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ABSTRACT OF THE THESIS

Controllable Monophonic Music Generation via Latent Variable Disentanglement

by

Ke Chen

Master of Arts in Music

University of California San Diego, 2021

Professor Shlomo Dubnov, Chair

Automatic music generation is an attractive topic in the interdisciplinary field of music and

computer science. The appearance of deep learning technique has brought in new methodologies

to this topic. Diving to this topic inspires us to understand how computers process music elements

from notes, beats to melodies, structures and dynamics. This further helps humans to better

understand the music if we could afterwards extract creation mechanisms from machines.

In the generation problem, how to make human interact with the computer is an interesting

problem. Drawing an analogy with automatic image completion systems, we propose Music

SketchNet, a neural network framework that allows users to specify partial musical ideas guiding

monophonic music generation. We focus on generating the missing measures in incomplete

x



monophonic musical pieces, conditioned on surrounding context, and optionally guided by

user-specified pitch and rhythm snippets.

First, we introduce SketchVAE, a novel variational autoencoder that explicitly factorizes

rhythm and pitch contour to form the basis of our proposed model. Then we introduce two

discriminative architectures, SketchInpainter and SketchConnector, that in conjunction perform

the guided music completion, filling in representations for the missing measures conditioned

on surrounding context and user-specified snippets. In the experiment, we first evaluate the

SketchVAE on three standard datasets from different genres including folk, classic and pop songs.

Then we evaluate the whole SketchNet on a standard dataset of Irish folk music and compare

with models from recent works. When used for music completion, our approach outperforms

the state-of-the-art both in terms of objective metrics and subjective listening tests. Finally,

we demonstrate that our model can successfully incorporate user-specified snippets during the

generation process.
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Chapter 1

Introduction

1.1 Introduction

As a research area, automatic music generation has a long history of studying and

expanding human expression/creativity [30]. The use of neural network techniques in automatic

music generation tasks has shown promising results in recent years [7]. In this paper, we focus

on a specific facet of the automatic music generation problem on how to allow users to flexibly

and intuitively control the outcome of automatic music generation.

Inspired by the sketching and patching work from computer vision [4, 21, 35, 43, 40],

we propose Music SketchNet1 which allows users to specify partial musical ideas in terms of

incomplete and distinct pitch and rhythm representations. More specifically, we generalize the

concept of sketching and patching – wherein a user roughly sketches content for a missing portion

of an image – to music, as depicted in Figure 1.1. There are two contexts: previous context and

future context as the condition fed into the proposed model. The missing music measures in the

middle is the target that we train a model to fill in. Besides making the completion of missing

measures, we allow users to specify two music ideas: the rhythm pattern and the pitch contour

during the generative process. These specifications are taken into account by the model when

generating the missing measures. As a result, the proposed framework will complete the missing

parts given the known context and user input. More importantly, the entire generation process is

1https://github.com/RetroCirce/Music-SketchNet.
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I	want 
rhythms	like 
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Figure 1.1. The music sketch scenario. The model is designed to fill the missing part based on
the known context and user’s own specification.

carried out in the latent space. The model does not gradually generate the music point by point,

or step by step. Instead, each time it generates a music vector in a high-dimensional latent space,

and each vector represents a music measure after decoding. Therefore, this generative process of

the model is closer to the creation process of musicians (sentence-by-sentence vs. note-by-note).
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1.2 Novel Contribution

This thesis introduces a new framework Music SketchNet, that allows users to specify

partial musical ideas in terms of incomplete and distinct pitch and rhythm patterns in the

automatic music generation. This interactive model is taken as a great example to explore the

possibility of machines to create music with human beings. To work through all these procedures,

Music SketchNet consists of three components as our listed contributions:

• SketchVAE, a variational autoencoder (VAE) [29] component for mapping monophonic

music measures into high-dimensional latent vectors. By the use of a factorized inference

network, SketchVAE decouples latent variables into two parts: pitch contour and rhythm,

which serve as the control parameters for users.

• SketchInpainter, a component for generating music given the previous and future contexts

via recurrent neural network (RNN) [33]. It contains stacked recurrent networks to handle

the element-level inpainting prediction in the latent space.

• SketchConnector, a transformer-based [38] component for handling user’s control of

musical pitch and rhythm patterns. It receives users’ sketches of pitch, rhythm, or both,

combines them with the prediction from SketchInpainter, and finalizes the generation.

• Three components form a novel model to let users specify their ideas in monophonic music

generation.

In this thesis, we show that the proposed SketchVAE is capable of factorizing music input

into latent variables meaningfully. The proposed SketchInpainter and SketchConnector allow

users to control the generative process. The novel training and evaluation methodologies of the

SketchConnector are also presented.
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1.3 Thesis Organization

This thesis will begin in Chapter 2, by discussing several conditional music generation

models as the related works, and some machine learning backgrounds of our proposed model,

including recurrent neural network, variational autoencoder, and attention network. The proposed

model Music SketchNet will be introduced in detail in Chapter 3, including its data processing,

three components, and training paradigm. In Chapter 4, four music datasets will be covered.

Among them, three datasets (Nottingham, Hynmal, Wikifornia) will be used in the SketchVAE

to evaluate the performance of representation accuracy and latent space capacity in Chapter

5. The left Irish and Scottish Folk Song dataset will be used in the whole SketchNet model to

evaluate the generation performance in Chapter 6. Some discussions and conclusions will appear

in Chapter 7.

This chapter contains some materials (texts, tables, and figures) from a published con-

ference paper: Ke Chen, Cheng-i Wang, Taylor Berg-Kirkpatrick and Shlomo Dubnov, Music

SketchNet: Controllable Music Generation via Factorized Representations of Pitch and Rhythm,

in Proceedings of the 21th International Society for Music Information Retrieval Conference,

ISMIR 2020. The thesis author was the first author of this paper.
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Chapter 2

Background and Related Work

In this chapter, we introduce three important structures of deep learning that relevant

to our proposed model. Then we go over some related works on conditional music generation,

disentanglement methodologies, and discuss the further progress our model makes based on

them.

2.1 Recurrent Neural Network

A recurrent neural network (RNN) is a class of artificial neural network. It is first

proposed by David Rumelhart and further discovered by John Hopfield [33]. Different from

the vanilla fully-connected neural network, RNN contains a internal hidden state that stores the

information from the previous time steps’ input. Therefore, RNN is designed to capture some

temporal relations along with the given sequence. It has been widely applied into the practical

scenarios that have time series data (e.g. text generation, image generation, image caption, and

music generation).

As depicted in Figure 2.1 [12], a recurrent neural network contains an input vector xt ,

an internal hidden state ht , and an output vector ot . The subscript t refers to the time step (i.e.

for each time step, the network will have different input, hidden state and output). And V,U,W

refer different weight matrices. There are two different calculation method of these three vectors:

An Elman network [16] and a Jordan network [28]. The Elman network is more widely used in

5



Figure 2.1. The recurrent neural network architecture, referred from [12]

current works:

ht = σh(Uxt +V ht−1 +bh) (2.1)

ot = σo(Wht +bo) (2.2)

Where σh,σo are activation functions of the hidden state and the output vector, bh,bo are

bias weights. Similar to any artificial neural network, we adopt back-propagation throught time

(BPTT) [39] in update the weights with given training sequential data.

However, the major problem of recurrent neural network is the long-term dependency.

The hidden state h is updated in every time step within the input. Intuitively, the hidden

state stores too much information from past to future and cannot forget anything. And this is

inconsistent with how human deals with the memory (i.e. retention and forget). Mathematically,

the hidden state has accumulated a large number of gradients in the recurrent loop. When it is

being updated, the gradient will vanish or explode. This brings great difficulties to the update of

the model. Therefore, RNNs are very difficult to train.

To address this problem, a redesign of the hidden state has been proposed. Two famous

structure appear: long short-term memory (LSTM) [25] and gated recurrent unit (GRU) [11]. In

this thesis, we use GRU, which is a more efficient network than LSTM.

6



Figure 2.2. The gated recurrent unit architecture, referred from [12]

A gated recurrent unit contains several gates to better help the network capture, utilize

and forget the memory. The calculation of each vector is shown below:

zt = σg(Uzxt +Vzht−1 +bz) (2.3)

rt = σg(Urxt +Vrht−1 +br) (2.4)

ct = tanh(Ucxy +Vc(rt�ht−1)+bc) (2.5)

ht = (1− zt)ht−1 + zt� ct (2.6)

Where σg is the Sigmoid function, zt ,rt are two gate 0-1 values that determine if the

current cell state needs to preserve the last hidden state, and how much the current hidden state

needs to preserve the current cell state.

With this design, GRU could determine the state of the memory by controlling the gate in

limiting the communication of cell and hidden states. It not only mitigates the gradient vanishing

problem of RNN, but also makes the network move further into the human cognition of memory.

7



Figure 2.3. A training-time variational autoencoder [14] implemented as a feedforward neural
network, where p(x|z) is Gaussian. Left is without the “reparameterization trick”, and right is
with it. Red shows sampling operations that are non-differentiable. Blue shows loss layers.

2.2 Variational Autoencoder

A normal autoencoder is a deep learning structure that contains an encoder and a decoder.

Both encoder and decoder can compose of any type of neural network. During the training

process, an input is encoded into a latent vector, and an output is then decoded from the same

latent vector. The goal is to make the input and output as similar as possible. An autoencoder is

usually used as a dimensional reduction model, or a representation model. It could map a complex

data into a high-dimensional latent vector while maintaining most of its information. Moreover,

these latent vectors can be used in many down-streaming tasks because they themselves are

another advanced form of data.

On top of normal Auto-Encoders, variational autoencoders (VAE) explicitly constrains

that the latent variable z should be a random variable distributed according to a prior p(z). The

input x and latent code z can then be seen as z∼ p(z),x∼ p(x|z). The VAE consists of an encoder

qλ (z|x), which approximates the posterior p(z|x), and a decoder pθ (x|z), which parameterizes

the likelihood p(x|z). The approximate posterior and likelihood distributions are parameterized

by neural networks. Posterior inference is done by minimizing the KL divergence between the

encoder and the true posterior. It can be proven that this optimization problem is the same as

8



maximizing the evidence lower bound(ELBO):

ELBO = E[log pθ (x|z)]−KL(qλ (z|x)||p(z))≤ log p(x) (2.7)

In practice, computing the gradient through ELBO is infeasible due to the sampling of

z. A common approach is to assume that p(z) is a diagonal-covariance Gaussian z∼N (µ,σ).

Figure 2.3 [14] shows a variational autoencoder implemented as a feedforward neural network.

2.3 Attention Network

Attention mechanism is proposed in [38] by Google Brain. In traditional recurrent neural

network, the model can only learn the relation from past to future, or reversely with bidirectional

design. However, in many scenarios, the prediction or generation of a certain time step value not

only depends on the past information, but the contributions of the information at past time steps

are also different. For example, in the text generation, the currently generated word sometimes

largely depends on nouns in the preamble, rather than verbs (or vice versa).

To address this problem, similar to RNN, an attention network is settled in a sequential

problem where the input embedding of each time step is xt . Different from devising the hidden

state ht in RNN, an attention network devises three variables: Q (query), K (key), and V (value).

In self-attention network, all of them are obtained by a linear transform of the data:

Q =WqX +Bq (2.8)

K =WkX +Bk (2.9)

V =WvX +Bv (2.10)

Where X is a vector matrix from x1 to xT (the maximum time step). Q,K,V are therefore obtained

as three matrices, each of which contains vectors from the 1st time step to the final T -th time
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step. All Q,K,V are in the same size.

Then the attention output is obtained by:

Attention(Q,K,V ) = So f tmax(
QKT
√

dk
)V (2.11)

Where dk is the size of Q,K,V as a normalized denominator. Mathematically, the attention output

shows that each time step attention output is the result of multiplying all time step values V with

different proportions. And this proportion is calculated from the query value at the current time

qt and the key value at all times K.

Therefore, attention mechanism can calculate the contributions (or attention scores) of

inputs in different time steps to the current time step input. And this network is proved to have a

higher efficiency and better performance than RNNs in many related tasks.

2.4 Conditional Music Generation

Prior work supports various forms of conditional music generation, depending on the

condition form and the generation target. MuseGan [15] is trained by generative adversarial

network (GAN) [19] and allows users to condition generated results on full-length multi-track

music. DeepBach [23] provides a constraint mechanism that allows users to limit the generated

results to match composer styles (i.e. Johann Sebastian Bach’s style). Music Transformer [26]

supports a accompaniment arrangement from an existing melody track in classical music via the

latest attention mechanism in deep learning field. However, all these approaches require the user

preference to be defined in terms of complete musical tracks. Different from above works, our

Music SketchNet proposes a new condition scenario called sketching: given the known contexts

and user controls of some musical elements, a model should make the completion of the missing

music while reflecting the user’s specification. In this thesis, the known contexts are defined as

the previous and future contexts, and the user controls are defined as two factors: pitch contour

and rhythm pattern.
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There has been limited work on sketching in music generation. Some work [34, 23] has

used Markov Chain Monte Carlo (MCMC) to generate music with given contexts or generate

music conditioned on simple starting and ending notes [22]. The most related task is music

inpainting: completing a musical piece by generating a sequence of missing measures given the

surrounding context, but without conditioning on any form of user preferences. Music InpaintNet

[31] completes musical pieces by predicting vector representations for missing measures, then

the vector representations are decoded to output symbolic music through the use of a variational

autoencoder.

Our proposed music sketching scenario takes music inpainting a step further. We let

users specify musical ideas by controlling pitch contours or rhythm patterns, not by complete

musical tracks. The user input is optional: users can choose to specify musical ideas, or let the

system fill in predictions without conditioning on user preferences.

2.5 Disentanglement Learning

One of the key problems for our proposed Music SketchNet is how to disentangle the

music elements (e.g. rhythm and pitch) in the latent space. In the Literature, there are several

works attempting to disentangle elements in other field. In the computer vision, [17] divides

the loss of image generation into the content loss and the style loss to realize the style transfer

from one image to another image. In the language processing, [36] factorizes the font into the

character-specific content and the font-style content to change the font-style of texts. In the

computer music field, the most related work is EC2-VAE [41].

EC2-VAE factorizes music measures with separate vectors representing pitch and rhythm

by using a universal encoder, a separate rhythm decoder, and a universal decoder. The latent

variables can then be divided in half between pitch contour and rhythm. Exchanging different

halves of the disentangled latent dimensions can be thought of as ”analogy generation”, where

song A inherits the original pitch contour but has the rhythm of song B. EC2-VAE can perform

11



the same function – factorizing the pitch and rhythm, as SketchVAE can perform. The difference

between EC2-VAE and our SketchVAE is that EC2-VAE contains one encoder and two decoders,

while SketchVAE contains two encoders and one decoder. In that, they are particularly worthy of

comparison structurally in this thesis.

This chapter, in part, are currently being prepared for submission for publication of the

material. Ke Chen; Taylor Berg-Kirkpatrick; Shlomo Dubnov. The thesis author will be the first

author of this paper.
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Chapter 3

Music SketchNet

We formalize the music sketching task as solving the following three problems: (1) how

to represent music ideas or elements, (2) how to generate new materials given the past and

future musical context and (3) how to process users’ input and integrate it with the system. A

visualization of the sketching scenario is depicted in Figure 1.1.

We propose three neural network components to tackle the three problems. The Sketch-

VAE encodes/decodes the music between external music measures and the learned factorized

latent representations. The SketchInpainter predicts musical ideas in the form of the latent

variables given known context. And the SketchConnector combines the predictions from Sketch-

Inpainter and users’ sketching to generate the final latent variables which are sent into the

SketchVAE decoder to generate music output. A diagram showing the proposed pipeline is

shown in Figure 3.1.

3.1 Problem Definition

More formally, the proposed sketch framework can be described as a joint probability

model of the missing musical content, Xm, conditioned on the past, future, and user sketching

input. The joint probability breaks down into a product of conditional probabilities corresponding
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SketchInpainter

 	 SketchVAE	Encoder

User	Sketching	Info.

SketchConnector 	 	 

SketchVAE	Decoder 	 	 	 

Music	Tokens

Sketch	Music	Output

...

Figure 3.1. The Music SketchNet pipeline. The color patterns inside Inpainter and Connector
correspond to the latent space transform and completion process in Figure 1.1.

to sub-components of the framework:

Pφ ,ε,γ,θ ,τ(Xm,Z,S|X p,X f ,C) = (3.1)

Pφ (Xm|Zm) (SketchVAE Decoder)

∗Pε(Zm|Sm,C) (SketchConnector)

∗Pγ(Sm
pitch|Z

p
pitch,Z

f
pitch) (SketchInpainter)

∗Pγ(Sm
rhythm|Z

p
rhythm,Z

f
rhythm) (SketchInpainter)

∗Qθ (Z
p
pitch,Z

f
pitch|X

p
pitch,X

f
pitch) (3.2)

∗Qτ(Z
p
rhythm,Z

f
rhythm|X

p
rhythm,X

f
rhythm) (SketchVAE Encoders)

X indicates the input/output music sequence, Z is the sequence for {z} the latent variable , S is

the SketchInpainter’s predicted sequence, C is users’ sketching input. The superscripts, p, m, f

indicate the past, missing and future context. The subscripts, pitch and rhythm indicate the pitch

and rhythm latent variables. Qθ , Qτ , Pφ are the SketchVAE pitch/rhythm encoders and decoder

parameters, Pγ represents the SketchInpainter, and Pε is the SketchConnector.
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74 128 128 76 128 128 69 128 128 128 128 128 128 128 128 67 128 128 69 128 128 128 128 128

74 76 69 67 69 ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● O _ _ O _ _ O _ _ _ _ _ _ _ _ O _ _ O _ _ _ _ _

Music Melody Tokens

Pitch Tokens (with padding ●) Rhythm Tokens

Figure 3.2. An example of the encoding of a monophonic melody.

3.2 SketchVAE for Representation

MusicVAE [32] is one of the first works applying the variational auto-encoder [29]

to music. MeasureVAE [31] further focuses on representing isolated measures and utilizes a

hierarchical decoder to handle ticks and beats. EC2-VAE [41] factorizes music measures with

separate vectors representing pitch and rhythm by a single encoder and two decoders. Our

proposed SketchVAE aims to factorize representations by introducing a factorized encoder that

considers pitch and rhythm information separately in the encoder channels. Different from

EC2-VAE, it could allow users to enter parts of the information (rhythm and/or pitch) optionally.

SketchVAE aims to represent a single music measure as a latent variable z that encodes

rhythm and pitch contour information in separate dimensions (zpitch,zrhythm). It contains (1) a

pitch encoder Qθ (zpitch|xpitch), (2) a rhythm encoder Qτ(zrhythm|xrhythm), and (3) a hierarchical

decoder Pφ (x|zpitch,zrhythm) as shown in Figure 3.3.

3.2.1 Music Score Encoding

Similar to [32], we encode the monophonic midi melody by using [0, 127] for the note

onsets, 128 for holding state, and 129 for the rest state. We cut each measure into 24 frames to

correctly quantize eighth-note triplets like [31], and encode the midi as described in the previous

sentence.

As Figure 3.2 shows, we further process the encoded 24-frame sequence x into xpitch and
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..................................................

 	 	...

D5 _	A4 _	A4 _	A4 B4 C5 _	_	_	G4 _ 
Music	Melody	Tokens
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Pitch	Tokens Rhythm	Tokens

Embedding	Layer

Two-Layer	Bidirectional	GRUTwo-Layer	Bidirectional	GRU

Linear	Layer
σ

μ
Concatzpitch

Two-Layer	Bidirectional	GRUTwo-Layer	Bidirectional	GRU

Linear	Layer

σ

μ
Concat zrhythmZ

Beat	GRU	Layer

Linear	+	SELU

b1 b2 ... bn-1 bn

Linear	+	SELU 

c1 c2 ... cn-1 cnh1 h2 ... hn-1 hn

Tick	GRU  Tick	GRU  Tick	GRU  Tick	GRU 

Linear	+	SELU 

x1 x2 ... xt  xt+1 xt+2 ... x2t  xnt 

final	
hidden	
state

final	
hidden	
state

initial
hidden
state

Pitch	Encoder Rhythm	Encoder

Hierarchical	Decoder

D5 _	A4 _	A4 _	A4 B4 C5 _	_	_	G4 _ 

Output	Melody	Tokens

Figure 3.3. SketchVAE structure: pitch encoder, rhythm encoder and hierarchical decoder.
Rhythm tokens: the upper dashes denote the onsets of note, and the bottom dashes denote the
hold/duration state. We use pitch symbols to represent the tokens numbers for better illustration.

xrhythm, the pitch and rhythm token sequences respectively. The pitch token sequence xpitch is

obtained by picking all note onsets in x with padding (shown by ”•” in Figure 3.2) to fill 24

frames. The rhythm token sequence xrhythm is obtained by replacing all pitch onsets with the

same token (shown by ”O” and ” ” in Figure 3.2). A similar splitting strategy is also used in

[18]. Our motivation is to provide users with two intuitive music dimensions to control, and to

help enforce better factorization in the latent representation for later prediction and control.
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3.2.2 The Pitch Encoder and Rhythm Encoder

After pre-processing x, xpitch only contains the note value sequence, while xrhythm only

has the duration and onset information. xpitch and xrhythm are then fed into two different GRU

[11] encoders for variational approximation. The outputs of each encoder are concatenated into

z = [zpitch,zrhythm].

3.2.3 The Hierarchical Decoder

After we obtain the latent variable z, we feed it into the hierarchical decoder. This decoder

is similar to the decoder used in MeasureVAE [31]. As shown in the bottom part in Figure 3.3, it

contains an upper ”beat” GRU layer and a lower ”tick” GRU layer. This division’s motivation

is to decode z into n beats first and then decode each beat into t ticks. As a result, the note

information in each measure will be decoded in a musically intuitive way. For the tick GRU,

we use the teacher forcing [5, 20] and auto-regressive techniques to train the network efficiently.

The output is conditioned frame-by-frame not only on the beat token but also on the last tick

token.

......

zpitch seq zpitch seq zpitch seq

zrhythm seq zrhythm seq zrhythm seq

SketchVAE	Encoder

past missing future

timeline

Past-Pitch	GRUs

Future-Pitch	GRUs

Past-Rhythm	GRUs

Future-Rhythm	GRUs

ht1

ht2

ht3

ht4

final	hidden	state

+

+

Pitch	Generation	GRUs

Rhythm	Generation	GRUs

Auto-regressive	&	Teacher	Foring

Auto-regressive	&	Teacher	Foring

initial	prediction	Spitch

initial	prediction	Srhythm

CrossEntropyLoss

SketchVAE	Decoder

SketchInpainter

np nm nf

Figure 3.4. SketchInpainter structure. We feed the music tokens into the SketchVAE and obtain
the latent variable sequences. And we feed the sequences into the pitch GRU and the rhythm
GRU groups to generate the initial prediction S.
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3.2.4 Encoding the Past, Missing and Future Musical Context

The latent variable sequences Zp, Zm, and Z f are then obtained by processing the music

input in measure sequences X p, Xm, and X f . Both Xm and Zm are masked during training. This

encoding part is shown in the left block of Figure 3.4.

3.3 SketchInpainter for Initial Prediction

Next, we describe the model component that performs the music inpainting to predict

latent representations for the missing measures. The SketchInpainter accepts Zpitch and Zrhythm

as two independent inputs from SketchVAE. Then only the past and future Zpitch and Zrhythm are

fed into the pitch/rhythm GRU groups respectively. The output from each GRU group is the

hidden state h, as shown in the middle of Figure 3.4.

Then we combine the past/future hidden states h from both the pitch and rhythm GRU

groups and use them as the initial states for the pitch/rhythm generation GRUs. The generation

GRUs then predict the missing latent variables by Sm = (Spitch,Srhythm), as shown in the green

box in Figure 3.4. Each generation GRU is trained with the teach forcing and auto-regressive

techniques.

Each output vector sm from Sm has the same dimension as the latent variable z from Z. We

first build a model with only SketchVAE and SketchInpainter that directly predicts the missing

music material, Xm. As the right block of Figure 3.4 shows, Sm is sent into the SketchVAE

decoder and we compute the cross entropy loss between the predicted music output and the

ground truth. This is the stage I training in our model, detailed in Section 3.3.

3.4 SketchConnector for Finalization

The predicted Sm from SketchInpainter can already serve as a good latent representation

for the missing part Xm. We continue by devising the SketchConnector, Pε(Zm|Sm,C), to modify

the prediction with user control. To make up for the lack of correlation between pitch and
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Figure 3.5. The SketchConnector: the output of SketchInpainter is randomly unmasked and fed
into a transformer encoder to get the final output.

rhythm in current predictions, we introduce the SketchConnector as a way to intervene/control

the generative process, that also leads to a wider musical expressivity of the proposed system.

3.4.1 Random Unmasking

With Sm obtained from SketchInpainter, we concatenate it with Zp and Z f again. However,

before we feed it back into the network, we randomly unmask some of the missing parts to be the

ground-truth (simulating user providing partial musical context). The masked Sm are shown by

the red boxes in Figure 3.5. We replace some s from Sm to be the real answer in Zm, denoted as
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C. We observe that this optimization is very similar to BERT [13] training. The difference is that

BERT randomly masks the ground truth labels to be unknown, but SketchConnector randomly

unmasks the predictions to be truths. The unmasking rate is set to 0.3.

Intuitively, this allows the model to learn a more close relation among current rhythm,

pitch tokens, and the nearest neighbour tokens. In the sketch inference scenario, the randomly

unmasked measures will be replaced by the user sketching information, which allows a natural

transition between the training and testing process.

3.4.2 Transformer-based Connector

Then with Sm and the random unmasking data C, we feed them into a transformer encoder

with absolute positional encoding. In contrast to [26], we do not use relative positional encoding

because our inputs are vectors representing individual measures, whose length is far shorter than

midi-event sequences.

The output of the SketchConnector, Zm, will be the final prediction for the missing part.

We feed it into the SketchVAE decoder, and compute the cross entropy loss of the output with

the ground-truth.

This chapter contains some materials (texts, tables, and figures) from a published con-

ference paper: Ke Chen, Cheng-i Wang, Taylor Berg-Kirkpatrick and Shlomo Dubnov, Music

SketchNet: Controllable Music Generation via Factorized Representations of Pitch and Rhythm,

in Proceedings of the 21th International Society for Music Information Retrieval Conference,

ISMIR 2020. The thesis author was the first author of this paper.
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Chapter 4

Dataset

In this chapter, we introduce four datasets: Nottingham Music Database [1], Hymnal

Dataset [2], Wikifornia Dataset [3], and Irish and Scottish Folk Song Dataset [37]. The links of

four datasets are shown in related references. Except the Wikifornia Dataset (which might not be

available now), three left datasets are available in the internet.

The Nottingham Music Database is a music collection that contains about 1000 folk

tunes. It is stored in ABC notation format but with the converted MIDI files in a fixed tempo.

It was first maintained by Eric Foxley, then by James Allwright. Now, the Nottingham Music

Database is used in many automatic music generation or related papers [9, 10, 42]. It has fourteen

sub-collections, varied from Jigs to Christmas arols and Songs. In this thesis, we use this dataset

in MIDI format. Each tune file contains a melody track and a harmonic track, and we only use

the melody track in the SketchVAE training.

The Hymnal Dataset is a music dataset from the website hymnal.net. Currently it

contains about 1500 Christian hymns and spiritual songs. Since it provides users with the MIDI

files of all songs, we crawl these files from the website. The Hymnal Dataset contains three

sub-collections: Children, Classic, and New Songs (uncategorized). Each MIDI file contains a

main melody track and a whole polyphonic track. In this thesis, we only use the main melody

track in the SketchVAE training.

The Wikifornia Dataset is a relative large music collection that contains about 5000
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Figure 4.1. Three examples of Nottingham Music Database.

music leadsheets. It has various genres from folk, new age to pop songs. The original link

of the Wikifornia Dataset is currently unavailable. But in many music library resources like

MuseScore1 and music212, you can still download it. Each MIDI file contains a melody track

and a harmonic track, extraced from its MusicXML file. In this thesis, we only use the melody

track in the SketchVAE training.

The Irish and Scottish Folk Song Dataset is a largest music collect of fours with about

20000 folk tunes. It is stored in MIDI format with only one track as the main melody. In this

thesis, we use this dataset for the whole Music SketchNet training, and we base on this dataset to

generate musical pieces.

Below Figures 4.1, 4.2, 4.3, 4.4 show three examples of each mentioned dataset. To make

the correct alignment, we pick the similar number of measures of each example. Even though

there is an end bar in each example, it does not mark the end of the music.

This chapter, in part, are currently being prepared for submission for publication of the

material. Ke Chen; Taylor Berg-Kirkpatrick; Shlomo Dubnov. The thesis author will be the first

author of this paper.

1https://musescore.org
2http://web.mit.edu/music21/
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Figure 4.2. Three examples of Hymnal Music Dataset.

Figure 4.3. Three examples of Wikifornia Dataset.

Figure 4.4. Three examples of Irish and Scottish Folk Song Dataset.
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Chapter 5

SketchVAE Performance Experiment

In this chapter, we use three datasets to train and evaluate the performance of SketchVAE.

As the entrance of the Music SketchNet, SketchVAE should be proven that it can accurately

represent most music datasets in latent space. It contains two evaluations: (1) the reconstruction

accuracy that determines if the latent vector contains enough information of the original musical

measures, and (2) the approximate data likelihood that determines if the distribution of latent

space accurately reflects the original distribution of the input data.

5.1 Dataset and Baseline

As described in Chapter 4, we use three datasets: the Nottingham Music Database, the

Hymnal Dataset, and the Wikifornia Dataset to train and evaluate SketchVAE. they contain

different genres from folk songs to classical pieces, thus we can evaluate SketchVAE’s stability.

For baselines of VAE-based musical representation models, we compare SketchVAE

with two existing baselines: MeasureVAE [32, 31] and EC2-VAE [41].

MusicVAE [32] is one of the first works to apply a variational auto-encoder [29] to

music. It uses a GRU-based encoder and a hierarchical decoder. The first layer of the decoder is

designed to process the latent variable back to measures. And the second layer of the decoder is

designed to reconstruct the notes from the upstream measures. A series of music measures can

be compressed into one latent vector z for reconstruction and interpolation.
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MeasureVAE [31] adopts MusicVAE’s framework, but focuses on representing isolated

measures and utilizes a hierarchical decoder to handle ticks and beats. Therefore, in this thesis,

we take MeasureVAE as one of our comparisons (i.e. MusicVAE and MeasureVAE are in the

same structure under our comparative context).

EC2-VAE [41], as discussed in Chapter 2, factorizes music measures with separate

vectors representing pitch and rhythm by using a universal encoder, a separate rhythm decoder,

and a universal decoder. The latent variables can then be divided in half between pitch contour

and rhythm. EC2-VAE can perform the same function – factorizing the pitch and rhythm, as

SketchVAE can perform. The difference between both is that EC2-VAE contains one encoder

and two decoders, while SketchVAE contains two encoders and one decoder.

5.2 Evaluation Metric

There are two metrics for evaluating VAE-based musical representation models: the

reconstruction accuracy and the approximate data log-likelihood.

During the training, the target of SketchVAE/MeasureVAE/EC2-VAE is to maximize

the log-likelihood of the training data log p(x). As demonstrated in Chapter 2, the original

log p(x) is intractable to compute for the latent representation model because it is impossible to

marginalize out the latent space to obtain log p(x) = ∑z log p(x,z) [8, 27]. Recalling the equation

in Chapter 2, we devise the Evidence Lower Bound (ELBO) as the approximate log-likelihood

of the training data to make the convergence of VAE model:

ELBO = E[log pθ (x|z)]−KL(qλ (z|x)||p(z))≤ log p(x) (5.1)

Even though ELBO is a tight bound for approximating the data log-likelihood, [8, 27] proposed

a new method to make a tighter bound than ELBO via importance sampling. The key approach

is to sample K times in the latent distribution of VAE and take the average of them as the data
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log-likelihood:

p̂K(x) =
1
K

K

∑
k=1

p(x,zk)

q(zk)
=

1
K

K

∑
k=1

pθ (x|zk)p(zk)

qλ (zk)
(5.2)

Where pθ (x|zk) is the output of VAE’s decoder as probability value, p(zk) is the probability of

the sampled zk in standard normal distribution, qλ (zk) is the latent distribution constructed by

VAE’s encoder, and z1,z2, ...,zk ∼ qλ (zk). It has been proved that p̂K(x) is a tighter bound than

ELBO to approximate the data log-likelihood:

ELBO≤ log p̂K(x)≤ log p(x) (5.3)

In this thesis, we do show the detail mathematical proofs, we just use the negative impor-

tance sampling-based log-likelihood − log p̂K(x) as our evaluation metric to determine if the

distribution of latent space accurately reflects the original distribution of the input data.

5.3 Experiment

In this section, we introduce how we conduct the experiment of SketchVAE and compare

it with two baselines in detail.

For each dataset, we randomly split it into train/validate/test sets by the ratio 60%-20%-

20%. Among three models (SketchVAE, MeasureVAE, and EC2-VAE), we fix the random

seed to make sure the split results are the same. As the result, 620/207/207 are selected

as the train/validation/test sets in the Nottingham dataset; 1034/345/344 songs are selected

as the train/validation/test sets in the Hymnal dataset; and 2680/894/894 are selected as the

train/validation/test sets in the Wikifornia dataset.

For hyper-parameters of all three models, the dimension of latent variable |z| is set to

256, half for the pitch contour, and the other half for the rhythm. We set the learning rate to

1e-4 and use Adam Optimization with β1 = 0.9 and β2 = 0.998. To make the model converge
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Table 5.1. The comparison among three VAE-based musical representation models. -ELBO is
the negative evidence lower bound as the loss function of VAE. -IS is the negative importance
sampling-based approximation of data log-likelihood with 1 and 10 sample times.

Nottingham Reconstruction Acc. -ELBO -IS(k=1) -IS(k=10)
MeasureVAE BA 99.52% 115.82 60.43 59.90
MeasureVAE BE 98.54% 21.79 13.12 12.98

EC2VAE BA 98.90% 112.31 74.86 74.19
EC2VAE BE 97.71% 22.02 12.30 12.21

SketchVAE BA 99.55% 85.00 28.36 28.36
SketchVAE BE 99.46% 37.10 8.96 8.50

Hymnal Reconstruction Acc. -ELBO -IS(k=1) -IS(k=10)
MeasureVAE BA 99.65% 41.64 16.78 16.26
MeasureVAE BE 99.25% 19.11 9.32 9.20

EC2VAE BA 99.15% 42.01 17.46 17.39
EC2VAE BE 98.75% 18.75 9.01 8.96

SketchVAE BA 99.78% 81.79 28.34 27.40
SketchVAE BE 99.70% 32.18 8.23 8.16

Wikifornia Reconstruction Acc. -ELBO -IS(k=1) -IS(k=10)
MeasureVAE BA 99.76% 64.86 11.27 11.09
MeasureVAE BE 99.28% 19.39 6.06 6.04

EC2VAE BA 99.40% 42.70 11.05 11.00
EC2VAE BE 98.97% 20.65 7.04 7.16

SketchVAE BA 99.80% 66.55 25.27 24.65
SketchVAE BE 99.71% 22.99 7.94 6.64

better, we refer [24] to scale between the cross-entropy term and the KL divergence term in the

loss function (i.e. ELBO). Since different models might use different scale factor, we pick each

model under the best setting. The maximum number of the training epochs is 200, where all

models are converged and we save the best model in the validation set and test it in the test set.

Each model contains two best saved models: (1) Best Accuracy (BA) by picking the highest

accuracy in the validation set, and (2) Best ELBO (BE) by picking the lowest -ELBO in the

validation set.

Table 5.1 shows the results of all three models. In the evaluation columns, -ELBO refers

to the negative evidence lower bound as the loss function of variational autoencoder. -IS refers to

the negative importance sampling-based approximation data log-likelihood with 1 and 10 sample
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times. We can see -IS values are all lower than the respective -ELBO value. This proves that the

importance sampling-based approximation is a tighter bound of the original data log-likelihood.

All models in all three datasets can perform a confidence reconstruction accuracy around 99%,

where the SketchVAE slightly beats other two models. In the evaluation of the latent space,

SketchVAE has best -IS values in Nottingham and Hymnal datasets, and has a second better -IS

value in the Wikifornia dataset.

From these results, we can conclude that our SketchVAE can definitely achieve the state

of art in VAE-based musical representation model with around 99% reconstruction accuracy and

well-formed latent distribution in various music datasets. As the first component of the Music

SketchNet, the SketchVAE can store enough information of the original input music data and

pass it through next components for generation.

5.4 Exchange Pitch and Rhythm

Rather than accurately reconstruct the original music measures, SketchVAE can perform a

factorization of pitch and rhythm in the latent space. Since pitch and rhythm cannot be calculated

and verified statistically in the latent space, we create a new music measure by exchanging the

latent space elements of the two music measures, and provide three examples randomly picked

from above three datasets in Figure 5.1, 5.2, 5.3. These examples can further help us verify

whether pitch and rhythm are correctly factorized by SketchVAE.

Formally, given two latent music vectors zA,zB, representing two independent music

measures. From SketchVAE, we can further get the factorized pitch vector and rhythm vector

zp
A,z

r
A,z

p
B,z

r
B. Therefore, we can exchange their pitch and rhythm to construct two new vectors

C = (zr
A,z

p
B) and D = (zr

B,z
p
A), where one measure inherits A’s rhythm pattern but with B’s pitch

contour, and another measure inherits reversely. And we decode C and D back to the music

measure as our produced examples. This operation can be regarded as a rhythm or pitch ”analogy”

from two existing music measures to new music measures.
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A:

C:

D:

B:

Figure 5.1. The exchange example of SketchVAE. A,B are the given original measures. C is the
created measure by choosing the A’s latent rhythm vector and B’s latent pitch vector. C is the
created measure by choosing the B’s latent rhythm vector and A’s latent pitch vector. Notice that
the end bar does not mean the end of the music, it is set to maintain the alignment.

A:

C:

D:

B:

Figure 5.2. The exchange example of SketchVAE. A,B are the given original measures. C is the
created measure by choosing the A’s latent rhythm vector and B’s latent pitch vector. C is the
created measure by choosing the B’s latent rhythm vector and A’s latent pitch vector. Notice that
the end bar does not mean the end of the music, it is set to maintain the alignment.
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A:

C:

D:

B:

Figure 5.3. The exchange example of SketchVAE. A,B are the given original measures. C is the
created measure by choosing the A’s latent rhythm vector and B’s latent pitch vector. C is the
created measure by choosing the B’s latent rhythm vector and A’s latent pitch vector. Notice that
the end bar does not mean the end of the music, it is set to maintain the alignment.

From three examples, all A and B measures in three examples are in different tonalities

(e.g. C Major, Db Major, and Ab Major) and different rhythm patterns (e.g. the position and

number of triplets). In each C measure, we can see it follows the tonality and development

of B measure while having the similar rhythm pattern of A measure. In each D measure, the

result is the opposite. More examples can be constructed by running the code in the link of

Music SketchNet. As a conclusion, we can clearly see that the pitch and rhythm patterns are

separated in the final creation of C and D measures. Both accurate reconstruction and separate

factorization promised by SketchVAE proves that it is a solid structure to handle the input of the

music measures and pass the information through the left components of Music SketchNet.

This chapter, in part, are currently being prepared for submission for publication of the

material. Ke Chen; Taylor Berg-Kirkpatrick; Shlomo Dubnov. The thesis author will be the first

author of this paper.
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Chapter 6

SketchNet Generation Study

In Chapter 5, we conduct a comprehensive experiment on SketchVAE. It shows that it is

a reliable representation model and can be further used in the generation scenario. In this chapter,

we will use the Irish and Scottish Folk Song Dataset to train the entire Music SketchNet. As

described in Chapter 4, the reason we choose this dataset is because it contains more consistent

data in genres (folk tunes), and it has the largest amount of data. Due to time limitations, we

believe that the full network training on this dataset is the most effective.

6.1 Baseline

Similar to the Chapter 5, we first train the SketchVAE with the Irish and Scottish Folk

Song Dataset and compare it with MeasureVAE and EC2-VAE. For SketchNet, we compare our

generation results with Music InpaintNet [31], which has shown better results than the earlier

baseline [22]. Similar to [31]. Further details of these models are shown in Chapter 2. In the Irish

and Scottish Dataset, we select the melodies with a 4/4 time signature. About 16000 melodies

are used for training and 2000 melodies each for validating and testing.
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6.2 SketchVAE Measurements

6.2.1 Reconstruction

For SketchVAE, MeasureVAE and EC2-VAE, the dimension of latent variable |z| is set

to 256, half for the pitch contour, and the other half for the rhythm. We set the learning rate

to 1e-4 and use Adam Optimization with β1 = 0.9 and β2 = 0.998. Three models achieve the

reconstruction accuracy of 98.8%, 98.7%, and 99.0% respectively. We can clearly conclude that

all VAE models are capable of converting melodies to latent variables by achieving the accuracy

around 99%. SketchVAE is capable of encoding/decoding musical materials in SketchNet.

6.3 Generation Performance

6.3.1 Training Results

The SketchNet’s training is separated into stage I and II. In stage I, after training the

SketchVAE, we freeze its parameters and train the SketchInpainter as shown in the right block

of Figure 3.4. In stage II, with the trained SketchVAE and SketchInpainter, we freeze both,

concatenate Sm with the past/future latent variables, and feed them to the SketchConnector for

training.

We compare four models by using 6 measures of past and future contexts to predict 4

measures in the middle (i.e. np = n f = 6, and nm = 4 ). Music InpaintNet [31] is used as the

baseline, along with several variations. Early stopping is used for all systems.

We compute three metrics: loss, pitch accuracy, and rhythm accuracy to evaluate the

model’s performance. The pitch accuracy is calculated by comparing only the pitch tokens

between each generation and the ground truth (whether the model generates the correct pitch in

the correct position). And the rhythm accuracy is calculated by comparing the duration and onset

(regardless of what pitches it generates). The overall accuracy and loss are negatively correlated.

For this part of the experiment, we also use two special test subsets. We compute the
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Table 6.1. The generation performance of different models in Irish and Scottish monophonic
music dataset. The InpaintRNN is the generative network in Music InpaintNet.

Irish-Test Irish-Test-R Irish-Test-NR

Model loss pAcc rAcc loss pAcc rAcc loss pAcc rAcc

MI. 0.662 0.511 0.972 0.312 0.636 0.975 0.997 0.354 0.959

SI. 0.714 0.510 0.975 0.473 0.619 0.981 1.075 0.374 0.964

SVSI. 0.693 0.552 0.985 0.295 0.692 0.991 1.002 0.389 0.977

SN. 0.516 0.651 0.985 0.206 0.799 0.991 0.783 0.461 0.977

similarities between the past and future contexts of each song in the Irish test set, pick the top

10% similar pairs (past and future contexts are almost the same) and bottom 10% pairs (almost

different), and create the Irish-Test-R (repetition) and Irish-Test-NR (non-repetition) subsets.

From Table 6.1, four models are listed as comparisons: (1) MI: Music InpaintingNet

[31], (2) SI: SketchVAE + InpaintNet ablation model, (3) SVSI: SketchVAE + SketchInpainter

without SketchConnector, and (4) SN: the whole Music SketchNet. We can see that SketchNet

beats all other models for all test sets. The performance improved more for pitch then for rhythm.

The accuracy is almost the same between the 1st and 2nd model. Accuracy is slightly better if we

use SketchInpainter to treat rhythm and pitch independently during generation. Lastly, with the

power of transformer encoder and random unmasking process done in SketchConnector, we can

achieve the best performance by using SketchNet (bottom row in Table 6.1). We further follow

[6] to use the Bootstrap significance test to verify the difference between each pair’s overall

accuracy for models in the whole Irish-Test set (Four models, i.e. six pairs in total). The sample

time is set to 10000. After calculation, all p-values except the fist and second model pair (p-value

= 0.402) are less than 0.05, which proves that SketchNet is different from the left three models.

In the repetition test subsets, the loss of Music InpaintNet is 0.312, which is lower enough

to capture repetitions in the musical context and fill in the missing part by copying. In most cases,

copying is the correct behaviour because the original melody has repetitive pattern structures.

The loss is a measurement to evaluate if the model can learn the repetitive pattern and copy
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Table 6.2. Results of the subjective listening test.

Model Complexity↑ Structure↑ Musicality↑

Original 3.22 3.47 3.56

InpaintNet 2.98 3.01 3.09

SketchNet 3.04 3.29 3.26

mechanism from the data. the SketchNet slightly outperforms InpaintNet.

6.3.2 Subjective Listening Test

However, the more interesting result is the generation with non-repetition subset. In this

case, models cannot merely copy because original melodies do not repeat its content. We see

higher losses in all models in this subset compared to the repetition subset. Intuitively, it means

that repetitive patterns are essential to the reconstruction task, not necessarily the expressivity of

the generated output would be less.

To further evaluate the proposed SketchNet, we conduct an online subjective listening

test to let subjects judge the generated melodies from the non-repetition subset. Each subject

will listen to three 32-second piano-rendered melodies: the original, the Music InpaintNet’s

generation, and the SketchNet’s generation. Songs are randomly picked from the Irish-Test-NR

set. The beginning and ending (past & future) are the same for the three melodies. Since the

subjective feeling of music is complicated to quantify, we chose three criteria:

• The number of notes (complexity).

• The repetitiveness between musical structures (structure).

• The degree of harmony of the music (overall musicality).

In this way, subjects with different levels of music skills can all give reasonable answers.

Before rating the songs, subjects will see three criteria descriptions as we introduced

below. The rating is ranged from 1.0 to 5.0 with a 0.5 step. We collected 318 surveyed results
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Past	Context Future	ContextGeneration

{Ab5,	Db6,	Eb6,	Gb6} {C6,	Eb6,	Db6,	F6,	Db6}  {F6,	Gb6,	Ab6,	Ab6,	F6} {Db6,	F6,	Ab6,	Bb6,	Db6}

{Ab5,	Db6,	Eb6,	Gb6}

Original

Control
Pitch

Control
Rhythm

Control
Both

No	Sketch

Figure 6.1. An example of sketch generation. From top to bottom: original,
pitch/rhythm/mixture control. The blue pitch texts denote pitch controls, and the pink seg-
ments denote rhythm controls.

from 106 subjects (each subject listens to three groups, nine melodies in total). The average

rating of each criteria for all models are shown in Table 6.2. The subjective evaluations of all

three criteria in SketchNet are better for those of Music InpaintNet. Similar to section 3.3.1, we

also conduct a pairwise significance test via Bootstrap in three criteria. All p-values except the

¡complexity: InpaintNet, SketchNet¿ (p-value = 0.364) are less than 0.05. It proves that three

models (including original songs) are significantly different in structure and overall musicality

(subjective feeling to a person). As for the complexity, we believe that the results generated by

the two models are similar in terms of the richness of notes, and our model does not significantly

increase the number of notes generated.

6.4 Sketch Scenario Usage

The contribution of Music SketchNet is not only shown in the performance of the

generation in section 3.3, but can also be shown in the interactive scenario where users can

control the generated output by specifying the rhythm or pitch contour in each measure.

Figure 6.1 shows an example of a non-repetition subset melody, where the first and last

two measures are given, and the middle parts is generated. The first track is the original melody,

the second track is generated with the pitch contour control, the third track is generated with the

rhythm control, and the fourth track is controlled with both pitch and rhythm. We can see that

each generated melody follows the control from users and develops music phrases accordingly
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Table 6.3. The accuracy of the virtual control experiment.

Control Info. Rhythm Pitch
Pitch Acc. 0.189 0.881

Rhythm Acc. 0.973 0.848

in the missing part. Moreover, each measure is in line with the past and future measures even in

the case of scale shift.

We also provide a ”virtual control experiment” to statistically show that users’ control

did influence the model’s generation process. We randomly collect 3000 sample pairs (A, B)

from the Irish-Test set. And we use the pitch/rhythm of Sample B to be the sketch information

in the same missing position of Sample A. Then we let the model make the generation. We

then compute the pitch/rhythm accuracy in the missing position between the generation and

Song B. From 6.3 we can see if we sketch song B’s rhythm into the model, the generation will

follow the rhythm with 97.3% accuracy but has different (18.9%) pitches. However, when we

sketch pitches, the pitches in the generation will be highly (88.1%) in line with the sketching.

This proves that the user’s control has a relatively high guiding effect on the result of the model

generated at the specified position.

This chapter contains some materials (texts, tables, and figures) from a published con-

ference paper: Ke Chen, Cheng-i Wang, Taylor Berg-Kirkpatrick and Shlomo Dubnov, Music

SketchNet: Controllable Music Generation via Factorized Representations of Pitch and Rhythm,

in Proceedings of the 21th International Society for Music Information Retrieval Conference,

ISMIR 2020. The thesis author was the first author of this paper.
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Chapter 7

Conclusion

In this thesis, we propose a new framework to explore decoupling latent variables in

music generation. We further convert this decoupling into controllable parameters that can be

specified by the user. The proposed Music SketchNet achieves the best results in the objective and

subjective evaluations. Practically, we show the framework’s application for the music sketching

scenario where users can control the pitch contour and/or rhythm of the generated results. With

this link1, users can train, evaluate and use the Music SketchNet on any monophonic music

dataset.

There are several possible extensions for this work. Music elements other than pitch and

rhythm can be applied into the music sketching scenario by the latent variable decoupling. Also,

how to represent a polyphonic music piece in the latent space is another pressing issue. Both are

future works that can generalize this model to more applied scenarios.

Due to the number of pages and size limitation, we provide more and longer Music

SketchNet samples with MIDI and audio formats in the below link2. And everyone could

implement this structure to train with their own datasets by the code in the Github Repo.

In the future, we look forward to making a online website interface of Music SketchNet,

where everyone could sketch and control the music by giving their rhythm and pitch specifications

on the existing previous and future musical contexts.

1https://github.com/RetroCirce/Music-SketchNet.
2https://drive.google.com/drive/folders/1CI Tts YUyHCjnunqyIHVrA-IasCgUq?usp=sharing

37

https://github.com/RetroCirce/Music-SketchNet
https://drive.google.com/drive/folders/1CI__Tts_YUyHCjnunqyIHVrA-IasCgUq?usp=sharing


Bibliography

[1] James Allwright. Abc version of the nottingham music database. http://abc.sourceforge.
net/NMD, 2003.

[2] Anonymous. Hymal dataset. https://www.hymnal.net, 2021.

[3] Anonymous. Wikifornia dataset. http://www.wikifonia.org, 2021.

[4] Connelly Barnes, Eli Shechtman, Adam Finkelstein, and Dan B. Goldman. Patchmatch: a
randomized correspondence algorithm for structural image editing. ACM Trans. Graph.,
28(3):24, 2009.

[5] Samy Bengio, Oriol Vinyals, Navdeep Jaitly, and Noam Shazeer. Scheduled sampling for
sequence prediction with recurrent neural networks. In Advances in Neural Information
Processing Systems 28: Annual Conference on Neural Information Processing Systems,
pages 1171–1179, Montreal, Quebec, Canada, 2015.

[6] Taylor Berg-Kirkpatrick, David Burkett, and Dan Klein. An empirical investigation of
statistical significance in NLP. In Proceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language Learning,
EMNLP-CoNLL, pages 995–1005. ACL, 2012.
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