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NATURAL CONSTRAINTS FOR EXTENDED SUPERSPACE * 

Martin MU1ler !fit 

Lawrence Berkeley Laboratory 

University of California 

Berkeley, CA 94720, USA 

We present a simple systematic method to derive superspace 

constraints. We give constraints for extended supergravity with 

one-, two-, and three-form gauge potentials in four spacetime 

dimensions. The natural constraints lead to equations of motion 

for N> 4 (supergravi ty), resp. N > 2 (gauge potentials). We discuss 

modifications for higher N. We also discuss modifications of the 

three- and four-form field strengths and observe an interesting 

similarity between four- and ten-dimensional supergravity. 

- This work was supported by the Director, Office of Energy Research, 

Office of High Energy and Nuclear Physics, Division of High Energy Physics 

of the U.S. Department of Energy under contract DE-AC03-76sF00098. 
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1. Introduction 

The geometry of superspace is determined by a structure group 

SL(2,~)K' and by covariant constraints. Since the choice of , is in 

some sense arbitrary [lJ, the question is: Which are the proper constraints? 

For several years the only way to find superspace constraints was by try 

and error. Later some more systematic methods were developped [1-4]. We 

present here what we consider as the simplest method to derive constraints 

for conventional extended superspace. We do not deal with central charges, 

which require the introduction of additional bosonic coordinates [5J. 
The reason is that central charges do not allow to construct unconstrained 

prepotentials, which (at present) are necessary for superfield perturbation 

theory [6]. 
To derive the natural constraints we use, on the one hand, the 

restrictioris following from the Bianchi identities. On the other hand 

we employ the simple fact that some components of the field strengths 

can be absorbed by a redefinition of the gauge potentials. In other words, 

higher dimensional parts of the gauge potentials are expressed in terms 

of lower dimensional ones. By this method, orily the constraints at the 

lowest dimension involve some guesswork. The remaining ones follow then 

automatically. 

We use the conventions of the book of Wess and Bagger [7]. 



- 3 -

2. Geometry of U(N) superspace 

AC. m I" 2i 11 The coordinates of extended superspace are z .., (x , () M , f7;' ), 

where the index M = 1, ••• ,N refers to an internal space. We choose the 

structure group of superspace to be SL(2,t) l(' U(N). This is the maximal 

automorphism group of the super symmetry algebra [aJ, resp. of the trivial 

constraints (9). The reason for the inclusion of the U(N) is that the 

natural constraints take their simplest form in this kind of superspace. 

The Lie algebra valued parameters of the structure group are 

,.. ( GI 801 ; A ) L1J ,.; L .. IL,A LBO{ 

L Bo( = aiL 0( rO(L' ,,, A' + 0, A 

; A 
LaO{ 

A; ; ... A 
:: aSL Ot + dOc Ls 

The Lorentz parameters have the properties 

GI 0( 0( 
LC/\ :: L 0( :: L Of = 0 

L,; tl(0( :: .2 £ pOt L,ot - ~ £,0( L pti< J 

and the U(N) parameters are antihermitian: 

L I A :: - L + B 
A 

(I) 

(:1) 

(3) 

The differential geometry of U(N) superspace is an immediate 

generalization of the case N = 1 [9]. Therefore we give here only the 

formulas which we will need later and refer for a more detailed descrip-

tion to [7] and [9]. 

<:: 't 
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The basic geometric objects are the vielbein forms E If- and the 

connection forms ~~ ~ • The torsion and curvature tWO-forms are defined 

through the structure equations 

T*::~E'" 

If "'..L. ~ '" If 
(If-) 

f< ~ :: of cP 2J + 't' 11 't' " 

and satisfY the Bianchi identities 

.z>T14:: £ B f<B If 

~f<1JIf= 0 
(s) 

~.8 If and R B If are Lie algebra valued, i. e. they have the properties (1-3). 

In the vielbein basis, the structure equations (4) read explicitly 

T ~:: (_}c(" ... ""'J E ..ilr- "'(..a E "-C-)""'.a £ If) 
'C11 B c;.c rK oAl M rK J 

If If ale .J." '! 14-
R~(~ =.2-04>ea -(-) ~t't'.aS + T.3'f! <I>€B 

.J. ~ A."" ole .J. 't ". + 't'.a6 't'tt - (-) 't'el8 ~.tJf. 

and the first Bianchi identity (5) can be written as 

.t.. (0" " t If)_ :r ".a'C1IJ - 2,a T<:B - T.a-c T t J! - 0 . 
.at!B 

Here ~ denotes the graded cyclic sum. (The sign changes according to 

If B ;" _ (-) ab ~.It .) 

r:- -..; 
/ 

(' ) 

(7) 

(r) 
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30 Constraints for supergravity 

The purpose of supergravity constraints is to reduce the huge number 

of component fields contained in vielbein and connection to an irreducible 

multiplet. The restrictions must be covariant, io e. constraints on torsion 

and curvature, and they should not lead to equations of motion in x-space. 

We start at dimension 0 with the "trivial" constraints 

T C:S'" 
~~ = T -r;'" = 0 cS J 

T C P '" _ ., . r C (~q) ; r 8 - <\.. 08 I;J ( 

No further restrictions are possible at this dimension since (9) holds 

also in flat superspace. For N = 1 and N = 2, the constraint Ti,a = 0 

has a geometrical meaning. Together with T~~ = 0 it allows to define 

chiral superfields which are scalars under the structure group. 

UJ) 

In the next step we analyze the consequences of the trivial constraints 

for the dim 1/2 components of the torsion using the Bianchi identities (8). 
From the identity with indices (~~: COl) follows 

TcBA 
00( :: 

f TeClA) r, Ii( 

and from (
DC; GI) 
tr 8 we find 

C ( C C c 
T r ~p o(~ = -< f~ e;1i( T r t- t;o< T '((100 + £po( T r (10() 

c C) + E rP So< (PD() + ero< S, (POt) } 

c A 
T ~ pB Ii( : 

c 11\ A)C c A 
ep~ T r B + d 8 (r-T tCPti() -:<. 0, S r (;Ot) 

c8 _ 
T"rfJo<A -

c 8 8 C) 'c (C' ) 
f po( (T r A + dAr r + d A T r (1a() + a' ~ P 

(10) 

(/I) 

~ 
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... 
...._.i 

(c8A) T Qc is antisymmetric in CBA and contains the physical spin 1/2 

fermions of N ~ 3 supergravi ty. 

All the other fields at dim 1/2 can be absorbed by a redefinition 

of the vielbein and the cOQDection: 

E ',4(. If = 

...1..1 " 't' 1:.11 = 

E flX If 
M. 8 

...I.. If ".. 
't'e.8 + X1!.8 

This redefinition changes torsion and curvature, tooo From the first 

structure equation (6) one obtains [4J 

T' ",. = (_) c(I,+04) X-' .a X-' "@ (T T X If-
1!.8 .8 e £0 '? 

".. eo( If ) + ~t X ta -(-J 203 X! 

-, .2) II 
+ X 1! X;a.8 

c/o. -1 ~ '* 
(-) X 11 X.ae 

We choose 

x. ~ _ (J; x.
5 

) 
If -(O,'X!.8'*) 

cf~ 
J A1!B 

L 

X,; ~ "' - i. ( S: (pot) + f.~0( T;) } 

c c c c 
A 11' 10< = - T r ('00 + f. rP T 0( + f. t'o( T, 

C 
(T-S) ~ (;oi() X ~ po< = 

cB 
Xli' A = 

c, C 8 
TrA +<OATlr 

(I:Z) 

(/3) 

(lit) 
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A • 
(!! denotes either 0( or ~ .) Inserting this into (13) gives 

while 

IC 

T 't" 
III 

:: riC; A 
~BO( 

TCBA . h d r~. rema~ns unc ange • 

:: TIC10( 
't P A = 0 (15) 

At dimension 1 we have the freedom to shift the connection ~c.B ~. 
Choosing 

x dell :: -t (Tc.!,CII - T.,CI\C + Tille!, ) I (1& ) 

we get from (13) T'ba = 0, which is the standard constraint in x-space. 
c . arB a . 

The second structure equation (7) shows that RGC A"":Z" d c. (6 C J & r 
·4>e 8 A. Thus a suitable redefinition of the U(N) connection gives 

DC r' = 0 "rC A . 
Summarizing, the natural constraints in U(N) superspace are 

c B III _ 'i' ; Q _ C ;. III _ • e (Q) ; 
T rp - Tel - 0 J T~I -~~08 G' /I' <} 

T CBA t' Ot :: 
r~fJ T ~CBA] Tr;o( 

c 8 A 
'i'; 0( 

= E T [e8/1] 

0( 

Tlf - = 0 else T!" " = 0 
Q 

T cll> :: 0 
er 8 

f<rc A =0 

(,.7) 

They eliminate the connection and the higher dimensional parts of the 

vielbein as independent variables. The above constraints correspond for 

N = 1 with those given in [9] and, for general N, with those of Howe [lJ 
(except for the curvature constraint). However, it has been shown by 

Gates and Grimm that they lead to equations of motion for the graviton 

and the gravi tinos if N> 4 (10J . 

c. .. 
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Thus the natural constraints have to be modified for N> 40 Since the 

trivial constraints (9) have been the only assumption in our derivation, 

it is clear that they should be relaxed. In order to analyze which modi­

fications are possible, we use the. linearized version of (13) and redefine 
. '" Tc.8 1l1 TC~1lI the dim 0 components of the v~elbe~n. Those parts of /I'll and r B 

which cannot be transformed away are 

cB 
T -0 0(0( 

c T . 8 0(0{ 'tP 

:: T (cI) 

(rtJo() tit 

• C "" C 
:: - 4-" 0 , frat f.;tit + T (rot)(~Oc)8 

( If) 

where T is traceless in the internal indices. These are therefore the 

most general dim 0 constraintso However, they cannot be called "natural" 

since they do not reduce naturally to the trivial constraints (9) for 

2 . T(d) T- C t . '1' N = 1 and N = • Bes~des. crflol) 0( and Croll(~OtJ B con a~n aux~ ~ary 

fields with high spins. Therefore we do not expect that the constraints 

(18) lead to a consistent supergravity theoryo 

Apart from that, it seems that even N = 3 and N = 4 supergravity 

cannot be extended off-shell [llJ. In superspace, this is due to problems 

in the Yang-Mills sector, which will be discussed in the next section. 

4. Yang-Mills constraints 

A one-form gauge potential A is the connection of a compact Lie 

group. The Yang-Mills field strength 

F dA+AA 

satisfies the Bianchi identity 

.- -'S , 

(19) 
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~F = 0 

§ (~t: FB.Jt + Tea.a f.z>.J4.) :: 0 
eceol4 

where ~ is the gauge covariant derivative. 

(-20 ) 

The dim 0 components of the field strength F can be decomposed into 

F8 A (IA) CIAJ 
= F (~ot) + [po< \,J I po< (-21 ) 

4 
F p eeA 

-, I 
:: F p 0( A + a A F flOc 

-A 
F flOc A :: O. 

Analogously to supergravity. F,~ can be absorbed by a redefinition of Aa' 

However. F has still too many components. We define the natural constraints 

as those which reduce to the correct Yang-Mills constraints for N = 1 and 

N = 2. They are obtained from (21) by eliminating the parts with the 

highest spin: 

IA F po<:: £ \J CIAJ po< 
8ee 

F Pli :: 0 

For N 1 this becomes [7] 

fl~ :: o 

The constraint FpOc = 0 allows to define scalar superfields ~ which 

satisfy the condition .$tic CP = 0 . 

The N = 2 Yang-Mills constraints are [12J 

6A 
Fpo< = f BA flO( f IN I 

F BOc :: 0 
{J1i 

(.2.2) 

(21) 

«It-) 

~ '-" 
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(81\) _ "'8Oc 
Here the constraints F (~O() - 0 and F P A = 0 are required for the 

consistency of the conditions .?J(~ 4>') :: .z;C: 4>8) = 0 which define 

a hypermultiplet with a central charge. They also allow to define real 

linear multiplets L(AB) satisfying <J (~ L Be) :: 0 . 

For N>2 the constraints (22) lead to an equation of motion for 

W[BA] [13J and it seems to be hopeless to analyze possible modifications. 

Namely. simple counting arguments show that the N = 4 super Yang-Mills 

theory cannot be extended off-shell [14.6]. This means that the vector 

fields have to be described off-shell within a different multiplet. 

e. g. within the supergravity multiplet. 

In the following we consider N = 3 supergravity. The three vector 

fields are described by field strengths F(BAJ and F(BA] which satisfy 

the Bianchi identity (20). In order to avoid the field equation for W. 

we impose the constraints 

I)e b c b c 
f or ['A) = for (tf 8 ~ A - d Ii d 8 ) 

DY 
Foe [BAJ 

:: F ir . - 0 
be[BA] -

(.lS) 

which are also valid on-shell [15]. The Bianchi identities (20) subject 

to the constraints (17) and (25) yield at dim 1 [1] 

.() b T [cBAJ o i = 0 J $: T
Cc8AJ 
i( :: o. (.l6) 

The first equation is also a consequence of the Bianchi identities for 

supergravity. Both equations together give in the linearized approximation 

00( ee T:,CIA) :: 0 (2.7) 

This is the Dirac equation for the spin 1/2 fermion. Again. it seems to 

be hopeless to look for modifications of the constraints (25) [11]. 
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5. Two-form gauge potential 

We introduce a two-form gauge potential B (1/2) E
If

E.8 B"... with 

the transformation law 

cfB = ~'" I «1) 

where W is a one-form gauge parameter. The field strength 

I 14 6 'C G G = ~6 = if E E Eta".. 

G ~.8'" = ~ (~-e BII". + Tea ~ 8.1)lt ) 
'(8'* 

satisfies the Bianchi identity 

olG = 0 

'" B 'C: :tJ ( 3 T 11" G ) _ E E E E ~00 G'C801t of-;Z ae 'Ttl If -

At dim -1/2 we impose the constraint 

Gr!~ :::. 0 

(.29) 

(10) 

o. 

(31 ) 

and analyze the consequences for the dim 0 components of G using the 

Bianchi identities (30). The identity with indices (:~:!) is empty. 

( fl C 8.if) From 0 r ~ A follows 

(1'1=/), It 
G r~ o(~ = fp £ to( GpO( 

(3<) 

G cB = 0 
'I{ p 0, (N) I) J 

It' 2: X -<" means XO(fI + Xp-< . 
o(~ r 

,~. -.. 
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flC ; O() 
and (or B A gives 

G~;8 0(0< :::. - 4-i- Ero( £;1< G
C 

B + cf~ (E;o< G(lat) .,.Ero( G(;O(}) } 

A C (33) 
where G A = 0 ( N = .2) 1 G B = 0 ( N > < ) 

c; . C ( eI) i 8 
Now we observe in (29) that G r' ell ,.., <I. tf B G" t Gf/% Thus a 

suitable redefinition of Bba gives Grratl = GC;~) = O. In addition, we 

require G~ = 0 for N = 1 and end up with the constraints 

Grf~ = 0 
cB 

Grpo. = 0 } 

Gr~fII = .z~ (G"')r~ G (N = I ) 

GC ; rB III 
= ~~ (G'GI)r i G C B , G A A = 0 (N=.2) I 

G c~ 
rBeII :::. 0 (N)-l) . 

For N = 1 and N = 2 these constraints were first given in [16] and 

[17J. They lead to the N = 1 tensor multiplet [18], resp. to the N = 2 

tensor multiplet [19]. 

(3ft.) 

For N>2 we find from the remaining Bianchi identities Grba = Gcba = 0, 

i. e. G vanishes identically. Therefore the constraint (31) h~s to be 

relaxed for N> 2 since it has been the only assumption in our derivation. 

The only modification of this constraint which is not affected by redefi­

nitions of B!1lI and reduces to (31) for N = 1 and N = 2, is 

G cBA = 0 r'o( 
(:IS) 

GcBec 
r ~ A = ,.., C.e'lO( G eCA] 0( - 0 

E r, G A I A - . 

.-- -~ 
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In curved superspace, however, the above constraints are incompatible 

with the supergravity constraints (17). This can be seen from the Bianchi 

identity (:~: ~/). Therefore we stop our analysis at this point. 

6. Three-form gauge potential 

A three-form gauge potential C (1/3!) Elf EB EtC (3" transforms as 

cfC ": ofX J 

where I< is a two-form gauge parameter. The field strength 

H : ofC I 

,If B C .a H H ": ~! E E E E a'f81f 

satisfies the Bianchi identity 

olH ": 0 I 

~ 8 'f a t ( "H) - 0 £ E E E E. 0! H:a~B"" r -2 Ttta ~~81f. - . 

At dim -1 we restrict H through 

H !!f':! :: 0 

The Bianchi identities (38) subject to this constraint give at dim -1/2 

H or' 0(0( :: § f:. go( H (rff) Q( 
~'tP 

H 
be B 
orPD!. .. 0 (N) I) 

(N:: I) I 

(3'J 

(37) 

(:Jr-) 

(3~) 

(4-0) 

'<L. .......... c 
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and, after a suitable redefinition of C~ba' 

/)C 6" (bCl) 
H or; 0(0( :: 4-" E. PO( Ii f. Do( 1\ r (AJ::2-) I 

H &c; ~r a 01 :: 0 (N:f:<) . 

For N = 1 we set H Cr,loit = 0;· At dim 0 we find 

H ~r P;o(O( = - (pO( (f. Dp (ro( r £ Do( f. rp ) H (AJ: I) ) 

be (bC) 
H ~r ~; 0(0( = f. po< Fr ~ t ~P H to( (N::~) ) 

H be ": 0 
(r bo. (N)~) 

and, after a redefinition of Ccba ' 

be 
H Ir ';0(0( 

(be) _ (/)c) 

= Epo< l~ e. Dp Ho(t' - f.po< /i t ~~ H 00( (N::,z) 

b • 
H 6~ 1,01 :0 0 (N.~) 

H(~~) and H~~) can be expressed in terms of the covariant derivatives 

f A (bCS) 
o I, r . 

Summarizing, the constraints for N 1 are 

H !r!~ ": 0 H or' 0\ ": 0 ---

H ~r liD!. :: ( G "'" ) Ir H HI" I, :: 0 r 01 • 

They lead to the N = 1 three-form multiplet [16J. For N 2 we have 

found the constraints 

(If-I) 

(4-:2) 

(4-1) 

(4-'1-' 
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(4-5' ) 

We expect that they lead to a N 2 three-form multiplet. 

For N> 2 the remaining Bianchi identities give H4'cba = Hdcba = 0, 

i. e. H vanishes identically. We conclude that the co~straint (39) has to 

be relaxed for N> 2. Those modifications which are invariant under shifts 

of C!~ III and reduce to (39) for N = 1 and N = 2, are 

H ~C B A :: 0 
(~~ 0{ 

H be B cic - 9 HCbeJBci( 
{,(pA - B (If, ~A 

-2J'e 
) 

be ~ 0( _ ~et ,., Cbe] ;0{ ,.. (tc) ..., CAe] (let) 
H o~ 8 A - (/r £ H CBA] i- ( H (.rr)(BA) + e/r H (BA) -where all the traces of H vanish. Again, however, the above constraints 

are inconsistent in curved superspace. This follows from the Bianchi 
. . (E b C B A ) (Ebe B O{) (u c. B ) 
~denti hes E I r _ 0{ I ( Ir (l A ) and £ I~ I Q • Therefore we do not 

analyze them further. 

7. Modified field strengths 

In the preceding sections we have introduced three kinds of field 

strengths X ,., F ,G,H satisfying the Bianchi identity:/) X = 0 (R 11 It is 

here included in F). The two-form field strength F is given by the 

Ricci identity :;):l)J2. = .rz. F for any n-form J2.. This is not the case for 

(4-,) 

G and H. Therefore these field strengths can be modified. In the following 

we consider modifications of the form X = dY + non-linear terms. The 

Bianchi identity for X then becomes dX = Z, where Z is covariant, non­

linear, and satisfies dZ = O. 

... ..:- -:;:"'1. 
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We start with the field strength of the two-form potential and extend 

the Bianchi identity dG = 0 to 

0( G = k tr (F F ) 

where k is a real parameter. From this we conclude 

G:: 0( B + k tr (AF - r A 3) . 

The field strength G thus contains a superspace generalization of the 

Chern-Simons three-form. In order to cancel the gauge variation of this 

three-form (oA = -<>1\) I the transformation law IB = d"" has to be 

extended to 

(4-7) 

(If.n 

<f B = olw + k tr (" alA) . (1f-9) 

The above modifications are consistent in N = 1 superspace. They describe 

the coupling of Yang-Mills theories to 16+16 supergravity [20,9). In N = 2 
superspace the modifications (47-49) are not possible since the constraints 

on G are incompatible with the Yang-Mills constraints on F. This can be 

seen from the Bianchi identity (47) with indices (:~:~). - We remark 

that we could also choose F = R.J It , A = 4>11 It , and 1\ = L.a It in (47-49). 

We expect that we will obtain this way a superspace generalization of the 

curvature squared terms which appear in the field theory limit of string 

theories [21]. Again, this is not possible in N = 2 superspace. 

Now we consider the field strength of the three-form potential and 

extend the Bianchi identity dH = 0 to 

O(H = k F G 

where F is an abelian field strength. From this we find 

H= olC-kAG. 

~ ... ~ 

(5'0) 

(S/) 
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H is invariant if the transformation law ere = o(x is modified to 

cfG = o(x -to kl\G . (5.2) 

If we assume (41-49) to be valid in N = 1 superspace, the above modi­

fications are no longer possible since (41) and (50) are incompatibleo 

In N = 2 superspace it would suggest itself to identify F with the 

field strength of the vector in the supergravity multiplet. We have 

checked that this is consistent at dim -1/2 and dim O. To prove full 

consistency, of course, the Bianchi identities (50) have to be solved 

completely 0 

Finally we note an interesting observation. The modified three-form 

field strength (48) also describes the coupling of Yang-Mills theories 

to N = 1 supergravity in ten dimensions [22J (it was first introduced 

in [23J), whereas the modified four-form field strength (51) occurs in 

the non-chiral N = 2, D = 10 supergravity theory [24]. In fact, N = 1, 

16+16 supergravity in four dimensions is an almost exact copy of N = 1, 

D 10 supergravity. A similar relation would be possible between N = 2, 

D 4 and N = 2, D = 10 supergravityo 

8. Conclusions 

The conclusions of this paper are the following. First, N = 1 and 

N 2 supergravity with one-, two-, and three-form gauge potentials have 

a natural off-shell formulation in superspaceo Secondly, there are a lot 

of indications that off-shell versions without central charges do not 

exist for N>2. If such theories exist, conventional extended superspace 

is not an appropriate setting for their description. Thirdly, there 

seems to be a relation between N = 1, resp. N = 2 supergravity in four 

and in ten dimensions. 

t.t[... '-JJ 
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As an example, consider the N = 4 supergravity theory with an 

antisymmetric tensor gauge potential [23]. It can be obtained by dimen­

sional reduction from N = 1 supergravity in ten dimensions [22]. A trun­

cation of the N = 4 theory leads to a N = 1 supergravity theory with a 

two-form gauge potential [20,9]. Since auxiliary fields exist for the 

N = 1, D = 4 theory as well as for the linearized N = 1, D = 10 theory 

[25], one might conjecture that they also exist for the N = 4, D = 4 
theory. However, all attempts to find N 4 off-shell representations 

failed [14,11] and a formulation of the mentioned N = 4 supergravity 

theory in conventional superspace is even on-shell inconsistent [26]. 
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