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Introduction 
U.S. and China are the world’s top two economics. Together they consumed one‐third of 
the  world’s  primary  energy.  It  is  an  unprecedented  opportunity  and  challenge  for 
governments,  researchers and  industries  in both countries  to  join  together  to  address 
energy issues and global climate change. Such joint collaboration has huge potential  in 
creating new jobs in energy technologies and services. 

The U.S.China Clean Energy Research Center 
In  November  2009,  President  Barack  Obama  and  President  HU  Jintao  announced  the 
establishment  of  the  $150  million  U.S.‐China  Clean  Energy  Research  Center  (CERC, 
http://www.us‐china‐cerc.org/,  http://www.cerc.org.cn/).  The  Protocol  formally 
establishing  the  Center  was  signed  at  ceremonies  in  Beijing  by  U.S.  Energy  Secretary 
Steven  Chu,  Chinese  Minister  of  Science  and  Technology  Wan  Gang,  and  Chinese 
National Energy Agency Administrator ZHANG Guobao. 

The  CERC  builds  upon  over  30  years  of  U.S.  and  China  science  and  technology 
collaboration. Under  the Science  and Technology Cooperation Agreement of  1979 and 
its  1991  amendment,  our  two  countries  have  cooperated  in  a  diverse  range  of  fields, 
including  basic  research  in  physics  and  chemistry,  earth  and  atmospheric  sciences,  a 
variety of energy‐related areas, environmental management and more. 

The  CERC  facilitates  joint  research  and  development  on  clean  energy  technology  by 
teams  of  scientists  and  engineers  from  the  United  States  and  China.  It  is  a  flagship 
initiative funded in equal parts by the United States and China, with broad participation 
from universities, research institutions and industry. U.S. funds will be used exclusively 
to support work conducted by U.S. institutions and individuals only, and Chinese funds 
will support work conducted by Chinese institutions and researchers. 

CERC  has  three  research  themes:  (1)  CERC  Building  Energy  Efficiency  (CERC‐BEE) 
focusing  on  research  and  development  of  building  technologies,  tools,  and  policy  to 
improve design and operation of buildings to reduce energy use in buildings, (2) CERC 
Clean Vehicles  focusing on  research  and development of new  technologies  for  electric 
vehicles  and  alternative  fuels  to  reduce  air  pollution  and  carbon  emissions  from  the 
transportation  sector,  and  (3)  CERC  Advanced  Coal  Technology  focusing  on  research 
and development of technologies to improve efficiency and reduce air emissions of coal 
power plants and new technologies for carbon capture and storage.  

The CERC‐BEE Consortium conducts R&D on building energy efficiency technologies and 
practices in the United States and China. CERC‐BEE’s vision is to, “To build a foundation 
of knowledge, technologies, tools, human capabilities, and relationships that position the 
United States and China for a future with very low energy buildings resulting in very low 
CO2 emissions.” 

BEE  develops  innovative  technologies  and  strategies  for  use  in  new  and  existing 
buildings to improve efficiency, save energy, reduce greenhouse gas emissions, increase 
indoor  comfort,  and  reduce  stress  on  the  electric  grid.  As  new  construction  proceeds 
around the globe, collaborative BEE research efforts are helping to lock in tremendous 
potential  energy  savings  for  the  long  term  via  a  more  efficient  and  low  carbon  built 
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infrastructure. Figure 1 shows the five research areas and projects for the first two years 
under the CERC‐BEE.  

Figure 1 CERC‐BEE Research Areas and Projects 

 

Research Background 
Buildings in the US and China consumed about 40% and 25% of the primary energy in 
both  countries  in  2010  respectively.  Worldwide,  the  building  sector  is  the  largest 
contributor  to  the  greenhouse  gas  emission.  Better  understanding  and  improving  the 
energy performance of buildings is a critical step towards sustainable development and 
mitigation of global climate change.  

Buildings demonstrate very diverse performance based on measured energy use. Figure 
2 shows site energy use intensities (EUIs) of 100 LEED‐NC certified buildings from the 
2008  New  Building  Institute  Study,  Energy  Performance  of  LEED  for New  Construction 

Buildings. At the same LEED certification levels, energy use of green buildings varies by a 
factor of up to 4 even excluding outliners. An ICF study shows similar divergence exists 
even for same type of buildings; Figure 3 shows the EUIs of big‐box retails in the US and 
Canada. Measurements done by Tsinghua University, by China (Figure 4) have disclosed 
large differences in energy use of campus buildings in similar climates between the US 
and China, even  though the buildings  in  the US were designed  to meet more stringent 
energy codes than those in China. 

 

Figure 2 – Measured Energy Use Intensities (kBtu/ft²) of LEEDNC Certified Buildings                                             
(courtesy New Building Institute) 
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Figure 3 – Measured Energy Use Intensities of Big‐Box Retails in US and Canada (courtesy ICF International) 

 

Figure 4 – Measured Electricity Use Intensities of Campus Buildings in the US and China                                                            
(courtesy Tsinghua University, China) 

As identified in the IEA ECBCS Annex 53: Total energy use in buildings – assessment and 
analysis methods, there are six driving factors that determine the energy performance of 
buildings  (Figure 5):  climate, building envelope, building equipment (energy and water 
services  systems),  operation  and  maintenance,  occupant  behavior,  and  indoor 
environmental  conditions.  Understanding  how  these  factors  affect  the  energy 
performance  of  buildings  and  which  factors  play  more  significant  role  under  certain 
conditions can provide  insight  into  the  large variations of  building  energy use. This  is 
also a crucial step to improve the design and operation of buildings for lower energy use 
and lower carbon emissions.  
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Figure 5 – Six driving factors of energy performance of buildings (courtesy IEA ECBCS Annex 53) 

Measurement and simulation are the two approaches to obtaining the energy use data of 
buildings. While measurement can provide solid and more accurate data, it can be time 
consuming and costly. On the other hand, simulation is a quick and more cost effective 
way  to  get  more  detailed  energy  use  data,  but  the  simulated/predicted  energy  use 
usually  is  not  as  accurate  as  measured  data.  Both  approaches  are  needed  as  one 
supplements the other and usually both are used in a project.  

Measurements  of  real  buildings  tend  to  show  large  discrepancies  between  simulated 
and measured energy use of buildings. Figure 6 shows the measured and simulated site 
EUIs  of  LEED‐NC  certified  green  buildings.  Averaged  across  all  buildings,  simulated 
energy  use  is  within  a  reasonable  range  from  the  measured  data,  but  looking  at  the 
individual  building,  simulation  over‐predicted  energy  use  by  up  to  120%,  and  under‐
predicted by up to 65%. More astonishingly, simulation seemed to always under‐predict 
the  energy  consumption  of  low  energy  buildings,  with  site  EUI  of  40  or  lower 
representing  about  50%  better  energy  performance  than  the  2003  CBECS  average 
commercial  buildings  in  the US  (EUI of 90 kBtu/ft²). This  can be observed by  the  fact 
that no points fall into the shaded triangle in Figure 6. Besides how the six driving factors 
are captured in the simulations, the energy modeling tool used, the simulation user, and 
the simulation process can have strong impact on the predicted energy use of buildings.  

 

Figure 6 – Measured vs. Simulated Energy Use Intensities (kBtu/ft²) of LEED‐NC Certified Buildings                                 
(adopted, courtesy New Building Institute) 
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Computer‐based  building  performance  simulation  has  been  widely  and  successfully 
used to: (1) evaluate design alternatives during the design of new buildings and evaluate 
retrofit  measures  of  existing  buildings,  (2)  demonstrate  code  compliance,  and  (3) 
calculate  performance  ratings.  Although  less  common  in  the  past  and  gaining 
momentum  nowadays,  simulation  is  also  used  to  predict  energy  performance  of 
buildings. 

Among the six factors, the occupant behavior is the least studied and gets too simplified 
during  the  design  and  operation  of  buildings.  How  occupants  interact  with  building 
systems have direct and decisive impacts on energy performance of buildings. 

In this project, building performance simulation will be used to provide insight into the 
following important questions: 

1. Why buildings of same type in the US and China have such large differences  in 
measured energy use? 

2. Why buildings of same type in similar climates between the US and China have 
such large differences in measured energy use? 

3. Why  the  measured  and  simulated  energy  use  of  buildings  have  such  large 
discrepancies?  

4. How to describe and model human behavior to better understand and quantify 
its impact on building energy performance? 

5. How building simulation can be improved to better capture the influences of the 
six factors in order to better guide the design and operation of buildings for high 
performance? 

6. With various building energy modeling programs  to  choose, which  is  the  right 
one to use?  

7. How and why do  simulation  results  vary  so much  from using different  energy 
modeling programs? 

Research Team and Collaboration 
The joint research team (Table 1) includes the LBNL team, the U.S. industry partners, the 
Tsinghua team and the China industry partners. Tianzhen Hong of LBNL led the U.S. side 
research and Da Yan of Tsinghua University led the China side research. Richard Karney 
and Yi Jiang served as the senior technical advisors for the project. 
 
The  research  team  had  bi‐weekly  conference  calls  to  discuss  project  progress  and 
resolve  issues.  The  team  organized  a  series  of  workshops  (Appendix  B)  to  exchange 
research  findings,  seek  inputs and comments  from researchers, practitioners,  industry 
partners, HVAC manufacturers, government agencies, and other stakeholders. The joint 
research  work  also  made  significant  contribution  to  the  IEA  Annex  53.  Exchanged 
students  from Tsinghua University  stayed  at  LBNL  for  a  few months  to work  on  joint 
technical tasks.  
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Table 1 – The Joint Research Team 

  The U.S. Side  The China Side 

Research Team  The LBNL Team  The Tsinghua Team 

Principal Investigators  Tianzhen Hong, LBNL Da Yan, Tsinghua University 

Research Team Members  William  Turner,  Liping 
Wang,  Hung‐Wen  Lin,   
Wen‐Kuei Chang 

Chuang  Wang,  Dandan  Zhu, 
Xin  Zhou,  Xiaoxin  Ren, 
Xiaohang  Feng,  Kaiyu  Sun, 
Chen Peng 

Industry Partners  Bentley Systems, C3 Energy, 

Energy Foundation 

The Xinao  Group,   

the CECEP Group 

Senior Technical Advisors  Richard Karney, USDOE  Yi Jiang, Tsinghua University 

Research Objectives and Technical Tasks 

Research Objectives 
This  project  (Project  A2  in  Figure 1)  aims  to  improve  and  expand  the  use  of  building 
simulation to support the design and operation of low energy buildings through better 
understanding  and  predicting  the  energy  performance  of  buildings.  The  research 
objectives are to: (1) develop methods and models to identify and evaluate the six key 
factors to improve understanding of the energy performance of buildings  in China and 
US,  (2)  develop  methods  to  describe  and  model  occupant  behavior  in  buildings,  and 
integrate  the  behavior  models  with  the  energy  models  to  simulate  the  impact  of 
occupant behavior on building performance, and (3) evaluate and compare capabilities 
of  EnergyPlus,  DOE‐2.1E  and  DeST  to  better  understand  their  commons,  differences, 
strengths, weakness  and  limitations,  and  to  guide  simulation  users  how  to  choose  an 
energy modeling tool for a specific application. 

Technical Tasks 
To  achieve  the  three  aforementioned  research  objectives,  three  research  tasks  were 
designed and completed. 

Task 1 – Key drivers of energy performance of buildings 
This  task  developed  simulation  methods  and  models,  and  performed  sensitivity  and 
scenario  analysis  to  quantify  the  impact  of  operation  practice,  maintenance  practice, 
occupant behavior, and weather on energy performance of typical office buildings in the 
U.S.  Integrated consideration of  these  influencing  factors  in a holistic system approach 
during  the design and operation of buildings  is  the most critical key  in achieving high 
performance buildings. 

Task 2 – Occupant behavior 
Occupant energy‐related behavior  in buildings has  two aspects:  (1) occupant needs of 
comfort:  thermal,  acoustical,  visual  and  indoor  air  quality  (IAQ),  and  (2)  occupant 
responses by interacting with building systems to restore comfort if their needs are not 
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met.  The  usual  occupant  interactions  include  opening/closing  windows,  operating 
blinds  (or  other  shading  devices),  switching  or  dimming  lights,  adjusting  thermostat, 
turning  HVAC  on/off,  turning  on/off  computers,  monitors  and  portable  devices,  and 
adjusting clothing. Occupant behavior includes occupant movement – how often and for 
how long an occupant moves around, and personal habit. ASHRAE Standard 55 defines 
comfort  range  for  typical  occupants  at  various  activities  and  environments.  The  latest 
additions to the standard allow the cooling setpoint of the indoor air temperature to be 
adjusted upper if indoor air velocity is elevated or based on the adaptive comfort model. 
ASHRAE  Standard  62.1  defines  minimum  outdoor  air  needed  for  healthy  ventilation. 
Differences in occupant behavior can lead to huge variations of energy use in buildings. 
On  the  other  hand,  changes  to  human  behavior  at  no‐cost  have  demonstrated  energy 
savings of 5 to 30% in office and residential buildings.  

Current  simulation  programs,  including  EnergyPlus, DOE‐2.1E  and DeST,  have  limited 
capability  to  model  human  behavior  considering  its  multidisciplinary  and  inherent 
complexity and uncertainty. This  task will:  (1)  identify key energy  related behavior of 
building  occupants  based  on  measured  and  survey  data,  and  literature  review,  (2) 
develop algorithms to model occupant behaviors, (3) integrate the behavior models with 
energy models: EnergyPlus and DeST, and 4) assess the impact of occupant behavior on 
energy use in selected buildings in the US and China.  

Task 3 – Comparison of building energy modeling programs 
EnergyPlus  is  a  computer  program  developed  by  USDOE  to  simulate  the  energy 
performance  of  buildings.  It  was  started  to  combine  the  best  features  of  two  former 
energy  modeling  programs:  DOE‐2  and  BLAST,  but  has  since  evolving  as  a  powerful 
simulation  engine  to  calculate  building  performance.  DeST  is  a  simulation  program 
developed by Tsinghua University since the early 1990s and has been getting more and 
more use in China. DOE‐2 was developed by LBNL in the early 1980s through mid 1990s 
to simulate energy performance of buildings. This task will compare the three programs, 
evaluate their capabilities, identify their commons and differences, strengths, weakness, 
and limitations in energy modeling. This provides guidance and support the simulation 
use in the building energy code development, code compliance, and performance rating 
and labeling. 

Research Findings 
This  section  summarizes  the  key  research  findings.  Detailed  description  of  research 
work,  technical  approaches,  and  results  were  published  in  11  journal  articles,  11 
conference papers, and two technical reports (Appendix A). Selected publications were 
included in Appendix C. 

Summary 
 Building  operation,  maintenance,  occupant  behavior,  and  weather  data  are  key 

drivers of energy performance of buildings. Various practices of building operation 
and maintenance, various  types of occupant behavior, and  long‐term actual yearly 
weather data should be used in building simulations when evaluating energy savings 
of  building  designs  and  technologies  in  order  to  understand  and  quantify  the 
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sensitivity of such savings. Technologies sensitive to these factors may not work well 
when they are applied to real buildings. 

 Different  building operation practices  lead  to different building  performance,  and 
such  differences  can  be  greater  than  those  caused  by  different  design  efficiency 
levels  of  buildings.  Good  operation  is  crucial  to  achieving  low  energy  buildings, 
providing comfort for occupants, and extending equipment life.  

 Building  maintenance  has  strong  influence  on  energy  performance  of  buildings. 
Different  maintenance  practices  lead  to  large  differences  in  energy  use.  Good 
maintenance  is  another  key  to  achieving  low  energy  buildings,  providing  comfort 
and extending equipment life.  

 Yearly  variation  of  weather  is  significant  and  has  strong  impact  on  building 
performance.  Energy  savings  and  peak  electric  demand  reduction  of  energy 
technologies calculated using traditional weather data TMY can be significantly over 
or  under‐estimated  for  actual weather. When  evaluating  design  alternatives  and 
retrofit measures, long‐term actual yearly weather data should be used. This is now 
feasible and convenient considering the availability of historical AMY weather data 
and computing power of typical laptop and desktop computers nowadays. 

 Technologies alone may not lead to high performance buildings if occupant behavior 
is  ignored.  Occupant  behavior  is  complex,  stochastic,  and  multi‐disciplinary. 
Methods were developed to describe and model occupant behavior and to evaluate 
its impact on energy use in buildings. Various types of occupant behavior should be 
considered during the building design and operations. Changes to occupant behavior 
can be a no‐cost measure to save energy. 

 Markov‐chain models were developed  to describe occupant movement.  Statistical 
models were developed to describe occupancy patterns in single‐occupied offices. 

 Occupant behavior, related to opening/closing windows, turning on/off TVs and air –
conditioners, and  turning on/off  lights, was  identified and models were developed 
for residential buildings by mining measured data. 

 Simulation methods were developed  to  compare  the  energy performance of  four 
office buildings  in  the U.S., China, Hong Kong, and Taiwan  to  identify and analyze 
driving  factors  to  the discrepancies of energy use of  these buildings. The methods 
can be used for benchmarking analysis of building performance by simulations. 

 An  in‐depth comparative study was conducted to analyze the three building energy 
modeling  programs:  EnergyPlus,  DOE‐2.1E  and  DeST.  Comparison  methods  and 
suites of test cases were developed to identify and quantify the discrepancies of the 
results  from the three programs.  In general three programs can provide consistent 
simulation results if inputs to them are the same or equivalent. Due to its limitations, 
DOE‐2.1E can have  large errors  if adjacent spaces have very different  load profiles 
and  operating  schedules.  For  HVAC  simulations,  the  largest  discrepancies  again 
came  from  discrepancies  in  user  inputs,  followed  by  HVAC  equipment  control 
strategies. There is no simple rule of which program is the best; it all depends on the 
application.  It  is recommended to apply a program within  its application scope and 
observe its limitations. 

Building Operation 
Energy use of buildings  varies  in a wide  range.  Large office buildings  in Chicago and built 

after 2000 were selected from the 2003 CBECS database and the high performance building 

database. These buildings’ measured total source energy use intensities (EUIs) were graphed 

at  the  top portion of Figure 7. The  size of  the bubble  represents  the EUI. These buildings 

were  compared  to  the DOE  commercial  reference  large office building  (baseline building) 
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compliant with ASHRAE 90.1‐2004  in Chicago, and  their  relative performance  in EUI were 

calculated as a percentage (compared to the simulated EUI of the baseline building which is 

1.39 MJ/m2) and shown in Figure 7.  

 
 

Figure 7 – Impact of building design and operation for a large office building in Chicago 

As Figure 7 shows, the source EUIs of the seven large office buildings from the CBECS vary by 

a  factor of  four. The only one high performance  large office building  found  from  the HPB 

database consumed about half the total source energy compared to the baseline building. 

Why would  the energy performance of these buildings of same  type  (large office)  in same 

climate  (Chicago)  built  in  same  era  (after  2000)  vary  by  a  factor  of  eight?  A  rational 

assumption  is  these  buildings  use  different  technologies with  different  energy  efficiency 

levels (insulation or walls and roofs, windows, lighting power, COP of chiller etc.) and these 

buildings are operated very differently. To understand the impact of building operation and 

building  design  on  energy  use,  key  parameters  (Table  2) were  selected  to  represent  the 

building design and operation.  
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Table 2 – Design and operation parameters 

Design parameters  Operation parameters

WWR (Window‐wall‐ratio) 

Window 

Wall insulation 

Internal loads (lighting + plug‐load) 

Economizer 

Chiller efficiency 

Boiler efficiency 

Daylighting control 

Shading control 

Infiltration rate 

Infiltration schedule 

VAV box damper setting 

Heating thermostat 

Cooling thermostat 

Heating setback during unoccupied hours 

Cooling setback during unoccupied hours 

Supply air temperature reset 

Lighting schedule 

Plug‐load schedule 

 

Typical values (Figure 8) of the design parameters are grouped into three categories: (1) high 

efficiency  design,  based  on  ASHRAE  Standard  90.1‐2010  requirements  and  best  design 

practice,  (2)  standard  design  compliant  with  ASHRAE  Standard  90.1‐2004,  and  (3)  low 

efficiency  design  based  on  characteristics  of  old  office  buildings.  Typical  values  of  the 

operation parameters are grouped into three categories too: (1) good operation practice, (2) 

standard  operation  practice,  and  (3)  poor  operation  practice.  These  various  design  and 

operation practices were applied to the baseline building and simulated with EnergyPlus.  

When the three  levels of building design efficiency were combined with the three types of 

operation  practices,  their  compound  effects  on  the  building  total  source  energy  were 

simulated.  The  bottom  portion  of  Figure  9  shows  the  simulated  source  EUIs  of  the  nine 

combined cases (the middle bubble represents the baseline building). 

It can be seen that: 

 The design efficiency plays a significant role. Under standard operation practice, the 

low  efficiency  building  consumed  4.5  times  of  the  total  source  EUI  of  the  high 

efficiency building. Under  the good and bad operation practices, the ratio  is about 

3.7 and 4 respectively. The ratios are not very different. 

 The operation practice is as important. Under the standard design efficiency, the bad 

operation practice consumed 2.6 times of the total source EUI of the good operation 

practice. Under  the high and  low design efficiency  levels,  the  ratios are 3 and 3.2 

respectively.  

 Combined  together,  the  building  with  the  low  design  efficiency  and  the  bad 

operation practice consumes 12 times of the source energy of the building with the 

high  design  efficiency  and  the  good  operation  practice.  Although  these  ideal 

combinations may not exist  in real word,  it fully explains why the actual/measured 

energy performance of building varies by a factor of 8. 
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 To  achieve  high  performance  building,  using  latest  products  and  technologies  to 

improve design efficiency  is necessary, but as  important  is  the  improving of good 

operation practice. 

 When evaluating energy savings of energy efficiency technologies, various operation 

practices should be considered, at least as sensitivity analysis to look the persistency 

and variation range of the calculated energy savings. 

 Similar trends were observed in other US climates. 

 

Figure 8 – Typical values of design and operation parameters and their impact on total source energy use 

Building Maintenance 
Different  practices  of  HVAC  system maintenance  can  result  in  substantial  differences  in 
building energy use.  If a piece of HVAC equipment  is not well maintained,  its performance 
will degrade. If sensors used for control purpose are not calibrated, not only building energy 
usage  could  be  dramatically  increased,  but  also mechanical  systems may  not  be  able  to 
satisfy  indoor thermal comfort. Properly maintained HVAC systems can operate efficiently, 
improve occupant comfort, and prolong equipment service life.  

The maintenance practices are categorized into three levels depending on the maintenance 
effort  and  coverage:  1)  proactive,  performance‐monitored  maintenance;  2)  preventive, 
scheduled maintenance; and 3) reactive, unplanned or no maintenance. Table 3 summarizes 
the  three  practices  of HVAC maintenance  and  their  implications  on  equipment  operating 
efficiency and energy use, equipment  life, short term maintenance cost, and  life cycle cost 
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including maintenance  cost,  energy  cost,  and  equipment  replacement or  repair  cost.  The 
good practice will  lead to  lowest  life cycle cost, while the bad practice seems to save short 
term maintenance cost, it will result in the highest life cycle cost. 

Table 3 ‐ Three types of HVAC maintenance practices 

 

A  list  of  maintenance  issues,  including  cooling  tower  fouling,  boiler/chiller  fouling, 
refrigerant over or under  charge,  temperature  sensor offset, outdoor air damper  leakage, 
outdoor air screen blockage, outdoor air damper stuck at fully open position, and dirty filters 
are  investigated  in  this  study using  field  survey data  and detailed  simulation models. The 
energy  impacts of both  individual maintenance  issue and combined scenarios  for an office 
building  with  central  VAV  systems  and  central  plant  were  evaluated  by  EnergyPlus 
simulations using three approaches:  

1) Direct modeling with EnergyPlus (Direct Modeling)  
Maintenance  issues  are  directly  modeled  using  existing  inputs  (either  design  input 
parameters  or  performance  curves)  in  the  current  version  of  EnergyPlus.  This modeling 
approach  can  be  applied  to  such  maintenance  issues  as  supply  air  sensor  offset,  zone 
thermostat offset and outdoor air damper  leakage. This approach  is also applied to model 
simplified maintenance  issues such as chiller or boiler fouling by  introducing a degradation 
factor to the chiller or boiler efficiency  inputs to the EnergyPlus models. The advantage of 
this approach is easy implementation.  

2) Using the energy management system (EMS) in EnergyPlus 
EMS  is  an  advanced  feature of EnergyPlus  and designed  for users  to develop  customized 
high‐level, supervisory control routines to override specified aspects of EnergyPlus modeling 
in  the EMS program. The EMS  feature  in EnergyPlus  is  flexible  to allow users  to  simulate 
equipment operating with some maintenance  issues by overwriting or adding algorithms  in 
EnergyPlus within the specified aspects of current EMS capability. Use of EMS feature may 
require  advanced  knowledge  of  EnergyPlus  and  computer  programming.  EMS  is  used  to 
model maintenance  issues  like  dirty  filters which  increase  pressure  drop  across  the  filter 
with operating hours.  

3) Modifying EnergyPlus source code (Modified Code)  
Modifying the existing EnergyPlus source code, the third modeling approach,  is used when 
both  direct modeling  and  EMS  approaches  cannot  be  applied  to  simulate  any  particular 
equipment  or  system  deficiencies.  This  approach  requires  users  to  have  a  thorough 
understanding  of  the  existing  EnergyPlus  source  code  and  to  write  your  own  custom 
computer program based on existing  code. Such HVAC maintenance  issues as  cooling  coil 
fouling, outdoor air and return air temperature sensors offset adopt the third approach.    
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Table 4 shows a  list of common HVAC maintenance  issues with their potential  impacts and 
modeling  approach  according  to  maintenance  types,  including  sensor  calibration,  filter 
replacement,  heat  exchanger  treatment,  mechanical  repair  and  refrigerant  charge,  are 
investigated  using  detailed  simulation models. A  description  of  the  implement model  for 
selected maintenance issues is as follows. 

 Temperature sensor offset 

Control  sensors  such  as  supply  air  temperature  (SAT)  sensors,  zone  thermostats,  and 
outdoor air temperature (OAT) sensors may be out of calibration over a long term operation 
period. In this study, it is assumed that temperature sensors are offset by ±2˚C. For example, 
if a SAT sensor is offset by +2 ˚C and a designed supply air temperature to control is 13˚C, the 
actual supply air temperature due to sensor offset is 11 ˚C. 

 Dirty filter 

In  terms  of  filter  replacement  for  reactive maintenance,  it  is  assumed  that  filters  in  air 
handler units have not been replaced over a year. Therefore, pressure drop for air handler 
units has been increased and the maximum additional pressure drop is 500 Pa. 

 Fouled cooling tower  

Cooling  towers  can  become  fouled  due  to  unfavorable  conditions.  The  study  assumes 
certain  fouling condition  that overall heat  transfer coefficient  is  reduced  to 85% of design 
value.  

 Fouled Chiller/Boiler/Coils 

Fouling on heat transfer surfaces of boiler and chiller  increases the thermal resistance and 
leads to reduced heat transfer. For the scenario of chiller/boiler fouling, both chiller COP and 
boiler efficiency are assumed to be reduced by 10%. For fouled cooling/heating coils, overall 
heat transfer coefficients are assumed to be reduced to 50% of design UAs. 

 Outdoor air damper (OAD) leakage 

In the study, it is assumed that OAD leakage level is 30%. When the commanded outdoor air 
fraction  is  smaller  than  the  leakage  level,  leaky damper  cannot effectively  control  the  air 
intake.  

 Stuck outdoor air damper (OAD) 

Stuck OAD due  to control and mechanical  failure  is another common  fault  in  field.  In  this 
study,  OAD  is  assumed  to  get  stuck  at  fully  open  position.  Cooling  and  heating  energy 
penalties are introduced when outdoor air is not favorable for free cooling.  

 Clogged OA screen 

Outdoor  air  intake  screens  may  get  clogged  due  to  unfavorable  locations  or  weather 
condition. The maximum percent of intake fresh air is assumed to reduce to 70%. 

 Stuck outdoor air damper (OAD) 

Stuck OAD due  to control and mechanical  failure  is another common  fault  in  field.  In  this 
study,  OAD  is  assumed  to  get  stuck  at  fully  open  position.  Cooling  and  heating  energy 
penalties are introduced when outdoor air is not favorable for free cooling.  
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Table 4 – A list of HVAC maintenance issues 

 

   

Maintenance 

Types 

Maintenance 

Issues 
Impacts 

Simulated 

Scenarios 

Modeling 

Approach 

Sensor 
Calibration 

Supply  air 
temperature 
sensor  (SAT) 
offset 

controls,  heating 
and  cooling 
energy 

temperature 
sensors  are 
offset by ±2˚C 

Direct  modeling, 
adjust SAT setpoint 

Zone temperature 
sensor offset 

Direct  modeling  , 
adjust  thermostat 
settings 

Outdoor  air 
temperature 
sensor offset 

Modified  Code, 
modify  the 
economizer 
controls 

Filter 
replacement 

Dirty filter 
pressure  drop, 
fan  energy, 
airflow 

additional  500Pa 
of  air  pressure 
drop 

EMS,  adjust  fan 
power  for  VAV 
systems 

Heat  exchanger 
cleaning/treatme
nt 

Fouled  cooling 
tower 

efficiency 

overall  heat 
transfer 
coefficient  is 
reduced  to  85% 
of design UA

Direct  modeling, 
adjust  cooling 
tower UA 

Chiller:  fouled 
tubes 

efficiency 
chiller  COP  is 
reduced by 10% 

Direct  modeling, 
adjust  chiller 
efficiency 

Boiler: hard water 
scale 

efficiency 
boiler  efficiency 
is  reduced  by 
10%

Direct  modeling, 
adjust  boiler 
efficiency 

Fouled  heating 
/cooling coil 

efficiency, 
comfort 

overall  heat 
transfer 
coefficient  is 
reduced  to  50% 
of design UAs

Modified  Code, 
adjust coils UA 

Mechanical 
repair 

Outdoor  air 
damper leakage 

heating  and 
cooling energy 

30%  OAD 
leakage 

Direct  modeling, 
adjust minimum OA 
flow 

Stuck  outdoor  air 
damper (OAD) 

heating  and 
cooling energy 

OAD  is  stuck  at 
fully  open 
position

EMS,  set  constant 
OA flow 

Clogged  OA 
screen 

outdoor  air  flow 
is less than 100%  
during 
economizer 
mode  thus 
increasing 
cooling energy

maximum 
percent of intake 
fresh  air  is 
reduced to 70% 

Direct  modeling, 
set  maximum  OA 
flow 

Refrigerant 
charge 

Chiller:  over  or 
under  10% 
refrigerant charge

efficiency 
chiller  COP  is 
reduced by 10% 

Direct  modeling, 
adjust  chiller 
efficiency 
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 Clogged OA screen 

Outdoor  air  intake  screens  may  get  clogged  due  to  unfavorable  locations  or  weather 
condition. The maximum percent of intake fresh air is assumed to reduce to 70%. 

The energy penalty introduced by HVAC maintenance issues varies by a few factors including 
building and HVAC systems  types, vintage  (design efficiencies), and climates.  In  the  study, 
the  USDOE  commercial  building  reference  model  for  a  large‐size  office  building  in 
compliance  with  ASHRAE  Standard  90.1‐2004  is  used  as  a  baseline  representing  good 
maintenance practice. The  large‐size office building consists of one basement  level and 12 
floors above ground served by 4 built‐up VAV systems with 2 water‐cooled chillers and one 
natural gas hot‐water boiler.  

The results, shown in Figure 9, demonstrated the energy penalty introduced by the reactive 
maintenance practice  for the built‐up VAV system  located  in Chicago. The percentages are 
derived by comparing the total source/primary energy use of HVAC systems for the reactive 
maintenance  practice  to  those  of  the  good  practice  (baseline  reference  model).  The 
maintenance issues with significant energy impacts for Chicago are OA damper stuck at 100% 
position, blocked OA screen, supply air temperature offset, boiler/chiller fouling, and chiller 
refrigerant  under/overcharge.  Although  there  is  no  significant  energy  impact  due  to 
heating/cooling coil fouling, the numbers of unmet thermal comfort hours for both heating 
and cooling are significantly increased due to reduced system cooling and heating capacities. 
Two  combined  scenarios  (#1  and  #2)  with  different  temperature  sensor  offsets  were 
simulated  in the study. The overall energy penalty by combining the sampled maintenance 
issues  including sensor offset by +2 ˚C can reach 85% of overall HVAC energy consumption 
for Chicago climate.  

 

Figure 9 ‐ Impact of poor HVAC maintenance on HVAC source energy use of a large office building in Chicago 

Modeling  and  simulation  of  building  maintenance  can  help  practitioners  and  building 
operators  to gain  the knowledge of maintaining HVAC systems  in efficient operations, and 
prioritize HVAC maintenance work plan. 
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Weather Impact 
Yearly  variations  of  weather  are  significant,  which  can  even  change  the  climate  zone 
classification  of  a  location.  Figure  10  shows  the  variations  of  weather  data  on  the 
ASHRAE  climate  zone map  for  the  17  representative  cities  based  on  the  AMY  (Actual 
Meteorological  Year)  data  from  1980  to  2009.  It  can  be  seen  that most  cities  do  not 
belong to only one climate zone. For the 30‐year period, the climates of some cities vary 
across two zones and some even across three or more zones.  

Yearly  variations  of weather  have  strong  impact  on  energy  performance  of  buildings. 
The  simulated  energy  savings  and  peak  electrical  demand  reduction  from  the  use  of 
energy efficiency technologies are sensitive to the weather data used in the simulation, 
this is in contrary to the traditional thinking of weather data only impacts the absolute 
energy  use  but  not  the  relative  performance  between  two  different  designs.  Figure 11 
shows the variations of peak demand reduction (in %) and the HVAC and building total 
source  energy  savings  (in  %)  by  comparing  the  performance  of  the  prototype  office 
buildings  designed  to  meet  the  ASHRAE  standard  90.1‐2010  with  those  meeting  the 
90.1‐2004, using the TMY3 and the 30‐year AMY weather data across the 17 climates.  In 
Figure 11,  the  green  bars  represent  the  variation  in  the  demand  reduction  and  source 
energy  savings,  using  the  30‐year  AMY  weather  data.  The  red  marks  represent  the 
corresponding results using the TMY3 weather data.  

Generally  the weather  impact on  the peak demand  reduction  is much greater  than on 
the  HVAC  source  energy  savings.  For  HVAC  source  energy  savings,  larger  weather 
impacts  occur  for  the  mixed  to  cold  climates,  from  San  Francisco  to  Fairbanks.  The 
savings based on TMY3 weather files are usually within the ranges of savings based on 
the AMY weather  files, except  for over‐estimates  in San Francisco, Albuquerque, Boise, 
Vancouver, and Helena, where the red marks are usually at the very right end or outside 
of the green bars. The peak demand reduction can vary significantly year‐over‐year for 
most climates. The differences in demand reduction can be as high as 15% for Chicago 
and Fairbanks across the 30‐year period for the large office building. 

With the availability of long‐term AMY weather data and sufficient computational power 
of personal computers, it is feasible and necessary to run simulations with AMY weather 
data covering multiple decades  to  fully assess  the  impact of weather on  the  long‐term 
performance  of  buildings,  and  to  evaluate  the  energy  savings  potential  of  energy 
conservation measures for new and existing buildings from a life cycle perspective. Main 
findings are: (1) annual weather variation has a greater  impact on the peak electricity 
demand than on the energy use in buildings; (2) simulated building energy use using the 
TMY3 weather data is not necessarily representative of the average energy use using the 
AMY  data,  across  the  30‐year  period.  The  TMY3  results  can  be  significantly  higher  or 
lower than those from the AMY data; (3) the weather impact is greater for buildings in 
cold  climates;  (4)  the  weather  has  the  greatest  impact  on  the  medium‐size  office 
building, followed by the large office and then the small office; and (5) simulated energy 
savings and peak demand reduction by energy conservation measures using the TMY3 
weather data can be significantly  lower or higher when compared to  the  results using 
the  AMY  data.  These  findings  can  support  energy  policy  making,  energy  code 
development, building technologies evaluation, and utility incentive programs planning. 
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Figure 10 ‐ Variations of yearly weather data on the ASHRAE climate zone map 

 
Figure 11 – Variations of percentage reduction of peak electricity demand, and percentage savings of HVAC 
source energy and total source energy of the ASHRAE 90.1‐2010 models over the ASHRAE 90.1‐2004 models.            

(a)‐(c) large office; (d)‐(f) medium office; (g)‐(i) small office. 

Occupant Behavior 

Description of occupant behavior 
Occupant behavior refers to an occupant’s movement and responses to discomfort when 
his/her  comfort  needs  are  not  met  by  interacting  with  building  systems,  including 
windows,  shades,  lights,  appliances,  thermostat,  and  HVAC  systems.  An  occupant’s 
comfort  needs  include  thermal,  acoustic,  visual,  and  indoor  air  quality.  Occupant’s 
behavior  varies  with  time,  space,  and  individual.  It  is  stochastic,  complex,  and 
multidisciplinary.  A  framework  is  developed  to  describe  occupant  energy‐related 
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behavior (Figure 12), which captures the three key elements: Drivers, Needs, and Actions. 
Drivers determine the needs which further determine the actions. 

 

Figure 12 – A framework to describe occupant energy‐related behavior 

The  framework will be  represented  in an XML  schema  to provide a  standard definition of 

occupant behavior. Typical occupant behavior, actions on building systems, personal habit, 

and  adjustment  of  personal  clothing, moving,  etc,  will  be  represented  as  mathematical 

models suitable for simulation with energy modeling programs such as EnergyPlus and DeST. 

Integration of behavior model with energy modeling programs 
Typical  occupant  behavior  in  single  occupancy  private  offices  was  studied,  including 
how an occupant sets comfort criteria (cooling and heating thermostat), operates lights 
and office equipment, and turns on/off HVAC systems. The behavior is categorized into 
three workstyles (Table 5): (1) austerity – occupants are proactive in saving energy, (2) 
standard – average occupants, and (3) wasteful – occupants don’t care about energy use.  

The  three  types  of  occupant  behaviors  were  modeled  using  EnergyPlus  for  a  single‐
occupancy  office  room.  The  simulation  results  demonstrate  the  impact  of  occupant 
behavior on building energy use is significant, and even so at the energy end use levels 
such  as  lighting,  space  cooling  and  heating.  Compared  to  the  standard  or  average 
workstyle,  the  austerity  workstyle  reduces  energy  use  by  50%,  while  the  wasteful 
workstyle increases energy use by up to 90% (Figure 13).  
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Table 5 ‐ Occupant behavior categorized into three workstyles 

 

 

 
 

Figure 13 – Impact of occupant behavior for a private office 

Three methods were used to model occupant behavior depending upon the complexity: 
(1)  use  EnergyPlus  directly,  (2)  use  the  advanced  feature  of  EnergyPlus  ‐  Energy 
Management System, and (3) modify source code of EnergyPlus. A software module  is 
being  developed  to  allow  its  co‐simulation  with  EnergyPlus  for  various  types  of 
occupant behaviors. 

Statistical model of occupancy patterns 
Two important aspects of the occupant behavior research are: (1) measure indoor and 
outdoor  environmental  parameters  and occupant’s  interactions with  building  systems 
and personal movement,  (2) analyze  the measured data  to  identify occupant behavior 

Occupant behavior Austerity 
workstyle

Standard 
workstyle

Wasteful 
workstyle 

Cooling setpoint (°C) 26 24 22 

Heating setpoint (°C) 18 21 23 
Follow ASHRAE 
Adaptive Comfort 

Model 
Yes None None 

Occupancy controls 

If unoccupied, turn 
off lights and 

HVAC, turn down 
plug-load 30%

Scheduled 
Leave everything 
on: lights, HVAC, 

and plug-load 

Daylighting Control 3 Steps Dimming None None 

HVAC operation time 
Turn on 1 hour late 
and turn off 1 hour 
early: 9am to 4pm

Scheduled on: 
8am to 5pm 

Same as the whole 
building schedule: 

6am to 10pm 

Cooling startup 
control 

Cooling turns on 
when space air 

temperature 
reaches 28°C, then 
maintains at 24°C. 
Cooling turns off 
when unoccupied.

Follow HVAC 
operation 

schedule (8am 
to 5pm) to 

maintain 24°C. 
Same as above. 

Follow HVAC 
operation schedule 
(6am to 10pm) to 
maintain 24°C. 
Same as above. 

Combined All above  
behavior 

All above  
behavior 

All above  
behavior 
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and  develop mathematical models  for  such  behavior.  Occupancy  profile  is  one  of  the 
driving  factors  behind  discrepancies  between  the  measured  and  simulated  energy 
consumption  of  buildings.  The  frequencies  of  occupants  leaving  their  offices  and  the 
corresponding  durations  of  absences  have  significant  impact  on  energy  use  and  the 
operational  controls  of  buildings.  Statistical  methods  were  used  to  analyze  the 
occupancy status, based on measured lighting‐switch data in five‐minute intervals, for a 
total of 200 open‐plan (cubicle) offices. Five typical occupancy patterns were identified 
based  on  the  average  daily  24‐hour  profiles  of  the  presence  of  occupants  in  their 
cubicles. These statistical patterns were represented by a one‐square curve, a one‐valley 
curve,  a  two‐valley  curve,  a  variable  curve,  and  a  flat  curve  (Figure  14).  The  key 
parameters that define the occupancy model are the average occupancy profile together 
with probability distributions of absence duration, and the number of times an occupant 
(Figure 15 and Figure 16) is absent from the cubicle. The statistical results also reveal that 
the  number  of  absence  occurrences  decreases  as  total  daily  presence  hours  decrease, 
and  the  duration  of  absence  from  the  cubicle  decreases  as  the  frequency  of  absence 
increases. The developed occupancy model captures the stochastic nature of occupants 
moving  in  and  out  of  cubicles,  and  can  be  used  to  generate more  realistic  occupancy 
schedules  (Figure 17  and Figure 18).  This  is  crucial  for  improving  the  evaluation of  the 
energy  saving  potential  of  occupancy  based  technologies  and  controls  using  building 
simulations.  

 

Figure 14 ‐ The occupancy patterns: (a) single‐square curve, (b) one‐valley curve, (c) two‐valley curve, (d) 
variable curve,       (e) flat curve 
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Figure 15 ‐ The curves of occurrences, probability distribution function (PDF), and cumulative distribution 
function (CDF) of Pattern 1: (a) number of daily absences; (b) absence duration 

 

Figure 16 ‐ The curve of cumulative distribution function (CDF) of daily absence section for Pattern 2 
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Figure 17 ‐ Three generated weekday occupant schedules for Pattern 1 

 

Figure 18 ‐ Three generated weekday occupant schedules for Pattern 2 

Markovchain model of occupant moving 
Building occupancy is an important basic factor in building energy simulation but it is 
hard to represent due to its temporal and spatial stochastic nature. A novel approach 
for building occupancy simulation based on the Markov chain was developed. In this 
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study, occupancy is handled as the straightforward result of occupant movement 
processes which occur among the spaces inside and outside a building. By using the 
Markov chain method to simulate this stochastic movement process, the model can 
generate the location for each occupant and the zone-level occupancy for the whole 
building. There is no explicit or implicit constraint to the number of occupants and the 
number of zones in the model while maintaining a simple and clear set of input 
parameters. From the case study of an office building, it can be seen that the model 
can produce realistic occupancy variations in the office building for a typical workday 
with key statistical properties of occupancy such as the time of morning arrival and 
night departure, lunch time, periods of intermediate walking-around, etc. Due to 
simplicity, accuracy and unrestraint, this model is sufficient and practical to simulate 
occupancy for building energy simulations and stochastic analysis of building HVAC 
systems. 

Quantitative  description  and  simulation  of  human  behavior  in  residential 
buildings 
This study gives a quantitative description of human behavior in residential buildings. 
The quantitative description method can be used to forecast the impact of the human 
behavior on the indoor built environment and energy use. Human behavior influences 
the energy use directly and indirectly by changing window openings, air-conditioner 
usage, lighting, etc. The quantitative description method describes these behavioral 
effects. Behavior can be divided into several types according to the usage with time 
related, environmentally related and random modes used to quantitatively describe the 
behavior. The method is then applied to describe a household in Beijing with 
comparison to on-site observations of the occupant behavior and measurements of 
energy use to validate the method. The results show that the human behavior in the 
real world can be quantified by the quantitative description method. These simulation 
tools can greatly facilitate building energy conservation by describing the influence of 
human behavior on building performance and energy use. 

Comparison of EnergyPlus, DeST and DOE2.1E 

Introduction 
Building Energy Modeling (BEM) programs play a significant role in the design of 
energy efficient envelopes and HVAC systems for new buildings and retrofit of 
existing buildings, the development and compliance of building energy codes, and 
implementation of building energy rating/labeling programs. However, the issue that 
large discrepancies exist in simulation results between different BEM programs, even 
for the same building modeled by the same person, leads to many users and 
stakeholders lack confidence in building simulation methods and the results from 
simulations. This is a major barrier for the wider adoption and effective application of 
building energy simulation, and represents a challenge to the industry. The large 
discrepancies of simulation results from different BEM programs mainly come from 
three factors (Figure 19): first is the simulation engine which is the unchangeable core; 
second is the GUI to the simulation engine that usually simplifies, hides or hard-wires 
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some inputs that can be important; third is the fact that users may model the building 
or system inaccurately as they may not be familiar with the chosen BEM program, or 
input poor data due to constraints of budget and resources. In order to address the 
issue of large discrepancies between different BEM programs, the impact of the above 
three factors must be identified and quantified.  

 

Figure 19 ‐ Top three influencing factors of the discrepancies in simulation results 

EnergyPlus, DOE-2.1E and DeST were selected for the in-depth comparative analysis 
to qualitatively and quantitatively assess the main influencing factors driving the 
discrepancies of simulation results. EnergyPlus was chosen because it is widely used 
and continuously being developed and supported by USDOE. DOE-2.1E was chosen 
as it is still widely used in the U.S. DeST was chosen due to its popular use in China 
and a few Asian countries. Top-level key features of DOE-2.1E, DeST and 
EnergyPlus are summarized in Table 6. 

Due to the complexity of BEM programs and the intention of isolating influencing 
factors, two separate comparisons were made: the building loads and the HVAC 
systems. 
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Table 6 ‐ Comparison of top-level key features of DOE-2.1E, DeST and EnergyPlus 

Feature DOE-2.1E DeST EnergyPlus 

Developer LBNL/DOE, US 
Tsinghua University, 
China 

DOE/LBNL et al. US 

Development 
Started 

Early 1980s 1989 1996 

Development 
and Support 

No more development or 
support 

On-going On-going 

Users Worldwide Mostly China Worldwide 

Inputs Text, BDL 
Database, Microsoft 
Access 

Text, IDF 

Outputs 
Summary & hourly 
reports 

Summary & hourly 
reports 

Extensive summary & 
detailed reports with user 
specified time steps 

GUI 
Simulation engine only; 
3rd party GUIs available 

Coupled with  AutoCAD 
Simulation engine only;  
3rd party GUIs available 

Algorithms 
Surface heat transfer: 
CTF; Zone weighting 
factors  

Zone heat balance: State 
Space Method  

Surface heat balance: CTF; 
Zone heat balance 

Time Step 1 hour, fixed 1 hour, fixed 1 to 60 minutes  

Weather Data Hourly Hourly Hourly or sub-hourly 

HVAC 28 pre-defined systems 
A few pre-defined 
systems  

User configurable with 
some limitations 

User 
Customization 

User functions N/A 
Energy Management 
Systems 

Co-Simulation N/A N/A External Interface 

Language Fortran 77 C++ Fortran 2003 

Limitations 
Lack zone air heat 
balance, linear systems 

Limited user 
customization, linear 
systems 

Potentially long run-time 
for large models 

Licensing 
Free download;   
Source code available  

Free download; Source 
code not open to public 

Free download;   
Open source 
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Building loads 
Detailed comparison of the building thermal load modeling capabilities and 
simulation results of the three BEM programs was made with the goal to identify and 
quantify the influences of the simulation engines and input values or algorithms. Test 
cases, with modifications to the ASHRAE Standard 140 tests, were designed to isolate 
and evaluate the key influencing factors responsible for the discrepancies in results 
between EnergyPlus and DeST. This included the loads algorithms and some of the 
default input parameters. It was concluded that there is little difference between the 
results from EnergyPlus and DeST (Figure  21) if the input values are the same or 
equivalent despite there being many discrepancies between the heat balance 
algorithms. DOE-2.1E can produce large errors for cases when adjacent zones have 
very different conditions, or if a zone is conditioned part-time while adjacent zones 
are unconditioned. This was due to the lack of a strict zonal heat balance routine in 
DOE-2.1E, and the steady state handling of heat flow through interior walls and 
partitions.  

This comparison study did not produce another test suite, but rather a methodology to 
design tests that can be used to identify and isolate key influencing factors that drive 
the building thermal loads, and a process with which to carry them out. Figure  20 
summarizes the method used to develop the tests and perform the comparisons. For all 
test cases, EnergyPlus Version 7.0, DeST Version 2011-11-23 and DOE-2.1E114 
were used. For all EnergyPlus tests, the CTF (Conduction Transfer Function) method 
was used with a simulation time-step of 15 minutes. 

 

Figure 20 ‐ Methodology to build the tests and perform the comparisons 
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Figure 21 ‐ Annual cooling and heating loads from the ASHRAE Standard 140-2007 tests 

HVAC systems 

For comparison of HVAC systems modeling, a comparative  test method  is used mainly  for 

the inter‐program comparison. First, the HVAC system module calculations for each program 

are summarized, analyzed, and compared to  identify differences  in the solution algorithms 

and main assumptions  (Table 7). The component models are  important parts of  the HVAC 

system calculations and have an  important  influence on  the HVAC calculation  results. The 

calculation methods  and  the main  assumptions  of  several  of  the main  components  are 

discussed and compared in detail. As the HVAC control strategies of supply air temperature, 

supply air volume, and other parameters affect the operation of HVAC systems, they have 

large  impacts  on  the  simulation  results.  The  basic  simulation  methods  for  the  control 

strategies  in  the  three  BEM  programs  (Table  8)  are  summarized  and  the  differences  are 

discussed. Secondly, the limitations of existing HVAC system calculation tests are discussed, 

and additional tests are designed to allow the HVAC systems to be compared in depth. CAV 

(constant  air  volume)  and  VAV  (variable  air  volume)  systems  are  tested  in  this  study  to 

analyze  the  HVAC  system  performance  and  control  strategies  under  different 

heating/cooling  load  ratios. All  inputs  for  the  test cases are kept constant where possible. 

For the parameters that cannot have the same values, equivalent conversions are made,  in 

the interest of consistency. The tests include the system‐side and plant‐side, so that the test 

process is similar to the real cases. Analytical tests are first conducted to make the load‐side 

calculations consistent, so the differences in the following calculation results can only come 

from  the  HVAC  system  module.  Through  the  CAV  tests  under  full  load  and  part  load 

conditions,  the  component  models  and  their  influence  on  the  calculation  results  are 

compared. Then, based on the VAV test cases, the control strategies used by the three BEM 

programs  are  analyzed  in  detail.  Finally,  a  case  study  based  on  a  real  office  building  is 

presented and differences in the simulation results between the three BEMPs are analyzed. 

Based  on  the  load  calculation  results,  drivers  of  the  differences  in  the  HVAC  side  are 

analyzed and discussed. Figure 22 shows the method used for the HVAC system simulation 

comparison. 
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Figure 22 Methodology of the HVAC calculation comparison 

Theoretical comparison 

The three BEMPs are reviewed in terms of HVAC simulation methods, and their advantages 

and  disadvantages  are  summarized.  Then,  focusing  on  the main  HVAC  components  and 

HVAC  control  strategies,  the  differences  between  simulation methods  (including  solution 

algorithms, modeling assumptions, and simplifications) are discussed and analyzed in detail.  

Integrated test cases 

Based on the review of existing HVAC system tests, an  integrated test method  is proposed 

and used. Due  to  the  similarity of EnergyPlus and DOE‐2  in  the use of  steady‐state HVAC 

models, the test process is only applied to EnergyPlus and DeST. Two types of HVAC systems 

(CAV and VAV) are tested under different load conditions. Comparisons of each component 

model and control strategy are made and analyzed in detail. 

Case study with a real building 

Based  on  the  findings  of  the  previous  two  comparisons,  a  real  building  case  study  is 

conducted using the three simulation programs. The differences in the load‐side calculations 

are compared first. Then, on the foundation of the load‐side results, the errors in the HVAC 

system energy consumption results are compared and analyzed to ascertain the differences 

between measured and simulated results, for each program. 
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Table 7 Summary of HVAC systems simulation 

Features  EnergyPlus  DeST  DOE‐2.1E 

Time‐step 
Sub‐hourly,  auto‐adjusted  from  zone  time 

step 
Fixed hourly  Fixed hourly 

Advanced features  Energy Management Systems (EMS)  None  User functions 

Simulation structure 

Integrated  solution.  BUILDING,  SYSTEM, 

PLANT  are  integrated  and  controlled  by  the 

integrated solution manager. Uses a predictor‐

corrector approach. 

DeST  separates  the  heating 

and  cooling  station  from  the 

supply side, dividing them into 

two modules:  equivalent  user 

terminal  and  heating/cooling 

station.  The  two  modules 

iterate to calculate results. 

DOE‐2 is a program with sequential simulations. It has 

one  subprogram  for  the  translation  of  users’  inputs 

(BDL  processor),  and  four  simulation  subprograms 

(LOADS,  SYSTEMS,  PLANT  and  ECON).  LOADS, 

SYSTEMS and PLANT are executed  in sequence. Their 

outputs are used as inputs to the ECON subprogram. 

Algorithm  All the equipment models are forward, quasi‐steady models that use equipment/system performance curves 

Limitations 
For  complex  system  configurations, 

convergence sometimes is an issue 

For  new  types  of  HVAC 

systems,  the  equivalent  user 

terminal is limited 

Cannot model new HVAC system types; 

When  the  SYSTEM  subprogram  cannot  meet  the 

loads, space temperatures are estimated. 

System configurations 
Flexible,  user  definable,  HVAC  templates 

covering most traditional designs 

Predefined  HVAC  templates: 

VAV,  CAV,  FCU,  VRF,  PTAC, 

PTHP 

25 fixed system types with optional components 
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Pressure calculation  Two types of pressure drop curves 
Characteristics  of  equivalent 

user terminal 
User inputs 

Terminal model 

Take terminals as different equipment models 

to get the information about flow rate, return 

water temperature and so on 

Use  the  equivalent  user 

terminals  to  reflect  the 

average  of  terminal  flow  rate 

and thermodynamic state 

Take terminals as different equipment models and the 

inputs  are  based  on  average  parameters,  then  the 

overall features can be achieved 

Interaction between the 

HVAC  equipment  and 

the building loads 

successive  substitution  iteration  to  reconcile 

all  elements  using  the  Guass‐Seidell 

philosophy  of  continuous  updating  with 

predictive system energy balance method 

equivalent user terminal curve 

The  zone  temperatures  from  the  previous  hour 

calculation  are  used  to  approximate  the  heat  flow 

across  internal walls. Temperature histories are used 

in the calculation of equipment capacities. 

Handling  of  given 

types  of  equipment 

with multiple sizes 

According  to  the  control  strategy  defined  by 

the users 

According  to  the  control 

strategy defined by the users 

Model  them  as  if  all  the  sizes  operating  were 

combined together into one large unit. 
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Table 8 Comparison of VAV system control strategies 

Program  Control  Description 

EnergyPlus 

(normal acting damper) 

Heating 
Supply  airflow  rate  stays  at  a  constant minimum  value  for  normal  acting  dampers  and modulates  higher  for 
reserve acting dampers, supply air temperature may vary 

Cooling  Supply air temperature may vary, supply airflow rate varies 

DeST  Heating & cooling 
An optimization  technique  is employed  to  search  for  the best  supply air  temperature; when  the  range of best 
supply  air  temperature  (SAT)  exists,  determine  the  supply  air  volume  (SAV)  to make  sure  the  air  flow  rate 
minimum; otherwise, determine the SAT to make deviation minimum 

DOE‐2 
Heating 

The  actions  are  sequential:    1)  increase  supply  air  temperature,  2)  increase  the  baseboard  output  if  exist,3) 
increase reheat coil output;3) increase supply air volume 

Cooling  The actions are sequential:1) reduce supply air temperature;2) increase the airflow rate  
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Based  on  the  comprehensive  test  cases  and  results  analysis,  the main  findings  are  summarized  as 

follows: 

1. EnergyPlus,  DOE‐2.1E,  and  DeST  all  have  fundamental  capabilities  and  appropriate  modeling 
assumptions  for HVAC system simulations. The results  from the comparative tests on component 
models show small differences, which are mainly due to the  input settings and algorithms used  in 
each  program.  Differences  between  the  total  energy  consumption  calculation  results  of  HVAC 
systems from DeST and EnergyPlus can be  limited to 5%,  if all component models are similar, and 
the same or equivalent inputs for the HVAC systems are used. It is found that the main influencing 
factors on HVAC discrepancies between DeST and EnergyPlus are the algorithms used for the HVAC 
component models and their control strategies. For the case that simulates the real building, using 
design  and  default  values  for  the  inputs  of  each  simulation  program,  the  errors  in  both  load 
calculations  and  HVAC  system  calculations  are  within  15%  of  the  measured  values.  This 
demonstrates good agreement between the simulation programs and the real building. 

2. EnergyPlus has more comprehensive component models than DOE‐2 and DeST. The three programs 
have consistent component models for pumps, fans, and boilers. The coil models in EnergyPlus and 
DeST are based on engineering equations while the coil model  in DOE‐2  is based on assumptions 
and  empirical  data.  The  influences  of  load  ratio,  condenser  inlet  water  temperature,  and 
evaporator outlet water temperature on the chiller efficiency are considered in all three programs. 
Three chiller performance curves with user‐specified coefficients are used in EnergyPlus and DOE‐2, 
while  one  hard‐wired  performance  curve  is  used  in DeST.  In  EnergyPlus  and DOE‐2.1E,  the  fan 
power of the cooling tower is related to the load ratio, so the fan can cycle during a particular hour 
if the load is small. In DeST, the fan power draw remains constant whenever the cooling tower has a 
load for any particular hour. 

3. To  complete  a  comprehensive  comparison  of  the  three  different  simulation  programs,  several 

requirements  are  needed:  1)  the  test  cases  should  be  broad  enough  to  cover most modeling 

features; 2) the test cases should be detailed enough to isolate influencing factors; 3) special cases 

should  be  designed  to  test  the  unique  limitations  of  the  programs.  Based  on  the  current 

development  of HVAC  system  tests,  a  testing  concept  is  introduced  in  this  report  to  develop  a 

better method of comparison. As each component  in a HVAC system  is connected and  influenced 

by one another, the whole HVAC system should be considered when the comparison is conducted. 

This means  that  both  air‐side  and  plant‐side  components  should  be  tested  together.  Imposing 

steady‐state conditions makes it possible to compare each component model in detail and calculate 

the analytical results. Considering the whole system makes the test process more practical. 

Future Research 
The  research  findings  from  the  project  directly  feed  into  the  two  new  CERC‐BEE  Simulation 
Projects:  Integrated Design  and Operation  for  Very  Low Energy Buildings,  and Human Behavior. 
Both  projects  aim  to  further  understanding  driving  forces  of  building  performance,  integrated 
building design and operation, and occupant energy‐related behavior, and to create new scientific 
knowledge,  toolkit,  guideline,  and  case  studies  for building designers,  engineers,  researchers  and 
policy makers to improve design and operation of high performance buildings. 
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h i g h l i g h t s

�Weather has a significant impact on both the peak electricity demand and energy use.
� Weather impact varies with building type, building efficiency level, and location.
� Simulated results using TMY3 weather data can under or over estimate those of AMY.
� It is crucial to assess performance of buildings using long-term actual weather data.
� Findings enable building stakeholders to make better decisions on weather impact.
a r t i c l e i n f o
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Typical meteorological year
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a b s t r a c t

Buildings consume more than one third of the world’s total primary energy. Weather plays a unique and
significant role as it directly affects the thermal loads and thus energy performance of buildings. The tradi-
tional simulated energy performance using Typical Meteorological Year (TMY) weather data represents the
building performance for a typical year, but not necessarily the average or typical long-term performance as
buildings with different energy systems and designs respond differently to weather changes. Furthermore,
the single-year TMY simulations do not provide a range of results that capture yearly variations due to
changing weather, which is important for building energy management, and for performing risk assess-
ments of energy efficiency investments. This paper employs large-scale building simulation (a total of
3162 runs) to study the weather impact on peak electricity demand and energy use with the 30-year
(1980–2009) Actual Meteorological Year (AMY) weather data for three types of office buildings at two
design efficiency levels, across all 17 ASHRAE climate zones. The simulated results using the AMY data
are compared to those from the TMY3 data to determine and analyze the differences. Besides further dem-
onstration, as done by other studies, that actual weather has a significant impact on both the peak electricity
demand and energy use of buildings, the main findings from the current study include: (1) annual weather
variation has a greater impact on the peak electricity demand than it does on energy use in buildings; (2) the
simulated energy use using the TMY3 weather data is not necessarily representative of the average energy
use over a long period, and the TMY3 results can be significantly higher or lower than those from the AMY
data; (3) the weather impact is greater for buildings in colder climates than warmer climates; (4) the
weather impact on the medium-sized office building was the greatest, followed by the large office and then
the small office; and (5) simulated energy savings and peak demand reduction by energy conservation mea-
sures using the TMY3 weather data can be significantly underestimated or overestimated. It is crucial to run
multi-decade simulations with AMY weather data to fully assess the impact of weather on the long-term
performance of buildings, and to evaluate the energy savings potential of energy conservation measures
for new and existing buildings from a life cycle perspective.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Buildings consume more than one third of the world’s total pri-
mary energy. The IEA Annex 53 [1] identified and studied six influ-
encing factors on building energy performance, including climate,
building envelope, building equipment, operation and mainte-
nance, occupant behavior, and indoor environmental conditions.
Among these influencing factors, climate plays a unique and signif-
icant role. Weather contributes directly and significantly to the
variations of thermal loads and energy use of HVAC (heating, ven-
tilation, and air conditioning) systems, lighting (for buildings with

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.apenergy.2013.05.019&domain=pdf
http://dx.doi.org/10.1016/j.apenergy.2013.05.019
mailto:thong@LBL.gov
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daylighting controls), and energy production from solar-based
renewable systems. In residential and commercial buildings in
the US, heating and cooling accounts for more than 40% of end-
use energy demand. It is important to understand and estimate
the impact of weather on the long-term performance of buildings
in order to support policy making, and to allow building operators
and owners to respond better to climate changes in terms of build-
ing energy supply and demand. Additionally, considering the im-
pact of yearly variations in weather can improve the evaluation
of investment risks of energy conservation measures (ECMs) for
new and existing buildings by taking into account their life-cycle
energy and cost savings.

The accuracy of building energy simulations and economic
assessments of renewable energy systems depend on the availabil-
ity of reliable weather data. There are two primary sources of
weather data that are used to generate weather data files used in
building simulation: measured weather data using physical sen-
sors and observations, and simulated data using mathematical
weather models. Various methods to generate annual hourly
weather data have been developed in the past. Such weather data
include the Typical Meteorological Year (TMY), the test reference
year (TRY), the weather year for energy calculation (WYEC), the de-
sign reference year (DRY), as well as the synthetically modeled
meteorological year (SMY). However, the lack of long-term weath-
er records usually limits the generation of typical annual weather
data files in any format [2].

A TMY weather file contains hourly values of solar radiation
and meteorological elements for a 1-year period. The 12 typical
meteorological months (TMMs) are selected from various calen-
dar months in a multi-year weather database. The criteria for
TMM selection is based on the statistical analysis and evaluation
of four weather parameters: the ambient dry-bulb temperature,
the dew-point temperature, the wind speed and the global solar
radiation. Algorithms are used to smooth discontinuities from
the data to avoid drastic changes between two adjacent months
selected from different years. The first generation of TMY weath-
er data for the US is derived from the 1952–1975 SOLMET/ER-
SATZ database, while the second generation of data (TMY2) is
derived from the 1961–1990 National Solar Radiation Database
(NSRDB) covering 239 US locations. The latest, third generation
data (TMY3) is derived from the 1976–1990 and 1991–2005 Na-
tional Solar Radiation Data Base (NSRDB). TMY3 covers 1020 US
locations. TMY, TMY2 and TMY3 data sets cannot be used inter-
changeably because of differences in the data structure such as
time (solar vs. local), formats, elements, and units. The intended
use of TMY weather data is for computer-based building perfor-
mance simulations of solar energy conversion systems and build-
ing systems to facilitate performance comparisons of different
system types, configurations, and locations in the US and its ter-
ritories. Because they represent typical rather than extreme con-
ditions, they are not suited for designing systems to meet the
worst-case conditions occurring at a location [3]. For the calcula-
tions of peak cooling and heating loads of buildings, and sizing
HVAC equipment, design day weather data are used. Design-
day weather data tend to represent more extreme weather con-
ditions in order to guarantee that HVAC systems can meet peak
loads for most of the time during their life cycle. Various meth-
ods are used to create design-day weather data [4].

As TMY data may not be available for some cities or sites, SMY
weather data provide a practical and useful alternative. SMY
weather data can be generated from monthly average or total val-
ues of weather parameters using stochastic models and auto-
regressive moving average processes to represent the seasonal
and daily weather variations [5]. Such stochastic weather models
can be used to generate AMY weather data for use in deterministic
building simulations, or together with a stochastic internal loads
model, can be integrated with a building thermal model to obtain
directly the probability distribution of building performance to
investigate the uncertainty caused by the random meteorological
processes and internal heat gains [6].

A new online weather data service with immediate access to
precision, localized weather history, current conditions and fore-
casts are presented by Keller and Khuen [7]. Localized weather
data is created by integrating all available ground station observa-
tions with high-resolution datasets from NOAA (National Oceanic
and Atmospheric Administration). Both historical and forecast time
series data are available for direct user access and application/sys-
tem access through Web Data Services and API interfaces.

Selecting appropriate weather data to be used in building
performance simulation is important. The use of inappropriate
weather data can result in large discrepancies between the pre-
dicted and measured performance of buildings. In the late 1970s,
Freeman [8] evaluated how well TMY represents actual long-
term weather data based on simulations of an active residential
space solar heating and cooling system for six US climates, Albu-
querque, Fort Worth, Madison, Miami, New York, and Washing-
ton DC. High variability of the weather and solar heating
system performance year to year was noted. Crawley [9] com-
pared the influence of the various weather data sets on simu-
lated annual energy use and cost. Using different weather data
sets can cause significant variations in annual energy consump-
tion and cost from simulation results. The results show that
the TMY and the WYEC data sets represent the closest typical
weather patterns. Simulated results using the TMY weather data
provides the average/typical energy use for buildings, but the
peak electricity demand predictions and uncertainty analyses
based on TMY are often not reliable because a single year cannot
capture the full variability of the long-term climate change [10].
In view of the long-term climate change, the time period as-
signed for TMY selection should include the most recent meteo-
rological data and should be reasonably long to reflect well the
weather variations [11]. Most of the available TMY weather data
are from weather stations located at airports. It is possible to
create a new TMY file localized to a building location by inte-
grating the weather station observations with gridded reanalysis
data. However, there are limited complete weather data col-
lected by weather stations over 15–30 years, so TMY data is only
available for only 1020 locations. Furthermore, some of the TMY
weather data files were created up to 20 years ago. They are less
representative of the typical present day climate and do not de-
scribe extreme weather conditions. Compared with the TMY
weather data, the AMY is created from actual hourly data for a
particular calendar year. AMY weather data is particularly useful
for modeling years with extremes in weather and verifying the
energy performance of buildings. However, as with the TMY
weather data, the AMY weather data needs to be chosen as close
to the building location as possible.

The potential impacts of various types of weather forecast mod-
els, weather data, and building prototypes have been studied from
a number of perspectives. A prototypical small office building was
modeled operating at three energy efficiency levels, using typical
and extreme meteorological weather data for 25 locations, to study
various predicted climate change and heat island scenarios [12].
The largest change to the annual energy use due to climate change
was seen in the temperate, mid-latitude climates, where there was
a swapping of energy use from heating to cooling. The heating en-
ergy was reduced by more than 25% and cooling energy was in-
creased by up to 15%. The TMY weather data provides more
localized and comprehensive climate indicators to further support
the HVAC system design in buildings [3,13]. The space cooling
plays a major role in determining the magnitude and timing of
peak electricity demand. The archived General Circulation Model
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(GCM) projections were statistically downscaled to the site scale,
which were then used for input to building cooling and heating
simulations to study the California specific impact of global warm-
ing on building energy consumption [14]. The IPCC’s different car-
bon emission scenarios predict that climate change will lead to a
25–50% increase in space cooling electricity use over the next
100 years. Under the worst case carbon emission scenario the total
energy consumption will increase between 8% and 20%. The energy
performance of an office building in Hong Kong, using multi-year
weather data sets was simulated to investigate the diversity in
simulation predictions [15]. The results concluded that the choice
of weather data sets was not crucial for the comparative energy
studies during the initial design stage. However, it becomes impor-
tant to select a particular standard weather year data set when
absolute energy consumption data are required. Similar studies
on office buildings were conducted in five major climate zones in
China by using multi-year weather databases as well as TMY data
[16–18]. The results showed a decreasing trend for heating loads
and an increasing trend for cooling loads due to predicted climate
change. The monthly loads and energy use profiles calculated using
the TMY and long-term means profiles fell well within the maxi-
mum and minimum ranges of the 30-year individual predictions.
It was concluded that building performance predictions using
TMY weather data can be used in comparative energy efficiency
studies.

In recent years, various types of weather data have been used in
building simulation to evaluate energy performance and demand
response. Accurate estimation of building performance relies on
the appropriate selection of accurate weather data. The quality of
weather data and their impact on building cooling and heating
loads and energy consumption were studied by comparing three
weather datasets for a specific location for the calendar year
2010 [19]. The three sources of data included site measured data
and AMY weather data provided by two vendors. Key weather vari-
ables from the three datasets were compared statistically, and
building loads and energy use were simulated using EnergyPlus
version 6.0. The study concluded that the maximum difference in
individual hourly weather variables can be as high as 90%, annual
building energy consumption can vary by ±7%, while monthly
building loads can vary by ±40% when using different weather
datasets.

Using TMY weather data to calculate the energy use in buildings
aims to represent the average or typical values. However, different
types of buildings with different energy service systems and oper-
ation strategies have different responses to weather. Furthermore,
a single set of energy use results from TMY simulations does not
provide the range of variations due to the change of weather from
year to year. The typical life of a building is more than 50 years;
therefore the assessment of long-term building performance be-
comes very important. TMYs are often recommended to be used
in building simulations to evaluate and compare performance of
design alternatives under the assumption that energy savings from
a design alternative would not vary noticeably with yearly weather
variations. This assumption is not necessarily true. Although previ-
ous studies have demonstrated actual weather has a significant im-
pact on peak electric demand and energy use in buildings, there are
limited studies that focus on investigating the sensitivity of energy
savings and peak demand reduction of energy conservation mea-
sures to the yearly variation of weather, using multi-decade AMY
weather data across a complete coverage of climate zones for typ-
ical commercial buildings. This study aims to address that gap in
the literature.

This study does not touch the topics of previous studies on im-
pacts of long-term climate change or local heat island effects on
building performance; instead it focuses on providing insights to
the following important questions:
(1) How significant is the weather impact on both the peak elec-
tricity demand and building energy use?

(2) Does the simulated building energy use using the TMY3
weather data represent the average or typical energy use
over a 30-year period?

(3) Building simulation results from which climates are greater
affected by using different weather data sets?

(4) What types of office buildings are subject to the greatest
impact of weather?

(5) What are the risks from using the TMY3 weather data in build-
ing simulations to evaluate the energy savings and electricity
demand reduction of energy efficiency technologies?

Through better understanding of which building technologies
and system designs are more sensitive to yearly weather variation,
building designers, owners, operators, and policy makers can make
more informed decisions on energy efficiency implementations to
reduce peak electricity demand and building energy use.
2. Methodology

2.1. Overview

To study the impact of weather on building performance, the
most typical commercial buildings located in typical climate zones
are the natural starting point. The US 2003 Commercial Building
Energy Consumption Survey (CBECS) [20] indicates that office
buildings are the most common building type, comprising the larg-
est floor area, and consuming the most energy in the commercial
building sector. Therefore, the prototypical office buildings with
three different sizes at two design efficiency levels for 17 climates
are chosen from the PNNL’s prototype buildings. Three building
sizes represent large, medium, and small office buildings based
on the statistics of the 2003 CBECS. The 17 climates represent all
of the ASHRAE climate zones. The two design efficiency levels cor-
respond to the ASHRAE Standard 90.1-2004 and 2010. ASHRAE
standard 90.1 is an energy standard providing prescriptive and
mandatory requirements for energy efficiency levels of major
building systems including building envelopes (opaque construc-
tion and fenestration), lighting systems, service water heating,
and HVAC systems. The 90.1-2004 standard was published in
2004 and represented the minimum performance of recently built
new constructions that comply with the standard. While 90.1-
2010 [21] represents more efficient designs, with about 30% energy
savings over 90.1-2004 [22].

The TMY3 weather data and 30 years of AMY weather data
(1980–2009) are used in the building performance simulations.
The simulations were run using EnergyPlus 7.1. There was a total
of 3162 simulation runs: 3 office building types, 2 design efficiency
levels, 17 climates, and 31 weather files. The HVAC equipment is
autosized by EnergyPlus to meet peak cooling and heating loads
based on the 2009 ASHRAE design day weather data. The structure
of the simulation runs is illustrated in Fig. 1. Performance metrics,
including building total source energy (including all end uses), HVAC
source energy (including end uses of cooling, heating, and ventila-
tion), and peak electricity demand, of each simulation run were ex-
tracted from the EnergyPlus output reports. The performance
metrics of each AMY run were then compared with those of the cor-
responding TMY3 run to calculate the percentage changes, equal to
100 � (AMY_Results–TMY3_Results)/TMY3_Results, as indicators
of deviations from the TMY3 results. The ranges of these percentage
changes are graphed as key results for analysis and discussions. To
filter out the extreme weather years, the variation ranges excluding
those of the top three and the bottom three weather years were
overlapped on the same graphs. The variation ranges of the percent-



Fig. 1. The structure of simulation runs.

Table 1
Climate zone classification based on ASHRAE Standard 90.1-2010.

Climate zone Climate type Criteria Representative city

1A Very Hot–Humid 5000 < CDD10 �C Miami, USA
1B Very Hot–Dry 5000 < CDD10 �C Riyadh, Saudi Arabia
2A Hot–Humid 3500 < CDD10 �C 6 5000 Houston, USA
2B Hot–Dry 3500 < CDD10 �C 6 5000 Phoenix, USA
3A Warm–Humid 2500 < CDD10 �C 6 3500 Memphis, USA
3B Warm–Dry 2500 < CDD10 �C 6 3500 EI Paso, USA
3C Warm–Marine CDD10 �C 6 2500 and HDD18 �C 6 2000 San Francisco, USA
4A Mixed–Humid CDD10 �C 6 2500 and 2000 < HDD18 �C 6 3000 Baltimore, USA
4B Mixed–Dry CDD10 �C 6 2500 and 2000 < HDD18 �C 6 3000 Albuquerque, USA
4C Mixed–Marine 2000 < HDD18 �C 6 3000 Salem, USA
5A Cool–Humid 3000 < HDD18 �C 6 4000 Chicago, USA
5B Cool–Dry 3000 < HDD18 �C 6 4000 Boise, USA
5C Cool–Marine 3000 < HDD18 �C 6 4000 Vancouver, Canada
6A Cold–Humid 4000 < HDD18 �C 6 5000 Burlington, USA
6B Cold–Dry 4000 < HDD18 �C 6 5000 Helena, USA
7 Very Cold 5000 < HDD18 �C 6 7000 Duluth, USA
8 Subarctic 7000 < HDD18 �C Fairbanks, USA
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age changes of building total source energy, HVAC source energy and
peak electricity demand give a clear picture on how the AMY results
differ from the TMY3 results. The smaller the range of difference, the
closer of TMY3 results to AMY results.

To investigate the weather impact on energy savings and de-
mand reduction of building technologies, two office models under
two design efficiency levels (ASHRAE standard 90.1-2004 and 90.1-
2010) were simulated using the TMY3 and 30-year AMY weather
files. The energy savings and demand reductions of the 90.1-
2010 models over the corresponding 90.1-2004 models were
determined using the same TMY3 or AMY weather files.

Furthermore, values of key weather parameters, such as annual
average ambient air temperature, global horizontal solar radiation,
and heating and cooling degree days, were extracted from the
EnergyPlus weather statistics (stat) files and used to identify po-
tential variation patterns and trends.

In this study, source energy (also referred to as primary energy)
is used because it considers the energy loss during energy genera-
tion, transmission, and distribution. EnergyPlus calculates the
source energy by multiplying the calculated site energy with corre-
sponding source factors, which depend on types of energy sources
and building location.

2.2. Weather data

In general, two kinds of weather data packaged in weather files
are used in building performance simulation. One is the TMY
weather data and the other is the AMY weather data. The TMY
weather data is usually used for annual energy simulations during
the building design process, either to evaluate the energy and cost
effectiveness of design alternatives, to demonstrate code compli-
ance, or to calculate credit points towards building rating systems
or utility incentive programs. The AMY weather data, containing
measured data for a particular year, is usually used in simulations
post occupancy to verify and diagnose the actual building energy
performance. The AMY weather data can be obtained from several
sources, including Weather Bank, National Climatic Data Center
(NCDC), Weather Source, Weather Analytics, and Meteonorm.
Weather Bank maintains hourly and daily historical data records
from every National Weather Service reporting station in the Uni-
ted States, as well as other locations around the world. The weath-
er data are archived on a real-time basis and updates are made
hourly. NCDC is the world’s largest active archive of weather data.
The Integrated Surface Database (ISD) consists of global hourly and
synoptic observations compiled from numerous sources. Currently
there are over 11,000 stations active and updated daily in the data-
base [23]. Weather Source provides historical and real-time digital
weather information for tens of thousands of locations across the
US and around the world. Weather Analytics [7] provides site-spe-
cific TMY and AMY weather files based on the last 30 years of
hourly data. The files combine hourly weather station observations
and the new NOAA reanalysis data sets. Meteonorm is a weather
data generation tool. It integrates a climate database, a spatial
interpolation tool and a stochastic weather generator. The typical



Table 2
Commercial reference buildings.

Building type Subtype

Offices Small office; medium office; large office
Retails Stand-alone retail; strip mall
Schools Primary school; secondary school
Hospitals Outpatient healthcare; hospital
Hotels Small hotel; large hotel
Restaurants Quick service restaurant; full service restaurant
Apartments Mid-rise apartment; high-rise apartment
Others Warehouse (non-refrigerated)
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years with hourly or 1-min time resolution can be calculated for
any site [24].

In this study, the weather data for 17 climate zones, including
the 30-year AMY weather files covering 1980–2009 from Weather
Analytics and the TMY3 weather data, were used in the simula-
tions to investigate the weather impact on building performance.
Table 1 lists the climate type, criteria, and representative cities
for the 17 climates – major US cities except Riyadh in Saudi Arabia
and Vancouver in Canada.
2.3. Prototype buildings

To calculate the impact of ASHRAE Standard 90.1, researchers at
Pacific Northwest National Laboratory (PNNL) created a suite of 16
Table 3
Summary of key features of the three types of office buildings.

Large-size office

Total floor area (m2) 46,320
Number of stories 12
% Perimeter zone area 30%

Envelope
Window-wall-ratio (WWR) 40%

Walls, roofs, floors: U-factor ASHRAE 90.1 Requirements, nonresident
Windows: U-factor and SHGC ASHRAE 90.1 requirements

nonresidential

HVAC systems
System type Central built-up VAV systems
Heating source Gas boiler

Cooling source Water-cooled centrifugal chillers
Air distribution and terminal units VAV terminal box with hot-water

reheat coil, minimum damper position
set at 30%

Thermostat setpoint 24 �C Cooling/21 �C Heating
Air-side economizer Applicable based on 90.1

Internal loads
Average lighting power density (W/m2) 90.1-2004: 10.76

90.1-2010: 8.99
Average plug-load power density (W/m2) 7.8
Average occupant density (m2/person) 18.6

Operating schedules
Lighting, plug-loads, and occupants

Misc.
Exterior lighting peak power (W) 90.1-2004: 62787

90.1-2010: 43305
prototype buildings [25] covering 80% of the commercial building
floor area in the United States for new construction. These proto-
type buildings were derived from the US Department of Energy
(USDOE) [26] but with substantial modifications based on exten-
sive inputs from ASHRAE 90.1 Standing Standards Project Commit-
tee members and other building industry experts. The prototype
models include the 16 building types in 17 climate locations for
three editions of ASHRAE Standard 90.1 (90.1-2004, 90.1-2007
and 90.1-2010). Table 2 summarizes the building types. The Ener-
gyPlus models of these buildings are available; including Energy-
Plus model input files (.idf) and output files (.html). The
description of the building, HVAC systems, internal loads, operat-
ing schedules, and other key model inputs are summarized in
scorecard spreadsheet files that are also available from the web
site. The detailed methodology and modeling strategy used to de-
velop these prototype models as well as the energy and cost saving
analysis is presented in [22].

From these prototype buildings, the three types of office build-
ings with different sizes, small, medium and large, were chosen for
this study. Office buildings represent the most typical commercial
buildings in the United States in terms of buildings numbers and
total floor area [20]. The large-size office building is served by a
central built-up variable air volume (VAV) system with a central
plant. The medium office has packaged VAV systems, and the small
office has packaged single zone systems. The key features of these
office buildings are summarized in Table 3. The EnergyPlus models
Medium-size office Small-size office

4980 510
3 1
40% 70%

33% 24.4% for South and 19.8% for the
other three orientations

ial; walls, above-grade, steel-framed; roofs, insulation entirely above deck
ASHRAE 90.1 requirements
nonresidential; vertical glazing, 31.1–
40%, U fixed

ASHRAE 90.1 requirements
nonresidential; vertical glazing, 20–
30%, U fixed

Packaged VAV systems Packaged single zone systems
Gas furnace Air-source heat pump with gas

furnace as back up
Air-cooled direct expansion Air-source heat pump
VAV terminal box with hot-water
reheat coil, minimum damper position
set at 30%

No terminal unit

24 �C Cooling/21 �C Heating 24 �C Cooling/21 �C Heating
Applicable based on 90.1 None

90.1-2004: 10.76 90.1-2004: 10.76
90.1-2010: 8.87 90.1-2010: 9.15
8.07 6.78
18.6 16.6

90.1-2004: 14385 90.1-2004: 1634
90.1-2010: 7476 90.1-2010: 896
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for the three office buildings in 17 climates based on ASHRAE Stan-
dard 90.1-2004 and 90.1-2010 were downloaded and converted for
use with EnergyPlus version 7.1. The 90.1-2010 models represent
high energy-efficiency designs, with better insulation and win-
dows, more efficient lighting and HVAC systems, exceeding the
performance of the 90.1-2004 models by approximately a 30%
reduction in site energy use.
2.4. Simulation engine

EnergyPlus [27] version 7.1, released in June 2012, was used
to perform the building simulations. EnergyPlus is developed
by USDOE as a new generation building energy modeling pro-
gram that builds upon the most popular features and capabilities
of BLAST [28] and DOE-2 [29]. EnergyPlus has innovative simu-
lation capabilities including sub-hourly time steps, an integrated
solver for system models with a zone heat balance model, and
user definable and configurable HVAC systems and components.
It calculates space temperature, occupant thermal comfort, cool-
ing and heating loads, HVAC equipment sizes, energy consump-
tion, utility cost, air emissions, water usage, renewable energy,
etc. EnergyPlus is a stand-alone simulation program without a
‘user friendly’ graphical interface. It reads input and writes out-
put as text files. Since the first release in April 2001, EnergyPlus
has been evolving with new and enhanced modeling features
and improved usability. EnergyPlus has been validated through
three types of tests, including analytical tests, comparative tests
and empirical tests.

The EnergyPlus weather file, an epw file, contains 29 weather
variables at 1-h intervals (but can be sub-hourly), among which
nine important variables were used in the simulations. These key
variables can be sorted into four groups: (1) outdoor air condi-
tions: dry-bulb temperature, dew-point temperature, relative
humidity, and atmospheric pressure; (2) solar radiation: direct
normal solar radiation and diffuse horizontal solar radiation;
(3) sky radiation: horizontal infrared radiation; and (4) wind
conditions: wind direction and wind speed. Another important
weather variable contained in the epw weather file and used
by EnergyPlus is the monthly ground temperature at various soil
depth levels. EnergyPlus is usually run with a time step of 10 or
15 min, and the hourly weather variables are interpolated to the
half-hour intervals.
Fig. 2. Variations of climate zone based on annual HDD and CDD f
3. Results and discussion

3.1. Variations of weather data

Variations of weather data and climate zone classification for
each of the 17 cities based on the annual HDD18 (Heating Degree
Days with base temperature of 18 �C) and CDD10 (Cooling Degree
Days with base temperature of 10 �C) of the AMY data from 1980 to
2009 are illustrated in Fig. 2. The climate zones displayed in Fig. 2
correspond to the criteria listed in Table 1. It can be seen that most
cities do not belong to only one climate zone. For the 30-year per-
iod, the climates of some cities vary across two zones and some
even across three or more zones. For example, Fairbanks exhibits
climatic conditions indicative of the very cold Climate Zone 7
and the subarctic Climate Zone 8, while Helena shows conditions
typical of five climate zones: the cool-humid 5A, the cool-dry 5B,
the cool-marine 5C, the cold-humid 6A, and the cold-dry 6B. The
spread of climate zones for a city based on 30-year AMY weather
data is a good indicator of weather change year-over-year, which
cannot be represented by a single-year TMY3 weather data file.
Therefore, running simulations using multi-decade AMY weather
data is necessary to evaluate fully the effect of weather on the en-
ergy performance of buildings.

The variation in annual average global horizontal solar radiation
for the 17 cities from 1980 to 2009 is listed in Table 4. In general,
the highest and lowest levels of annual average global horizontal
solar radiation occur in the hotter and colder climates respectively.
For example, Riyadh has the highest value of 6588 Wh/m2 in 2001,
while Fairbanks has the lowest value of 2473 Wh/m2 in 1995. Ta-
ble 4 also shows the maximum variations, defined as the maxi-
mum of the annual difference between the highest and the
lowest values of all cities across the 30-year period. Among the
17 cities, Chicago has the largest variation of 652 Wh/m2, while
Boise has the smallest variation of 360 Wh/m2. The values listed
in the fifth and sixth columns represent the average global hori-
zontal solar radiation over the 30 years for the AMY data and
TMY3 data respectively. The values listed in the last two columns
are the absolute and relative differences between the TMY3 values
and the average values. The largest difference between TMY3 and
the average AMY is 809 Wh/m2 which occurs in Miami, a hot cli-
mate. However, compared with the cities in hotter and colder cli-
mates, cities in mixed climates tend to have greater differences.
There is a noted trend that the AMY data have higher global
or 17 cities using AMY weather data from year 1980 to 2009.



Table 4
Statistics of the annual average global horizontal solar radiation of the 17 cities from year 1980 to 2009.

City Annual average global
horizontal solar radiation
(Wh/m2), year

Average
AMYs

TMY3 Variation
(Highest � Lowest)

Variation
(TMY3 � Average)

Variation%
(TMY3 � Average)/
Average

Highest Medium Lowest

Miami 5825,
1986

5614,
1991

5444,
1992

5612 4803 380 �809 �14.4

Riyadh 6588,
2001

6329,
1983

5977,
1982

6318 6114 611 �204 �3.2

Houston 5099,
1999

4765,
1992

4474,
1982

4750 4459 624 �291 �6.1

Phoenix 6069,
2002

5868,
1980

5531,
1983

5832 5738 538 �94 �1.6

Memphis 4799,
1999

4560,
1996

4230,
1991

4564 4493 570 �71 �1.6

EI Paso 6072,
2003

5749,
1997

5519,
1986

5758 5657 554 �101 �1.8

San
Francisco

5520,
1988

5352,
1981

4952,
1998

5322 4703 568 �619 �11.6

Baltimore 4435,
2006

4240,
1987

3918,
2003

4223 4078 517 �145 �3.4

Albuquerque 6054,
2003

5906,
2009

5635,
1983

5881 5426 419 �455 �7.7

Salem 4110,
1987

3865,
1995

3692,
1998

3881 3701 418 �180 �4.6

Chicago 4484,
1988

4099,
2008

3832,
1993

4100 3854 652 �246 �6.0

Boise 5106,
2002

4927,
1990

4746,
1982

4926 4429 360 �497 �10.1

Vancouver 3946,
1985

3682,
1998

3361,
2007

3674 3369 585 �305 �8.3

Burlington 3863,
1995

3715,
2002

3465,
2000

3699 3675 398 �24 �0.6

Helena 4598,
2001

4367,
1981

4082,
1998

4377 3997 517 �380 �8.7

Duluth 4069,
1988

3746,
1999

3525,
1993

3744 3678 544 �66 �1.8

Fairbanks 3018,
1987

2860,
1998

2473,
1995

2868 2591 545 �277 �9.7

Table 5
Statistics of the annual average dry-bulb temperature of the 17 cities from year 1980 to 2009.

City Annual average dry-bulb temperature (�C), year Average AMYs TMY3 Variation (Highest � Lowest) Variation (TMY3 � Average)

Highest Medium Lowest

Miami 25.3, 1998 24.8, 2003 23.8, 1984 24.7 24.5 1.5 �0.2
Riyadh 27.8, 1999 26.7, 1981 25.0, 1992 26.6 26.2 2.8 �0.4
Houston 21.4, 2006 20.6, 2003 19.0, 1983 20.5 20.4 2.4 �0.1
Phoenix 24.8, 1989 23.9, 2000 22.5, 1998 23.9 23.8 2.3 �0.1
Memphis 18.5, 2007 17.1, 2002 16.2, 1997 17.2 17 2.3 �0.2
EI Paso 19.8, 1994 18.5, 2008 16.7, 1987 18.3 18 3.1 �0.3
San Francisco 14.7, 1997 13.8, 2009 12.8, 1982 13.8 13.8 1.9 0
Baltimore 14.4, 1990 13.2, 2005 12.2, 2003 13.2 13.2 2.2 0
Albuquerque 15.0, 2003 14.1, 2008 13.0, 1984 14.0 13.7 2.0 �0.3
Salem 12.9, 1992 11.6, 2002 10.0, 1985 11.6 11.7 2.9 0.1
Chicago 12.1, 1998 10.1, 2000 8.7, 1985 10.0 10 3.4 0
Boise 12.7, 2003 11.3, 2005 8.1, 1985 11.1 11.2 4.6 0.1
Vancouver 11.6, 2004 10.5, 2002 9.1, 1985 10.5 9.7 2.5 �0.8
Burlington 9.2, 1998 7.8, 2007 7.0, 1980 7.9 7.9 2.2 0
Helena 9.1, 2007 7.4, 2005 4.8, 1996 7.1 7.2 4.3 0.1
Duluth 6.3, 1998 4.3, 2000 2.6, 1996 4.3 4 3.7 �0.3
Fairbanks 0.3, 1981 �1.8, 2001 �4.4, 1999 �2.0 �1.4 4.7 0.6
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horizontal solar radiation than the TMY3 data, which can lead to
the AMYs overestimating the cooling energy use and underesti-
mating the heating energy use when compared to the TMY3s. Fur-
ther discussion is provided in Section 3.7.

Table 5 shows the variations in annual average dry-bulb tem-
perature of the 17 cities from 1980 to 2009. The variations are
more significant for cold climates. For example Fairbanks, Helena
and Duluth all have variations greater than 3.7 �C. In general, the
differences between the TMY3 values and the average AMY are
small, except the TMY3 values have a higher average temperature
by 0.6 �C for Fairbanks and a lower temperature by 0.8 �C for
Vancouver.

In summary, the variation in weather data year-over-year is sig-
nificant, especially for cold climates. Such variations should not be



Fig. 3. Variations of percentage changes of HVAC source EUI between AMY and TMY3: (a) large office, 90.1-2004 models; (b) large office, 90.1-2010 models; (c) medium
office, 90.1-2004 models; (d) medium office, 90.1-2010 models; (e) small office, 90.1-2004 models; (f) small office, 90.1-2010 models. The red bars represent the variations
across the 30-year while the green bars excluding the six percentage changes from the top three and the bottom three extreme weather years. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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ignored and cannot be represented by single-year weather data –
either a historical year or a synthetic year such as TMY.

3.2. Weather impact on HVAC source energy use for individual cities

HVAC energy use is directly affected by weather, because the
cooling and heating loads of buildings are dependent upon weather
conditions such as outdoor air temperature and humidity, wind
speed, and solar radiation. The percentage variation of HVAC
source energy use intensity (EUI, kWh/m2) for the three types of of-
fice buildings with two design efficiency levels in the 17 cities are
shown in Fig. 3. The simulation results from using the TMY3
weather data are used as the baseline and are represented as 0%
in these figures. The red bars represent the variation of the per-
centage changes across the 30-year period (1980–2009). The green
bars show the same results but excluding the top three largest and
the bottom three smallest values to filter out the extreme AMY
cases. The left side bars with negative values indicate TMY3 results
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are over-estimating the AMY results while the right side bars with
positive values indicate TMY3 results are under-estimating the
AMY results. The cities on the vertical axis of the figures from
the top to the bottom are arranged by climate zone from the very
hot and humid climate zone 1A to the subarctic climate zone 8.

In general, the AMY results show large differences when com-
pared to results using the TMY3 weather data. The TMY3 results
can over-estimate AMY results as much as 18% and under-predict
as much as 37%. Three-dimensional comparisons are made to ana-
lyze the relative weather impact by climate zone, building type,
and building design efficiency. First, it can be seen that most large
changes occur in colder climates, regardless of the building type
(large-, medium-, or small-size office) or building design efficiency
level (low, 90.1-2004, or high, 90.1-2010). Usually the largest un-
der-estimates occur in Boise, followed by Helena and then San
Francisco, while the largest over-estimates occur in Fairbanks, fol-
lowed by Chicago and then Duluth. Secondly, the larger changes
occur for the medium-size office building, followed by the large-
size and then the small-size building. The medium office building
has a larger perimeter area than the large office, and has air-side
economizers, while the small office does not. Thirdly, the larger
changes occur for the large and medium offices with the high-effi-
ciency design level (90.1-2010) than the low-efficiency design level
(90.1-2004). The opposite is true for the small office – the low-effi-
ciency design level shows larger changes. Fourthly, the differences
between the red and the green bars for each case are compared.
The largest differences occur in Boise regardless of building type
and building efficiency design level, followed by Helena, Fairbanks,
and Miami. In general, the differences in the hotter and colder cli-
mates are larger than those in the mixed climates. Finally, compar-
ing the HVAC source EUI between the average of the 30-year AMYs
Table 6
Statistics of the HVAC source EUI of the large office, 90.1-2004 during the 3

City HVAC source EUI (kWh/m2),
year

Average
AMYs

TMY3 Va
(H

Highest Medium Lowest

Miami 250.8,
1998

229.3,
1999

206.1,
1984

228.9 227.6 44

Riyadh 217.4,
1998

197.9,
1980

181.7,
1992

200.1 182.1 35

Houston 206.7,
1980

193.6,
1986

178.3,
1984

193.8 189.2 28

Phoenix 205.2,
1984

196.5,
2008

185.3,
2004

195.9 189.8 19

Memphis 165.3,
1985

151.4,
1996

140.5,
1992

152.6 148.8 24

EI Paso 108.2,
1981

103.1,
1982

96.5,
2004

102.5 97.8 11

San
Francisco

74.9,
1997

65.9,
1998

60.9,
1999

66.9 63.5 13

Baltimore 144.9,
1994

134.9,
2004

125.1,
1984

133.6 136.5 19

Albuquerque 102,
2007

96.8,
1981

91.5,
1986

96.8 93.1 10

Salem 83.1,
1990

74.7,
1988

71.4,
1981

75.1 75.1 11

Chicago 138.2,
1983

128,
1986

112.7,
1992

127.6 130.9 25

Boise 111.3,
1985

92.8,
1982

83.7,
1995

93.2 87.9 27

Vancouver 74.9,
1990

67.1,
1989

61.1,
1983

66.8 67.5 13

Burlington 133.3,
1989

118.9,
2004

108.2,
2006

120.1 118.4 25

Helena 116.6,
1985

99.5,
1986

88.7,
1999

100.1 95.5 27

Duluth 146.2,
1989

128.6,
2005

117.9,
1992

130.7 133.1 28

Fairbanks 180.1,
1999

163.6,
1997

135.8,
1981

161.3 157.7 44
and the TMY3 for the large office at both efficiency design levels in
Tables 6 and 7, it can be seen that the TMY3 results are usually
lower than the AMY results, occurring in 13 out of the 17 cities,
and by as much as 9–9.2% in Riyadh, 5.6–8.7% in Boise, and 5.2–
7.7% in San Francisco. Similar trends can be observed for the med-
ium and small offices.

As an example, detailed variations of the HVAC source EUI of the
large office in Chicago with low and high building efficiency levels
from 1980 to 2009 are illustrated in Fig. 4. The TMY3 results, the
average of the AMY results, as well as the average results plus
and minus one and two standard deviations are plotted on the
same figures. The TMY3 results are fairly close to those of the aver-
age AMY results, within the range of +2.6% and one standard devi-
ation. Except for 1992, all AMY results fall within one standard
deviation. The variation, in percentage changes, between the max-
imum and minimum AMY results is large, 22.6% for the 90.1-2004
office and 28% for the 90.1-2010 office.

In summary, the weather impacts on the HVAC source energy
use are significant, especially for the medium-size office building
and for all office buildings in cold climates. The impacts are the
least for the small-size office among the three office types. The
medium-size office buildings have air-side economizers, as re-
quired by ASHRAE standard 90.1 in appropriate climates, and more
window area than the small offices, but have less window area and
more perimeter zone area than the large offices. This makes the
medium offices more sensitive to weather variation than the other
two.

Weather impacts on buildings are about the same across the
two efficiency design levels. Meanwhile, large differences between
the simulated results using TMY3 weather data and the AMY
weather data are observed across the 30-year period. The TMY3
0-year period.

riation
ighest � Lowest)

Variation
(TMY3 � Average)

Variation%
(TMY3 � Average)/
Average

.7 �1.4 �0.6

.7 �18.1 �9

.4 �4.7 �2.4

.9 �6.1 �3.1

.9 �3.8 �2.5

.7 �4.7 �4.6

.9 �3.4 �5.2

.9 2.8 2.1

.5 �3.7 �3.8

.7 �0.1 �0.1

.5 3.3 2.6

.6 �5.2 �5.6

.8 0.6 0.9

.1 �1.6 �1.4

.9 �4.6 �4.6

.2 2.5 1.9

.2 �3.6 �2.2



Table 7
Statistics of the HVAC source EUI of the large office, 90.1-2010 during the 30-year period.

City HVAC source EUI (kWh/m2), year Average AMYs TMY3 Variation (Highest � Lowest) Variation (TMY3 � Average) Variation%
(TMY3 � Average)
/Average

Highest Medium Lowest

Miami 167.2, 1998 151.9, 1991 136.2, 1984 151.2 151.4 31.1 0.2 0.2
Riyadh 164.1, 1998 151.2, 1980 137.4, 1992 152 138 26.7 �14 �9.2
Houston 122.2, 1998 114.2, 2003 106.1, 1984 114.4 111.3 16.1 �3.1 �2.7
Phoenix 129, 1981 122.9, 2009 116.3, 1982 122.9 119.6 12.7 �3.3 �2.7
Memphis 99.5, 1985 92, 1991 85.1, 1992 92.5 90 14.4 �2.5 �2.7
EI Paso 79.2, 1981 75.8, 1990 71.3, 2004 75.5 71.7 7.9 �3.8 �5
San Francisco 45.5, 1997 38.2, 2008 35.3, 1999 39 36 11.2 �2.9 �7.7
Baltimore 84.1, 1994 76, 1985 69.7, 1984 76.1 77.3 14.3 1.2 1.6
Albuquerque 74.9, 2007 71.1, 1981 66.9, 1986 71.6 66.9 7.9 �4.6 �6.4
Salem 53.7, 1990 48.4, 2002 45.3, 1980 48.7 48 8.3 �0.7 �1.5
Chicago 88.7, 1985 80.8, 1986 69.2, 1992 80.9 83 19.5 2.1 2.6
Boise 75.4, 1985 62.4, 1991 55.3, 1981 62.5 57.1 20.1 �5.4 �8.7
Vancouver 47.8, 1998 42.1, 2008 38.2, 2001 42.3 39.9 9.6 �2.4 �5.7
Burlington 85.5, 1989 74.9, 1983 66.9, 2006 75.7 74.5 18.6 �1.3 �1.7
Helena 78.5, 1985 63.7, 1980 55.8, 1999 64.8 60.1 22.7 �4.4 �7.1
Duluth 93.9, 1989 79.6, 2005 70.6, 1992 81.7 83.6 23.3 1.8 2.2
Fairbanks 134.2, 1999 116.3, 1988 91.8, 1981 115.9 111.7 42.4 �4.2 �3.7

Fig. 4. Variations of HVAC source energy of the large office buildings in Chicago from year 1980 to 2009.
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results are lower than the AMYs mainly due to the AMYs having
higher solar irradiance. Further discussion is provided in
Section 3.7.

3.3. Weather impact on the building total source energy use for
individual cities

Similar results as shown in Fig. 3 are shown in Fig. 5, but for the
building total source energy use intensity (EUI, kWh/m2). The var-
iation of the building total source EUI are about one-third of those
of the HVAC source EUI, because weather changes only affect the
HVAC source energy use. The percentage changes of the building
total source energy, although much smaller, represent a significant
amount of the absolute differences in the building total source en-
ergy use.
Similar but slightly different patterns are observed for the
building total source EUI. In general, the AMY results show notice-
able differences from those from the TMY3. The TMY3 results over-
estimate the AMY results by as much as 7.8% and under-estimate
by as much as 9.7%. First, it can be seen that most large changes oc-
cur in colder climates, regardless of the building type or building
efficiency design level. Usually the largest under-estimates occur
in four climates: Riyadh, Boise, Helena and Fairbanks, while the
largest over-estimates occur in four climates: Miami, Chicago, Du-
luth and Fairbanks. Secondly, the larger changes occur for the med-
ium-size office, followed by the large-size and then the small-size.
Thirdly, the slightly larger changes occur for the large and medium
offices with the high efficiency design level than the low efficiency
design level. The opposite is true for the small office – the low
efficiency design level shows larger changes. Fourthly, the



Fig. 5. Variations of percentage changes of total building source EUI: (a) large office, 90.1-2004 models; (b) large office, 90.1-2010 models; (c) medium office, 90.1-2004
models; (d) medium office, 90.1-2010 models; (e) small office, 90.1-2004 models; (f) small office, 90.1-2010 models. The red bars represent the variations across the 30-year
while the green bars excluding the six percentage changes from the top three and the bottom three extreme weather years. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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differences between the red and the green bars for each case are
compared. The largest differences occur in five climates: Miami,
Chicago, Boise, Helena, and Fairbanks. This implies that these cli-
mates tend to have more severe weather impacts. Finally, compar-
ing the building total source energy use between the TMY3
weather data and the average of the 30-year AMY weather data,
for the large office at both efficiency design levels in Tables 8
and 9, it can be seen that the TMY3 results are usually lower than
the AMY results, occurring in 13 out of the 17 cities; but except for
Riyadh, the under-estimates are less than 2% for all other climates.
3.4. Weather impact on the HVAC and building total source energy use
aggregated for the US office building stock

To analyze the variation in the HVAC and building total source
energy for all office buildings in the US, the source energy use are
aggregated across the 15 US cities using weighting factors based on
the volume of new construction in each of the 15 cities [22]. The
percentage changes at the national level are then calculated and
shown in Fig. 6.

From Fig. 6, the simulated HVAC source energy use using the
TMY3 data can over-estimate and under-estimate the AMY results



Table 8
Statistics of the total building total source EUI of the large office, 90.1-2004 during the 30-year period.

City Total building source EUI
(kWh/m2), year

Average
AMYs

TMY3 Variation
(Highest � Lowest)

Variation
(TMY3 � Average)

Variation%
(TMY3 � Average)/
Average

Highest Medium Lowest

Miami 533,
1998

511.5,
1999

488.3,
1984

511.2 509.9 44.7 �1.4 �0.3

Riyadh 499.5,
1998

479.9,
1980

463.8,
1992

482.2 464.1 35.7 �18.1 �3.7

Houston 489.3,
1980

476.2,
1986

460.9,
1984

476.4 471.7 28.4 �4.7 �1

Phoenix 487.6,
1984

478.9,
2008

467.7,
2004

478.3 472.1 19.9 �6.1 �1.3

Memphis 448.2,
1985

434.3,
1996

423.3,
1992

435.5 431.7 24.9 �3.8 �0.9

EI Paso 391,
1981

385.9,
1982

379.3,
2004

385.3 380.6 11.7 �4.7 �1.2

San
Francisco

358.1,
1997

349.2,
1998

344.2,
1999

350.2 346.7 13.9 �3.4 �1

Baltimore 428.2,
1994

418.1,
1981

408.3,
1984

416.9 419.7 19.9 2.8 0.7

Albuquerque 385.2,
2007

380,
1981

374.7,
1986

379.9 376.3 10.5 �3.7 �1

Salem 366.5,
1990

358.2,
1988

354.8,
1981

358.5 358.4 11.7 �0.1 0

Chicago 421.6,
1983

411.5,
1986

396.2,
1992

411.1 414.3 25.5 3.3 0.8

Boise 394.7,
1985

376.3,
1982

367.1,
1995

376.6 371.4 27.6 �5.2 �1.4

Vancouver 358.4,
1990

350.5,
1989

344.6,
1983

350.3 350.9 13.8 0.6 0.2

Burlington 417,
1989

402.6,
2004

391.9,
2006

403.7 402.1 25.1 �1.6 �0.4

Helena 400.4,
1985

383.2,
1986

372.5,
1999

383.8 379.2 27.9 �4.6 �1.2

Duluth 430.2,
1989

412.7,
2005

402,
1992

414.7 417.1 28.2 2.5 0.6

Fairbanks 464.3,
1999

447.9,
1997

420.2,
1981

445.7 442.1 44.2 �3.6 �0.8
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by 4.8% and 6.1% respectively for the large office, by 4.7% and 7.6%
for the medium office, and by 2.5% and 4.8% for the small office.
The corresponding percentage changes for the building total source
energy use are 1.4% and 1.7%, 1.7% and 2.7%, and 0.8% and 1.7%. In
general, the weather impacts are about the same for buildings with
the two efficiency design levels, with slightly larger impacts for the
low-efficiency buildings. The largest impacts are for the medium-
size office followed by the large and then the small office.

Compared with the variations shown in Figs. 3 and 5, the vari-
ations in Fig. 6 are much smaller. This implies the weather impacts
across different climates are not uniform and tend to cancel out
each other. For example, during a particular year, the TMY3 results
may over-estimate the AMY results for some climates but under-
estimate for others, so the overall TMY3 results at the national le-
vel are not so different from the AMY results. However, this should
not overshadow the large discrepancies between the TMY3 results
and the AMY results for individual climates, because energy effi-
ciency technologies are evaluated and applied locally, and energy
policy is made by local jurisdictions.
3.5. Weather impact on the peak electricity demand of buildings

The variations of the percentage changes of the building peak
electricity demand are displayed in Fig. 7. The peak demands of
the medium office using the TMY3 weather data can under-esti-
mate that from the AMY data by up to 32.4%, and over-estimate
by up to 21%. Unlike the variation in the HVAC source energy use
mentioned above, there is no clear correlation between the change
in peak demand and the climate/city. Except for the medium office,
the mixed climates show larger percentage differences. The varia-
tions for the medium office, as shown in Fig. 7c and d, are much
larger than those for the large and small offices.

Additionally, the percentage changes for the small office are
mostly within ±6% except for a few cases as shown in Fig. 7e and f.
For a particular city, if only one green bar can be seen, it is because
the red bar is almost the same as the green bar but overlapped by
the red bar, and thus cannot be seen. This implies that for the small
office building in this city, the peak demand is not so sensitive to ex-
treme weather conditions (the top three and bottom three years).
On the other hand, if only one red bar can be seen, it is because the
green bar is too small to be seen. This implies that the peak demand
is sensitive to extreme weather conditions. When the top three and
the bottom three years are eliminated, peak demands from the
remaining 24-year AMY data and the TMY3 data are very close or
equal, thus the differences cannot be seen.

As an example, detailed variations of the simulated peak de-
mand of the large office in Chicago with low and high efficiency
levels from 1980 to 2009 are illustrated in Fig. 8. The TMY3 results,
the average of the AMY results, as well as the average results plus
and minus one and two standard deviations are plotted on the
same figures. The TMY3 result is higher than the average AMY re-
sult by 1.1% (within one standard deviation) for the 90.1-2004 of-
fice, but lower by 6% (outside two standard deviations) for the
90.1-2010 office. For the 90.1-2004 office, the variation of peak de-
mand is relatively small except for 1991, 2004, and 2008 which has
lower peak demand by as much as 7.7% compared to the average
value. For the 90.1-2010 office, the variation of peak demand from
individual AMY results is more significant, up to 13.4% between the
minimum and maximum values.

In summary, the weather impact on the peak electricity
demand is significant, even greater than the impact on building



Table 9
Statistics of the total building source EUI of the large office, 90.1-2010 during the 30-year period.

City Total building source EUI
(kWh/m2), year

Average
AMYs

TMY3 Variation
(Highest � Lowest)

Variation
(TMY3 � Average)

Variation%
(TMY3 � Average)/
Average

Highest Medium Lowest

Miami 401.1,
1998

385.8,
1991

369.9,
1984

385 384.9 31.1 �0.1 0

Riyadh 397.9,
1998

385,
1980

371.2,
1992

385.8 371.6 26.6 �14.2 �3.7

Houston 357.6,
1998

349.6,
2003

341.2,
1984

349.5 345.8 16.4 �3.7 �1.1

Phoenix 363.3,
1981

357.3,
2009

350.6,
1982

357.2 354 12.7 �3.2 �0.9

Memphis 333.9,
1985

326.4,
1983

319.4,
1992

326.9 323.9 14.6 �3.1 �0.9

EI Paso 312.7,
1981

309.3,
2005

304.7,
2004

308.9 305.2 8 �3.7 �1.2

San
Francisco

279.5,
1997

272.6,
1995

268.5,
1999

273.2 270.1 11 �3.1 �1.1

Baltimore 318.3,
1994

310.1,
1985

303.8,
1984

310.2 310.9 14.5 0.7 0.2

Albuquerque 308.1,
2007

304.2,
1981

300.1,
1986

304.7 300.3 7.9 �4.3 �1.4

Salem 288.6,
1990

293.2,
1988

280,
1980

283.5 282.2 8.5 �1.3 �0.5

Chicago 323.1,
1985

315.2,
1986

303.5,
1992

315.3 317.1 19.6 1.8 0.6

Boise 309.1,
1985

296.2,
1991

289.2,
1981

296.3 291.1 19.9 �5.3 �1.8

Vancouver 282.9,
1998

277.3,
1995

273.4,
2001

277.4 275.3 9.5 �2.1 �0.8

Burlington 320.3,
1989

309.8,
1983

302,
2006

310.6 308.9 18.3 �1.6 �0.5

Helena 312.7,
1985

298.1,
1980

290.1,
1999

299 294.5 22.6 �4.5 �1.5

Duluth 328.8,
1989

314.8,
2005

305.7,
1992

316.9 318.3 23.1 1.5 0.5

Fairbanks 371.6,
1999

353.8,
1988

329.4,
1981

353.5 349.3 42.2 �4.2 �1.2

Fig. 6. Variations of percentage changes of HVAC and total source EUIs of the three types of office buildings with low (90.1-2004 standard) and high (90.1-2010 standard)
energy efficiency levels: (a) changes in HVAC source EUI and (b) changes in total source EUI.
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Fig. 7. Variations of percentage changes of peak electricity demand: (a) large office, 90.1-2004 models; (b) large office, 90.1-2010 models; (c) medium office, 90.1-2004
models; (d) medium office, 90.1-2010 models; (e) small office, 90.1-2004 models; (f) small office, 90.1-2010 models. The red bars represent the variations across the 30-year
while the green bars excluding the six percentage changes from the top three and the bottom three extreme weather years. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

1 For interpretation of color in Fig. 9, the reader is referred to the web version of
this article.
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energy use. The simulated peak demands from TMY3 can signifi-
cantly under- or over-estimate those from the AMY. It is necessary
to run simulations using multi-decade of AMY weather data to as-
sess accurately demand response strategies.

3.6. Weather impact on peak electricity demand reduction and energy
savings of energy conservation measures

The peak demand reduction (in%) and the HVAC and building
total source energy savings (in%) are calculated by comparing the
peak demand and source energy use of the building with the high
energy efficiency level, to those of the same building with the low
energy efficiency level, using the TMY3 and the 30-year AMY
weather data for the three building types across the 17 climates.
The results are shown in Fig. 9, where the green1 bars represent
the variation in the demand reduction and source energy savings,
using the 30-year AMY weather data. The red marks represent the



Fig. 8. Variations of peak electricity demand of the large office buildings in Chicago from year 1980 to 2009.
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corresponding results using the TMY3 weather data. A few key
points can be seen from the results in Fig. 9:

� Weather impact on peak demand reduction and HVAC source
energy savings are large. There are no consistent patterns across
the building type or climate.
� Generally the weather impact on the peak demand reduction is

much greater than on the HVAC source energy savings.
� For HVAC source energy savings, larger weather impacts occur

for the mixed to cold climates, from San Francisco to Fairbanks.
The savings based on TMY3 weather files are usually within the
ranges of savings based on the AMY weather files, except for
over-estimates in San Francisco, Albuquerque, Boise, Vancou-
ver, and Helena, where the red marks are usually at the very
right end or outside of the green bars.
� The peak demand reduction can vary significantly

year-over-year for most climates. The differences in demand
reduction can be as high as 15% for Chicago and Fairbanks
across the 30-year period for the large office, as shown in
Fig. 9a.
� Generally the peak demand reductions based on the TMY3 data

are within the ranges of reductions based on the AMY data, but
a few cases show the TMY3 results (the red marks) are at the
high or low end of, or even outside the AMY results (the green
bars). Furthermore, some climates even demonstrate opposing
weather impacts. For example, in Phoenix, the TMY3 demand
reduction is greater than that from the AMY data for the large
office, but less for the small office. El Paso shows the totally
opposite situation as Phoenix.
� To assess accurately the peak demand reduction and energy

savings of ECMs, it is necessary and important to run simula-
tions using multi-decade AMY weather data in comparative
studies of energy conservation measures. Results from TMY3
data can sometimes significantly over- or under-estimate the
actual energy and cost savings.
It should be noted that the calculated peak demand reduction
and source energy savings come from a combination of energy effi-
ciency improvements from ASHRAE standard 90.1-2004 to 90.1-
2010. Whether similar trends apply to an individual energy effi-
ciency improvement, such as better wall or roof insulation, better
windows, high efficiency lighting systems, or high efficiency HVAC
systems, is an open question worth further studies.
3.7. Discrepancies of weather data from different sources and different
time periods

Radhi [30] studied the impact of weather data from two dif-
ferent periods, 1961–1990 and 1961–2005, on the simulated
electricity use of a low-rise and a high-rise commercial building
in Bahrain. Significant variations in simulated energy use from
the two different weather periods were found and weather data
covering more recent periods were recommended to be used for
better prediction of actual energy use in buildings. Bhandari and
Shrestha [19] studied the quality of weather data from two dif-
ferent sources by comparing them to actual measured weather
data, and the associated impact on building cooling and heating
loads and energy consumption for a single year at a specific US
location.

The AMY weather data from Weather Analytics and the TMY3
from NREL were used in the current study, although they are from
different sources and cover slightly different time periods. The
AMYs cover 1980–2009, about 4 years ahead of the TMY3s which
cover 1976–2005. Two constraints determined the choice of the
AMYs and TMY3s: (1) both data sources are reliable and available
to the public [3,7]; (2) Weather Analytics does not provide TMY3
(based on same selection criteria as the NREL TMY3) weather files
created from their 30-year AMYs, and the AMYs used to
create NREL TMY3 weather files, although available to the public
at http://www.rredc.nrel.gov/solar/old_data/nsrdb/1991-2010/

http://www.rredc.nrel.gov/solar/old_data/nsrdb/1991-2010/NCDCStationData/


Fig. 9. Variations of percentage reduction of peak electricity demand, and percentage savings of HVAC source energy and total source energy of the 90.1-2010 models over
the 90.1-2004 models: (a–c) large office; (d–f) medium office; (g–i) small office.
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NCDCStationData/, are not in EnergyPlus weather data epw format
and thus need data mapping and conversion.

The temperature data from both sources tend to be more con-
sistent than the solar radiation data, as seen from Table 4 which
shows that the TMY3s have lower global horizontal solar radiation
than the average of the AMYs across all the 17 climates. Although
both sources used similar algorithms, either the original or the en-
hanced Perez model [31–33] to calculate solar radiation, Weather
Analytics data sets lack high quality aerosol data which can lead
to a high bias of modeled solar radiation under certain cloudy/high
humidity conditions. This explains that, in Table 4, Miami (a humid
climate) and San Francisco (with frequent morning fog) have the
greatest deviations in solar radiation between the average AMYs
and the TMY3. Another source of discrepancies in the solar data
is the NREL TMY3s do not include data for certain calendar years
due to eruptions of the volcanoes El Chichón and Mount Pinatubo
(1982–1984 and 1992–1994, respectively) that decreased solar
radiation in the US [3]. This explains that, in Tables 4 and 8 out
of the 15 US cities have the lowest solar radiation in those years
across the 30-year period.

To quantify what portion of the overestimate of HVAC source
energy by the AMYs in Tables 6 and 7 is attributable to the high
bias of solar radiation, there is a need to study the correlation be-
tween the key weather variables and the simulated building
performance. Apadula et al. [34] studied the effect of the meteoro-
logical variability on the national monthly electricity demand in
Italy. A multiple linear regression model based on calendar and
four weather variables, including air temperature, wind speed, rel-
ative humidity and cloud cover, is developed to study the relation-
ships between meteorological variables and electricity demand as
well as to predict the monthly electricity demand up to 1 month
ahead. The model demonstrated an accuracy of better than 1% over
the data covering the period 1994–2009. Lam et al. [35] used prin-
cipal component analysis to study prevailing weather conditions in
subtropical Hong Kong. Regression models were developed to cor-
relate the simulated monthly building cooling loads and total en-
ergy use, for a generic office building, with a developed climatic
index Z, which is a function of the dry-bulb temperature, wet-bulb
temperature and global solar radiation. The regression models
showed an accuracy of 1% for annual and 4% for monthly simulated
energy use over the period 1979–2008.

In the current study, a regression model is derived to calculate
the HVAC source energy EUI based on the annual cooling degree
days (CDD10), annual heating degree days (HDD18), and the an-
nual average daily global horizontal solar radiation (GHSR):

HVAC Source Energy EUI ¼ c0 þ c1 � CDD10þ c2 �HDD18
þ c3 � GHSR

where c0 to c3 are regression coefficients.
Table 10 lists the regression results for the large office buildings

compliant with ASHRAE Standard 90.1-2004, when the above
regression was applied to the 30-year AMYs in the four climates,
Miami, San Francisco, Boise, and Fairbanks. The results show that
there are more significant discrepancies in solar radiation between
the average AMYs and the TMY3s (Table 4). The linear regressions

http://www.rredc.nrel.gov/solar/old_data/nsrdb/1991-2010/NCDCStationData/


Table 10
Regression of HVAC source energy for the 90.1-2004 Large Office during the 30-year
period.

City c0 c1 c2 c3 R2

Miami �69.19 0.05367 0.02736 0.0101 0.84
San Francisco 6.57 0.03674 0.01388 �0.01795 0.95
Boise 13.15 0.02675 0.01932 �0.02778 0.86
Fairbanks �40.46 0.05493 0.02366 �0.00532 0.92
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are reasonable with R-squared between 0.84 and 0.95. The varia-
tions of CDD10, HDD18, and GHSR in the AMYs directly contribute
to the variations of the simulated HVAC source energy. AMYs with
higher CDD10 and HDD18 will lead to higher HVAC source energy
use. Except for the cooling dominated climate of Miami, the other
three climates show that higher solar radiation leads to lower
HVAC source energy use. The impact of solar radiation on building
performance depends on climate – lower or higher solar radiation
does not necessarily always dominate.

The regression coefficient c3 represents the sensitivity of the
HVAC Source Energy EUI to the annual average daily global horizon-
tal solar radiation, assuming the indirect impact of solar radiation on
ambient air temperature is considered separately in the sensitivity
of CDD10 and HDD18. Based on the regression models, the lower so-
lar radiation of the TMY3s in Miami (by 14.4%), San Francisco
(11.6%), Boise (10.1%), and Fairbanks (9.7%) would contribute to
the underestimate (for Miami) or overestimate (for the other three
climates) of HVAC Source Energy EUI of the TMY3s by 3.6%, 16.6%,
14.8%, and 0.9% respectively. The percentages for San Francisco
and Boise are much higher mainly due to their much lower HVAC
source energy EUI compared to those of Miami and Fairbanks. In
conclusion, the discrepancy in solar radiation between different
weather data sources can have a significant impact on differences
in the simulated HVAC source energy. High quality solar radiation
data is key to improving the accuracy of simulated building
performance.

It should be noted that the regression model is used to appro-
priately estimate the effect of the high bias solar data, it is not rec-
ommended to replace whole building dynamic simulation for
calculating the HVAC source energy.

4. Conclusions

Nowadays with the availability of long-term AMY weather data
and sufficient computational power of personal computers, it is
feasible and necessary to run simulations with AMY weather data
covering multiple decades to fully assess the impact of weather on
the long-term performance of buildings, and to evaluate the energy
savings potential of energy conservation measures for new and
existing buildings from a life cycle perspective. Main findings from
this study are: (1) annual weather variation has a greater impact
on the peak electricity demand than on the energy use in build-
ings; (2) simulated building energy use using the TMY3 weather
data is not necessarily representative of the average energy use
using the AMY data, across the 30-year period. The TMY3 results
can be significantly higher or lower than those from the AMY data;
(3) the weather impact is greater for buildings in cold climates; (4)
the weather has the greatest impact on the medium-size office
building, followed by the large office and then the small office;
and (5) simulated energy savings and peak demand reduction by
energy conservation measures using the TMY3 weather data can
be significantly lower or higher when compared to the results
using the AMY data. These findings can support energy policy mak-
ing, energy code development, building technologies evaluation,
and utility incentive programs planning.

Future work will continue to investigate the weather impact for
other building types, and aggregate the impact across the entire US
building stock. If more AMY weather data, for example 50–
100 years, is available, methods will be developed to define and se-
lect various TMY weather data representing different conditions.
For example, cool vs. warm years, dry vs. wet years, cloudy vs. sun-
ny years, for various applications including HVAC design, demand
response for smart grids, and solar renewable energy systems.
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Space heating is the largest energy end use, consuming more than seven quintillion joules of site energy
annually in the U.S. building sector. A few recent studies showed discrepancies in simulated space-heat-
ing energy use among different building energy modeling programs, and the simulated results are sus-
pected to be underpredicting reality. While various uncertainties are associated with building
simulations, especially when simulations are performed by different modelers using different simulation
programs for buildings with different configurations, it is crucial to identify and evaluate key driving fac-
tors to space-heating energy use in order to support the design and operation of low-energy buildings. In
this study, 10 design and operation parameters for space-heating systems of two prototypical office
buildings in each of three U.S. heating climates are identified and evaluated, using building simulations
with EnergyPlus, to determine the most influential parameters and their impacts on variations of space-
heating energy use. The influence of annual weather change on space-heating energy is also investigated
using 30-year actual weather data. The simulated space-heating energy use is further benchmarked
against those from similar actual office buildings in two U.S. commercial-building databases to better
understand the discrepancies between simulated and actual energy use. In summary, variations of both
the simulated and actual space-heating energy use of office buildings in all three heating climates can be
very large. However these variations are mostly driven by a few influential parameters related to building
design and operation. The findings provide insights for building designers, owners, operators, and energy
policy makers to make better decisions on energy-efficiency technologies to reduce space-heating energy
use for both new and existing buildings.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

According to the 2010 United States Department of Energy (US-
DOE) Building Energy Databook [1], space heating is the largest end
use in the U.S. building sector. Space heating consumes about 5.2
and 2.3 quintillion joules of annual site energy for residential and
commercial buildings, respectively. The U.S. Energy Information
Administration (EIA) 2003 Commercial Buildings Energy Consump-
tion Survey (CBECS) [2] indicates that office buildings are the most
common building type, comprising the largest floor area and con-
suming the most energy in the commercial building sector. In of-
fice buildings, space heating consumes about one-third of total
site energy, according to the CBECS. It is therefore crucial to study
the space-heating energy use of such buildings in order to reduce
their energy use and carbon emissions.

The growth in energy use allocated to the commercial buildings
sector averaged 2.8% annually from 1950 to 2006 [3]. In the past
decade, energy-saving technology improvements in office build-
ings have received a lot of attention [3–9]. Andrew and Krogmann
[8] investigated issues affecting the adoption of energy-efficient
heating technology in U.S. office buildings. The factors he studied
included energy price, building location, floor area, rental, building
vintage, window area, and office equipment. In his study, the mul-
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tinomial logistic analysis of these factors employed spreadsheet
manipulations and statistical calculations. Liu et al. [9] describe a
mathematical modeling framework for energy systems to improve
energy efficiency and environmental performance of commercial
buildings, with the goal of achieving optimal energy designs. How-
ever, a systematic integration approach for truly achieving optimal
energy-systems design in commercial buildings is still lacking. Re-
cently, more new building designs aim to green buildings or zero
net energy buildings, emphasizing the importance of energy-effi-
ciency technologies and system designs, building operation and
maintenance, and occupant behavior. Good operational practice
and high building design efficiency could lower the energy use of
space heating [10,11]. Santin [12] looked at the relationship be-
tween user behavior and space-heating energy consumption, and
concluded that behavior patterns could be used in space-heating
energy calculations, and usage profiles with different behaviors
could be discerned.

Pan et al. [13] simulated effects of external wall insulation
thickness on annual cooling and heating energy uses of an office
building in three Chinese climates. It was found that, for heating
dominant climate like Beijing, more insulation reduced the com-
bined annual cooling and heating energy uses of perimeter offices
facing all four cardinal orientations. More insulation reduces an-
nual energy uses of offices facing North, East, and West, but not
necessarily for the south facing office. For cooling dominant cli-
mate like Guangzhou more insulation did not reduce annual en-
ergy use at all. Yang et al. [14] surveyed envelope designs of
existing office buildings in five major Chinese climates, and found
the overall thermal transfer value of envelope was much higher
than the current local energy code and almost double the ASHRAE
Standard 90.1-2001. More insulation of exterior walls and roofs
was recommended to reduce heating energy use for buildings in
cold climate. Dovjak et al. [15] studied problem of High Heating en-
ergy use in Slovenian buildings with exergy and energy analysis.
Their energy analyses showed that less thermal insulation contrib-
uted the most to the highest heating energy demand especially in
colder climate. The results from exergy analysis drew similar con-
clusions – insulation has much bigger effect than effect of boiler
efficiency. However, the most effective solution is to improve
building envelope together with boiler efficiency. Yildiz and Gun-
gor [16] presented energy and exergy analyses for the whole pro-
cess of space heating in buildings in Turkey climates using
simplified steady state heating load and energy calculations. Three
heating systems, liquid natural gas (LNG) fired conventional boiler,
LNG condensing boiler, and air-to-air heat pump, were compared
from the power plant through the building envelope using exergy
analysis. Eskin and Turkmen [17] studied the interactions between
different conditions, control strategies and heating/cooling loads in
office buildings in the four major climatic zones in Turkey using
building energy simulation. Calibrated energy models were used
to examine energy conservation opportunities on annual cooling,
heating and total building load at four major cities. The effect of
the parameters like the climatic conditions, insulation and thermal
mass, aspect ratio, color of external surfaces, shading, window sys-
tems including window area and glazing system, ventilation rates
and different outdoor air control strategies on annual building en-
ergy requirements is examined and the results are presented for
each city.

The lack of knowledge about the factors that determine total
building energy use is a significant barrier to achieving substantial
building energy efficiency. Recently, a few studies [18,19] using
simulations to calculate building performance showed relatively
low space-heating energy use compared with rules-of-thumb and
large discrepancies in space-heating energy use between different
simulation programs, which raised concerns of whether simulation
can be used to predict space-heating energy use. While various
uncertainties are associated with building simulations, especially
when simulations are performed by different modelers using dif-
ferent simulation programs for buildings with different configura-
tions, it is crucial to identify and evaluate key driving factors to
space-heating energy use to support the design and operation of
low-energy buildings. These key driving factors can be categorized
into six groups: climate conditions, building envelope, space-heat-
ing systems, building operation and maintenance, occupant behav-
ior, and indoor environmental conditions.

The New Buildings Institute recently published a simulation
study on total site energy use in midsize office buildings [20] to
look at key driving factors of building energy use. Twenty-eight
building characteristics were identified and grouped into design
assets, operation practice, and tenant behaviors. Three systems
and equipment-operation practices with respect to building energy
use were identified by using different performance values for each
characteristic parameter. Simulation results showed the key fac-
tors that affect total site energy use in midsize office buildings in
16 U.S. climates. Total site energy is a simple sum of electricity
use and gas use – one unit of electricity is valued the same as
one equal unit of natural gas; no generation or transmission or dis-
tribution loss is considered. As the total energy use of a building in-
cludes all end uses such as lighting, space heating, space cooling,
service water heating, and plug-loads, the key driving factors of a
building’s total energy use would be very different from those of
a specific end use like space heating. The use of source or primary
energy would be a better indicator of building energy performance.

The objective of the current study is to identify, understand, and
quantify important building design and operation parameters that
can have significant impacts on space-heating energy use in office
buildings, with different characteristics located in different heating
climates, by computer simulations with EnergyPlus. The impact of
weather data on space-heating energy use is also investigated by
running simulations with multiple decades of historical weather
data. The simulated results are further benchmarked with the
space-heating energy use of comparable office buildings selected
from the two well-known U.S. commercial building databases to
investigate discrepancies between simulated and actual heating
energy use.

It is not the intent of this paper, although the analysis and sim-
ulation method can apply, to analyze the total energy use of build-
ings; therefore, this study’s results and findings should not be
directly applied to the whole-building energy use, which includes
other end uses. The heating systems discussed in this article are
stand-alone systems powered by natural-gas hot-water boilers or
electric resistance; they are not part of the district heating systems
that are popular in Northern Europe countries and Northern China
[21].

This study is part of a bigger effort to study key driving factors
of energy performance of buildings under the International Energy
Agency (IEA) Energy Conservation in Buildings & Community Sys-
tems (ECBCS) Annex 53 Total Energy Use in Buildings: Analysis &
Evaluation Methods.

The first section of the paper describes analysis methodology,
and the second section provides details of the selected building de-
sign and operation parameters, together with definitions of simu-
lation runs. The third section presents and discusses the results.
The conclusion section summarizes key findings and potential fu-
ture research.
2. Analysis methodology

Building simulations and benchmarking with building energy
consumption databases are the two methods we used to study
the space-heating energy use in office buildings. Two office build-
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ings with different sizes and design configurations – the high-rise
large office and the single-story small office – are studied. To look
at the influence of climate, three typical climate zones that require
significant space heating are studied. Based on design and opera-
tion practice, a few key parameters for the large- and small-size of-
fice buildings are identified and their impacts on space-heating
energy use are evaluated by energy simulations. The simulated
space-heating energy uses are benchmarked with two U.S. com-
mercial building databases of measured whole-building energy
use. Furthermore, 30 years of actual meteorological weather data,
from 1980 to 2009, are used in the simulations to study the impact
of weather changes year-over-year on space-heating energy use.

As defined in this study, space-heating energy use is the site’s
energy in the form of natural gas consumed by boilers in the large
office building or furnaces in the small office building; it does not
include the electricity use of the hot-water pump for the large of-
fice building, or the fans of the air-handling units for both office
buildings during heating operations. For the large office building,
the space-heating energy use includes hot-water energy consumed
by the reheat coils in the zone terminal units (i.e., variable air vol-
ume [VAV] boxes) and the central heating coils located in the air-
handling units. For benchmarking purpose, the space-heating en-
ergy is also presented in energy use intensity (EUI), defined as an-
nual site energy in MJ (mega joules) of space heating per building
total floor area in m2.
2.1. Characteristics of the large- and small-size office buildings

The large- and small-size office buildings were selected from
the USDOE commercial reference buildings (CRBs) [22], which
comply with the American Society of Heating, Refrigeration, and
Air-conditioning Engineers (ASHRAE) Standard 90.1-2004 [23]. As
Standard 90.1-2004 has different efficiency requirements for build-
ings located in different climate zones, the efficiency levels of both
office buildings, including envelope insulation, window types, and
(a) The 3-D and plan views of th

(b) The 3-D and plan views of th

Fig. 1. The large- and small-size office buildings from the USDOE commercial reference b
plan views of the small-size office building.
HVAC systems, depend on the building’s location or climate zone.
The internal loads, including interior lighting power and plug
loads, occupant density, and operation schedules, stay the same
across all climates.
2.1.1. The large-size office building
The large office building has 12 stories and a basement, with a

total floor area of 46,320 m2. The building has a rectangular shape
with the long axis along the east–west and an aspect ratio of 1.5.
Each floor has four perimeter zones and one core zone with about
30% and 70% of the total floor area, respectively. The window-wall
ratio (WWR) is about 40%, excluding the basement wall area. The
roofs are flat with insulation above deck. The building has central
built-up VAV systems with hot-water zone reheat. The VAV boxes
have reverse acting dampers with a maximum supply air temper-
ature of 35 �C. The reverse acting damper in a VAV box can open
wider to meet zone heating loads, which differentiates it from a
normal acting damper that stays at a fixed minimum position dur-
ing heating operations. The supply air temperature leaving the
cooling coils is set to 12.8 �C during cooling mode. There is no heat
recovery between outdoor air and exhaust air. There is no humid-
ifier. The central plant has two water-cooled chillers and a hot-
water gas-fired boiler. Fig. 1a illustrates the 3-D and plan views
of the building.
2.1.2. The small-size office building
The small office building has only one floor with an area of

511 m2. The building has a rectangular shape with the long axis
along the east–west and an aspect ratio of 1.5. Four perimeter
zones and the core zone have about 70% and 30% of the total floor
area, respectively; the perimeter–core ratio is the opposite of that
of the large office building. The WWR is about 20%. The building
has an attic, as shown in Fig. 1b. Each of the five zones is served
by a packaged single-zone system: a constant-volume HVAC sys-
e large-size office building.

e small-size office building.

uildings. (a) The 3-D and plan views of the large-size office building. (b) The 3-D and



Table 1
Characteristics of selected cities and climate zones.

City ASHRAE climate
zone

CBECS census region HDD18 CDD10

Chicago Cool-Humid, 5A West North Central,
Midwest

6176 3251

Minneapolis Cold-Humid, 6A East North Central,
Midwest

7981 2680

Fairbanks Subarctic, 8 West Pacific 13,940 1040
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tem with heating from a gas furnace and cooling from a direct-
expansion (DX) unitary system.

2.2. Climate zones

Three climates – Chicago, Minneapolis, and Fairbanks – were
selected in this study to represent typical climates that require sig-
nificant space heating in the United States. Based on the climate
zones used in the ASHRAE Standard 90.1-2010 [24], Chicago be-
longs to the cool and humid zone 5A, Minneapolis belongs to the
cold and humid zone 6A, and Fairbanks belongs to the subarctic
zone 8. Table 1 lists the climate zone information for the three cit-
ies. In the table, HDD18 is the heating degree days with a base tem-
perature of 18 �C, and CDD10 is the cooling degree days with a base
temperature of 10 �C.

2.3. Weather data

The typical meteorological year, third generation (TMY3)
[25,26], weather data of the three cities, available at the EnergyPlus
web site, were used in the simulations. The TMY3s are data sets of
hourly values of solar radiation and meteorological elements for a
one-year period of 12 representative months compiled from 1976
to 2005. They are intended to be used for computer simulations of
solar energy conversion systems and building systems to facilitate
performance comparisons of different system types, configura-
tions, and locations in the United States. Because they represent
typical rather than extreme conditions, they are not suited for
designing systems to meet the worst-case conditions occurring at
a location.

Historical weather data, generated from actual weather mea-
surements and observations from 1980 to 2009 for Chicago and
Fairbanks, are used in the simulations to study the impact of
weather on space-heating energy use for both office buildings.
Such weather data were not available for Minneapolis during the
study, so similar analysis is not done for Minneapolis.

2.4. Simulation engine

The EnergyPlus version 7.2, released in October 2012, was used
for the study’s building simulations. USDOE developed it as a new-
generation building energy simulation program that builds on the
most popular features and capabilities of the Building Loads Anal-
ysis and System Thermodynamics (BLAST) and DOE-2. EnergyPlus
has innovative simulation capabilities, including time steps of less
than an hour, and modular systems simulation modules that are
integrated with a zone heat balance simulation. It calculates space
temperature, occupant thermal comfort, cooling and heating loads,
HVAC equipment sizes, energy consumption, utility cost, air emis-
sions, water usage, renewable energy, etc. EnergyPlus is a stand-
alone simulation program without a ‘‘user friendly’’ graphical
interface. It reads input and writes output as text files. Since the
first release in April 2001, EnergyPlus has evolved to provide
new and enhanced modeling features and improved usability.

EnergyPlus has been validated through three types of tests [27]:
(1) Analytical tests compare EnergyPlus simulation results with
analytical mathematical solutions for simple buildings:

� HVAC tests, based on ASHRAE Research Project 865.
� Building fabric tests, based on ASHRAE Research Project 1052.

(2) Comparative tests compare EnergyPlus simulation results
with those of other simulation engines such as DOE-2, ESP,
and Transient System Simulation Tool (TRNSYS):

� ANSI/ASHRAE Standard 140-2007.
� IEA Solar Heating and Cooling Programme (IEA SHC) BESTest

(Building Energy Simulation Test) methods not yet in Standard
140.
� EnergyPlus HVAC component comparative tests.
� EnergyPlus Global Heat Balance tests.

(3) Empirical tests compare EnergyPlus simulation results with
measurements of actual buildings. Although some applica-
tions compare and calibrate EnergyPlus simulation results
with measured energy and performance of buildings, much
more needs to be done with this type of test for actual build-
ings of various complexities of design and operations.

2.5. Building databases

The simulation results are benchmarked with two databases of
commercial buildings in the United States: the 2003 CBECS and the
USDOE high-performance buildings (HPBs) database [28]. The
CBECS is a national survey that collects information on energy con-
sumption and expenditures of U.S. commercial buildings. In this
database, commercial buildings include all those in which at least
half of the floor area is used for a purpose that is not residential or
industrial; they include building types that might not traditionally
be considered ‘‘commercial,’’ such as schools, correctional institu-
tions, and buildings used for religious worship. The HPB database
has more than 100 commercial buildings (mostly in the United
States) that were built recently and have low energy consumption.
The database has detailed building descriptions and either mea-
sured or simulated energy-consumption data. The space-heating
energy use from the HPB database was mostly calculated from cal-
ibrated energy models.

For the CBECS, building location is grouped into four U.S. Census
regions that are subdivided into nine divisions. The four regions are
the West, Midwest, Northeast, and South regions. Fairbanks be-
longs to the Pacific division of the West region; Chicago to the
West North Central division of the Midwest region; and Minneap-
olis to the East North Central division of the Midwest region.

A few buildings were selected from the two databases in order
to match the simulated buildings as much as possible according to
the criteria: (1) building type (office), (2) building size (large or
small), (3) vintage, and (4) location.
3. Building design and operation parameters

Based on office-building design and operation practice, 10
parameters with potentially significant impacts on space-heating
energy use were selected for the study. The parameters were
sorted into two groups – design and operation – as shown in Ta-
ble 2, based on whether a parameter is mostly determined during
building design or operation. The classification for design and oper-
ation parameters for space-heating energy use is listed in Table 2.
The selected parameters include envelope insulation, window area,
window type, internal loads, infiltration (rate and schedule), space-
heating temperature setpoint, heating setback during unoccupied
hours, terminal VAV box minimal damper position, and boiler/fur-
nace efficiency. For each parameter, the reference value is set in the
basecase models, which are based on ASHRAE Standard 90.1-2004;
a better and a worse performance value are then determined based



Table 2
Selected design and operation parameters for space heating.

Design parameters Operation parameters

Window type Air infiltration rate
Boiler/furnace efficiency Air infiltration schedule
Internal loads (lighting and plug-

loads)
Space-heating thermostat setting

Envelope insulation Heating setback control
Window area (window-wall-ratio) VAV box minimum damper position

setting
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on building design or operation practice, applicable building-en-
ergy standards, and available measurement or analysis reports.
The selection and determination of these parameters are from
the perspectives of practical building design and operations. This
differentiates the current study from sensitivity analyses that do
not use or require a high fidelity of parameters, as the sensitivity
is calculated as a ratio between the change in outputs and the
change in inputs.

3.1. Design parameters

3.1.1. Internal loads
Internal loads include heat gains from interior lighting, plug-

loads, and occupants. Internal loads reduce space-heating loads.
For the basecase, interior lighting power density (LPD) is set to
10.76 W/m2, based on ASHRAE Standard 90.1-2004. The plug-load
(receptacle) equipment power density (EPD) is set to 10.76 W/m2,
based on the CRBs. For the High Internal Loads case, the LPD and
EPD are set 50% higher than the basecase, while for the Low Inter-
nal Loads case, they are set 50% lower. The LPD of the High Internal
Loads case is set to 16.14 W/m2, which is based on the prescriptive
requirement of interior lighting for the whole building in ASHRAE
Standard 90.1-1989 [29]. The 50% lower LPD is based on the state-
of-the-art lighting technologies for office buildings. The 50% lower
EPD references Fisher’s study [30], which shows plug-load energy
use could be reduced over 50% by using energy-efficient appli-
ances, installing an energy-management system, and most impor-
tant, educating and training occupants on how to save energy.

3.1.2. Envelope insulation
Better insulation of a building envelope reduces space-heating

loads. For the basecases, the insulation levels of the wall and roof
constructions are based on ASHRAE Standard 90.1-2004. For the
More Envelope Insulation cases, the insulation levels are based
on ASHRAE Standard 90.1-2010. For the Less Envelope Insulation
Table 3
Parameters for three building types.

Vintage Roof construction U-factor
(W/m2 K) (Large/small
office)

Wall construction U-factor
(W/m2 K) (Large/small
office)

Less Insulation
(USDOE CRBs,
Pre-1980)

IEAD/IEAD* Steel/mass
5A, 0.358/0.358 5A, 0.698/0.505
6A, 0.358/0.358 6A, 0.591/0.477
8, 0.273/0.273 8, 0.454/0.363

Basecase (ASHRAE
90.1-2004)

IEAD/attic Mass/mass
5A, 0.358/0.193 5A, 0.698/0.698
6A, 0.358/0.153 6A, 0.591/0.591
8, 0.273/0.153 8, 0.454/0.454

More Insulation
(ASHRAE 90.1-
2010)

IEAD/attic Mass/mass
5A, 0.273/0.153 5A, 0.511/0.511
6A, 0.273/0.153 6A, 0.454/0.454
8, 0.273/0.119 8, 0.403/0.403

* IEAD: insulation entirely above deck.
cases, the insulation levels are set according to the pre-1980 offices
from the CRBs. Table 3 lists a few key parameters of the office
buildings constructed at three different ages.

3.1.3. Window area
With more windows, space-heating loads tend to increase for

most climates that require heating because windows usually con-
tribute more heat loss than walls, even taking into account win-
dows’ solar-heat gains. For the basecases, the large office
building has a WWR of 40%, while the small office building has a
WWR of 20%. The High WWR cases double the window area: The
large office building has a WWR of 68% (cannot reach 80% due to
the assumption of no windows on the plenum walls), while the
small office building has a WWR of 40%. The Low WWR cases re-
duce window area by 50% from the basecases: The large office
building has a WWR of 20%, while the small office building has a
WWR of 10%.

3.1.4. Window type
Windows with lower U-factor and higher solar heat gain coeffi-

cient (SHGC) reduce space-heating loads. The U-factor is the heat
transfer rate through the window per unit area and per unit tem-
perature difference. The SHGC represents the fractional amount
of solar energy that strikes the window and ends up warming
the indoor environment. Visible transmittance (VT) is the fraction
of visible light that comes through the glass. This is influenced
by glass selection as well as the amount of the opening taken up
by nontransparent components such as the frame. The basecases
have double-pane windows. The worst cases use single-pane win-
dows, while the better cases use triple-pane windows. Table 4
summarizes window-type performance for relevant cases at differ-
ent climate zones.

3.1.5. Boiler and Furnace Efficiency
A higher efficiency of heating equipment reduces space-heating

energy use. For the basecases, the large office building has a boiler
of 80% efficiency, while the small office building has furnaces of
78% efficiency. The High Boiler/Furnace Efficiency cases, assuming
the use of condensing boilers and furnaces, have a boiler of 91%
efficiency for the large office building and furnaces of 88% effi-
ciency for the small office building.

3.2. Operation parameters

3.2.1. Air infiltration rate
Air infiltration during heating seasons increases space-heating

loads. Parameters of air infiltration include peak infiltration rate
and infiltration schedule. According to a report by National Insti-
tute of Standards and Technology [31,32], peak infiltration rates
measured for typical commercial buildings range from 2.04 to
9.14 L/(s m2), based on 75 Pa of pressure difference and per unit
of gross exterior wall area. For EnergyPlus simulations, these infil-
Table 4
Window type.

NFRC rated values U-factor (W/
m2 K)

SHGC VT

Base case: double-pane window, low-e
Chicago 3.24 0.385 0.305
Minneapolis 3.24 0.385 0.305
Fairbanks 2.62 0.296 0.212

Single-pane window, clear 5.81 0.822 0.882
Triple-pane window, spectral selective,

clear, low-e
0.87 0.285 0.451
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tration rates are adjusted to the 4 Pa of pressure difference. The
basecase infiltration rate is 2.04 L/(s m2) (equivalent to 0.65 air
changes per hour), which is also defined in ASHRAE Standard
90.1-2010. For the High Infiltration Rate case, the 7.61 L/(s m2)
(2.44 ach) is used in reference to the proposal to ASHRAE Standard
90.1-2013 for buildings without installation of a continuous air
barrier. The High Infiltration Rate is 375% higher than the basecase.
The 50% lower infiltration rate is used in the Low Infiltration Rate
case for airtight buildings.

The peak air-infiltration rate depends to a great extent on a
building’s airtightness, especially the opening and closing of win-
dows and doors, which are more related to building operation
and occupant activity. Therefore, air-infiltration rate is categorized
as an operation rather than a design parameter.

3.2.2. Air infiltration schedule
A schedule is used to describe the variation of air infiltration

during occupied and unoccupied hours. For the basecases, air infil-
tration during occupied hours is assumed to be 25% of the peak
infiltration rate. Values of 50% and 100% are used in the Medium
and High Infiltration Schedule cases to represent buildings that
are not airtight or that have poor air balancing during occupied
hours.

3.2.3. Space-heating thermostat setting
A higher space-heating temperature setpoint increases space-

heating loads. The basecases set the space-heating temperature
for occupied hours to 21 �C, which is typical for office buildings
in the United States. The High Heating Setpoint case raises the
heating thermostat setting to 23 �C, while the Low Heating Set-
point case lowers it to 18 �C.

3.2.4. Space-heating setback control
Setback control is usually used to lower space-heating thermo-

stats for office buildings during unoccupied hours. The basecases
assume a heating setback to 10 �C during unoccupied hours, which
may be too aggressive. Hence, two heating-setback cases are con-
sidered: One is set back to 15 �C to represent the typical operation
of most office buildings, and the other is to have no setback at all to
represent the worst-case scenario.

3.2.5. VAV box minimum damper position
The large office building is served by central VAV systems,

which use reheat coils at the zone terminal boxes to provide space
heating. The terminal boxes have reverse acting dampers, which
can open beyond the minimum position during the heating mode
to meet zone heating loads. The higher the minimum damper posi-
tion, the more reheat energy can be consumed. The basecases have
the VAV box minimum damper position set to 30%, based on a typ-
ical design that meets recent building energy standards [33]; the
High Minimum VAV Box Damper Position case sets it to 50%, based
on surveys of office buildings [34]; and the Low Minimum VAV
Box Damper Position case sets it to 15%, based on proposals to up-
date 2008 California and 2010 ASHRAE building energy-efficiency
standards.

4. Simulation runs

Table 5 lists the parametric of the simulation runs for the two
office buildings. There are 126 EnergyPlus simulation runs in total,
including 22 runs for the large office building and 20 runs for the
small office building for each of the three cities. These runs include
the basecase, the High and Low Internal Loads cases, the High and
Low Infiltration Rate cases, the High and Medium Infiltration Sche-
dule cases, the High and Low Minimum VAV Box Damper Position
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cases for large office only, the High and Low Heating Setpoint cases,
the High and Low WWR cases, the Single and Triple Pane Window
cases, the More and Less Envelope Insulation cases, and the High
Boiler/Furnace Efficiency cases. Each run varies only one parameter
from the basecase, except the High Heating case and the Low Heat-
ing case, which combine the worse and better values (based on the
influence on space-heating energy) of the selected parameters,
respectively. In the High Heating and Low Heating cases, the value
of the WWR stays the same as that of the basecase for both office
buildings. The High Heating and Low Heating cases aim to capture
the worst case of buildings that consume the most heating and the
best case of buildings that consume the least heating.

In addition to the above-mentioned 126 runs, there are 60 runs
using the 30 historical years of weather data for Chicago and
Fairbanks.
5. Results and discussions

5.1. Impact of design and operation parameters

Fig. 2 shows the percentages of change in space-heating EUIs
calculated by comparing the space-heating EUI from each para-
metric run to that of the basecase for the large office building in
the three climates. Fig. 3 shows similar data for the small office
building. Both figures are sorted by the percent changes for the
Chicago climate.

Looking at results in Fig. 2 for the large office building, it can be
seen that: (1) based on the relative impact of the building opera-
tion, the most influencing operation parameters are high minimum
VAV box damper position setting, thermostat without setback dur-
ing unoccupied hours, High Heating Setpoint, and High Infiltration
Rate; (2) for the building design efficiency aspect, the most influ-
encing parameters are low and high internal load, window type,
and window area; and (3) other parameters, including low air infil-
tration rate, low minimum VAV box damper position setting, infil-
tration schedule for the operation aspect, and boiler efficiency and
Fig. 2. Impact of design and operation parameters on sp
envelope insulation for the building design aspect have less impact
on space-heating energy use.

From the operation aspect of the large office building, there are
several significant findings:

� The impact of minimum VAV box damper position setting
ranges from �12% to 128% for Chicago, �7.5% to 78% for Minne-
apolis, and �2.5% to 31% for Fairbanks; the Low Minimum VAV
Box Damper Position cases show small impact on space-heating
energy use. Oversizing the VAV box or setting the minimal dam-
per position too high can result in huge space-heating penalty.
� The cases of Thermostat No Setback during unoccupied hours

increase the space-heating EUIs by 50–102% from the basecases
for the three climates while the cases of Thermostat Setback to
15 �C during unoccupied hours have increases from 10% to 12%.
Thermostat setback is an effective operation strategy to reduce
space-heating energy use during unoccupied hours.
� The impact of space-heating setpoint ranges from �44% to 65%

for Chicago, �32% to 44% for Minneapolis, and �19% to 22% for
Fairbanks. Lowering the heating thermostat setpoint is an easy
way to save space-heating energy use during occupied hours.
� The cases of High Infiltration Rate show significant increase in

space-heating energy use by 42%, 38.5%, and 38.9% for Chicago,
Minneapolis, and Fairbanks, respectively. However, the cases of
Low Infiltration Rate have small impact on space-heating
energy use in all three climates, which may be because the
low infiltration rates are only 50% lower than the basecases
while they are 375% higher for the High Infiltration Rate cases.
� From the design-efficiency aspect of the large office building, it

can be seen that:
� Triple-pane windows can save space-heating energy by 51%,

43%, and 29% for Chicago, Minneapolis, and Fairbanks, respec-
tively. On the other hand, single-pane windows increase
space-heating energy by 46% for Chicago, and 34% for both Min-
neapolis and Fairbanks. High-performance windows with low
U-factors have great potential to reduce space-heating energy
use for cold climates.
ace-heating energy use of the large office building.



Fig. 3. Impact of design and operation parameters on space-heating energy use of the small office building.
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� Window area also plays an important role. High WWR cases
could increase space-heating energy use by 23–38%; on the
other hand, low WWR cases could save space heating by 24%
to 33%.
� Internal loads can change space heating from �30% to 48%,

compared with the basecase in Chicago; �30% to 40% in Minne-
apolis; and �28% to 30% in Fairbanks. Internal loads from light-
ing, equipment, and occupants directly reduce space-heating
loads.
� Wall insulation has less influence compared with other build-

ing-design parameters mainly due to the basecase has good
insulation. From the simulated results, the More Envelope Insu-
lation cases used the latest version of the ASHRAE standard
published in 2010, however, this high insulation level reduces
space-heating energy use by less than 5%.

The relative impacts of the significant parameters on space
heating are consistent across the three climates, with Chicago
showing the largest impact, followed by Minneapolis and Fair-
banks. Fairbanks shows the least impact due to its high space-heat-
ing EUI of the basecase compared with the other two climates.

Similarly, the results in Fig. 3 for the small office building reveal
that, based on the relative impact for the operation aspect, the
most influencing parameters are high and low space-heating set-
point, thermostat without setback during unoccupied hours, high
air infiltration rate, and high infiltration schedule. For the build-
ing-design efficiency aspect, the most influencing parameters are
internal loads, triple-pane windows, and less envelope insulation.
All the parameters described above except window type and enve-
lope insulation can be controlled by building occupants or opera-
tors. Other parameters, including low WWR, high furnace
efficiency, and single-pane windows for the building design
parameters; and low infiltration rate and thermostat setback to
15 �C during unoccupied hours for the operation aspect have smal-
ler impact on space-heating energy use. Small office buildings
show very similar patterns to the large office buildings – operation
parameters have greater impact than design parameters.

From the operation aspect of the small office building, a few key
results are:

� The impact of the space-heating setpoint ranges from �61% to
61% for Chicago, �50% to 46% for Minneapolis, and �33% to
26% for Fairbanks. The heating setpoint could be easily con-
trolled by occupants in small office buildings because in pack-
aged single-zone systems, thermostats are usually located in
office spaces. Decreasing the heating setpoint by 3 �C could save
more than 50% in space-heating energy, while increasing the
heating setpoint by 2 �C would consume more than 50% of
space-heating energy in cold climates. Fairbank belongs to the
subarctic region; it needs more space-heating energy than other
climates at the same building design and operation conditions.
Thus the percentage changes to space-heating energy use are
smaller than other climates by adjusting the same degrees of
the heating setpoint.
� Not setting back the heating thermostat during unoccupied

hours can increase space heating from 37% to 42% for the three
climates.
� Similar to the results of the infiltration rate cases for the large

office buildings, a High Infiltration Rate can significantly
increase space heating by 41%, 37%, and 30% for Chicago, Minne-
apolis, and Fairbanks, respectively. The cases of Low Infiltration
Rate in the three cities demonstrate relatively small impact
compared with other cases with same reason mentioned above.
� From the large office building design parameters, it can be seen

that:
� Internal loads can change the space heating from �40% to 52%

for Chicago compared with the basecase, �33% to 39% for Min-
neapolis, and �21% to 21% for Fairbanks. The variations of
space-heating energy use due to changes to internal load are



Fig. 4. Comparison of space-heating energy use among the High Heating cases, the basecases, and the Low Heating cases for the large and small office buildings.
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similar to the large office building in each city. Internal loads
from lighting, equipment, and occupants directly reduce the
needs of space-heating loads.
� The High WWR cases increase the space heating from 12% to

15% in the three climates; on the other hand, the Low WWR
cases could save space heating by about 5% to 10%.
� Triple-pane windows can save space heating by 27%, 25%, and

16% for Chicago, Minneapolis, and Fairbanks, respectively.
� In all three climates, less window area and the use of single-

pane windows show relatively small influence on space-heating
energy use, which can be due to the tradeoff between the win-
dow conduction heat losses and solar heat gains.

Fig. 4 benchmarks the space-heating EUI of the High and Low
Heating cases against the basecases for both office buildings across
the three climates. There are huge differences in heating energy
use between the High Heating (the worst) cases and the Low Heat-
ing (the best) cases – by factors of about 60, 30, and 15 for both of-
fice buildings in Chicago, Minneapolis, and Fairbanks, respectively.
The space-heating EUI ranges from 14.3 to 828.5 MJ/m2 (3.97–
230.1 kWh/m2), 31.0 to 978.3 MJ/m2 (8.61–271.8 kWh/m2) and
87.5 to 1315 MJ/m2 (24.3–365.3 kWh/m2) for the large office build-
ings in Chicago, Minneapolis, and Fairbanks, respectively. For the
small office buildings, the ranges are 6.5–482 MJ/m2 (1.81–
133.9 kWh/m2), 19.7–671 MJ/m2 (5.47–186.4 kWh/m2), and 93.4–
1185 MJ/m2 (25.9–329.2 kWh/m2) in Chicago, Minneapolis, and
Fairbanks, respectively.

Compared with the basecases, the High Heating cases signifi-
cantly increase space-heating energy use by a factor of 3–5 for
the large office buildings in these climates; while for the small of-
fice buildings, the increase in space-heating energy use is by a fac-
tor about 3. Similarly, compared with the basecases, the Low
Heating cases dramatically decrease space-heating energy use to
1/8, 1/5, and 1/3 for the large office buildings in Chicago, Minneap-
olis, and Fairbanks, respectively; and to 1/17, 1/9, and 1/4 for the
small office buildings.

For the large office building served by VAV systems with zone
reheat, potential reheat during the summer cooling season is a
waste of energy and thus increases space-heating energy use.
Fig. 5 shows monthly space-heating EUIs of the large office build-
ing in Chicago. It can be seen that most of the heating is used dur-
ing winter, especially December and January. A relatively small
amount of heating may occur during summer for the large office
building, mainly due to heating the basement. There is almost no
reheat during summer except for the High Minimum VAV
Box Damper Position case and the High Heating case. This agrees
with common operational practice that setting the VAV box dam-
per wide open is one of the major causes of high reheat energy dur-
ing summer.

Based on above analysis, it can be seen that space-heating en-
ergy use can be significantly reduced by more efficient building de-
sign and even more so by improving the operation of space-heating
systems. To improve the accuracy of the prediction of space-heat-
ing energy use by simulations, it is crucial to have proper inputs to
the most important design and operation parameters as identified
in the study.

5.2. Impact of weather data

To look at the impact of weather data on space-heating energy
use, a percentage change of space-heating energy use is calculated
by comparing the space-heating energy use of a historical year
(from 1980 to 2009 for Chicago and Fairbanks) to that of the base-
case using the TMY3 weather. Figs. 6 and 7 show that the impact of
weather data on space-heating energy use is significant for the
large and small office buildings in both Chicago and Fairbanks.

For Chicago, the large office building shows that space-heating
energy use varies from �18% to +33%; while the small office build-
ing shows variations from �24% to +33%. The results indicate that
1985 was the coolest year and 2006 the warmest year for both of-
fice buildings across the 30-year period. Most warm years occurred
from 1998 to 2006, while most cool years occurred from 1980 to
1986.

For Fairbanks, the large office building shows that space-heat-
ing energy use varies from �20% to +24%; while the small office
building shows variations from �17% to +22%. The results indicate
that 1999 was the coolest year and 1981 was the warmest year for
both office buildings across the 30-year period. Most warm years
occurred from 2000 to 2003, while most cool years occurred from
1988 to 1999.

The impact of weather on space-heating energy use is very con-
sistent across both office buildings in the same climate, but is very



Fig. 5. Monthly space-heating energy use of the large office building in Chicago.

Fig. 6. Multiyear space-heating energy use in Chicago.
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different across both climates – the coolest and warmest years oc-
curred differently during the period from 1980 to 2009.

It should be noted that space-heating energy use from simula-
tions using TMY3 weather data can underestimate by up to 33%
or overestimate by up to 25% compared with using historical
weather data. For Fairbanks, simulated results using TMY3 under-
estimate space-heating energy for most of the years during the 30-
year period.
Comparing the space-heating energy use of the coolest year to
the warmest year for Chicago, the increase is 51% and 57% for
the large and small office buildings, respectively; while for Fair-
banks, the increases are 44% and 39%. Thus it is crucial to run sim-
ulations with multiple decades of weather data to fully evaluate
the impact of weather on the energy performance of space-heating
systems in buildings.



Fig. 7. Multiyear space-heating energy use in Fairbanks.

Fig. 8. Benchmarking simulation results with the building databases for the large office building in Chicago.
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5.3. Benchmarking with building databases

To form a clear picture of how space-heating energy use varies
in actual buildings, we selected ones from the two databases for
Chicago and Minneapolis that were similar to the simulated large
and small office buildings in terms of building type or function,
size, location, and construction age. Figs. 8–11 show both the sim-
ulated and the actual space-heating EUIs. Each horizontal line rep-
resents result from a selected building in one of the two databases.
The solid lines represent buildings selected from the CBECS data-
base, while the dashed lines representing buildings from the HPB
database.

In general, space-heating EUIs vary significantly for the selected
buildings from both databases and even more across the two
databases.
Fig. 8 shows the benchmark results for the large office in Chi-
cago. From CBECS, 10 buildings were found with floor area ranging
from 18,580 to 46,450 m2, vintage 1990–2003. The space-heating
EUIs for these buildings vary from 136.7 to 559.72 MJ/m2 (38.0–
155.5 kWh/m2). Fig. 9 shows the benchmark results for the small
office in Chicago. The selection criteria for the CBECS are set as fol-
lows: (1) floor area from 93 to 9290 m2, (2) vintage 1990–2003,
and (3) location in Chicago. Seven such small office buildings were
found from the CBECS with a space-heating EUI from 249 to
1023 MJ/m2 (69.2–284.2 kWh/m2). Two small office buildings
were found from the HPB database that are near Chicago and have
a floor area of 1390 and 3716 m2. The two offices have space-heat-
ing EUIs of 208.8 and 335.2 MJ/m2 (58.0–93.1 kWh/m2).

For Chicago, the simulated results are always much lower than
the databases except for the High Heating case. Although the High



Fig. 9. Benchmarking simulation results with the building databases for the small office building in Chicago.

Fig. 10. Benchmarking simulation results with the building databases for the large office building in Minneapolis.
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Heating case results overlap with some low-end results from the
databases, it is much lower than the high-end results – by more
than 20%. This implies that there might be other important param-
eters that should be considered in simulations; for example, design
and operation problems or faults of the space-heating systems.

Minneapolis belongs to the East North Central division of the
Midwest region in the CBECS. Fig. 10 shows the benchmark results
for the large office building, and Fig. 11 shows the small office
building. In Fig. 10, three buildings, selected based on the criteria
of floor area larger than 9290 m2 and vintage 1990 and 2003, have
space-heating EUIs ranging from 150.7 to 299.3 MJ/m2 (41.9–
83.1 kWh/m2, by a factor of 2). On the other hand, eight small office
buildings were selected based on floor area from 93 to 9290 m2

and vintage 1990 to 2003. The space-heating EUI of the eight build-
ings vary from 122.7 to 845 MJ/m2 (34.1–234.7 kWh/m2, by a fac-
tor of 7). Only one small building was found from the HPB with



Fig. 11. Benchmarking simulation results with the building databases for the small office building in Minneapolis.
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floor area of 1104 m2. The space-heating EUI of this office is
75.9 MJ/m2 (21.1 kWh/m2).

It should be noted that there are uncertainties associated with
the two benchmark databases: (1) the space-heating energy uses
are not from actual measurements; rather, they are calculated from
statistical analysis (CBECS) or energy modeling (HPB); and (2) the
floor area used to calculate the EUI might not accurately match
the actual floor area of the buildings. Furthermore, the buildings
selected from the databases may not exactly match the simulated
buildings in terms of floor area, vintage, and location. This contrib-
utes to discrepancies between the simulated and benchmarked
space-heating energy uses.
6. Conclusions

The simulated space-heating energy use of the small- and large-
size office buildings across the three heating climates can vary sig-
nificantly, depending on details of a few key building design and
operation parameters. The most influencing parameters are
space-heating temperature setpoint and setback strategies, air
infiltration, VAV terminal box damper minimum position settings
for the large office, window type, WWR, and internal loads. The rel-
ative impacts of these parameters vary with building type and
climate.

Compared with the basecase, the High Heating case consumes
more than double the space-heating energy, while the Low Heating
case consumes less than half for both office buildings in all the
three climates.

For the two climates with the 30-year historical weather data,
the simulated space-heating energy use for a particular year can
vary dramatically, compared with the average results across the
30-year period. For the basecase, the simulated space-heating en-
ergy use with the TMY3 weather data can overpredict by 24%
and underpredict by 34%, compared with the results with the his-
torical weather data. To understand the long-term impact of
weather on space-heating energy use, it is critical and necessary
to run simulations with multiple decades of actual weather data,
considering the availability and affordability of such data and
low extra cost of running such simulations on current PCs with
high computing power. Besides, dynamic analyses should be intro-
duced to study the integrated effect of driving factors to space
heating energy use.

The actual space-heating energy use for the similar office build-
ings from the CBECS and HPB databases also vary significantly,
with wide ranges that well overlap the variation ranges of the sim-
ulated results. Based on the study, simulations do not necessarily
always under- or overpredict space-heating energy use. The simu-
lated space-heating energy use depends on building type, configu-
ration, and climate, with a few special key influential building
design and operation parameters.

High-efficiency designs and better operation of buildings can
reduce space-heating energy use, but the latter plays a more
important role. For building designers, paying more attention to
the most influential design parameters has significant potential
to reduce space-heating energy use for new buildings. For building
owners and operators, improving building operations through
commissioning and retrofits to control key operation parameters
is an effective way to reduce space-heating energy use for existing
buildings. Finally, for energy policy makers, enforcing more strin-
gent regulations on these design and operation parameters can sig-
nificantly reduce space-heating energy use in new and existing
buildings.

To lower space heating energy use in office buildings, the fol-
lowing steps are recommended: (1) lower space-heating tempera-
ture setpoint while maintaining thermal comfort, (2) use heating
thermostat setback during unoccupied hours, (3) reduce air infil-
tration rate by improving air tightness of the building envelope,
(4) decrease the minimum damper position settings of VAV termi-
nal boxes if applicable, and (5) replace with better insulated
windows.

This study did not look at other influencing factors of space
heating, such as building occupancy level and operational faults
of space-heating systems. Building occupancy levels vary case by
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case, and insufficient data is available for this study. Future re-
search can study the impact of HVAC operational faults on space-
heating energy use. Other potential causes of high space-heating
energy in actual buildings might relate to occupants opening win-
dows during heating season, space overheating due to lack of tem-
perature controls, heat losses from air ducts, hot-water piping, and
boilers that might not be counted well or at all in energy-modeling
programs. Similar analysis can be done for other building types and
climates, and to aggregate the impacts at the regional and national
levels.
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ABSTRACT  

Almost half of the total energy used in the U.S. buildings is consumed by heating, 

ventilation and air conditionings (HVAC) according to EIA statistics. Among various 

driving factors to energy performance of building, operations and maintenance play a 

significant role. Many researches have been done to look at design efficiencies and 

operational controls for improving energy performance of buildings, but very few 

study the impacts of HVAC systems maintenance. Different practices of HVAC 

system maintenance can result in substantial differences in building energy use. If a 

piece of HVAC equipment is not well maintained, its performance will degrade. If 

sensors used for control purpose are not calibrated, not only building energy usage 

could be dramatically increased, but also mechanical systems may not be able to 

satisfy indoor thermal comfort. Properly maintained HVAC systems can operate 

efficiently, improve occupant comfort, and prolong equipment service life. 

 

In the paper, maintenance practices for HVAC systems are presented based on 

literature reviews and discussions with HVAC engineers, building operators, facility 

managers, and commissioning agents. We categorize the maintenance practices into 

three levels depending on the maintenance effort and coverage: 1) proactive, 

performance-monitored maintenance; 2) preventive, scheduled maintenance; and 3) 

reactive, unplanned or no maintenance. A sampled list of maintenance issues, 

including cooling tower fouling, boiler/chiller fouling, refrigerant over or under 

charge, temperature sensor offset, outdoor air damper leakage, outdoor air screen 

blockage, outdoor air damper stuck at fully open position, and dirty filters are 

investigated in this study using field survey data and detailed simulation models. The 

energy impacts of both individual maintenance issue and combined scenarios for an 

office building with central VAV systems and central plant were evaluated by 

EnergyPlus simulations using three approaches: 1) direct modeling with EnergyPlus, 

2) using the energy management system feature of EnergyPlus, and 3) modifying 
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EnergyPlus source code. The results demonstrated the importance of maintenance for 

HVAC systems on energy performance of buildings.  

The research is intended to provide a guideline to help practitioners and building 

operators to gain the knowledge of maintaining HVAC systems in efficient operations, 

and prioritize HVAC maintenance work plan. The paper also discusses challenges of 

modeling building maintenance issues using energy simulation programs.  

 

KEYWORDS 

Building energy use, Building simulation, EnergyPlus, Fault modeling, HVAC 

maintenance 

 

INTRODUCTION 

Almost half of the total energy used in the U.S. buildings is consumed by heating, 

ventilation and air conditioning (HVAC) according to U.S. Energy Information 

Administration statistics. For too long, high efficiency design and optimum 

operational controls to improve energy performance of buildings have been the focus, 

and deficiencies in building operation and maintenance have been neglected. In fact, 

among various driving factors to energy performance of building, operation and 

maintenance play a decisive role. HVAC maintenance keeps plant and HVAC 

equipment in a healthy state in which HVAC system can function properly. This also 

includes troubleshooting of defective equipment to perform the intended function in a 

cost efficient manner, thus extending life serving time. Mill (2009) identified a wide 

diversity of system deficiencies and report frequency of system deficiencies for 

existing building and new constructions. The study also found that the most common 

problems were in air-handling and distribution systems for existing buildings.  

 

Different practices of HVAC system maintenance can result in substantial differences 

in building energy use, maintenance costs, and equipment life. Based on discussions 

with HVAC engineers, building operators, facility managers, and commissioning 

agents, and literature review on maintenance standards (ASHRAE 2008, 2012; CIBSE 

2008), maintenance practices for HVAC systems can be categorized into three levels 

depending on the maintenance effort and coverage:  

1) proactive maintenance 

The performance-monitored maintenance represents the good practice. The system 

operation problems can be identified and repaired before a failure occurs. It allows the 

maintenance manager has control over maintenance. 

2) preventive, scheduled maintenance 

This practice represents the average practice (business as usual). In this practice, 

maintenance is scheduled over time. For example, a filter in an air handler unit is 

replaced every 6 months. Preventive maintenance program may take too long to 

demonstrate results or fail to justify its cost.  

3) reactive, unplanned maintenance  



This maintenance repairs or replaces equipment only when it fails and investigates 

system performance issues based on occupants’ complaints. It is often practiced by 

facilities that are significantly understaffed and underfunded. 

Table 1 summarizes the three practices of HVAC maintenance and their implications 

on equipment operating efficiency and energy use, equipment life, short term 

maintenance cost, and life cycle cost including maintenance cost, energy cost, and 

equipment replacement or repair cost. The good practice will lead to lowest life cycle 

cost, while the bad practice seems to save short term maintenance cost, it will result in 

the highest life cycle cost. 

 

Table 1. Three types of HVAC maintenance practices 

 

 

Investigating the impacts of HVAC maintenance issues on building performance is a 

complicated research subject. The research requires not only on a good understanding 

of common practices on maintenance issues but also modeling techniques to simulate 

operation deficiencies. Most building energy simulation programs available today 

have limited capabilities of directly modeling HVAC operational faults or 

maintenance issues which occur in almost every building. Basarkar et al. (2012) 

implemented four types of equipment faults in a development version of EnergyPlus 

to simulate common faulty operation in building systems. The purpose of this study, 

reported here, is to continue previous research on fault modeling, develop modeling 

and simulation methods for maintenance issues and assess the impacts of common 

maintenance issues on building performance.  

 

TECHNICAL APPROACH 

EnergyPlus is used as the simulation tool in the study for modeling maintenance 

issues. EnergyPlus, developed by U.S. Department of Energy, is an open-source 

whole-building energy simulation program built upon sub-hourly zone heat balance 

and integrated solutions of building loads, HVAC systems, and central plant 

equipment. Three different approaches using EnergyPlus, in order of difficulty, are 

used to model HVAC maintenance issues:  

 

1) Direct modeling with EnergyPlus (Direct Modeling)  

Maintenance issues are directly modeled using existing inputs (either design input 

parameters or performance curves) in the current version of EnergyPlus. This 



modeling approach can be applied to such maintenance issues as supply air sensor 

offset, zone thermostat offset and outdoor air damper leakage. This approach is also 

applied to model simplified maintenance issues such as chiller or boiler fouling by 

introducing a degradation factor to the chiller or boiler efficiency inputs to the 

EnergyPlus models. The advantage of this approach is easy implementation.  

2) Using the energy management system (EMS) in EnergyPlus 

EMS is an advanced feature of EnergyPlus and designed for users to develop 

customized high-level, supervisory control routines to override specified aspects of 

EnergyPlus modeling in the EMS program. The EMS feature in EnergyPlus is flexible 

to allow users to simulate equipment operating with some maintenance issues by 

overwriting or adding algorithms in EnergyPlus within the specified aspects of current 

EMS capability. Use of EMS feature may require advanced knowledge of EnergyPlus 

and computer programming. EMS is used to model maintenance issues like dirty 

filters which increase pressure drop across the filter with operating hours.  

3) Modifying EnergyPlus source code (Modified Code)  

Modifying the existing EnergyPlus source code, the third modeling approach, is used 

when both direct modeling and EMS approaches cannot be applied to simulate any 

particular equipment or system deficiencies. This approach requires users to have a 

thorough understanding of the existing EnergyPlus source code and to write your own 

custom computer program based on existing code. Such HVAC maintenance issues as 

cooling coil fouling, outdoor air and return air temperature sensors offset adopt the 

third approach.    

 

SAMPLED HVAC MAINTENANCE ISSUES 

A list of common HVAC maintenance issues are reviewed and selected for the initial 

modeling and simulations. Based on literature reviews and our understanding of the 

physics and implications for each maintenance issues, we developed corresponding 

models and simulation approaches. Table 2 lists the issues with their potential impacts 

and modeling approach according to maintenance types, including sensor calibration, 

filter replacement, heat exchanger treatment, mechanical repair and refrigerant charge, 

are investigated using detailed simulation models.  

 

Each maintenance issue list in Table 2 was modelled using EnergyPlus. A description 

of the implement model for selected maintenance issues is as follows. 

Temperature sensor offset 

Control sensors such as supply air temperature (SAT) sensors, zone thermostats, and 

outdoor air temperature (OAT) sensors may be out of calibration over a long term 

operation period. In this study, it is assumed that temperature sensors are offset by ±2˚C. 

For example, if a SAT sensor is offset by +2 ˚C and a designed supply air temperature to 

control is 13˚C, the actual supply air temperature due to sensor offset is 11 ˚C. 

Dirty filter 

In terms of filter replacement for reactive maintenance, it is assumed that filters in air handler 

units have not been replaced over a year. Therefore, pressure drop for air handler units has 

been increased and the maximum additional pressure drop is 500 Pa. 



Fouled cooling tower  

Cooling towers can become fouled due to unfavourable conditions. The study assumes certain 

fouling condition that overall heat transfer coefficient is reduced to 85% of design value.  

 

Table 2. List of sampled HVAC maintenance issues 

 

 

Maintenance 

Types 

Maintenance 

Issues 
Impacts  

Simulated 

Scenarios  

Modeling 

Approach 

Sensor 

Calibration  

Supply air 

temperature 

sensor (SAT) 

offset 
controls, heating 

and cooling 

energy 

temperature 

sensors are offset 

by ±2˚C 

Direct modeling, 

adjust SAT setpoint 

Zone temperature 

sensor offset 

Direct modeling , 

adjust thermostat 

settings 

Outdoor air 

temperature 

sensor offset  

Modified Code, 

modify the 

economizer controls 

Filter 

replacement 
Dirty filter 

pressure drop, 

fan energy, 

airflow 

additional 500Pa 

of air pressure 

drop 

EMS, adjust fan 

power for VAV 

systems 

Heat exchanger 

cleaning/treatme

nt 

Fouled cooling 

tower 
efficiency 

overall heat 

transfer 

coefficient is 

reduced to 85% 

of design UA 

Direct modeling, 

adjust cooling tower 

UA 

Chiller: fouled 

tubes 
efficiency 

chiller COP is 

reduced by 10% 

Direct modeling, 

adjust chiller 

efficiency 

Boiler: hard water 

scale 
efficiency 

boiler efficiency 

is reduced by 

10% 

Direct modeling, 

adjust boiler 

efficiency 

Fouled heating 

/cooling coil 

efficiency, 

comfort 

overall heat 

transfer 

coefficient is 

reduced to 50% 

of design UAs 

Modified Code, 

adjust coils UA 

Mechanical 

repair 

Outdoor air 

damper leakage 

heating and 

cooling energy 

30% OAD 

leakage 

Direct modeling, 

adjust minimum OA 

flow 

Stuck outdoor air 

damper (OAD)  

heating and 

cooling energy 

OAD is stuck at 

fully open 

position 

EMS, set constant 

OA flow 

Clogged OA 

screen 

outdoor air flow 

is less than 100%  

during 

economizer 

mode thus 

increasing 

cooling energy 

maximum 

percent of intake 

fresh air is 

reduced to 70%  

Direct modeling, set 

maximum OA flow 

Refrigerant 

charge 

Chiller: over or 

under 10% 

refrigerant charge  

efficiency 
chiller COP is 

reduced by 10% 

Direct modeling, 

adjust chiller 

efficiency 



Fouled Chiller/Boiler/Coils 

Fouling on heat transfer surfaces of boiler and chiller increases the thermal resistance and 

leads to reduced heat transfer. For the scenario of chiller/boiler fouling, both chiller COP and 

boiler efficiency are assumed to be reduced by 10%. For fouled cooling/heating coils, overall 

heat transfer coefficients are assumed to be reduced to 50% of design UAs. 

Outdoor air damper (OAD) leakage 

In the study, it is assumed that OAD leakage level is 30%. When the commanded 

outdoor air fraction is smaller than the leakage level, leaky damper cannot effectively 

control the air intake.  

Stuck outdoor air damper (OAD) 

Stuck OAD due to control and mechanical failure is another common fault in field. In this 

study, OAD is assumed to get stuck at fully open position. Cooling and heating energy 

penalties are introduced when outdoor air is not favourable for free cooling.  

Clogged OA screen 

Outdoor air intake screens may get clogged due to unfavourable locations or weather 

condition. The maximum percent of intake fresh air is assumed to reduce to 70%. 

 

RESULTS AND DISCUSSIONS 

 

 
Figure 1. The impacts of poor HVAC maintenance on HVAC source energy 
consumption for a large office building in Chicago, USA 

 

The energy penalty introduced by HVAC maintenance issues varies by a few factors 

including building and HVAC systems types, vintage (design efficiencies), and 

climates. In the study, the commercial building reference model (Anon.) for a 

large-size office building in compliance with ASHRAE Standard 90.1-2004 is used as 

a baseline representing good maintenance practice. The large-size office building 
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consists of one basement level and 12 floors above ground served by 4 built-up VAV 

systems with 2 water-cooled chillers and one natural gas hot-water boiler.  

The results, shown in Figure 1, demonstrated the energy penalty introduced by the 

reactive maintenance practice for the built-up VAV system located in Chicago. The 

percentages are derived by comparing the total source/primary energy use of HVAC 

systems for the reactive maintenance practice to those of the good practice (baseline 

reference model). The maintenance issues with significant energy impacts for 

Chicago are OA damper stuck at 100% position, blocked OA screen, supply air 

temperature offset, boiler/chiller fouling, and chiller refrigerant under/overcharge. 

Although there is no significant energy impact due to heating/cooling coil fouling, the 

numbers of unmet thermal comfort hours for both heating and cooling are 

significantly increased due to reduced system cooling and heating capacities. Two 

combined scenarios (#1 and #2) with different temperature sensor offsets were 

simulated in the study. The overall energy penalty by combining the sampled 

maintenance issues including sensor offset by +2 ˚C can reach 85% of overall HVAC 

energy consumption for Chicago climate.  
 
Table 3. The impacts of poor HVAC maintenance on HVAC end-use energy 
consumption for a large office building in Chicago, USA 

 Maintenance Issues Cooling/Chiller Heating/Boiler Fans Pumps 
Cooling 

Tower 

OA Damper Leak -0.04% 8.01% 0.00% 0.67% 0.06% 

Clogged OA Screen 13.47% 0.00% -0.01% 14.88% 16.27% 

OA Damper Stuck at 100% 0.79% 183.93% 27.20% 11.37% 0.99% 

Filter Replacement 0.57% -1.24% 63.69% 0.82% 0.60% 

Cooling Coil Fouling 1.52% -0.01% 2.49% 4.14% -0.12% 

Heating Coil Fouling 0.00% -0.62% 0.05% 2.48% -0.03% 

Cooling Tower Fouling 1.36% - - 0.00% 0.11% 

Boiler Fouling - 14.71% - - - 

Chiller Fouling 10.24% - - 1.00% 1.58% 

Refrigerant 

Under/Overcharge 
10.24% - - 1.00% 1.58% 

OAT Offset (+2˚C)  0.57% 1.52% 0.00% -0.14% -0.59% 

OAT Offset (-2˚C) 1.20% -0.01% 2.87% 4.10% -0.18% 

SAT Offset (+2˚C)  6.87% 18.08% -5.05% 12.14% 7.74% 

SAT Offset (-2˚C) -7.71% -7.37% 13.06% -14.75% -8.74% 

Thermostat Offset (+2˚C)  3.83% -29.02% 21.57% 3.77% 5.00% 

Thermostat Offset (-2˚C) -3.05% 22.79% -25.10% -5.37% -1.68% 

 

Table 3 shows the impacts of maintenance issues on HVAC end-use energy 

consumption for chillers, boilers, fans, pumps and cooling towers. In the table, the 

value in each cell represents the percentage change of HVAC end-use energy 

consumption relative to that of the baseline model. If OA dampers in the built-up 

VAV system get stuck at 100%, heating and fan energy uses increase by 184% and 



27%, respectively. As variable speed pumps are used in both chilled and hot water 

loops, pump energy uses have been increased for fouled cooling and heating coils. 

Cooling tower fouling causes a small increase in cooling energy use (no pump energy 

increase as the pump is constant speed in the condenser loop). Outdoor air 

temperature sensor offset interferes control thresholds for various operation modes of 

air-side economizers and therefore introduces extra energy use for heating and 

cooling. Supply air temperature sensor offset by +2 ˚C introduces about 7% cooling 

penalty, 18% heating penalty due to increased reheat, 5% less fan energy use due to 

the reduction of overall air flow rates, which SAT sensor offset by -2 ˚C reduces 

cooling and heating energy use by increasing the actual controlled supply air 

temperature.  

 

CONCLUSION  

This study applied three different approaches for modeling common HVAC 

maintenance issues. Sixteen scenarios on individual maintenance issues and 2 

combined scenarios were simulated. The results demonstrated that the combined 

impacts of the selected maintenance issues on building energy use for a large office 

building in Chicago climate can reach up to 85% of overall HVAC source energy use 

due to reactive maintenance practice.       

Our on-going research focuses on identifying a broader list of HVAC maintenance 

issues for commercial buildings in various climates, and developing modeling 

approaches. The research findings can be used to provide a guideline to help 

practitioners and building operators to gain the knowledge of maintaining HVAC 

systems in efficient operations, and prioritize HVAC maintenance work plan. 
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Abstract 
Building occupancy is an important basic factor in building energy simulation but it is hard to 
represent due to its temporal and spatial stochastic nature. This paper presents a novel approach 
for building occupancy simulation based on the Markov chain. In this study, occupancy is handled 
as the straightforward result of occupant movement processes which occur among the spaces 
inside and outside a building. By using the Markov chain method to simulate this stochastic 
movement process, the model can generate the location for each occupant and the zone-level 
occupancy for the whole building. There is no explicit or implicit constraint to the number of 
occupants and the number of zones in the model while maintaining a simple and clear set of 
input parameters. From the case study of an office building, it can be seen that the model can 
produce realistic occupancy variations in the office building for a typical workday with key 
statistical properties of occupancy such as the time of morning arrival and night departure, lunch 
time, periods of intermediate walking-around, etc. Due to simplicity, accuracy and unrestraint, this 
model is sufficient and practical to simulate occupancy for building energy simulations and 
stochastic analysis of building heating, ventilation, and air conditioning (HVAC) systems. 
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1 Introduction 

Building energy simulation tools such as EnergyPlus (Crawley 
et al. 2001), ESP-r (ESRU 1999), DeST (Yan et al. 2008; 
Zhang et al. 2008), and TRNSYS (Klein et al. 2004) have 
been playing more and more important role in building 
energy conservation since their conception. In past decades, 
modeling of heat and mass transfer processes, ambient 
weather data, as well as HVAC (heating, ventilation, and 
air conditioning) systems in buildings have been the main 
focus and have been well established. They support the 
application of simulation technique to predict and evaluate 
the performance of buildings (indoor climate, energy 
consumption, etc.). Occupant behavior, as a basic factor in 
building performance, still remains a big issue because of  
its stochastic nature in time and space.  

In general, the behavior of building occupants can be 
broken down into two aspects: one is how they occupy the 
building (when they occupy the building and how many 
people for each zone), which is denoted by occupancy. The 

other is how they interact with building devices including 
windows, doors, blinds, air conditioning terminals, lights, 
and equipment (TVs, computers, printers, etc.). In most 
situations, occupants have the right and means to adjust and 
control these devices, thus, those interactions are closely 
related to occupancy. For example, lights in a zone might 
be turned on by occupants when the zone is occupied and 
might be turned off if there is no occupant. In some smart 
buildings, occupancy sensors are installed for automatic 
control of devices according to the occupied status of the 
monitored space to reduce unnecessary energy use while 
maintaining the comfort level of the environment. For 
buildings with occupancy controls, occupancy becomes a key 
driving factor to accurately predict the energy consumption 
of the buildings or the impact of such occupancy-based  
control system on building energy performance. 

The load calculation and performance analysis of building 
HVAC systems depend on accurate accounting of internal 
heat gains due to occupancy (and associated use of lights 
and equipment), especially for interior zones in large public 
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or commercial buildings where the internal heat gains are 
the most important factor that affects the indoor thermal 
environment. In such situations, the uncertainty or stochastic 
variation of internal heat gains usually results in overcooling 
or overheating during HVAC system operation, and thus 
plays a decisive role in the performance evaluation of a HVAC 
system, such as the comparison between CAV (constant air  
volume) and VAV (variable air volume) system (Yan 2005). 

Therefore, how the stochastic characteristic of occupancy 
in building can be defined and modeled is an important issue 
that remains to be addressed in building energy simulation. 

Currently the most commonly used method in simulation 
tools to represent occupancy is the so-called schedule, diversity 
profile or diversity factors (DeST 2008; EnergyPlus 2009; 
Davis and Nutter 2010), which can describe the time-variation 
of occupancy. A daily schedule consists of 24 hourly values 
while a yearly schedule usually consists of 365 daily schedules, 
in which the hourly values can be estimated from individual 
experience or onsite survey; the same schedule is usually 
used for zones that have similar functions. Through this 
deterministic approach, the average impact of internal heat 
gains (from occupant, lighting and equipment) on energy 
consumption and cooling load of the building can be 
estimated, but it cannot represent the stochastic variations 
of occupancy in time and space. In addition, the datasets 
corresponding to occupancy schedule in all its stochastic 
variety from survey and measurement are still scarce, and 
even if such datasets were available, since occupancy may 
vary widely from one building to another depending on the 
type and size of the building, etc., they may not accurately  
represent actual occupancy. 

Consequently, stochastic models have been proposed to 
produce synthetic occupancy schedules in a certain way as 
inputs to simulation tools. A fundamental stochastic model 
uses the Monte Carlo method (Macdonald and Strachan 
2001), which generates an estimation of occupancy for each 
zone in a building based on the probability distribution of 
occupancy in each zone (normal distribution used in 
practice). It is an easy way to consider occupancy uncertainty, 
regardless of the interactions and relationships of the 
occupancy at different times in a zone and that in different 
zones at the same time in a building, which are distinct in 
reality (e.g., an occupant is likely to stay in the same zone at 
the next time if he stays there at previous time and he cannot 
appear at two places at the same time). Thus, this method is 
too rough for occupancy modeling and usually only used for  
risk analysis.  

In recent years, several advanced models have been 
proposed to randomly generate plausible sequences of 
occupancy in buildings. Wang et al. (2005) proposed a 
probabilistic model to predict and simulate occupancy in 
single person offices, where non-homogeneous Poisson 

process model with two different exponential distributions 
are used to generate the occupancy sequence in a single 
person office. Based on the examined statistical properties 
of occupancy, the durations of presence and absence 
during business hours are both exponentially distributed 
and the coefficient of each exponential distribution for a 
single office can be treated as a constant over the workday. 
Meanwhile, in order to combine the clock-time information 
into the simulation, the morning arrival time, the night 
departure time, and the lunch break time are assumed to  
be normally distributed, which are actually not supported   
by observations. This method is simple and elegant for 
single offices, but it is severely limited in describing the 
relationship of occupancy in different zones due to occupant 
movement in a building, and thus very hard to extend into  
other situations.  

Page et al. (2008) presented an approach based on the 
inhomogeneous two-state Markov chain, where the model 
can generate a time series of the state of presence (in/out, 
or, present/absent) of occupants within a specific zone of  
a building, and the transition probabilities of the model, 
corresponding to arriving, leaving and staying in the 
respective states, are time-dependent and estimated from 
the probability of presence (based on aggregate occupancy 
records) at every time step. In addition, an assumed para- 
meter of mobility describes the probability of state changes. 
This model is capable of reproducing the important 
characteristic of occupancy in office buildings such as the 
morning arrival time, the night departure time, typical long 
absences and the effective time of presence of the occupant 
within the zone by a uniform Markov chain. However, it 
has two major disadvantages: (1) as inputs to the model, 
the profiles of probability of presence and parameters of 
mobility are too complex to specify in simulation and to 
obtain from survey or measurements because of their time 
dependency; (2) this model does not simulate the movement 
of occupants from one zone to another, which is distinct in 
reality and important for occupancy prediction. Even if 
such efforts can be made, extending the model to multiple 
zones is much more challenging for determining the time 
varying entries of high-order transition probability matrix  
and parameters of mobility for state changes. 

The most recent model is proposed by Liao et al. (2011), 
an agent-based model of occupancy dynamics in a building. 
This model regards each occupant as an agent and decides 
the state of an agent (the location of each occupant) at every 
time step through a set of rules specified by four modules, 
which can then be collected to generate time-series of zone- 
level occupancy. Compared to Page’s model, Liao’s model 
maintains a Markov-like property of agent dynamics and is 
easily scalable to an arbitrary number of zones and an 
arbitrary number of occupants. The scheduled activities of  
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agents, the zones that each agent can access, the maximum 
occupancy limits of zones, and a secondary agent that 
occupies the building for brief periods of time (like visitors) 
are also involved. This model’s prediction accuracy was 
found to be quite good in the single-occupant single-zone 
scenario and multi-occupant single-zone scenario, but is 
poor in the multi-occupant multi-zone scenario. The most 
time-consuming part in constructing the model is specifying 
the nominal presence probability profile for each agent in 
the preliminary state generator module, which consists of 
the probability time series that an agent occupies a zone at 
every time step. Due to excessive information, these inputs 
for the model are hard to obtain especially for multi- 
occupant multi-zone scenarios. For this reason, although it 
has no limitation in theory when applied to multiple zones, 
some simplifications have to be made in practice when 
specifying the nominal presence profiles, such as the zones 
that each occupant can access only include a primary zone, 
a secondary zone, a hallway, and a restroom. The frequency 
and average duration of visiting a restroom per day are 
assumed to be constant over the workday. Lunch and 
dinner breaks are strictly specified by fixed schedule rather 
than random process. These simplifications reduce the 
capacity of the model and would lead to poor results of the  
model in a multi-occupant multi-zone scenario. 

Additional models have tried to generate the stochastic 
occupancy in buildings based on occupant activity simulation 
(Tabak 2008; Goldstein et al. 2010), where the models 
focused on the chronological sequence of detailed activities, 
with attributes of a task (e.g., working, meeting, eating), 
such as frequency, duration, priority, location, facilities, 
interactions with one another, etc. This method is quite 
sophisticated and can output many details of human behavior 
in a building, from which the occupancy is a natural 
consequence. However, relying on a huge extensive survey 
or measurement of such detailed activity, this indirect 
method is not as practical for occupancy simulation as the  
aforementioned methods. 

The above overview indicates that existing models have 
demonstrated the capacity to realistically reproduce key 
properties of occupant presence for both the single-occupant 
single-zone scenario and the multi-occupant single-zone 
scenario, but have serious limitations when extended to 
multiple spaces. Furthermore, the excessive inputs of these 
models due to time dependency or high order of matrix are  
complex to handle in simulation.  

The principal goal of this paper is to present a novel 
approach for occupancy simulation based on homogeneous 
Markov chain and demonstrate it in an office building 
simulation. In this study, occupancy is handled as the 
straightforward result of occupant movement processes  

which occur among the spaces inside and outside the building. 
Thus there is no explicit or implicit constraint to the number 
of occupants and the number of zones. By using the 
Markov chain method to simulate this stochastic movement 
process, the model can generate the location for each 
occupant and the occupancy for each zone of the building 
while maintaining a simple, clear set of input parameters. 
From the case study, it can be seen that the model can 
produce the realistic occupancy variations in the office 
building for typical workday with key statistical properties 
of occupancy such as the time of morning arrival and night 
departure, lunch time, periods of intermediate walking- 
around, etc. In the terms of simplicity, accuracy and 
unrestraint, this model is sufficient and practical to 
simulate occupancy for building energy simulations and  
stochastic analysis of building HVAC systems.  

2 Methodology 

The goal of the model in this paper is to generate stochastic 
occupancy schedules with the same statistical characteristic 
of building occupancy, which can then be used by a building 
energy simulation tool to further estimate the energy 
consumption of a building and the performance of a HVAC  
system.  

The basic idea of the model is that building occupancy 
is a straightforward result of occupant movement processes 
which occur among the spaces inside and outside the building. 
The first-order homogeneous Markov chain technique, a 
widely-used well-established stochastic process method (Ross 
1996), was selected for simulating the occupant movement  
process.  

The concept of the first-order homogeneous Markov 
chain (HMC) technique is that any future state is dependent 
only on the present state together with the probabilities of 
the state changing (called Markovian property). These pro- 
babilities are held in the transition probability matrix and 
are time-independent (i.e., fixed). Consider a stochastic 
process { , 0,1,2, }kX k = "  that takes a set of nonnegative 
integers {0,1,2, }I =  as possible values, HMC (with  
discrete states and discrete time steps) can be present by 

{ }
{ }

1 1 1 1 1 0 0
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| , , , ,
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for all states 0 1 1, , , , ,ki i i i j−"  and all time steps ≥ 0.k  The 
fixed value ijp  represents the probability that the process 
will, when in state i, next make a transition into state j. For 
the transition probability matrix (denoted by P matrix in 
the sequel) that consists of one-step transition probabilities 

,ijp we have that 
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HMC has many good statistical analysis features which 
greatly help set up the model. The interested reader can refer 
to Ross (1996) for more details on Markov chain. 

2.1 General description 

The proposed model has a two-level hierarchical structure 
consisting of a basic module named movement process and 
a high-level module named events as shown in Fig. 1. The 
module of movement process essentially implements a 
simulation of the Markov chain process and generates the 
locations of occupants step by step, which can then be used 
to calculate the occupancy for each zone in buildings. The 
module of events is used to specify the transition pro- 
babilities of Markov chain in specific periods of time, in order  
to represent the occurrences associated with time.  

2.1.1 Movement process 

In this paper, the process of occupant movement covers all 
the occurrences that correspond to the location change of 
people within a building, such as entering or leaving a 
specific space, moving around from one space to another, 
going outdoors for a while, etc. Such a stochastic process 
results in the variation of building occupancy in time and 
space. Such processes also may vary widely from one building 
to another, depending on the type and size of the building, 
the geographic location and climate, the ethnicity and  
preferences of the occupants, etc. 

Consider a building with n zones that is occupied by m 
individuals, where a zone is an internal space in the building 
and indexed as 1,2," ,n; an individual is denoted by occupant, 
i.e., residents in case of a residential building or office workers 
in case of an office building, etc. The outside of the building 
is also involved and treated as a specific space indexed by 0,  
to form a complete movement graph.  

Regarding the location of an occupant (in which space 
the occupant is) at every time step as a random variable, its 

possible values belong to the set (or a subset) of all spaces’ 
indices {0= outside, 1= zone 1, 2= zone 2," , n= zone n} 
that correspond to the occupant’s accessible range. The 
movement process of each occupant can thus be described 
by a Markov chain in which the state of the process is 
exactly the location of an occupant, and the next location of 
the occupant is dependent only on the present location and  
the fixed transition probabilities held in the P matrix.  

Here the following assumptions have been made: (i) the 
location of occupant due to movement has a Markovian 
property; (ii) any location change of occupant due to move- 
ment can be finished in one time step; (iii) the movements 
of each occupant are independent, thus each occupant has  
his own transition probability matrix.  

The assumption (i) is supported by the experiments of 
Wang et al. (2005) and Dodier et al. (2006). They measured 
the occupancy states for some single offices by assembling a 
sensor network. If the location of an occupant is described 
by a HMC, the sojourn time of the occupant in any state 
(i.e., presence/in his office, absence/not in his office during 
working hours) should be geometrically distributed. From 
their results, it is approximately geometric for both presence 
and absence durations of an occupant in business hours. 
Figures 2 and 3 show the fitted and observed probability 
distribution of durations of presence and absence for an office 
in Wang’s experiment, with a time interval of 15 minutes. 
Figures 4 and 5 show the histograms of sojourn times and 
the fitted probability distribution of durations of presence 
and absence for two offices in Dodier’s experiment, with 
time intervals of 500 s and 200 s. Both authors concluded 
that the presence and absence durations are exponentially 
distributed. However, since the observed data in the 
experiments are analyzed with a discrete time interval, the 
exponential distributions are indeed geometric distributions,  
in a discrete form. 

The two experiments, although based on single offices, 
in a way validate the assumption (i) in our model. It further 
ensures that the stochastic occupancy model based on 
occupant movement is reliable in other situations, even for  
multi-occupant multi-zone scenarios.  

 
Fig. 1 The schematic of the model 
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Fig. 2 Fitted and observed probability distribution of the presence 
durations (Wang et al. 2005) 

 
Fig. 3 Fitted and observed probability distribution of the absence 
durations (Wang et al. 2005) 

As for the hypothesis (ii), since the movement of an 
occupant is essentially a continuous-time process, whether 

the location change of an occupant governed by P matrix 
can be realized depends on his movement speed, especially 
in a small time step simulation. The transition probabilities 
of the occupant from the present state to the next state are 
actually influenced by the limit of movement speed. For the 
moment, it is not taken into account. Accordingly, to 
ensure the temporal resolution of the results and to easily 
integrate with building energy simulation tools, the time 
intervals for the model can be 5, 10, 12, 15 minutes, or any 
other submultiples of 60 minutes (i.e., 1 hour that is the usual  
time step for building energy simulation).  

With the above hypotheses, the movement patterns of 
each occupant can be modeled individually in a simple way 
even if they may be quite different, and the realistic Markovian 
properties of occupant movement can be reproduced.  

2.1.2 Event mechanism 

It is noted that such a HMC can only produce a pure 
random movement process for each occupant among the 
spaces (inside and outside of the building), without 
considering the time factors for the movement occurrences 
that probably happen for occupants in certain periods of 
time. Take an office building as an example, in normal 
conditions the employees would usually go to the office in 
the morning and leave in the evening, rather than random 
arrival and departure at any time during the day. Such 
occurrences of movement associated with time is common 
for a building with specific function and an occupant with 
specific career or post, such as in residential buildings, office 
buildings, etc., which may be called typical movement 
patterns for such types of buildings and occupants. An 
event mechanism is proposed to represent and manage the 
time-triggered occurrences of movement in buildings, in 
which the movement of occupant is driven by a number of 
events. In addition, the event mechanism can be also used 
to treat the relevance of the movements of occupants (e.g.,  
a joint movement such as attending a meeting).  

 
Fig. 4 (a) Frequency distribution of duration of presence, both offices aggregated (78 sojourns of presence, Dodier et al. 2006); (b) fitted
and observed probabilities of the presence durations  
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An event in the model is an object that corresponds to 
the specific location change of occupants; for example, the 
event of walking around, regarded as a basic event in all 
buildings, corresponds to the location change from one space 
to another (covering general movements, such as going to 
the washroom, dropping by another office, etc.). The event 
of going to the office in the office building corresponds to 
an occupant’s location change from outside (space 0) to the 
office (a space for his/her own office). Each event has a 
valid period (with a starting time and an ending time) 
during which it takes place, and a range of actions on the 
occupants (i.e., it only influences specific occupants). The 
event drives occupant movement through P matrix exactly 
by specifying the corresponding elements in the P matrix. 
The probability elements associated with the event are also 
fixed and time-independent (called “event dependent”). 
Such transition probabilities can be determined from some 
statistical indices of the event (see Section 2.2). Each event 
also has a priority that determines the order of the event 
taking effect on P matrix in case that several events are 
valid at the same time (i.e., valid periods of events have 
intersections) and these events have common elements in P 
matrix. In this situation, such elements of P matrix would 
be specified with the associated probabilities of the event with  
the highest priority. 

In summary, an event object usually has six properties: 
starting time, ending time, locations (from one space to 
another), participants (taking part in the event), transition 
probabilities (driving the movement of participants), and  
priority (to resolve conflicts). 

With the event mechanism, the Markov chain of 
occupant movement is indeed inhomogeneous since the 
transition probabilities in P matrix could be changed at 
certain times. However, the probabilities are fixed for the 
remaining periods, so most behaviors of such a Markov 

chain look like a HMC during every period split by events.  
Our method is still labeled as HMC. 

A set of events can be made in chronological order 
according to the typical movement patterns of building and 
occupant, and it is easily scalable to describe other events, 
such as long absence, meeting, short visit, working at home, 
working part-time, and even other scheduled events. Once the 
list of events is made, the model is completely constructed  
in form.  

2.1.3 Algorithm 

Due to the simple structure, the implementation of the model 
is relatively simple once the building typology, occupant 
and movement parameters (e.g., the number of occupants, 
the accessible spaces for each occupant, the set of events with  
properties, etc.) are determined.  

The model was implemented as a MATLAB script. The 
location of each occupant was simulated independently based 
on the inputs related to that occupant. For initial states, the 
occupant is considered to be absent in the case of office 
buildings (or present in the case of residential buildings) at 
the initial time step, 00:00 of January 1st. From then on, the 
time series of occupant location is generated by the transition 
probability matrix at each time step, which is specified by  
valid events. 

Figure 6 shows how the algorithm works: (0) initialize 
the states of all occupants at time step 0; for each time step, 
(1) update the set of active events at present according to 
the input set of events and their valid periods; (2) update 
the P matrices of all occupants according to the set of active 
events, the corresponding elements of P matrix are specified 
by the active events, and note that the sum of elements in 
each row of P matrix should equal 1; (3) for each occupant, 
determine the current state of occupant according to the 
previous state and the updated P matrix (see Fig. 7 for details, 
where the MATLAB function rand generates a pseudorandom  

 
Fig. 5 (a) Frequency distribution of duration of absence, both offices aggregated (72 sojourns of absence, Dodier et al. 2006); (b) fitted
and observed probabilities of the absence durations 
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Fig. 6 The workflow of algorithm (processing stage) 

 
Fig. 7 The simulation script of Markov chain at each time step 

value drawn from the standard uniform distribution), and 
do this for all occupants; (4) calculate the current occupancy  
for all zones according to the locations of all occupants.  

By repeating this procedure step by step, the time series 
of the location of each occupant and the occupancy of each 
zone in the building can be generated, without any constraint 
on the number of occupants and the number of zones. 

2.1.4 Reduction and estimation of transition probabilities 

The kernel parameters for the model are the transition 

probabilities for each occupant. Since the probabilities in 
the model are time-independent, it greatly reduces the 
complexity in the time dimension compared to the pre- 
existing models. Actually, all the entries of P matrix for each 
occupant can be estimated directly from the information 
that is collected by deploying sensors in the building which 
track each individual over time as proposed by Tabak 
(2008). However, it still seems not trivial in simulation to 
directly input all the entries of P matrices of all occupants 
in multi-occupant multi-zone scenarios as mentioned by 
Liao et al. (2011). This is due to the high order of matrices 
(corresponding to the number of spaces) and the number 
of matrices (corresponding to the number of occupants). 
Therefore, a way to further simplify the specifications for  
such matrices is proposed in this paper.  

The most important requirement for the simplified 
method is the generated P matrix should capture the 
specific statistical characteristics of building occupancy (i.e., 
occupant movement). An office building is used as an 
example to demonstrate the procedure how to apply the 
present occupancy model to a specific type of building and 
how to simplify the inputs based on the key statistical  
characteristic of occupant movement. 

2.2 Occupancy modeling in an office building 

An office building is a common building type which most 
occupancy modeling research is focused on. In an office 
building, a typical movement pattern for the occupants in a 
workday is going to the office in the morning, having a lunch 
break at noon, and getting off work in the evening or night 
(possibly with overtime), which leads to the phased variation 
of the number of occupants of a typical office building over 
the workday as shown in Fig. 8. During the working periods, 
the occupancy for each zone of the building would change 
since the occupants walk around among the spaces inside  
and outside of building for a variety of reasons. 

In addition to the phased evolution, the occupants’ 
comings and goings for the morning arrival (t1 to t2), the  

 
Fig. 8 The occupancy variation of an office building over the workday 
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lunch break (t3 to t4), and the night departure (t5 to t6) are 
all random rather than deterministic (or strictly according 
to a schedule), which greatly affects the working time of 
building devices. The indices representing the morning 
arrival and the night departure are respectively the time of 
morning arrival and the time of night departure. Those for a 
lunch break are the time of going out for lunch and the time 
of coming back to office (it is assumed that the occupants  
do not have lunch in their own office).  

Such a typical movement process of the occupant in an 
office building can be described by a set of five events: 
walking around, going to the office, going for lunch, coming 
back from lunch, and getting off work. Next, an approach to 
model such events with a specific statistical characteristic 
and the treatment for events that are not detailed in this  
paper are discussed.  

2.2.1 Walking around 

The event of walking around in office buildings corresponds 
to the general location change from one space to another, 
among the spaces inside and outside of building (e.g., going 
to the washroom, walking in the hallway, going outside, 
dropping by another office, etc.). In most situations, it 
means a transient movement of an occupant out of his office. 
Its valid period is usually the same as the business time of a  
company, e.g., from 8:00 to 17:00.  

As discussed above, specifying the P matrix for walking 
around during the working period is the most challenging 
work for multi-zone scenarios. Since the present stochastic 
model should reproduce the specific statistical characteristics 
of occupant movement, a simplified way can be proposed 
to determine the probabilities. 

From experience, the key statistical characteristic for an 
occupant walking around is the long-run proportion of 
time and the expected sojourn time that the occupant stays 
in each space of the building during the working period. 
The simplified way to specify P matrix is based on the  
following mathematical formulations. 

The stationary distribution 

Let P denote the transition probability matrix that corresponds 
to the process of an occupant moving among the spaces (all 
zones in the building and outside), which are indexed by 
{0= outside, 1= zone 1, 2= zone 2," , n= zone n}. Suppose 
the probabilities are fixed and not influenced by any other  
events in normal conditions.  
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In our situations, this Markov chain is irreducible and 
ergodic. Such a Markov chain has a stationary distribution, 
denoted by ,π  ( )0 1, , , ,nπ π π= "π  where iπ  means the 
long-run proportion of time that the Markov chain is in 
state i (i.e., with what proportion of time the occupant stays 
in the space i). And we have (Ross 1996):   
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Based on Eqs. (3) and (4), given the matrix P, the vector 
π  can be determined by solving Eqs. (3) and (4) simul- 
taneously, and expressed as Eq. (5): 
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where Tπ  is the transpose of π . 

The expected sojourn time 

The sojourn time in state i of Markov chain, denoted by ,iST  
is geometrically distributed as expressed in Eq. (6). (Instead, 
it is exponentially distributed in the continuous-time Markov 
chain.) 

{ } ( )1 1k
i ii iiST k p p−= = −P                       (6) 

where k is the number of time steps during which the Markov 
chain is out of state i (measured from the time when the 
Markov chain is in state i). 

The expected sojourn time can be expressed by (Sheng 
et al. 2008): 
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So that,  
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Denote the vector of expected sojourn time by Est, 
( )= "0 1, , , ,nEst Est EstEst  where iEst  means the expected 

sojourn time that the Markov chain is in state i (i.e. how  
long the occupant stays in the space i at a time).  

Equations (5) and (8) illustrate the relations between 
the P matrix and the long-run proportion of time and the  
expected sojourn time.  
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Given the long-run proportion of time π and the expected 
sojourn time Est of the occupant in every space, the simplified 
way to specify P matrix can be described as an optimization  
problem:  
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where 1 T( )−=�π A b  is an estimation of .π  This optimization 
problem can be solved by using the fmincond function in 
MATLAB. 

Thus, the P matrix with + × +( 1) ( 1)n n  entries can be 
specified by using a set of × +2 ( 1)n  parameters, which 
greatly reduces the space complexity of such inputs. Naturally, 
the Markov chain governed by this P matrix will have the 
same statistical characteristic of occupant movement that is 
defined by the long-run proportions of time and the expected 
sojourn times of the occupant in every space. These two vectors 
of an occupant are then used as the input of the present  
model, denoted by “movement vectors” in the sequel.  

By using the movement vectors, the input information 
for the model is easier to collect by deploying tracking 
sensors or conducting a questionnaire survey of the 
occupants’ behavior. The price of such simplification is that 
the produced P matrix might lose some inherent information 
that relates the movement of occupant in the building com- 
pared to a directly specified P matrix, since every element 
of the P matrix has its own meaning. Whether to choose 
the simplified method or specify the P matrix depends on the 
user’s demand. In the most situations of building occupancy 
simulation, the detailed specification of P matrix is time- 
consuming and not necessary; instead, the movement vectors 
of occupant are simple, effective, and accurate enough for  
simulation. 

2.2.2 Going to the office and getting off work 

The event of going to the office (i.e., morning arrival) of an 
occupant is regarded as the location change from outside 
the building to his own office. Thus it only relates the elements 
of the occupant’s transition matrix where the row and the 
column correspond to outside and his office. The valid period 
of this event is usually a time span before the business 
hours, e.g. from 7:00 to 8:30, corresponding to the earliest  
and latest morning arrival time of office workers.  

The morning arrival process can be expressed by a 
two-state HMC with an absorbing state, which is governed  
by a fixed 2-by-2 P matrix in Eq. (10). 

00 01go_office

0  1
0   
1   0 

      

   

 

1
p pP = ⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

                           (10) 

where 0, 1 are respectively the indices of outside and the 
occupant’s office that is known as an absorbing state. The 
absorbing state means the occupant will definitely enter his 
office at a certain time, and it means the arrival time of the 
occupant entering his office when the HMC is in the 
absorbing state. During the valid period of the event “going 
to office”, the elements of the occupant’s P matrix 
corresponding to outside and his office would be specified  
with the probabilities in Eq. (10). 

Measured from the start of the event of going to the 
office, the morning arrival time of the occupant is 
geometrically distributed, and the expected arrival time  
(denoted by ( ))E FA  can be expressed by 
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If the arrival time is the same as the on-duty time, 
00 0 and ( ) 1.p E FA= =  

Similarly, the event of getting off work (i.e., night 
departure) of the occupant corresponds to the location 
change from his own office to outside the building. Its valid 
period is usually a time span after the business hours, e.g., 
17:00− 21:00, corresponding to the earliest and latest night  
departure time of office workers. 

The night departure process can be expressed by a two- 
state HMC governed by the fixed 2-by-2 P matrix in Eq. (12). 
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where 0, 1 are respectively the indices of outside and the 
occupant’s office. Here, outside the building is the absorbing 
state, which means the occupant will definitely leave his 
office at a certain time. And it means the departure time  
of the occupant leaving his office when the HMC is in the  
absorbing state. 

Measured from the start of the event of getting off work, 
the night departure time of the occupant is also geometrically 
distributed, and the expected departure time (denoted by 

( ))E LD  can be expressed by 
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If the departure time is the same as the off-duty time, 
11 0 and ( ) 1.p E LD= =  
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2.2.3 Lunch break 

The lunch break of an occupant can be divided into two 
events. One is the event of going for lunch, corresponding 
to the start of lunch break; the other is the event of coming 
back from lunch, corresponding to the end of lunch break. 
We suppose the location for the occupant’s lunch is out of 
his office. The two events can be treated similarly like the  
event of going to office and getting off work.  

The process of going for lunch can be expressed by the 
transition matrix in Eq. (14). Measured with the start of  
the event of going for lunch (i.e., the earliest leaving time), 
the expected leaving time for lunch (denoted by (E(LL)) is  
expressed by Eq. (15). 
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The process of coming back from lunch can be expressed 
by the transition matrix in Eq. (16). Measured with the 
start of the event of coming back for lunch (i.e., the earliest 
return time), the expected return time from lunch (denoted  
by E(LR)) is expressed by Eq. (17). 
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2.2.4 Other issues 

There are many other things in an office building that have 
not been discussed in detail in the above paragraphs, such 
as meetings that happen during a workday, long period 
absence or leaves or working at home that result in the 
occupants not entering the office for a whole workday, short 
visits or working part-time that the visitors or occupants 
only appear in the building for a short period of workday, 
tea breaks for some organizations, or the situation that the  
occupant has his lunch in his office, etc.  

The reasons that those situations are not modeled are, 
on one hand, this paper focuses on the modeling of most 
typical movement patterns in an office building, it’s not 
necessary to involve too many events; on the other hand, 
on the basis of our present model, such things can be modeled 
easily with an external event generator (random or scheduled), 
whose outputs can be used as the inputs for the model (see 

Fig. 9). The interactions of occupants, such as going for  
lunch together, can also be defined in the form of events.  

As for the maximum occupancy limits of spaces, a simple 
rule can be added into the determination of occupant location 
at each time step, that is, if the space that the occupant 
would go to has reached its maximum occupancy limit, the 
occupant would return to his last location rather than enter 
the zone, i.e., the occupant’s location at the current time  
step would be the same as the previous time step. 

2.2.5 Summary 

With the events modeled above, a typical movement pattern 
of occupants over the workday in an office building, i.e., 
“morning arrival—walking around (working period)— lunch 
break—walking around (working period)—night departure”, 
can be simulated by a unique Markov chain, in which the 
transition matrix for each occupant is successively specified 
with the associated probabilities of events during different 
periods of the day. Such probabilities for morning arrival, 
walking around, lunch break, night departure can be 
determined based on the statistical indices of each event. 
The simulated results of such a Markov chain will have the  
same statistical characteristic of events.  

Besides the basic information of building and occupant 
(building typology, occupant number, working schedule, 
etc.), the particular inputs for the present occupancy model  
of an office building are clarified as follows. 

(1) For walking around, the vectors of long-run pro- 
portion of time and expected sojourn time for each space 
are needed. 

(2) For morning arrival, the earliest, the latest and the 
expected arrival time are needed. For night departure, the 
earliest, the latest and the expected departure time are 
needed. 

 
Fig. 9 The integration of event generators within the present model 
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(3) For lunch break, the earliest, the latest and the 
expected leaving time for going for lunch, the earliest, the 
latest and the expected return time for coming back from 
lunch are needed. 

In addition, due to different personalities of occupants, 
the associated events (or event properties) for each occupant 
can be different and thus need to be specified individually. 

All the above information needs to be collected and 
calibrated before applying the model.  

2.3 Discussion on model calibration and validation 

The validation of the proposed stochastic occupancy model, 
theoretically speaking, should be based on probability, which 
means the comparison of the probability distribution function 
(PDF) of the measured and simulated parameters. This 
requires a long period (usually several years) of measured 
occupancy data in the real office buildings. But such data 
are too scarce and not available for most buildings. So the 
theoretical probabilistic test cannot be carried out due to 
too few samples. Thus, from the practical point of view, a 
simple test approach needs to be proposed. For example, 
the maximum, minimum and average occupancy for each 
zone inside the building could be chosen as the test parameters 
and the criterions to calibrate the model. This will be an  
important work and needs more study in the future. 

For the moment, due to the lack of measured data, the 
proposed model has not been fully validated by comparing 
the simulated and the measured data. Nonetheless, an 
illustrative case study can be made to check and test the 
capacity of the model; whether it can cover the things that 
affect the occupancy variation in a building and how much  
it can capture this.  

3 Case study 

A simple office building is tested to demonstrate the usage 
and effect of the proposed model. This case is illustrative 
and the input data are taken from experience. The time step 
used in the case is 5 min; an occupancy time series of one  
day is comprised of 288 points.  

Through the case, we will check the capacity of the 
model to represent: (1) the trend of “going to the office— 
working—lunch break—working—getting off work” in a 
typical workday; (2) the random arrival time and the 
smooth increase of building occupancy in the morning; 
(3) the random departure time (overtime) and the smooth 
decrease of building occupancy; (4) the random decrease of 
building occupancy during the lunch break; (5) random 
movement among the inside and outside spaces during  
working time. 

3.1 Input settings 

3.1.1 Building typology 

The 2D plan of the office building is shown in Fig. 10. There 
are 4 office rooms, 1 corridor, and 1 restroom, indexed from 
1 to 6; and the outside is indexed by 0. There are 7 spaces in 
total. All spaces are connected by doors and corridor. 

3.1.2 Occupant and movement parameters 

There are 3 types of occupants in the building. The occupants 
in offices 1 and 2 are ordinary workers. The occupants in 
office 3 are administrative staff (secretary). The occupant in 
office 4 is a manager (head of the organization). They move 
among the 7 spaces (i.e., all spaces are accessible for each 
occupant). The number of occupants for each office is 
shown in Table 1. 

A fixed working schedule from 8:00 to17:00 is specified. 
Five typical types of events and a scheduled meeting are 
considered in the workday. The schedule and events in the 
workday is shown in Table 2. 

The exceeding periods of going to office and returning 
from lunch, compared to the standard schedule, i.e., 7:00− 
8:00, 8:00− 8:30 and 13:00− 13:30 respectively means the 
early morning arrival, the late morning arrival and the late 
back to the office from lunch. The exceeding period of getting 
off work, 17:00− 21:00, means the delay or overtime for  
night departure.  

The events (except meeting) work for all occupants. 
The expected values for the events are shown in Table 3. Note 
that these values are accounted in the unit of 5-minute time 
step. They are only estimations for the statistical index of each 
event, and used to determine the transition probabilities in 
P matrix and the variations of occupancy ultimately. 

 
Fig. 10 2D plan of the office building 

Table 1 Number of occupants in each office 

 
Room No. 

Number of 
occupants 

 
Room No. 

Number of 
occupants 

Office 1 6 Office 2 6 

Office 3 2 Office 4 1 
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Table 2 Schedule and events in a working day 

Schedule Event Valid period 

Go to the office 07:00 − 08:30 

Leave for lunch 12:00 − 12:30 

Return from lunch 12:30 − 13:30 

Get off work 17:00− 21:00 

Walk around 08:00 − 12:00, 
13:00− 17:00  

Working time 
8:00–17:00 

Lunch break 
12:00–13:00 

Meeting 10:00 − 11:30 

 
The expected value of morning arrival time for going to 

the office is 7:45; which means, in the 5 min unit the geometric 
distribution of morning arrival time has an expected value 
of 9 time steps (measured from 7:00). 

The values of long-run proportion and mean sojourn 
time for different spaces mean: for the occupants in office 1, 
each of them will spend 90% of business hours in his own 
office, 3% in the other three offices, 1% in the outside, 1% 
in the corridor, and 5% in the restroom; the mean sojourn  
time steps for each space are 24, 3, 2, 2, 2.  

With different movement vectors, the differences between 
the three types of occupants are specified. A manager may 
have more meetings out of the office, so he/she only spends 
60% of business hours in the office and 30% outside, with 
1-hour mean sojourn in both spaces. A secretary may tend 
to move more frequently in the spaces, so he/she only spends 
70% of business hours in the office and the remaining 30%  
occupying other spaces, with 1-hour mean sojourn in the  
office and 10 min for each other space. 

To illustrate the effect of meeting events, a scheduled 
meeting is held in the manager’s office from 10:00 to 11:30, 
and it is attended by two occupants from office 1, two 
occupants from office 2 and the manager. All the participants  
are determinate.  

3.2 Transition matrix 

The transition matrix for each occupant can be determined 
by the movement parameters according to the equations in 
Section 2.2. The associated probabilities of events for 
occupants in office 1 are shown in Fig. 11. Based on those 
probabilities, the transition matrix would be specified and 
changed at certain time steps when the events become valid  
over a workday.  

3.3 Results and discussions 

The simulation for a workday runs 1000 times consecutively, 
with different random seeds for each simulation. Figure 12 
shows the generated time series of the locations of four 
occupants in offices 1, 2, 3 and 4. As expected, the four 
occupants stay in their own offices for most of the time, 
with different times of morning arrival and night departure, 
different times of leaving and returning during lunch break, 
and occasionally out of the office (into other spaces). The 
scheduled meeting can be seen from that the occupant in 
office 1 and the manager in office 4 stay in the office 4 
during the period of 10:00− 11:30. The secretary in office 3 
seems to move more frequently than others.  

3.3.1 Building occupancy 

The change of number of occupants in the whole building 
over a workday is illustrated in Fig. 13, where (a) shows the 
result of building occupancy for one simulation, (b) shows 
the results for five successive simulations, (c) shows the 
maximum, minimum, and average occupancy for each 
time step from all the simulations, (d) shows the hourly 
occupancy taking the mean of five-minute results. It can be 
seen that (1) the trend of “going to the office− working− 
lunch break− working− going off work” in a typical workday  

Table 3 Expected values for each occupant 
Event Statistical index Expected value 

Go to the office Morning arrival time 7:45 
Go for lunch Leaving time 12:10 

Come back from 
lunch Return time 12:50 

Get off work Night departure time 18:00 

Office 1 =π [0.01, 0.9, 0.01, 0.01, 0.01, 0.01, 0.05] 
 Est= [10min, 2h, 15min, 15min, 15min, 10min, 10min] 

Office 2 =π [0.01, 0.01, 0.9, 0.01, 0.01, 0.01, 0.05] 
 Est= [10min, 15min, 2h,15min, 15min, 10min, 10min] 

Office 3 =π [0.05, 0.05, 0.05, 0.7, 0.05, 0.05, 0.05] 
 Est= [10min, 10min, 10min, 1h, 10min, 10min, 10min] 

Walk around Long-run proportion of time and 
mean sojourn time in each room 

Office 4 =π [0.3, 0.01, 0.01, 0.01, 0.6, 0.02, 0.05] 
 Est= [1h, 5min, 5min, 5min, 1h, 10min, 10min] 
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Fig. 11 The transition matrices of occupant in office 1 

 

 
Fig. 12 The time series of occupants’ locations over a workday 
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is reproduced; (2) the total building occupancy reaches 
maximum gradually, rather than sharply under a fixed 
schedule; (3) during the working time, the total occupancy 
varies due to the movement of occupants. Such a workday 
process changes at every simulation, which is understood 
as random in everyday life. 

3.3.2 Zone occupancy 

Figures 14, 15, 16, 17, 18 and 19 show the changes of 
number of occupants in office 1, office 2, office 3, office 4, 
corridor 5, and restroom 6 over a workday, where (a) is the 
result of zone occupancy for one simulation, (b) illustrates 
the maximum, minimum, and average occupancy for each 
time step from all the simulations, (c) shows the hourly 
occupancy results. It can be seen that due to the movement 

of occupants from one space to another, the occupancy of 
zones inside the building stochastically change in time, 
more or less than the design value. Although the absence 
probability for each occupant out of his office (i.e., the 
probability of staying in other spaces) is as small as 0.1, the 
resulted occupancy variation is remarkable and should not 
be neglected in building energy simulation. Due to the 
scheduled meeting, the occupancy in offices 1, 2, and 4  
change a lot during the meeting period. 

Since the occupancy model is based on the process of 
occupant movement, the relationships of stochastic occupancy 
in multiple zones are realistically taken into account. This 
results in the reasonable occupancy distribution in space, 
that is, an increase of occupancy in one space usually 
means a decrease of occupancy in another space while the  

Fig. 13 Building occupancy over a workday 
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Fig. 14 Office 1’s occupancy over a workday 

 

 

 
Fig. 15 Office 2’s occupancy over a workday 
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Fig. 16 Office 3’s occupancy over a workday 

 

 

 
Fig. 17 Office 4’s occupancy over a workday 
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Fig. 18 Corridor 5’s occupancy over a workday 

 

 

 
Fig. 19 Restroom 6’s occupancy over a workday 
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total occupancy stays the same. From the simulation  
results, the occupancy of corridor and restroom are strong 
coupled with the occupancy of offices and their variations 
are more significant in time. Even for the spaces with 
similar function type, the transient occupancy schedules from 
office 1 to office 4 are not synchronous at each time step 
(see Fig. 20). Such an uneven distribution of occupancy in 
space and nonsynchronous change in time would affect the  
performance evaluation of HVAC systems in simulation. 

In general, the stochastic occupancy over a typical 
workday in an office building can be realistically produced 
by using the proposed model. Further analysis of simulation 
results can be made for exploring the validation approach 
of the model in the future. 

4 Conclusions 

Building occupancy is a key factor to accurately predict 
building energy consumption and evaluate the energy saving 
potential of occupancy-based control system and the perfor- 
mance of HVAC systems. However, it is hard to represent  
due to its temporal and spatial stochastic nature. 

This paper presents a novel approach for occupancy 
simulation based on the homogeneous Markov chain. In this 
study, occupancy is handled as the straightforward result of 
occupant movements among the inside and outside spaces of 
a building. By using the Markov chain method to simulate 
the stochastic movement process, the model can generate 
the location for each occupant and the occupancy for each 

 
Fig. 20 Four offices’ occupancy over a workday 
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zone of the building. Through this approach, the Markovian 
property of the state of occupant location is retained, which 
is validated by other experiments, and the relationships of 
stochastic occupancy in multiple spaces are realistically taken 
into account. By using the event mechanism, this model is 
capable of covering most things that affect the occupancy 
variation in a building and capturing the movement  
differences of different types of occupants as well. 

From the case study of an office building, it can be seen 
that the model can produce the realistic occupancy variations 
in the office building for a typical workday with key statistical 
properties of occupancy such as the time of morning arrival 
and night departure, lunch time, periods of intermediate 
walk-around, etc. Especially, it can produce the nonsyn- 
chronous change of occupancy in time and the uneven 
distribution of occupancy in space, which can distinctly 
affect the performance evaluation of HVAC systems in a  
simulation. 

The model is simple, clear and has no explicit or 
implicit constraint with the number of occupants and the 
number of zones. On the strict mathematical basis of 
geometric distribution, the model builds the relations of 
the statistical indices of building occupancy such as mean 
time of morning arrival and night departure, long-run 
proportion of time and expected sojourn time. Thus it 
overcomes the issue of specifying the transition matrix for 
multi-zone scenarios and maintains a simple, clear set of 
input parameters. In terms of simplicity, accuracy and 
unrestraint, this model is sufficient and practical to simulate 
occupancy for building energy simulations and stochastic  
analysis of building HVAC systems.  

The occupancy model’s assumption that the location of 
an occupant due to movement has a Markovian property is 
supported by some experiments for single offices but more 
validations need to be carried out in the future. More 
events such as short visits should be taken into account in 
office building to capture the stochastic occupancy variations. 
From a practical point of view, a simple validation and 
calibration approach needs to be proposed. The capability 
of the model in other types of buildings, such as residential 
buildings, should also be tested and calibrated with specific  
occupant movement patterns. 
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Abstract 
An in-depth understanding of building energy use requires a thorough understanding of human 
behavior. This research gives a quantitative description of human behavior in residential buildings. 
This quantitative description method can be used to forecast the impact of the human behavior 
on the indoor building environment and energy use. Human behavior influences the energy use 
directly and indirectly by changing window openings, air-conditioner usage, lighting, etc. This 
quantitative description method describes these behavioral effects. Behavior can be divided into 
several types according to the usage with time related, environmentally related and random modes 
used to quantitatively describe the behavior. The method is then applied to describe a Beijing 
household with comparison to on-site observations of the resident’s behavior and measurements 
of energy use to validate the method. The results show that the human behavior in the real world 
can be quantified by the quantitative description method. These simulation tools can greatly 
facilitate building energy conservation by describing the influence of human behavior on building 
performance and energy use. 
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1 Introduction 

Human behavior greatly influences building energy use by 
the way people move, use equipment, open or close windows, 
building system (e.g., air-conditioning systems and lighting 
systems) control by the property management personnel 
and automatic controls. These actions directly and indirectly 
affect energy use (e.g., electricity, gas, and water). Li et al. 
(2006) reported that there are significant differences in energy 
use among different apartments in the same residential 
building in Beijing. The human behavior such as air- 
conditioning operating times, temperature set points, and 
window opening/closing habits are quite different with these 
behavioral differences causing large differences in the electricity 
use by cooling systems in the same residential building, from  
0 to 14.3 kWh/m2 with average of 2.3 kWh/m2. 

Scientists began studying the relationship between human 
behavior and energy use around 1980s. Sociological models 
of human behavior were developed, showing that the social- 
cultural environment, the building and design requirements 

and the local climate affected both household lifestyles and 
energy use. Technical progress and social change also 
influence human behavior (van Raaij and Verhallen 1983; 
Hitchcock 1993). Further research established that usage 
times of some appliances, such as washing machines and 
bathroom heaters, change with the seasons. The average 
number of household members, their age, and their time 
spent at home are all factors closely related to energy use in 
residential buildings (Ouyang et al. 2007). An IEEA study 
showed that the average operating time of appliances in 
Europe varied in different countries, which is useful for 
energy use calculations, but does not describe the human 
behavior influence on energy use (IEEA 2008). There have 
also been studies of the interactions between human behavior 
and building energy use (Mahdavi 2007). The influence of 
human behavior on building energy use is now a hot issue at  
the Annex 53(2010). 

As computer simulations have improved, these tools 
are being used more to analyze human behavior. Recent 
research (Hoes et al. 2009) has shown that human behavior 
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can be divided into groups based on the complexity and 
desired resolution. The information used for building models 
includes averaged, minimum and maximum values of various 
parameters. Models considering interactions between energy 
use and the environment are more complex. Bourgeois 
(2005) did a comprehensive study of human behavior in 
buildings and focused on behavior prediction and advanced 
behavioral modelling. Korjenic and Bednar (2011) found 
that the lifestyle and occupants’ living standard are the 
mainly reason for the discrepancy between the calculated  
and measured energy use from the investigation. 

Some researchers have used simulations to model certain 
kinds of behavior in buildings, such as a window opening 
and appliance usage (Rijal et al. 2007; O’Doherty et al. 2008; 
Nicol 2001; Reinhart 2004). Yun and Steemers (2008) 
developed stochastic models to predict window-opening 
behavior patterns as a function of the indoor temperature, 
the time of a day and the previous window state through the  
field study in offices in UK.  

Existing building energy simulation software packages 
pay more attention to the effects of climate, building envelope, 
systems and equipment than the occupant’s actions (Crawley 
et al. 2001; EnergyPlus 2009; ESRU 1999; Klein et al. 2004; 
Yan et al. 2008; Zhang et al. 2008). Currently, human behavior  

 
Fig. 1 Factors influencing building energy use 

is mostly described by schedule definition, which does not 
reflect the actual human behavior complexity. The difference 
between real test data and simulation results is due to human 
behavior in actual complex situations. Human behavior 
includes system operation and management, occupant 
behavior, and indoor environment conditions. These factors 
work together to influence the building energy use as shown  
in Fig. 1. 

A general relationship between human behavior and 
building energy use is needed to quantitatively analyze the 
influence of human behavior. The relationships between 
buildings and humans are based on three key points as shown 
in Fig. 2 which was developed to describe human behavior  
under study. 

(1) Ideology to behavioral principles; 
(2) Human physiological, psychological and economics 

feelings; 
(3) Impact of human behavior on building energy use. 
Different ways are used to classify human behavior 

depending on the field. This study focuses on the impact of 
human behavior on building energy use by quantitatively 
analyzing the influence of human behavior. A human behavior 
model is constructed for a building simulation software 
package. This paper includes a comprehensive definition  
of the quantitative description method including the 
classification of human behavior and the definition of the 
ranges of human behavior in a residential building, with a  
detailed case study to help understand the method. 

2 Quantitative description method 

2.1 Human behavior classification and description  

Different kinds of human behavior lead to great differences 
in energy use, which is affected by several factors: time, 
environment, psychology, economic, etc. A quantitative 
description of human behavior requires that the factors be 
quantifiable (can be numerically described) and measurable  
(can be physically measured). 

 
Fig. 2 Relationship between humans and buildings 
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The two kinds of factors that can be used to quantitatively 
describe behaviors are time and environment. According  
to the investigation and discussion above, human behavior 
in buildings can generally be divided into three categories  
(Table 1): 

(1) time related: actions according to time; 
(2) environmentally related: actions to achieve a certain 

control objective, depending on the environment; 
(3) random: actions that depend on uncertain factors or 

something not quantifiable. 

Table 1 Quantitative description method 

Type Input Parameters 

Time related Schedule  Set value 

Actions are based on a specified schedule and the set value, such as the 
AC set temperature 

Environmentally related Logic form Feedback parameters  

Some parameters such as the temperature, are controlled based on logic
with specified parameters used with feedback to implement the action

Random Frequency or range 

Actions are not regular or may follow unknown or complex rules 
 
A quantitative human behavior description requires 

three steps as shown in Fig. 3. First, the object related to the 
behavior must be identified. Second, investigations are 
used to classify the behavior and identify which parameters 
need to be measured, such as hourly TV power and indoor 
temperatures. Data analysis is then used to describe the  
human behavior. 

 
Fig. 3 Quantitative description flow chart 

Some actions are long life habits, such as opening windows 
for ventilation. Some adapt to new environments or con- 
ditions, such as the use of new electrical equipment. The 
three human behavior modes can be used to quantitatively 
describe both human actions in residential buildings, as  
shown in Table 2 to Table 4. 

Human behavior tends to vary periodically in buildings 
due to the influences of day and night, workdays, weekends 
and season. Thus, human behavior models need to pay  
attention to the time period.  

2.2 Case study examples 

Typical human behavior was investigated with measurements 
in a residential building in Beijing for the floor plan shown 
in Fig. 4. The household information is shown in Table 5. 
The detailed information is in the Electronic Supplementary 
Material of this paper. There were several face-to-face studies 
of the behavior of each person in the family. Heat sensors 
were put in each room to measure the room temperature 
with power meters used to measure the power used by the 
appliances, as shown in Table 6. The measurements lasted  

Table 2 Time related mode examples 

Behavioral object Schedule Set value 

Window 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  

On / off 

Example: a housewife, as long as the weather conditions are suitable, opens the window for fresh air for an hour every day from 8: 00 a.m. to 9:00 a.m. 

TV 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23  

On / off 

Example: an office worker turns on the TV after work at about 7:00 p.m., turns it off at 11:00 p.m. 

Table 3 Environmentally related mode examples 

Behavioral object Logic form Feedback parameters 

Air-conditioner If FP>29℃, then turn on with a set value of 26℃, otherwise keep closed  
Action time: 19:00 – 24:00 in the summer FP: indoor temperature 

Example: a resident turns on the air-conditioner when he feels hot at a temperature of about 29℃ 

Lights If FP<100 lx, then turn on, otherwise turn off 
Action time: 19:00 – 23:00 annual FP: interior illumination 

Example: a resident turns on the living room lights when he feels dusky, the illumination is about 100 lx 

Note: 1. Feedback parameters (FPs) must be measurable: for example, temperature, luminance, and concentration of carbon dioxide. 
  2. The air-conditioning set value is a kind of behavior parameter that must be measured or investigated. 
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Fig. 4 Household floor plan 

Table 5 Household information 

 Number Note 

People 5 One couple, a grandmother, a son and a maid

TV 4 Located in the living room, master bedroom,
bedroom 1, bedroom 3 

Air-conditioner 4 Located in the living room, master bedroom,
bedroom 1 and bedroom 2 

Computer 1 Located in the master bedroom 

Washing machine 1 Located in the kitchen 

Refrigerator 1 Located in the kitchen 

Table 6 Measuring instruments 

 
WZY-1 heat sensor S100 power meter 

 
for 10 days during the summer, 2010 and 1 month during the 
winter, 2011. Both instruments were connected to a computer  
to record and store data. 

The real life human activities were divided into the three 
modes defined in Table 1. The measured data was used to 
classify the actions. 

2.2.1 Time related mode 

The investigation showed that the TV usage in bedroom 1 
was time related. The usage schedule was found by surveying 
all members of the household which showed that the 
occupants of this room usually watched TV three times per 
day. The power data for June, 2010 and January, 2011 showed 
that the TV in bedroom 1 was used about 4 hours a day as 
shown in Fig. 5. The usage times and durations changed a  
little each day. 

The TV usage probability in Fig. 6 shows that the TV is 
generally used in three time periods from morning to noon, 
during the afternoon, and at night. The behavior was 
generalized by the behavior model to quantitatively describe  
this behavior.  

The duration of each period was then calculated from 
measured data with the duration T, chosen equal to the 
mathematical expectation for each time period. The start 
times were selected so that the model periods spanned the 
largest probability times. Thus, the TV usage time periods in  
bedroom 1 were then calculated as 

  
n

i i
i

T x P=å  

where, xi: time step, chosen as 1 minute which was the data 
measurement rate; Pi: usage probability for each time step 
from the measurements. 

Besides the TV usage in bedroom 1, the TV usage in 
bedroom 3, the AC usage in bedroom 2 and the refrigerator 
operation were all time related while the AC usage in the 
master bedroom was environmentally related.  
– The refrigerator is on every day, so the probability during 

each time step was 1 and 
1 24T xP x= å = å ´ =  

– The AC power usage in bedroom 2 is shown in Fig. 7. The 
occupant stated that he would turn on the AC once he 
arrived home and would turn it off when he left. The power 
usage in Fig. 7 shows the times the resident was at home 
from the investigation as the green line. The red line is 
the AC power and the blue line is the indoor temperature. 
The resident left home at about 7 a.m. and returned at 
about 3 p.m. The AC power usage then follow this trend, 

Table 4 Random mode examples 

Behavioral object Frequency Duration 

Washing machine 2 times/week 1 hour/cycle 

Example: washing machine is used twice a week and each cycle lasts about 1 hour 

Lights 5 times/day 10 min/cycle 

Example: lights in the bathroom are turned on about 5 times a day for about 10 minutes each time 
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being on when he was at home and off when he left. This 
behavior is also described as T xP= å  where P is the 
probability the resident is at home.  

The time related behavior is implemented as 
(1) the actions take place at fixed intervals (day, week), 
(2) the usage time in each period is the same or nearly 

the same. 

 
Fig. 6 Usage model for bedroom 1 TV 

The behavior schedule is obtained by investigations or 
measurements. For example, the probability of using the AC 
or opening windows can be obtained from measured data 
while the amount of time a person spends at home can be  
determined through a survey. 

2.2.2 Random mode 

There were four TVs in the household. The electric used by 
these TVs was about 1.5 kWh/day, about 20% of the total 
household electric use. The people reported that the TV usage 
in the master bedroom was random. The survey showed that 
the watching TV frequency was approximately once per 
day with 1 hour per instance on workdays and 2 hours per 
instance on weekends. The measurements in Fig. 8 show 
that the occupant does not use the TV every day but the TV 
is used for more than 4 hours as some days with no clear  
pattern in the master bedroom.  

 
Fig. 5 Daily TV usage in bedroom 1 (time related) 

 

Fig. 7 AC usage in bedroom 2 
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A statistical analysis showed that the TV in the master 
bedroom is used an average for one and a half hour a day. 
Analysis of the behavior probability showed that the resident 
mostly watches TV between 19:00 and 24:00 (Fig. 9). The 
random behavior was then characterized by a 1.5 hours  
period per day. 

The Random mode represents complex behavior related 
to uncertain factors. This information can be obtained only 
by observing their actions and the cycle of behavior depends 
on the kind of object. More study is needed about this kind  
of human behavior. 

2.2.3 Environmentally related mode 

The investigation showed that the AC usage in the master 
bedroom was environmentally related as a function of the  

 
Fig. 9 Random action time scales for the master bedroom TV 

indoor temperature. The occupant survey showed that they 
turned on the AC when they felt hot, which they estimate 
corresponded to an indoor temperature of 29℃ and they  
preferred to set the AC to 26℃. 

The feedback and set values (the temperatures) were 
then found by measuring the indoor temperature and the 
power usage. As shown by the orange line in Fig. 10, the 
feedback temperature was 29℃ which means that when the 
resident are active, once the indoor temperature is over 29℃, 
they will turn on the AC. The measured set temperature was  
27℃, which differed from the survey estimate. 

As shown in Fig. 11, the two important parameters for 
the environmentally related mode are the feedback value and 
the set value. When the temperature exceeds to the feedback 
value, t1, the occupants turn on the AC and set the tem- 
perature to t2. Thus, this kind of action requires two values  
to describe the behavior. 

The environmentally related mode assumes that: 
(1) Behavior is influenced by environmental factors such 

as temperature or luminance. 
(2) The key factors can be measured. 
(3) The feedback logic can be described mathematically. 
The feedback logic describes a relationship between the 

environmental factors and the behavior that is seen in the 
measured data; thus, the environmental parameters and the  

 
Fig. 8 Daily TV usage in the master bedroom (random action) 

 
Fig. 10 Master bedroom AC usage and temperature variations (environmentally related) 
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Fig. 11 Environmentally related AC usage behavior 

behavior must be measured simultaneously. For example, the 
temperature and AC power usage must be measured together  
to analyze the environmentally related AC behavior. 

2.3 Quantitative description of the residential building 

2.3.1 Physical description 

Research on human behavior in buildings seeks to analyze 
the behavioral influence on the building energy use. The 
behavioral impact on building energy use is both indirectly 
and directly related to the building elements such as windows, 
shades and appliances. Thus, the term “objects” refers to the 
building elements and the equipment related to energy use 
which can be controlled by the occupants. 

A change in an object’s state reflects the human behavior 
in the building, with the initial conditions in the simulations 
based on a set of object states. A building-human behavioral 
model is based on description of the quantitative changes 
of an object’s state. Model simulations are then an effective, 
scientific way to analyze human behavior in buildings. The  
objects included in this study are described in Table 7. 

2.3.2 Residential building description 

Objects are chosen to quantitatively describe the three  

Table 7 Residential building objects 

Type Description 

Building envelope Adjustable elements, such as windows, curtains 
and shades 

Air conditioning Equipment or system to keep the air cool and dry

Heating system Equipment or system to warm the air 

Ventilation system Mechanical system in a building to provide fresh air

Lighting  Artificial sources of visible illumination 

Hot water equipment Supply hot water for bathing, washing, drinking, 
cooking, etc. 

Office appliances Appliances related to work, such as computers, 
printers, projectors 

Domestic appliances Appliances for household activities 

Elevator Elevators for transporting people or goods 

Others System services for security, fire control, etc. 

different kinds of human behavior. Since each kind of 
behavior is linked to a certain object, the object is used to 
describe each kind of behavior. For example, a TV is used 
to provide a quantitative description of the watching TV  
behavior.  

Human behavior in residential buildings is far more 
than just interactions with objects. Each family unit in a 
residential building is defined as a household. There are 
then many different objects in each room, such as windows, 
air-conditioners and lamps, which are controlled by people 
with different action modes in the household which can  
be functions of the types and positions of the objects in the  
building.  

A lifestyle describes people’s own behavioral habits at 
home, for example, AC use in the summer, opening of 
windows for ventilation, and washing clothes frequencies. 
The sum of all the object related behavioral habits in a 
residence constitute a lifestyle. A lifestyle model is built 
based on the quantitative description to describe the human  
behavior in the household.  

3  Energy consumption simulations for different 
lifestyles  

3.1 Lifestyle model 

The lifestyles in buildings are affected by many factors. 
Lifestyles can be divided into the three types listed in Table 8 
based on differences in life paradigms, professions, economic  
conditions, etc. 

3.2 Quantitative human behavior simulations 

Human behavior in residential buildings can be summarized 
based on the typical lifestyles described in Table 8. The time 
spent at home will affect the AC usage. While there may  
be some differences between two families having the same  

Table 8 Typical lifestyles in China 

Lifestyle Feature Example 

Energy conscious 
lifestyle (EC)

People who consider energy 
consumption to be important will 
pay more attention to saving 
electricity, gas, water, etc. in their 
daily lives. Their actions in the 
building will seek to use as little 
energy as possible 

Older families, 
low-income 
families 

Habit related 
lifestyle (HR)

People who are less concerned about 
saving energy than living a energy 
conscious lifestyle 

Most white collar 
families 

High quality 
lifestyle (HQ)

People who have a high demand for 
indoor environmental quality 

Rich and young 
families 
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lifestyle mode, the main features of their behavior patterns 
will be the same. Therefore, one typical family for each lifestyle  
will be used as examples to build the lifestyle model.  

The lifestyle models were built using DeST, a building 
energy simulation program developed by Tsinghua University 
(DeST 2008). A special version for human behavior called 
DeST-m is being developed that includes human behavior 
as an important input parameter along with the building  
elements and equipment.  

The lifestyle behavior model includes the four layers of 
action model, object, room and household. The building 
model in DeST for a residential building in Shanghai chosen 
for simulation is shown in Fig. 12. The detailed inputs of 
lifestyles are in the Electronic Supplementary Material of  
this paper. 

The human behavior in the building is then summarized 
by the household lifestyle. The analysis considers one  
household in the building. 

The human behavior greatly impacts the building 
environment and energy use. For example, the AC usage 
times and set temperatures are controlled by the resident.  
The AC usage for different lifestyles is described in Table 9. 

Simulation results for four typical days (two work days 
and two off days) in the summer of the three kinds of lifestyle 
are shown in Table 10 for the AC usage, indoor tem- 
perature and household load. The AC usage for the energy 

conscious lifestyle family is the shortest. The temperature 
during the weekend for the high quality lifestyle family is 
controlled at 24℃, which results in the highest energy use  
of the three kinds of lifestyles during these four days. 

The different lifestyles result in the different AC usage 
times and electrical consumption due to differences in the set 
temperatures as shown in Fig. 13. The household electricity  
use for all parts of the residence is shown in Fig. 14. 

The different lifestyles result in sharp differences in 
building performance and energy use. In the case of the 
energy conscious lifestyle, the residents try to save energy 
and may endure an uncomfortable living environment. They 
care about how much energy they consume, reducing electric 
appliance usage by only turning on the AC when they feel 
really hot. Families with habit related lifestyle will operate 
objects in the way they think is suitable. Sometimes they 
will regulate the objects state according to the environment 
and sometimes they change their habits because of a work 
schedule change. People with high quality lifestyle consume 
a great amount of energy to control their living environment. 
They use the AC and lighting all the time when in the house. 
The electricity consumption of the household appliances and 
lighting then are also quite different. Since the high quality 
lifestyle object usage time is the longest for most appliances 
(such as the TV, PC and washing machine), their energy use 
levels are larger than the other two kinds of family lifestyles.  

 

Fig. 12 A six floor residential building model in Shanghai in DeST 

Table 9 AC usage and set temperature for the different lifestyles 

Lifestyle Summer Winter 

EC 
If Tin>30℃, then turn on, otherwise off 
Action time: 15:00 – 18:00 in August 
Set temperature: 28℃ 

If Tin<16℃, then turn on, otherwise off 
Action time: 15:00 – 18:00 in January 
Set temperature: 18℃ 

HR 
If Tin>28℃, then turn on, otherwise off 
Action time: set by resident 
Set temperature: 26℃ 

If Tin<18℃, then turn on, otherwise off 
Action time: set by resident 
Set temperature: 20℃ 

HQ 

Work day 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

 

Off day   
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

 

Set temperature: 24℃ 

Work day 
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

 

Off day   
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

 

Set temperature: 22℃ 
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Fig. 13 Annual AC electrical consumption for different lifestyles 

 

Fig. 14 Annual household electrical consumption for different 
lifestyles 

There are many different kinds of lifestyles besides 
those listed in this study. The three lifestyles used in this 
study are typical lifestyles in China. There may be differences 
in families within the same lifestyle, but they have key 
common behavioral characteristics. This means that people’s 
behavior in the building can be divided into several categories, 
each with their own characteristics. We can then model 
their behavior based on family lifestyles. Additional typical 

lifestyles are being currently studied in real situations for  
future work. 

4 Conclusions 

Human behavior greatly impacts building performance and 
energy use. Quantitative descriptions of human behavior are 
then a prerequisite for analyzing and forecasting a person’s  
impact on the building performance and energy use.  

This research presents a quantitative description method 
to define and quantify human behavior. The factors used for 
the quantitative description should be able to be numerically 
described and physically measured, such as times and 
temperatures. Objects usages are divided into a time related 
mode, an environmentally related mode and a random mode 
to describe individual human behavior in a residential 
building by analyzing actual usage. These modes are defined 
based on key behavioral factors and can be formulated   
in simulation tools for energy usage analyses of residential  
buildings. 

To make the simulations more workable, human behavior 
is classified into a relatively small set of typical lifestyles. 
Each of these lifestyles represents the typical behavior of a 
certain group of people. Simulations then show that different 
lifestyles significantly change the building performance  
and energy use. Other lifestyles will be identified based on 
investigations and measurements of human behavior in a 
residential building in future work. Much research still 
needs to be done to fully understand human behavior in 
buildings. There is an emerging need to combine quantitative 
descriptions of human behavior with building simulations 
to help understand and forecast real building energy use 
based on on-site measurements and simulations. More  

Table 10 Impact of different AC usage modes on the room temperature and household load 

Lifestyle AC operation Indoor temperature Household load 
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case studies will be done to fully optimize the quantitative  
description method. 
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Abstract 
Occupancy profile is one of the driving factors behind discrepancies between the measured and 
simulated energy consumption of buildings. The frequencies of occupants leaving their offices 
and the corresponding durations of absences have significant impact on energy use and the 
operational controls of buildings. This study used statistical methods to analyze the occupancy 
status, based on measured lighting-switch data in five-minute intervals, for a total of 200 
open-plan (cubicle) offices. Five typical occupancy patterns were identified based on the average 
daily 24-hour profiles of the presence of occupants in their cubicles. These statistical patterns 
were represented by a one-square curve, a one-valley curve, a two-valley curve, a variable curve, 
and a flat curve. The key parameters that define the occupancy model are the average occupancy 
profile together with probability distributions of absence duration, and the number of times an 
occupant is absent from the cubicle. The statistical results also reveal that the number of absence 
occurrences decreases as total daily presence hours decrease, and the duration of absence from 
the cubicle decreases as the frequency of absence increases. The developed occupancy model 
captures the stochastic nature of occupants moving in and out of cubicles, and can be used to 
generate a more realistic occupancy schedule. This is crucial for improving the evaluation of the 
energy saving potential of occupancy based technologies and controls using building simulations. 
Finally, to demonstrate the use of the occupancy model, weekday occupant schedules were 
generated and discussed. 
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1 Introduction 

Building energy simulation tools have been widely applied 
in recent years in energy saving proposals for new con- 
struction designs and existing building retrofits. However, 
simulated results sometimes deviate significantly from 
measured data. Such discrepancies can be attributed to 
several factors. One of the most important is occupant 
behavior in buildings. Many studies demonstrate that building 
occupancy profiles have a significant impact on energy use 
and the operational controls of buildings. An investigation 
into the impact of consumer behavior on residential energy 
demand found that consumer behavior is the most important 
issue with respect to energy consumption in households 
(Haas et al. 1998). A simulation of user behavior for the 

low energy office building design process, which applied  
a statistical method, found that realistic user behavior 
should be incorporated into passive cooling design concepts 
(Pfafferott and Herkel 2007). A methodology that takes 
into account the variation in occupant behavior and 
schedules was proposed to estimate the cooling demand in 
residential units (Tanimoto et al. 2008). Its authors concluded 
that occupant behavior is a significant factor in residential 
cooling requirements, though the methodology needs further  
validation to confirm its plausibility. 

Various modeling approaches have been developed for 
use in building energy performance simulations to predict 
occupancy characteristics in different types of buildings.  
A stochastic user behavior model generates a time series  
of window operations by using Markov chains (Fritsch et   
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al. 1990). However, the lack of adequate measurements 
makes computing the Markov matrices impossible. The use 
of stochastic models to capture human behavior and occupant 
interaction within a building attempts to simulate multiple 
influences that occupants can have on a building in terms 
of resource consumption (Page et al. 2008). The results 
sometimes overestimate and other times underestimate the 
weekly total energy use and peak demands. A model that 
combines user presence and interaction in a building showed 
that improved modeling of user behavior in numerical 
simulations can optimize overall building performance (Hoes 
et al. 2009). A model of activity and location schedules was 
developed, using a system of USSU—User Simulation of 
Space Utilization, to generate movement patterns that provide 
a representation of human activities in office building spaces 
(Tabak 2008). However, there were obvious differences 
between the observed and predicted human activity behavior 
related to the number of times a workplace was used 
during a working day. A model based on Markov chains 
that simulates the movement of occupants inside an office 
building can produce more realistic occupancy variations, 
nonsynchronous change of occupancy in time, and an 
uneven distribution in space (Wang et al. 2011). However, 
more validation and calibration approaches must be carried 
out with specific occupant-movement patterns. Behavioral 
patterns associated with energy spent on heating were 
determined statistically, and household and building 
characteristics were identified (Santin 2011). It appears 
difficult to establish relationships between behavioral patterns  
and energy consumption. 

Recent years have seen the introduction of systems and 
devices that can be controlled on a personal basis. These 
efforts to improve energy efficiency and increase energy 
savings include lighting, office equipment, thermostats for 
heating, ventilation, and air conditioning, windows, and 
blinds. Accurately estimating the savings and impacts of 
these systems and technologies requires the accurate 
prediction of how often and how long occupants stay in 
their offices. Therefore, the impact of occupancy profile on 
building energy performance becomes more important. 
The occupancy pattern defined in the present study is the 
frequency of an occupant leaving his/her cubicle and the 
corresponding duration of the absence. It is part of the 
broader occupant behavior which includes occupant’s 
interactions with building envelope and energy systems. A 
method for obtaining realistic and stochastic occupancy  
is a key concern for building energy simulations, in order 
to precisely evaluate the performance of occupancy-based 
controls. Currently, most simulation tools apply fixed or 
predefined occupancy schedules to represent the time when 
occupants are present. However, occupancy pattern can 
change significantly according to the season, weather, time, 

and personality. It is therefore not surprising that simulated 
energy use deviates from actual consumption in most 
situations. Although various occupancy models have been 
developed to predict occupancy profiles in buildings, they  
usually lack validation from adequate field-measured data. 

This study uses statistical methods to analyze lighting- 
switch data collected from the open office spaces of an 
office building to identify variations in occupancy patterns. 
Various occupancy patterns and characteristics are identified, 
and a robust occupancy model is being developed to generate 
more realistic occupant schedules. The results of this study 
can be used to understand further and evaluate the impact 
of occupancy patterns on building energy performance, and 
to improve the accuracy of predicting the actual energy use  
of buildings with simulation tools. 

2 Data collection 

A total of 200 lighting-switch sensors were installed in 
open office cubicles on three floors of an office building. 
The numbers of switches installed on each floor are listed 
in Table 1. Each cubicle had a single, workstation-specific 
suspended fixture with a built-in occupancy sensor. The 
sensor detected occupant movement and controlled the 
lighting switch for each cubicle. The light was activated 
(switched on) if the cubicle was occupied, and deactivated 
(switched off) if unoccupied. All occupancy sensors were 
calibrated and control systems were commissioned before 
data were collected. The lighting control system recorded a 
daily log of sensor switch events, including the presence 
and absence of occupants, every five minutes. Switch events 
were recorded as 1 or 0, indicating the cubicle was occupied 
or unoccupied, respectively. In this study, each cubicle was 
assumed to be unoccupied until the occupant arrived for 
the first time in the morning. After the first occupancy event, 
the data was filled in with 1 or 0, based on the most recent  
event for each cubicle.  

This study used data collected for weekdays, weekends, 
and holidays from May through November in 2011. In a 
small number of cases there may be some errors in the data 
due to sensor sensitivity and coverage. Switch sensors 
sometimes are triggered by people walking past cubicles, or 
fail to trigger if occupants remain overly static in their  

Table 1 Number of lighting switches on three floors of an office 
building 

Building floor Number of switches 

Floor A 104 

Floor B 47 

Floor C 49 

Total 200 
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cubicles. Although these cases cannot be excluded in this 
study, their occurrence is relatively infrequent and should 
not have a noticeable impact on the results. The collected 
data for weekdays were processed in parallel with data for 
weekends and holidays to provide a more accurate view of 
occupancy profiles. The goal was to obtain general occupancy 
trends and patterns for a large number of office cubicles to 
allow for comparisons across each floor. Data were processed 
for as many valid days as possible, including time periods 
during and after commissioning. Exclusions were made due 
to missing or incomplete switch data files and insufficient 
switch number information. Some days were excluded  
due to the control system going offline temporarily, which 
resulted in incomplete data collection. The final data used 
in this study includes 76 weekdays and 34 weekend days  
and holidays. 

3 Analysis methods 

Once the collected data were finalized, they were statistically 
analyzed to identify occupancy patterns during weekdays 
and weekends. The number of daily absences and their 
durations were determined, and the occupancy variations  
were distinguished.  

The switch-on events were recorded every minute. 
Therefore, the presence duration of each occupant can be 
obtained by accumulating the number of switch-on events. 
The total monthly presence hours were calculated by adding 
up the daily presence hours. The average daily presence 
hours of each occupant were determined by dividing the 
total presence hours in each month by the number of data- 
collection days in that month. Thus, the profiles of occupant 
presence hours of the three floors were determined. 
Additionally, the daily occupancy profiles of each floor 
during weekdays and weekends were obtained by averaging 
the probabilities of switch-on events for each cubicle each  
month. 

A total of 200 occupancy patterns of three floors are 
illustrated according to the probabilities of switch-on events. 
Different occupant’s behavior results in different occupancy 
patterns. Based on the variations of each occupancy pattern 
curve, these 200 occupancy patterns were classified into five 
types: a single-square curve (Fig. 4(a)), a one-valley curve 
(Fig. 4(b)), a two-valley curve (Fig. 4(c)), a variable curve 
(Fig. 4(d)), and a flat curve (Fig. 4(e)). A valley was identified 
when the switch-on profile started to drop and then rise 
when the difference between the maximum and minimum 
switch-on percentage values exceeded 20%. A single-square 
curve occupancy pattern was defined if there wasn’t a 
valley apparent from the switch-on profile. Similarly, the 
one-valley curve and two-valley curve occupancy patterns 
were defined if the valley occurred once or twice in the 

switch-on profile, respectively. Finally, the variable curve 
occupancy pattern was defined if the valley occurred twice 
or more. After all occupancy patterns were determined, the 
occurrence percentages of each occupancy pattern could be 
calculated by counting the frequency of each occupancy 
pattern for each floor. By accumulating the probabilities of 
the five patterns individually, and then dividing by the total 
number of each occupancy pattern, the average occupancy 
pattern was determined. Daily working hours were divided 
into four two-hour time periods. The occurrence times of 
each occupancy pattern for each time period on the three 
floors were collected to determine the occurrence percentages 
of each occupancy pattern, and the relationships between  
occupancy and working time period. 

The number of daily absences and absence durations  
of each occupancy pattern were calculated to further 
understand the characteristics of each occupancy pattern. 
Switch-off events tracked when the occupant vacated the 
cubicle. Accumulating these events provided time and 
duration information and allowed further understanding of 
their relationship. According to the results, a noticeable 
valley usually occurred during noon in the occupancy 
patterns. Therefore, daily working hours were re-divided 
into three time periods: 8–11:30 a.m., 11:30 a.m.–1:30 p.m., 
and 1:30–6 p.m. The number of daily absences and absence 
durations in each time period were summarized to investigate  
when the valley occurred in the occupancy pattern. 

4 Results 

The profiles of occupant presence hours for each floor are 
shown in Fig. 1. The working time is divided into four periods, 
every two hours. The percentages of occupant presence 
hours for each floor were very different. For Floors A and C, 
most occupants, 40% and 31% respectively, stayed in their 
cubicles for 4 to 6 hours per day. Only a few occupants 
stayed over 6 hours. On Floor B, occupancy pattern was 
significantly different from Floors A and C. Most occupants, 
about 66%, on Floor B stayed in their cubicles for around 
2 hours per day. There was no one staying for more than 
6 hours. The average presence hours of Floor B were almost 
half those of Floors A and C. This may indicate that 
different agencies with different job categories work on 
different floors. The occupants of Floor B may work 
half-time, or work at home or outside the office part of the 
time. Therefore, a working occupant may not always be in 
his or her cubicle. Furthermore, this study observed that 
occupancy patterns were influenced slightly by the location 
of the cubicle. Longer occupancy periods occurred in more 
isolated cubicles that had more privacy, or cubicles that 
were near windows. However, job category may have more 
impact on occupancy pattern than location of the cubicle. 
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Unfortunately, private information like job category for each  
occupant was not available for this study. 

The average daily weekday switch-on profile of each 
floor is shown in Fig. 2. In general, the occupants of each 
floor arrived at and departed from the office between 6 a.m. 
and 6 p.m. on weekdays. The switch-on percentage of each 
floor increased in the morning and reached a peak value at 
around 9 a.m. The maximum values of Floors A, B, and C are 
about 48%, 16%, and 32%, respectively. A higher switch-on 
percentage means higher occupancy. The increase in switch- 
on rate of Floor A was greater than that of Floors B and C. 
Figure 2 also shows that the switch-on percentage of each 
floor has an obvious drop at around noon, attributed to 
occupants leaving the office for lunch. Also, it can be seen 
that the switch-off rate of Floor A is greater than that of the 
other two floors. The occupants of each floor began to leave 
work approximately between 3 p.m. and 4 p.m. Compared 
with the decrease in switch-on rate of Floors B and C, the 
decrease in switch-on rate of Floor A is greater. In addition, 
several spikes occurred after 6 p.m. This can be attributed 
to the cleaning crews in the evening. The cleaning schedules 
of Floors A, B, and C are 6:35 p.m. to 8 p.m., 5:05 p.m. to 
6:30 p.m., and 9:25 p.m. to 10:50 p.m., respectively. The 
spikes occur within these time periods and the switch-on 
percentage of each floor is about 5%. As for weekends, the 
average daily profiles of switch-on events for each floor are 
shown in Fig. 3. Compared with the weekday profiles, the 
weekend switch-on percentages are quite low for all three 
floors. The switch-on percentage of Floor A was less than 3% 

 
Fig. 2 The average daily weekday profile of switch-on events for 
each floor 

 
Fig. 3 The average daily weekend profile of switch-on events for 
each floor 

and for Floors B and C was almost equal to 0%. Therefore, 
this study only focuses on the investigation and analysis of  
data collected for weekdays. 

The numbers of lighting-switch sensors installed on 
Floors A, B, and C were 104, 47, and 49, respectively. This led 
to 200 occupancy profiles. The collected occupancy profiles 
can be classified into five patterns by occupancy variation, 
presence duration in the cubicle, and occupant personality, 
as shown in Fig. 4. These occupancy patterns are very 
different from one another. In Fig. 4(a), the pattern looks 
like a single-square curve. The percentage of occupants  
stay in the cubicle is more than 60% within daily working 
hours except two time periods: one from 6 to 8 a.m. when 
occupants arrive at the office, and the other from 4 to 6 p.m. 
when occupants get off work. Figure 4(a) indicates that 
occupants leave their cubicles fewer times and with shorter 
duration during working hours. Alternatively, this pattern 
can be interpreted as the stationary time in which an occupant 
does not leave or enter their cubicle frequently. Several 
spikes occur after 6 p.m., the reason for which is discussed 
in our description of Fig. 3. Figure 4(b) shows an occupancy 
pattern similar to Fig. 4(a), except for an observable deep 
valley occurring at midday for a period of approximately 
1 to 1.5 hours. This can result from the occupant leaving for 
lunch. The occupant leaves the cubicle after approximately 
11:30 a.m. for lunch and then returns to the cubicle at 
approximately 1 p.m. This pattern can be interpreted as the 
occupant not leaving or entering the cubicle frequently,  
but leaving for lunch at midday. Figure 4(c) shows two 

 
Fig. 1 Profile of presence hours for each floor: (a) Floor A; (b) Floor B; (c) Floor C 



Chang and Hong / Building Simulation / Vol. 6, No. 1 

 

27

noticeable valleys in this pattern. In addition to the valley that 
occurs around noon, another valley appears in the morning. 
This can be attributed to a longer absence by the occupant, 
such as attending a meeting or leaving the building. 
However, the valley observed in this study not only occurs 
in the morning but also in the afternoon (although it is  
not shown in Fig. 4(c)). Figure 4(d) shows a significant 
variation in the pattern. There is no regular pattern as with 
Figs. 4(a)–(c). This pattern shows the occupant leaving the 
cubicle frequently during work time and being absent for 
longer amounts of time. Figure 4(e) shows a flat occupancy 
pattern; the cubicle seldom appears occupied and the occupied 
duration is short. This can be attributed to a cubicle used 

for public usage, such as a print station, coffee shop, or office 
supply room. This kind of pattern will not be discussed  
further in this study. 

Based on the number of occupants on each floor in 
Fig. 2, the occupancy patterns of all occupants were further 
identified. Figure 5 shows occurrence percentages of each 
occupancy pattern for the three floors. The designations of 
Patterns 1 to 5 shown in this figure correspond to Figs. 4(a) 
to (e) as discussed above, and these designations will be 
further used in later discussion. Compared with Floor B, 
the occurrence percentages of each pattern are similar for 
Floors A and C. Pattern 2 is the most typical occupancy 
pattern, about 45% and 39% for Floors A and C, respectively. 

 
Fig. 4 The occupancy patterns: (a) single-square curve; (b) one-valley curve; (c) two-valley curve; (d) variable curve; (e) flat curve 
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For Floor B, however, the highest occupancy pattern is 
Pattern 5, with an occurrence percentage of about 38%. This 
significant difference can be attributed to different agencies  
working on different floors, as discussed above. 

The occurrence percentages for each occupancy pattern 
for the three floors in four time periods are listed in Fig. 6. 
Circles displayed in this figure indicate the occurrence times 
of the pattern. Larger circles represent higher occurrence 
times. Occurrence percentages of Pattern 2 for each floor 
were found to be higher than those of other patterns when 
occupants stayed in their cubicles for 2 to 8 hours per day. 
This indicates that most occupants of each floor left for 
lunch during the noon hour. The second highest is Pattern 1, 
which represents occupants who did not leave or enter their 
cubicles frequently. Additionally, the occurrence percentages 
of Pattern 1 for each floor were higher than those of 
Patterns 2 to 4 when occupants stayed in their cubicles for  
less than 2 hours per day.  

The analysis results described above are occupancy 
patterns that only represent the overall characteristics of 
cubicles occupied on each floor. It is still very approximate 
for use as an occupancy schedule in building simulation 
tools. For example, the switch-on percentage of Pattern 1 
was about 60% during the working hours of 8 a.m. to 6 p.m. 
This indicates that the probability of an occupant in the 
cubicle was about 60%. However, the number of daily 
absences and absence durations still cannot be obtained  
via this occupancy pattern. An occupant’s number of daily 
absences and absence durations can have significant  
impact on energy usage and cause substantial differences 
between measured and simulated energy use. To obtain 
more accurate simulation results, a more realistic occupancy 
schedule—including presence and absence durations of 
occupants, and the number of absences in the cubicle—is 
required for use in the simulation. Therefore, the number 
of daily absences and absence durations of each occupancy  
pattern were further identified and detailed, as follows. 

Figure 7 represents the accumulated number of daily 
absences within the 76-day period for Patterns 1 to 4. The 
days when the occupant did not arrive at the office are 
excluded. For example, if the number of daily absences and 
the number of occurrences were 4 and 9, respectively, this 

represents a total of 9 days when the occupant left the 
cubicle 4 times per day. In this figure, it can be found that  

 
Fig. 6 The occurrence percentages of each occupancy pattern in 
four time periods for each floor: (a) Floor A; (b) Floor B; (c) Floor 
C. Larger circles represent more occurrences 

 
Fig. 5 The occurrence percentages of each occupancy pattern: (a) Floor A; (b) Floor B; (c) Floor C 
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Fig. 7 The accumulated number of daily absences for each 
occupancy pattern in a 76-day period for Patterns 1–4 

the maximum number of occurrences of each occupancy 
pattern shifted and decreased with the number of daily 
absences. The most typical numbers of daily absences of 
each pattern are 1, 4, 5, and 9. For Pattern 1, there are a 
total of 5 days when the occupant never left the cubicle. 
Although the peaks of the other patterns were less than  
that of Pattern 1, each of the total number of absences of 
Patterns 2, 3, and 4 was almost greater than those of Pattern 
1, except the cases with none or one daily absence. More 
daily absences indicate that the occupant entered or left the  
cubicle more frequently. 

The accumulated numbers of durations of each absence 
within the 76-day period for each pattern is shown in Fig. 8. 
The absence durations concentrate in a 10-to-29-minute span 
for all occupancy patterns except Pattern 4. For Patterns 1 
and 2, most absence periods were 10 to 19 minutes in 
duration, and their occurrence percentages were 41% and 
37%, respectively. For Pattern 3, most absences lasted 20 to 
29 minutes, and the percentage was 56%. For Pattern 4, 
most absences were 0 to 9 minutes, and the percentage  
was 62%. For all patterns, occurrence times decreased with 
longer absence minutes. It can be deduced that for shorter- 
duration absences, the occupant leaves the cubicle to take a 
break, go to the restroom, or walk around. Longer periods  
can be attributed to meetings, lunch, or outside business. 

 
Fig. 8 The accumulated number of occurrences of absence duration 
for each occupancy pattern over a 76-day period 

The outlines of occupancy profiles in Patterns 1 to 3 
were similar except for one and two significant valleys in 
Patterns 2 and 3. To further understand occupancy patterns, 
Pattern 2 was further investigated as follows. The working 
time in a day was divided into three periods: 8 to 11:30 a.m., 
11:30 a.m. to 1:30 p.m., and 1:30 to 6:00 p.m. The total 
number of absences and average absence durations for 
these time periods for Pattern 2 are illustrated in Figs. 9(a) 
and (b). The number of absences shown here are the 
accumulated numbers within the 76-day period, and the 
absence durations are the average values. The number of 
absences increased as the day progressed. The occupant left 
the cubicle more often and with a shorter duration in the 
afternoon. This may be due to the dwindling concentration of 
an occupant or increasing fatigue, resulting in the occupant 
walking around or going to the restroom more often. The 
average absence duration from 11:30 a.m. to 1:30 p.m. was 
significantly longer than the others, as this is the lunch 
period. However, the average absence durations from 8 to  
11:30 a.m. and 1:30 to 6:00 p.m. were almost the same. 

The accumulated numbers of absence minutes of each 
time period for Pattern 2 is illustrated in Fig. 10. The most 
typical absence duration for all three time periods was 10 to 
19 minutes. The percentages for each time period were  
43%, 25%, and 45%. Figure 10 shows that occurrence times 
decrease with longer absence minutes. This corresponds to 
the result mentioned before. However, the occurrence times 

 
Fig. 9 Total number of absences and average absence duration of 
three time periods for Pattern 2 over a 76-day period: (a) number 
of absences; (b) absence duration in minutes 
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Fig. 10 The accumulated number of occurrences of each absence 
duration for occupancy Pattern 2 for three time periods over a 
76-day period 

of absence minutes for different time periods can be further 
distinguished. For the time periods of 8 to 11:30 a.m. and 
1:30 to 6:00 p.m., the curves dropped drastically after a peak 
and then descended slowly. Compared with the period of 
1:30 to 6 p.m., more absences of longer duration occurred 
from 8 to 11:30 a.m. It can be deduced that there were more 
meetings or longer events in the morning. For the time 
period 11:30 a.m. to 1:30 p.m., the curve declined more 
smoothly after the peak and the times of longer absences 
were higher than the other two time periods. This figure 
indicates that the occupant may spend over 10 minutes and  
sometimes almost 2 hours for lunch. 

5 Discussion 

Cubicle occupancy for a typical 8-hour weekday for the 
three floors mostly begins between 8 and 9 a.m., with a dip 
around noon, and then begins to decrease from 4 to 6 p.m. 
Spikes, caused by the late-night cleaning crews after most 
occupants have left in the evening, are also observed. 
Weekend occupancy levels for cubicles on all three floors 
are fairly low and can be neglected. Furthermore, weekday 
occupancy levels for Floor B are very different from the other 
two floors, which can be attributed to different agencies 
working on different floors, with occupants on Floor B 
working part time, going out for business more often,    
or working from home part of time. Due to privacy and 
security concerns, no further data is available to allow  
further verification. 

200 occupancy patterns for the three floors were collected 
in this study. These collected patterns can be classified into 
five patterns according to occupancy variation, appearance 
duration in the cubicle, and occupant personality. The five 
identified occupancy patterns are: Pattern 1 (single-square 
curve), Pattern 2 (one-valley curve), Pattern 3 (two-valley 
curve), Pattern 4 (variable curve), and Pattern 5 (flat curve). 
Statistical results show that the most common occupancy 
among all occupants is Pattern 2, which indicates that most 

occupants leave their cubicles for lunch around noon, in 
addition to other longer events, such as attending meetings 
or going outside. The second most popular occupancy is 
Pattern 1, in which occupants do not leave or enter their 
cubicles frequently. Additionally, the occurrence percentages 
of Pattern 1 for each floor are higher than those of other 
patterns when occupants stayed in their cubicles for less  
than 2 hours per day.  

The number of absences and absence duration for  
each occupancy pattern are identified. More daily absences 
mean an occupant moves in and out of the cubicle more 
frequently. The most typical numbers of daily absences for 
Patterns 1 to 4 are 1, 4, 5, and 9, respectively. Additionally, 
the absence durations for each absence are mostly from 10 
to 29 minutes for all occupancy patterns. The number of 
absences decreases with the longer absence duration for all 
patterns. For a short absence duration, it can be deduced 
that an occupant leaves the cubicle to take a break, go to 
the restroom, or walk around. On the other hand, a longer 
period can be attributed to an occupant attending a meeting,  
having lunch, or going outside. 

Finally, the working time in a day is divided into three 
periods for further analysis of occupancy patterns. Occupants 
leave the cubicle more often in the afternoon but for shorter 
durations. In other words, the occupants leave the cubicle 
less often but for longer. The average absence at midday is 
longer due to lunch. However, the average absence durations  
in the morning and afternoon are almost the same. 

This study also observes that occupancy patterns are 
slightly influenced by cubicle location. Longer occupancy 
periods occur in more isolated cubicles that have more privacy 
or are near windows. However, job category may have more 
influence on occupancy pattern than cubicle location. Due 
to privacy concerns, no data is available to further relate job  
characteristics to occupancy patterns. 

6 Occupancy model and schedule generation 

Based on the results, a stochastic occupancy model of  
each pattern is developed with three key elements: (1) the 
cumulative distribution function (CDF) of the number of 
daily absences, (2) the CDF of each absence duration, and 
(3) the probability distribution function (PDF) of the start  
time of each absence.  

For an open-plan office with a certain number of cubicles, 
assuming one occupant per cubicle, a profile of occupancy 
patterns must first be determined by energy modeling. Then 
occupancy schedules for a weekday can be generated by the 
following steps, using Patterns 1 and 2 as examples. First, a 
uniform-distribution random number between 0 and 1 is 
generated, and it is used as an input to the inverse function 
of the CDF of the number of daily absences in Fig. 11(a) to 
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find the corresponding number of daily absences. For each 
absence, a uniform-distribution random number between 0 
and 1 is generated, and it is used as an input to the inverse 
function of the CDF of the daily absence duration in 
Fig. 11(b) to find the corresponding daily absence duration 
in minutes. Finally, for each absence, a uniform-distribution 
random number is generated and used to calculate the start 
time of each absence. After that, the end time of each 
absence can be determined by adding the absence durations 
previously calculated. For Pattern 1, according to Fig. 4(a), 
the absence start time can be assumed to be uniformly 
distributed between 8 a.m. and 4 p.m. For Pattern 2, the 
absence start time is not uniformly distributed, as there is a 
deep valley at around noon, as shown in Fig. 4(b). Therefore, 
the distribution of number of absences is determined by 
the relative probability of occurrence in the three time 
periods: morning, noon, and afternoon, based on Fig. 12. 
For each absence in either of the three time periods, the 
same procedure as Pattern 1 is used to determine the absence  
start time.  

Three generated weekday occupant schedules of Pattern 1 
are shown in Fig. 13. The value 1 in the figure indicates the 
occupant is in the cubicle, while 0 indicates the occupant is 
away from the cubicle. It can be seen that for Pattern 1,  

 
Fig. 11 The curves of occurrences, probability distribution function 
(PDF), and cumulative distribution function (CDF) of Pattern 1: 
(a) number of daily absences; (b) absence duration 

there is mostly one daily absence, lasting 10 to 30 minutes. 
Three generated weekday occupant schedules of Pattern 2 
are shown in Fig. 14. As with the occupant schedules of 

 
Fig. 12 The curve of cumulative distribution function (CDF) of 
daily absence section for Pattern 2 

 
Fig. 13 Three generated weekday occupant schedules for Pattern 1 

 
Fig. 14 Three generated weekday occupant schedules for Pattern 2 
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Pattern 1, most absence durations last 10 to 30 minutes, but 
the number of daily absences are increased to 3 or 4, and  
one absence occurs during noon. 

7 Conclusions 

This study statistically analyses information collected from 
200 cubicle offices on three floors of a commercial office 
building. It used measured lighting-switch data to represent 
the occupancy status of cubicles. Occupancy levels were 
identified and occupancy profiles were classified into five 
patterns as displayed in Figs. 4(a)–(e). The number of daily 
absences and absence durations for each occupancy pattern 
were further calculated and analyzed. Based on these results, 
a mathematical model to describe the occupancy patterns, 
including the probability distributions of the number of 
absences and absence duration, was developed. The 
occupancy model can be used to generate more realistic 
occupant schedules for open-plan cubicle offices, for use in 
building energy simulations. In addition to lunch breaks, 
more occupancy events such as meetings, short visits, walking 
around, and late-night cleaning can be taken into account 
in the model to better capture the stochastic nature of actual 
occupancy variations in the building. These more detailed 
occupancy schedules can replace the fixed or predefined 
ones currently used in building energy simulations to better 
assess the impact of occupancy patterns on building energy 
performance, and to improve the accuracy of simulated 
results. This method can also be used to validate and enhance 
other building occupancy models. However, more case studies 
and measured data analyses are needed. The analysis 
methods used in this study can also be adapted to study  
the occupancy patterns of private offices and other building  
types, such as residential. 
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ABSTRACTABSTRACTABSTRACTABSTRACT
Measured energy use of buildings demonstrated large discrepancies even between
buildings with same function and located in similar climates. Among various factors
contributing to the discrepancies, occupant behavior is a driving factor. Occupant
behavior is also one of the most significant sources of uncertainty in the prediction of
building energy use by simulation programs. How occupants set the comfort criteria
(including thermal, visual, and acoustic), interact with building energy and services
systems, and response to environmental discomfort directly affect the operation of
buildings and thus their energy use. This study employs building simulations to
evaluate the impact of occupant behavior on energy use of private offices with single
occupancy. Typical occupant behavior we studied includes how an occupant sets
comfort criteria, operates lights, office equipment, space thermostat, and HVAC
systems. The behaviour is categorized into three workstyles: 1) austerity – occupants
are proactive in saving energy, 2) standard – average occupants, and 3) wasteful –
occupants do not care about energy use. The simulation results demonstrate the
impact of occupant behavior on building energy use is significant, and even so at the
energy end use levels such as lighting, space cooling and heating. For a typical
single-occupancy office room, compared to the standard or reference workstyle, the
austerity workstyle consumes up to 50% less energy, while the wasteful workstyle
consumes up to 90% more energy.

Three methods are proposed to model occupant behavior depending upon the
complexity: 1) use EnergyPlus directly, 2) use the advanced feature of EnergyPlus -
Energy Management System, and 3) use modified code of EnergyPlus. Our study
provides a method to evaluate energy impact of occupant behavior, which can be a
good tool for decision makers of behavioral programs that target energy savings in
buildings.
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Building simulation, Energy use, EnergyPlus, Occupant behavior, Office buildings



INTRODUCTIONINTRODUCTIONINTRODUCTIONINTRODUCTION
Occupant behavior affects the building energy use directly and indirectly by
opening/closing windows, turning on/off or dimming lights, turning on/off office
equipment, turning on/off heating, ventilation, and air-conditioning (HVAC) systems,
and setting indoor thermal, acoustic, and visual comfort criteria. Measured energy use
of buildings demonstrated large discrepancies even between buildings with same
function and located in similar climates. Among various factors contributing to the
discrepancies, occupant behavior is a driving factor. Occupant behavior is also one of
the most significant sources of uncertainty in the prediction of building energy use by
simulation programs due to the complexity and inherent uncertainty of occupant
behavior. With the trend towards low energy buildings that reduce fossil fuel use and
carbon emissions, getting occupants actively involved during the design and operation
of buildings is a key to achieving high energy performance without scarifying
occupant comfort or productivity. Pilot projects demonstrated that low energy systems,
such as natural ventilation, shading to control solar heat gains and glare, daylighting
to dim lights, and demand controlled ventilation, especially need the interactions and
collaborations of occupants. Energy savings from 5 to 30% were achieved by
behavioral studies that motivate changes to occupant behavior.

In the last decade, new designs target net-zero energy buildings which emphasize the
importance of energy efficiency technologies, integrated design, building operation
and maintenance, and occupant behavior. Good operation practice and high design
efficiency in buildings could lower the energy use (Mahdavi et al. 2008, Linden et al.
2006). Santin (2011) looked at the relationship between user behavior and space
heating energy use, and concluded that behavior patterns could be used in building
energy calculations and usage profiles with different behavior could be discerned.

Mahdavi (2008) described an effort to observe control-oriented occupant behavior in
a few office buildings in Austria. His results imply the possibility of identifying
certain patterns of user control behavior as a function of indoor and outdoor
environmental parameters such as illuminance and irradiance. However, his
observations also underscore the need for typologically differentiated occupancy and
control action models for different buildings. Parys (2009) evaluated various lighting
and blind control systems in combined with four types of user behavior in office
buildings in Belgium. His simulation results demonstrated that the energy savings of a
daylight dimming system in an individual office decrease by about 10% when the
occupant behavior is accounted for.

On windows operating, Haldi (2008) and Rijal (2008)’s study are based on the
presumption that the main driver of occupant window intervention is occupant
discomfort. The adaptive thermal comfort model by Humphrey and Nicol (1998),
proposed that the occupants’ comfort temperature changes with the monthly outdoor



air mean temperature from a number of surveys conducted world-wide for natural
ventilated buildings. Although the adaptive comfort model was original obtained for
naturally ventilated buildings, it can be adapted for mechanically cooled spaces. Rijal
(2008) proposed a method of implementing Humphrey’s observations of occupant
window opening behaviour in a building simulation model, assuming that occupants
only interact with windows when they are thermally uncomfortable, defined as 2°C
above the upper bound or below the lower bound of the adaptive comfort temperature.

Peng et al (2012) presents a quantitative description method of human behavior in
residential buildings. The method can be used to predict the impact of the human
behavior on the indoor environment and energy use. It was applied to a household in
Beijing with comparisons to on-site observations of the occupants’ behavior and
measurements of energy use for validation.

The objective of this study is to identify, understand, and categorize occupant
behavior that can have significant impact on energy use of private offices, and
evaluate how different types of occupant behavior affect the energy use by building
simulations. The study applies to private offices with single occupancy, assuming the
occupant has freedom to interact and change his indoor environment. Open offices or
private offices with multiple occupants involve the complexity of group behavior,
which is not covered in the study.

RESEARCHRESEARCHRESEARCHRESEARCHMETHODSMETHODSMETHODSMETHODS
First, occupant behavior in private offices is categorized into three different
workstyles according to the level of energy is used to provide comfort for the
occupants: 1) the Austerity workstyle with occupants being proactive in saving energy;
2) the Standard workstyle representing most occupants in terms of average energy use
behavior; and 3) the Wasteful workstyle with occupants consuming energy at will,
lacking motivation to reduce energy use. The three types of occupant behavior is
based on literature review and occupants surveys like the post occupancy survey done
by Center of the Built Environment, University of California at Berkeley; they aim to
represent general situation. Then building simulations using EnergyPlus (USDOE
2012) version 7.0 are employed to quantify and evaluate the impact of the three
workstyles on energy use of private offices. To look at the influence of climate, three
U.S. typical climates are studied.

The energy metric used in the study is the source or primary energy use by the
individual office, which includes the source energy of the natural gas for heating, and
the source energy of electricity for cooling, ventilating, lighting, and office equipment
(plug-load).

CharacteristicsCharacteristicsCharacteristicsCharacteristics ofofofof thethethethe privateprivateprivateprivate officesofficesofficesoffices



Three adjacent and equal size private offices, located on the south facade of a middle
story of a medium size office building, are selected for the study. Each office has only
one exterior wall (with a window) facing south, and has a rectangular shape with a
floor area of 15 m2. The private office is occupied by only one person, and is served
by a constant air volume HVAC system with heating from a gas furnace and cooling
from a direct-expansion unitary system. The efficiency levels of the building envelope,
lighting, and HVAC are set to meet the minimum requirements of ASHRAE Standard
90.1 (2004). The internal loads, including the interior lighting power and plug loads
(both at 10.76 W/m2), and operation schedules (Figure 1) stay the same across
climates. The building operates 6am to 10pm, while the typical private office is
occupied 8am to 5pm. Cooling and heating thermostat of the private offices are set to
24°C and 21°C respectively. The occupant is assumed to take three breaks: half hour
in the morning, one hour lunch, and half hour in the afternoon. The middle office is
occupied by one person with standard workstyle, while the adjacent two offices are
each occupied by one person with austerity and wasteful workstyle respectively. The
interior walls of the three offices are insulated well to ignore heat transfer from
adjacent offices.

FigureFigureFigureFigure 1111. Schedules of lighting, plug-load, and people

ClimateClimateClimateClimate zoneszoneszoneszones
Three climates, Miami (Hot and Humid), San Francisco (Coastal, Mild), and Chicago
(Cool Summer, Cold Winter), are selected in this study to represent typical climates in
the U.S. Table 1 lists the climate zone information for the three representing cities
based on ASHRAE Standard 90.1-2010. In the table, HDD18 is the Heating Degree
Days with a base temperature of 18°C, and CDD10 is the Cooling Degree Days with a
base temperature of 10°C.

TableTableTableTable 1111.... Characteristics of selected cities and climate zones
Cities ASHRAE Climate Zones HDD18 CDD10
Miami Hot –Humid, 1A 200 9474
San

Francisco Warm-Marine, 3C 3016 2883

Chicago Cool-Humid, 5A 6176 3251

The TMY3 weather data was used in the EnergyPlus simulations. The TMY3 weather
data represented typical weather conditions during 1991 to 2005 and was available for
download at EnergyPlus web site (USDOE 2012).
OccupantOccupantOccupantOccupant behaviorbehaviorbehaviorbehavior



Typical occupant behavior related to energy use is studied and summarized in Table 2,
including:

• Cooling setpoint
The Standard occupant prefers a room air temperature of 24°C during cooling.
The Austerity occupant prefers a warmer temperature of 26°C, while the
Wasteful occupant likes a cooler temperature of 22°C. The lower the cooling
setpoint, the higher the cooling energy use.

• Heating setpoint
The Standard occupant prefers a room air temperature of 21°C during heating.
The Austerity occupant prefers a lower temperature of 18°C, while the
Wasteful occupant likes a warmer temperature of 23°C. The higher the heating
setpoint, the higher the heating energy use. Note that the heating setpoint of
the Wasteful occupant is actually higher than the cooling setpoint, which is not
unusual for people with such workstyle.

• Adaptive comfort
Adaptive comfort theory allows the indoor cooling comfort temperature to be
adjusted upward based on the monthly average outdoor air temperature. Hot
climates with higher monthly average outdoor air temperatures would have
higher indoor comfort temperatures. The Austerity occupant adjusts the
cooling setpoint based on the adaptive comfort model, while the Standard or
Wasteful occupant does not. As shown in Figure 2, for Miami climate, the
cooling setpoint in July and August can be adjusted as high as 26.5°C, which
is 2.5°C higher than the constant setpoint 24°C. This reduces the cooling
energy use.

FigureFigureFigureFigure 2222. Adjusted cooling setpoints based on the ASHRAE adaptive comfort model
• Occupancy controls

For the Austerity occupant, he turns off lights and HVAC, and turns down
plug-load 30% when he leaves office for break. The Standard occupant
operates lights, HVAC, and office equipment according to schedules (Figure
1). The Wasteful occupant leaves everything 100% on during breaks.

• Daylighting controls
The Austerity occupant dims lights to 50% or completely turns them off if
adequate daylight meets the visual comfort. The other two occupants do not
response to daylight.



• HVAC operation time
Compared to the standard HVAC operation schedule, the Austerity occupant
turns on HVAC one hour late at 9am and turns off one hour early at 4pm. The
Wasteful occupant sets the HVAC operation the same as the whole building -
from 6am to 10pm.

• Cooling startup control
The Austerity occupant turns on cooling only when he feels warm, which
usually occurs when the space air temperature reaches 28°C. When the cooling
is turned on, cooling setpoint temperature of 24°C is maintained. This is
demonstrated in Figure 3 for a hot summer day. The other two occupants set
the startup temperature the same as the cooling setpoint.

FigureFigureFigureFigure 3333. Cooling startup control

TableTableTableTable 2222. Occupant behavior categorized into three workstyles
Occupant behavior Austerity

workstyle
Standard
workstyle

Wasteful
workstyle

Cooling setpoint (°C) 26 24 22
Heating setpoint (°C) 18 21 23
Adaptive comfort Yes None None

Occupancy controls
If unoccupied, turn

off lights and
HVAC, turn down
plug-load 30%

Scheduled
Leave everything
on: lights, HVAC,
and plug-load

Daylighting Control 3 Steps Dimming None None

HVAC operation time
Turn on 1 hour late
and turn off 1 hour
early: 9am to 4pm

Scheduled on:
8am to 5pm

Same as the whole
building schedule:
6am to 10pm

Cooling startup
control

Cooling turns on
when space air
temperature

reaches 28°C, then
maintains at 24°C.
Cooling turns off
when unoccupied.

Follow HVAC
operation

schedule (8am
to 5pm) to

maintain 24°C.
Same as above.

Follow HVAC
operation schedule
(6am to 10pm) to
maintain 24°C.
Same as above.

Combined All above
behavior

All above
behavior

All above
behavior

ModelingModelingModelingModeling approachesapproachesapproachesapproaches



Three different approaches using EnergyPlus, in order of difficulty, are used in the
study to model the occupant behavior discussed before:

1) Direct modeling with EnergyPlus
Occupant behavior, including cooling setpoint, heating setpoint, daylighting control,
and HVAC operation time, is modelled directly with EnergyPlus by changing
corresponding inputs from the base cases for the Standard occupant. The advantage of
this approach is easy implementation.

2) Using the energy management system (EMS) in EnergyPlus
EMS is an advanced feature of EnergyPlus and designed for users to develop
customized high-level, supervisory control routines to override specified aspects of
EnergyPlus modeling in the EMS program. EMS has certain limitations and its use
requires advanced knowledge of EnergyPlus and computer programming. EMS is
used to model occupant behavior of adaptive comfort and Occupancy control. The
Occupancy control can also be modelled directly by pre-calculating the new schedules
for lights, HVAC, and office equipment, but the Direct Modeling approach would not
work if the occupant schedule is stochastic.

3) Modifying EnergyPlus source code
Modifying the existing EnergyPlus source code, the third modeling approach, is used
when both the Direct Modeling and EMS approaches cannot be applied. This
approach requires users to have a thorough understanding of the EnergyPlus data
structure and existing source code before being able to modify code. This is the most
difficult approach but offers the most flexibility to model complex occupant behavior.
This approach is used to model the Cooling start up control.

RESULTSRESULTSRESULTSRESULTS ANDANDANDAND DISCUSSIONSDISCUSSIONSDISCUSSIONSDISCUSSIONS
The simulation results are presented as percentage changes of source energy of the
Austerity workstyle and Wasteful workstyle compared to the Standard workstyle for
individual occupant behavior as well as the combined behavior. Figures 4 to 6 show
the results for the three climates.



FigureFigureFigureFigure 4444. Changes of source energy in San Francisco climate

FigureFigureFigureFigure 5555. Changes of source energy in Chicago climate

FigureFigureFigureFigure 6666. Changes of source energy in Miami climate

From these results, it can be seen that:
• The combined Austerity workstyle and Wasteful workstyle have significant impact on

energy use of the private office. Compared to the Standard workstyle, the Austerity

workstyle can save 42%, 50%, and 48% of source energy in San Francisco, Chicago, and



Miami respectively; while the Wasteful workstyle consumes 89%, 81%, and 74% more

energy for the three climates respectively.

• For the Austerity workstyle, the Cooling startup control, the Occupancy control, and the

Cooling setpoint have the most energy savings. While for the Wasteful workstyle, the

Cooling startup control is the same as the HVAC operation time, and the Cooling setpoint

cause the most increase of energy use.

• The impact of Heating setpoint is relatively small because the heating source is natural

gas which is valued much less in source energy compared to other end uses in electricity.

• The adaptive comfort model based Austerity occupant behavior can save 30% of source

energy for the hot climate of Miami.

• Occupant behavior that leads to longer HVAC operation time and lower cooling setpoint

increase of energy use significantly.

• Occupant behavior that leads to delay the cooling (Startup control), higher cooling

setpoint (including Adaptive comfort), and turning off or down equipment when

unoccupied reduce energy use significantly.

CONCLUSIONCONCLUSIONCONCLUSIONCONCLUSION
This study identified and evaluated a few typical occupant behavior related to
operation and control of energy service systems of private offices. The behavior is
categorized into three workstyles – Austerity, Standard, and Wasteful – according to
the potential impact on energy use. The simulation results demonstrate that occupant
behavior has significant impact on energy use of private offices – the combined
Austerity workstyle can save up to 50% of source energy, while the combined
Wasteful workstyle can increase energy use by 89% compared to the Standard
workstyle.

Three approaches to modelling occupant behavior using EnergyPlus are discussed.
Our on-going research focuses on occupant behavior in operating windows and
shading devices, and implementing our behavior models in EnergyPlus for public use.

It is a different topic, well worth exploring but outside our expertise, on how to
motivate occupants to change from Standard workstyle to Austerity workstyle to save
energy. There have been many pilot behavioral programs presented in the Behavior,
Energy, and Climate Change conference (Anon.).
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ABSTRACT 

Lighting consumes about 20 to 40% of total electricity use in large office buildings in the U.S. and 

China. In order to develop better lighting simulation models it is crucial to understand the 

characteristics of lighting energy use. This paper analyzes the main characteristics of lighting 

energy use over various time scales, based on the statistical analysis of measured lighting energy 

use of 17 large office buildings in Beijing and Hong Kong. It was found that the daily 24-hour 

variations of lighting energy use were mainly driven by the schedule of the building occupants. 

Outdoor illumination levels have little impact on lighting energy use in large office buildings due to 

the lack of automatic daylighting controls and relatively small perimeter areas. A stochastic lighting 

energy use model was developed based on different occupant activities during six time periods 

throughout a day, and the annual distribution of lighting power across those periods. The model was 

verified using measured lighting energy use of one selected building. This study demonstrates how 

statistical analysis and stochastic modeling can be applied to lighting energy use. The developed 

lighting model can be adopted by building energy modeling programs to improve the simulation 

accuracy of lighting energy use. 

 

KEYWORDS  

building simulation, energy use, lighting, modeling, occupant behavior, office buildings, Poisson 

distribution 

 

INTRODUCTION 

Lighting energy use in large office buildings is as high as 20% to 40% of the building total in both 

China and the U.S. This has caught the attention of practitioners, researchers, and policy makers. 

Studies have shown that the two main factors affecting lighting energy use are outdoor illumination 

and occupant behavior. From other researchers’ field studies and simulations, it was concluded that 

lighting energy use has a correlation with outdoor illumination. When the outdoor illumination is 

above a certain level, people around perimeter zones with access to natural light are less likely to 

use artificial electrical lights, and the artificial illumination needed to meet design illuminance 

levels is lower (Reinhart and Voss 2003, Li et al 2006, Galasiu and Atif 2002, Li and Lam 2001, 

Maitreya 1997). However, other researchers also found that occupants have a crucial influence on 

the lighting energy use. Through case studies of actual buildings, Yun et al (2012a) found that in 

open-plan offices, the usage of lighting was not influenced by outdoor illumination. Instead it had a 

close relationship with the indoor activities of occupants. Meanwhile, Yong et al (2012b) formulated 
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the concept that outdoor illumination has no statistical significance with lighting energy use, and the 

operation of lighting was strongly correlated to the time of day. Other studies also found that 

operation of lights by occupants only depended on whether the room is occupied, and is 

independent of outdoor illumination (Love 1998, Lindelof and Morel 2006). 
 

Currently, most research on lighting energy use is focused on small office and residential buildings. 

The analysis methods and conclusions from this research provide some hints to help understand the 

lighting energy use in large office buildings. In China, a common method to predict lighting energy 

use involves combining lighting power density information with lighting schedules. However, the 

generation of lighting schedules is too simplified and lacks verification against measured data (Yun 

and Steemers 2008). This leads to a large discrepancy between simulated and measured lighting 

energy use (Bluyssen 2009, Norford et al 1994). Furthermore, the annual variation of actual lighting 

energy use is not captured.More complex lighting energy use models have been reviewed. Hunt 

(1979) introduced a stochastic model to calculate the probability of turning on lights after the arrival 

of occupants. He concluded that the probability of occupants turning on artificial lights increases 

only when the illumination of the working surface is below 100 lux. Newsham (1995) developed 

the Lightswitch model that followed a stochastic approach and simulated user occupancy at the 

workplace based on measured field data in an office building in Ottawa, Canada. Reinhart (2004) 

improved the Lightswitch model to Lightswitch-2002 to calculate the probability of occupants 

arriving and leaving offices, and the related probability of turning on and off lights. Meanwhile, in 

Reinhart‘s study, based on the model, the amount of energy savings under different lighting control 

strategies was evaluated. Joakim Wide ń et al (2009) used Markov chains to estimate the probability 

of occupant movement. Then the probability of turning on lights was modeled as a decision based 

on the lighting level and occupant movement. Since these studies were mainly based on small office 

buildings (Hunt 1979, Reinhart 2004) and residential buildings (Wide’n et al 2009), there is a strong 

need to conduct more research on lighting energy use in large office buildings if energy use targets 

are to be met. 

 

Based on large quantities of measured data from several large office buildings, this paper analyzes 

the characteristics of total amount and distributions of lighting energy use in large office buildings. 

Due to the lack of detailed information on the physical characteristics of lighting systems in these 

buildings, this paper focuses on daily and seasonal lighting energy use patterns. Daily 24-hour 

lighting curve, annual distribution of lighting power, and main influencing factors of lighting energy 

use are first identified and discussed through statistical analysis of hourly data. Then a stochastic 

model is developed which effectively capture random characteristics of lighting energy use. The 

model accounts for the time-varying nature of lighting energy use, including peaks in usage at 

certain times of the day. In this study, the general lighting energy use features of large office 

buildings are analyzed and discussed in depth, and the main influencing factors and distributions of 

lighting energy use are clarified more distinctly. 

 

RESEARCH METHODS 

The research method in this paper is shown in Figure 1. First, the two main factors influencing 

lighting energy use - outdoor illumination and occupant behavior - are analyzed. To determine the 

influence of outdoor illumination on lighting energy use, the lighting energy use between different 

seasons and different building levels (above-grade areas and basements) is compared. The effect of 

occupant behavior is analyzed by comparing lighting energy used on different types of day 



 

 

(workdays, weekends, holidays), and by comparing lighting energy use under different occupancy 

schedules. Then, based on the understanding of main influencing factors of lighting energy use, 

further discussion about the feature of lighting energy use curve in large office buildings can be 

gained through the analysis of measured lighting energy use from dozens of large office buildings 

with energy sub-metering systems. The analysis is mainly focusing on four aspects: 1) annual total 

energy use; 2) monthly distribution; 3) daily feature; and 4) annual distribution. More in-depth 

analysis is conducted to decode the annual distribution feature and the time-relevant properties 

between different time periods. A whole-building lighting energy use model is developed based on 

the results from the analysis of lighting energy use and lighting profiles at various time scales. The 

model is then applied to a case study to simulate the lighting energy use, and the simulated results 

are compared with measured data to verify the model. 

 

Figure 1 Research route 

 

RESULTS 

1 Analysis of influencing factors 

1.1 The influence of outdoor illumination 

1.1.1 Comparison of lighting energy use between the basement and the above-grade 

floors 

The lighting energy use is shown in Figure 2. The red line in the figure represents the daily mean 

lighting energy use. The edges of the blue boxes are placed at the 25% and the 75% quartiles. The 

maximum and minimum data points are also shown. It reveals that the outdoor illumination has no 

obvious effect on the shape of the average lighting power curves in large office buildings.  

 

 

 

 

Figure 2  Comparison of lighting energy use between the basements and the above-grade areas 

1.1.2 Comparison of lighting energy use between seasons 

To further study the influence of outdoor illumination, the lighting energy use between different 

seasons is compared as shown in Figure 3. It can be concluded that outdoor illumination has no 

noticeable influence on the total lighting energy use. 
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 Figure 3 Weekly profiles of average lighting energy use for the four seasons 

1.2 The influence of occupant behavior 

To assess the influence of occupant behavior on lighting energy use, the power draw between 

workdays and weekends for the same lighting branch is compared and shown in Figure 4 and Figure 

5. As there are many more occupants in the building on workdays, the lighting power on workdays 

is higher than weekends. Different occupancy events such as arriving at work, going out for lunch, 

and leaving work can be detected from the workday lighting power curve. While during weekends, 

the discrete range of lighting energy use is much larger, and a homogeneous lighting schedule 

cannot be detected due to the uncertainty of overtime work and other events. 

 

Figure 4 Average lighting power draw on workdays 

 

Figure 5 Average lighting power draw on 

weekends 

Note: the red lines are the hourly averages; the green lines represent data at 5% and 95% probability; 

the blue boxes show the first and third quartiles; the vertical dashed blue lines show the range 

2 General characteristics of lighting energy use 

Based on measured data of 17 large office buildings in Beijing and Hong Kong, general 

characteristics of the lighting energy use are analyzed. 

2.1 Annual lighting energy use 

The electricity end-use intensities are calculated and shown in Figure 6. It can be seen that the 

offices in Hong Kong have greater electricity use intensity.  

 

Figure 6 Electricity use intensity of large office buildings in Beijing and Hong Kong 

Note：Power refers to utilities equipment like elevators; AC refers to HVAC equipment.  

2.2 Monthly distribution of lighting energy use 
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Table 1 shows the months with the maximum and minimum daily lighting energy use for the 17 

buildings. It cannot be judged statistically from the results which months have the greatest or least 

daily lighting energy use.  

Table 1 Months with maximum and minimum daily average lighting energy use 

Buildings 

The month with the 

maximum daily 

lighting energy use 

The month with the 

minimum daily lighting 

energy use 

Buildings 

The month with 

the maximum 

daily lighting 

energy use 

The month with 

the minimum 

daily lighting 

energy use 

A 7 4 H 3 8 

B 7 9 I 12 1 

C 12 5 J 11 8 

D 4 5 K 12 1 

E 11 5 M 2 3 

F 7 10 N 7 12 

G 12 10 O 8 2 

R 9 5    

2.3 Daily distribution of lighting energy use 

The hourly lighting energy use for a typical workday for Building F is shown in Figure 7. The curve 

has dual peaks and can be divided into six time periods: 1)Night Period; 2)Going-to-work Period:; 

3)Morning Period; 4)Noon-Break Period; 5)Afternoon Periodl; 6)Off-Work Period.  

 

Figure 7 Curve of lighting power for a typical workday 

The six periods can be divided into two categories: 

 

1. Constant Power  

Morning Period, Noon-break Period, Afternoon Period and Night Period are periods that can be 

represented by a flat curve with a constant lighting power. Table 2 lists the maximum coefficient of 

variation for each of the four periods. It indicates that the variation can be ignored. 

Table 2 Maximum coefficient of variation for the four constant power time periods 

 
Morning 

Period 

Noon-break 

Period 

Afternoon 

Period 
Night Period 

Coefficient of 

variation Vσ 
0.22 0.13 0.25 0.31 

Note: Vσ = σ/x, where Vσ is the coefficient of variation, σ is the mean square deviation, and x is the average 

value 

2. Variable power 

The daily distribution of lighting energy use during the Going-to-Work and Off-Work periods 

satisfies an exponential curve. Wang et al (2005) proved, with measured data, that the probability of 
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a certain number of people (represented by k) arriving during a certain time period fits a Poisson 

distribution: 

P{X = k} =
λk

k!
e−λ 

T

1
 , where T  is the average time before k people arrive the office. So the probability of some 

people arriving during a certain time period fits P = P{k > 0}, which is an exponential distribution. 

And the probability of lighting turning on is related to the probability of people arriving. During the 

Off-Work Period, the probability of people leaving the office can be represented by an exponential 

distribution, which means that the probability of people in the office is calculated as P = 1 −

P{k > 0}. 

 

Taking Going-to-Work period as an example, using the least square regression model, confidence 

levelα= 0.05 is assumed, and the functional form is set to the exponential distribution. The results 

are shown in Figure 8. From the regression curve, almost all the data is within the confidence 

interval, which proves that the curve fitting is good. 

 

Figure 8 The daily regression curve during the Going-to-Work Period [λ=0.89] 

3 Annual distribution of lighting energy use 

From the spread of hourly lighting use from a single lighting branch shown in Figure 9, it can be 

seen that during one year the lighting energy use during these periods is not constant. 

 

Figure 9 Annual hourly lighting energy use 

Regression analysis is used to verify the distribution characteristic, as shown in Figure 10. Most 

data are within the confidence interval, which proves that the annual variations of the lighting 

power during each of four periods can be represented with a normal distribution.  
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Figure 10 The normal distribution of the lighting power 

DISCUSSION 

A model of the whole-building lighting energy use was developed based on the daily lighting curves 

and the annual distribution properties. This model is applicable to large office buildings, where the 

lighting energy use has almost no relationship with outdoor illumination, but has a close 

relationship with the occupancy schedule. Only the lighting energy use on a typical workday is 

simulated here. The simulated results of a lighting branch in Building A are shown in Figure 11. 

With the consideration that simulation aims to represent the most typical scenarios in reality, the 

data edges of this quartile graph are the data points at the probabilities of 95% and 5%. It can be 

seen that the simulated daily lighting curve agrees quite well with the curve from the measured data. 

The annual distributions of each period are also described.  

 

Figure 11 Comparison between the simulated and measured lighting energy use  

CONCLUSION AND IMPLICATIONS 

This paper analyzed the main characteristics and major influencing factors of lighting energy use in 

large office buildings, based on measured lighting energy use of 17 large office buildings in Beijing 

and Hong Kong. It is important to describe the daily lighting profiles accurately in order to 

represent the various characteristics of lighting energy use in large office buildings. A stochastic 

lighting model was developed to quantify the uncertainty of occupant behavior. This paper focused 

on the description of lighting energy use curves. 

 

Main findings in this study include:  

1、In large office buildings, the lighting energy use is mainly affected by the occupant schedule, 

and the influence of outdoor illumination is very limited. 

2、In large offices, the time when lights are turned on is closely correlated with the time when most 

occupants arrive. While turning off lights is related to the time most occupants leave. Accurate 

prediction of the presence of occupants in offices is crucial to predict lighting energy use. 

3、Lighting is a major electric end-use in large office buildings. The annual lighting energy use per 

square meter is similar for large offices in Beijing and Hong Kong. 

4、Poisson and normal distributions can accurately describe the stochastic properties of daily 

lighting power curves and annual variations.  

5、A whole-building lighting energy use model is developed based on daily lighting curves and 

annual distribution of lighting power levels. The model is verified using measured lighting 

energy use from an actual building. 
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Future work can be done to improve the simulation accuracy of the annual distribution of lighting 

power levels for the Going-to-Work and Off-Work periods. A lighting model for weekends can also 

be developed and verified. 
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Abstract 
Building energy simulation is widely used to help design energy efficient building envelopes and 
HVAC systems, develop and demonstrate compliance of building energy codes, and implement 
building energy rating programs. However, large discrepancies exist between simulation results 
from different building energy modeling programs (BEMPs). This leads many users and stakeholders 
to lack confidence in the results from BEMPs and building simulation methods. This paper compared 
the building thermal load modeling capabilities and simulation results of three BEMPs: EnergyPlus, 
DeST and DOE-2.1E. Test cases, based upon the ASHRAE Standard 140 tests, were designed to 
isolate and evaluate the key influencing factors responsible for the discrepancies in results between 
EnergyPlus and DeST. This included the load algorithms and some of the default input parameters. 
It was concluded that there is little difference between the results from EnergyPlus and DeST if the 
input values are the same or equivalent despite there being many discrepancies between the heat 
balance algorithms. DOE-2.1E can produce large errors for cases when adjacent zones have very 
different conditions, or if a zone is conditioned part-time while adjacent zones are unconditioned. 
This was due to the lack of a strict zonal heat balance routine in DOE-2.1E, and the steady state 
handling of heat flow through interior walls and partitions. This comparison study did not produce 
another test suite, but rather a methodology to design tests that can be used to identify and 
isolate key influencing factors that drive the building thermal loads, and a process with which to 
carry them out. 
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1 Introduction 

Computer simulation is an important and proven method 
to help understand and analyze the thermal performance of 
buildings, and predict their operational energy consumption. 
Since the 1960s, many building energy modeling programs 
(BEMPs) have been developed to perform building energy 
simulation, for instance, the widely-used DOE-2 (DOE-2 
1980), EnergyPlus (Crawley et al. 2001), ESP (ESRU 1999), 
and DeST (Yan et al. 2008; Zhang et al. 2008). DOE-2 was 
developed at the Lawrence Berkeley National Laboratory 
with funding from the U.S. Department of Energy (USDOE) 
after the energy crisis in the late 1970s and is still the  
most widely-used BEMP in the U.S. This includes its use as 
a stand-alone calculation engine and with graphical user 

interfaces (GUI) such as VisualDOE (VisualDOE 2004), 
EnergyPro (EnergyPro 2011), eQuest (eQuest 2009), and 
EnergyGauge (EnergyGauge 2012). EnergyPlus is a next 
generation BEMP developed, supported and maintained by 
a team led and funded by USDOE since 1996. EnergyPlus  
is based on the load algorithms of BLAST and the system 
algorithms of DOE-2. New features and enhancements were 
added to support innovative, low-energy building designs 
and operational controls. Development of ESP-r started in 
1974 at the University of Strathclyde and is primarily used 
in Europe. DeST (Designer’s Simulation Toolkits) is a BEMP 
developed at Tsinghua University since the late 1980s with 
the aim of aiding teaching, research and the practical use of 
building energy analysis and simulation in China.  

BEMPs play a significant role in the design of energy 

BUILD SIMUL 
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efficient envelopes and HVAC (heating, ventilation, and 
air-conditioning) systems for new buildings and retrofitting 
existing buildings, the development of building energy codes 
and standards, and defining and implementing building 
energy rating/labeling programs. However, the issue that 
large discrepancies exist in simulation results between 
different BEMPs, even for the same building modeled by 
the same person, leads many users and stakeholders to lack 
confidence in building simulation methods and the results 
from BEMPs. This is a major barrier for the wider adoption 
and effective application of building energy simulation, and 
represents a challenge to the industry. The large discrepancies 
of simulation results between different BEMPs mainly come 
from three factors as Fig. 1 illustrated: first is the simulation 
engine that is the unchangeable core; second is the GUI to  

 

Fig. 1 The top three influencing factors for the discrepancies in 
simulation results between different BEMPs 

the simulation engine that usually simplifies, hides or hard- 
wires some inputs that can be important; third is the fact 
that users may model the building or system inaccurately 
as they are not familiar with the chosen BEMP, or input 
poor data due to constraints of budget and resources. In 
order to address the issue of large discrepancies between 
different BEMPs, the impact of the above three factors must 
be identified and quantified.  

This paper mainly discusses why and how different 
BEMPs produce different simulation results. As the building 
load calculation forms the basis of building energy and 
thermal performance simulations, this paper focuses on 
detailed comparisons of loads calculation between the three 
BEMPs: EnergyPlus, DeST, and DOE-2.1E, with the goal to 
identify and quantify the influences of the simulation engines 
and input values or algorithms. EnergyPlus was chosen 
because it is widely used and continuously being developed 
and supported by USDOE. DOE-2.1E was chosen as it is still 
widely used in the U.S. DeST was chosen due to its emerging 
use in China and a few Asian countries and regions. Top- 
level key features of DOE-2.1E, DeST and EnergyPlus are 
summarized in Table 1. 

Our findings can be a valuable reference for decision 
makers to determine which BEMP to use for various ap-
plications including development and compliance calculations 
for building energy codes and standards. Another separate 
paper will discuss the methodologies and findings from a 
detailed comparison of the same three BEMPs in HVAC 
systems and central plant modeling. 

Table 1 Comparison of top-level key features of DOE-2.1E, DeST and EnergyPlus 
Feature DOE-2.1E DeST EnergyPlus 

Developer LBNL/USDOE Tsinghua University, China USDOE 
Development and support No more development or support On-going On-going 
User Worldwide Mostly in China Worldwide 
Input Text, BDL Database, Microsoft Access Text, IDF 
Output Summary & hourly reports Summary & hourly reports Extensive summary & detailed reports with user 

specified time steps 
GUI Simulation engine only; 3rd party 

GUIs available 
Coupled with AutoCAD Simulation engine only; 3rd party GUIs available

Algorithm Surface heat transfer: CTF; zone 
weighting factors  

Zone heat balance: state space  
method  

Surface heat balance: CTF; zone heat balance 

Time step 1 hour, fixed 1 hour, fixed 1 to 60 minutes (15 minutes is used in this paper)
Weather data Hourly Hourly Hourly or sub-hourly 
HVAC 28 pre-defined systems A few pre-defined systems  User configurable with some limitations 
User customization User functions N/A Energy management systems 
Co-simulation N/A N/A External interface 
Language Fortran 77 C++ Fortran 2003 
Limitation Lack zone air heat balance, linear 

systems 
Limited user customization, linear 

systems 
Potentially long run-time for large models 

Licensing Free download; source code available Free download; source code not 
open to public 

Free download; open source 
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2 Methodology 

The comparisons of the features and capabilities of twenty 
major BEMPs were summarized to help understand their 
functions, advantages and disadvantages from a simple 
overview (Crawley et al. 2008). Many efforts to test simulation 
results from EnergyPlus (Henninger and Witte 2011a, b, c), 
DeST (2006), and DOE-2.1E (IEA 1995; Sullivan 1998; 
Henninger and Witte 2006; Meldem and Winkelmann 1995) 
have been undertaken by their development teams. These 
tests employed three testing approaches: analytical tests, 
comparative (inter-program) tests, and empirical tests. These 
tests demonstrated that the three BEMPs had the basic 
capability to simulate dynamic thermal processes and the 
energy performance of buildings. LBNL performed com-
parative tests between DOE-2.1E and EnergyPlus based on 
the test cases defined in the Alternate Calculation Method 
Manual of California Building Energy Efficiency Standards 
Title 24 in order to evaluate the possibility of using EnergyPlus 
as the reference simulation engine for development and 
compliance calculations of future revisions of Title 24 (Huang 
et al. 2006). A key finding was that the simulation results were 
highly sensitive to seemingly minor differences in inputs 
and model algorithms. Another comparison (Andolsun and 
Culp 2010) of EnergyPlus and DOE-2.1E was undertaken 
using case studies that ranged from a sealed box to a detailed 
residential building. Andolsun and Culp demonstrated that 
EnergyPlus under-estimated total building loads by 16%– 
17% compared to DOE-2.1E as incremental loads were 
added, and air infiltration reduced the differences of loads 
calculation results between the two BEMPs. Another study 
(Waddell and Kaserekar 2010) compared the results of 
solar gains, cooling load calculations, and the transition 
from the solar gains to cooling loads, from a few BEMPs 
including EnergyPlus, eQuest, IES, and TRACE 700. These 
comparisons uncovered that large discrepancies existed  
in the results from DOE-2.1E and EnergyPlus which were 
not well understood, nor did they explain what the key 
influencing factors could be. 

Previous building simulation comparisons have generally 
resulted in standard test suites or case studies, which 
present the discrepancies between the simulation results, 
but do not address specific reasons for the discrepancies 
from the view of calculation algorithms or model inputs.  
In this paper, new sets of in-depth tests were designed and 
carried out as complement to the ASHRAE Standard 140 
tests. To further identify and understand the differences 
and their effects on simulation results, new test cases were 
designed by modifying inputs of the ASHRAE Standard 
140 tests, based on deep understandings of load calculation 
algorithms, modeling assumptions, and defaults of inputs 
of the three BEMPs. It should be noted that all test cases in 
Standard 140 were set to be continuously (24 hours per day) 
conditioned by mechanical cooling and heating systems. 
However, it is very common that heating or cooling is only 
used during some specific hours, or only in specific zones 
of a building. This means that the heat transfer between 
unconditioned and conditioned spaces needs to be accurately 
accounted for in the heat balance calculation. Therefore, test 
cases with two adjacent spaces were added, and extreme 
thermal conditions and practical engineering conditions 
were applied to test possible limitations of the three BEMPs. 
Figure 2 summarizes the method used to develop the tests 
and perform the comparisons. For all test cases, EnergyPlus 
Version 7.0, DeST Version 2011-11-23 and DOE-2.1E114 were 
used. For all EnergyPlus tests, the CTF (conduction transfer 
function) method was used with a simulation time-step of 
15 minutes. 

3 Results from the ASHRAE Standard 140 tests 

ASHRAE Standard 140-2007 (ASHRAE 2007), Standard 
Method of Test for the Evaluation of Building Energy Analysis 
Computer Programs, is based on the work previously per-
formed by the International Energy Agency (IEA) under the 
Building Energy Simulation Test (BESTEST) and Diagnostic 
Method (IEA 1995). ASHRAE Standard 140 defines a 
standard method of tests that can be used for identifying 

 
Fig. 2 Methodology to build the tests and perform the comparisons 
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and diagnosing predictive differences from whole building 
BEMPs that may possibly be caused by algorithmic differences, 
modeling limitations, input differences, or coding errors. So, 
the load calculation comparison based on ASHRAE Standard 
140 tests is carried out first in our study. The results for 
DOE-2.1E were obtained from ASHRAE Standard 140; results 
for EnergyPlus 7.0 were obtained from the EnergyPlus 
development team; while results for DeST were produced 
during this study as earlier tests were limited and outdated. 

All test cases use single-zone models except Case 960. 
Inputs including weather data, building construction, en-
velope materials, infiltration, internal loads, and mechanical 
system are controlled in each of the three BEMPs according to 
ASHRAE Standard 140-2007. Case 600 is the base test, Cases 
610 to 650 are low-mass tests, Cases 900 to 960 are high- 
mass tests, Cases 600FF to 950FF are free flow tests and the 

remaining are additional test cases (Cases 195 to 320, Cases 
395 to 440 and Cases 800 to 810). The outputs from these test 
cases were annual heating and sensible cooling loads, peak 
heating and cooling sensible loads, and zone air temperatures 
for the cases without mechanical heating or cooling systems. 
The annual heating loads for the low-mass building are 
showed in Fig. 3, where each bar represents a different 
BEMP, from DOE-2, BLAST (BLAST 1991), ESP, SRES/SUN, 
SERIRES, S3PAS, TRNSYS (http://sel.me.wisc.edu/trnsys), 
TASE (Aittomäki and Kalema 1976), ENERGYPLUS, or 
DEST. BEMPs participating in the ASHRAE Standard 140 
comparison are listed in Table 2. 

One method to see how well DOE-2.1E (the output of 
DOE2.1E-RevWindow), DeST, and EnergyPlus predict 
building loads is to see if their results fall within the range 
of spread of results from other BEMPs. Tables 3 to 7 show  

 
Fig. 3 Annual heating loads for the 600 series low-mass tests from the ASHRAE Standard 140-2007 

Table 2 BEMPs participating in the ASHRAE Standard 140 comparison (Henninger and Witte 2011b) 
Code name Computer program Developer Implemented by 

BLAST BLAST-3.0 level 193 v.1 CERL, U.S. NREL, U.S.; Politecnico, Torino, Italy 
DOE-2.1D DOE-2.1D 14 LANL/LBNL,U.S. NREL, U.S. 
ESP ESP-RV8 Strathclyde University, U.K. De Montfort University, U.K. 
SRES/SUN SERIRES/SUNCODE 5.7 NREL/Ecotope, U.S. NREL, U.S. 
SERIRES SERIRES 1.2 NREL, U.S. and BRE, U.K. BRE, U.K. 
S3PAS S3PAS University of Sevilla, Spain University of Sevilla, Spain 

TASE TASE Tampere University, Finland Tampere University, Finland 
TRNSYS TRNSYS 13.1 University of Wisconsin, U.S. BRE, U.K.; Vrije Universiteit, Brussels, Belgium 
DOE-2.1E DOE-2.1E LANL/LBNL, U.S. GARD Analytics, U.S., using NREL input files 
DOE2.1E-RevWindow DOE2.1E-RevWindow LANL/LBNL, U.S. GARD Analytics, U.S., using Window 4 data file 

which more closely matches specification 
BLAST3.0-334 BLAST3.0 level 334 CERL, U.S. GARD Analytics, U.S., using NREL input files 
ENERGYPLUS EnergyPlus ver.7.0.0.036,Nov 2011 U.S. Dept. of Energy GARD Analytics, U.S. 

DEST DeST 2011-11-23 Tsinghua University, China Tsinghua University, China 
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Table 3 Comparison of annual heating loads for various ASHRAE 
Standard 140 tests 

Annual heating load (MWh) 

Case Description Min. Max. DOE-2.1E DeST EnergyPlus

600 Base case 4.296 5.709 4.994 y 5.007 y 4.364 y

610 South shading 4.355 5.786 5.042 y 5.042 y 4.398 y

620 East/west window 
orientation 

4.613 5.944 5.144 y 5.292 y 4.512 y1

630 East/west shading 5.050 6.469 5.508 y 5.570 y 4.813 y1

640 Thermostat setback 2.751 3.803 2.995 y 3.127 y 2.667 y1

650 Night ventilation 0.000 0.000 0.000 y 0.000 y 0.000 y

900 High-mass base case 1.170 2.041 1.301 y 1.894 y 1.163 y1

910 High-mass south 
shading 

1.512 2.282 1.559 y 2.266 y 1.427 n

920 High-mass east/west 
window orientation 

3.261 4.300 3.312 y 4.025 y 3.087 n

930 High-mass east/west 
shading 

4.143 5.335 4.249 y 4.485 y 3.785 n

940 High-mass thermostat 
setback 

0.793 1.411 0.838 y 1.270 y 0.727 n

950 High-mass night 
ventilation 

0.000 0.000 0.000 y 0.000 y 0.000 y

960 Sunspace 2.144 3.373 2.216 y 2.835 y 2.322 y

Table 4 Comparison of annual cooling loads for various ASHRAE 
Standard 140 tests 

Annual cooling load (MWh) 

Case Description Min. Max. DOE-2.1E DeST EnergyPlus

600 Base case 6.137 8.448 8.054 y 5.924 y1 7.006 y

610 South shading 3.915 6.139 5.874 y 4.873 y 4.976 y

620 East/west window 
orientation 

3.417 5.482 5.256 y 3.847 y 4.384 y

630 East/west shading 2.129 3.701 3.235 y 2.879 y 2.952 y

640 Thermostat setback 5.952 8.097 7.713 y 5.759 y1 6.710 y

650 Night ventilation 4.816 7.064 6.678 y 4.625 y1 5.538 y

900 High-mass base case 2.132 3.669 3.390 y 2.296 y 2.683 y

910 High-mass south 
shading 

0.821 1.883 1.738 y 1.202 y 1.350 y

920 High-mass east/west 
window orientation 

1.840 3.313 3.169 y 2.401 y 2.683 y

930 High-mass east/west 
shading 

1.039 2.238 1.823 y 1.696 y 1.745 y

940 High-mass thermostat 
setback 

2.079 3.546 3.272 y 2.262 y 2.606 y

950 High-mass night 
ventilation 

0.387 0.921 0.749 y 0.455 y 0.571 y

960 Sunspace 0.411 0.895 0.855 y 0.537 y 0.732 y

Table 5 Comparison of peak heating loads for various ASHRAE 
Standard 140 tests 

Peak heating load (kW) 

Case Description Min. Max. DOE-2.1E DeST EnergyPlus

600 Base case 3.437 4.354 3.767 y 3.986 y 3.732 y 

610 South shading 3.437 4.354 3.755 y 3.954 y 3.720 y 

620 East/west window 
orientation 3.591 4.379 3.785 y 3.962 y 3.726 y 

630 East/west shading 3.592 4.280 3.762 y 3.963 y 3.703 y 

640 Thermostat setback 5.232 6.954 5.656 y 5.991 y 6.265 y 

650 Night ventilation 0.000 0.000 0.000 y 0.000 y 0.000 y 

900 High-mass base case 2.850 3.797 3.248 y 3.600 y 3.140 y 

910 High-mass south 
shading 2.858 3.801 3.256 y 3.612 y 3.139 y 

920 High-mass east/west 
window orientation 3.308 4.061 3.508 y 3.776 y 3.453 y 

930 High-mass east/west 
shading 3.355 4.064 3.536 y 3.801 y 3.475 y 

940 High-mass thermostat 
setback 3.980 6.428 5.322 y 5.723 y 4.785 y 

950 High-mass night 
ventilation 0.000 0.000 0.000 y 0.000 y 0.000 y 

960 Sunspace 2.410 2.863 2.603 y 2.601 y 2.691 y 

Table 6 Comparison of peak cooling loads for various ASHRAE 
Standard 140 tests 

Peak cooling load (kW) 

Case Description Min. Max. DOE-2.1E DeST EnergyPlus

600 Base case 5.965 7.188 6.965 y 6.151 y 6.678 y

610 South shading 5.669 6.673 6.482 y 5.964 y 6.274 y

620 East/west window 
orientation 3.634 5.096 4.679 y 3.819 y 4.005 y

630 East/west shading 3.072 4.116 3.834 y 3.270 y 3.446 y

640 Thermostat setback 5.884 7.126 6.903 y 6.116 y 6.614 y

650 Night ventilation 5.831 7.068 6.843 y 5.973 y 6.479 y

900 High-mass base case 2.888 3.932 3.778 y 3.469 y 3.320 y

910 High-mass south 
shading 1.896 3.277 2.703 y 2.953 y 2.640 y

920 High-mass east/west 
window orientation 2.385 3.505 3.342 y 2.844 y 2.835 y

930 High-mass east/west 
shading 1.873 3.080 2.638 y 2.527 y 2.332 y

940 High-mass thermostat 
setback 2.888 3.932 3.778 y 3.497 y 3.320 y

950 High-mass night 
ventilation 2.033 3.170 2.917 y 2.586 y 2.451 y

960 Sunspace 0.953 1.422 1.048 y 1.085 y 1.213 y



Zhu et al. / Building Simulation 

 

6 

the results of the three BEMPs with an extra column for each 
of the three BEMPs to indicate whether its results fall within 
the ranges. The columns of the Min. and Max. represent 
respectively the minimum and maximum results from all of 
the tested BEMPs except DOE-2.1E, DeST and EnergyPlus. 
An indicator of “y” means that the test results are within the 
[Min., Max.] range, a “y1” means the results are not within 
the [Min., Max.] range but are within the 5% relaxed range 
[Min./1.05, Max. × 1.05], while an “n” means the results are 
outside of the relaxed range [Min./1.05, Max. × 1.05]. 

From the comparison of the ASHRAE Standard 140 test 
results, we can conclude that the simulation results from 
the three BEMPs mostly fall within the ranges except the 
heating loads results for the high-mass cases 910, 920, 930, 
and 940, where EnergyPlus calculated smaller annual heating 
loads than DOE-2.1E and DeST. EnergyPlus results for 
these four cases are about 10% lower than the minimum of 
the ranges. The largest percent differences are in the annual 
heating loads from test case 940 high-mass with thermostat 
setback, where EnergyPlus gave the lowest annual heating 
loads of 0.727 MWh while DeST gave the highest result of 
1.27 MWh, a 42.7% difference, even though the absolute 
difference is not the largest (0.938 MWh in Case 920). The 
largest percent differences are in the annual cooling loads 
from test case 950 high-mass night ventilation, where DOE- 
2.1E gave the highest annual cooling loads of 0.945 MWh 
while DeST gave the lowest result of 0.455 MWh, a 39.3% 

difference, even though the absolute difference is not the 
largest (2.130 MWh in Case 600). For peak heating and 
cooling loads in Tables 3 and 4, the results from the three 
BEMPs all fall within the ranges, but there are still large 
difference of 16.4% in Case 940 peak heating loads and 18.4% 
in Case 620 peak cooling loads. 

Even though test cases from ASHRAE Standard 140 are 
very simple, there are still large discrepancies in the results 
from the three BEMPs, especially the annual heating loads 
for the high-mass test cases. The ASHRAE Standard 140 tests 
did not provide adequate details to explain or isolate the 
influencing factors that drive the discrepancies.  

4 In-depth tests 

In this part, new sets of in-depth tests were carried out as 
complement to the ASHRAE Standard 140 tests. Firstly, 
influencing factors that drive the differences between 
EnergyPlus and DeST are isolated by modifying inputs of 
the ASHRAE Standard 140 tests. DOE-2.1E (DOE-2 1982) 
lacks strict heat balance calculations of zone and surfaces.  
It calculates the interior surface heat exchange by using the 
combined convective and radiative heat transfer coefficients, 
rather than calculating the convection from surfaces to 
zone air, and long-wave radiation between interior surfaces 
separately. Thus, input values for DOE-2.1E cannot be 
matched well with EnergyPlus and DeST, and in Section 

Table 7 Comparison of hourly zone temperatures for various ASHRAE Standard 140 tests

Maximum annual hourly zone temperature (℃) 

 Min. Max. DOE-2.1E DeST EnergyPlus 

600FF Base case 64.90 75.10 73.40 y 65.49 y 66.03 y 

650FF Night ventilation 41.81 46.40 45.50 y 42.39 y 43.65 y 

900FF High-mass base case 63.24 73.50 71.70 y 63.67 y 64.31 y 

950FF High-mass base case 35.54 38.50 37.10 y 35.67 y 36.90 y 

960FF Sunspace 48.88 55.34 51.60 y 55.54 y1 52.93 y 

Minimum annual hourly zone temperature (℃) 

 Min. Max. DOE-2.1E DeST EnergyPlus 

600FF Base case 18.80 15.57 17.70 y 18.60 y 17.51 y 

650FF Night ventilation 6.38 1.65 2.00 y 4.50 y 2.39 y 

900FF High-mass base case 23.00 21.10 21.00 y 22.91 y 23.08 y1 

950FF High-mass base case 20.20 17.80 17.80 y 19.97 y 20.34 y1 

960FF Sunspace 2.82 5.80 6.00 y1 0.48 y 2.44 y 

Average annual hourly zone temperature (℃) 

 Min. Max. DOE-2.1E DeST EnergyPlus 

600FF Base case 24.22 27.40   24.43 y 26.19 y 

650FF Night ventilation 24.45 27.50   24.45 y 26.40 y 

900FF High-mass base case 17.99 20.80   17.81 y 18.87 y 

950FF High-mass base case 14.00 15.30   13.88 y1 14.62 y 

960FF Sunspace 26.43 30.50   29.92 y 29.51 y 
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4.1 EnergyPlus and DeST are compared by in-depth tests. 
Secondly, double-zone cases were added up to test the ability 
of the three BEMPs calculating the heat balance calculation 
accurately when heating or cooling is only used during some 
specific hours, or only in specific zones of a building in 
Sections 4.2 and 4.3. As DOE-2.1E uses the adjacent space 
temperature from the previous time step to calculate the heat 
transfer from adjacent spaces, some errors may come up if 
two adjacent spaces are not both conditioned, or if there is 
a large temperature difference between two adjacent spaces. 
Thus, these comparisons are very useful for the three BEMP’s 
applications in practical engineering conditions. 

4.1 Control input values based on ASHRAE Standard 
140 tests 

4.1.1 Specification of test cases 

A series of tests were designed to identify the influence   
of different modeling assumptions between DeST and 
EnergyPlus, as shown in Table 8. When using default values 
or algorithms in EnergyPlus and DeST, there are large 
discrepancies in the surface convection coefficients, as shown 
in Figs. 4 and 5. DeST assumes constant values of convection 
coefficients for both the inside and outside surfaces (DeST 
2006), while EnergyPlus calculates these coefficients using 
correlations with indoor and outdoor air temperatures and 
wind speeds (EnergyPlus 2011). In all test cases except C10, 
the exterior and interior surfaces convection coefficients 
for EnergyPlus were set to be the same constant values as 
those used in DeST.  

C1 is the simplest case and can be calculated analytically. 
It assumes no solar absorption, no long-wave radiant  

Table 8 In-depth test cases 

Case Description 

C1 Case 195 + suspended in outdoor air + solar/visible absorptance and
infrared emissivity equal zero + the outdoor air temperature was
always kept at 10℃ 

C2 C1+the outdoor air temperature was exactly the same as case 195

C3 Case 195 (surfaces convection coefficients for EnergyPlus were set
as DeST defaults) 

C4 C3 + solar absorptance equals 0.6 

C5 C4 + infrared emissivity equals 0.9 

C6 C5 + internal gains 

C7 C6 + infiltration 

C8 C7 + the thermostat control strategy of Case 600 

C9 C8 + south windows of Case 600 

C10 C9 + default algorithms for surfaces convection coefficients in Energy-
Plus (exactly the same as Case 600 in ASHRAE Standard 140) 

 
Fig. 4 Hourly exterior surface convection coefficients of the south 
wall from Case 195 in ASHRAE Standard 140 

 
Fig. 5 Hourly interior surface convection coefficients of the south 
wall from Case 195 in ASHRAE Standard 140 

exchange between interior surfaces, and constant outdoor 
air temperature. C3 is the same as Case 195 except the surface 
convection coefficients are set to the constant value used in 
DeST. Based on C3, other influencing factors such as internal 
gains, air infiltration, thermostat control strategy, and a 
south-facing window were added step by step to build the 
final C10 test case. 

4.1.2 Results and discussions 

Annual heating and cooling loads for the ten test cases are 
summarized in Figs. 6 and 7. 

 

Fig. 6 Annual heating loads of test Cases C1 to C10 from EnergyPlus 
and DeST 
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Fig. 7 Annual cooling loads of test Cases C1 to C10 from EnergyPlus 
and DeST 

The hourly heating load of test case C1 can be calculated 
analytically to obtain the result of 0.50 kW, as Table 9 
illustrates. The hourly results from EnergyPlus and DeST 
are both 0.50 kW, matching the analytical one well. 

Case C2 considers the hourly variation of outdoor air tem-
perature and the simulation results indicate little differences 
between DeST and EnergyPlus, as shown in Fig. 8. 

Comparing the simulation results from EnergyPlus and 
DeST for Cases C1 to C9, we find that the largest discrepancy 
occurred after south-facing windows were added. The solar 
transmittance at different incident angles for the double- 
pane window are almost the same in DeST and EnergyPlus, 
which are also close to the values provided in ASHRAE 
Standard 140, as shown in Fig. 9. This indicates that the 
window algorithm should cause little difference between 
the results from DeST and EnergyPlus. However, when com-
paring the solar radiation on the southern exterior surface 
and window-transmitted solar as shown in Fig. 10, we find  

Table 9 The UA calculation of Case C1 

 h_out 
(W/(m2·K)) 

R 
((m2·K) /W) 

h_in 
(W/(m2·K)) 

Area 
(m2) 

U-factor 
(W/(m2·K))

UA
(W/K)

Light wall 23.3 1.789 3.5 75.6 0.47 35.70
Light floor 0 25.254 4 48 0.04 1.88
Light roof 23.3 2.993 1 48 0.25 11.89
Total  49.48

 
Fig. 8 Hourly heating loads for Case C2 

 

Fig. 9 Solar transmittance at various incident angles 

 

Fig. 10 Annual solar radiation on the south wall and the annual 
window-transmitted solar 

that the annual solar radiation on the south wall from DeST 
is about 5.1% smaller than from EnergyPlus, while the 
window-transmitted solar radiation is 7.0% smaller. This 
helps explain why cooling loads from DeST are lower than 
EnergyPlus as less solar radiation enters the room. 

The main reason for this discrepancy is the time point 
used for the solar position calculation and the sky diffuse 
solar radiation model. DeST (2006) uses the beginning of 
the hour for solar calculations during the hourly time step 
simulations, while EnergyPlus (2011) performs interpolation 
of solar radiation data from weather input files, and uses the 
end of each sub-hourly time step for the solar calculations. 
For the sky diffuse solar radiation model, EnergyPlus takes 
into account the anisotropic radiance distribution of the 
sky, while DeST uses an isotropic model. 

Comparing the results between C9 and C10, we can 
find that another main influencing factor is the surface 
convection coefficients. EnergyPlus calculates the coefficients 
considering the variations of indoor and outdoor conditions, 
while DeST uses constant values as required by the linear 
system structure of its state-space heat balance method. As 
both exterior and interior surface convection coefficients are 
smaller in EnergyPlus than in DeST, EnergyPlus produces 
lower annual heating loads and higher annual cooling loads.  

In conclusion, the differences between annual heating or 
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cooling loads from EnergyPlus and DeST can be controlled 
below 10% if inputs including default values or algorithms are 
matched, although EnergyPlus and DeST have difference in 
their load calculation algorithms and modeling assumptions. 
Therefore, matching inputs are the key when using different 
BEMPs. 

4.2 Double-zone cases under extreme thermal conditions 

4.2.1 Specification of test cases 

DOE-2.1E has limitation in the heat balance calculation, 
especially multiple zones under different thermal conditions. 
To see how this limitation affects DOE-2.1E simulation results, 
Case EC1 was designed for the three BEMPs. A building has 
two adjacent rectangular spaces each with dimensions 10 m 
wide × 10 m long × 3 m high, as shown in Fig. 11. Zone 1 is 
conditioned with a special thermostat setting while Zone 2 
is un-conditioned. 

The construction of the exterior walls, roof and floor 
are the same as Case 600 and the interior walls are the same 
as Case 960 in ASHRAE Standard 140 tests. All solar/visible 
absorptance and thermal emissivity coefficients are set to 
zero, so only convective heat transfer between the outdoor air 
and the two indoor zones is considered. Surface convection 
coefficients are specified as the same constant values for 
DOE-2.1E, EnergyPlus, and DeST. The outdoor air tem-
perature and ground temperature are always kept at 10℃. 
Each zone has no internal gains or air infiltration.  

4.2.2 Results and discussion 

The air temperature of Zone1 varied periodically (switched 
between 29.8℃ and 16.2℃ hourly) all year round controlled 
by a scheduled air-conditioning system, as shown in Fig. 12. 
The air temperature of Zone 2 was then calculated, as 
shown in Fig. 13, which shows that the results from DeST 
and EnergyPlus were always constant, but DOE-2.1E gave 
fluctuating air temperatures between 13.8 and 14.4℃. This 
is mainly due to the fact that DOE-2.1E uses the adjacent  

 

Fig. 11 Building model of Case EC1 

 
Fig. 12 Temperature settings of Zone 1 

 

Fig. 13 Simulated temperature of Zone 2 

zone temperature from the previous time step to calculate 
the heat transfer between adjacent zones, and the heat flow 
through the interior walls and partitions is treated as 
steady-state. 

4.3 Double-zone cases under practical engineering 
conditions 

The results from Case EC1 implied that DOE-2.1E has 
limitations in accurately calculating heat transfer between 
adjacent zones. Further tests were designed to ascertain the 
influence of this under practical engineering conditions. 

4.3.1 Specification of test cases 

Three new tests were created. Case SC1 is the base test and 
its results are used as the baseline for Cases SC2 and SC3 
(Table 10). The building model of all the three cases includes 
two zones and each zone has dimensions 10 m wide × 10 m 
long × 3 m high (Fig. 14), with a window area of 12 m2 on 
the south facade.  

Weather data was the same as for Case 600. The con-
structions of the exterior walls, roof and floor, as well as the 
properties of the double-pane window, were the same as for 
Case 600. The interior wall was the same as for Case 960 in 
ASHRAE Standard 140 tests. Infiltration was always 0.5 air 
changes per hour, DeST and EnergyPlus use constant values,  
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Table 10 Test cases under practical engineering conditions 

Case Description 

SC1 Base test, both zones are conditioned 24 hours a day 

SC2 Zone 1 with office daytime occupancy (Fig. 15); Zone 2 empty 
and unconditioned 

SC3 Zone 1 with bedroom nighttime occupancy (Fig. 16); Zone 2 
empty and unconditioned 

 
Fig. 14 Building model of Case SC1 

 
Fig. 15 Office daytime schedule used in SC2 

 
Fig. 16 Bedroom nighttime schedule used in SC3 

while DOE-2.1E uses the AIR-CHANGES/HR method which 
calculates the infiltration based on the wind speed. Internal 
heat gains from people, lighting, and equipment were 
assumed as constant. Table 11 lists the input assumptions for 
the internal heat gains. The inputs for “people heat level” 
were equivalent for the three BEMPs though their input 
values were not the same.  

Solar and visible absorptances were set to 0.6, thermal 
emissivity to 0.9, and ground reflectance to 0.2 in the three 
BEMPs. Surface convection coefficients, solar distribution,  

Table 11 Internal heat gains for Case SC1 

 DOE-2.1E DeST EnergyPlus 

People 

0.1 person/m2 

Sensible heat: 66 W
Latent heat: 71 W 

0.1 person/m2 

Sensible heat: 66 W 
Latent heat:  
 0.102 kg/h 

0.1 person/m2 

Active level: 137 W
Sensible heat  
 fraction: 0.48 

People heat 
distribution

Default weighting 
factors 

Default distribution Same as DeST 

Lighting 10 W/m2 10 W/m2 10 W/m2 

Lighting heat 
distribution

Default lighting type Default distribution Same as DeST 

Equipment 5 W/m2 5 W/m2 5 W/m2 

Equipment heat 
distribution

Default weighting 
factors 

Default distribution Same as DeST 

 
and time step were set to the default values or algorithms in 
each BEMP. 

DeST and EnergyPlus use ideal air systems and DOE- 
2.1E uses a “two pipe fan coil” system. The system used in 
DOE-2.1E was set to be a 100% convective air system, 100% 
efficient with no duct losses, and with adequate cooling and 
heating capacities, which is very close to an ideal air system. 
The air systems were always on and the zone thermostat 
set-point for Case SC1 was always 21.1℃. In Cases SC2 and 
SC3, the set-point for heating was 20℃ and for cooling was 
27℃. SC2 was exactly the same as SC1 except that Zone 1 
used an office daytime schedule and Zone 2 was empty and 
unconditioned (no internal gains). 

SC3 is exactly the same as SC2 except that Zone 1 used 
a bedroom nighttime schedule. 

4.3.2 Results and discussion 

In DOE-2.1E, hourly heating or cooling loads are calculated 
by the LOADS subprogram, first assuming constant space 
temperature, then adjusted by the SYSTEMS subprogram 
to consider the thermostat settings, outdoor air ventilation, 
etc. The loads from the SYSTEMS subprogram are used in 
our study. 

Comparing the results of different BEMPs from SC1 to 
SC3, heating loads were always close but cooling loads were 
not. From the results of SC1 (Fig. 17), the monthly cooling 
loads of the three BEMPs were very close. Comparing SC1 
with SC2 and SC3 (Figs. 18 and 19), we can see that the 
monthly cooling loads of DeST and EnergyPlus were always 
close, but the results of DOE-2.1E deviate more significantly. 
In SC1 there was no heat transfer between adjacent zones, 
so its results can be used as the benchmark where the biggest 
difference between annual cooling loads from DOE-2.1E 
and EnergyPlus was 10.3%. In SC2 the annual cooling load 
of DOE-2.1E was 35.0% higher than DeST and 18.2% higher 
than EnergyPlus. In SC3 the annual cooling loads were very 
small compared to SC1 and SC2 (Fig. 20), so the percentage 
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Fig. 17 Monthly sensible cooling loads of SC1 

 

Fig. 18 Monthly sensible cooling loads of SC2 

 

Fig. 19 Monthly sensible cooling loads of SC3 

 

Fig. 20 Annual sensible cooling loads from SC1 to SC3 

differences, even though very high, are not very meaningful. 
These results reveal that DOE-2.1E has serious limitations 
in accurately accounting for multi-zone heat balance and 
part-time operation of HVAC systems, especially for the 
nighttime air-conditioning case SC3.  

From the monthly heating results (Figs. 21 to 23) from 
the three BEMPs, DeST and EnergyPlus always have close 
simulation results across all three test cases, but DOE-2.1E’s 
results are always lower, mainly due to the differences in 
default values and algorithms used. For all three cases SC1 
to SC3, the annual heating loads (Fig. 24) from DOE-2.1E 
were about 20% lower than those from EnergyPlus or DeST. 

 

Fig. 21 Monthly heating loads of SC1 

 

Fig. 22 Monthly heating loads of SC2 

 

Fig. 23 Monthly heating loads of SC3 
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Fig. 24 Annual heating loads from SC1 to SC3 

5 Discussions and conclusions 

This study compared the capability and simulation results 
of EnergyPlus, DeST and DOE-2.1E for performing building 
thermal load calculations, to evaluate the impact of the 
different simulation engines. Algorithms used to calculate 
the thermal loads play an important role, but keeping inputs 
to energy models exactly the same or equivalent is even more 
important to guarantee consistent results from different 
BEMPs. All the three BEMPs have the basic capability for 
performing building load calculations, and the discrepancy in 
load results from DeST and EnergyPlus was reduced to less 
than 10% if the surface convection coefficients were set exactly 
the same as those in ASHRAE Standard 140 test cases. 

To differentiate this study from previous work, it did 
not produce another test suite, but rather a methodology to 
design tests and a process to carry out these tests. A few 
in-depth tests, built upon the ASHRAE Standard 140 tests, 
were designed and performed to identify and quantify  
the key influencing factors that drive the discrepancies in 
results from EnergyPlus, DeST and DOE-2.1E. It was verified 
that DOE-2.1E has limitations in handling heat transfer 
between adjacent zones, with large errors emerging for 
cases when adjacent zones have very different conditions, 
or if a zone is part-time conditioned while adjacent zones 
are unconditioned. 

The simulations done in the study were based on 
EnergyPlus version 7.0 and DeST version 2011-11-23. The 
latest available is EnergyPlus 7.2 and DeST 2013-01-15. The 
solar position algorithm in DeST is improved in the new 
version, which is an important feedback from this com-
parison study. DeST V2011-11-23 used the beginning of 
the hour for solar calculations during the hourly time step 
simulation. We got the measured direct normal solar 
radiation per minute from the Beijing Weather Station and 
calculated the direct solar radiation on east/west/south/north 
facing surface per minute as well as accumulated value per 
hour as the standard value. Then we tried different points 
(the beginning, the middle and the end) of the hour during 
the hourly time step and also different sub-hourly time steps  

for the solar calculations. Comparing the hourly result of 
different methods with the standard value, we finally chose 
the middle of the hour and the hourly time step considering 
the accuracy and computation speed for DeST in version 
2013-01-15. The differences of load results between DeST 
and EnergyPlus will be reduced as the solar radiation on 
exterior surfaces has smaller discrepancy now. One major 
change in EnergyPlus from version 7.0 to 7.2, directly related 
to loads calculation, is the correction of exterior surface 
convection coefficients for windows, including the use of 
near-window wind speeds rather than the weather station 
wind speeds and the use of new coefficients for the empirical 
correlation (Booten et. al 2012). This change to EnergyPlus 
increases heating loads, which will reduce the discrepancy 
in heating loads between EnergyPlus and DeST. 

Although the study provides new methods and results in 
comparing simulation programs, it serves as a good starting 
point for a much bigger study that is needed to fully justify 
which program is better, or under which situation, users 
should use which programs.  

This study covers the loads comparison between 
EnergyPlus, DeST and DOE-2.1E. A future paper will discuss 
the methods and findings from comparing the HVAC models 
across the three programs. 
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