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Canonical Forms of the Equation of Transfer 

Rudolph W. Preisendorfer 

Scripps Institution of Oceanography, University of California 

La Jolla, California 

1, Introduction. The conventional form of the equation of 

transfer in radiative transfer theory is tailored principally to fit 

the needs of theoretical investigations. The quantities appearing in 

the equation, while readily measurable, do not allow the equation to 

express their interconnections in a way which is helpful to the 

intuition of the experimenter. The purpose of this note is to pre­

sent a reformulation of the equation of transfer which appears to be 

of help in the task of collating and understanding the experimentally 

obtained properties of the optical medium. Quite interestingly, this 

reformulation appears to hold the key to the solution of one of the 

long-standing theoretical problems of this field, namely the problem 

of the existence and form of the asymptotic radiance distribution in 

an arbitrary medium with arbitrary external lighting conditions. The 

solution of this problem, in turn, supplies a raft of rules and laws 

about the behaviour of the light field in optically deep media which 

promise to be of additional help to the experimenter in understanding 

his data, and in applying them to practical problems. In this note, 

we will be concerned primarily with the motivation for the reformu­

lation of the transfer equation, and with the details of the deriva-

* This paper represents research which has been supported by the Bureau of 
Ships, U. S. Navy. 
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tion of the equation. The discussion will be limited to some immediate 

practical examples of its use. The complete discussion of the solution 

of the asymptotic radiance distribution problem is reserved for a 

subsequent note, 

2. Motivation. The motivation for the reformulation stems 

primarily from the experimental studies of the light field in natural 

hydrosols such as oceans, lakes, and harbors. In these studies the 

experimenter wants to find out as much as possible about the following 

three topics: 

(i) The absolute amount of light in a given direction at a 

given depth, 

(ii) The directional distribution of the light at a given depth, 

i.e., the relative amounts in each direction}', 

(iii) The depth below which the directional distribution of the 

light has become essentially fixed,and hence below 

which the amount of the light falls off at an essen­

tially fixed exponential rate. 

The most detailed information about these topics is obtained by 

means of the radiometric quantity called radiance (or specific intensity) 

and denoted by N(Z. 0><£) . This gives the number of watts of 

radiant flux crossing a unit area at depth z in a unit solid angle 

about the direction (B,^) of the area's normal. Radiance is mea­

sured by means of a Gershun tube. 
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In the absence of detailed knowledge of the values HC2,0,<t>) , 

important insight into problem (i) is obtained by measuring the down and 

upwelling irradiances H(2,-) , and H(2,-h) respectively, at 

each depth z. These quantities are measured by flat lambert collecting 

surfaces oriented horizontally. For example, Ht?)"") represents the 

amount of radiant flux flowing downward in all directions across a unit 

area at depth j? . Countless measurements in the past have shown a 

consistent tendency for both irradiances H(?>-) and H(2>-0 to 

behave very nearly in an exponential manner with depth, so that, ideally, 

|< ( * i - ) — j_j // + «) -—•— =* constant function • 

Observe that there is a K-function for each stream. These are generally 

different. Their difference is observed experimentally and understood 

theoretically. Furthermore, careful studies uncover inevitable departures 

from this ideal, that is to say, each K-function is not a constant 

function over all depths. These departures, far from being annoying 

irregularities, more than not supply valuable and unexpected insight 

into the local structure of the light field in real optical media. This 

is illustrated, for example, in reference 1. Some theoretical connec­

tions between these K-functions may be found in reference 2. 

For a full solution of problem (ii), detailed measurements of the 

radiance distributions are unavoidable. However, in the absence of 
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knowledge of the values N(2>0><£) , there exists excellent sub-
2 

stitutes in the form of the so-called distribution functions: 

where \\ (2,1) are the scalar irradiances induced by the upwelling 

and downwelling streams of radiation at depth ? . For example, h (£,-) 

is measured by a spherical lambert collecting surface suitably shielded 

from the upwelling stream of flux. h(z,-) gives the number of watts 

incident per unit area on the surface of a small sphere. The radiation 

that gives rise to this incident flux comes from all directions of the 

upper hemisphere. h(2,-) measures the downwelling scalar irradiance. 

A similar set of statements applies to h(Z,+) which represents 

the upwelling scalar irradiance. The utility of the distribution 

functions stems from the following fact: the scalar irradiances are 

insensitive to the directional distribution of the flux; they thereby 

serve to give the absolute amount of flux converging on a point from 

their respective hemispheres. On the other hand, the irradiances 

are measurably sensitive to the directional distribution of the incident 

flux. Thus, for example, if a flashlight were shone down onto a flat 

lambert collecting surface from various directions but always from a 

fixed distance, the irradiance HC€»-) would exhibit an essen­

tially cosine response to this variation in the directional distribution 

of the incident flux. On the other hand, the quantity lo(H,-) > 

* 
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were the flat collector replaced by the appropriate spherical collector, 

would remain the same for all positions of the searchlight. The quotient 

of these two readings thus serves to eliminate the unwanted absolute 

magnitude aspects of the light field and retains only the desired rela­

tive magnitudes. The reason for dividing a little h by a big H and not 

the other way around simply stems from the theoretical considerations in 

which the present quotient most naturally arises. To give an indication 

of how the D-values reflect the directional character of the flux dis­

tribution,we observe that if the radiance distribution were uniform 

over an hemisphere, then D would equal 2. In the other extreme, where 

the flux is collimated and incident at an angle Q with respect to the 

normal to the flat collector, then D would equal the secant of 0. In 

real situations where the directional character could be anything 

between these extremes, the D-functions take correspondingly intermediate 

values. 

With the advent of more sophisticated experimental techniques, it 

has become possible, in analogy to the irradiance case, to determine the 

quantities: 

-I olUCZ,B,4) 

over great ranges of depths and all directions. No confusion should 

result from the continued use of the letter K, for JC(Z,0,.£) "i 1 1 

always necessarily exhibit three variables, while those for irradiance 

will always necessarily have only one variable, namely depth. Retaining 
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the letter K serves to point up their inherent similarities. The function 

K(* i©><^) characterizes the depth rate of change of the radiance 

values in the fixed direction (6)0) 

The preceding discussion has served to draw out the following set 

of quantities which are of principal importance in experimental studies 

of the light field in natural hydrosols: D(2>-) > D(2j + ) > 

KCl,-) > K(£,+l > and
 K ( Z I 8 J < £ ) . The main radiometric con­

cepts associated with these quantities are H(H,-] , \MZ>+) , 

^(Z,-) , h(2,+) , and tvJ(2,0,<^ . We now go on to show how 

these various constructs can be incorporated into the equation of 

transfer. We will begin with the simplest but perhaps the most impor­

tant of the reformulations, namely the canonical equation of transfer 

for radiance. While the momentum of the mathematical discussion is still 

high, we will allow it to carry us through to the generalized canonical 

form. The final section will pause for a survey of what comes into 

view after the smoke of the derivations has cleared away. 

3. The Canonical Form of the Transfer Equation. The general form 

of the equation of transfer for an arbitrary optical medium is: 

in which 



SIO Ref: 58-47 ~ 7 -

defines the path function N , and in which Nn is the emission 

function. IEI is the collection of all unit vectors (the unit sphere) 

We will at first limit ourselves to emission-free (N^s 0) plane-

parallel media, these being the conventional models for the geometric 

settings of natural hydrosols. The equation then may be written as: 

-case dW(Z|6^' ̂  -*JZ)N(£,M) + I V H , A » 

We now use the definition of K (2,9,^0 , insert this into the above 

equation of transfer, and perform a simple rearrangement. The result 

is the desired canonical transfer equation: 

je*(*i + cose \<(Z>Q><k)\ 

4. The General Canonical Form. It is possible to subsume all 

the practical radiometric concepts discussed above under the notion of 

the generalized irradiance function defined by: 

where 

H c*,:=.}s \ I N(*,5) dSL(D 
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HCX.C^o) is the quantity measured by a general Gershun tube whose 

photosensitive plate is exposed to the radiometric environment over the 

arbitrary but fixed subset of directions ~=-Q of the unit sphere 1=1 

(Figure 1 (b)). The measurement takes place at point x_ in the medium 

and the unit inward normal n to the plate gives its orientation in space. 

The associated generalized scalar irradiance is defined by: 

\>LZ,S:.\ = J_M(*.I) clJUj), 
— 6 

and is measured in practice by a spherical collector exposed to the 

same subset of directions ^^o of IH1 . I n analogy to the con­

ventional definition of the distribution functions, we have the general­

ized distribution function 

D<*.a,s-0)« -rr~—rrr-
H (25,0, — o) 

It follows, for example, that the conventional irradiances and radiances 

are defined by 

Ht*+)~ W( * 2,3:+) , 

where (Figure 1 (c)) 3 1 + i s the hemisphere of d i rec t ions defined by 

~=~ = j l : f . n 2 f l 1 , and n i s set equal to k , 

the uni t upward normal. 



SIO Ref. 58-47 - 9 -

Furthermore (Figure 1 (a)) 

N(£,£) = N(*,J) « lim 
37n_+ fs = e X I ( —o) 
—~ 0 iw y 

The experimentally useful functions (<(», jr ) and {< (» ; B,<f ) are 

evidentally special cases of the general function K(* )H}'SEL0) defined 

by the following logarithmic divergence relation: 

Starting with the general equation of transfer and integrating 

each side over the arbitrary but fixed subset ^=T0 of ZEZ , we have: 

V ' H ( £ S , 2 T 0 1 = -oCtiO/Xjj,^) •+ [_N*(2,f)cl.Q(J). 

—o 

Dividing each side by H(2 f ,£ , ~^o) and employing the preceding de f i ­

n i t i o n s , the resu l t i s 

The f ina l arrangement y ie lds 

D(5,£,-=-„) H(5T1Z
,,~0

>) 

© a * ) -
0 ( 2 , 5 , ^ o ) 
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which is the desired general form. 

5# Observations and Notes. We summarize below some of the uses 

to which the canonical form of the transfer equation has been put 

by the research staff at the Scripps Institution of Oceanography's 

Visibility Laboratory. 

(i) An experimental determination of the path function N^ 

has been made without explicit knowledge of the volume 

scattering function <T which appears in the equation 

of transfer. These determinations were made via the 

canonical form of the transfer equation using tabula­

tions of N, oi , and K obtained from experimental 

3 
data. 

(ii) The experimental determination of the volume scattering 

function has been made from knowledge of the radiance 

distributions only. The customary use of special 

instrumentation, namely nephelometers (<T -meters), was., 

sidestepped, 

(iii) The canonical form of the transfer equation provides a 

convenient and natural representation of the size and 

shape of the radiance distributions N(Z}' }-) at any 

depth in terms of N^, K, and U . For example, by 

setting 0 = TT/2. > w e obtain H(l,Trte,j) =• N^Li^/e, <̂ )/<*(Z) 

N<> (Z,T^, <t> ) , the horizontal equilibrium 

radiance. For all other directions of sight, the radiance 
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may be interpreted as the equilibrium radiance NJo(£,0,4>) 

in the direction (9, $0 modified by the elliptical factor 

[n-cose K'*'?'^ ] _l for that direction. 

We now have a conceptually convenient criterion for the 

existence of the asymptotic radiance distribution by 

means of the function K ( • , ©, t). For example, 

Figure 2 shows a plot of K ( • , 0, <j>) for various choices 

of directions (0, <f>). The depths considered range from 

z = 0 at the surface to z = 7 2 meters. The value of the 
o 

volume attenuation function was found to be constant and 

of magnitude QU. = 0.402/meter. Hence the optical depth 

to which these measurements apply is ex1 z = 28.5,approxi­

mately. The graphs show that at about an optical depth 

of 30, the function K(z, • , • ) is relatively constant 

over the unit sphere. This means that the radiance 

values in all directions are decreasing at about the same 

rate. In other words, the shape of the radiance distri­

bution appears to be relatively constant at this and 

greater depths. Thus we may say that the asymptotic 

radiance distribution for this medium appears to have 

been reached at a depth of 72 meters, or about 28.5 

optical depths. The above information was derived from 

J. E. Tyler's clear sunny sky Lake Pend Oreille measure­

ments. The associated wavelength for all quantities 

is 478 mu. 
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(v) The problem of the existence of an asymptotic radiance 

distribution can now be stated in terms of the function 

K( * , * , ' ) > Furthermore, the shape of the asymptotic 

radiance distribution, when such a distribution exists, 

is conveniently formulated by means of the canonical 

equation. When this is done, we obtain a two-dimensional 

Fredholm integral equation in which the Fredholm deter­

minant and its minors are constructed from the constants 

c^ , K, and the arbitrary function 0~ . Details of 

solution are reserved for a later note. In the case of 

isotropic scattering, the canonical form shows directly 

that an asymptotic radiance distribution, if it exists, 

must be of a very special shape, namely that of a pro-
spheroid 

late/with vertical axis and eccentricity K/od . In 

the case of non-isotropic scattering, the form of the 

asymptotic radiance distribution is governed accordingly 

by the shape of Q~ • F o r media that exhibit marked 

forward scattering, the asymptotic distribution is more 

narrow in the upper lobe and less narrow in the lower 

lobe than the prolate ellipsoid (the upper lobe refers 

to downwelling flux, the lower lobe to upwelling flux). 

The prolate ellipsoid may conveniently serve as a stan­

dard ellipsoid to which all other measurements or 

solutions for the asymptotic radiance distribution in a 

particular medium may be referred for pomparison. 



SIO Ref: 58-47 - 13 -

BIBLIOGRAPHY 

1, E. M. Kampa, "A Discrepancy Between Calculation and Measurement 

of Submarine Illumination," Proc. Nat. Acad. Sci., 4JL, 938-939 (1955). 

2, R. W. Preisendorfer, Directly Observable Quantities for Light Fields 

in Natural Hydrosols. Visibility Laboratory Report, SIO Reference 

58-46, Scripps Institution of Oceanography, 1 June 1958. 

31, R. W. Preisendorfer, The K-Method of Determining the Path Function, 

Visibility Laboratory Report, SIO Reference 58-39, Scripps Institu­

tion of Oceanography, 15 May 1958. 

44 R. W. Preisendorfer, A New Method for the Determination of the Volume 

Scattering Function. Visibility Laboratory Report, Index Number 

NS 714-100, Contract NObs-50274, Scripps Institution of Oceanography, 

March, 1956. 



+ X 

Rudolph W. Preisendorfer 

Figure 1 



0 . 2 0 0 

UJ 

UJ 

q 
CD 

M 

0.150 -

0.110 

Rudolph W0 Preisendorfer 
Figure 2 

PLOTS OF K < Z , 0 , O ) VS D E P T H Z 

30 40 50 

D E P T H Z , M E T E R S 

60 70 




