D histogram (with ∼ 107 total bins) to describe the wall model,

adding ∼4 GB to the RAM budget of the PLR calculation code.

Unlike in WS2013, the WS2014–16 was “salted,” so the likelihood model was tested

against a sideband region to assess goodness of fit. Namely, events above the ER band

mean in S1–log10 S2 space (i.e. far from the signal region and the salt events) were

compared against the model. This fit informed the nominal values of some of the NPs.

Following unblinding, the best-fit model projections and data show very good agreement,

as seen in Fig. 6.7 through 6.13. Given the electric field complications, the compatibility

of the projected spatial distributions with the data is almost miraculous, though the last
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bin of the rS2 histogram might indicate the limitations of the field mapping algorithms.

Another discrepancy can be seen in the first S1 bin (see Fig 6.7), where the model strongly

over-predicts events. This effect was traced to a difference between the MC simulations

and the processing of real waveforms, and was found not to significantly affect the overall

quality of the fit or the PLR results. In the log10 S2 spectrum (Fig. 6.8), low area pulses

are more abundant in the data than predicted by the model. Below 1000 phd, we expect

13 events but see 20 (Poisson p = 4.2%, though the discrepancy is more pronounced if

one cuts at lower S2). This can be seen as well in Fig. 6.9, where these events appear

at S1 < 17 phd, perhaps pointing to an inadequacy in the wall or accidentals model.

In fact, two of these events occur at low enough radius that they are not well-described

by the wall model at all, and are singlehandedly responsible for the weakness of the

LUX limits for low WIMP masses. A PLR discovery test performed for 5 GeV WIMPs

yields p ∼ 2%; certainly not enough to claim anything interesting, other than maybe an

overlooked or misunderstood background population.

6.4 Combined Analysis

The combined WS2013 and WS2014–16 likelihood is essentially the product of the two

run-specific likelihoods. In this way, WS2013 can be thought of as a fifth date bin in the

multi-channel likelihood describing WS2014–16 (indeed, this is how it was implemented

in RooFit). Nuisance parameters were taken to be 100% uncorrelated between WS2013

and WS2014–16, with the exception of Lindhard k, which is assumed to be 100%. This
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Figure 6.7: Projection of the background onto the S1 axis (blue), with the WS2014–16
data shown in black.
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Figure 6.8: Projection of the background model onto the log10 S2 axis (blue), with the
WS2014–16 data shown in black.
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the WS2014–16 data shown in black.
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Figure 6.10: Projection of the background model onto the rS2 axis (blue), with the
WS2014–16 data shown in black.
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Figure 6.11: Projection of the background model onto the zS2 axis (blue), with the
WS2014–16 data shown in black.
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Figure 6.12: Projection of the background model onto the φS2 axis (blue), with the
WS2014–16 data shown in black.
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Figure 6.13: Projection of the background model onto the date bin axis (blue), with the
WS2014–16 data shown in black. Note that the date bins do not each have equal live
time: date bins 1 and 2 each contain ∼ 47 livedays, whereas date bins 3 and 4 contain
double and triple that exposure time, respectively. The background rate is thus roughly
constant.
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approach is justifiable from purely physical considerations: true background levels, espe-

cially from Kr/Rn contamination in the LXe, could easily have changed between runs;

furthermore, since the simulation and calculation of expected background rates differed

substantially in WS2014–16 (different fiducial volume, spatial coordinate mapping, etc.),

we do not expect systematic uncertainty on these rates to be correlated with those of

WS2013. Symbolically, then,

LLUX(σ,θ) = L′WS2013(σ,θ′WS2013)× LWS2014−16(σ,θWS2014−16) , (6.30)

where L′WS2013(σ,θ′WS2013) differs from Eqn. 6.14 in the omission of g2,DD as a nuisance

parameter. Note also that the NP kLind. appears in both θ′WS2013 and θWS2014−16 (whereas

all other NPs are unique), and the corresponding Gaussian constraint is applied only once.

6.5 Review of LUX PDFs

Here, we recapitulate the format of the LUX model PDFs. Visualizations are provided

at the end of the chapter for projections of the WS2014–16 models.

6.5.1 WS2013

1D histogram PDFs fwall(z)

2D histogram PDFs fγ,bottom(r, z), fγ,rest(r, z), fXe-127(r, z), fχ(S1, log10 S2 ),

fER(S1, log10 S2 ), fXe-127(S1, log10 S2 ), fAr-37(S1, log10 S2 ), fwall(S1, log10 S2 )

Conditional analytic PDFs fwall(r| log10 S2 )
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Note that the wall PDF must be implemented with the conditional radial distribution

for the use of fwall(S1, log10 S2 ) to be valid. If this is impractical, the model would need

to be handled in a way similar to WS2014–16, and evaluated on a 3D grid to obtain a

joint histogram PDF for fwall(r, S1, log10 S2 ).

6.5.2 WS2014–16

2D histogram PDFs f t,zχ (S1, log10 S2 ), f t,zER(S1, log10 S2 ), f t,z8B(S1, log10 S2 ),

facc.(S1, log10 S2 )

3D histogram PDFs f tunif.(rS2), f tγ,bottom(rS2), f tγ,rest(rS2)

5D histogram PDFs f twall(rS2, S1, log10 S2 )

Recall that the t and z indices run from 1 to 4, implying a multiplicity of 4 or 16 for

some of the PDFs. Note also that the NR and ER models are not completely separable

into 2D and 3D: the energy response PDF is conditional on position (as described in

Eqn. 6.27).
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Figure 6.14: Uniform spatial distribution (in real space) converted into S2 coordinates:
f tunif.(rS2), radius vs. drift time in slices of azimuth and date. Describes WIMP, 8B, β,
and accidental coincidence populations.
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Figure 6.15: Low-z Compton scatters: f tγ,bottom(rS2), radius vs. drift time in slices of
azimuth and date.
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Figure 6.16: Other Compton scatters: f tγ,rest(rS2), radius vs. drift time in slices of azimuth
and date.
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Figure 6.17: ER distribution f t,zER(S1, log10 S2 ) for Comptons and betas. Note that the
band is pushed up at lower drift times (higher z), where the drift field is stronger.
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Figure 6.18: facc.(S1, log10 S2 ), which is taken to be independent of drift and date.
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Figure 6.19: NR distribution f t,z8B(S1, log10 S2 ) for 8B neutrinos. Variation with electric
field is expected to be small.
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Figure 6.20: NR distribution f t,zχ (S1, log10 S2 ) for 5 GeV WIMPs. Plots normalized to
expected events per bin per zb per day per kg.
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Figure 6.21: NR distribution f t,zχ (S1, log10 S2 ) for 7 GeV WIMPs.
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Figure 6.22: NR distribution f t,zχ (S1, log10 S2 ) for 10 GeV WIMPs.
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Figure 6.23: NR distribution f t,zχ (S1, log10 S2 ) for 12 GeV WIMPs.
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Figure 6.24: NR distribution f t,zχ (S1, log10 S2 ) for 14 GeV WIMPs.
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Figure 6.25: NR distribution f t,zχ (S1, log10 S2 ) for 17 GeV WIMPs.
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Figure 6.26: NR distribution f t,zχ (S1, log10 S2 ) for 21 GeV WIMPs.
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Figure 6.27: NR distribution f t,zχ (S1, log10 S2 ) for 33 GeV WIMPs.
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Figure 6.28: NR distribution f t,zχ (S1, log10 S2 ) for 50 GeV WIMPs.
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Figure 6.29: NR distribution f t,zχ (S1, log10 S2 ) for 100 GeV WIMPs.
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Figure 6.30: NR distribution f t,zχ (S1, log10 S2 ) for 200 GeV WIMPs. At higher WIMP
masses, the spectrum is essentially the same.
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Figure 6.31: Wall model: projection of f t=1
wall(rS2, S1, log10 S2 ) onto S1–log10 S2 plane.
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Figure 6.32: Wall model: projection of f t=1
wall(rS2, S1, log10 S2 ) onto R–log10 S2 plane,

where R is a crude correction of radius that approximates true position. This shows how
smaller S2 area leads to greater radial uncertainty (and therefore greater penetration into
the fiducial volume).
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Figure 6.33: Wall model: projection of f t=1
wall(rS2, S1, log10 S2 ) onto xS2–yS2 plane, in slices

of drift time. Note the azimuthal asymmetry, and the shrinking of the detector at greater
drift times.
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Chapter 7

Limits on spin-dependent WIMP

scattering from full LUX dataset

This chapter was published in an abbreviated form as Ref. [38] in Physical Review Letters.

The text and figures are reproduced here largely unchanged, though some sections have

been added or expanded; such additions are typically in the form of subsections “7.X.X”.

In particular, the summary of the theory behind the signal model has been replaced

by a much more thorough derivation. The discussion of results now includes a detailed

look at complementarity with LHC searches, featuring a new presentation of LUX spin-

dependent limits. In order to preserve the flow and clarity of the writing, sections which

repeat information conveyed elsewhere in this dissertation are retained. As such, this

chapter should stand as a self-contained document.

174



Limits on spin-dependent WIMP scattering from full LUX dataset Chapter 7

7.1 Introduction

The existence of dark matter is now supported by a wide array of astrophysical evi-

dence, though the nature of its composition remains a mystery. The hypothetical WIMP

(Weakly Interacting Massive Particle) is a compelling candidate, addressing both the

observed astronomical phenomena as well as shortcomings of the Standard Model of

particle physics (SM). The WIMP appears in many extensions of the SM, including su-

persymmetry [3], extra dimensions [150], and little Higgs theories [151]. In these models,

WIMPs may couple to SM particles mainly via scalar, vector (both spin-independent),

and axial-vector (spin-dependent) interactions. The Large Underground Xenon (LUX)

experiment, operating at the Sanford Underground Research Facility in Lead, South

Dakota, is designed to detect such interactions through the scattering of galactic WIMPs

with Xe nuclei. The LUX WIMP search program comprises two distinct exposures,

termed WS2013 and WS2014–16. The combined dataset of both runs has been analyzed

to produce world-leading limits on the spin-independent (SI) WIMP-nucleon cross sec-

tion [20]. Here, we present the results for the spin-dependent (SD) coupling of WIMPs

to protons and neutrons.

7.2 The LUX detector and WS2014–16 run

LUX searches for WIMPs with a dual phase time projection chamber (TPC), detecting

energy depositions through the resulting ionization and scintillation in the target mate-
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rial. The active detector volume, containing 250 kg of liquid xenon (LXe), is monitored

by two horizontal arrays of 61 photomultiplier tubes (PMTs) each. The bottom array

sits underneath a cathode grid in the LXe, while the top array looks on from above, in

the gas phase. An energy deposition in the active region generates prompt scintillation

photons as well as ionization electrons, which drift upwards under the influence of an

applied electric field. The scintillation light is the first signal observed in the PMTs (S1).

The second signal (S2) corresponds to the liberated charge: ionized electrons travel verti-

cally to the liquid surface, where they are extracted into the gas phase and accelerated by

a strong electric field. This produces additional vacuum ultraviolet (VUV) photons via

electroluminescence. The S2 signal, originating close to the top PMT array, localizes the

interaction in the (x, y) plane. Additionally, the time delay between S1 and S2 gives the

depth below the liquid surface, thereby allowing for full 3D position reconstruction. Po-

sition information is crucial for defining a fiducial volume, excluding background events

that occur near the TPC walls. Further discrimination between WIMP signals (nuclear

recoils, or NRs) and Compton or beta backgrounds (electron recoils, or ERs) is achieved

using the S2 to S1 ratio.

As discussed in [20], the recent WS2014–16 dataset was collected under substantially

different detector conditions than WS2013: the electric drift field in the active volume

featured spatial non-uniformities that evolved slowly over the course of the exposure. In

particular, a significant radial component of the field was observed, as well as a vertical

gradient in field magnitude. As a consequence of this field symmetry deformation, elec-
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tron drift trajectories were bent radially inward, complicating the position reconstruction

process. Though a similar phenomenon was seen in WS2013, the effects in WS2014–16

were more severe in magnitude, azimuthal distortion, and time-dependence. For example,

in WS2014–16, an ionized electron originating near the edge of the cathode at a radius of

∼24 cm would reach the liquid surface at a radius of ∼10 cm (as opposed to ∼20 cm in

WS2013). In addition to affecting electron drift paths, the field asymmetry introduced

spatially-varying charge and light yields in the LXe. This is a result of the recombination

physics of electron-ion pairs—more electrons (and thus fewer photons) will escape an

interaction taking place in a region of greater field strength. As such, the boundaries of

the bands populated by ERs and NRs in S1–S2 space vary slightly as a function of event

position (and, to a lesser extent, calendar date).

A rigorous calibration regimen was established to address the challenges presented by

the unique field geometry in the WS2014–16 analysis. Weekly 83mKr injections [152–154],

in conjunction with periodic injections of tritiated methane [14], enabled the separation of

electric field effects from the usual geometric effects typical of TPC detectors (i.e. spatial

light collection efficiency and electron lifetime). Furthermore, 83mKr data were used to

tune a 3-D electrostatic model of the detector, built with the comsol Multiphysics

package [138]. The electric field maps produced from this effort allowed for the time-

dependent translation between true event position and the position inferred from the

observed S2.

NR calibrations were performed with neutrons from a deuterium-deuterium (DD) fu-
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sion generator [15, 155]. This technique, pioneered by LUX following the WS2013 run,

was employed throughout the WS2014–16 exposure to monitor the detector’s expected

response to signal events. ER calibrations were obtained with tritiated methane, where

the beta decays of tritium (endpoint 18.6 keV) give an excellent high statistics charac-

terization of ER background events [14].

7.3 The Dataset and Selection

This analysis combines the WS2013 and WS2014–16 datasets in search of spin-dependent

scattering between WIMPs and Xe nuclei. The WS2013 exposure was taken between

April and August of 2013, totaling 95 live-days with a fiducial mass of 145 kg [17]. A

simple set of selection cuts were applied to the data, leaving 591 events in the region of

interest. This dataset was previously analyzed to set SD WIMP-nucleon cross section

limits [25]. The WS2014–16 dataset was subjected to similar cuts, and furthermore

featured a blinding protocol wherein fake WIMP events (“salt”) were injected into the

data-stream. A full discussion of these data quality and selection cuts as well as the salting

scheme can be found in Ref. [20]. In both runs, cuts were designed to select low-energy

events with a single S1 followed by a single S2. The net effect on NR detection efficiency is

illustrated in Fig. 7.1, which shows the exposure-weighted efficiency of both WS2013 and

WS2014–16 (black line, left axis scale). Efficiencies are calculated by applying analysis

cuts to simulated NR events. Also plotted on the same energy scale are sample recoil

spectra from SD WIMP-nucleon elastic scattering (right axis scale).
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Figure 7.1: LUX total efficiency (black), averaged over the entire exposure. NR model un-
certainties are illustrated by the gray band, indicating ±1σ variation. The vertical dashed
line represents the analysis threshold of 1.1 keV (the lowest DD calibration point), below
which we conservatively take the LUX efficiency to be zero. Sample WIMP spectra are
plotted in color, with values corresponding to the right-hand y-axis. dru is the differential
rate unit (events kg−1d−1keV−1), and the spectra have each been calculated with WIMP-
nucleon cross section = 1 pb. Spectra for WIMP-proton and -neutron scattering are given
by the red and blue curves, respectively, for three WIMP masses: 5 GeV c−2 (dotted),
50 GeV c−2 (dash-dotted), and 1000 GeV c−2 (dashed). Structure functions from [24] are
used for this calculation.
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7.4 Signal model construction

The recoil spectra shown in Fig. 7.1, essential ingredients of the signal model for this

analysis, are calculated from the differential WIMP-nucleus cross section and integration

over the local WIMP velocity distribution. We focus first on the former quantity, dσ/dq2,

where σ is the WIMP-nucleus cross section and q is the momentum exchange. Chiral

effective field theory (EFT) is used to generically derive the axial-vector WIMP-nucleus

cross section as a multipole expansion, which requires detailed nuclear calculations to

evaluate. As in Ref. [25], we use the calculations by Klos et al. [24], which include 2-

body currents in the EFT calculation (i.e. WIMPs may effectively couple to two nucleons)

and employ state-of-the-art nuclear shell-models to obtain the final spectra.

7.4.1 Spin-dependent coupling between WIMPs and Xe nuclei

The following calculations will be analogous to those laid out in Sec. 2.2, but in the SD

instead of SI case. As derived in [83], we can express the differential WIMP-nucleus cross

section as:

dσ

dq2
=

8G2
F

(2J + 1)v2
SA(q) , (7.1)

where GF is the Fermi constant, J is the ground state angular momentum of the nucleus,

v is the WIMP velocity, and SA(q) is the non-trivial momentum dependent axial-vector

structure factor. Analogous to the form factor used in SI calculations, S(q) can be

thought of as the Fourier transform of the nuclear spin distribution. We would like to

have an expression in terms of a single-valued parameter of interest for hypothesis testing,
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rather than a momentum-dependent function. To this end, it is standard to define the

total cross section in the zero momentum transfer limit [3, 156]:

σA ≡
∫ 4µ2Av

2

0

dσ(q = 0)

dq2
dq2 (7.2)

=
32G2

F µ
2
A

2J + 1
SA(0) . (7.3)

Here, we have introduced the WIMP-nucleus reduced mass µA, with the subscript A

referring to the mass number of the nucleus being considered (and likewise for σA). We

will abuse notation slightly and similarly take SA(q) to be the spin structure function

for nuclei of isotope A. In eq. 7.2, we are integrating the differential cross-section (in the

q = 0 limit) over the full range of possible q2, with the upper bound 4µ2
Av

2 given by the

kinematic maximum of elastic scattering. Eq. 7.3 is then trivially found by plugging in

eq. 7.1. With this definition, we can now express the differential cross section as:

dσ

dq2
=

σA
4µ2

Av
2

SA(q)

SA(0)
, (7.4)

achieving the goal of parameterizing the signal response in a single variable σA. Some au-

thors opt to define a dimensionless constant CA, the “enhancement factor,” for notational

convenience [3, 156]:

CA ≡
8

2J + 1
SA(0) , (7.5)

in which case (from eq. 7.3):

σA = 4G2
F µ

2
ACA , (7.6)
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and:

dσ

dq2
=
G2
F CA
v2

SA(q)

SA(0)
, (7.7)

which matches eq. 2.1 by identifying the normalized form factor F 2(q) with SA(q)/SA(0).

Though we could now proceed with these formulae and set observational limits on

σA, it would be preferable to consider a more fundamental quantity. Instead of the

WIMP-nucleus total cross section, we could focus on the WIMP-proton(neutron) total

cross section σp,n. This affords the advantage of allowing comparison of results with

experiments that use target materials other than xenon, as well as results from indirect

detection and collider experiments. From 7.6, we can see that:

σA = σp,n
µ2
A

µ2
p,n

CA
Cp,n

. (7.8)

In order to make progress in evaluating this relationship, we must digress into a discussion

on the structure factors.

In general, the structure functions may be decomposed in the isospin basis as [3, 24]:

SA(q) = a2
0S00(q) + a0a1S01(q) + a2

1S11(q) , (7.9)

where a0 and a1 are the isoscalar and isovector couplings to WIMPs, and Sij(q) are

the respective components of the structure function. In this basis, we can also explicitly

express the q = 0 limiting case as [24]:

SA(0) =
(2J + 1)(J + 1)

4πJ

∣∣(a0 + a′1)〈Sp〉+ (a0 − a′1)〈Sn〉
∣∣2 , (7.10)

where a′1 = a1(1 + δa1(0)) includes the correction that arises from considering 2-body

currents, and 〈Sp,n〉 are the spin expectation values of the proton and neutron groups
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in the nucleus. An important consequence of this equation that holds not just in the

q = 0 limit is that even-A nuclei (for which 〈Sp〉 = 〈Sn〉 = 0) do not participate in SD

interactions. Thus, for xenon, only 129Xe and 131Xe (with respective isotopic abundances

of 29.5% and 23.7%) contribute to the SD cross section.

In the literature, it is also common to see expressions in the proton-neutron basis:

ap =
1

2
(a0 + a1)

an =
1

2
(a0 − a1) ,

(7.11)

where ap,n are the WIMP-proton(neutron) coupling constants. Eq. 7.9 therefore becomes:

SA(q) = (ap + an)2S00(q) + (a2
p − a2

n)S01(q) + (ap − an)2S11(q) . (7.12)

Returning to the task of evaluating Cp,n, we must consider the zero momentum trans-

fer structure factor associated with a WIMP scattering off a single, free nucleon. In this

case, there are no 2-body currents by construction, so a′1 → a1, and eq. 7.10 becomes:

SA(0) =
(2J + 1)(J + 1)

4πJ

∣∣(a0 + a1)〈Sp〉+ (a0 − a1)〈Sn〉
∣∣2 (7.13)

=
(2J + 1)(J + 1)

πJ

∣∣ap〈Sp〉+ an〈Sn〉
∣∣2 (7.14)

=
(2(1

2
) + 1)(1

2
+ 1)

π
(

1
2

) ∣∣∣∣ap,n(1

2

) ∣∣∣∣2 (7.15)

=
3

2π
a2
p,n . (7.16)

In 7.14, we have applied 7.11 to change basis (note the factor of 4), and the equation

holds generally for 1-body currents. We specify the case of a single proton (neutron) in
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eq. 7.15, using J = 1/2, 〈Sp,n〉 = 1/2, and also 〈Sn,p〉 = 0. This result matches eq. 5.16 in

the otherwise superlative Ref. [157], though slightly flawed reasoning is employed there:

the a′1 term disappears not because of cancellation, but by definition. Furthermore, only

one of 〈Sp,n〉 = 1/2; the other must be set to 0. Thus, according to definition 7.5,

Cp,n =
8

2(1
2
) + 1

(
3

2π
a2
p,n

)
(7.17)

=
6

π
a2
p,n , (7.18)

which agrees with Ref. [156]. Using this result in eq. 7.8, we obtain the total cross section

for a nucleus in terms of the corresponding quantity for a single nucelon:

σA =
4π

3

µ2
A

µ2
p,n

1

2J + 1

SA(0)

a2
p,n

σp,n . (7.19)

Finally, returning to the differential cross section as expressed in eq. 7.4, it follows that

dσ

dq2
=

π

3µ2
p,nv

2(2J + 1)

SA(q)

a2
p,n

σp,n . (7.20)

At this point, it becomes useful to introduce the cases of “proton-only” (an = 0) and

“neutron-only” (ap = 0) coupling, which can be thought of as orthogonal vectors in the

an–ap parameter space. The nomenclature can be understood by considering eq. 7.14,

where in the proton-only scenario, the neutrons make no contribution to the total cross

section (and vice versa for neutron-only). However, it is important to note that in

the 2-body calculation (eq. 7.10) of Klos et al. [24], the spin averages of both nucleons

can contribute in either scenario. Thus, for target nuclei with unpaired neutrons such as
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129Xe and 131Xe, sensitivity is much greater in the neutron-only case (since 〈Sn〉 � 〈Sp〉),

though 2b currents allow for non-zero sensitivity to a proton coupling.

If we rewrite eq. 7.12 in the proton(neutron)-only cases, we find:

SA(q) = a2
p,n

(
S00(q)± S01(q) + S11(q)

)
. (7.21)

Klos et al. define a normalized version [24]:

SKlos
p,n (q) ≡ S00(q)± S01(q) + S11(q) =

SA(q)

a2
p,n

. (7.22)

Parametrizations of these functions, calculated for a number of isotopes, are provided in

Ref. [24] (Table IV of that paper contains the data for 129Xe and 131Xe). For the practical

purpose of signal model implementation, we can re-express the differential cross section

in the case of proton(neutron)-only coupling:

dσ

dq2
=

πSKlos
p,n (q)

3µ2
p,nv

2(2J + 1)
σp,n . (7.23)

In this equation, we see that the only unknown variables are σp,n, which act as a simple

scaling of the overall spectrum.

7.4.2 Nuclear recoil spectra

Relying on the machinery developed in Sec. 2.2, we can now fold in the WIMP velocity

integral to the differential cross section in order to generate the expected nuclear recoil
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spectrum. First, we move into energy space (see eq. 2.4):

dσ

dER
=

dσ

dq2

dq2

dER
(7.24)

=
2π

3

mAS
Klos
p,n (q)

µ2
p,nv

2(2J + 1)
σp,n . (7.25)

Next, we can use eq. 2.11 to express the SD equivalent of the SI differential rate (eq. 2.37):

dR

dER
= σSD

p,n

2πmANT ρχ
3mχµ2

p,n(2J + 1)
SKlos
p,n (ER)

∫ ∞
vmin(ER)

d3~v

v
f⊕(~v,~vobs) . (7.26)

Using the SHM parameters discussed in Sec. 2.2.4 (see Table 2.1), and calculating

exposure-averaged Earth velocities 〈vobs〉WS2013 = 245 km/s and 〈vobs〉WS2014−16 = 230 km/s

(see Appendix A for details), we produce the recoil spectra shown in Fig. 7.1 and used in

the signal model. Note that eq. 7.26 must be evaluated separately for 129Xe and 131Xe,

using the isotopic abundances to weight the sum.

7.5 Statistical Analysis

A two-sided profile likelihood ratio (PLR) statistic is used to test signal hypotheses [146],

whereby the complete LUX dataset is compared against a multi-channel, extended, un-

binned likelihood function [23, 158]. LUX data are categorized into five “channels”: one

corresponds to the WS2013 exposure, and the remaining four represent discrete time

periods of relatively constant detector conditions in the WS2014–2016 dataset, termed

“date bins.” The simultaneous model is thus the product of each channel’s likelihood,

along with the nuisance parameter constraints. Nuisance parameters, representing sys-
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tematic uncertainties in the model, are described in [20], as are the components of the

background model. Here, we review some details of the model construction.

The signal and background probability distribution functions (PDFs) for WS2013 are

defined in four observables: corrected interaction radius and height, S1, and log10(S2) [17].

Uncorrected S2 position coordinates {rS2, φS2, zS2} are used in WS2014–16, with the loss

of axial symmetry necessitating the introduction of the third spatial dimension. ER

backgrounds as well as the NR signal are modeled by further subdividing the data into

segments of drift time.1 For each date bin of WS2014–16, calibration data is used to

tune {S1, S2} response models in four horizontal slices of the detector (within which the

field strength variation is acceptably low). From these date- and depth-specific models,

implemented with the Noble Element Simulation Technique (NEST) [99], Monte Carlo

(MC) data are generated to produce 16 ER and NR PDFs. Spatial PDFs are built

separately using MC from the Geant4-based [118] LUXSim [119] software: simulated

event positions are transformed into the observed S2 coordinate space via the 83mKr-

derived field maps, once for each date bin.

As in WS2013, the WS2014–16 data contains a background population that defies the

ER and NR description. Interactions occurring very near the TPC walls suffer charge loss

to the PTFE panels, suppressing the S2 signal. Since position reconstruction statistical

uncertainty scales as S2−1/2, these low charge yield events are more likely to be mis-

reconstructed as taking place within the fiducial volume (because of the long tail in

1A small NR background from 8B solar neutrinos is also modeled with this technique. Neutrons
(muon-induced or from detector components) can also produce NR background events, though the
estimated rate is negligible [16, 20].
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their radial distribution). An empirical model is constructed to describe this population

using control samples of the dataset outside the region of interest. More so than the

other models, this “wall” model features strong correlations between position and pulse

area observables. For example, the width of the radial distribution is dependent on

uncorrected S2, which is itself a function of the corrected S2 and zS2 observables used in

the PLR. Furthermore, in observed S2 position coordinates, the radial position of the wall

varies with {φS2, zS2}. The final PDF is implemented as a finely binned 5-dimensional

histogram in each date bin, via an extension of the technique described in Ref. [120].

Specifics of the model construction will be detailed in a forthcoming publication.

The full background model is found to be a good fit to the combined dataset. The

data are consistent with the background-only hypothesis (PLR p = 0.35) when testing

a 50 GeV c−2 signal. As a further cross-check, the WS2013 and WS2014–16 PDFs are

separately projected into 1-dimensional spectra for each observable. These are compared

to data with a Kolmogorov-Smirnov test, demonstrating acceptable goodness of fit (p ≥

.05 and p ≥ .6 in WS2013 and WS2014–16, respectively) [17, 20]. Finding no evidence

for WIMP signals in the data, we proceed in setting 90% confidence level (CL) limits on

the WIMP-nucleon cross section, in the case of spin-dependent coupling.

7.6 Results

For a given WIMP mass and choice of coupling type, the PLR test statistic distribution

is constructed at a range of signal cross sections from MC pseudo-experiments generated
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with the RooStats package [159]. The p-value of the observed data is then calculated

over this range, where by definition the 90% CL upper limit is given by the cross section

at which p = 0.1. In using the raw PLR test statistic, however, an experiment may

benefit unreasonably from background under-fluctuations. To safeguard against setting

an upper limit at a cross section to which LUX is insensitive, a power constraint [145]

is imposed at −1σ of the expected sensitivity calculated from background-only trials

(as in [20]). Since the WS2013 limits were reported with an overly conservative power

constraint at the median expected sensitivity, this combined result exhibits a stronger

improvement than suggested simply by the increase in exposure.

The advance in sensitivity can be seen in Fig. 7.2 , which shows cross section limits

as a function of WIMP mass in the cases of neutron- and proton-only coupling. The

limits from the combined LUX data are plotted as a thick black line, labeled “LUX

WS2013+WS2014–16”. LUX is more sensitive to the neutron-only scenario, owing to

the unpaired neutron in 129Xe and 131Xe nuclei, and sets a minimum upper limit of

1.6× 10−41 cm2 at 35 GeV c−2, a nearly sixfold improvement over the previous WS2013

result. Indeed, among direct detection experiments, LUX is world-leading in sensitivity

to WIMP-neutron interactions. Also shown are sample results from LHC searches, inter-

preted as exclusions in the WIMP mass vs. cross section plane by assuming mediator cou-

pling parameters in a Z ′-like simplified model[86, 160]. Though strictly model-dependent,

these limits present strong constraints below ∼500 GeV, whereas the sensitivity of LXe

TPCs extends to much higher WIMP masses.
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Figure 7.2: 90% CL upper limits on WIMP-neutron (left) and WIMP-proton (right) cross
section. Results from this analysis are shown in thick black (“LUX WS2013+WS2014–
16”), with the range of expected sensitivity indicated by the green (1-σ) and yellow (2-σ)
bands. Solid gray curves show the previously published LUX WS2013 limits [25]. Con-
straints from other LXe TPC experiments are also shown, including XENON100 [26] and
PandaX-II [27]. In the left panel, model-dependent (axial-vector mediator with indicated
couplings) LHC search results are represented by dashed lines, with CMS [28] in light
blue, and ATLAS [29] in dark blue. As calculated by a new profile likelihood scan of
the MSSM7 [30], favored parameter space is shown as dark (1-σ) and light (2-σ) peach
regions; an earlier calculation using the MSSM-15 [31] is shown in gray, with analogous
shading of confidence levels. In the right panel, the DAMA allowed region (as interpreted
in [32]) is shown in pink (the analogous neutron-only region is above the bounds of the
plot). Such an interpretation is in severe tension with this result, as well as the PICO-
2L [33] and PICO-60 [34] constraints. Selected limits from indirect searches at neutrino
observatories (Super-Kamiokande [35] and IceCube [36]) are plotted as dashed lines.
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Figure 7.3: Fig. 7.2a, enlarged for visibility.
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Figure 7.4: Fig. 7.2b, enlarged for visibility.
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Figure 7.5: 90% CL exclusions on coupling parameters an and ap for 50 GeV c−2 and
1000 GeV c−2 WIMPs. Ellipse boundaries are colored as in Fig. 7.2 : this result (thick
black), LUX WS2013 (gray), PandaX-II (purple), and PICO-60 (blue). Geometrically,
Eq. 7.27 describes a rotated ellipse when the sum is performed over multiple isotopes
with distinct σAp /σ

A
n , as is the case for LXe experiments. PICO-60 considers only 19F

(for which 〈Sn〉 ∼ 0), and thus sets limits only on ap. The innermost region (bounded
by LUX and PICO-60) represents parameter space not in tension with experimental
data. The model-dependency of the LHC results is apparent in this plane, as the CMS
excluded region (shown as a green band) is restricted to the an = ap line (see main text
for important caveat). This line is absent from the lower panel since, in this treatment,
CMS is insensitive to WIMPs at the TeV mass scale. MSSM7 favored regions from the
GAMBIT scan are also shown, with a red contour at the 2-σ level for visibility. The
degeneracies assumed in the MSSM7 Lagrangian lead to the tight correlation between an
and ap. This scan includes a range of possible WIMP masses (unlike the mass-specific
experimental exclusions), and thus appears identically in each panel, noting the change
in axis scale. Additionally, the scans include models with sub-dominant relic densities,
for which experimental limits are rescaled accordingly.
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Figure 7.6: Fig. 7.5a, enlarged for visibility.
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Figure 7.7: Fig. 7.5b, enlarged for visibility.
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To contextualize these WIMP-neutron cross section limits, regions of favored pa-

rameter space derived from a 7-parameter Minimal Supersymmetric Standard Model

(MSSM7 [161]) are also indicated. These regions, newly calculated [30] by the GAMBIT

collaboration [162–165], are generated from scans of the MSSM7, where constraints from

a suite of experimental results appear in the likelihood functions. In particular, recent

results from LUX [20] and PandaX–II [166] are included. As such, the favored parameter

space is appropriately just beyond the sensitivity of this work (since the dataset used

here is the same as in the SI analysis of Ref. [20], which is already taken into account by

the GAMBIT profile likelihood scan). Another region of favored parameter space from

a 2014 scan of MSSM-15 [31] is shown for comparison, illustrating the rapid advance of

the field and the contribution of direct detection searches such as LUX.

In the proton-only scenario, high mass limits from this result now coincide with those

previously set by the PICO-2L experiment. The recent limit from PICO-60 sets the

standard for proton-only sensitivity in direct detection, bolstering the constraints from

indirect searches performed by the neutrino detectors IceCube and Super-Kamiokande.

CMS and ATLAS take gq (i.e. the coupling of quark type q ∈ {u, d, s . . .} to the axial-

vector mediator) to be universal, and thus set equivalent limits on WIMP-neutron and

-proton cross section (the curves are omitted in the right panel of Fig. 7.2 for clarity).

However, we note that in a more careful treatment of the simplified model, renormal-

ization group evolution of the couplings from the LHC to nuclear energy scale leads to

significant isospin violation (see Ref. [39, 167, 168]).
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The cases of neutron- and proton-only coupling fall on the axes of the more general

parameter space spanned by an and ap. By following the prescription laid out in [156],

elliptical exclusions in this plane are made according to:

∑
A

(
ap√
σAp
± an√

σAn

)2

>
π

24G2
Fµ

2
p

, (7.27)

where the sum is performed over target isotopes with mass numbers A, and σAp(n) are the

90% CL upper limits on WIMP-proton(neutron) cross-section, calculated individually

from these isotopes. For the PICO-60 results, where only the proton-only results are

reported, limits are calculated according to [169]. Exclusions are shown in Fig. 7.5 for

two choices of WIMP mass, highlighting the complementary experimental reach of LXe

and fluorine-rich detectors. The CMS results are also shown in this plane as exclusions

along the an = ap line (since gq is assumed to be the same for all quarks) [28, 170]. Results

from the GAMBIT scans of the MSSM7 are also displayed.

7.6.1 Ramifications for particle physics models

As discussed in Sec. 2.2.6, it is customary for direct detection experiments to report

results solely in terms of WIMP-nucleon couplings, without relating these to parameters

in deeper particle physics models. This approach naturally has the advantage of model-

independence; it is left to phenomenologists to convert LHC results and model predictions

into the direct detection plane of WIMP mass vs. WIMP-nucleon cross section. The

recent PICO publication [34], however, bucks tradition. In Fig. 6 of that paper, the

procedures laid out in Ref. [86] are run in reverse, allowing the direct detection results to
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be shown in the LHC plane. In this section, we apply this technique to the LUX results

and follow with a discussion on the limitations of such a treatment.

As in Ref. [86], we assume a simplified model where the dark matter particle χ (mass

mχ) couples to quarks via a spin-1 mediator Z ′ (mass Mmed):

Lvector = gχZ
′
µχ̄γ

µχ+
∑
q

gqZ
′
µq̄γ

µq (7.28)

Laxial-vector = gχZ
′
µχ̄γ

µγ5χ+
∑
q

gqZ
′
µq̄γ

µγ5q . (7.29)

The mediator has coupling coefficients gq to quarks and gχ to the DM particle. We

assume that the vector coupling to χ is zero, as in the case where χ is a Majorana fermion.

(Otherwise, an SI interaction would be allowed, to which direct detection experiments are

far more sensitive than the LHC, owing to the A2 enhancement discussed in Sec. 2.2.6.)

This leaves only the axial vector couplings, which we set to the recommended values

gq = 0.25 (universal for all quarks) and gχ = 1. With these values fixed, the theory

is now defined by only two parameters: Mmed and mχ. This is the parameter space in

which LHC constraints are presented.

To obtain the effective WIMP-nucleon axial-vector couplings fp,n(gq), we simply take

the sum of quark couplings weighted by the spin contribution ∆
(p,n)
q of each quark to the
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proton or neutron (see e.g. eq. 3.11-12 of [83] or eq. 7.3 of [3]):

fp,n(gq) = ∆(p,n)
u gu + ∆

(p,n)
d gd + ∆(p,n)

s gs (7.30)

= gq
∑

q=u,d,s

∆(p,n)
q (7.31)

= 0.32gq . (7.32)

The first line is fully general, using quark-specific couplings gq; the next line invokes

universal quark coupling, and the final line evaluates the expression using the following

PDG values for the axial-vector current matrix elements of the nucleons [171]:

∆(p)
u = ∆

(n)
d = 0.84± 0.02

∆
(p)
d = ∆(n)

u = −0.43± 0.02

∆(p)
s = ∆(n)

s = −0.09± 0.02

(7.33)

which are obtained from the COMPASS [172] and HERMES [173] deep inelastic scatter-

ing experiments.

Now we can express the zero-momentum transfer (or “standard”) SD WIMP-nucleon

cross section in terms of the model parameters:

σSD
p,n =

3 f 2
p,n(gq)g

2
χµ

2
p,n

πM4
med

. (7.34)

This can be easily inverted to obtain Mmed as a function of σSD
p,n, which allows for the

conversion of limits on σSD
p,n into limits on Mmed over a range of mχ. Note that in this
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framework, the traditional WIMP-nucleon couplings ap,n are determined by:

a2
p,n =

f 2
p,n(gq)g

2
χ

8G2
FM

4
med

. (7.35)

With our assumption of universal quark coupling, fn = fp and an = ap (though this

comes with the same caveat raised in the discussion of Fig. 7.5). Thus, we are free to

choose the more constraining LUX results for WIMP-neutron coupling when we convert

to limits on Mmed, just as PICO uses their WIMP-proton results.2 The only remaining

task is to obtain limits at the 95% CL (as opposed to 90% CL), the standard for LHC

searches, which is easily done using the saved p-value vs. cross section curves from the

hypothesis test pseudo-trials.

Figure 7.8 presents the LUX exclusions converted into the Mmed–mχ plane, along

with the PICO and CMS constraints for comparison. The plot is essentially a rotation

of Fig. 7.2, with the cross section axis compressed due to the Mmed ∝ σ−1/4 mapping.

Since this simplified model predicts equivalent coupling between WIMPs and protons

and neutrons, the PICO and LUX results are essentially redundant, ruling out lower

mass mediators over a wide swath of WIMP masses. The CMS constraints carve much

deeper along the mediator axis, but are kinematically limited from accessing higher mass

WIMPs. Though the red exclusion region is cut off near Mmed = 50 GeV, Ref. [28] points

out that the region is expected to extend to smaller Mmed and mχ, but the signal model

was not constructed outside the shown range.

2Technically, the LUX results could be recalculated with a signal model allowing both WIMP-proton
and WIMP-neutron coupling. But since sensitivity would be dominated by the WIMP-neutron interac-
tion, this exercise is not worth the computing expense.
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Figure 7.8: 95% CL exclusion regions in the mass-mass plane for axial vector Z ′ medi-
ated coupling simplified models. Shaded area bounded by the black curve shows LUX
combined results (newly calculated); the red curves show CMS results from [28]; the blue
curves show the PICO results [34]. For the latter two results, the solid curves comprise
points taken from analogous plots in the respective publications, whereas the dashed lines
are calculated from the 90% CL cross section limits according to the procedure described
in the text (these are shown simply as a cross-check of the method).
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The EFT machinery of this Z ′ model also allows us to examine Z-portal DM, i.e.

DM interactions mediated by the SM Z0 boson (see e.g. [174–176]). Supposing again

that vector coupling is cancelled, the only unknown parameters in this theory are gχ and

mχ; the mass of the Z and its axial-vector couplings to quarks are known. Since gq ∝ T3

(weak isospin), the couplings for quarks differ by a sign between up- and down-types.

Thus, by eqs. 7.31 and 7.33, an 6= ap:

ap
an

=
∆

(p)
u gu + ∆

(p)
d gd + ∆

(p)
s gs

∆
(n)
u gu + ∆

(n)
d gd + ∆

(n)
s gs

(7.36)

=
−∆

(p)
u + ∆

(p)
d + ∆

(p)
s

−∆
(p)
d + ∆

(p)
u + ∆

(p)
s

(7.37)

≈ −1.15 . (7.38)

In fact, this precise relationship can be seen in the GAMBIT region shown in Fig. 7.6,

which has slope ∼ −1.2 6= −1 due to the nonzero strange quark contribution to nucleon

spin (see eq. 7.38). Fig. 2 of Ref. [175] shows direct detection limits on mχ vs. gχ in this

model, as well as the curve that would give rise to a thermal relic matching the observed

cosmological DM density. The LUX results exclude a large fraction of this parameter

space.

Consideration of the relic DM density introduces a serious caveat to the naive trans-

lation of direct detection results into the mass-mass plane of the Z ′ simplified models.

With the couplings gq and gχ fixed, points in Mmed–mχ parameter space correspond to

complete models of DM implying exact values of ΩDM. Since the LHC signal models are
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independent of ΩDM, this concern does not affect their results. Direct detection limits,

on the other hand, are proportional to the local DM density ρχ, which is typically fixed

to the canonical value of 0.3 GeV c−2 cm−3. In ΛCDM, this local density should be

proportional to the cosmological abundance ΩDM. If the WIMP posited by this theory

is only a subcomponent of the total DM density (Ωχ/ΩDM < 1), then ρχ would have

to be rescaled accordingly, changing the results from direct detection experiments. This

subtlety prompts the authors of Ref. [86] to explicitly advise against displaying direct

detection results as in Fig. 7.8. In Ref. [37], Chala et al. actually perform the relic

density calculations and rescale an approximated LUX result, shown in Fig. 7.9.

On the other hand, an argument could be made that physics processes not described

by the simplified model and inapplicable to LHC signals could alter the relic density

calculation, allowing for Ωχ/ΩDM = 1 at values of Mmed and mχ other than expected

(Ref. [86] points to [177] as an appropriate reference motivating this line of reasoning).

Regardless of which approach is used, if LHC and direct detection results are to be

compared using simplified models, the running of the couplings between the respective

energy scales should be considered. The case for this is elegantly made in Ref. [39], which

introduces a code for explicit calculation of the effects. An example of this renormaliza-

tion group evolution is shown in Fig. 7.10, which shows the correction that should be

applied to collider search results presented in the WIMP mass vs. WIMP-nucleon cross

section plane. This correction has been applied in Fig. 7.11, which is identical to Fig. 7.3

aside from the rescaling of the LHC constraints.
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Figure 7.9: Effect of relic density rescaling on LUX limits, taken from Ref. [37] (where MR

refers to Mmed). At left, the rescaling procedure is illustrated by showing the raw LUX
95% CL bound with fixed ρχ (purple), the region where the calculated Ωχ/Ω

obs
DM > 1

(red), and the rescaled LUX limit (orange). Near mχ = 80 GeV, all three contours
overlap by construction: here, the calculated Ωχ/Ω

obs
DM = 1, which matches the assumption

implicit in the purple curve, so that the rescaling multiplier is unity. Elsewhere, this
is not true, and the discrepancy is corrected for by the rescaling. The purple region is
estimated from LUX’s first SI result [18] (since this publication predates Refs. [17, 25, 38]),
and furthermore differs from Fig. 7.8 by a factor of (1/0.25)2×1/4 = 1/2 due to the
different values of gq assumed. Still, the constraint is very close to that shown in Fig. 7.8,
and the rescaled result is thus a good approximation of what might be obtained by
applying this procedure to the most recent LUX bounds. The left panel also shows
the “perturbativity bound” mχ <

√
4πMmed/gχ, which ensures that the χZ ′ Yukawa

interaction is perturbative. In the right panel, the rescaled constraint contours are shown
for various choices of mediator couplings.
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Figure 7.10: Comparison of SD WIMP-nucleon cross sections when the running of the
couplings is taken into account, taken from Ref. [39]. These corrections should be applied
to LHC constraints when comparing them to direct detection limits.
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Figure 7.11: WIMP–neutron cross section limits, identical to Fig. 7.3 except for the LHC
contours. The transparent CMS and ATLAS dashed curves are the same as in Fig. 7.3
(and as shown in Refs. [28] and [29], respectively). The solid dashed curves have been
scaled by the correction factor shown in Fig. 7.10, following the procedure laid out in
Ref. [39]. The effect is most pronounced at small cross sections since these correspond to
large mediator mass.
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7.7 Conclusion

In conclusion, the complete LUX dataset has been analyzed to set limits on SD WIMP-

nucleon scattering. World-leading constraints are presented for neutron-only coupling,

complementing searches for particle production at the LHC. Further complementarity

with the PICO-60 result is achieved in the 2D an–ap plane. Future work will investigate

a more complete set of EFT interaction operators, beyond those that define the standard

SI and SD paradigm.

207



Appendix A

Annual velocity modulation

As discussed in Section 2.2.4, the relative velocity of the Earth with respect to the rest

frame of the dark halo affects the expected nuclear recoil spectrum from WIMP scattering.

In Ref. [40], Savage et al. derive the speed vobs (or ve in McCabe’s notation [8]) of an

Earth-borne observer over the course of the year:

vobs(t) ≈ v�

[
1 + b

V⊕
v�

cosω(t− tc)
]

, (A.1)

where v� = vLSR+v�,pec is the velocity of the Sun, V⊕ is the Earth’s orbital speed around

the Sun (see Table 2.1 for numerical values), b = 0.49 is a geometrical factor accounting

for the angle between the Earth’s orbital plane and the Sun’s motion, ω = 2π/year is the

modulation period, t is the time in years since Jan. 1, and tc = 0.415 years (June 1) is

the SHM estimate for the time at which the relative Earth velocity is maximized.

In direct detection experiments, one can strive to discriminate background events and

search for WIMPs in a cleaned-up signal region (as in the LUX analyses), or instead look
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Figure A.1: Relative Earth velocity vobs(t) during the LUX WS2014–16 exposure. Line
color indicates the relative data-taking efficiency: lighter periods show times of calibration
or detector shut-down, darker periods indicate closer to 100% efficiency.

for annual modulation of total event rate in a less strictly defined event parameter space

(as in the DAMA result). In the former approach, the averaged 〈vobs(t)〉 value is used to

construct the nuclear recoil spectrum used in the signal model. For very long exposures,

this becomes simply:

〈vobs(t)〉 → v� ≈ 233 km/s . (A.2)

Otherwise, a more careful calculation can be done:

〈vobs(t)〉 =

∫
vobs(t) ε(t) dt∫

ε(t) dt
, (A.3)

with ε(t) quantifying the time-dependent data-taking efficiency of the detector.

Figure A.1 shows vobs(t) over the course of the LUX WS2014–16 exposure, with

line darkness indicating the data-taking efficiency ε(t). The weighted average comes to
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230 km/s. On the other hand, the shorter WS2013 exposure took place during the high

velocity summer months, and clocks in at 245 km/s. Due to an oversight, this WS2013

value for 〈vobs(t)〉 was used in the WS2014–16 SI analysis [20], though it was corrected

to the appropriate value in the SD analysis [38]. It is worth noting not only that the

effect of this error on the computed limit was indiscernible (only a ∼ 20% shift at very

low WIMP masses, invisible on the log-log scale), but also that the uncertainties on vLSR

and vesc are larger and have more significant repercussions on sensitivity [8]. Figure A.2

shows the minute change in SD recoil spectra introduced by this shift in 〈vobs(t)〉.
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Figure A.2: Efficiency plot and SD recoil spectra as in Fig. 7.1. The fainter curves
have been calculated using the correct WS2014–16 value of 〈vobs(t)〉 (230 km/s), and the
darker curves using the WS2013 value (245 km/s). A visible change is only apparent in
the 5 GeV WIMP curves, since the tail of the Maxwellian distribution is responsible for
the recoil spectra at these energies.
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Appendix B

Cut-and-count limits with likelihood

ratios

In Chapter 6, the PLR test statistic is introduced for the purpose of limit setting. The

much simpler “cut-and-count” approach using the Feldman-Cousins ordering principle is

far less computational expensive, and serves as a useful cross-check of the PLR result.

The natural question, then, is how to make the “cut”? The Neyman-Pearson optimal

observable is the likelihood ratio, which we can define on a per-event basis. Specifically,

we can freeze the nuisance parameters to their nominal values, and calculate the likelihood

ratio fs(x)/fb(x) for each event and make a cut in this 1D parameter space.

By way of an example, let’s look at the WS2014–16 SI analysis. To keep things simple,

we shall consider only the (S1, log10 S2)-space PDFs, restricting our background model

to just the uniform energy ER population (i.e. only the betas and Comptons). The new
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Figure B.1: Λ as a function of (S1, log10 S2), for a 50 GeV WIMP. This is the result
of dividing a normalized Fig. 6.28 by a normalized Fig. 6.17 and taking the natural
logarithm. (The blotchiness is only the result of smoothing a histogram with limited
statistics.) Making a cut Λ > Λc would be equivalent to making a cut in (S1, log10 S2)-
space defined by closed regions satisfying Λ > Λc.

observable calculated for each event is

Λ = ln

[
fs(S1, log10 S2 |mχ)

fER(S1, log10 S2)

]
. (B.1)

Since this is just a rough validation, we can arbitrarily choose one of the date bin/z-slice

models to work with. The signal PDF of NR events will of course depend on the WIMP

mass we are testing.

Figure B.1 shows the value of log likelihood ratio variable evaluated in (S1, log10 S2)-

space. Figure B.2 shows the distributions of background and signal events in Λ-space.

From the CDFs implied by these, the acceptance curve in Fig. B.3 can be calculated.

Repeating this exercise for many WIMP masses, we can calculate the signal acceptance
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Figure B.2: PDFs in Λ for background events (blue) and signal events (red), in the case
of a 50 GeV WIMP. One could imagine cutting at Λ > 5 to achieve high background
rejection.
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Figure B.3: Acceptance curve for ER background and 50 GeV WIMP. We can see that
making a cut on Λ that achieves 40% signal acceptance will eliminate 1− 10−3 = 99.9%
of background events.
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Figure B.4: Signal acceptance as a function of WIMP mass, following a cut on Λ that
achieves 99.9% rejection of ER background events. Since the NR spectrum converges
to a roughly constant shape as WIMP mass increases, the signal acceptance reaches a
plateau. The NR and ER bands are better separated at lower energies, leading to the
superior acceptance of light WIMPs for constant ER rejection.
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for a given background rejection rate, as shown in Fig. B.4. Acceptance improves with

decreasing WIMP mass because the NR population is actually more separated from the

ER band at low recoil energies. Light WIMPs are kinematically limited to imparting

only small amounts of momentum to Xe nuclei, and thus are more readily distinguished

from ER backgrounds.

Note that this is not saying that LUX is most sensitive to low mass WIMPs. Consider

the following scenario: 10 NR events pass our selection, as well as 1000 ER background

events. If the NRs follow the recoil distribution of a 10 GeV WIMP, we can devise a cut

that will include ∼ 9 signal events, and only 1 ER event (on average). On the other hand,

if the NRs are the result of collisions with 50 GeV WIMPs, then our optimal cut will

accept ∼ 3 signal events while allowing 1 ER event to leak in. However, if 10 signal events

pass our selection criteria, this implies a much higher cross section for 10 GeV WIMPs

than it does for 50 GeV WIMPs due to the NR detection efficiency at low energies.

To compare our cut-and-count expected limits to those predicted by the PLR pro-

cedure, we must first estimate how many background events will make it past our cut

on Λ. If we choose to cut such that 99.9% of ER events are rejected, then we would

expect ∼ 1 ER event to pass from the ∼ 1200 predicted by the background model. The

Feldman-Cousins expected 90% CL upper limit for b = 1.0 is 3.28 events (see Table XII

of Ref. [22]). Dividing this by the signal acceptance gives us the expected upper limit

on the total number of signal events passing selection criteria. Dividing again by the

detection rate (in events per zb) for the WIMP mass being tested gives the expected
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90% CL upper limit on WIMP-nucleon cross section. The bottom edge of the blue band

in Fig. B.5 shows the results of this calculation.

Note that in the previous estimate, we have ignored background events from the wall

and accidental coincidences. Looking at Table 6.3, we can conservatively estimate that all

∼ 15 expected events from these two sources will pass our cut on Λ. The corresponding

Feldman-Cousins expected upper limit is 7.99 signal events. The WIMP-nucleon cross

section derived from this calculation defines the upper bound of the blue band in Fig. B.5.

As such, the blue band indicates a range of limits we might expect to make using our

simple cut-and-count technique. The green band shows the 1-σ expected limits from the

full PLR analysis.

The two bands show reasonable overlap over a wide range of WIMP masses. For

heavier WIMPs, it seems that our generous assumption that no wall events leak past

the cut on Λ is more appropriate (this makes sense if one considers the shapes of the

PDFs). Furthermore, with position discrimination, our ER leakage should be even less

than 10−3. Thus, it stands to reason that the PLR expected limits are stronger than

our cut-and-count estimates. For lighter WIMPs, however, the wall events do begin to

contaminate our sample drawn from the Λ cut, and the upper edge of the blue band

becomes a more reasonable estimate. Even this conservative estimate is not conservative

enough, it seems, at mχ = 5 GeV, where the PLR expected limits are weaker than

the cut-and-count. This can be attributed to our freezing of nuisance parameters: the

uncertainties in kLind. and the wall event rate are considered in the PLR, but not in our
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Figure B.5: In blue: a range of 90% CL upper limits on SI WIMP-nucleon cross section
from an approximate cut-and-count analysis of the WS2014–16 dataset. The lower edge
of the band is defined by a FC b = 15 expected limit, the upper edge uses b = 1. In
green: the 1-σ range of expected limits from the full PLR analysis.

Feldman-Cousins analysis. One could improve the cut-and-count estimate to address this

by using the technique proposed by Rolke et al. [142], which allows for uncertainties in

signal acceptance and mean background rate.

This simple example is meant to be instructive, but one could imagine refining the

likelihood function to include not just the ER backgrounds, but also the wall events and

the accidentals. Furthermore, we could include the position and date observables into the

likelihood functions, replicating the full structure of LWS2014–16 (see eq. 6.24). In the end,

the PLR is a more reliable tool, but cut-and-count analyses (using the Neyman-Pearson

optimal observable) can serve as excellent validations or exploratory sensitivity studies,

due to their extremely lightweight computational requirements.
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