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Brain aging rejuvenation factors in adults with 
genetic and sporadic neurodegenerative disease

Kaitlin B. Casaletto,1 Rowan Saloner,1 John Kornak,2 Adam M. Staffaroni,1 Saul Villeda,3

Emily Paolillo,1 Anna M. VandeBunte,1 Claire J. Cadwallader,1 Argentina Lario Lago,1
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Joseph C. Masdeu,7 Alexander Pantelyat,8 Maria Carmela Tartaglia,9 Andrea Bozoki,10

Peter S. Pressman,11 Rosa Rademakers,12 Walter Kremers,13 Ryan Darby,14 Kyan Younes,15

Belen Pascual,7 Nupur Ghoshal,16 Maria Lapid,17 Ian R. A. Mackenzie,18 Jingyao Li,19

Ging-Yuek Robin Hsiung,20 Jacob N. Hall,21 Maya V. Yutsis,22 Irene Litvan,23

Victor W. Henderson,24 Rajeev Sivasankaran,19 Katie Worringer,19

Kimiko Domoto-Reilly,25 Allison Synder,26 Joseph Loureiro,19 Joel H. Kramer,1

Hilary Heuer,27 Leah K. Forsberg,5 Howard J. Rosen,1 Bradley Boeve,5 Julio C. Rojas1

and Adam L. Boxer1; on behalf of the ALLFTD Consortium

See Ng and Zetterberg (https://doi.org/10.1093/braincomms/fcae467) for a scientific commentary on this article.

The largest risk factor for dementia is age. Heterochronic blood exchange studies have uncovered age-related blood factors that dem
onstrate ‘pro-aging’ or ‘pro-youthful’ effects on the mouse brain. The clinical relevance and combined effects of these factors for hu
mans is unclear. We examined five previously identified brain rejuvenation factors in cerebrospinal fluid of adults with autosomal 
dominant forms of frontotemporal dementia and sporadic Alzheimer’s disease. Our frontotemporal dementia cohort included 100 
observationally followed adults carrying autosomal dominant frontotemporal dementia mutations (Mage = 49.6; 50% female; 
43% C9orf72, 24% GRN, 33% MAPT) and 62 non-carriers (Mage = 52.6; 45% female) with cerebrospinal fluid analysed on 
Somascan, and longitudinal (Mvisits = 3 years, range 1–7 years) neuropsychological and functional assessments and plasma neurofila
ment light chain. Our Alzheimer’s disease cohort included 35 adults with sporadic Alzheimer’s disease (Mage = 69.4; 60% female) and 
56 controls (Mage = 68.8, 50% female) who completed the same cerebrospinal fluid and clinical outcome measures cross-sectionally. 
Levels of C-C motif chemokine ligand 11, C-C motif chemokine ligand 2, beta-2-micorglobulin, bone gamma-carboxyglutamate pro
tein (aka Osteocalcin) and colony stimulating factor 2 in cerebrospinal fluid were linearly combined into a composite score, with high
er values reflecting ‘pro-youthful’ levels. In genetic frontotemporal dementia, higher baseline cerebrospinal fluid rejuvenation proteins 
predicted slower decline across cognitive, functional, and neurofilament light chain trajectories; estimates were similar across geno
types. In transdiagnostic analyses, higher cerebrospinal fluid rejuvenation proteins associated with better functional, cognitive, and 
neurofilament light chain outcomes in adults with sporadic Alzheimer’s disease. Proteins with pre-clinical evidence for brain rejuven
ation show translational clinical relevance in adults with Alzheimer’s disease and related dementias and warrant further investigation.
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Introduction
Age is the largest risk factor for dementia, suggesting that 
fundamental aging biology may contribute to the patho
physiology of neurodegenerative diseases.1,2 The prevalence 
of dementia exponentially increases more than 6-fold with 
age, from 5% at ages 65–75 to >30% at ages 85 and older.3

Though proteinopathy specific drug therapies are emerging, 
multiple copathologies represent the vast majority of demen
tia cases with >75% of community-dwelling older adults 
showing at least two neuropathologies at autopsy.4,5 Even 
among dementias with earlier age at onset, copathologies 
contribute to disease onset and symptomatology in both 
frontotemporal dementia (FTD)6,7 and Alzheimer’s disease.8

Disentangling the shared neurobiological mechanisms of 
aging and neurodegenerative disease may represent a win
dow into understanding transdiagnostic risk and identifying 
treatment and prevention targets for Alzheimer’s disease and 
Alzheimer’s disease-related dementias (ADRD).

Heterochronic blood experiments are the exchange of 
blood between differently aged animals to evaluate how age- 
dependent peripheral and circulating factors impact organ 
systems. These elegant experiments demonstrate that com
mon aging factors can be isolated from the systemic milieu 
and causally shape the health of the aging brain.9-11 For in
stance, aged animals exposed to young animal plasma show 
‘pro-youthful’ effects on brain (e.g. increased neurogenesis) 
and behavioural outcomes, while young animals exposed to 
aged animal plasma show ‘pro-aging’ effects on brain (e.g. de
creased neurogenesis) and behavioural outcomes. To date, 
over a dozen individual blood factors have been identified 
from heterochronic blood experiments and mechanistically 
probed (e.g. via systemic injection, genetic knockout) in 
aged or young mice to recapitulate the pro-youthful or 
pro-aging effects on brain shown by heterochronic blood ex
change, respectively.9 For instance, in a seminal study by 
Villeda and colleagues, young mice exposed to the systemic 
environment of aged mice either via conjoined circulatory sys
tems or direct plasma exchange showed decreased synaptic 
plasticity and impaired fear conditioning and spatial learning 
and memory; in these experiments, higher plasma C-C motif 
chemokine ligand 11 (CCL11) associated with reduced neuro
genesis and subsequent peripheral administration of CCL11 
in vivo in young mice decreased adult neurogenesis and learn
ing/memory performances(ref). These data suggest that indi
vidual circulating factors modulate brain aging trajectories; 
yet, human studies have yet to recapitulate these benefits. 
The major benefits of identifying brain biomarker and treat
ment targets from the systemic milieu (versus cerebrospinal 
fluid (CSF) targets) include circumventing issues related to 
blood–brain-barrier (BBB) access and increased patient scal
ability. Though several rejuvenation factors have begun to 
be measured in human samples,10,12-16 many have yet to be 
systematically tested for clinical relevance. Further, though 
heterochronic blood experiments are elegantly designed to 
identify and rigorously test causality of individual factors 
for brain aging, these factors have been examined in isolation 

to date, mainly in mouse models. Emerging human data sug
gest aging factors may interact to contribute to neurodegen
erative risk.16,17 Given the complexity of the biology 
underlying brain aging and dementia risk, the simultaneous 
modulation of multiple targets may prove to be a more mech
anistically sound and effective approach towards dementia 
prevention. Therefore, the next critical step to move promis
ing targets identified from pre-clinical animal models into clin
ical trials is to evaluate their relevance more comprehensively 
in humans.

We cross-referenced the heterochronic blood experiment 
literature for targets that have been mechanistically shown 
to modulate brain aging9 and were quantified on the 
SomaScan assay.18 Blood is an optimal matrix to screen for 
targets with therapeutic potential for brain health.19

However, blood factors are influenced by many organ sys
tems and may not directly reflect brain-related processes. 
Therefore, to more closely estimate how potential targets 
functioned in the context of the human central nervous sys
tem, we assayed CSF. To support biological plausibility for 
the heterochronic blood targets in CSF, we focused only on 
targets that may cross the BBB based on in vivo animal model 
data.20-24 We identified five proteins that met these criteria. 
Three ‘pro-aging’ factors: CC motif chemokine 11 
(CCL11, aka eotaxin-1), CC motif chemokine 2 (CCL2, 
aka MCP-1), beta-2 microglobulin (B2 M) and two 
‘pro-youthful’ factors: colony stimulating factor-2 (CSF2) 
and osteocalcin (BGLAP). Apart from BGLAP, which is pri
marily secreted by osteoblasts, all of the identified factors are 
directly synthesized by immune cells (e.g. monocytes/macro
phages, T and B cells), as well as endothelial and epithelial 
cells and fibroblasts (i.e. CSF2, CCL11 and CCL2). Our 
goals were to (i) determine the translational relevance of 
these factors for clinical outcomes in human disease and 
(ii) test their combined (versus isolated) effects. To do so, 
we included a longitudinal discovery cohort of adults carry
ing pathogenic mutations for autosomal dominant FTD and 
non-carrier controls, and a cross-sectional transdiagnostic 
validation cohort of adults with sporadic Alzheimer’s disease 
and control participants. We examined how CSF levels of the 
five ‘rejuvenation proteins’ (combined and in isolation) asso
ciated with distinct clinical outcomes—objective cognitive 
performances, caregiver-rated functional decline, and fluid 
biomarker derived neurodegeneration (neurofilament light 
chain levels, NfL) in each cohort. Our data support the clin
ical relevance of mechanistically identified brain aging pro
teins across Alzheimer’s disease/ADRDs and underscore 
the utility of future work pursuing these targets, particularly 
exploring combination approaches for dementia prevention.

Materials and methods
Participant characteristics
Demographic and clinical data for both cohorts are pre
sented in Table 1.
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FTD discovery cohort
Participants in the discovery cohort were drawn from the 
Advancing Research and Treatment for Frontotemporal 
Lobar Degeneration (ARTFL) and Longitudinal Evaluation 
of Familial Frontotemporal Dementia (LEFFTDS) Longitu
dinal FTD study (ALLFTD, ClinicalTrials.gov, NCT0436 
3684) based in the United States and Canada. Participants in
cluded individuals carrying one of the three most common 
FTD pathogenic mutations (n = 119 total: 37 MAPT, 33 
GRN, 49 C9orf72) and healthy control participants who 
did not carry a pathogenic mutation (n = 78) who completed 
lumbar puncture and CSF analysed on the SomaScan assay.18

Approximately half (n = 52) of pathogenic mutation carriers 
were asymptomatic at baseline (Global CDR® plus National 
Alzheimer’s Coordinating Center (NACC) FTLD = 0). 
ALLFTD is an ongoing longitudinal study with approximate
ly annual visits. Participants completed a baseline visit and 
averaged 3.3 annual evaluations (total range 1–7 visits) during 
which comprehensive neuropsychological testing (baseline 
n = 184), caregiver-rated functional evaluations (baseline 
n = 112) and blood draws (baseline n = 132) with plasma 
analysed for NfL were completed. All genetic testing was 
completed in the same laboratory at the University of Califor
nia, Los Angeles using standardized methods previously 
described.25,26

Alzheimer’s disease replication cohort
To test the transdiagnostic relevance of the identified reju
venation factors, a cohort of 91 participants (35 
Alzheimer’s disease and 56 clinically normal older adults) 
who completed lumbar puncture with CSF analysed on the 
SomaScan assay (version 4.1, 7k proteins)27 were selected 
from the Stanford University Alzheimer’s Disease Research 
Center (ADRC). All participants completed the same clinical 
outcomes as the discovery cohort, including cognitive test
ing, caregiver-based functional assessment, and CSF NfL 
quantification. Diagnostic classification was based on clinic
al research consensus criteria.28 Participant evaluations were 
cross-sectional in the replication cohort.

Participants in each cohort provided written informed 
consents and the study was approved by the local 
Institutional Review Boards.

CSF rejuvenation protein 
quantification
Lumbar punctures were completed by a board-certified neur
ologist with CSF processed and stored following standard 
procedures.17 CSF was analysed on Somascan (SomaLogic, 
Inc.) using a proprietary version of the SomaScan proteomics 
platform (SomaLogic, Boulder, CO) that captured 4138 un
ique proteins for ALLFTD subjects or the 4.1 version platform 
that captured ∼7000 unique proteins for Stanford ADRC sub
jects.18,27 SomaLogic is a CLIA accredited laboratory. The 
Somascan platform uses aptamer technology (slow off-rate 
modified aptamer reagents, Somamers) to transform a protein 

signal into a nucleotide signal that can be quantified using 
relative florescent unit, which were normalized to scale. 
Somascan demonstrates high-precision detection (median co
efficient of variance 5%) of even low abundance proteins (me
dian 1 pM) with a large dynamic range (100 fM—1 mM).

NfL quantification
NfL was quantified in plasma for ALLFTD and in CSF for 
Stanford ADRC participants. For both matrices, NfL con
centrations were quantified in duplicate using the ultrasensi
tive HDX analyser by single molecule array (Simoa) 
technology (Quanterix, Billerica, MA) by investigators 
blinded to clinical group allocation.29 Samples with coeffi
cients of variance >20% were excluded from analyses.

Neuropsychological measures
Both the ALLFTD and Stanford ADRC participants com
pleted a comprehensive neuropsychological battery, cover
ing episodic memory, executive functions and language 
skills.30,31 We created sample-based z-scores on each indi
vidual cognitive measure, which were then averaged into 
domain-based composite scores. Episodic memory, execu
tive functions and language domain composite scores were 
then averaged together to create a global cognitive perform
ance composite. Global cognitive performance was exam
ined as a primary clinical outcome of interest.

Functional decline: clinical dementia 
rating scale
For both cohorts, informant-rated level of functional decline 
was measured via structured interview on the traditional 
clinical dementia rating scale (CDR®) (Stanford ADRC par
ticipants) or a validated, modified version of the CDR 
(CDR®+NACC FTLD) that is more appropriate for use in 
FTD spectrum patients (ALLFTD participants).32

In the traditional CDR® completed by Stanford partici
pants, six domains of functional impairment (memory, 
orientation, judgement and problem solving, community af
fairs, home and hobbies and personal care) are rated on a 0 
(absent) to 5 (severe) point scale. Higher scores indicate 
greater level of functional severity.

ALLFTD participants completed the Clinical Dementia 
Rating Instrument PLUS NACC Behaviour and Language 
Domains (CDR® plus NACC FTLD). The CDR®+NACC 
FTLD25,32 is similarly a marker of functional severity and in
cludes ratings across six functional domains captured in the 
traditional CDR®, in addition to two domains specific to the 
core clinical features of FTLD: language and behaviour. 
Following a standardized algorithm,25,32 the eight domain 
scores were summed to create a global score (0–8), while 
each domain was scored on a scale from 0 to 3 and summed 
to create a more continuous measure of symptom severity 
(0–24) referred to as the sum of boxes (CDR®+NACC 
FTLD-SB).
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Latent disease age
Latent disease age was estimated for FTD mutation carriers 
based on recently developed disease progression models.31

Briefly, latent disease age is the estimated difference between 
an individuals’ chronological age and age of symptom onset 
(operationalized as CDR®+NACC FTLD-SB = 0.5). The dis
ease progression model was estimated based on 20 measures 
previously shown to contribute to disease prognostication in 
FTD (e.g. all available NfL, imaging, neuropsychological per
formances, and clinical information). The estimate is positive 
for symptomatic cases and negative for pre-symptomatic 
cases. For symptomatic cases, initial estimates reflect clini
cian’s estimated time from symptom onset modelled with an 
error term. For asymptomatic cases, initial estimates reflect 
the difference between chronological age and mean age of 
genotype onset at the group level, modelled with an error 
term. Initial estimates were then submitted to Bayesian mixed 
effects framework leveraging all available clinical, neuro
psychological, imaging and NfL data simultaneously to 
more precisely estimate latent disease age (see31 for additional 
details).

Statistical analyses
Discovery cohort: longitudinal FTD analyses
We created a sample-based z-score on individual target pro
tein levels and the five target proteins were linearly combined 
into a ‘rejuvenation composite’ score in which each protein 
was equally weighted. We examined the relationships be
tween rejuvenation composite levels across mutation carriers 
versus non-carriers and with clinicodemographic features, 
including latent disease age, at baseline. Next, we evaluated 
the relationship between baseline levels of the rejuvenation 
composite and longitudinal trajectories of global cognitive 
performances, functional decline (CDR®+NACC FTLD) 
and plasma NfL by mutation carrier status via linear mixed 
effects (LME) models. LME models included an interaction 
term between baseline rejuvenation composite by time in 
study (in years) by mutation carrier status (yes/no), adjusting 
for baseline age, sex and education, and allowed for random 
(person-specific) intercepts and slopes. We estimated effect 
sizes between rejuvenation composite and cognitive, func
tion and NfL outcomes in mutation carriers by calculating 
the difference in the predicted marginal mean from partici
pants in the top versus bottom tertile of the rejuvenation 
composite over a 5-year interval; marginal mean differences 
and 95% CI reported. Given the possibility that disease 
severity may drive relationships, we conducted sensitivity 
analyses only including mutation carriers who were asymp
tomatic at baseline (n = 52; CDR®+NACC FTLD = 0). 
Additionally, we examined how relationships between our 
clinical outcomes and the rejuvenation composite differed 
by genotype. To do so, we evaluated the interaction of geno
type on the relationship between rejuvenation composite 
and clinical trajectories. Lastly, within mutation carriers 
only, we probed the relative effect size of each individual 

protein within the rejuvenation composite to better under
stand the contribution of each of the five factors. To do so, 
we conducted parallel LMEs examining both (i) each indi
vidual protein and (ii) the rejuvenation composite remov
ing each individual protein by time as a function of our 
three longitudinal outcomes (cognition, functioning and 
NfL).

Transdiagnostic relevance: cross-sectional 
Alzheimer’s disease analyses
To test the transdiagnostic relevance of these five rejuven
ation factors, we reconstructed a ‘rejuvenation composite’ 
score in the Stanford ADRC cohort following the same meth
od described above. This cohort was only evaluated cross- 
sectionally and included adults with Alzheimer’s disease 
and typically aging adults. First, we examined associations 
between the rejuvenation composite and clinicodemographic 
information using Pearson correlation and t-tests, as appro
priate. Next, we conducted regression models examining the 
interaction between rejuvenation composite levels and diag
nosis on the same three clinical outcomes—global cognition, 
functional impairment and CSF NfL levels.

Results
CSF rejuvenation proteins and 
baseline clinicodemographic 
characteristics in FTD
In FTD mutation carriers and non-carriers combined, CSF 
levels of the five targeted factors showed small to minimal 
intra-analyte correlations (Supplementary Table 1), suggest
ing only modest overlap in the biological processes repre
sented. Given combining factors is novel and there is no 
evidence to support relative importance of one factor over 
another, the five CSF factors were linearly combined into a 
composite score in which each protein was equally weighted. 
Higher values reflected more ‘pro-youthful’ protein levels. 
Higher rejuvenation composite levels modestly associated 
with younger age (r = −0.16, 95% CI −0.29 to −0.02, P =  
0.03), but showed minimal associations with education 
(r = 0.05, 95% CI −0.09 to 0.19 P = 0.45) or sex (Mmen =  
0.02 (SD = 0.98) versus Mwomen = −0.02 (SD = 1.0), P =  
0.78). CSF rejuvenation composite levels were statistically 
significantly lower in mutation carriers compared to non- 
carriers at baseline (Mcarriers = −0.15 (SD = 1.0) versus 
Mnon-carriers = 0.23 (SD = 0.98), P = 0.008; Table 1). We 
next examined associations between CSF rejuvenation com
posite and estimated disease age in pathogenic mutation car
riers. Disease age was estimated using a recently developed 
algorithm from the ALLFTD Study, which forecasts pre- 
symptomatic mutation carriers’ proximity to symptom onset 
based on joint modelling of the best known clinical and bio
marker measures of FTD severity.31 In mutation carriers, 
cross-sectional analyses showed higher levels of the CSF reju
venation composite associated with lower estimated disease 
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age at baseline (r = 0.48, 95% CI −0.62 to −0.30, P < 0.001; 
Fig. 1). In other words, FTD mutation carriers who are closer 
to estimated disease onset show lower levels of CSF rejuven
ation protein levels.

Higher baseline CSF rejuvenation 
composite levels associate with 
slower clinical progression in FTD
Next, we tested how baseline levels of the CSF rejuvenation 
composite moderated longitudinal clinical trajectories in FTD 

mutation carriers compared to non-carriers via linear 
mixed-effects models. As shown in Table 2, baseline CSF reju
venation composite levels demonstrated an interaction with 
carrier status (yes/no) on clinical progression over time, adjust
ing for baseline age, sex and education. FTD mutation carriers 
with higher baseline CSF rejuvenation composite levels demon
strated slower global cognitive and functional declines, and 
slower plasma NfL increases which approached significance 
(P = 0.078), relationships that were not evident in clinically 
normal non-carrier adults (Table 2; Fig. 2; Supplementary 
Fig. 1). Compared to carriers with low rejuvenation protein le
vels (bottom tertile), higher baseline rejuvenation protein levels 
(top tertile) were associated with ∼8.0-times slower cognitive 
(Low RejuvenationMarginal Mean = −0.97, 95% CI −1.27 
to 0.66 versus High RejuvenationMarginal Mean = 0.12, 95% 
CI −0.016 to 0.40), 2.6-times slower functional (Low 
RejuvenationMarginal Mean = 7.64, 95% CI 5.53 to 9.75 versus 
High RejuvenationMarginal Mean = 2.89, 95% CI 0.78 to 5.02) 
and 3.4-times slower NfL increases (Low RejuvenationMarginal 

Mean = 18.62, 95% CI 12.95 to 24.29 versus High Rejuvena
tionMarginal Mean = 5.51, 95% CI −0.41 to 11.43) over an esti
mated 5-years. Notably, when only including mutation 
carriers who were clinically asymptomatic at baseline (n =  
52; CDR®+NACC FTLD = 0), all models were statistically 
significant with similar effect sizes (Supplementary Table 2). 
Further, examining individual cognitive domains within 
FTD mutation carriers only, higher baseline rejuvenation pro
tein levels significantly associated with slowed declines across 
all domains examined, including episodic memory, executive 
functioning and language (all P-values < 0.009). Additional
ly, there was no statistically significant interaction with 
genotype suggesting that the effect sizes of the relationship be
tween baseline CSF rejuvenation composite levels on clinical 

Table 2 Mixed effects models demonstrating the relationship between baseline CSF rejuvenation composite with 
longitudinal cognitive, functional and NfL progression in FTD variant carriers and non-carrier controls

Global cognition
Functional decline 

(NACC-FTLD-CDR®sb) NfL (plasma)

N = 162 (153 observations)  
# Visits average = 3.3  

(range 1–7)

N = 184 (625 observations)  
# Visits average 3.4  

(range 1–7)

N = 132 (372 observations)  
# Visits average 2.8  

(range 1–4)

Beta (95% CI) P-value Beta (95% CI) P-value Beta (95% CI) P-value

Baseline age −0.01 (−0.02, −0.005) 0.001 0.04 (0.009, 0.08) 0.014 0.25 (0.08, 0.43) 0.003
Sex −0.16 (−0.36, 0.05) 0.14 −0.07 (−1.02, 0.88) 0.88 2.18 (−1.95, 6.30) 0.30
Education 0.14 (0.10, 0.19) <0.001 −0.16 (−0.35, 0.04) 0.12 0.04 (−0.84, 0.92) 0.93
Baseline CSF rejuvenation composite −0.46 (−0.24, 0.15) 0.65 −0.13 (−0.98, 0.73) 0.77 0.40 (−5.08, 5.87) 0.89
Time (years) 0.038 (−0.007, 0.08) 0.096 0.08 (−0.22, 0.38) 0.60 0.15 (−1.01, 1.32) 0.80
Carrier status (y/n) 0.01 (−0.04, 0.06) 0.38 3.69 (2.57, 4.81) <0.001 8.60 (2.03, 15.2) 0.01
(Baseline CSF rejuvenation composite)* (time) 0.01 (−0.04, 0.06) 0.71 0.89 (0.50, 1.29) <0.001 0.01 (−1.22, 1.25) 0.98
(Time)* (carrier status) −0.11 (−0.16, −0.05) <0.001 1.10 (0.70, 1.50) <0.001 2.26 (0.86, 3.67) 0.002
(Baseline CSF Rejuvenation Composite)* 

(Carrier status)
0.27 (0.03, 0.52) 0.03 −0.57 (−1.66, 0.53) 0.31 −4.98 (−11.54, 1.57) 0.14

(Baseline CSF rejuvenation composite)* 
(time)* (carrier status)

0.08 (0.02, 0.15) 0.011 −0.55 (−0.97, −0.13) 0.01 −1.32 (−2.78, 0.15) 0.078

Carrier status: noncarrier = 0; mutation carrier = 1.

Figure 1 Adults carrying autosomal dominant genetic 
mutations for FTD who are closer to estimated disease 
onset show lower levels of CSF rejuvenation protein levels. 
Error bars represent 95% CI. Pearson’s correlational analyses 
displayed in which each data point represents a participant 
(n = 119).
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outcomes did not differ across C9orf72, MAPT or GRN mu
tation carriers (Fig. 3).

Given, we only observed a meaningful relationship between 
CSF rejuvenation composite levels and clinical outcomes in 
mutation carriers, we next aimed to determine which, if 
any, of the five factors may be individually driving our find
ings. To test this, we examined how the relationship between 
the CSF rejuvenation composite and clinical outcomes chan
ged when systematically removing one factor at a time and 

recalculating the standardized composite. Figure 4 shows 
that the relationship between the rejuvenation composite 
and clinical outcomes did not substantially change when re
moving individual proteins one at a time. Lastly, we examined 
the individual relationships between each of the five factors 
and our clinical outcomes to evaluate their independent im
portance. As per Fig. 4, baseline levels of BGLAP, CCL11 
and B2 M showed the most consistent associations with lon
gitudinal progression on all three clinical outcomes.

Figure 2 Adults carrying autosomal dominant genetic mutations for FTD with higher baseline CSF rejuvenation protein 
levels show slower (A) cognitive, (B) functional and (C) neurodegenerative decline over time. Error bars represent 95% CI; 
SD, standard deviation; FTLD-CDRsb, frontotemporal lobar degeneration CDR scale sum of boxes; NfL, neurofilament light chain. LMEs 
models are displayed covarying for baseline age, sex and education for cognitive (n = 162), functional (n = 184) and NfL (n = 132) 
trajectories.

8 | BRAIN COMMUNICATIONS 2025, fcae432                                                                                                             K. B. Casaletto et al.



Transdiagnostic relevance: higher 
CSF rejuvenation composite 
associates with less clinical severity in 
sporadic Alzheimer’s disease
In a cross-sectional cohort of controls and adults with spor
adic Alzheimer’s disease, there similarly was an interaction 
between CSF rejuvenation composite levels and diagnosis 
on all three clinical outcomes, adjusting for age, sex and edu
cation. Higher CSF rejuvenation composite levels were asso
ciated with better cognitive performances and functional 
status, and lower CSF NfL (n = 43) among individuals with 
Alzheimer’s disease; these relationships were significantly at
tenuated in clinically normal adults (Fig. 5; Supplementary 
Table 3). These data recapitulate the longitudinal neuropro
tective associations observed in the FTD mutation carriers. 
When examining specific cognitive domains within 
Alzheimer’s disease participants, higher rejuvenation protein 
levels associated with better episodic memory performances 
(B = 0.55, P = 0.003), but did not reach statistical signifi
cance for language or executive functioning performances 
(P-values >0.50).

Again, given the observed relationships were only evident 
in adults with Alzheimer’s disease, we further examined how 
individual (versus composite) rejuvenation proteins contrib
uted to clinical outcomes only among the Alzheimer’s disease 
participants (n = 35); analyses were only conducted examin
ing cognitive performance and functional outcomes given 
limited sample size in Alzheimer’s disease participants with 
CSF NfL (n = 14). When examined individually, there was 
only a statistically significant association between lower 
CSF B2 M and better global cognitive performances 
(see Supplementary Fig. 2). B2 M also approached statistical 
significance for functional outcomes (P = 0.09) and CCL2 
approached statistical significance for both cognitive 

(P = 0.052) and functional (P = 0.08) outcomes. CCL11, 
CSF2, and BGLAP did not show strong individual effects.

Discussion
We demonstrate that systemic factors shown to modulate 
brain aging trajectories in mice associate with a range of clin
ical progression indicators in CSF of adults with both genetic 
and sporadic forms of multiple Alzheimer’s disease/ADRDs 
across distinct cohorts. CSF reflecting lower levels of three 
‘pro-aging’ factors (CCL2, CCL11 and B2 M) and higher le
vels of two ‘pro-youthful’ factors (CSF2 and BGLAP) asso
ciated with slower cognitive, functional and neuroaxonal 
declines in adults with autosomal dominant forms of FTD 
and sporadic Alzheimer’s disease. Protective relationships 
were similarly observed across proteinopathies, including 
FTD TDP-43 (C9orf72 and GRN), FTD tauopathy 
(MAPT), and Alzheimer’s disease, suggesting transdiagnostic 
relevance. Although not statistically significant in control sub
jects, we did observe protective associations between CSF reju
venation factors and clinical outcomes among clinically 
asymptomatic adults carrying FTD mutations. These findings 
suggest the identified factors may become most relevant in the 
context of elevated disease risk, perhaps before clinical mani
festation, but not in typical brain aging. Additionally, we 
show utility of combining multiple rejuvenation factors, which 
may reflect a more biologically robust approach to under
standing and treating brain aging.16 Given these factors have 
been identified from the systemic milieu, cross the BBB, and 
are beginning to show clinical importance across dementias, 
they may be valuable targets for transdiagnostic biomarker 
and treatment approaches. Copathology contributes to disease 
manifestation and is the norm rather than the exception in 
both FTD and Alzheimer’s disease.4-7 Rejuvenation factors 
that capture shared Alzheimer’s disease/ADRD risk may there
fore be paired with proteinopathy-specific biomarkers to more 
precisely prognosticate disease progression and/or be utilized 
in combination therapies with proteinopathy-lowering drugs 
to mitigate clinical manifestation of disease biology.

Our data also support the notion that common aging 
biology may underlie risk and resilience across Alzheimer’s 
disease/ADRDs. Disentangling the fundamental neurobio
logical mechanisms of aging will therefore support under
standing of how diseases of mid to late life emerge. Four 
out of the five identified factors are known to be directly in
volved in immune functioning: CSF2 stimulates stem cell 
production of monocytes/granulocytes, CCL11 and CCL2 
are chemokines closely clustered on chromosome 17, and 
B2 M is a molecular component of the MHC class I complex. 
Consistent with the broader heterochronic blood experiment 
literature and increasing genome wide association studies of 
FTD and Alzheimer’s disease,33-36 these data underscore the 
critical role of both innate and adaptive immune processes in 
shaping neurodegenerative risk. Regarding the role of adap
tive immunity, it is notable that B2 M alone demonstrated 
some of the most consistent associations with all clinical 

Figure 3 Associations between CSF rejuvenation protein 
levels and clinical trajectories are similar across FTD 
genotypes. Effect sizes are standardized betas with 95% CI; 
FTLD-CDRsb, frontotemporal lobar degeneration CDR scale sum 
of boxes; NfL, neurofilament light chain. Effect sizes from LMEs 
models are displayed covarying for baseline age, sex and education 
for cognitive (n = 162), functional (n = 184) and NfL (n = 132) 
trajectories.
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Figure 4 Associations between CSF rejuvenation protein levels and clinical outcomes are most consistent using a composite 
approach. Filled blue squares represent the effect size between the composite and clinical trajectories. Open red circles represent effect size 
estimates between individual protein levels and clinical trajectories. Open blue squares represent the effect size of the composite with clinical 
trajectories when removing the indicated protein. Effect sizes are standardized betas with 95% CI; FTLD-CDRsb, frontotemporal lobar 
degeneration CDR scale sum of boxes. Effect sizes from LMEs models are displayed covarying for baseline age, sex and education for cognitive 
(n = 162), functional (n = 184) and NfL (n = 132) trajectories.
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outcomes and across disease cohorts, suggesting regulation 
of canonical antigen-presenting processes may be particular
ly relevant in dementia risk and/or prevention. Consistent 
with our models in Alzheimer’s disease participants, B2 M 
is also directly implicated in pathological amyloid accumula
tion, including development of systemic amyloidosis,37,38 is 
a component of the beta-amyloid plaque core, and promotes 
beta-amyloid aggregation and neurotoxicity in models of 
Alzheimer’s disease.39 To our knowledge, these are among 
the first data showing a role for B2 M in FTD suggesting 
that its neurotoxicity may extend beyond beta-amyloid. 
The immune system is directly modulated by GRN and 
C9orf72, and MAPT clinical onset is influenced by levels 
of inflammation.34,40,41 Our data further highlight the neu
roimmune axis in FTD, specifically expanding a possible 
role for B2 M in the clinical manifestations of TDP-43 and 
primary tauopathies.

Supporting a therapeutic role for these factors, there was a 
recent Phase II double-blinded, randomized controlled trial 
targeting CSF2 (aka, GM-CSF) in Alzheimer’s disease pa
tients via brief subcutaneous sargramostim treatment (5 
days/week for 3-weeks with 90-day follow-up).42

Sargramostim is a repurposed medication used to stimulate 
white blood cells production in bone marrow. Alzheimer’s 
disease participants did not show any serious adverse effects 
(primary endpoint), and showed improvements in MMSE 
and plasma amyloid-beta, total tau and UCHL1 (secondary 
endpoints), though changes on other clinical outcomes were 
more variable (e.g. ADAS-cognition and amyloid PET).42

Another Phase II trial (NCT04902703) is now ongoing to 
evaluate safety and efficacy longer-term sargramostim treat
ment in Alzheimer’s disease. Our data underscore a protect
ive relationship between CSF2 and Alzheimer’s disease 
related outcomes, and further suggest that CSF2 may also 
have relevance in FTD spectrum disorders.

In contrast with the other four immune related factors, 
BGLAP (aka and osteocalcin) is a bone-derived energy regu
lation factor involved in insulin synthesis. BGLAP has been 
shown to decrease in adulthood across species, crosses the 
BBB, and binds to brain stem (ventral tegmentum area and 
mid/dorsal raphe) and hippocampal regions.20 Pre-clinical 
studies suggest BGLAP can promote vesicular transport of 

brain derived neurotrophic factor, increase monoamine syn
thesis and inhibit GABA synthesis subsequently promoting 
learning and memory and preventing anxiety-like beha
viours. Increasing evidence has identified a bone-to-brain 
axis43,44 underscoring that more a complete understanding 
of brain aging and dementia risk necessitates examination 
of factors from peripheral organ systems.

Of note, we did not observe statistically significant associa
tions between the CSF rejuvenation composite and clinical 
outcomes in cognitively normal adults, which were unexpect
ed. However, the average age of our control subjects was rela
tively young (50s–60 s) across cohorts. This parallels some 
animal studies in which systemic rejuvenation manipulation 
only modulates brain and behavioural outcomes when admi
nistered in the oldest (≥12 months) but not younger (e.g. 3 
months) adult mice.45,46 Taken together, this suggests that 
modulation of these factors either does not meaningfully im
pact brain aging until a threshold of disease or pathology is 
reached, and/or these factors reflect a compensatory and 
modifiable response to disease pathology. These findings 
may also suggest that neurodegenerative diseases represents 
a form of ‘accelerated’ brain aging per these biomarkers that 
is not observed in our typically aging cohorts. Specificity to 
disease states (versus altering typical aging neurobiology) is 
a desirable quality for a treatment target; a deeper understand
ing of how, when, and in whom these rejuvenation factors 
may show clinical relevance is needed.

Although these are the first data combining and directly 
translating brain rejuvenation factors into multiple cohorts 
of adults with Alzheimer’s disease/ADRDs, our study has 
several limitations. Most notably, these are observational 
data without autopsy confirmation of neurodegenerative 
aetiology. Although we found protective relationships on 
longitudinal clinical progression and in adults who are 
asymptomatic but at high genetic risk (pre-clinical disease), 
we cannot determine directionality of relationships from 
our study design. Additionally, although over a dozen sys
temic brain rejuvenation factors have been identified in ani
mal literature,9 we limited examination to only those factors 
quantified via the SomaScan assay utilized in both cohorts. 
Although the Somascan assay only captures a fraction of 
the CSF proteome, it is compelling that different version of 

Figure 5 Higher CSF rejuvenation protein levels associate with better clinical outcomes in adults with sporadic Alzheimer’s 
disease. P-value for interaction presented. Error bars represent 95% CI; CDR, clinical dementia rating scale global score; CSF, cerebrospinal fluid; 
NfL, neurofilament light chain. Multi-variable regression models were conducted adjusting for age, sex and education and scatterplots shown in 
which each dot represents a participant (n = 91).
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the SomaScan assay (versions 3.1 and 4.0) were used across 
the two cohorts and showed consistency in relationships, 
supporting utility of aptamer-based platforms for proteomic 
capture. Nonetheless, replication of our findings in inde
pendent neurodegenerative disease cohorts and prospective 
quantification of these five and additional factors identified 
in the heterochronic blood experiment literature via altera
tive quantification methods (e.g. ELISA) are needed to sup
port convergence. Lastly, although we evaluated patients 
with both sporadic and genetic forms of dementia with a 
range of proteinopathies (primary and secondary tauopa
thies, TDP-43), it would be highly relevant to evaluate other 
common brain diseases associated with aging to determine 
the range of possible clinical utility (e.g. alpha-synuclein 
and cerebrovascular disease).

Taken together, our findings suggest that mechanistically 
identified systemic brain rejuvenation factors reflect a common 
biology of aging relevant for slowed clinical progression across 
neurodegenerative aetiologies in humans. When tested indi
vidually in mouse and in vitro models, each of the five factors 
modulate brain aging, yet our data suggest protective effects 
may be most robustly observed when factors are considered 
together. Although proteinopathy-specific dementia treat
ments are needed, multiple neuropathologies are evident in 
the vast majority of older adult brains.4-7 Combination treat
ments simultaneously targeting disease-specific and orthogon
al brain aging targets represent complementary approaches for 
tackling dementia prevention.

Supplementary material
Supplementary material is available at Brain 
Communications online.
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