
UC San Diego
UC San Diego Previously Published Works

Title
Decomposition of the pangenome matrix reveals a structure in gene distribution in 
the Escherichia coli species.

Permalink
https://escholarship.org/uc/item/1xm413w8

Journal
Clinical and Vaccine Immunology, 10(1)

Authors
Chauhan, Siddharth
Ardalani, Omid
Hyun, Jason
et al.

Publication Date
2025-01-28

DOI
10.1128/msphere.00532-24
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/1xm413w8
https://escholarship.org/uc/item/1xm413w8#author
https://escholarship.org
http://www.cdlib.org/


 | Computational Biology | Research Article

Decomposition of the pangenome matrix reveals a structure in 
gene distribution in the Escherichia coli species

Siddharth M. Chauhan,1 Omid Ardalani,2 Jason C. Hyun,1 Jonathan M. Monk,1 Patrick V. Phaneuf,2 Bernhard O. Palsson1,2,3,4

AUTHOR AFFILIATIONS See affiliation list on p. 15.

ABSTRACT Thousands of complete genome sequences for strains of a species that 
are now available enable the advancement of pangenome analytics to a new level 
of sophistication. We collected 2,377 publicly available complete genomes of Escheri
chia coli for detailed pangenome analysis. The core genome and accessory genomes 
consisted of 2,398 and 5,182 genes, respectively. We developed a machine learning 
approach to define the accessory genes characterizing the major phylogroups of E. coli 
plus Shigella: A, B1, B2, C, D, E, F, G, and Shigella. The analysis resulted in a detailed 
structure of the genetic basis of the phylogroups’ differential traits. This pangenome 
structure was largely consistent with a housekeeping-gene-based MLST distribution, 
sequence-based Mash distance, and the Clermont quadruplex classification. The rare 
genome (consisting of genes found in <6.8% of all strains) consisted of 163,619 genes, 
about 79% of which represented variations of 315 underlying transposon elements. This 
analysis generated a mathematical definition of the genetic basis for a species.

IMPORTANCE The comprehensive analysis of the pangenome of Escherichia coli 
presented in this study marks a significant advancement in understanding bacterial 
genetic diversity. By employing machine learning techniques to analyze 2,377 complete 
E. coli genomes, the study provides a detailed mapping of core, accessory, and rare 
genes. This approach reveals the genetic basis for differential traits across phylogroups, 
offering insights into pathogenicity, antibiotic resistance, and evolutionary adaptations. 
The findings enhance the potential for genome-based diagnostics and pave the way for 
future studies aimed at achieving a global genetic definition of bacterial phylogeny.

KEYWORDS Shigella, Escherichia coli, genomics, typing, computational biology, 
genome analysis

T he first complete bacterial genome sequence appeared in 1995 (1). Shortly 
thereafter, the genome sequence of the model Escherichia coli K-12 MG1655 strain 

appeared (2). The genome sequence of a second E. coli strain, the enterohemorrhagic 
O157:H7 strain, appeared in 2001 (3). It had about a 1 Mbp longer genomic sequence 
than MG1655, encoding about 1,000 additional genes representing different traits than 
those found in MG1655. Following the massive drop in DNA sequencing costs in the 
late 2000s (4), a large number of E. coli strain sequences became available (5, 6). These 
data form the basis for pangenome analysis of the E. coli species (7, 8). In 2013, a 
study analyzed 55 E. coli genome sequences (9). Using metabolic reconstructions and 
computational systems biology, auxotrophies and colonization sites could be predic
ted from these genome sequences. As the number of available genome sequences 
grew, subsequent studies showed that differential traits between phylogroups could be 
delineated from sequence and specific pathogenic properties could be deciphered (10).

With the availability of low-cost genomic sequencing, strain taxonomic classifications 
thus moved from phenotypes to genotypes. This started with the creation of the original 
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Achtman multilocus sequence typing (MLST) schema (11). Following this development, 
the Clermont triplex (12) and subsequently the quadruplex (13) appeared that deployed 
PCR assays for discriminating alleles to perform sequence-based phylogrouping. More 
recently, the whole genome-based Mash distance has been utilized to successfully 
phylogroup E. coli strains, moving the definition of phylogroups to the genome scale 
(14). Today, the number of E. coli sequences in the public domain has reached the 105 

scale (15). These sequences contain the full gene complement of these strains. This data 
availability demands development of novel big data analytic methods that characterize 
the strains’ genomes based on their full genome-wide gene content.

We can now call the presence/absence of genes across thousands of genomes. The 
results enable us to form the pangenome matrix (10, 16, 17) for the E. coli species. 
Once formed, this matrix allows us to develop machine learning methods to classify 
the entire gene complement of these strain sequences into phylogroups. Meaningful 
classification of strains would allow us to precisely define the genetic basis for differential 
traits observed between the phylogroups. If phylogroup- and strain-specific traits can be 
derived straight from sequence, it would reduce the need for strain cultivation in clinical 
settings and allow for accelerated diagnosis. The full phylogroup definition of the E. coli 
species thus has fundamental and applied implications.

RESULTS

Forming the pangenome matrix

We downloaded all available E. coli genomes from two public databases, BV-BRC and 
NCBI RefSeq. This sequencing data were subjected to quality controls and admissions 
criteria from pangenomic studies (Fig. 1a, Methods). The result was a collection of over 
10,000 high-quality genome sequences, of which 2,377 were high-quality complete 
sequences that were used for pangenome analysis. These sequences were collected 
from a wide variety of isolation sources, including humans, land animals, and various 
species of birds (Fig. 1b). Most of the strains did not contain any plasmids, with notable 
exceptions (e.g., a Phylogroup G strain containing seven plasmids) (Fig. 1c). We call this 
curated collection of sequences and its resulting pangenome a Genome Encyclopedia of 
Notable Observed Microorganisms Curated for Universal Study (GENOMiCUS).

Genomes can be classified using sequence characteristics. The Mash distance 
between genome sequences has been shown to quantify their differences (Fig. 1d) (14, 
19). One can now cluster a series of genome sequences based on global sequence 
similarity. A heatmap classification of the sequences used in this study shows that Mash 
distances lead to phylogroup classification, consistent with a previous study (14). In 
addition, phylogroup designation based on the Clermont quadruplex standard can be 
computed from the sequences (summarized Fig. 1e) (13, 18). It shows that phylogroups 
A, B1, and B2 had the highest number of strains in the collection analyzed. In contrast, 
the recently defined phylogroup G (21, 22) had relatively few complete strain sequences 
available for analysis.

Stratifying the pangenome into three categories of genes

A pangenome can be stratified into three main categories of genes:

• The core genome consists of the genes found in all, or nearly all, of the strains. 
These genes, therefore, can be taken to define the species. For the collection of 
strain sequences analyzed here, the core genome consists of 2,398 genes, 80% of 
which have known functions.

• The accessory genome is composed of 5,182 genes. These are genes that are 
found in many, but not all strains. The accessory genes, being variably present, can 
be used to define the gene portfolio of the phylogroups, as described below.
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FIG 1 Processing and classification of a 2,377 complete Escherichia coli genome compendium (GENOMiCUS). (a) The workflow used in this study. Genomes were 

downloaded from PATRIC (now BV-BRC) and RefSeq, after which they were deduplicated and filtered based on their quality metrics (see Methods). The resulting 

2,377 complete genomes form a high-quality compendium of strains for detailed pangenome analysis. We call this compendium the Genome Encyclopedia of 

(Continued on next page)
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• The rare genome consists of genes unique to a strain or found in a relatively small 
number of strains. The exact number defining this cutoff is determined using the 
protocol by Hyun et al. (23).

These three categories of genes are deciphered from the frequency of gene 
occurrence in the collection of strain sequences (Fig. 2a). This gene frequency histogram 
shows the number of genomes containing a particular gene. Taking the cumulative sum 
of the gene frequency, we get a cumulative gene distribution that is used to formally 
determine the boundaries for the core, accessory, and rare genomes (Fig. 2b) (23)

Defining the genes in the core, accessory, and rare genomes

The boundary between the core and accessory genome separates (near-)omnipresent 
genes from variably present accessory genes. Defining the boundary between the rare 
and the accessory genome is more subjective. The definition of these boundaries in this 
study is described in Methods, and they lead to the identification of 2,398 core genes, 
5,182 accessory genes, and 163,619 rare genes. The exact definition of these boundaries 
does not affect the major conclusion of this study (see SI).

The number of genes classified into the core genome can be plotted with the number 
of strains considered (Heaps’ Plot, Fig. S1). This curve levels off fairly quickly with the 
number of genomes considered, and stays flat at 2,398 genes, defining a closed core 
genome. The number of genes classified as accessory genes similarly levels off at 5,182 
genes. This observation shows that the accessory genome is also closed. The closed 
nature of the accessory genome makes it possible to analyze the phylogroup gene 
content in novel and mathematically rigorous ways, as shown in the next section.

Thus, after a certain number of strains, the discovery of novel genes in the pange
nome is driven by occurrence of rare genes; the median number of such genes per strain 
is 270, and 163,619 total among the 2,377 genomes studied. These rare genes will confer 
unique characteristics onto the strain in which they reside.

Traits in the core genome

The genes common to the 2,377 strains represent the core genome. Thus, there is a 
uniform genetic basis for certain traits. For instance, the core genome contains 18 of 29 
two-component systems, consistent with previous findings (24). One of 68 biosynthetic 
gene clusters, two of 130 AMR genes (lnt, an apolipoprotein N-acyltransferase and narP, a 
nitrate/nitrite response regulator), 382 of 127,223 transposable elements, and 21 of 7,925 
motility genes (pili, fimbriae, flagella, and supporting proteins) are in the core genome. 
There are 1,006 metabolic genes in the core genome, which is slightly higher than the 

Fig 1 (Continued)

Notable Observed MIcro-organisms Curated for Universal Study (GENOMiCUS). (b) A sunburst plot showcasing the different isolation sources for the bacteria 

in this compendium. While most of the 1,332 isolation site-annotated strains come from humans (713), there are many strains isolated from animals (278) and 

various other environmental niches (146). (c) Scatterplot summarizing properties of the genomes by genome length (y-axis) vs number of genomic elements 

(chromosomes + plasmids) (x-axis), colored by phylogroup as calculated in silico by the ClermonTyping github package (18). Note that many Shigella strains 

were incorrectly classified by ClermonTyping as belonging to Phylogroup A, and so any strains which were known to be Shigella were manually separated into 

a separate class for better identification. Nineteen strains were found to have a genome size greater than 6 Mb. Sixteen of those 19 strains were clinical isolates 

from ICDDR,B from patients who had diarrheal disorders. Above the scatterplot is a histogram showcasing the genomic element distribution within the strains of 

the pangenome, also colored by phylogroup. Note: in this context, a “genomic element” refers to both the main chromosome and any additional plasmids found 

in the organism. To the right of the scatterplot are phylogroup-specific boxplots describing the distribution of genome lengths per phylogroup. (d) A heatmap 

of the pairwise Mash distances for all 2,377 E. coli strains of GENOMiCUS based on sequence analysis. Distances range from 0 to 0.04, and the highest Mash value 

(0.044) is denoted with a red dash on the color bar. Note that a pairwise Mash distance of 0.05 equates to an average nucleotide identity (ANI) of 95%, both of 

which correspond to a 70% DNA–DNA reassociation value, the historical definition of a bacterial species (19, 20). The highlighted bars at the top of the heatmap 

identify the Mash-based clusters of this compendium. Phylogroups are annotated on the heatmap, showing the correspondence between these phylogroups 

and the Mash-based clusters. (e) Treemap illustrating the distribution of E. coli strains by phylogroup as calculated in silico by the ClermonTyping github package 

(18).
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976 genes previously reported (25) (Fig. S2). There are still 462 genes of unknown 
function (y-genes) in the core genome, comprising 19% of all core genes.

The accessory genome has a clear mathematical structure

The accessory genome is effectively closed (Fig. S1), enabling a comprehensive analysis 
of gene-level diversity among the 2,377 strains. To do so, we form the P matrix (genes × 
strains) for just the accessory genome. This P matrix can be decomposed using non-
negative matrix factorization (NMF) (26, 27) to define the genes that belong to strains of 
a particular phylogroup. NMF factors P into two matrices:

P = LA

L, indicate columns consisting of gene weightings that define a phylon (the genes 
common among similar strains, often belonging to the same Clermont phylogroup 
and/or MLST cluster), and A, indicate rows giving a strain’s affinity (or closeness) of a 
genome to a phylon (Fig. 3a). The column space of L is a convex cone, as all its values 

FIG 2 Global distributions of gene frequencies and functions in the Escherichia coli pangenome. (a) Gene frequency distribution across the 2,377 curated 

genomes in GENOMiCUS. Genes present in all 2,377 strains appear at the histogram’s right end. Progressing leftward, subsequent bars show genes found in 

nearly all strains, decreasing in frequency, until reaching genes unique to just one strain at the extreme left. (b) The cumulative gene distribution function (23). 

The gene frequency distribution was fitted to a double-exponential form (with median absolute error or MAE = 176.31) and the inflection points determined. 

Based on these inflection points, the genes in the pangenome were divided into the core (comprising 2,398 genes), accessory (comprising 5,182 genes), and rare 

(comprising 163,619 genes) genomes (See Methods).
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FIG 3 The fundamental mathematical structure of the E. coli accessory genome. Characteristics of the NMF decomposition of the pangenome matrix P. (a) A 

column of P (i.e., genome #1) is a linear combination of the phylon vectors as determined by the weights in the corresponding column of A. (b) Since the 

phylon vectors are non-negative, they span a polygon as its edge vectors. A positive linear combination of the Li vectors lands inside the polygon. (c) Since 

there is typically only one dominant value in a column of A, the reconstruction of a column in P (i.e., one genome) lies close to a phylon vector (i.e., the edges 

of the polygon) as is evident for the 2,377 sequenced strains used. (d) A clustermap of the binarized L matrix. Colors on top correspond with classically defined 

phylogroups as determined by ClermonTyping. Columns are clustered using Ward’s minimum variance method, and rows are sorted by gene frequency in each 

phylon (i.e., genes in zero phylons are at the top, genes in 22 phylons are at the bottom). The dendrogram at the top of L, showing the clustering of its columns, 

is the same as that used in panel (f ). In this graphical representation the black elements designate that the gene responding to that row is found in the phylon 

that the column represents. White elements mean that the corresponding gene is not found in the phylon. The histogram to the right of the clustered L matrix 

showcases the gene frequency across multiple phylons (i.e., how many phylons a gene is present in). The colors in L-binarized correspond to the colors on this 

histogram and showcase the distribution of genes by their number of active phylons; 3,438 (66%) of the 5,182 accessory genes are found in six or fewer phylons,

(Continued on next page)
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must be non-negative. Each column of L (a phylon vector) represents an edge of a 
polygon (Fig. 3b).

NMF gives a clear mathematical description of the gene portfolio of a phylogroup 
found in the E. coli pangenome. The gene list found in all strains of a phylogroup is 
given by a phylon, or a column in L. Few strains will correspond perfectly to a phylon as 
its gene list may differ slightly from that given by the columns in L. The affinity matrix, 
A, shows how close a strain is to a phylon as the elements in a column in A give the 
phylon composition of a particular strain. This feature is demonstrated with the color 
coding of the matrices in Fig. 3a. The 3D image of the location of all strains relative to 
three of the columns of L is shown in Fig. 3c for all 2,377 genomes in this study. Strains 
of a phylogroup are close to one of the phylon vectors shown (i.e., high affinity for the 
phylon), while the rest of the strains that are not in these three phylogroups are close to 
the origin (i.e., low affinity for these phylons).

Almost all strains have a dominant phylon as they lie close to one edge of the 
column space. Thus, the affinity scores in the column of the A matrix that corresponds 
to a particular strain places each genome inside the convex solution space. Most of 
these affinities are small and close to zero, typically with only one dominant affinity per 
genome, revealing that most strains reside close to the edges of the convex space. An 
image of the binarized form of A is shown in (Fig. S4)

Biological meaning of the pangenome’s mathematical structure

The columns of L show that NMF breaks P into the eight classically defined phylogroups 
(plus Shigella, see Methods) and sub-phylogroups thereof (Fig. 3d). There are 22 of these 
columns, and then an additional nine unclassified columns of L that represent mobile 
elements (see below). The L matrix shown in Fig. 3d is binarized. The weightings are close 
to unity (gene in phylon) or zero (gene not in phylon), as shown in Fig. 3e.

Thus, the NMF decomposition of P for the accessory genome reveals phylons defined 
by their list of genes. It also shows how each strain’s gene set maps onto these phylons. 
NMF segregates genes to a phylon concordant with previous phylo-grouping methods of 
strains in E. coli (Fig. 3f): the Mash distances (Fig. 1d), the Clermont quadruplex, and the 
MLST typing. NMF allows us to go from differential traits between phylogroups to their 
genetic basis.

Utilizing the binarized L and A matrices, we can multiply them to generate a 
reconstructed P matrix of gene presence/absence that we can compare with the original 
table (which serves as our ground truth). From this comparison, we find that this 
reconstructed P matrix has an accuracy of 87% (Table S1). This showcases how well 
NMF-derived phylons approximate the actual structure of the pangenome. With few false 
positives (false positive rate of 0.04), phylon membership is a conserved estimate of all 
co-occurent gene groupings.

The E. coli pangenome consists of two distinct groups of phylons

The phylons are divided into two major groups (Fig. 3f). One group, which we collectively 
call the lower phylons – G, B2, D, F, and E – is genetically dissimilar to the strains found 
in the upper phylons that correspond to phylogroups A, B1, C, and Shigella. This is the 
first split in the hierarchical phylon clustering tree. Of the 5,182 genes found in the 
accessory genome, 765 are found exclusively in strains of the upper phylons, with 1,244 

Fig 3 (Continued)

with the plurality being genes active in only one phylon (1,289 single-phylon genes, 25% of all 5,182 accessory genes). (e) A gene weight distribution for one 

particular phylon consisting of K-12 strains in the L matrix. Most genes have a weighting close to zero, with a notable cluster having weightings between 0.8 and 

1. The genes with low weightings (below the threshold indicated by the dashed line) are binarized to zero and considered not to be part of the phylon, while 

genes with high weightings are binarized to one and considered to be constituents of this phylon. The threshold for binarization is determined for each phylon 

using k-means clustering (see Methods). (f) A dendrogram of all 31 phylons based on clustering the binarized L matrix shown in panel (d). The uncharacterized 

phylons are separated, mainly consisting of phage genes and other mobile elements.
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found exclusively in strains of the lower phylons (Fig. 4). While some of these genes 
have no known function/ortholog, many do. In fact, 98 of the 765 upper phylon-exclu
sive genes have a known metabolic function, with an additional 34 having a known 
motility function. Similarly, 213 of the 1,244 lower phylon-exclusive genes are metabolic 
in nature, with 73 having motility functions. The distribution of genes in many other 
functional categories (such as transcription factors, metabolic functions, pili, motility, 
membrane-, and phage-genes) are highlighted in Table S2. The columns of L thus gives 
us detailed information about the differential gene contents of the phylons, and thus 
gives the basis for finding the genetic basis for differential traits between phylogroups.

A further examination of the metabolic gene content between these two distinct 
groups of phylons reveals that the upper phylon-exclusive genes code for glycosyltrans
ferases, exo-alpha-sialidases (glycoconjugates), beta-glucosidases, beta-glucuronidases, 
hyaluronidase, and monogalactosyldiacylglycerol lipases (monogalactosyl-diacylglycer
ols), among others. These enzymes are all involved in processing and digesting glycans 
in a host, including sialic acids. Sialic acids and their derivatives often form the ends 

FIG 4 A clustering diagram of the phylons (see Fig. 3f) that highlights the groups of exclusive genes that follow one branch and not the other at each branch 

point. The numbers above the line leading to a split indicate exclusive genes (i.e., genes found in one group of phylons but absent in the other). Numbers in 

italics specifically indicate shared genes that are found across all groups. The function and identity of special genes of interest are discussed in the main text, and 

detailed in Table S2. Four specific genetic traits of interest are highlighted in dashed ovals, such as the papGII operon to phylon D (ST69). This sequence variant of 

papG in this operon is associated with UTIs that can become bacteremic (28, 29).

Research Article mSphere

January 2025  Volume 10  Issue 1 10.1128/msphere.00532-24 8

https://doi.org/10.1128/msphere.00532-24


of glycans on various glycoproteins and glycolipids that coat the surfaces of most 
vertebrate and bacterial cells. They are known to behave as a signal to specific bacteria 
upon reaching a vertebrate environment suitable for colonization (30, 31). The presence 
of these enzymes in the upper phylons suggests that Shigella, Shiga toxin-producing E. 
coli (STEC), and other pathogenic strains in phylogroups A, B1, and C have the ability 
to identify and process these sugar moieties, which may enable them to better colonize 
their hosts.

A parallel inspection into the lower phylon-exclusive metabolic genes reveals that 
they code for various bacterial capsule formation proteins, Amadori product degradation 
(specifically fructoselysine/psicoselysine degradation), as well as three distinct fructose-
bisphosphate aldolases, one of which is GatY (10). All of these are known proteins found 
in tagatose-competent E. coli strains (primarily found in phylogroups B2 and D), which 
can utilize these enzymes to digest the glycans in the mucus within the human GI tract 
(10).

The secondary splits in the phylon clustering tree allow further tracing of genes and 
thus segregation of the genetic basis for traits. Three further splits are discussed here. A 
full description of the classification tree requires a comprehensive study that will result in 
the full genetic definition of E. coli and all its phylogroups.

Shigella strains exhibit gene gains as well as gene losses

Continuing the segregation of genes down the tree of phylons, as defined by NMF (Fig. 
3f and 4), we see that the upper phylons split by gene content into Shigella strains and 
those that belong to the classically defined A, B1, and C phylogroups. A closer look at 
this split reveals that the strains in the Shigella phylons contain 108 exclusive genes 
not found in the A, B1, and C strains, in addition to not containing 543 genes found in 
these three classically defined phylogroups. This suggests that Shigella has undergone 
both gene gain and loss during its restriction to human hosts and adaptation to the 
human intestinal mucosa (32). For example, in the nadA and/or nadB genes encoding the 
enzyme complex that converts L-aspartate to quinolinate, a precursor to NAD resulting 
in nicotinic acid auxotrophy is lost in these strains (33). However, other genes are gained, 
including nine genes that form the propanediol utilization (pdu) operon. Propanediol 
is produced when fucose (a component of mucin) is metabolized under anaerobic 
conditions (34). Of particular note is the pduC gene in this operon, which is enriched 
in adherent-invasive E. coli found in the microbiome of Crohn’s disease patients (35). Note 
that Shigella sonnei is separated from the rest of the Shigella strains, which all contain a 
galE ortholog that S. sonnei itself lacks (Fig. 4).

Pathogenic A strains are more closely related to B1 and C strains than to 
commensal A strains

The upper phylons split into Shigella strains and strains in A, B1, and C phylogroups. The 
A, B1, and C strains further split with Shiga-toxin producing E. coli strains (B1-Stx and 
B1-ST678) forming their own subgroup. Interestingly, the next split between these strains 
in the other branch occurs between commensal A strains and B1, C, and pathogenic 
A strains. Specifically, these pathogenic A strains are those that came from foodborne 
illnesses in Thailand (A-Thailand) and those found to be heat-resistant in meat (A-heat-
resistant). The commensal A strains are heavily used in laboratory work and in biomanu
facturing (specifically the K-12 MG1655 strain).

Lower phylons have a subgroup containing E. coli O157:H7 and O145:H28 
strains

The lower phylons split into two subgroups, with E-ST11 (O157:H7) and D-ST32 (O145:28) 
strains separating from the other group of lower phylons (see Fig. 4). These two serovars 
(O157:H7 and O145:H28) are known to have shared a common evolutionary lineage (36). 
This shared lineage is directly reflected in their shared gene content, with 86 shared 
(accessory) genes between them. Of these genes, 33 have no known function, while 11 
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of them are metabolic, 10 are motility-related, and nine are transcription factors. The 
11 metabolic genes primarily code for various transporters, oxidoreductases involved 
in glycolytic pathways, and a class-II fructose-bisphosphate aldolase. Furthermore, all 
motility genes code for fimbrial gene orthologs of the yadCKLM-htrE-yadVN operon. This 
operon is cryptic under normal laboratory conditions but when constitutive expression is 
induced, it promotes biofilm formation in minimal media on a variety of abiotic surfaces 
and produces surface fimbrial structures (37). Constitutive expression of this operon 
also results in increased adhesion of cells to xylose-rich glycans, increased adherence to 
intestinal epithelial cells, and can also modulate the inflammatory response of host cells 
(38).

D and F strains are very closely linked, as are G and B2 strains

The remaining lower phylons consist of D, E, F, and B2 strains. These strains cluster into 
two distinct groups: the first group consists of D and F strains, while the second group 
consists of G and B2 strains. The first cluster shares 86 genes, and D-ST405 strains appear 
to be the most distinct, even more so than F strains. This clustering suggests that the 
classically-defined D and F phylogroups of E. coli are more closely related to each other 
genetically than previously thought. This is similarly the case for G strains, which were 
already known to be more closely related to F and B2 strains than others (22).

Uncharacterized phylons contain mobile genetic elements

The same mobile elements can be found in strains of many phylogroups. Remarkably, 
NMF detects this characteristic and factors out these mobile genes into a set of nine 
“uncharacterized” phylons since they can be columns in the addition that forms the gene 
set in a strain (see Fig. 3b). These mobile elements are described in Table S2 and include 
sex pili, F-plasmid operons, and various phage genes, among others. The mobilome of E. 
coli is nine-dimensional.

Traits found in the rare genome

The rare genome consists of 163,619 genes (Fig. 2b), of which 127,223 (or 79%) are 
transposable elements (TEs) (Fig. S5a). These TEs fall into 315 unique categories of TEs. 
The number of the 40 most frequent TEs and the number of passenger genes (a.k.a cargo 
genes) they carry are shown in Fig. 5a. About 3% of the most frequent TEs carry 773 
unique passenger genes, that with replicate occurrences give a total count of 3,631 rare 
genes. These 3,631 genes fall into 24 functional categories, of which the largest COG 
category is unknown function (S), followed by energy production and conversion (C) and 
transcription (K) (Fig. S5b). Thus, the genetic diversity of the rare genome is effectively 
much narrower than its raw gene count indicates.

In the Tn3 family, particularly within the TnAs1 transposase family, a notably higher 
ratio of passenger-associated TEs (42%) was observed compared to all other TEs 
categories; interestingly, studies have identified the Tn3 family of transposons as a factor 
in the recent surge of carbapenem- and colistin-resistant Enterobacteriaceae (39–42). 
The richness (representing the number of distinct types of TEs found in a phylon) and 
entropy (indicating the degree of unevenness in the distribution of various transposable 
element types within a phylon, with higher values suggesting a less uniform population) 
of TEs are greater in uncharacterized phylons, indicating higher diversity and greater 
heterogeneity in the distribution of TEs (Fig. 5b and c). In three out of the four phylons 
related to phylogroup A, comparatively low levels of TE entropy, richness, and count 
were observed. This result suggests that reduced replicative activity of TEs is exhibited 
within these phylons. Furthermore, these phylons are characterized by the dominance of 
a specific TE type, namely yhnl for A-Thailand and A-BL21, and “insH11” for A-K12. 
Interestingly, similar patterns were displayed by all Shigella phylons, featuring low 
richness and moderate to high entropy. Notably, a common theme across these phylons 
was the prevalence of insG as the dominant TE (Fig. 5b).
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FIG 5 Transposable elements (TEs) in the rare genome. (a) Frequency of the 40 most abundant TEs of the 315 TE types found in the pangenome, and the ratio 

of passenger-free to passenger-associated TEs. Bar plot represents count of each group of TEs (top x-axis), bar color indicates the ratio of passenger-free TEs to 

passenger-associated TEs, and dots indicate the count of passenger genes associated with each group of TEs (bottom x-axis). Naming convention of the TEs is 

derived from PROKKA annotation. (b) Phylon TEs count, richness, and entropy; colors represent phylons, signs indicate the dominant TE found in each phylon, TE 

richness shows how many unique types of TE inhabited a phylon, TE evenness shows how evenly a phylon is infected with different types of TE, higher values of 

evenness indicates greater entropy. Phylons with fewer than 30 genomes were excluded from the analysis. For phylons with more than 30 genomes, a random 

subset of 30 genomes was selected, and the remaining genomes were excluded (Fig. S5c illustrates the sensitivity of TE richness, evenness, and count metrics to 

the random sampling of genomes); the symbols on the plot represent the dominant TE in each phylon: circle ('o') for yhhI, square (’s') for insH11, upward triangle 

('^') for IS26, downward triangle ('v') for insL3, left-pointing triangle ('<') for ISEc25, right-pointing triangle ('>') for IS621, pentagon ('p') for IS200C, star ('*') for 

insG, and plus ('+') for IS629. (c) Represents a heatmap generated using CD-HIT clustering results, depicting the distribution of TEs across various phylons. Each 

(Continued on next page)

Research Article mSphere

January 2025  Volume 10  Issue 1 10.1128/msphere.00532-2411

https://doi.org/10.1128/msphere.00532-24


The remaining 21% of genes in the rare genome result from TE insertions that fracture 
coding regions into smaller coding regions (43) or horizontal gene transfer (HGT). As an 
example of HGT, a gene family found in the rare genome is lapA, encoding for a large 
adhesion pilus of over 6,000 amino acids in length, and commonly found in Pseudomo
nas species (see details in SI).

DISCUSSION

Taxonomy going back to Linnaeus’ time was based on the form and phenotypic 
function of organisms. Then, classification based on genetics, such as certain alleles, 
emerged (e.g., multi-locus sequence tags [44], and Clermont quadruplex [13])]. With 
whole-genome sequences becoming available, the MASH distance (19) could be used to 
assess the relatedness of strains using genome-scale sequence similarity metrics. Now 
with genome sequences for a large number strains becoming available, we can annotate 
them and determine the species’ pangenome.

The pangenome is formally represented by the pangenome matrix, P, whose columns 
represent genomes and whose rows represent genes. Every column is then filled in 
with 0 or 1, the absence or presence of the gene in that genome, respectively. Since 
the number of sequenced genomes is now large, mathematical and machine learning 
methods can be applied to formulate global and rigorous classification schemes for 
a strain’s phylogeny based on the pangenome matrix. Such classification schemes are 
fundamental and will be at the root of bacterial taxonomy.

In this study, we developed a classification schema based on the pangenome matrix 
using methods of machine learning. Remarkably, this approach gives a very clear 
definition of the gene content that differentiates strains that closely follows classical 
phylogroup definitions. The variably present genes populate the accessory genome, 
whose gene distribution amongst the strains can be used to obtain a mathematical 
definition of phylons, which are lists of genes that are found in the majority of the strains 
of a phylogroup.

This study enables a detailed, genomewide analysis of the genetic basis for the 
differential traits of the strains in the defined phylons, and it gives a global multi-scale 
genetic structure of a species. This full exposé of the genetic composition of a bacterial 
species has many implications. With the availability of the alleleome (45), representing 
the global assessment of sequence variation of coding and intergenic regions, we can 
begin to understand the evolutionary history of a species and its phylons. The rare 
genome can keep track of horizontal gene transfer events and how they are assimilated 
into the species and can provide new insights for understanding unique traits of a 
particular strain. Additionally, the hypothesized fractal nature of the E. coli pangenome 
can be further studied (e.g., the most distinct phylon consists of phylogroup E strains 
which themselves are known to be quite diverse) (46). The differentiation of phylons into 
classically defined phylogroups and MLST clusters versus the uncharacterized phylons, 
which are primarily full of plasmid and mobilome elements, is also another aspect that is 
worth investigating. The NMF’s ability to cleanly separate these groups of phylons alludes 
to its ability to distinguish between classical (Darwinian) evolution in E. coli vs horizontal 
gene acquisition (Woesian evolution) (Fig. 3). Remarkably, these different evolutionary 
pathways, while convoluted with each other in the genome, are cleanly separated based 
on pure gene presence/absence when looking at the species’s pangenome.

Detailing the phenotypic consequences based on the differential gene presence 
may take many years to fully resolve for all genetic traits of interest. This undertaking 
may have a fundamental effect on infectious disease. Reliable sequence-based rapid 

Fig 5 (Continued)

cell in the heatmap represents the presence (black) or absence (white) of a specific group of TEs in a given phylon. The hierarchical clustering, employing the 

Ward method, is applied both horizontally and vertically, illustrating the grouping of similar TEs and phylons, respectively. The dendrograms adjacent to the rows 

and columns indicate the clustering relationships.
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classification of pathogens isolated from a patient can accelerate physicians’ decision-
making about pathogen identity and selection of treatment modalities.

One can anticipate that with a good coverage of genome sequences across the 
phylogenetic tree, we will be able to repeat the results of this study for larger and 
larger swaths of the tree. Currently GENOMiCUS only contains E. coli, but perhaps, in the 
fullness of time, we will achieve a global genetic definition of the entire phylogenetic 
tree of bacteria.

MATERIALS AND METHODS

Gathering and processing of sequence data from BV-BRC and NCBI RefSeq

We first downloaded the metadata of all genomes available on BV-BRC at the onset of 
this project (2021) (5). Using this metadata file, we filtered out strains that were not 
E. coli and those which only contained plasmid sequences. All “complete” sequences 
were further filtered by their L50 score (must equal 1) and their N50 score (greater than 
4,000,000). Fragmented genomes were first filtered by their contig count, which was 
capped at 355 using previously defined metrics (23). CheckM contamination (<3.1%) and 
completeness (>98.1%) scores were then used to filter fragmented genomes further (see 
code for more details on exact numerical thresholds chosen). The final collection was 
then downloaded from BV-BRC. This exact process was repeated for all Shigella strains 
and similarly for downloading E. coli strains from NCBI RefSeq. Genomes were then 
deduplicated and collated for further quality control (i.e., Mash filtration). In the end, only 
“complete” sequences were selected for pangenome analysis to ensure the pangenome 
had a gene presence/absence matrix (P matrix) of the highest quality.

Genome annotation nd pangenome generation

All downloaded genomes were re-annotated using PROKKA (47) for consistency in gene 
annotation when generating the pangenome. All re-annotated genomes were then 
screened by the E. coli PubMLST schema (44) through the mlst github package (48) to 
identify the sequence types for all strains in the pangenome. After this, the phylogroup 
for each strain was identified in silico using the ClermonTyping github package (18). 
Genomes were then collated to form a pangenome using CD-HIT (49, 50). Gene families 
were identified using a sequence similarity and alignment cutoffs of 80% for both, as 
used in previous pangenome studies (23). Once the pangenome was generated, all 
representative alleles that define a gene family as identified by CD-HIT were extracted 
and subjected to eggNOG gene annotation (51–53). Genomes were also annotated for 
AMR gene annotation using the Resistance Gene Identifier tool (54).

Mash filtration and analysis

All downloaded genomes were run to generate pairwise Mash distance values. They 
were then separated into six groups: Escherichia coli, Shigella sonnei, Shigella boydii, 
Shigella dysenteriae, Shigella flexneri, and other Shigella species. For each group, the 99th 
percentile was calculated relative to the reference strain for each group and used as the 
filtration limit (that is, the top 1% of genomes in terms of Mash distance were filtered out 
for each group). Then, the Mash distance values were converted into Pearson correlation 
coefficients, which in turn were converted into Pearson correlation distances for Mash 
clustering, as outlined in Abram et al. (14). A sensitivity analysis was performed to find 
the best threshold for clustering these values, which led to a value of 0.1. Specifically, the 
cutoff threshold for hierarchical clustering using seaborn’s inbuilt clustermap function 
was set to to various values until all major phylogroups of E. coli were represented. This 
value (0.1) agreed with known domain knowledge, as Phylogroup C strains did not form 
their own cluster for any threshold value above 0.13 (14). This led to a total of 31 clusters, 
which was used to inform the rank of NMF decomposition.
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Defining the core, accessory, and rare genomes

The core, accessory, and rare genomes are defined using the cumulative gene distribu
tion plot (Fig. 2b) using methods outlined earlier (23). Briefly, this gene plot forms an 
S-shaped curve and thus will always have an inflection point. The core genome is defined 
by taking the highest endpoint and traveling 90% of the distance from the inflection 
point to the endpoint. This corresponds with the elbow in the plot defining the core 
genes. A similar approach is used for defining the rare genome, except with the lowest 
endpoint instead of the highest one.

For the TE analysis, transposable elements initially identified by PROKKA annotation 
were filtered. The start and end locations of each transposable element were determined 
on genomes across the entire pangenome. Genes that were not classified as transpos
able elements but had start and end locations within a transposable element were 
designated as passenger genes.

TEs richness and evenness calculation

A systematic genome sampling approach was implemented to ensure a representative 
and manageable data set for this analysis. Phylons with fewer than 30 genomes were 
excluded from the analysis. For phylons having 30 or more genomes, we conducted a 
random sampling procedure to select 30 unique genomes.

This genome sampling strategy guaranteed that the data set used for richness and 
evenness calculations was not only representative but also possessed a more even 
distribution. Consequently, it allowed for meaningful insights into TE diversity across 
various phylogroups. Fig. S5c illustrates the sensitivity of TE richness, evenness, and 
count metrics to the random sampling of genomes.

Richness, representing the number of unique TEs within each phylon, was computed. 
Evenness, quantifying the distribution uniformity of TEs within a phylon, was calculated 
using the Shannon entropy formula.

Non-negative matrix factorization

The scikit-learn implementation of NMF (55) was used to perform the decomposition. 
NMF was run 50 times with a rank of 31 (derived from Mash clustering), an initialization 
of “nndsvd” (which generates sparser output matrices), and a maximum iteration limit 
of 5,000 (the solution always converged before this limit was reached for all runs). The 
best run (as defined by the Frobenius norm, sum of squared residuals, and root-mean-
square-error metrics) was selected for normalization. For each column in L, the 99th 
percentile was calculated, and every value in that column was divided by this value, 
which ensured all but a few values were between 0 and 1. To ensure reconstruction 
consistency, the corresponding rows in the A matrix were multiplied by the same 
normalization values (see SI for more information). The L and A matrices were then 
binarized using k-means clustering (k = 3), also implemented using scikit-learn. Each 
column of L was segregated into three clusters, and the genes in the cluster with the 
highest average mean were binarized to 1, with the genes in the other two clusters being 
set to 0. The same procedure was followed with binarizing the A matrix. This protocol 
ensured the threshold for binarization was always a conservative estimate. In some cases, 
this estimate in the A matrix was clearly too conservative (as evidenced by visualizing 
the histogram of strain affinities for each phylon), and in those cases, the threshold for 
binarization was manually lowered.

Phylon characterization

Given the large number of genes in the L matrix, phylons were initially characterized 
using the (binarized) A matrix. Phylons were first named based on the phylogroup 
of the strains with the highest affinity for each phylon, followed by the MLST value 
of these strains. If at least 90% of strains with high affinity were part of a particular 
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Clermont-defined phylogroup, that phylon was mapped to that Clermont-defined 
phylogroup (e.g., if 90% of all strains in phylon2 map to phylogroup B2, that phylon 
is mapped to B2). In certain cases, the names of the phylons were changed to reflect 
well-known strains within the phylon (e.g., A-K12, A-BL21, etc.). Some phylons did not 
follow these patterns and were thus dubbed “uncharacterized” phylons. Strains with 
“high affinity” are defined as those strains that had an entry of 1 in the binarized A matrix 
for a particular phylon. For most strains, this only occurred once. For some strains, this 
occurred multiple times; in all cases, the strain had a high affinity for only one named 
phylon as the other high affinities were all for the uncharacterized phylons that consisted 
of mobile genetic elements.

ACKNOWLEDGMENTS

The authors would like to acknowledge Dr. Akanksha Rajput for useful discussions.
This work was funded by the Novo Nordisk Foundation Grant Number 

NNF20CC0035580.
Conceptualization: B.O.P. and S.M.C., Data curation: S.M.C. and P.V.P., Investigation: 

S.M.C. and O.A., Methodology: S.M.C., J.M.M., and J.C.H., Mentorship: J.M.M. and B.O.P., 
Writing and Editing: All authors.

AUTHOR AFFILIATIONS

1Department of Bioengineering, University of California, San Diego, La Jolla, California, 
USA
2Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 
Kemitorvet, Kongens, Lyngby, Denmark
3Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, 
California, USA
4Department of Pediatrics, University of California, San Diego, La Jolla, California, USA

AUTHOR ORCIDs

Siddharth M. Chauhan  http://orcid.org/0000-0001-6674-895X
Patrick V. Phaneuf  http://orcid.org/0000-0002-4122-6589
Bernhard O. Palsson  http://orcid.org/0000-0003-2357-6785

AUTHOR CONTRIBUTIONS

Siddharth M. Chauhan, Conceptualization, Data curation, Formal analysis, Investigation, 
Methodology, Software, Visualization, Writing – original draft, Writing – review and 
editing | Omid Ardalani, Formal analysis, Investigation, Visualization, Writing – original 
draft | Jason C. Hyun, Methodology, Software, Validation | Jonathan M. Monk, Conceptu
alization, Supervision, Validation, Writing – review and editing | Patrick V. Phaneuf, Data 
curation, Supervision, Validation | Bernhard O. Palsson, Conceptualization, Methodology, 
Project administration, Supervision, Validation, Writing – original draft, Writing – review 
and editing

DATA AVAILABILITY

All data (and code) pertaining to this study have been deposited onto Zenodo and can 
be found with this DOI: 10.5281/zenodo.10575748.

ADDITIONAL FILES

The following material is available online.

Supplemental Material

Supplemental material (mSphere00532-24-s0001.pdf). Supplemental figures and text.
Table S1 (mSphere00532-24-s0002.pdf). NMF model metrics.

Research Article mSphere

January 2025  Volume 10  Issue 1 10.1128/msphere.00532-2415

https://doi.org/10.5281/zenodo.10575747
https://doi.org/10.1128/msphere.00532-24
https://doi.org/10.1128/msphere.00532-24


Table S2 (mSphere00532-24-s0003.pdf). Specific genes found in each phylon uniquely.

REFERENCES

1. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF, Kerlavage 
AR, Bult CJ, Tomb JF, Dougherty BA, Merrick JM. 1995. Whole-genome 
random sequencing and assembly of Haemophilus influenzae Rd. 
Science 269:496–512. https://doi.org/10.1126/science.7542800

2. Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, 
Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, 
Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y. 1997. The complete 
genome sequence of Escherichia coli K-12. Science 277:1453–1462. https:
//doi.org/10.1126/science.277.5331.1453

3. Perna NT, Plunkett G III, Burland V, Mau B, Glasner JD, Rose DJ, Mayhew 
GF, Evans PS, Gregor J, Kirkpatrick HA, et al. 2001. Genome sequence of 
enterohaemorrhagic Escherichia coli O157:H7. Nature 409:529–533. 
https://doi.org/10.1038/35054089

4. Kris A. Wetterstrand MS. 2019. The cost of sequencing a human genome. 
NHGRI. Available from: https://www.genome.gov/about-genomics/fact-
sheets/Sequencing-Human-Genome-cost. Retrieved 18 Apr 2023.

5. Olson RD, Assaf R, Brettin T, Conrad N, Cucinell C, Davis JJ, Dempsey DM, 
Dickerman A, Dietrich EM, Kenyon RW, et al. 2023. Introducing the 
Bacterial and Viral Bioinformatics Resource Center (BV-BRC): a resource 
combining PATRIC, IRD and ViPR. Nucleic Acids Res 51:D678–D689. https:
//doi.org/10.1093/nar/gkac1003

6. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, Rajput 
B, Robbertse B, Smith-White B, Ako-Adjei D, et al. 2016. Reference 
sequence (RefSeq) database at NCBI: current status, taxonomic 
expansion, and functional annotation. Nucleic Acids Res 44:D733–D745. 
https://doi.org/10.1093/nar/gkv1189

7. Rasko DA, Rosovitz MJ, Myers GSA, Mongodin EF, Fricke WF, Gajer P, 
Crabtree J, Sebaihia M, Thomson NR, Chaudhuri R, Henderson IR, 
Sperandio V, Ravel J. 2008. The pangenome structure of Escherichia coli: 
comparative genomic analysis of E. coli commensal and pathogenic 
isolates. J Bacteriol 190:6881–6893. https://doi.org/10.1128/JB.00619-08

8. Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, Bidet P, Bingen E, 
Bonacorsi S, Bouchier C, Bouvet O, et al. 2009. Organised genome 
dynamics in the Escherichia coli species results in highly diverse adaptive 
paths. PLoS Genet 5:e1000344. https://doi.org/10.1371/journal.pgen.
1000344

9. Monk JM, Charusanti P, Aziz RK, Lerman JA, Premyodhin N, Orth JD, Feist 
AM, Palsson BØ. 2013. Genome-scale metabolic reconstructions of 
multiple Escherichia coli strains highlight strain-specific adaptations to 
nutritional environments. Proc Natl Acad Sci U S A 110:20338–20343. 
https://doi.org/10.1073/pnas.1307797110

10. Fang X, Monk JM, Mih N, Du B, Sastry AV, Kavvas E, Seif Y, Smarr L, 
Palsson BO. 2018. Escherichia coli B2 strains prevalent in inflammatory 
bowel disease patients have distinct metabolic capabilities that enable 
colonization of intestinal mucosa. BMC Syst Biol 12:66. https://doi.org/
10.1186/s12918-018-0587-5

11. Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, Karch H, Reeves PR, 
Maiden MCJ, Ochman H, Achtman M. 2006. Sex and virulence in 
Escherichia coli: an evolutionary perspective. Mol Microbiol 60:1136–
1151. https://doi.org/10.1111/j.1365-2958.2006.05172.x

12. Clermont O, Bonacorsi S, Bingen E. 2000. Rapid and simple determina
tion of theEscherichia coli phylogenetic group. Appl Environ Microbiol 
66:4555–4558. https://doi.org/10.1128/AEM.66.10.4555-4558.2000

13. Clermont O, Christenson JK, Denamur E, Gordon DM. 2013. The 
Clermont Escherichia coli phylo-typing method revisited: improvement 
of specificity and detection of new phylo-groups. Environ Microbiol Rep 
5:58–65. https://doi.org/10.1111/1758-2229.12019

14. Abram K, Udaondo Z, Bleker C, Wanchai V, Wassenaar TM, Robeson MS II, 
Ussery DW. 2021. Mash-based analyses of Escherichia coli genomes 
reveal 14 distinct phylogroups. Commun Biol 4:117. https://doi.org/10.
1038/s42003-020-01626-5

15. Achtman M, Zhou Z, Charlesworth J, Baxter L. 2022. EnteroBase: 
hierarchical clustering of 100 000s of bacterial genomes into species/
subspecies and populations. Philos Trans R Soc Lond B Biol Sci 
377:20210240. https://doi.org/10.1098/rstb.2021.0240

16. Norsigian CJ, Kavvas E, Seif Y, Palsson BO, Monk JM. 2018. iCN718, an 
updated and improved genome-scale metabolic network reconstruction 

of Acinetobacter baumannii AYE. Front Genet 9:121. https://doi.org/10.
3389/fgene.2018.00121

17. Seif Y, Kavvas E, Lachance J-C, Yurkovich JT, Nuccio S-P, Fang X, Catoiu E, 
Raffatellu M, Palsson BO, Monk JM. 2018. Genome-scale metabolic 
reconstructions of multiple Salmonella strains reveal serovar-specific 
metabolic traits. Nat Commun 9:3771. https://doi.org/10.1038/s41467-
018-06112-5

18. Beghain J, Bridier-Nahmias A, Le Nagard H, Denamur E, Clermont O. 
2018. ClermonTyping: an easy-to-use and accurate in silico method for 
Escherichia genus strain phylotyping. Microb Genom 4:e000192. https://
doi.org/10.1099/mgen.0.000192

19. Ondov BD, Treangen TJ, Melsted P, Mallonee AB, Bergman NH, Koren S, 
Phillippy AM. 2016. Mash: fast genome and metagenome distance 
estimation using MinHash. Genome Biol 17:132. https://doi.org/10.1186/
s13059-016-0997-x

20. Konstantinidis KT, Tiedje JM. 2005. Genomic insights that advance the 
species definition for prokaryotes. Proc Natl Acad Sci U S A 102:2567–
2572. https://doi.org/10.1073/pnas.0409727102

21. Lu S, Jin D, Wu S, Yang J, Lan R, Bai X, Liu S, Meng Q, Yuan X, Zhou J, Pu J, 
Chen Q, Dai H, Hu Y, Xiong Y, Ye C, Xu J. 2016. Insights into the evolution 
of pathogenicity of Escherichia coli from genomic analysis of intestinal E. 
coli of Marmota himalayana in Qinghai-Tibet plateau of China. Emerg 
Microbes Infect 5:e122. https://doi.org/10.1038/emi.2016.122

22. Clermont O, Dixit OVA, Vangchhia B, Condamine B, Dion S, Bridier-
Nahmias A, Denamur E, Gordon D. 2019. Characterization and rapid 
identification of phylogroup G in Escherichia coli, a lineage with high 
virulence and antibiotic resistance potential. Environ Microbiol 21:3107–
3117. https://doi.org/10.1111/1462-2920.14713

23. Hyun JC, Monk JM, Palsson BO. 2022. Comparative pangenomics: 
analysis of 12 microbial pathogen pangenomes reveals conserved 
global structures of genetic and functional diversity. BMC Genomics 
23:7. https://doi.org/10.1186/s12864-021-08223-8

24. Rajput A, Seif Y, Choudhary KS, Dalldorf C, Poudel S, Monk JM, Palsson 
BO. 2021. Pangenome analytics reveal two-component systems as 
conserved targets in ESKAPEE pathogens. mSystems 6:e00981-20. https:
//doi.org/10.1128/mSystems.00981-20

25. Monk JM, Lloyd CJ, Brunk E, Mih N, Sastry A, King Z, Takeuchi R, Nomura 
W, Zhang Z, Mori H, Feist AM, Palsson BO. 2017. iML1515, a knowledge
base that computes Escherichia coli traits. Nat Biotechnol 35:904–908. 
https://doi.org/10.1038/nbt.3956

26. Lee DD, Seung HS. 1999. Learning the parts of objects by non-negative 
matrix factorization. Nature 401:788–791. https://doi.org/10.1038/44565

27. Devarajan K. 2008. Nonnegative matrix factorization: an analytical and 
interpretive tool in computational biology. PLoS Comput Biol 
4:e1000029. https://doi.org/10.1371/journal.pcbi.1000029

28. Cuénod A, Agnetti J, Seth-Smith HMB, Roloff T, Wälchli D, Shcherbakov 
D, Akbergenov R, Tschudin-Sutter S, Bassetti S, Siegemund M, Nickel CH, 
Moran-Gilad J, Keys TG, Pflüger V, Thomson NR, Egli A. 2023. Bacterial 
genome-wide association study substantiates papGII of Escherichia coli 
as a major risk factor for urosepsis. Genome Med 15:89. https://doi.org/
10.1186/s13073-023-01243-x

29. Biggel M, Xavier BB, Johnson JR, Nielsen KL, Frimodt-Møller N, 
Matheeussen V, Goossens H, Moons P, Van Puyvelde S. 2020. Horizon
tally acquired papGII-containing pathogenicity islands underlie the 
emergence of invasive uropathogenic Escherichia coli lineages. Nat 
Commun 11:5968. https://doi.org/10.1038/s41467-020-19714-9

30. Varki A, Gagneux P. 2012. Multifarious roles of sialic acids in immunity. 
Ann N Y Acad Sci 1253:16–36. https://doi.org/10.1111/j.1749-6632.2012.
06517.x

31. Schauer R, Kamerling JP. 2018. Exploration of the sialic acid world. Adv 
Carbohydr Chem Biochem 75:1–213. https://doi.org/10.1016/bs.accb.
2018.09.001

32. The HC, Thanh DP, Holt KE, Thomson NR, Baker S. 2016. The genomic 
signatures of Shigella evolution, adaptation and geographical spread. 
Nat Rev Microbiol 14:235–250. https://doi.org/10.1038/nrmicro.2016.10

Research Article mSphere

January 2025  Volume 10  Issue 1 10.1128/msphere.00532-2416

https://doi.org/10.1126/science.7542800
https://doi.org/10.1126/science.277.5331.1453
https://doi.org/10.1038/35054089
https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
https://doi.org/10.1093/nar/gkac1003
https://doi.org/10.1093/nar/gkv1189
https://doi.org/10.1128/JB.00619-08
https://doi.org/10.1371/journal.pgen.1000344
https://doi.org/10.1073/pnas.1307797110
https://doi.org/10.1186/s12918-018-0587-5
https://doi.org/10.1111/j.1365-2958.2006.05172.x
https://doi.org/10.1128/AEM.66.10.4555-4558.2000
https://doi.org/10.1111/1758-2229.12019
https://doi.org/10.1038/s42003-020-01626-5
https://doi.org/10.1098/rstb.2021.0240
https://doi.org/10.3389/fgene.2018.00121
https://doi.org/10.1038/s41467-018-06112-5
https://doi.org/10.1099/mgen.0.000192
https://doi.org/10.1186/s13059-016-0997-x
https://doi.org/10.1073/pnas.0409727102
https://doi.org/10.1038/emi.2016.122
https://doi.org/10.1111/1462-2920.14713
https://doi.org/10.1186/s12864-021-08223-8
https://doi.org/10.1128/mSystems.00981-20
https://doi.org/10.1038/nbt.3956
https://doi.org/10.1038/44565
https://doi.org/10.1371/journal.pcbi.1000029
https://doi.org/10.1186/s13073-023-01243-x
https://doi.org/10.1038/s41467-020-19714-9
https://doi.org/10.1111/j.1749-6632.2012.06517.x
https://doi.org/10.1016/bs.accb.2018.09.001
https://doi.org/10.1038/nrmicro.2016.10
https://doi.org/10.1128/msphere.00532-24


33. Di Martino ML, Fioravanti R, Barbabella G, Prosseda G, Colonna B, 
Casalino M. 2013. Molecular evolution of the nicotinic acid requirement 
within the Shigella/EIEC pathotype. Int J Med Microbiol 303:651–661. 
https://doi.org/10.1016/j.ijmm.2013.09.007

34. Dogan B, Suzuki H, Herlekar D, Sartor RB, Campbell BJ, Roberts CL, 
Stewart K, Scherl EJ, Araz Y, Bitar PP, Lefébure T, Chandler B, Schukken 
YH, Stanhope MJ, Simpson KW. 2014. Inflammation-associated 
adherent-invasive Escherichia coli are enriched in pathways for use of 
propanediol and iron and M-cell translocation. Inflamm Bowel Dis 
20:1919–1932. https://doi.org/10.1097/MIB.0000000000000183

35. Viladomiu M, Metz ML, Lima SF, Jin W-B, Chou L, Bank JLC, Guo C-J, Diehl 
GE, Simpson KW, Scherl EJ, Longman RS. 2021. Adherent-invasive E. coli 
metabolism of propanediol in Crohn’s disease regulates phagocytes to 
drive intestinal inflammation. Cell Host Microbe 29:607–619. https://doi.
org/10.1016/j.chom.2021.01.002

36. Cooper KK, Mandrell RE, Louie JW, Korlach J, Clark TA, Parker CT, Huynh 
S, Chain PS, Ahmed S, Carter MQ. 2014. Comparative genomics of 
enterohemorrhagic Escherichia coli O145:H28 demonstrates a common 
evolutionary lineage with Escherichia coli O157:H7. BMC Genomics 
15:17. https://doi.org/10.1186/1471-2164-15-17

37. Korea C-G, Badouraly R, Prevost M-C, Ghigo J-M, Beloin C. 2010. 
Escherichia coli K-12 possesses multiple cryptic but functional 
chaperone-usher fimbriae with distinct surface specificities. Environ 
Microbiol 12:1957–1977. https://doi.org/10.1111/j.1462-2920.2010.
02202.x

38. Larsonneur F, Martin FA, Mallet A, Martinez-Gil M, Semetey V, Ghigo J-M, 
Beloin C. 2016. Functional analysis of Escherichia coli Yad fimbriae reveals 
their potential role in environmental persistence. Environ Microbiol 
18:5228–5248. https://doi.org/10.1111/1462-2920.13559

39. Cuzon G, Naas T, Nordmann P. 2011. Functional characterization of 
Tn4401, a Tn3-based transposon involved in blaKPC gene mobilization. 
Antimicrob Agents Chemother 55:5370–5373. https://doi.org/10.1128/
AAC.05202-11

40. Nordmann P, Dortet L, Poirel L. 2012. Carbapenem resistance in 
Enterobacteriaceae: here is the storm! Trends Mol Med 18:263–272. https:
//doi.org/10.1016/j.molmed.2012.03.003

41. Borowiak M, Fischer J, Hammerl JA, Hendriksen RS, Szabo I, Malorny B. 
2017. Identification of a novel transposon-associated phosphoethanola
mine transferase gene, mcr-5, conferring colistin resistance in d-tartrate 
fermenting Salmonella enterica subsp. enterica serovar Paratyphi B. J 
Antimicrob Chemother 72:3317–3324. https://doi.org/10.1093/jac/
dkx327

42. Zhang H, Zong Z, Lei S, Srinivas S, Sun J, Feng Y, Huang M, Feng Y. 2019. 
A genomic, evolutionary, and mechanistic study of MCR-5 action 
suggests functional unification across the MCR family of colistin 
resistance. Adv Sci (Weinh) 6:1900034. https://doi.org/10.1002/advs.
201900034

43. Sheng Y, Wang H, Ou Y, Wu Y, Ding W, Tao M, Lin S, Deng Z, Bai L, Kang 
Q. 2023. Insertion sequence transposition inactivates CRISPR-Cas 

immunity. Nat Commun 14:4366. https://doi.org/10.1038/s41467-023-
39964-7

44. Jolley KA, Bray JE, Maiden MCJ. 2018. Open-access bacterial population 
genomics: BIGSdb software, the PubMLST.org website and their 
applications. Wellcome Open Res 3:124. https://doi.org/10.12688/
wellcomeopenres.14826.1

45. Catoiu EA, Phaneuf P, Monk J, Palsson BO. 2023. Whole-genome 
sequences from wild-type and laboratory-evolved strains define the 
alleleome and establish its hallmarks. Proc Natl Acad Sci U S A 
120:e2218835120. https://doi.org/10.1073/pnas.2218835120

46. Clermont O, Condamine B, Dion S, Gordon DM, Denamur E. 2021. The E 
phylogroup of Escherichia coli is highly diverse and mimics the whole E. 
coli species population structure. Environ Microbiol 23:7139–7151. https:
//doi.org/10.1111/1462-2920.15742

47. Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. 
Bioinformatics 30:2068–2069. https://doi.org/10.1093/bioinformatics/
btu153

48. Seemann T. mlst: :id: scan contig files against PubMLST typing schemes. 
Github. Available from: https://github.com/tseemann/mlst. Retrieved 14 
Nov 2023.

49. Li W, Jaroszewski L, Godzik A. 2001. Clustering of highly homologous 
sequences to reduce the size of large protein databases. Bioinformatics 
17:282–283. https://doi.org/10.1093/bioinformatics/17.3.282

50. Li W, Fu L, Niu B, Wu S, Wooley J. 2012. Ultrafast clustering algorithms for 
metagenomic sequence analysis. Brief Bioinform 13:656–668. https://
doi.org/10.1093/bib/bbs035

51. Huerta-Cepas J, Szklarczyk D, Heller D, Hernández-Plaza A, Forslund SK, 
Cook H, Mende DR, Letunic I, Rattei T, Jensen LJ, von Mering C, Bork P. 
2019. eggNOG 5.0: a hierarchical, functionally and phylogenetically 
annotated orthology resource based on 5090 organisms and 2502 
viruses. Nucleic Acids Res 47:D309–D314. https://doi.org/10.1093/nar/
gky1085

52. Buchfink B, Reuter K, Drost H-G. 2021. Sensitive protein alignments at 
tree-of-life scale using DIAMOND. Nat Methods 18:366–368. https://doi.
org/10.1038/s41592-021-01101-x

53. Cantalapiedra CP, Hernández-Plaza A, Letunic I, Bork P, Huerta-Cepas J. 
2021. eggNOG-mapper v2: functional annotation, orthology assign
ments, and domain prediction at the metagenomic scale. Mol Biol Evol 
38:5825–5829. https://doi.org/10.1093/molbev/msab293

54. Alcock BP, Huynh W, Chalil R, Smith KW, Raphenya AR, Wlodarski MA, 
Edalatmand A, Petkau A, Syed SA, Tsang KK, et al. 2023. CARD 2023: 
expanded curation, support for machine learning, and resistome 
prediction at the Comprehensive Antibiotic Resistance Database. 
Nucleic Acids Res 51:D690–D699. https://doi.org/10.1093/nar/gkac920

55. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, 
Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, 
Cournapeau D, Brucher M, Perrot M, Duchesnay É. 2011. Scikit-learn: 
machine learning in Python. J Mach Learn Res 12:2825–2830. https://doi.
org/10.48550/arXiv.1201.0490

Research Article mSphere

January 2025  Volume 10  Issue 1 10.1128/msphere.00532-2417

https://doi.org/10.1016/j.ijmm.2013.09.007
https://doi.org/10.1097/MIB.0000000000000183
https://doi.org/10.1016/j.chom.2021.01.002
https://doi.org/10.1186/1471-2164-15-17
https://doi.org/10.1111/j.1462-2920.2010.02202.x
https://doi.org/10.1111/1462-2920.13559
https://doi.org/10.1128/AAC.05202-11
https://doi.org/10.1016/j.molmed.2012.03.003
https://doi.org/10.1093/jac/dkx327
https://doi.org/10.1002/advs.201900034
https://doi.org/10.1038/s41467-023-39964-7
https://doi.org/10.12688/wellcomeopenres.14826.1
https://doi.org/10.1073/pnas.2218835120
https://doi.org/10.1111/1462-2920.15742
https://doi.org/10.1093/bioinformatics/btu153
https://github.com/tseemann/mlst
https://doi.org/10.1093/bioinformatics/17.3.282
https://doi.org/10.1093/bib/bbs035
https://doi.org/10.1093/nar/gky1085
https://doi.org/10.1038/s41592-021-01101-x
https://doi.org/10.1093/molbev/msab293
https://doi.org/10.1093/nar/gkac920
https://doi.org/10.48550/arXiv.1201.0490
https://doi.org/10.1128/msphere.00532-24

	Decomposition of the pangenome matrix reveals a structure in gene distribution in the Escherichia coli species
	RESULTS
	Forming the pangenome matrix
	Stratifying the pangenome into three categories of genes
	Defining the genes in the core, accessory, and rare genomes
	Traits in the core genome
	The accessory genome has a clear mathematical structure
	Biological meaning of the pangenome’s mathematical structure
	The E. coli pangenome consists of two distinct groups of phylons
	Traits found in the rare genome

	DISCUSSION
	MATERIALS AND METHODS
	Gathering and processing of sequence data from BV-BRC and NCBI RefSeq
	Genome annotation nd pangenome generation
	Mash filtration and analysis
	Defining the core, accessory, and rare genomes
	TEs richness and evenness calculation
	Non-negative matrix factorization
	Phylon characterization





