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Abstract

On the combinatorics of cluster structures on positroid varieties

by

Melissa Sherman-Bennett

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Lauren Williams, Co-chair

Professor Sylvie Corteel, Co-chair

Cluster algebras are a class of commutative rings with a remarkable combinatorial structure,
introduced by Fomin and Zelevinsky. A cluster algebra has a distinguished set of generators,
called cluster variables, which are grouped together into overlapping subsets called seeds.
This dissertation is concerned with the cluster algebra structure of coordinate rings of open
positroid varieties in the Grassmannian. Open positroid varieties are projections of open
Richardson varieties from the full flag variety to the Grassmannian. They were studied
first by Lusztig and Rietsch in the context of total positivity, and then by Knutson–Lam–
Speyer, who connected them to the combinatorics of the totally nonnegative Grassmannian
developed by Postnikov. Open positroid varieties are smooth, irreducible, and stratify the
Grassmannian; open Schubert varieties are a special case.

Seminal work of Scott established that the homogeneous coordinate ring of the Grassmannian
is a cluster algebra, and moreover that Postnikov’s plabic graphs for the Grassmannian give
seeds for this cluster algebra. Postnikov defined plabic graphs not just for the Grassmannian
but for all positroid varieties. Accordingly, experts long believed that the coordinate ring
of any open positroid variety is also a cluster algebra, with seeds given by plabic graphs.
In Chapter 3, which is joint work with Khrystyna Serhiyenko and Lauren Williams, we
prove this in the case of open Schubert varieties in the Grassmannian. Work of Leclerc
on Richardson varieties in the full flag variety implies that the coordinate rings of these
varieties are cluster algebras, but does not give any explicit descriptions of seeds. We show
that Postnikov’s plabic graphs give seeds in this cluster algebra. For skew Schubert varieties,
we show that Leclerc’s cluster algebra is given by relabeled plabic graphs, whose boundary
vertices are permuted.

Shortly following my work with Serhiyenko and Williams, Galashin–Lam showed that Post-
nikov’s graphs give a cluster algebra structure on coordinate rings of arbitrary positroid
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varieties using similar methods. In Chapter 4, which is joint work with Chris Fraser, we
expand on this result to show that positroid varieties admit a number of different cluster
structures, with seeds given by relabeled plabic graphs. Along the way, we show that many
positroid varieties are isomorphic, using a permuted version of the Muller–Speyer twist map.
We conjecture that all of these distinct cluster structures differ only by rescaling, and prove
this conjecture for open Schubert varieties. This enlarges the class of combinatorially well-
understood seeds for positroid varieties, which provides additional tools to further study the
cluster structure on positroid varieties.
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Chapter 1

Introduction

Cluster algebras are a class of commutative rings with a rich combinatorial structure, intro-
duced by Fomin and Zelevinsky around 2000 [15]. They are equipped with a distinguished
set of generators, known as cluster variables, which are grouped together into overlapping
subsets called seeds1. The cluster variables and seeds of a cluster algebra are defined recur-
sively: given a seed Σ = {x1, . . . , xr}, one can mutate at any cluster variable xk to obtain a
new seed {x1, . . . , xr}∖{xk}∪{x′k} with new cluster variable x′k. One seed Σ determines the
cluster algebra A(Σ). The cluster variables of A(Σ) are the ring elements obtained from
the initial seed Σ by arbitrary sequences of mutations. In the years since their definition,
cluster algebras have been connected to a myriad of other mathematical topics, including
representation theory [20], Teichmüller theory [12], mirror symmetry [24], Poisson geometry
[22], algebraic combinatorics [8], discrete dynamical systems, and scattering amplitudes in
N = 4 super Yang-Mills theory [23].

An example of a cluster algebra is the homogeneous coordinate ring of the Grassmannian
Gr(2, n) of 2-planes in Cn. The cluster variables are the Plücker coordinates ∆ij, and the
seeds are in bijection with triangulations of an n-gon. To see this bijection, label the vertices
of the n-gon 1, . . . , n going clockwise, and associate the Plücker coordinate ∆ij with the
diagonal of the n-gon between vertices i and j. Then two Plücker coordinates ∆ij and ∆ab

appear in a seed together if and only if the corresponding diagonals do not cross, and seeds
correspond to maximal collections of noncrossing diagonals. Mutating a seed at the cluster
variable ∆ij corresponds to “flipping” the diagonal ij in the associated triangulation. See
Figure 1.1 for an example.

One motivation for the definition of cluster algebras was to provide an algebraic frame-
work for Lusztig’s dual canonical bases for representations of semisimple Lie groups [31] and
the related notion of total positivity [33]. For G a simply-connected connected semisimple
Lie group, the coordinate rings of many varieties related to G (including G, double Bruhat
cells in G [3], base affine space G/N [3] and partial flag varieties G/P [21]) have the structure
of a cluster algebra. Fomin and Zelevinsky conjectured that for these coordinate rings, the

1Technically, seeds consist of a collection of cluster variables together with some additional combinatorial
information, such as a quiver. The combinatorial information is necessary for mutation.
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Figure 1.1: On the left, a triangulation of a hexagon corresponding to the seed
Σ = {∆12,∆23, . . . ,∆56,∆16,∆15,∆25,∆24} in C[Gr(2,6)]. Mutating at ∆15 produces a
new seed Σ′ = Σ ∖ {∆15} ∪ {∆26}, corresponding to the triangulation on the right.

cluster variables, and more generally the monomials in any seed (called cluster monomials),
are elements of Lustig’s dual canonical basis [15].

The conjecture on cluster monomials and dual canonical bases has expanded into a
thriving line of inquiry in the field: to understand the various bases of cluster algebras,
particularly those which contain the cluster monomials. For cluster algebras arising from
representation theory, examples are expected, and in some cases known, to include other
bases with representation-theoretic significance, such as dual semicanonical bases [20, 25]
and Kuperberg’s web basis [13]. For more general cluster algebras, the seminal result on
bases is due to Gross, Hacking, Keel, and Kontsevich. They establish that sufficiently nice
cluster algebras2 have a basis of theta functions which includes the cluster monomials [24].
The theta basis has striking positivity properties: it has positive structure constants and
every theta function has an expression as a Laurent polynomial in an arbitrary cluster with
positive coefficients.

This dissertation is concerned with understanding the cluster monomials of cluster alge-
bras arising as the coordinate ring C[V ] of an affine variety V . We consider V with a fixed
embedding in affine space Ad, so identify C[V ] with C[t1, . . . , td]/I for some radical ideal I.
Even in this case, identifying the cluster variables and monomials is difficult. Cluster algebra
machinery gives a way to compute cluster variables and monomials as Laurent polynomials
in some initial cluster; going from such an expression to a polynomial in the generators
t1, . . . , td of C[V ] is nontrivial. Given two regular functions which are known to be cluster
variables, in general the only way to check if their product is a cluster monomial is to exhibit
a seed containing both of them—a tall order since most cluster algebras have infinitely many
seeds. For this reason, I focus on establishing explicit combinatorial constructions for seeds,
and hence cluster monomials, in these cluster algebras. As an added bonus, the seeds arising
from the constructions in this thesis have cluster variables manifestly written as polynomial
functions in the generators of C[V ].

The varieties under consideration are (affine cones over) open positroid varieties Π○,
which are subvarieties of the Grassmannian Grk,n of k-planes in Cn. Open positroid varieties
are projections of certain open Richardson varieties in the full flag variety, and were studied

2including all of those appearing here
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Figure 1.2: On the left, a plabic graph for Π○
3,6. On the right, the corresponding target seed

for C[Π̃○
3,6], with 3-element subsets interpreted as Plücker coordinates. Faces are labeled

using the targets of trips ; one is shown on the right in purple.

in this guise first by Lusztig [32] and Rietsch [43]. Knutson, Lam, and Speyer [28] later
coined the name “positroid variety” and gave a number of alternate definitions, using the
combinatorics of positroids developed by Postnikov [41]. One definition is in terms of the
vanishing and non-vanishing of Plücker coordinates; another is as the intersection of n cycli-
cally shifted Schubert cells. The open positroid varieties are smooth, irreducible, and give a
stratification of the Grassmannian which refines the Schubert stratification [32]. There is a
unique open positroid variety of top dimension, called the “big” open positroid variety Π○

k,n.
It is the subset of Grk,n where the cyclically consecutive Plücker coordinates ∆i,i+1,...,i+k−1 are
nonvanishing.

Open positroid varieties are indexed by a number of combinatorial objects, including Le-
diagrams, decorated permutations, Grassmann necklaces, and equivalence classes of plabic
graphs (all due to Postnikov [41]). From the perspective of cluster algebras and seeds, the
most useful of these objects are plabic graphs, planar bicolored graphs drawn in a disk with
boundary vertices 1, . . . , n going clockwise (see Figure 1.2). The positroid variety to which
a plabic graph G corresponds can be read off of a combinatorial statistic called the trip
permutation of G.

Plabic graphs appeared very early in the history of cluster algebras, in the context seeds
for Π̃○

k,n, the affine cone over the big open positroid variety. Scott [46] showed that C[Π̃○
k,n]

is a cluster algebra3, and moreover gave a recipe to produce a seed ΣT
G in this cluster algebra

from each plabic graph G for Π○
k,n(see Figure 1.2). This recipe uses the target face labels of the

graph G, so we call ΣT
G the target seed of G. The target seed ΣT

G consists entirely of Plücker

3Scott had slightly different conventions for cluster algebras, so in fact worked with the affine cone over
the Grassmannian, rather than the affine cone over Π○

k,n.
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coordinates and, in fact, all seeds for C[Π̃○
k,n] consisting entirely of Plücker coordinates arise

from a plabic graph [39]. So plabic graphs give us a good combinatorial understanding of a
finite subset of the seeds for C[Π̃○

k,n]. This subset is a proper subset of the seeds for C[Π̃○
k,n]

in all cases except k = 2 and k = n − 2.
Scott’s recipe to produce the seed ΣT

G works equally well for arbitrary plabic graphs.
So essentially since Scott’s result, experts believed it should extend to arbitrary positroid
vareities, though this conjecture wasn’t written down until [36, Conjecture 3.4].

Conjecture 1.0.1. Let G be a reduced plabic graph corresponding to an open positroid variety
Π○. Then the cluster algebra A(ΣT

G) with initial seed ΣT
G is equal to C[Π̃○], the coordinate

ring of the affine cone over Π○.

Note that if G and H are plabic graphs for the same open positroid variety, then ΣT
G and

ΣT
H are related by a sequence of mutations. So Conjecture 1.0.1 posits the existence of a

single cluster algebra structure on C[Π̃○], for which each plabic graph for Π○ gives a seed.
In the years following Scott’s result, partial progress on this conjecture was made by

Leclerc [30]. Using cluster category techniques, he showed that coordinate rings of open
Richardson varieties in the full flag variety have a subalgebra which is a cluster algebra. In
certain cases, he showed this subalgebra is the entire coordinate ring. Because open positroid
varieties are isomorphic to certain open Richardson varieties, this established that C[Π̃○] has
a cluster subalgebra which, in some cases, was known to be the whole ring. However, Leclerc’s
results are phrased in language very different from that of plabic graphs, and his seeds are far
from explicit; to compute them, one needs to compute morphisms of modules in a particular
preprojective algebra.

In Chapter 3, which is joint work with Khrystyna Serhiyenko and Lauren Williams [47],
we prove Conjecture 1.0.1 for open Schubert varieties, i.e. open positroid varieties which are
dense in some Schubert variety. More precisely, we show the following.

Theorem A (Theorem 3.1.6). Consider the open Schubert variety X○
λ of Gr(k,n). Let G

be a reduced plabic graph with trip permutation π↙λ . Then the coordinate ring C[X̃○
λ] of (the

affine cone over) X○
λ coincides with the cluster algebra A(ΣT

G).

For open Schubert varieties, Leclerc’s results tell us that the coordinate rings of an open
Schubert variety is a cluster algebra. The problem is determining whether or not plabic
graphs give seeds in this cluster algebra. We answer this question in the affirmative, using
a construction of Karpman [26]. We also obtain similar results for the more general class of
open skew Schubert varieties, with an interesting combinatorial variation. Leclerc’s cluster
algebra is again the entire coordinate ring in this case. We show that seeds in this cluster
algebra are given by relabeled plabic graphs for Π○, whose boundary vertices (read clockwise)
are a particular permutation of 1, . . . , n.

Theorem B (Theorem 3.1.7). Consider the open skew Schubert variety πk(Rv,w). Let G
be a reduced plabic graph with trip permutation vw−1 = x−1. Apply v−1 to the boundary
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vertices of G, obtaining the relabeled graph Gv−1, and apply the target labeling to obtain the
seed ΣT

Gv−1
. Then the coordinate ring C[ ̃πk(Rv,w)] of (the affine cone over) the open skew

Schubert variety πk(Rv,w) coincides with the cluster algebra A(ΣT

Gv−1
).

Shortly after [47], Galashin and Lam used similar methods to prove Conjecture 1.0.1 for
arbitrary open positroid varieties [19]. However, Galashin and Lam used a slightly different
combinatorial procedure to obtain a seed from a plabic graph G; rather than use the target
face labels, they use the source face labels to obtain the source seed ΣS

G. Though this may
seem like an innocuous convention difference, in fact the source seed ΣS

G and target seed
ΣT
G are usually not related by any sequence of mutations. That is, the cluster algebra with

initial seed ΣT
G and the cluster algebra with initial seed ΣS

G have different cluster variables.
A priori, they may have different cluster monomials and different theta bases.

So using the results of [47] and [19], the coordinate ring C[Π̃○] of an open Schubert variety
can be identified with two different cluster algebras: the “target” cluster algebra, whose seeds
include the target seeds ΣT

G and the “source” cluster algebra, whose seeds include the source
seeds ΣS

G. Similarly, coordinate rings of open skew Schubert varieties also have two different
cluster algebra structures, one given by source seeds of plabic graphs and the other given by
target seeds of certain relabeled plabic graphs. It is very natural to ask what the relationship
between these cluster algebras is. For example, do they give rise to different bases of C[Π̃○]?

In Chapter 4, which is joint work with Chris Fraser [18], we address a generalization of
this question. First, we show that the coordinate ring of any open positroid variety admits
many cluster algebra structures. Each of these cluster algebras has a combinatorial source
for seeds: relabeled plabic graphs with a fixed boundary. We characterize exactly which
relabeled plabic graphs give a cluster algebra structure on C[Π̃○].

Theorem C (Theorem 4.1.2). Suppose π, ρ ∈ Sn such that πρ ≤○ π and set µ = ρ−1πρ. Let G
be a reduced plabic graph with trip permutation µ, so that Gρ has trip permutation π. Then
the following are equivalent:

1. ΣT
Gρ is a seed in C(Π̃○

π) and A(ΣT
Gρ) = C[Π̃○

π].

2. The number of faces of Gρ is dim Π̃○
π. Equivalently, dim Π̃○

π = dim Π̃○
µ.

3. The Plücker coordinates
→●
F (Gρ) associated to the boundary faces (equivalently, to all

faces) of Gρ are a weakly separated collection.

4. The open positroid varieties Π̃○
π and Π̃○

µ are isomorphic.

Moreover, if any (hence, all) of the above conditions hold, the positive part of Π̃○
π determined

by ΣT
Gρ is the positroid cell Π̃○

π,>0.

Figure 1.3 illustrates Theorem C.
Among the seeds covered by Theorem C are the target seed ΣT

H and source seed ΣS
H for H

a usual plabic graph with trip permutation π, as well as the seeds ΣT

Gv−1
defined in Theorem B



CHAPTER 1. INTRODUCTION 6

1

2

3

4

5

6 1

2

3

4

5

6

1

2

3

4

5

6

134

234 345

456

156
136

346

146

234

345

456

156
136

236
235

356

234

345

456

156

236

256

346

356

Figure 1.3: On the left, a plabic graph with target face labels for an open Schubert variety
X in Gr(3,6). Center and right: 2 relabeled plabic graphs, together with target face labels.
Each graph defines a different cluster algebra, equal to C[X̃]. The seeds in each of these
cluster algebras are related by rescaling.

for open skew Schubert varieties. The seeds ΣT
H and ΣT

Gρ are not related by mutation unless
ρ is the identity. However, for Schubert varieties, we show that they are related by a quasi-
cluster transformation; that is, a sequence of mutations followed by rescaling by elements of
the seed.

Theorem D (Theorem 4.7.12). Suppose Π̃○
π is an open Schubert or opposite open Schubert

variety. Suppose H is a plabic graph with trip permutation π, and Gρ is a relabeled plabic
graph with trip permutation π satisfying the conditions of Theorem C. Then the seeds ΣT

H

and ΣT
Gρ are related by a quasi-cluster transformation.

Theorem D shows that, for open Schubert varieties, each relabeled graph satisfying the
conditions of Theorem C gives rise to a seed in the target cluster algebra and (for a different
choice of rescaling) a seed in the source cluster algebra. In particular, it implies that each
relabeled graph cluster algebra, including the source and target, give rise to the same cluster
monomials and theta bases on C[Π̃○]. We also show a weaker statement for the larger class of
toggle-connected positroids: that the source seed ΣS

G and the target seed ΣT
G for a usual plabic

graph are related by a quasi-cluster transformation, proving a conjecture of Muller–Speyer
(see Conjecture 4.1.1).

We further conjecture that Theorem D holds for arbitrary open positroid varities (Con-
jecture 4.1.3). In light of this conjecture, we view relabeled plabic graphs as an additional
source for combinatorially well-understood seeds in the target cluster structure on C[Π̃○].
This gives us additional tools to understand the target cluster structure, which is at present
rather mysterious. For example, it is unknown if Plücker coordinates are in the theta basis
for C[Π̃○]. It is natural to conjecture that all nonvanishing Plücker coordinates ∆I on Π̃○

are cluster monomials in C[Π̃○]; if they are, the natural seeds to consider are the relabeled
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plabic graph seeds. One might also hope that relabeled plabic graphs give all seeds for Π̃○

whose cluster variables are Laurent monomials in Plücker coordinates, just as usual plabic
graphs give all the Plücker coordinate seeds for Π̃○

k,n.

Outline. The dissertation is structured as follows. Chapter 2 contains background material
on cluster algebras and plabic graphs, their trip permutations, and the source and target
seed constructions. Chapter 3 contains results on cluster structures for coordinate rings of
open Schubert and skew Schubert varieties. Chapter 4 contains results on relabeled plabic
graph cluster structures for coordinate rings of arbitrary open positroid varieties.



8

Chapter 2

Background on cluster algebras and
plabic graphs

In this chapter, we recall background on cluster algebras and the combinatorics of plabic
graphs, parts of which appeared in [18, 47]. We delay the definition of open Schubert and
positroid varieties to Chapter 3 and Chapter 4, respectively.

2.1 Cluster algebras

Cluster algebras are a class of rings with a particular combinatorial structure; they were
introduced by Fomin and Zelevinsky in [15].

Definition 2.1.1 (Quiver). A quiver Q is a directed graph; we will assume that Q has no
loops or 2-cycles. Each vertex is designated either mutable or frozen.

Definition 2.1.2 (Quiver Mutation). Let q be a mutable vertex of quiver Q. The quiver
mutation µq transforms Q into a new quiver Q′ = µq(Q) via a sequence of three steps:

1. For each oriented two path r → q → s, add a new arrow r → s (unless r and s are both
frozen, in which case do nothing).

2. Reverse the direction of all arrows incident to the vertex q.

3. Repeatedly remove oriented 2-cycles until unable to do so.

We say that two quivers Q and Q′ are mutation equivalent if Q can be transformed into
a quiver isomorphic to Q′ by a sequence of mutations.

Definition 2.1.3 (Labeled seeds). Choose M ≥ N positive integers. Let F be an ambient
field of rational functions in N independent variables over C(xN+1, . . . , xM). A labeled seed
in F is a pair (x̃,Q), where
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• x̃ = (x1, . . . , xM) forms a free generating set for F , and

• Q is a quiver on vertices 1,2, . . . ,N,N+1, . . . ,M , whose vertices 1,2, . . . ,N are mutable,
and whose vertices N + 1, . . . ,M are frozen.

We refer to x̃ as the (labeled) extended cluster of a labeled seed (x̃,Q). The variables
{x1, . . . , xN} are called cluster variables, and the variables c = {xN+1, . . . , xM} are called
frozen or coefficient variables. We often view the labeled seed as a quiver Q where each
vertex i is labeled by the corresponding variable xi.

Definition 2.1.4 (Seed mutations). Let (x̃,Q) be a labeled seed in F , and let q ∈ {1, . . . ,N}.
The seed mutation µq in direction q transforms (x̃,Q) into the labeled seed µq(x̃,Q) =
(x̃′, µq(Q)), where the cluster x̃′ = (x′1, . . . , x′M) is defined as follows: x′j = xj for j ≠ q,
whereas x′q ∈ F is determined by the exchange relation

x′q xq = ∏
q→r

xr +∏
s→q

xs, (2.1.1)

where the first product is over all arrows q → r in Q which start at q, and the second product
is over all arrows s→ q which end at q.

Remark 2.1.5. It is not hard to check that seed mutation is an involution.

Remark 2.1.6. Note that arrows between two frozen vertices of a quiver do not affect seed
mutation (they do not affect the mutated quiver or the exchange relation). For that reason,
one may omit arrows between two frozen vertices.

Definition 2.1.7 (Patterns). Consider the N-regular tree TN whose edges are labeled by the
numbers 1, . . . ,N , so that the N edges emanating from each vertex receive different labels.
A cluster pattern is an assignment of a labeled seed Σt = (x̃t,Qt) to every vertex t ∈ TN , such

that the seeds assigned to the endpoints of any edge t
q−−− t′ are obtained from each other by

the seed mutation in direction q. The components of x̃t are written as x̃t = (x1;t , . . . , xN ;t).

Clearly, a cluster pattern is uniquely determined by an arbitrary seed.

Definition 2.1.8 (Cluster algebra). Given a cluster pattern, we denote

X = ⋃
t∈TN

x̃t = {xi,t ∶ t ∈ TN , 1 ≤ i ≤ N} , (2.1.2)

the union of clusters of all the seeds in the pattern. The elements xi,t ∈ X are called cluster
variables. The cluster algebra A associated with a given pattern is the C[x±1

N+1, . . . , x
±1
M ]-

subalgebra of the ambient field F generated by all cluster variables: A = C[c±1][X ]. We
denote A = A(x̃,Q), where (x̃,Q) is any seed in the underlying cluster pattern. In this
generality, A is called a cluster algebra from a quiver, or a skew-symmetric cluster algebra of
geometric type. We say that A has rank N because each cluster contains N cluster variables.
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Remark 2.1.9. Throughout this dissertation, we restrict our attention to the following
situation. Let V be a rational affine algebraic variety with algebra of regular functions
C[V ]. The ambient field is the field C(V ) of rational functions on V . We are interested in
seed patterns in C(V ) with extended clusters of size dimV , whose frozen variables are units
in C[V ].

We denote by P ⊂ C(V ) the abelian group of Laurent monomials in the frozen variables.
Under the assumptions of Remark 2.1.9, we in fact have P ⊂ C[V ].

A seed pattern in C(V ) determines a cluster structure on V if A(Σ) = C[V ] for some
(hence any) seed Σ in the seed pattern. In an abuse of language, we also say that a seed Σ
determines a cluster structure on V if its seed pattern does.

Suppose Σ determines a cluster structure on V . This endows V with the following
structures:

• A set of cluster monomials in C[V ]. These are elements f ∈ C[V ] that can be expressed
in the form f = M1

M2
where M1 is a monomial in the variables of some cluster in the

seed pattern, and M2 ∈ P is a monomial in the frozen variables. Thus, our definition
of cluster monomial allows frozen variables in the denominator.

• A totally positive part V>0 ⊂ V . This is the subset where all cluster variables (equiva-
lently, all variables in any particular cluster) evaluate positively.

• For each seed Σ in the seed pattern, a rational map V ⇢ (C∗)m given by evaluating
the cluster variables. We call its domain of definition the cluster torus VΣ ⊂ V . By the
Laurent phenomenon for cluster algebras, there is an inverse map (C∗)m ↪ V , an open
embedding we refer to as the cluster chart.

Remark 2.1.10. One of the earliest definitions of cluster algebra defined it as A = C[c][X ]
instead of A = C[c±1][X ]. This is the definition Scott worked with in proving that the
coordinate ring of the Grassmannian is a cluster algebra [46]. If one uses Definition 2.1.8
instead, then the statement is that the coordinate ring of the big open positroid variety
in the Grassmannian is a cluster algebra. In fact the latter statement was verified in [22,
Section 3.3], who exhibited an initial quiver which is the one from the rectangles seed we
discuss in Section 3.3.

2.2 Background on plabic graphs

In this section we review Postnikov’s notion of plabic graphs [41], which we will then use
to define cluster structures in Schubert varieties in Chapter 3 and positroid varieties in
Chapter 4.

Definition 2.2.1. A plabic (or planar bicolored) graph is an undirected graph G drawn
inside a disk (considered modulo homotopy) with n boundary vertices on the boundary of
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the disk, labeled 1, . . . , n in clockwise order, as well as some colored internal vertices. These
internal vertices are strictly inside the disk and are colored in black and white. An internal
vertex of degree one adjacent to a boundary vertex is a lollipop. We will always assume that
no vertices of the same color are adjacent, and that each boundary vertex i is adjacent to a
single internal vertex.

See Figure 2.1 for an example of a plabic graph.

1

2

34

5

Figure 2.1: A plabic graph.

Definition 2.2.2. A relabeled plabic graph is a plabic graph with boundary vertices are
labeled by 1, . . . , n in some order, not necessarily clockwise.

Relabeled plabic graphs naturally arise in the course of our arguments. Though we state
all of the following definitions for plabic graphs for clarity, they can equally be made for
relabeled plabic graphs.

There is a natural set of local transformations (moves) of plabic graphs, which we now
describe. Note that we will always assume that a plabic graph G has no isolated components
(i.e. every connected component contains at least one boundary vertex). We will also assume
that G is leafless, i.e. if G has an internal vertex of degree 1, then that vertex must be adjacent
to a boundary vertex.

(M1) SQUARE MOVE (Urban renewal). If a plabic graph has a square formed by four
trivalent vertices whose colors alternate, then we can switch the colors of these four vertices
(and add some degree 2 vertices to preserve the bipartiteness of the graph).

(M2) CONTRACTING/EXPANDING A VERTEX. Any degree 2 internal vertex not ad-
jacent to the boundary can be deleted, and the two adjacent vertices merged. This operation
can also be reversed. Note that this operation can always be used to change an arbitrary
square face of G into a square face whose four vertices are all trivalent.

(M3) MIDDLE VERTEX INSERTION/REMOVAL. We can always remove or add degree
2 vertices at will, subject to the condition that the graph remains bipartite.

See Figure 2.2 for depictions of these three moves.
(R1) PARALLEL EDGE REDUCTION. If a plabic graph contains two trivalent vertices

of different colors connected by a pair of parallel edges, then we can remove these vertices
and edges, and glue the remaining pair of edges together.
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Figure 2.2: A square move, an edge contraction/expansion, and a vertex insertion/removal.

Figure 2.3: Parallel edge reduction

Definition 2.2.3. Two plabic graphs are called move-equivalent if they can be obtained
from each other by moves (M1)-(M3). The move-equivalence class of a given plabic graph
G is the set of all plabic graphs which are move-equivalent to G. A leafless plabic graph
without isolated components is called reduced if there is no graph in its move-equivalence
class to which we can apply (R1).

Definition 2.2.4. A decorated permutation π∶ is a permutation π ∈ Sn together with a
coloring {i ∣ π(i) = i} → {black, white}.

Definition 2.2.5. Given a reduced plabic graph G, a trip T is a directed path which starts
at some boundary vertex i, and follows the “rules of the road”: it turns (maximally) right
at a black vertex, and (maximally) left at a white vertex. Note that T will also end at a
boundary vertex j; we then refer to this trip as Ti→j. Setting π(i) = j for each such trip, we
associate a (decorated) trip permutation πG = π(1) . . . π(n) to each reduced plabic graph G,
where a fixed point π(i) = i is colored white (black) if there is a white (black) lollipop at
boundary vertex i.

As an example, the trip permutation associated to the reduced plabic graph in Figure
2.1 is 34512.

Remark 2.2.6. Note that the trip permutation of a plabic graph is preserved by the local
moves (M1)-(M3), but not by (R1). For reduced plabic graphs the converse holds, namely
it follows from [41, Theorem 13.4] that any two reduced plabic graphs with the same trip
permutation are move-equivalent.

Now we use the notion of trips to label each face of G by a Plücker coordinate. Towards
this end, note that every trip will partition the faces of a plabic graph into two parts: those
on the left of the trip, and those on the right of a trip.

Definition 2.2.7. Let G be a reduced plabic graph with b boundary vertices. For each
one-way trip Ti→j with i ≠ j, we place the label i (respectively, j) in every face which is to
the left of Ti→j. If i = j (that is, i is adjacent to a lollipop), we place the label i in all faces if
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Figure 2.4: A plabic graph G together with Q(G) and its source face labeling.

the lollipop is white and in no faces if the lollipop is black. We then obtain a labeling
←●
F (G)

(respectively,
→●
F (G)) of faces of G by subsets of [b] which we call the source (respectively,

target) labeling of G. We denote the source label (resp. target label) of a face F by
←●
I (F )

(resp.
→●
I (F ))1. We identify each a-element subset of [b] with the corresponding Plücker

coordinate.

The right-hand side of Figure 2.4 shows a plabic graph with the face labeling
←●
F (G).

We next associate a quiver to each plabic graph, and relate quiver mutation to moves on
plabic graphs.

Definition 2.2.8. Let G be a reduced plabic graph. We associate a quiver Q(G) as follows.
The vertices of Q(G) are labeled by the faces of G. We say that a vertex of Q(G) is frozen if
the corresponding face is incident to the boundary of the disk, and is mutable otherwise. For
each edge e in G which separates two faces, at least one of which is mutable, we introduce
an arrow connecting the faces; this arrow is oriented so that it “sees the white endpoint of e
to the left and the black endpoint to the right” as it crosses over e. We then remove oriented
2-cycles from the resulting quiver, one by one, to get Q(G). See Figure 2.4.

Definition 2.2.9. Given a reduced plabic graph G, we let ΣT
G (respectively, ΣS

G) be the
labeled seed consisting of the quiver Q(G) with vertices labeled by the Plücker coordinates
→●
F (G) (respectively,

←●
F (G)). Given a plabic graph G on n vertices and a permutation v ∈ Sn,

we will sometimes use relabeled plabic graphs Gv−1 (where the boundary vertices have been
modified by applying v−1 to them). We will refer to the corresponding seeds with the induced
target labelings by e.g. ΣT

Gv−1
.

The following lemma is straightforward, and is implicit in [46].

1The location of the dot in the notations
→●
I (F ) versus

←●
I (F ) indicates that this labeling records the

target vs source of trips; the orientation of the arrow is meant as a reminder that the boundary faces are
labeled by the forward or reverse Grassmann necklace (see Definition 4.3.4)
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Lemma 2.2.10. If G and G′ are related via a square move at a face, then ΣT
G and ΣT

G′ are
related via mutation at the corresponding vertex. Similarly for ΣS

G and ΣS
G′.

Because of Lemma 2.2.10, we will subsequently refer to “mutating” at a nonboundary
face of G, meaning that we mutate at the corresponding vertex of quiver Q(G). Note that
in general the quiver Q(G) admits mutations at vertices which do not correspond to moves
of plabic graphs. For example, G might have a hexagonal face, all of whose vertices are
trivalent; in that case, Q(G) admits a mutation at the corresponding vertex, but there is no
move of plabic graphs which corresponds to this mutation.
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Chapter 3

A cluster structure on Schubert
varieties

The work in this chapter is joint with Khrystyna Serhiyenko and Lauren Williams and has
been published in Proceedings of the London Mathematical Society [47]. We are grateful to
Bernard Leclerc for numerous helpful discussions, and for bringing the work of Chevalier [9]
to our attention. We would also like to thank an anonymous referee for helpful suggestions on
the exposition. All three authors gratefully acknowledge the support of the National Science
Foundation: an NSF graduate research fellowship (M.S.B.), an NSF Mathematical Sciences
postdoctoral fellowship (K.S.), and grant No. DMS-1600447 (L.W.). Any opinions, findings
and conclusions or recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the National Science Foundation.

3.1 Introduction

The main goal of this chapter is to show that the coordinate ring of (the affine cone over)
any (open) Schubert variety of the Grassmannian (embedded into projective space via the
Plücker embedding) can be identified with a cluster algebra, whose combinatorial structure
is described explicitly in terms of plabic graphs. More precisely, we prove Conjecture 1.0.1
for the case of open Schubert varieties.

Partial progress towards this conjecture was made by Leclerc [30]; his work will be a key
tool here. Leclerc constructed a subcategory Cv,w of the module category of the preprojective
algebra, that has a cluster structure, to show that the coordinate ring of each open Richardson
variety Rv,w of the complete flag variety contains a subalgebra which is a cluster algebra;
when w has a factorization of the form w = xv with `(w) = `(x) + `(v) (Leclerc refers to
this as “Property (P)”), he showed that this subalgebra coincides with the coordinate ring
[30, Proposition 5.1]. Because open Schubert varieties are isomorphic to open Richardson
varieties with Property (P), Leclerc’s result implies that their coordinate rings admit a cluster
structure. However, Leclerc’s description of the cluster structure is very different from the
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plabic graph description and is far from explicit: e.g. his cluster quiver is defined in terms
of morphisms of modules of the preprojective algebra.

In this chapter, we prove Conjecture 1.0.1 for Schubert varieties by relating Leclerc’s
cluster structure to the conjectural one coming from plabic graphs. We also generalize our
result to construct cluster structures in skew Schubert varieties (which also satisfy Property
(P)); interestingly, these cluster structures for skew Schubert varieties depart from the one
in Conjecture 1.0.1, since they use relabeled plabic graphs (with boundary vertices which are
not longer cyclically labeled).

Once we have proved that the coordinate rings of (open) Schubert and skew Schubert
varieties have cluster structures, we obtain a number of results “for free” from the cluster
theory, including the Laurent phenomenon and the Positivity theorem for cluster variables.
As a consequence of our results we also obtain many combinatorially explicit cluster seeds
for each (open) Schubert and skew Schubert variety. Note that (open) Schubert varieties
provide examples of cluster structures of all the finite type simply-laced cluster types (ADE),
see Section 3.7. Combining our main results with [36, Theorem 3.3] and [35], we find that
the coordinate rings of (open) Schubert and skew Schubert varieties (viewed as cluster al-
gebras) are locally acyclic, which implies that each one is finitely generated, normal, locally
a complete intersection, and equal to its own upper cluster algebra. Combining our result
with [16, Theorem 1.2], we find that the quivers giving rise to the cluster structures for
Schubert and skew Schubert varieties admit green-to-red sequences, which by [24] implies
that the cluster algebras have Enough Global Monomials and hence each coordinate ring has
a canonical basis of theta functions, parameterized by the lattice of g-vectors. Finally we
obtain applications to the structure of indecomposable summands of cluster-tilting modules
in Cv,w and the morphisms between them.

Notation for the flag variety

Let GLn denote the general linear group, B the Borel subgroup of lower triangular matrices,
B+ the opposite Borel subgroup of upper triangular matrices, and W = Sn the Weyl group
(which is in this case the symmetric group on n letters). W is generated by the simple
reflections si for 1 ≤ i ≤ n − 1, where si is the transposition exchanging i and i + 1, and it
contains a longest element, which we denote by w0, with `(w0) = (n

2
). The complete flag

variety Fln is the homogeneous space B ∖GLn. Concretely, each element g of GLn gives rise
to a flag of subspaces {V1 ⊂ V2 ⊂ ⋅ ⋅ ⋅ ⊂ Vn}, where Vi denotes the span of the top i rows of g.
The action of B on the left preserves the flag, so we can identify Fln with the set of flags
{V1 ⊂ V2 ⊂ ⋅ ⋅ ⋅ ⊂ Vn} where dimVi = i.

Let π ∶ GLn → Fln denote the natural projection π(g) ∶= Bg. The Bruhat decomposition

GLn = ⊔
w∈W

BẇB,

where ẇ is a matrix representative for w in GLn, projects to the Schubert decomposition

Fln = ⊔
w∈W

Cw.
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Here Cw = π(BẇB) denotes the Schubert cell associated to w, isomorphic to C`(w). We also
have the Birkhoff decomposition

GLn = ⊔
w∈W

BẇB+,

which projects to the opposite Schubert decomposition

Fln = ⊔
w∈W

Cw

where Cw = π(BẇB+) is the opposite Schubert cell associated to w, isomorphic to C`(w0)−`(w).
The intersection

Rv,w ∶= Cv ∩Cw
has been considered by Kazhdan and Lusztig [27] in relation to Kazhdan-Lusztig polyno-
mials. Rv,w is nonempty only if v ≤ w in the Bruhat order of W , and it is then a smooth
irreducible locally closed subset of Cw of dimension `(w) − `(v). Sometimes Rv,w is called
an open Richardson variety [28] because its closure is a Richardson variety [42]. We have a
stratification of the complete flag variety

Fln = ⊔
v≤w
Rv,w.

Notation for the Grassmannian

Fix 1 < k < n. The parabolic subgroup WK = ⟨s1, . . . , sk−1⟩ × ⟨sk+1, sk+2, . . . , sn−1⟩ < W gives
rise to a parabolic subgroup PK in GLn, namely PK = ⊔w∈WK

BẇB, where ẇ is a matrix
representative for w in GLn. WK contains a longest element, which we denote by wK , with
`(wK) = (k

2
) + (n−k

2
).

The Grassmannian Gr(k,n) is the homogeneous space PK ∖GLn. We can think of the
Grassmannian Gr(k,n) = PK ∖ GLn more concretely as the set of all k-planes in an n-
dimensional vector space Cn. An element of Gr(k,n) can be viewed as a full rank k × n
matrix of rank k, modulo left multiplication by invertible k × k matrices. That is, two k × n
matrices of rank k represent the same point in Gr(k,n) if and only if they can be obtained
from each other by invertible row operations.

For integers a, b, let [a, b] denote {a, a+1, . . . , b−1, b} if a ≤ b and the empty set otherwise.
We use the shorthand [n] ∶= [1, n]. Let ([n]

k
) the set of all k-element subsets of [n].

Given V ∈ Gr(k,n) represented by a k × n matrix A, for I ∈ ([n]
k
) we let ∆I(V ) be the

maximal minor of A located in the column set I. The ∆I(V ) do not depend on our choice of
matrix A (up to simultaneous rescaling by a nonzero constant), and are called the Plücker
coordinates of V . The Plücker coordinates give an embedding of Gr(k,n) into projective
space of dimension (n

k
) − 1.

We have the usual projection πk from the complete flag variety Fln to the Grassmannian
Gr(k,n). Let WK = WK

min and WK
max denote the set of minimal- and maximal-length coset
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representatives for WK∖W ; we also let KW (or KminW ) denote the set of minimal-length coset
representatives for W /WK . Such a permutation σ ∈ Sn is called a Grassmannian permutation
of type (k,n); it has the property that it has at most one descent, and when present, that
descent must be in position k, i.e. σ(k) > σ(k + 1).

Rietsch studied the projections of the open Richardson varieties in the complete flag
variety to partial flag varieties [43]. In particular, when v ∈ WK

max (or when w ∈ WK
min), the

projection πk is an isomorphism from Rv,w to πk(Rv,w). We obtain a stratification

Gr(k,n) = ⊔πk(Rv,w)

where (v,w) range over all v ∈WK
max, w ∈W , such that v ≤ w. Following work of Postnikov

[41, 28], the strata πk(Rv,w) are sometimes called open positroid varieties, while their closures
are called positroid varieties. See Section 4.2 for other descriptions of positroid varieties,
given by Knutson–Lam–Speyer.

It follows from the definitions (see e.g. [28, Section 6]) that positroid varieties include
Schubert and opposite Schubert varieties in the Grassmannians, which we now define.

Definition 3.1.1. Let I denote a k-element subset of [n]. The Schubert cell ΩI is defined
to be

ΩI = {A ∈ Gr(k,n) ∣ the lexicographically minimal nonvanishing Plucker coordinate of A is ∆I(A)}.

The Schubert variety XI is defined to be the closure ΩI of ΩI .
Meanwhile the opposite Schubert cell ΩI is defined to be

ΩI = {A ∈ Gr(k,n) ∣ the lexicographically maximal nonvanishing Plucker coordinate of A is ∆I(A)}.

The opposite Schubert variety XI is defined to be the closure ΩI of ΩI .

It’s easy to see that elements v of WK
max and elements w of WK

min are also in bijection with
k-element subsets of [n], which we denote by I(v) and I(w), respectively. When w ∈WK

min,

πk(Re,w) is isomorphic to the opposite Schubert variety XI(w) in the Grassmannian, which
has dimension `(w). We therefore refer to πk(Re,w) as an open opposite Schubert variety.

Similarly, when v ∈ WK
max, πk(Rv,w0) is isomorphic to the Schubert variety XI(v) in the

Grassmannian, which has dimension `(w0)−`(v). We refer to πk(Rv,w0) as an open Schubert
variety. More generally, if v ∈WK

max and w ∈W has a factorization of the form w = xv which

is length-additive, i.e. where `(w) = `(x) + `(v), then we refer to πk(Rv,w) (respectively,
πk(Rv,w)) as a skew Schubert variety (respectively, open skew Schubert variety). See Sec-
tion 3.8 for more discussion of skew Schubert varieties, including some justification for the
terminology.

Remark 3.1.2. The reader should be cautioned that open Schubert varieties and open
opposite Schubert varieties, as defined above, are positroid varieties, but are not Schubert
cells or opposite Schubert cells. Each open (opposite) Schubert variety is a proper subset
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of the corresponding Schubert cell. For example, consider the Grassmannian Gr1,3 = P2

with homogenous coordinates (x1 ∶ x2 ∶ x3). The largest Schubert cell is x1 ≠ 0, while the
corresponding open Schubert variety is the subset of Gr1,3 defined by x1x2x3 ≠ 0.

Let λ denote a Young diagram contained in a k×(n−k) rectangle. We can identify λ with
the lattice path L↙λ in the rectangle taking steps west and south from the northeast corner of
the rectangle to the southwest corner (where the↙ indicates that the path“goes southwest”).
If we label the steps of the lattice path from 1 to n, then the labels of the south steps give
a k-element subset of [n] that we denote by V ↙(λ) (the “vertical steps” of λ). Conversely,
each k-element subset I of [n] can be identified with a Young diagram, which we denote
by λ↙(I). Since this gives a bijection between Young diagrams contained in a k × (n − k)
rectangle and k-element subsets of [n], we also index Schubert and opposite Schubert cells
and varieties by Young diagrams, denoting them Ωλ, Ωλ, Xλ, and Xλ, respectively. The open
Schubert and opposite Schubert varieties are denoted by X○

λ, and (Xλ)○. The dimension of
Ωλ, Xλ, and X○

λ is ∣λ∣, the number of boxes of λ, while the codimension of Ωλ, Xλ, and (Xλ)○
is ∣λ∣.

Remark 3.1.3. Throughout this chapter we will be primarily working with open Schubert
(and skew-Schubert) varieties. The reader should be cautioned that we will mostly drop the
adjective “open” from now on but will try to consistently use the notation X○

λ for clarity.

We also associate with a Young diagram λ the Grassmannian permutation π↙λ of type
(n − k,n): in list notation, this permutation is obtained by first reading the labels of the
horizontal steps of L↙λ , and then reading the labels of the vertical steps of L↙λ . (Moreover
any fixed points in positions 1,2, . . . , n − k are “black” and any fixed points in positions
n − k + 1, . . . , n are “white.”) Note that `(π↙λ ) = ∣λ∣.

Remark 3.1.4. The open positroid varieties πk(Rv,w) ⊆ Grk,n are in bijection with a variety
of combinatorial objects introduced by Postnikov in [41], including decorated permutations
(see Definition 2.2.4) on n letters with k antiexcedances. Here we say that i ∈ [n] is an
antiexcedance if π−1

v,w(i) > πv,w(i) or i is a white lollipop.
As pointed out in [49], the decorated permutation corresponding to πk(Rv,w) is πv,w ∶=

v−1w with all white fixed points lying in v−1([k]) (see [26, Section 2.4, Equation 2.27] for
phrasing that is closer to ours). The set of antiexcedances is exactly v−1([k]). Clearly one
can recover the pair (v,w) from πv,w since v ∈WK

max.

Remark 3.1.5. “Going northeast” along the lattice path L↙λ gives rise to analogous bi-
jections between Young diagrams in a k × (n − k) rectangle, k-element subsets of n, and
Grassmannian permutations of type (k,n). So we can define all the notations that we did
before, switching each ↙ to a ↗. So a Young diagram λ is identified with the lattice path
L↗λ in the rectangle taking steps east and north from the southwest corner of the rectangle
to the northeast corner. If we label the path with 1 to n, the labels of the north steps give
the k-element subset V ↗(λ). Similarly we define λ↗(I).
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The main result

We now state the main result. Note that the definitions of plabic graph and trip permutation
can be found in Section 2.2.

Theorem 3.1.6. Consider the Schubert variety X○
λ of Gr(k,n). Let G be a reduced plabic

graph (with boundary vertices labeled clockwise from 1 to n) with trip permutation π↙λ . Then

the coordinate ring C[X̃○
λ] of the (affine cone over) X○

λ coincides with the cluster algebra
A(ΣT

G).
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Figure 3.1: A plabic graph G for Gr3,7 with trip permutation π↙λ = 2467135, for λ = (4,3,2),
together with the dual quiver of G and the face labeling given by target labels. The associated
Le-diagram is a Young diagram of shape λ which is filled with +’s.

Theorem 3.1.6 can be rephrased as follows:

• Each of the (in general, infinitely many) cluster variables in A(ΣT
G) is a regular function

on X̃○
λ.

• The cluster variables in A(ΣT
G) generate the ring C[X̃○

λ] of regular functions on X̃○
λ.

We actually prove something a bit more general than Theorem 3.1.6; we prove the fol-
lowing.

Theorem 3.1.7. Consider the skew Schubert variety πk(Rv,w), where v ∈WK
max and w has a

length-additive factorization w = xv. Let G be a reduced plabic graph (with boundary vertices
labeled clockwise from 1 to n) with trip permutation vw−1 = x−1, and such that boundary
lollipops are white if and only if they are in [k]. Apply v−1 to the boundary vertices of G,
obtaining the relabeled graph Gv−1, and apply the target labeling to obtain the labeled seed
ΣT

Gv−1
. Then the coordinate ring C[ ̃πk(Rv,w)] of the (affine cone over) the skew Schubert

variety πk(Rv,w) coincides with the cluster algebra A(ΣT

Gv−1
).

In the case of Schubert varieties, Theorem 3.1.6 resolves Conjecture 1.0.1, which has been
believed to be true by experts for some time, though it wasn’t written down explicitly as
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a conjecture until recently, see [36, Conjecture 3.4]. Note that there is another version of
the conjecture which uses the source labeling of G instead of the target labeling [36, Remark
3.5]. Both conjectures make sense more generally for positroid varieties and arbitrary reduced
plabic graphs (whose trip permutations can be arbitrary decorated permutations). However,
the cluster structure that we give in Theorem 3.1.7 is different from either of the cluster
structures proposed in [36].

Our strategy of proof is to find, for each skew Schubert variety, one distinguished seed
coming from Leclerc’s cluster structure, which we can describe completely explicitly. We
then show that this seed agrees with a corresponding seed coming from the combinatorial
construction of Theorem 3.1.7, and justify that mutations in both cluster structures agree.
We use a (modification) of a construction of Karpman [26] as a key tool in the proof.

Remark 3.1.8. In his thesis [9], Chevalier describes a cluster-tilting object associated to
Richardson varieties Rv,w where v = wK and w ≥ v in Bruhat order. These Richardson
varieties correspond to positroid varieties in Gr(k,n) whose

Γ

-diagrams have shape k×(n−k).
(This case is somewhat complementary to the cases that we consider in this chapter, in the
sense that Chevalier treats

Γ

-diagrams of shape k × (n − k) with arbitrary fillings, while on
the other hand Schubert varieties correspond to

Γ

-diagrams of arbitrary shape whose boxes
are all filled with +’s.) In the case of the big open Schubert variety in the Grassmannian (i.e.
the positroid whose

Γ
-diagram is a k × (n − k) rectangle filled with all +’s) we get the same

quiver as Chevalier does, but different modules (and hence different Plücker coordinates).
And in other cases of overlap (i.e. skew-Schubert varieties with v = wK) even our quivers are
different from Chevalier’s.

Outline of the chapter

This chapter is structured as follows. In Section 3.2, we recall a necessary lemma on reduced
expressions. While each skew Schubert variety πk(Rv,w) (where v = wKv′ ∈WK

max and w ∈W
has a length-additive factorization w = xv = xwKv′ into reduced expressions for x, wK ,
and v′) corresponds to an equivalence class of plabic graphs (more generally to a collection
of cluster seeds), there is one among them which is particularly nice, which we call the
rectangles seed. In Section 3.3, we give an explicit description of the rectangles seed for a
skew Schubert variety πk(Rv,w) as above, together with its dual cluster quiver. In Section 3.4
we describe a construction of Karpman [26] which produces a bridge-decomposable plabic
graph associated to a pair (y,z), where y−1 ∈WK

max, z is a reduced decomposition for z, and
y ≤ z. And we show that if we perform her construction for the pair (wK ,xwK) and then
relabel boundary vertices of the resulting plabic graph G by v−1, the target labeling of the
dual quiver of G gives rise to the rectangles seed for πk(Rv,w). In Section 3.5 we describe
a construction of Leclerc [30], which produces a cluster seed associated to each pair (v,w),
where v ∈ WK

max and v ≤ w. We also prove that for the choice (v,w = xwKv′), Leclerc’s
construction gives rise to the rectangles seed. In Section 3.6, we build on the results of the
previous sections to prove Theorem 3.1.7 and then deduce Theorem 3.1.6 from it. Section 3.7
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Figure 3.2: Let x = (2,4,7,8,1,3,5,6) ∈ KW , and λ↗(x([k])) = (4,4,2,1). On the
left, the columnar reading order for the boxes of λ↗(x([k])); on the right, the filling of
λ↗(x([k])) with simple transpositions. This reading order produces the reduced expression
x = s6s7s5s6s3s4s5s1s2s3s4 for x ∈ KW , and the reduced expression s4s3s2s1s5s4s3s6s5s7s6 for
x−1 ∈WK .

gives applications of Theorem 3.1.6 and Theorem 3.1.7, and characterizes for which Schubert
varieties the cluster structure is of finite type. In Section 3.8, we give a concrete description
of skew Schubert varieties. And in Section 3.9, we give an example showing that outside
of the skew-Schubert case, the cluster subalgebra of the coordinate ring of πk(Rv,w) coming
from Leclerc’s construction is in general impossible to realize from a plabic graph.

3.2 A lemma on reduced expressions

We will need the following lemma on reduced expressions for permutations in KW and WK .
It is illustrated in Figure 3.2.

Lemma 3.2.1. [48] Let x ∈ KW and let λ ∶= λ↗(x([k])). Choose a “reading order” for
the boxes of λ such that each box is read before the box immediately below it and the box
immediately to its right (that is, choose a standard Young tableaux of shape λ). Fill each
box with a simple transposition; the box in row r and column c is filled with sk−c+r. Then
reading the fillings of the boxes according to the reading order gives a reduced expression for
x (written from right to left).

Since the elements of WK are just the inverses of the elements of KW , one can also obtain
reduced expressions for y ∈WK by the process described in Lemma 3.2.1, using the partition
λ↗(y−1([k])). The only difference is the resulting reduced expression for y is written down
from left to right.

Remark 3.2.2. For simplicity, we will always use the columnar reading order, which reads
the columns of λ from top to bottom, moving left to right (see Figure 3.2). We will call the
resulting reduced expressions columnar expressions.
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We will be particularly concerned with pairs (v,w) where v ∈WK
max and w has a length-

additive factorization w = xv, i.e. `(w) = `(x) + `(v). We will often use reduced expressions
for such permutations w that reflect their length-additive factorizations.

Definition 3.2.3. Let v ≤ w, with v ∈ WK
max and w = xv length-additive. Let v = wKv′ be

length-additive, where v′ is necessarily in WK
min. Then a standard reduced expression for w

is a reduced expression w = xwKv’, where x and v’ are the columnar expressions for x and
v′, respectively, and wK is an arbitrary reduced expression for wK .

3.3 The rectangles seed associated to a skew

Schubert variety

Definition 3.3.1 explains how to associate to a pair of permutations a quiver whose vertices
are labeled by Plücker coordinates. The construction is illustrated in Figure 3.3.

Definition 3.3.1 (The rectangles seed Σv,w). Let v ≤ w, where v ∈ WK
max and w = xv is a

length-additive factorization. Let λ ∶= λ↗(x([k])). If b is a box of λ, let Rect(b) be the
largest rectangle contained in λ whose lower right corner is b.

We obtain a quiver Qv,w as follows: place one vertex in each box of λ. A vertex is mutable
if it lies in a box b of the Young diagram and the box immediately southeast of b is also in
λ. We add arrows between vertices in adjacent boxes, with all arrows pointing either up or
to the left. Finally, in every 2×2 rectangle in λ, we add an arrow from the upper left box to
the lower right box. Equivalently, we add an arrow from the vertex in box a to the vertex
in box b if

• Rect(b) is obtained from Rect(a) by removing a row or column.

• Rect(b) is obtained from Rect(a) by adding a hook shape.

We then remove all arrows between two frozen vertices.
To obtain the rectangles seed Σv,w, we label each vertex of Qv,w with a Plücker coordinate.

For b a box of λ, let J(b) ∶= V ↗(Rect(b)). The label of the vertex in b is ∆v−1(J(b)). This
labeled quiver Σv,w gives a seed as in Definition 2.1.3, where the Plücker coordinates labeling
the vertices give the extended cluster.

Definition 3.3.2. Let λ be a partition and let b be a box of λ. We say that Rect(b) is
frozen for λ or λ-frozen if b touches the south or east boundary of λ (either along an edge
or at the southeast corner).

Note that the λ-frozen rectangles correspond to the frozen vertices of Σv,w.

Proposition 3.3.3. Let πk(Rv,w) be a skew Schubert variety. Then the rectangles seed Σv,w

is a seed for a cluster structure on the coordinate ring of (the affine cone over) πk(Rv,w),

i.e. C[ ̃πk(Rv,w)] = A(Σv,w).
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237 236 235 234

137
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127 167

Figure 3.3: An example of Σv,w for k = 3, n = 7, v = wK and x = wv−1 = (3,5,7,1,2,4,6).
At the left, the λ-frozen rectangles are , , , , , . On the right, the same quiver

is shown but rectangles have been replaced by the corresponding 3-element subsets of [7],
which should be interpreted as Plücker coordinates.

This result follows as an immediate corollary from Theorem 3.5.20, whose proof is the
focus of Section 3.5.

In the following section, we discuss the relabeled plabic graph whose dual quiver (with
the target labeling) coincides with Σv,w, as well as the connections of this theorem to Con-
jecture 1.0.1.

Recall that if v ∈WK
max and λ = λ↙(v−1([k])), then πk(Rv,w0) is the open Schubert variety

X○
λ. So as an immediate corollary to this result, we obtain the following.

Corollary 3.3.4. Let v ∈WK
max and let λ ∶= λ↙(v−1([k])). Then the rectangles seed Σv,w0 is

a seed for the cluster structure on X○
λ, i.e. C[X̃○

λ] = A(Σv,w0).

3.4 Obtaining the rectangles seed from a bridge graph

Here we give a construction of a special kind of plabic graph – a bridge graph – from a pair of
permutations [26], and explain how to use this construction to produce the rectangles seed.

Bridge graphs

One can obtain a plabic graph with arbitrary trip permutation by successively adding
“bridges” (see Figure 3.4) to a graph consisting entirely of lollipops. The plabic graphs
created this way are bridge graphs. We will define them below, after reviewing the notion of
(bounded) affine permutations.

An affine permutation of order n is a bijection f ∶ Z→ Z such that f(i+n) = f(i) +n for
all i ∈ Z.
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Figure 3.4: On the left, an (a b)-bridge. On the right, an example of adding an (a b)-bridge
to a plabic graph.

Definition 3.4.1. If σ is a decorated permutation of [n], we define the bounded affine
permutation σ̃ on [n] as

σ̃(i) ∶= { σ(i) if σ(i) > i or i is a black fixed point
σ(i) + n if σ(i) < i or i is a white fixed point

and extend periodically to Z. In other words, to obtain a bounded affine permutation,
add n to all antiexcedances of σ and then extend periodically to Z.

An (a b)-bridge is a collection of two vertices and three edges inserted at boundary
vertices a and b as in the left of Figure 3.4. Let G be a plabic graph with (bounded affine)
trip permutation σ̃G. For a pair of boundary vertices a < b, we say that the (a b)-bridge is
valid if σ̃G(a) > σ̃G(b), all boundary vertices c between a and b are lollipops, and if a (resp.
b) is a lollipop it is white (resp. black).

To add a bridge to G, choose boundary vertices a, b such that the (a b)-bridge is valid.
Place a white (resp. black) vertex in the middle of the edge adjacent to a (resp. b) and put
an edge between these two vertices; if a (resp. b) is a lollipop, we use the boundary leaf as
the white (resp. black) vertex of the bridge. We then add degree two vertices as necessary
to make the resulting graph bipartite. A plabic graph obtained by successively adding valid
bridges to a lollipop graph is called a bridge graph.

Adding a bridge changes the trip permutation in a predictable way.

Lemma 3.4.2 ([26, Proposition 2.5]). Suppose G is a reduced plabic graph with (bounded
affine) trip permutation σ̃G. Let 1 ≤ a < b ≤ n be vertices such that the (a b)-bridge is valid
and let G′ be the plabic graph obtained by adding an (a b)-bridge to G. Then G′ is reduced
and has trip permutation σ̃G ○ (a b).

Remark 3.4.3. Let G0 be a lollipop graph, (a1 b1), . . . , (ar br) a sequence of bridges, and
Gi the graph obtained from adding bridge (ai bi) to Gi−1. We also assume that (ai bi) is a
valid bridge for Gi−1. In the construction given above, new bridges are always added at the
boundary and “push” the existing faces towards the center of the disk (see Example 3.4.7).
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One can also obtain Gr from an empty graph by adding bridges in the opposite order, placing
new bridges “below” existing bridges, and adding lollipops at the end if necessary. We will
always use the former algorithm, but the latter can be useful as well.

If G′ is obtained from a plabic graph G by adding a valid bridge, all faces of G′ correspond
to faces in G, except for the face bounded by the bridge.

Lemma 3.4.4. Suppose G is a reduced plabic graph, 1 ≤ a < b ≤ n vertices such that the (a b)-
bridge is valid, and G′ the plabic graph resulting from adding an (a b)-bridge to G. Then,
using the target labeling, the labels of faces in G coincide with the labels of corresponding
faces in G′.

It is not hard to find the (target) label of the remaining face of G′.

Definition 3.4.5. Let σ be a decorated permutation of [n]. The Grassmann necklace of σ is
a sequence J = (J1, J2, . . . , Jn) of subsets of [n] where J1 ∶= {i ∈ [n] ∣ σ−1(i) > i or i is a white fixed point}
and

Ji+1 ∶=
⎧⎪⎪⎨⎪⎪⎩

(Ji ∖ {i}) ∪ {σ(i)} if i ∈ Ji
Ji else.

If σG′ is the trip permutation of G′, the boundary faces of G′ are labeled with the
Grassmann necklace of σG′ [39]. So the label of the face bounded by the (a b)-bridge is just
the (a + 1)st entry of the Grassmann necklace of σG′ .

Bridge graphs from pairs of permutations

In [26], Karpman gives an algorithm for producing a bridge graph with trip permutation vw−1

from a pair (v,w), where v−1 ∈ WK
max and w is a reduced expression for some permutation

w ≥ v. We use a special case of her construction in the following definition.

Definition 3.4.6. Let w ∈W with a length-additive factorization w = xwK , where x ∈ KW .
Let x = sir . . . si1 be the columnar expression for x (see Remark 3.2.2) and let w be a standard
reduced expression for w (Definition 3.2.3). We define BwK ,w to be the bridge graph obtained
from the lollipop graph with white lollipops [k] and black lollipops [k + 1, n] with bridge
sequence si1 , si2 , . . . , sir .

By [26], BwK ,w is a reduced plabic graph. By Lemma 3.4.2, BwK ,w has (decorated) trip
permutation x−1 with fixed points in [k] colored white.

Example 3.4.7. Let k = 2, n = 5, x = (3,5,1,2,4) and w = xwK . The partition λ↗(x([2]))
corresponding to x([2]) = {x(1), x(2)} is (3,2), and the columnar expression for x is x =
s4s2s3s1s2. So the bridge sequence for BwK ,w is (2 3), (1 2), (3 4), (2 3), (4 5). To build
BwK ,w, we start with the lollipop graph
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then add the bridge (2 3),

the bridge (1 2),

and the bridges (3 4), (2 3), (4 5) to obtain the following graph.

Note that the (target) face labels of BwK ,w correspond to rectangles that fit inside of
λ↗(x([2])).
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The structure of BwK ,w will follow entirely from the structure of its Grassmann necklace.
First, we need the following simple lemma.

Lemma 3.4.8. Let x ∈ KW .

1. The fixed points of x are [p] ∪ [q, n] for some 0 ≤ p ≤ k < q ≤ n + 1.

2. For i ∈ [k], x(i) ≥ i.

Proof. For the first statement, recall that x ∈ KW implies x(1) < x(2) < ⋯ < x(k) and
x(k + 1) < ⋯ < x(n). Suppose x(j) = j for some j ∈ [k]. Since for i < j, x(i) < x(j), we must
have that x([j]) = [j]. The increasing condition described above then implies that x(i) = i
for i < j. An analogous argument shows that if x(j) = j for some j ∈ [k + 1, n], then x(`) = `
for all ` > j.

The second statement is clear from the condition that x(1) < x(2) < ⋯ < x(k).

Proposition 3.4.9 shows that the Young diagrams associated to the Grassmann necklace
of y ∈ WK

min are the rectangles which are frozen for λ ∶= λ↗(y−1[k]) (cf Definition 3.3.2),
together with ∅.

Proposition 3.4.9. Let y ∈WK
min with fixed points [p] ∪ [q, n], and let λ ∶= λ↗(y−1[k]). We

color the fixed points of y in [k] white and all others black. Let J = (J1, . . . , Jn) be the
Grassmann necklace of y. Then λ↗(Ji) = ∅ for i ∈ [p + 1] ∪ [q, n]. For other i, λ↗(Ji) is
a rectangle which is frozen for λ, and λ↗(Ji+1) can be obtained from λ↗(Ji) by adding a
column to λ↗(Ji) if the resulting rectangle fits inside of λ (that is, if y(i) > k) or removing
a row from λ↗(Ji) if it does not (that is, if y(i) ≤ k). In particular, every λ-frozen rectangle
occurs as one of the λ↗(Ji).

Proof. We induct on the length of y. If y = e, the white fixed points of y are [k], so Ji = [k]
for all i, corresponding to the empty set.

Now, consider y ≠ e. Note that by Lemma 3.4.8, if i ∈ [k] is not a fixed point of y, then
y−1(i) > i. This together with our choice of decoration implies that the antiexcedance set of
y is [k].

Suppose the columnar expression for y ends in sj. Then z ∶= ysj is an element of WK

corresponding to the partition λ′ ∶= λ↗(z−1([k])), which is λ with the bottom box of the
rightmost column removed. In other words, in λ, the jth step is horizontal and the (j + 1)th
step is vertical, and vice versa in λ′. Again, we color the fixed points of z in [k] white and
the fixed points in [k + 1, n] black, and let I = (I1, . . . , In) be the Grassmann necklace of z.

Note that Jr = Ir for r ≤ j, since the antiexcedances of both permutations are [k] and
y(r) = z(r) for r ≠ j, j + 1. Note also that since `(y) > `(z), y(j) > y(j + 1). As y is a
minimum length right coset representative, this implies y(j) > k ≥ y(j + 1). From this, we
can conclude neither j nor j + 1 are fixed by y; otherwise, Lemma 3.4.8 would lead to a
contradiction. So Jj+1 = (Ij ∖ {j}) ∪ {y(j)} and Jj+2 = (Jj+1 ∖ {j + 1}) ∪ {y(j + 1)}.
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By definition, z(j + 1) > k ≥ z(j). By induction, λ↗(Ij) is a rectangle, so Ij = [a] ∪ [b, c]
for 0 ≤ a ≤ b, c ≤ n. There are 4 cases, depending on if j or j + 1 is fixed by z. The cases in
which at least one of j and j + 1 is fixed are straightforward, so we just prove the last.

Suppose neither j nor j + 1 are fixed by z, so λ′ is obtained from λ by removing a box
that is not in the left column or top row. Suppose Ij = [a] ∪ [b, c]. Since z(j) ≤ k, λ↗(Ij+1)
is obtained from λ↗(Ij) by removing a row, and we have that Ij+1 = [a + 1] ∪ [b + 1, c]. In
other words, j = b and z(j) = a+ 1. λ↗(Ij+2) is obtained from λ↗(Ij+1) by adding a column,
so Ij+2 = [a+1]∪[b+2, c+1]; that is, z(j +1) = c+1. So Jj+1 = [a]∪[b+1, c+1], which means
that λ↗(Jj+1) is the rectangle obtained from λ↗(Jj) by adding a column. This rectangle
fits inside of λ because of where we added a box and is also λ-frozen, since its lower right
corner touches the southeastern boundary of λ. Computation shows that Jj+2 = Ij+2, and
thus λ↗(Jj+2) is obtained from λ↗(Jj+1) by removing a row. Since Ir = Jr for r ≠ j + 1, and
all of the rectangles λ↗(Ir) are λ-frozen for r ≠ j + 1, we are done.

As a corollary, we obtain the structure of the face labels of the plabic graphs we are
interested in.

Corollary 3.4.10. Let w ∈W with a length-additive factorization w = xwK, where x ∈ KW .
Let x = sir . . . si1 be the columnar expression for x and w be a standard reduced expression
for w. Let λ ∶= λ↗(x([k])). Then the set of face labels of BwK ,w (see Definition 3.4.6) with
respect to the target labeling is {V ↗(Rect(b)) ∣ b a box of λ} ∪ {V ↗(∅)}. The boundary face
labels correspond to the λ-frozen rectangles and the empty set.

Proof. Recall that the bridge sequence of BwK ,w is exactly the simple transpositions in the
columnar expression for x−1; that is si1 , . . . , sir . After placing the jth bridge, we get a
plabic graph with trip permutation si1⋯sij with fixed points in [k] colored white. Since
si1⋯sij ∈WK

min, by Proposition 3.4.9, its Grassmann necklace consists of rectangles that are
frozen for the partition corresponding to si1⋯sij . The face labels of the boundary faces are
the Grassmann necklace of the trip permutation, with Ij labeling the face immediately to
the left of j. When we add the (j + 1)th bridge, we introduce a new boundary face (whose
label is a rectangle that is frozen for the partition corresponding to si1⋯sij+1) and the labels
of all other faces stay the same. An old boundary face may be pushed off of the boundary by
the new face; this occurs precisely when its label is not frozen for the new partition. Further,
it is clear that every rectangle that fits into λ is frozen for a partition corresponding to some
prefix of si1⋯sir .

We can also describe the dual quiver of BwK ,w.

Proposition 3.4.11. Let w, x, and w be as in Corollary 3.4.10, and let λ ∶= λ↗(x([k])).
Let µ, ν be rectangles contained in λ which are not the empty partition. In the dual quiver of
BwK ,w, there is an arrow from the face labeled V ↗(µ) to the face labeled V ↗(ν) if

• ν is obtained from µ by removing a row or column
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• ν is obtained from µ by adding a hook shape

unless both faces are on the boundary, in which case there is no arrow between them.
There is also an arrow from the face labeled V ↗(µ), where µ is a single box, to the face
labeled [k].

Proof. This follows from the proof of Corollary 3.4.10 by induction on the number of bridges.
To make the proof more uniform, we color all boundary vertices of BwK ,w adjacent to

white (black) internal vertices black (white) and add arrows appropriately in the dual quiver.
To obtain the statement of the proposition, just remove all arrows between frozen vertices.

Let x = sir . . . si1 be the columnar expression for x, so that si1 , . . . , sir is the bridge
sequence for BwK ,w. Note that si1 = sk.

If there is only one single bridge, then BwK ,w has two faces, one face f labeled with
[k] = V ↗(∅) and the other face f ′ labeled with V ↗(µ), where µ is a single box. From the
coloring of vertices in a bridge, it is clear that the dual quiver has one arrow from f ′ to f .

We examine what occurs after we place the final bridge sir = (j j + 1). Let f ′ be the new
face created by this bridge. Note that j and j +1 cannot both be lollipops. Indeed, it is easy
to see from the definition of the columnar reading order for λ that sir is preceded by either
a sir−1 or a sir+1 in the bridge sequence. If j or j + 1 is a lollipop, then the face f ′ shares 2
edges with f , the face labeled with [k]. This means there are no edges between these faces
in the dual quiver, since 2 shared edges results in an oriented 2-cycle.

Note also that we do not have to add additional vertices of degree 2 after placing the
bridge to make the graph bipartite; this is clear from the previous paragraph if j or j + 1 is
a lollipop. If neither is a lollipop, from the columnar reading order, it is clear that there is
a sj−1 and a sj+1 between each occurrence of sj in the sequence si1 , . . . , sir , so j is adjacent
to a black internal vertex and j + 1 is adjacent to a white internal vertex. This means that
there is an arrow in the dual quiver between f ′ and all adjacent faces that are not labeled
with [k]. We discuss these arrows in the case when neither j nor j + 1 are lollipops, as the
other cases are similar.

We know that f ′ is labeled by (the vertical steps of) Rect(b), where b is the last box of λ
in the columnar reading order. According to the proof of Corollary 3.4.10, to its right is the
face labeled by (the vertical steps of) a partition ν obtained from Rect(b) by removing a row
(since the partition obtained from Rect(b) by adding a column does not fit in λ). Similarly,
to the left of f ′ is the face labeled by (the vertical steps of) a partition ν′ obtained from
Rect(b) by removing a column. Below f ′ is the face labeled by the partition obtained from
Rect(b) by removing a hook shape. This, together with the color of vertices in bridges, gives
the proposition.

Obtaining the rectangles seed from a plabic graph

The goal of this section is to verify Lemma 3.4.12, which will be used in Section 3.6 to deduce
Theorem 3.1.6 from Theorem 3.1.7.
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In what follows, when we say “reflect a (relabeled) plabic graph in the mirror”, we mean
the operation shown in Figure 3.5.

Now, we return to the setup of Section 3.3.

Lemma 3.4.12. Let v ≤ w where v ∈ WK
max and w = xv is length-additive and let w′ be a

standard reduced expression for xwK. Consider the following relabeled plabic graphs, with
the indicated face labeling.

1. Gv,w, obtained by applying v−1 to the boundary vertices of BwK ,w′, with target labels.

2. Gmir
v,w, obtained by applying v−1 to the boundary vertices of BwK ,w′ and reflecting in the

mirror, with source labels.

3. Hv,w, obtained by applying w−1 to the boundary vertices of BwK ,w′, with source labels.

4. Hmir
v,w , obtained by applying w−1 to the boundary vertices of BwK ,w′ and reflecting in the

mirror, with target labels.

The labeled dual quiver of each of these graphs, with the vertex labeled v−1([k]) deleted,
is Σv,w (up to reversing all arrows).

Proof. Clearly Gv,w and Hv,w have the same (unlabeled) dual quiver as BwK ,w′ ; reflecting in
the mirror reverses all arrows in the dual quiver. By Proposition 3.4.11, the dual quiver of
all of these graphs is Qv,w (see Definition 3.3.1), up to reversal of all arrows.

Since the face labels of Gv,w are obtained from those of BwK ,w′ by applying v−1, it is clear
from Corollary 3.4.10 that the labeled dual quiver of Gv,w is Σv,w. So it suffices to show that
the face labels of Gv,w agree with the face labels of the 3 other graphs.

Recall that the trip permutation of BwK ,w′ is x−1. This implies that applying v−1 to a
target face label of BwK ,w′ gives the same set as applying v−1x−1 = w−1 to a source face label
of BwK ,w′ . Thus the face labels of Hv,w are the same as the face labels of Gv,w.

Note that reflecting a relabeled plabic graph in the mirror reverses all trips and also
exchanges left and right. As a result, the target labels of Gv,w are the same as the source
labels of Gmir

v,w, and the source labels of Hv,w are the same as the target labels of Hmir
v,w .

Remark 3.4.13. Since we are actually interested in the affine cone over π(Rv,w), we always
assume that ∆v−1([k]), the lexicographically minimal nonvanishing Plücker coordinate, is
equal to 1. This is why we delete the vertex labeled by v−1([k]) in Lemma 3.4.12.

Note that if v = wK , Gmir
v,w is a “usual” plabic graph (that is, its boundary vertices are

1, . . . , n going clockwise). Similarly, if w = w0, Hmir
v,w is a usual plabic graph. So in these cases,

the rectangles seed Σv,w gives rise to the cluster structure conjectured in [36, Conjecture 3.4].
In general, Σv,w gives rise to a different cluster structure; the cluster variables may differ and
the frozen variables generally do not agree with the labels of the boundary faces (with either
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Figure 3.5: Let k = 2, n = 5, x = (3,5,1,2,4) and w = xwK as in Example 3.4.7. On the left,
we have applied w−1

K to the boundary vertices of BwK ,w to obtain GwK ,w (shown with target
labels). On the right, we have “reflected GwK ,w in the mirror” to obtain Gmir

wK ,w
(shown with

source labels).

source or target labels) of a plabic graph corresponding to the positroid variety. However,
the cluster structure given by Σv,w is quasi-isomorphic to the cluster structure conjectured
in [36, Conjecture 3.4]. This means roughly that seeds in one cluster algebra can be obtained
from seeds in the other by rescaling variables by Laurent monomials in frozen variables, in a
way that is compatible with mutation (see [17]). Details will appear in work in preparation
by C. Fraser and the second author.

Remark 3.4.14. Applying v−1 or w−1 to the boundary vertices of BwK ,w′ is a mysterious
operation. This relabeling takes a plabic graph associated to πk(RwK ,wKx−1) to one asso-
ciated to πk(Rv,xv), and hence these positroid varieties are isomorphic. We can describe
the association of these two positroid varieties combinatorially in terms of

Γ

-diagrams: to
obtain the

Γ

-diagram of πk(Rv,xv), rotate the

Γ

-diagram of πk(Re,x−1) by 180○, cut off boxes
so it has shape λ↙(v−1([k])), and then perform

Γ

-moves until it satisfies the

Γ

-property (see
Section 3.8).
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3.5 Obtaining the rectangles seed from Leclerc’s

categorical cluster structure

The categorical cluster structure for Richardson varieties

We describe the categorical cluster structure on the coordinate ring of the Richardson variety
Rv,w obtained in [30]. It involves representation theory of finite-dimensional algebras, see
[1, 45] for some background. As we are only interested in the case of Grassmannians, we
restrict our discussion to the construction in type A.

Let Λ be the preprojective algebra over C of type A and rank n − 1. It is the finite-
dimensional path algebra of the double quiver

Q = 1
α1

** 2
α∗1

jj
α2

** 3
α∗2

jj
α3

** ⋯
α∗3

jj
α4 ,,

n − 1
α∗4

jj

on the vertex set I = {1, . . . , n − 1}, subject to the relations generated by

∑
i

αiα
∗
i − α∗i αi = 0.

In particular, the elements of Λ are linear combinations of paths in the quiver modulo
the relations, and multiplication is given by concatenation of paths. Any finite-dimensional
module N over Λ has an explicit realization in terms of the quiver. In particular, N is a
collection {Ni}i∈I of finite-dimensional vector spaces over C for each vertex i ∈ I, together
with a collection of linear maps φβ ∶ Ni → Nj for every arrow β ∶ i→ j in the quiver. Moreover,
the composition of these linear maps must satisfy relations induced by the relations on the
corresponding arrows.

Let mod Λ be the category of finite-dimensional Λ-modules. For any N ∈ mod Λ let ∣N ∣
be the number of pairwise non-isomorphic indecomposable direct summands of N . We use
addN to denote the additive closure of N , and indN to denote the set of indecomposable
direct summands of N . Given a vertex i in the quiver Q, let Si denote the corresponding
simple module and Qi denote the associated injective module. The simple module Si is
obtained by placing C, a one-dimensional vector space, at vertex i and 0’s at the remaining
vertices of the quiver. In this case, φβ = 0 for all arrows β. On the other hand, the injective
Λ-module Qi also has a distinct structure, and we can represent Qi by its composition factors
as follows.

n−i
n−i+1 n−i−1

⋰ n−i ⋱
n−1 ⋰ ⋱ ⋱

⋱ ⋱ ⋰ 1
⋱ i ⋰

i+1 i−1
i

In particular, when n = 6 we obtain the following composition diagrams for the injective
modules.
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Q1 =
5

4
3

2
1

Q2 =
4

5 3
4 2

3 1
2

Q3 =
3

4 2
5 3 1

4 2
3

Q4 =
2

3 1
4 2

5 3
4

Q5 =
1

2
3

4
5

These numbers can be interpreted as basis vectors or as composition factors (see [20, Section
2.4]). For example, the module Q2 is an 8-dimensional Λ-module with dimension vector
(d1, d2, d3, d4, d5) = (1,2,2,2,1). In general, for every occurrence of j ∈ I above we obtain
the corresponding one-dimensional vector space Vj ≅ C at vertex j of the quiver. Moreover,
whenever we see a configuration j+1

j or j−1
j then the linear map between the corresponding

spaces Vj+1 → Vj or Vj−1 → Vj is the identity. Thus, the quiver representation Q2 has the
following structure.

C
1
��

1
��

C
1
��

C
1
��

1
��

C
1
��

C
1
��

1
��

C
1
��

C
1
��

C
We will often use this notation to denote other modules of Λ that are obtained from an

indecomposable injective Qi. Let D be a sub-diagram of the composition factor diagram of

Qi such that whenever
j
j−1

j
or

j
j+1

j
appears in D then the entire diamond configuration

j
j+1 j−1

i
must also be in D. Then we can associate a unique module ND to it in the same

way as above. That is, whenever we see a configuration j+1
j or j−1

j in D then the linear
map between the corresponding spaces Vj+1 → Vj or Vj−1 → Vj is the identity. For example
see the following sub-diagram and the associated representation coming from the injective
Q2.

C
1
��

1
��

D =
3

4 2
3 1

ND = C
1 ��

C
1
��1��C C

In this notation, it is easy to see the top and socle of a given module N . The top (resp.
socle) of N is a direct sum of simple modules Si such that the corresponding entry i in the
associated composition factor diagram lies at the top (resp. bottom). In other words, there
are no i− 1 and no i+ 1 appearing directly above (resp. below) this i. For more information
on preprojective algebras and their representation theory see [21, 44].

Next, for every i ∈ I and si ∈W (where W is the symmetric group on n letters) we define
two functors Ei = Esi and E†

i = E
†
si on the category mod Λ. Given N ∈ mod Λ let Ei(N) be the

kernel of a surjection
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N // // Sai

where a is the multiplicity of Si in the top of N . Note that Ei(N) is well-defined; it is
obtained from N by removing the Si-isotypical part of its top. Similarly, let E†

i (N) be the
cokernel of an injection

Sbi
� � // N

where b is the multiplicity of Si in the socle of N . The module E†
i (N) results from N by

taking away the Si-isotypical part of its socle. In terms of the corresponding composition
factor diagrams, the diagram for Ei(N) (resp. E†

i (N)) is obtained from that of N by removing
all entries i appearing in the top (resp. bottom). Moreover, for every w ∈W we can extend
the definition to Ew,E†

w by composing the functors associated to the simple reflections in a
reduced expression for w. It was shown in [21, Proposition 5.1] that this definition does not
depend on the choice of a reduced expression.

Given w ∈ W , consider Cw = Ew−1w0
(mod Λ) and Cw = E†

w−1
(mod Λ), two subcategories of

mod Λ associated to w. With this notation we can summarize the main theorem of [30].

Theorem 3.5.1. [30, Theorem 4.5] For every v,w ∈ W with v ≤ w, the subcategory Cv,w ∶=
Cv∩Cw has a cluster structure in the sense of [5]. Moreover, Cv,w induces a cluster subalgebra
R̃v,w in the coordinate ring C[Rv,w], where the cardinality of the extended cluster is equal to
dimRv,w.

Proposition 3.5.2. [30, Proposition 5.1] If property (P) holds – that is, if w has a factor-
ization of the form w = xv with `(w) = `(x) + `(v), then the cluster algebra R̃v,w is equal to
the coordinate ring C[Rv,w].

In particular, the theorem says that Cv,w is a Frobenius category that admits a cluster-
tilting object. Given a basic cluster-tilting module T we can associate the endomorphism
quiver ΓT as follows. The vertices of ΓT are in bijection with indecomposable direct sum-
mands Ti of T . The number of arrows Ti → Tj in ΓT corresponds to the dimension of the
space of irreducible morphisms Ti → Tj in addT .

Given a basic cluster-tilting module T ∈ Cv,w, there is a notion of mutation of T at an
indecomposable summand Ti of T , provided that Ti is not projective-injective in Cv,w. The
mutation of T at Ti is a new cluster-tilting module µTi(T ) ∶= T /Ti⊕T ′

i , obtained by replacing
Ti by a unique different indecomposable module T ′

i ∈ Cv,w. Moreover, T ′
i is defined by the

two short exact sequences

0 // T ′
i

// B
g // Ti // 0 0 // Ti

f // B′ // T ′
i

// 0

where g and f are minimal right and left add (T /Ti)-approximations of Ti. Thus, B is a
direct sum of Tj ∈ indT for every arrow Tj → Ti in ΓT , and B′ is a direct sum of Tj ∈ indT
for every arrow Ti → Tj in ΓT .



CHAPTER 3. A CLUSTER STRUCTURE ON SCHUBERT VARIETIES 36

Furthermore, there is a cluster character ϕ ∶ objCv,w → C[Rv,w] that maps modules
N ∈ Cv,w to functions ϕN ∈ C[Rv,w]. While the definition of ϕ is rather complicated, ϕ
satisfies several nice properties. In particular, for every N,N ′ ∈ Cv,w, we have

ϕN⊕N ′ = ϕNϕN ′ .

Moreover, for every mutation µTi of a cluster-tilting module T , we obtain an exchange relation
in C[Rv,w]:

ϕTiϕT ′i = ϕB + ϕB′ ,

where B and B′ come from the short exact sequences above. In this way the cluster character
ϕ induces a cluster algebra structure in C[Rv,w] from a categorical cluster structure in Cv,w.

Next we want to give a more explicit version of Theorem 3.5.1.

Definition 3.5.3. Given v ≤ w in W and a reduced expression w = sit⋯si2si1 for w, we
construct a set of modules {Uj} which will give rise to a cluster in C[Rv,w]. Let v be the
reduced subexpression for v in w that is “rightmost” in w, called the positive distinguished
subexpression for v in w (see Definition 3.9.1). Set w(j) = sij⋯si2si1 for 1 ≤ j ≤ t, and let
w−1

(j) ∶= (w(j))−1. Let v(j) be the product of all simple reflections in w(j) that are part of v.

Define J ⊆ {1, . . . , t} to be the collection of indices j such that the corresponding reflection
sij in the expression w is not a part of v.

For every j ∈ J we construct a module Uj from the injective module Qij . For N ∈ mod Λ
let Socsi(N) be the direct sum of all submodules of N isomorphic to the simple module Si.
Given a reduced word z = sir . . . si2si1 in W , there is a unique sequence

0 = N0 ⊆ N1 ⊆ ⋯ ⊆ Nr ⊆ N
of submodules of N such that Np/Np−1 = Socsip(N/Np−1). Define Socz(N) = Nr. For every
j ∈ J , let

Vj = Socw−1
(j)

(Qij) and Uj = E†
v−1
(j)

Vj. (3.5.1)

Example 3.5.5 gives a detailed construction of a module Uj.
The following theorem describes the cluster algebra structure in the coordinate ring of

Rv,w and its additive categorification provided by Cv,w.

Theorem 3.5.4. [30, Theorem 4.5 and Proposition 5.1] Each pair (v,w) as in Defini-
tion 3.5.3 gives a cluster-tilting module Uv,w ∶= ⊕j∈J Uj in Cv,w, that corresponds via the
cluster character ϕ to a seed in C[Rv,w] as follows.

(a) The cluster variables in C[Rv,w] are the irreducible factors of ϕUj = ∆v−1
(j)

([ij]),w−1(j)([ij])

for j ∈ J ; they correspond to the indecomposable summands of Uj.

(b) The frozen variables are the irreducible factors of Πi∈I∆v−1([i]),w−1([i]); they correspond to

the indecomposable summands of ⊕i∈I E†
v−1
Ew−1w0

(Qi) (which are the projective-injective
objects).
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(c) The extended cluster is the set of cluster and frozen variables, which has cardinality
dimRv,w = `(w) − `(v) = ∣Uv,w∣.

(d) The quiver associated to the seed is the endomorphism quiver ΓUv,w of the cluster-tilting
module. Moreover, the quiver has no loops and no 2-cycles, and the mutation of Uv,w
induces mutation on the quiver ΓUv,w , in the sense of Definition 2.1.2.

(e) The cluster algebra R̃v,w generated by all cluster variables is a subalgebra of C[Rv,w];
when w can be factored as w = xv with `(w) = `(x) + `(v), the cluster algebra R̃v,w is
equal to C[Rv,w].

Example 3.5.5. Let n = 7 and consider the pair (v,w) corresponding to a cell in Gr(3,7),
where v = wKs3 and w is given by the reduced expression

w = s5s6s4s5s2s3s4s1s2s3s1s2s1s4s5s4s6s5s4s3 = si20 . . . si2si1 .

The positive distinguished subexpression for v in w is indicated in bold, and corresponds
to the last ten transpositions at the end of w. The remaining transpositions determine the
index set J = {11,12, . . . ,20}, and for each j ∈ J we obtain a summand Uj of the cluster-
tilting module Uv,w. Because the subexpression for v appears at the end of w, we have
v(j) = v for all j ∈ J . We first compute U14, denoting modules by their composition factors
throughout. Recall that

Q4 =
3

4 2
5 3 1

6 4 2
5 3

4

.

Informally, we “build up” the composition diagram of V14 = Socw−1
(14)

(Q4) by adding

composition factors from the diagram of Q4, working from the bottom up. This process
is illustrated below. We add composition factors in the order specified by the reduced
expression w−1

(14) = s3s4s5s6s4s5s4s1s2s1s3s2s1s4 (reading right to left). The underlined si’s
indicate when an i is added.

4
→ 3

4
→ 2

3
4

→
1

2
3

4
→

1
2

5 3
4

→
1

4 2
5 3

4
→

1
6 4 2

5 3
4

→
5 1

6 4 2
5 3

4
→

5 3 1
6 4 2

5 3
4

= V14

To get the composition diagram of U14 = E†
v−1
V14, we remove composition factors from

the diagram of V14, as illustrated below. We remove these factors from the bottom up, in
the order specified by reading the reduced expression v−1 = s3s4s5s6s4s5s4s1s2s1 right to left.
The underlined si’s indicate when an i is removed.

V14 =
5 3 1

6 4 2
5 3

4
→ 5 3 1

6 4 2
5 3

→ 5 3 1
6 4 2

3
→ 5 3 1

4 2
3

→ 5 3 1
4 2 = U14

Performing similar computations for the remaining elements of J we obtain the following
set of modules:
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U11 =
6

5 3 1
4 2

U12 =
6

5 3
4 2

U13 =
6

5
4

U15 =
5 3

6 4 2
5 3 1

4 2

U16 =
5

6 4
5 3

4 2
U17 = 3 1

4 2 U18 =
3

4 2
5 3 1

4 2
U19 = 1

2 U20 =
2

3 1
4 2

The projective-injective objects of Cv,w are precisely U13, U15, U16, U18, U19, U20.
The endomorphism quiver ΓUv,w is given below.

6
5 3 1

4 2

$$

5 3 1
4 2

oo

##

3 1
4 2

oo

""

1
2

oo

6
5 3

4 2

OO

##

5 3
6 4 2

5 3 1
4 2

oo

OO

3
4 2

5 3 1
4 2

oo

OO

2
3 1

4 2

OO

oo

6
5

4

OO

5
6 4

5 3
4 2

oo

OO

In general, it is difficult to construct the endomorphism quiver ΓUv,w , because it is difficult
to determine whether a given morphism is irreducible in addUv,w. For example, there is a
nonzero morphism f ∶ U15 → U11 with image 5 3

4 2 but it factors through U12. Thus, f does
not induce an arrow in ΓUv,w .

Our goal is to find an explicit description of the seed associated to a pair (v,w), where
v ∈WK

max, w = xv is a length-additive factorization, and w = xv is a standard expression for w.
In Section 3.5 we will analyze the cluster variables coming from Theorem 3.5.4 (interpreting
generalized minors as Plücker coordinates), and in Section 3.5 and Section 3.5 we will analyze
the modules Uj and the morphisms between them, so as to obtain the quiver. The modules
Uj were previously defined constructively, so we need to develop a more explicit construction,
which then enables us to understand the morphisms. In the case v = wK , the modules have a
particularly nice structure, which allows us to explicitly compute the irreducible morphisms
in addUwK ,w. Next, we use a result of [2] we show that there is a bijection between morphisms
Ui → Uj in addUwk,w and morphisms U ′

i → U ′
j in addUwkv′,wv′ . Then we conclude that the

quiver for the pair (v,w) coming from this representation theoretic construction agrees with
the quiver coming from a plabic graph.

Projecting the categorical cluster variables to Grassmannians

When v ≤ w and v ∈WK
max, the Richardson variety Rv,w in the complete flag variety projects

isomorphically to a positroid variety πk(Rv,w) in the Grassmannian Gr(k,n). (Concretely,
elements of this positroid variety are given by the span of rows v−1{1, . . . , k} = v−1[k] in
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a matrix representative g for Bg ∈ Rv,w). When additionally there is a length-additive
factorization w = xv, the positroid variety is a skew Schubert variety, and Theorem 3.5.4
produces a cluster algebra which is equal to the coordinate ring C[Rv,w]. In this section
we will determine how to interpret the cluster variables in C[Rv,w] as functions on the
Grassmannian.

Recall that each generalized minor ∆v−1[`],J from Theorem 3.5.4 is a minor of a unipotent
upper triangular matrix. We would like to restrict that matrix to rows v−1[k] and then
identify the minor with a Plücker coordinate of the resulting k×n matrix. To show that this
is well-defined, we first need the following facts.

Lemma 3.5.6. Let ∆I,J be a minor of an n × n matrix. Then for every A ⊆ [n] such that
A ⊆ I ∩ J and every B ⊆ [n] such that I ∩ B = J ∩ B = ∅, ∆I,J agrees with ∆I∖A,J∖A and
∆I∪B,J∪B on the set of unipotent upper triangular matrices.

Remark 3.5.7. Let J ⊆ [n] with ∣J ∣ = `. If we project an n × n unipotent upper triangular
matrix g to the Grassmannian element represented by the span of rows v−1[k] of g, it follows
from Lemma 3.5.6 that the generalized minor ∆v−1[`],J of g equals the following Plücker
coordinate of Gr(k,n):

1. If ` < k and ∣J ∪ v−1([k] ∖ [`])∣ = k, then ∆v−1[`],J = ∆J∪v−1([k]∖[`]).

2. If ` = k then ∆v−1[`],J = ∆J .

3. If ` > k and ∣J ∖ v−1([`] ∖ [k])∣ = k, then ∆v−1[`],J = ∆J∖v−1([`]∖[k]).

For example, continuing Example 3.5.5 with v = wKs3 and w given by

w = s5s6s4s5s2s3s4s1s2s3s1s2s1s4s5s4s6s5s4s3,

we obtain generalized minors which map to the following Plücker coordinates:

1. ∆v−1[3],v−1s3[3] = ∆124,247 = ∆247.

2. ∆v−1[2],v−1s3s2[2] = ∆24,47 = ∆147.

3. ∆v−1[1],v−1s3s2s1[1] = ∆4,7 = ∆127.

4. ∆v−1[4],v−1s3s2s1s4[4] = ∆1247,2476 = ∆246.

5. ∆v−1[3],v−1s3s2s1s4s3[3] = ∆124,467 = ∆467.

6. ∆v−1[2],v−1s3s2s1s4s3s2[2] = ∆24,67 = ∆167.

7. ∆v−1[5],v−1s3s2s1s4s3s2s5[5] = ∆12467,24567 = ∆245.

8. ∆v−1[4],v−1s3s2s1s4s3s2s5s4[4] = ∆1247,4567 = ∆456.

9. ∆v−1[6],v−1s3s2s1s4s3s2s5s4s6[6] = ∆124567,234567 = ∆234.



CHAPTER 3. A CLUSTER STRUCTURE ON SCHUBERT VARIETIES 40

10. ∆v−1[5],v−1s3s2s1s4s3s2s5s4s6s5[5] = ∆12467,34567 = ∆345.

In light of Remark 3.5.7, we can project the generalized minors ∆v−1[`],J of Theorem 3.5.4
to Plücker coordinates so long as ∣J ∪v−1([k]∖ [`])∣ = k (or ∣J ∖v−1([`]∖ [k])∣ = k). Applying
v−1 to the following lemma shows that this is the case. It also shows that Leclerc’s cluster
variables in the seed corresponding to (v,w) project exactly to those in the rectangles seed
defined in Section 3.3.

Lemma 3.5.8. Choose a Young diagram contained in a k × (n − k) rectangle, and label its
boxes by simple reflections as in the right of Figure 3.6. Choose a reading order for the
boxes as in the left of Figure 3.6. Choose any box b and let s` be its label. Let wb be the
word obtained by reading boxes in order up through b and recording the corresponding simple
reflections. For example if b is the box indicated by the bold s6 in the right of Figure 3.6,
then wb = (s5s4s3s2)(s6s5s4)(s7s6).

1 5 8 11 14

2 6 9 12 15

3 7 10 13

4

sk sk+1sk+2 ⋯
sk−1 sk sk+1 ⋯
sk−2 ⋮ ⋮
⋮

s5 s6 s7

s4 s5 s6

s3 s4

s2

1

2

3

7

8

Figure 3.6:

Also let J(b) ∶= V ↗(Rect(b)) (see Definition 3.3.1). In the right of Figure 3.6, J(b) =
{1,2,3,7,8}.

Then for any b and ` as above, let J = wb[`]. We have that:

1. If ` < k, then J(b) = J ∪ ([k] ∖ [`]) = J ∪ {` + 1, ` + 2, . . . , k}.

2. If ` = k, then J(b) = J .

3. If ` > k, then J(b) = J ∖ ([`] ∖ [k]) = J ∖ {k + 1, k + 2, . . . , `}.

Proof. The proofs of the three cases are quite analogous, so we will just prove the first one,
where ` < k.

Let box b be in row r and column c, as in Figure 3.7, so that its label is s` = sk−r+c. We
have that r > c.

Then J(b) = {1,2, . . . , k−r}∪{k−r+c+1, k−r+c+2, . . . , k+c}, and J(b)∖{`+1, `+2, . . . , k} =
J(b) ∖ {k − r + c + 1, k − r + c + 2, . . . , k} = {1,2, . . . , k − r} ∪ {k + 1, k + 2, . . . , k + c}. We need
to show that

wb{1,2, . . . , k−r+c} = J(b)∖{k−r+c+1, k−r+c+2, . . . , k} = {1,2, . . . , k−r}∪{k+1, k+2, . . . , k+c}.
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Figure 3.7:

Let the labels of the simple generators in the bottom boxes of columns 1,2, . . . , c − 1 be
i1, i2, . . . , ic−1, respectively. We also write ic = k − r + c. Then we have that

wb = (sksk−1sk−2 . . . , si1)(sk+1sksk−1 . . . , si2) . . . (sk+c−2sk+c−3, . . . , sic−1)(sk+c−1sk+c−2 . . . , sic).
(3.5.2)

Note that
1 ≤ i1 < i2 < i3 ⋅ ⋅ ⋅ < ic−1 < ic = k − r + c

so that is ≤ k − r + s for all 1 ≤ s ≤ c.
We will now explicitly analyze wb(j) for 1 ≤ j ≤ k − r + c. Towards this end, it’s useful to

observe that for a < b, the product sbsb−1sb−2 . . . sa is equal to the cycle (b+1, b, b−1, . . . , a+1, a)
(in cycle notation).

Then looking at (3.5.2), we see that:

• for 1 ≤ j ≤ i1 − 1, wb(j) = j ∈ {1,2, . . . , k − r}.

• for j ∈ {i1, i2, . . . , ic}, wb(j) ∈ {k + 1, k + 2, . . . , k + c}.
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We also see that

• for i1 < j < i2, wb(j) = j − 1

• for i2 < j < i3, wb(j) = j − 2

• ⋮

• for ic−1 < j < ic, wb(j) = j − (c − 1).

So for is−1 < j < is, we have that wb(j) = j − (s− 1) < is − (s− 1) ≤ k − r + s− (s− 1) = k − r + 1,
and so wb(j) ≤ k − r. This shows that for each j ∈ {1,2, . . . , k − r + c}, wb(j) ∈ {1,2, . . . , k −
r} ∪ {k + 1, k + 2, . . . , k + c}, and so wb[k − r + c] = {1,2, . . . , k − r} ∪ {k + 1, k + 2, . . . , k + c}.
This completes the proof of the lemma.

Corollary 3.5.9. Consider a skew Schubert variety πk(Rv,w) ⊂ Gr(k,n), where v ≤ w,
v ∈WK

max, and with w = xv length-additive. Consider the seed for Rv,w given by Theorem 3.5.4
which is associated to a standard (columnar) reduced expression w = xv. When we project
the cluster variables to πk(Rv,w), we obtain precisely the set of Plücker coordinates from the
rectangles seed (Definition 3.3.1). In other words, they are indexed by boxes b in λ↗(x([k])),
and are equal to the Plücker coordinates ∆v−1(J(b)) in the Grassmannian.

Proof. Let x be the columnar expression for x and w be a standard reduced expression for
w. Let b be a box in λ↗(x([k])), and let s`, wb, and J(b) be as defined in Lemma 3.5.8.
Note that wb = x−1

(i) for some 1 ≤ i ≤ `(x), so v−1wb = w−1
(j) for some j. Using Remark 3.5.7

and applying v−1 to Lemma 3.5.8 implies that the generalized minor ∆v−1([`]),w−1
(j)

([`]) equals

the Plücker coordinate ∆v−1(J(b)) in the Grassmannian. Each of these Plücker coordinates is

irreducible in C[ ̃πk(Rv,w)] (Corollary 3.5.15), so we are done.

It is not hard to see which Plücker coordinates are frozen in the rectangles seed.

Lemma 3.5.10. Let x be a Grassmannian permutation of type (k,n). Let b be a λ-frozen box
of λ = λ↗(x([k])), and let s` and wb be as defined in Lemma 3.5.8. Then wb([`]) = x−1([`]).
Thus ∆v−1(J(b)) is frozen in the rectangles seed.

Proof. It is clear from the filling of λ↗(x([k])) that the boxes in columns to the right of the
column of b are filled with si such that i > `. So x−1 = wbu, where u is a permutation that
fixes [`] pointwise, so wb([`]) = x−1([`]).

Using Remark 3.5.7 and applying v−1 to Lemma 3.5.8 implies that ∆v−1(J(b)) is the pro-
jection of ∆v−1([`]),v−1x−1([`]) to the Grassmannian, which is frozen by Theorem 3.5.4.
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An explicit description of the modules Uj when w = xv is
length-additive

Throughout this section we fix a pair (v,w), where w = xv is a length additive factorization
and v ∈WK

max. Let w be a standard reduced expression for w (see Definition 3.2.3). Thus, we
can write v = wKv′ where v′ ∈WK

min, and choose reduced expressions x,v′ for x, v′ respectively
as described in Lemma 3.2.1. Our goal in Section 3.5 and Section 3.5 is to prove that in
this case, the quiver from Theorem 3.5.4 agrees with the quiver from the rectangles seed.
Recall that the vertices of the quiver from Theorem 3.5.4 are indexed by modules Uj. In
this section we will give an explicit (non-recursive) description of the composition diagrams
of these modules.

Let
w = xwkv

′ = (sit . . . sir+1)(sir . . . sip+1sip . . . sil+1)(sil . . . si1)
where the parenthesis separate the subexpressions x,wk,v′. In what follows, we will define
a diagram Dv,w (see Figure 3.8) whose boxes are filled with simple reflections in such a way
that a natural reading order of the boxes gives the reduced expression w = xwKv′. Then to
each j ∈ J (see Definition 3.5.3), we will associate a subdiagram Dj with the property that
if we replace each si by i, Dj is precisely the composition diagram of the module Uj. More
precisely, given a subdiagram of Dv,w the associated module is obtained as follows: for every
si directly followed by si+1 to the right (resp. si−1 below) in the subdiagram we obtain i

i+1

(resp. i
i−1 ) in the composition factor diagram of the module (see Figure 3.11).

Definition 3.5.11. (Diagram Dv,w) Extending ideas from Lemma 3.2.1, we will build a
diagram Dv,w which encodes the reduced expression w. We start by taking the union of
diagrams R∗(v′) ∪R(wK) ∪R(x), glued as in Figure 3.8, where

• R∗(v′) is a (rotated) Young diagram filled with simple reflections which give a reduced
expression for v′, when read in the reading order indicated at the right of Figure 3.8;

• R(wK) is a pair of staircase Young diagrams filled with simple reflections which give
a reduced expression for wK ;

• R(x) is a Young diagram filled with simple reflections which give a reduced expression
for x.

We additionally embed R∗(v′) into an (n − k) × k rectangle D∗ (with boxes filled with
simple reflections as shown in Figure 3.8) and embed R(x) into a k × (n − k) rectangle D
(with boxes filled with simple reflections as shown in Figure 3.8). We let Dv,w denote the
union of D, D∗ and R(wK), together with the paths defining R∗(v′) and R(x). Note that
R∗(v′) ∪R(wK) ∪R(x) encodes the reduced expression w.

Note that R∗(v′) is defined by the path L↙
v′−1([k]) rotated clockwise 90 degrees and then

reflected across a vertical axis, while R(x) is defined by the path L↗
x([k]). Finally we define

the region R(v′) to be the subset of boxes of D below L↙
v′−1([k]) (up to a rotation and and
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Figure 3.8: Diagram Dv,w (left) and reading order in each region (right).

reflection, it agrees with R∗(v′)). Note that v′−1([k]) = v−1([k]), so R(x) ∩ R(v′) = ∅ by
Lemma 3.5.12.

Let J,L be lattice paths from (0,0) to (n−k, k) taking steps north and east and suppose
V ↗(J) = {j1 < ⋯ < jk} and V ↗(L) = {l1 < ⋯ < lk}. We say J ≤ L if jr ≤ lr for all r; that is, J
“lies above” L when drawn in the plane (see Figure 3.9). We leave the proof of Lemma 3.5.12
to the reader.

Lemma 3.5.12. Let A = {(v,w) ∣ v ∈ WK
max,w ∈ W with length-additive factorization w =

xv}. Then the following map is a bijection:

A → {(J,L) ∣ J ≤ L lattice paths from (0,0) to (n − k, k)}
(v, xv) ↦ (L↗

x([k]), L
↙
v−1([k])).

In particular, if (v, xv) ∈ A then L↗
x([k]) ≤ L

↙
v−1([k]).

Next, we associate specific regions D∗
j ,Dj in Dv,w to the modules Vj, Uj.

Construction of D∗
j ⊂ Dv,w. Given j ∈ J there exists a corresponding box bj ∈ R(x) filled

with the simple generator sij .
By Definition 3.5.3, Vj = Socw−1

(j)
(Qij); we will construct a subdiagram D∗

j of Dv,w that

yields a composition diagram for the module Vj. See Figure 3.10.
We can write w(j) = x(j)wKv′, where x(j) comes from entries in R(x) to the left and

above bj. In the definition of Vj, we begin with the injective module Qij . Note that Qij

corresponds to the maximal rectangle R(Qij) in Dv,w whose lower right corner is bj. Next,



CHAPTER 3. A CLUSTER STRUCTURE ON SCHUBERT VARIETIES 45

1
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L

Figure 3.9: Let k = 3 and n = 7. Let x = (1,3,6,2,4,5,7,8) ∈ KW , v = (8,3,2,7,6,5,4,1) ∈
WK

max and w = xv. The upper lattice path J is L↗
x([k]), with V ↗(J) = x([3]) = {1,3,6};

the lower lattice path L is L↙
v−1([k]), with V ↙(L) = v−1([3]) = {2,3,8}. Since w = xv is

length-additive, the bijection of Lemma 3.5.12 sends (v,w) to (J,L).
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sij
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R(wK)j

R(wK)j

R∗(v′)j

Rect(bj) sij

sk
R(bj, bkj )

Rk(v′)

Dj

Figure 3.10: Construction of subdiagrams D∗
j (left) and Dj (right).

consider the subdiagram associated to the module Socx−1
(j)

(Qij). The columnar expression

for x(j) can be written as follows

x(j) = sijsij+1sij+2 . . . sasij−1sijsij+1 . . . sa−1 . . . sbsb+1sb+2 . . . sk

where sa (resp. sb) is the filling of the box in the first row (resp. column) of D and in
the same column (resp. row) as bj. It is compatible with the structure of Qij depicted in
Section 3.5 in the following sense.

Socsij (Qij) = ij Socsij+1sij (Qij) =
ij+1

ij
Socsa...sij+2sij+1sij (Qij) =

a
⋱
ij+1

ij
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Socsij−1sa...sij+2sij+1sij (Qij) =
a
⋱
ij+1 ij−1

ij

Socsa−1...sij sij−1sa...sij+2sij+1sij (Qij) =
a−1

a a−2
⋱ ⋱

ij+1 ij−1
ij

Continuing in this way, we see that the module Socx−1
(j)

(Qij) is given by the rectangle

Rect(bj) ⊆ D, whose southeast box is bj. Next, in the definition of Vj we need to compute
SocwKx−1(j)(Qij). First, observe that sk does not appear in a reduced expression for wK ,

therefore the subdiagram of Dv,w associated to SocwKx−1(j)(Qij) has trivial intersection with

D∗. Recall that the boxes in R(wK) yield a reduced expression for wK . Thus, we see that
the subdiagram for SocwKx−1(j)(Qij) is obtained by extending Rect(bj) to the north and west

as much as possible, while avoiding boxes with entries sk. In particular, we have

R(SocwKx−1(j)(Qij)) = Rect(bj) ∪R(wK)j

where R(wK)j = R(wK)∩R(Qij). Finally, D∗
j is obtained from R(SocwKx−1(j)(Qij)) by adding

as many boxes in R∗(v′) as possible, such that the result is still contained in R(Qij). Let
R∗(v′)j = R(Qij) ∩R∗(v′). Then

D∗
j = Rect(bj) ∪R(wK)j ∪R∗(v′)j. (3.5.3)

Remark 3.5.13. The subdiagram D∗
j can also be obtained as follows. Given the box bj,

let R be the maximal rectangle contained in Dv,w with bj as its southeast corner. Then D∗
j

results from R by removing boxes of R ∩D∗ which are not in R∗(v′).

Construction of Dj ⊂ Dv,w. By Definition 3.5.3, Uj = E†
v−1
(j)

Vj is obtained by removing simple

modules from the socle of Vj according to the simple reflections appearing in a reduced
expression for v−1

(j). Note that in this case v(j) = wKv′. Again since wK does not have sk in its

reduced expression and it is the longest element of WK , we see that E†
wKVj is obtained from

Vj by quotienting out the largest submodule of Vj not supported at vertex k. In particular,

if ij = k then E†
wKVj = Vj. If ij < k then there exists a unique box bkj ∈ Rect(bj) with entry sk

located above bj and in the same column as bj. Let R(bj, bkj ) be the maximal rectangle in D∗
j

with lower right corner bj and height k− ij (see Figure 3.10). That is, the upper right corner
of R(bj, bkj ) is the box directly below bkj . We see that the module associated to R(bj, bkj ) is

the largest submodule of Vj not supported at vertex k. Therefore, R(E†
wKVj) =D∗

j ∖R(bj, bkj ).
Similarly, if ij > k then there exists a unique box bkj ∈ Rect(bj) with entry sk located to the

left of bj and in the same row as bj. Let R(bj, bkj ) be the maximal rectangle in D∗
j with lower

right corner bj of width ij − k. That is, the lower left corner of R(bj, bkj ) is the box directly

to the right of bkj , and as before we obtain R(E†
wKVj) =D∗

j ∖R(bj, bkj ).
Finally, it remains to compute E†

v′−1
E†
wKVj. Note that the columnar expression for v′ is

again compatible with the structure of E†
wKVj, see the computations below. We have

v′ = sksk+1 . . . sl1sk−1sk . . . sl2 . . . sk−q−1sk−q . . . stq
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Figure 3.11: D12 from Example 3.5.5.

where sli is the filling of the upper-most box in column i of region R∗(v′) ⊂ Dv,w, if we label
the columns of R∗(v′) by 1,2, . . . , q right to left.

The socle of E†
wKVj is precisely Sk, and sk is the first reflection in v′. Thus, E†

skwKVj is

obtained from E†
wKVj by removing the simple module Sk from the socle. Similarly, Sk+1 is

in the socle of E†
skwKVj, and sk+1 is the second reflection in v′, provided the first column of

R∗(v′) has at least two boxes. Therefore, E†
sl1 ...sk+1skwK

Vj is obtained from E†
wKVj by removing

a portion of the left-most diagonal between labels k and l1 from the composition diagram
for E†

wKVj.

E†
wK
Vj =

⋱ ⋮ ⋮ ⋰
l1+1 l1+3 k−q

l1 k−q−1
⋱ ⋱ ⋮ ⋰

k+2 k k−2
k+1 k−1

k

E†
sl1 ...sk+1skwK

Vj =

⋱ ⋮ ⋮ ⋰
l1+1 l1+3 k−q

k−q−1
⋱ ⋮ ⋰
k k−2
k−1

Continuing in this way, we see that Dj, the subdiagram associated to Uj, results from

R(E†
wKVj) by removing the diagram Rk(v′), where Rk(v′) is obtained from R∗(v′) by shifting

R∗(v′) southeast until its bottom right corner box is bkj (see Figure 3.10). This completes
the construction of the region

Dj =D∗
j ∖ (R(bj, bkj ) ∪Rk(v′)). (3.5.4)

Now, we use the above constructions to find a simple description of Dj as a subdiagram
of D. See Figure 3.11 for an example of such a transformation.

Let bj be a box in λ↗(x([k])) (or equivalently a box in R(x)). This box corresponds
to the module Uj and by Corollary 3.5.9 the associated Plücker coordinate is ∆Pj where
Pj = v−1(J(bj)) (see Definition 3.3.1).

Let r(D) be the k × (n − k) diagram obtained by rotating D clockwise 180 degrees.
Define R(Pj) to be the region in r(D) bounded by the lattice paths L↙Pj and L↙

v−1([k]) (see

Figure 3.12).
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R(Pj)

L↙Pj

L↙
v−1([k])

sk
sk−1

sk+1

Figure 3.12: Region R(Pj)

Theorem 3.5.14. Let w = xv where v ∈WK
max and `(w) = `(x) + `(v). Given a pair (v,w),

where w is a standard reduced expression for w, for each j ∈ J the region R(Pj) gives the
composition diagram for Uj.

Proof. In (3.5.4) we defined a region Dj in Dv,w that yields the desired module Uj, and we
want to realize it as a region in r(D).

Let r(D)∗j be a diagram in Dv,w, that has the same shape as D∗ but whose southeast

corner box coincides with the box bkj (Figure 3.10)
We see that Dj is contained in r(D)∗j . Moreover, by construction, region Dj ⊂ r(D)∗j is

determined by two contours, see Figure 3.10. Next, we provide an explicit formula for these
contours, and then realize them as lattice paths in the diagram r(D). Note that the bottom
contour of Dj is always below or at most coincides with the top contour of Dj, therefore we
can consider them separately.

The bottom contour of Dj. By (3.5.4) the bottom contour of Dj is determined by the
Young diagram Rk(v′) associated to v′ (see Figure 3.10). Observe that the bottom contour
of Dj can be realized as a northeast lattice path in r(D)∗j . By Lemma 3.2.1 the horizontal
steps of this path are labeled by (v′)−1([k]). Since (v′)−1([k]) = v−1([k]), we obtain a desired
description of the horizontal steps of the bottom contour of Dj in r(D)∗j .

The top contour of Dj. We proceed by induction on the length of v′. Let L↗
r(D)∗j

denote

the lattice path in r(D)∗j resulting in the top contour of Dj. First, we consider the base case.
If v′ = e, then by construction R∗(v′) = Rk(v′) = ∅, therefore by (3.5.4)

Dj = Rect(bj) ∪R(wK)j ∖R(bj, bkj ).

We depict Dj in Figure 3.13, where we consider the case ij ≤ k. The remaining case can be
proved similarly. Recall that Rect(bj) is a rectangle in D, with entries at the corners being
sij , sk, sa, sb for some k ≤ a ≤ n − 1 and 1 ≤ b ≤ ij. We see that the horizontal steps of L↗

r(D)∗j
consist of three intervals

P = {1,2 . . . , e − 1} ∪ {d + 1, d + 2, . . . , k} ∪ {c + 1, c + 2, . . . , n}.
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Figure 3.13: Base case v′ = e

We claim that Pj = P , where ∆Pj denotes the Plücker coordinate associated to the box bj.
By Lemma 3.5.8, the lattice path L↗

v(Pj) in D cuts out a rectangle in the northwest corner

of D. In our case, this statement implies that

v(Pj) = wK(Pj) = {1,2, . . . , b − 1} ∪ {ij + 1, ij + 2, . . . , a + 1}.

Applying wK to this set where

wK = ( 1 2 . . . i . . . k k + 1 . . . j . . . n − 1 n
k k − 1 . . . k + 1 − i . . . 1 n . . . n − (j + k − 1) . . . k + 2 k + 1

)

we see that

Pj = {k, k − 1, . . . , k − b + 2} ∪ {k − ij, k − ij − 1, . . . ,1} ∪ {n,n − 1, . . . , n − a + k}.

It follows from Figure 3.13 that e = k − ij + 1, d = k − b+ 1, c = n− a+ k − 1, which implies that
Pj = P . This completes the proof that the top contour of Dj given by L↗

r(D)∗j
has horizontal

steps Pj in the case v′ = e.
Now, consider the pair (v,w) and some (vst,wst) such that the length of each element

increases by one. By induction hypothesis assume that the horizontal steps of top contour
of Dj, coming from the pair (v,w), are given by Pj.

Let U ′
j be the module associated to the box bj and coming from the pair (vst,wst). Let P ′

j

denote the corresponding element of ([n]
k
) for the pair (vst,wst). Observe that by changing
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Figure 3.14: Inductive step for the top contour

v to vst the top contour of D′
j is obtained from the top contour of Dj by adding a box b′

with entry st to R∗(v′)j provided that this box lies in R(Qij); otherwise the top contour
does not change. If the box b′ ∈ R(Qij) then the south and east edges of b′ are part of the
top contour for Dj. The south edge of b′ is a horizontal step of L↗

r(D)∗j
with label t, while the

east edge is a vertical step with label t+1. By induction hypothesis, t ∈ Pj and t+1 /∈ Pj. At
the same time since the contour of D′

j changes by adding this box b′, we see that t + 1 ∈ P ′
j

and t /∈ P ′
j . On the other hand, we have P ′

j = st(Pj), which precisely interchanges t ∈ Pj for
t + 1. Thus, we see that the two agree and in the case b′ ∈ R(Qij) the claim holds.

Now, suppose that the box b′ /∈ R(Qij). Then we know that by construction Dj and D′
j

have the same top contour, and we want to show Pj = P ′
j . Clearly, if t, t+1 ∈ P ′

j or t, t+1 /∈ P ′
j

then P ′
j = st(Pj) = P ′

j as desired. The remaining possibility is that t+1 ∈ Pj but t /∈ Pj. Thus,
we must be in the situation as depicted in Figure 3.14. Note that R∗(v′st), considered as
a region of D∗, must contain a rectangle of height at least b and of width at least n − a.
Similarly, R(x) ∈ D must contain a rectangle of height at least k + 1 − b and width at least
a + 1 − k. Since D has height k and width n − k, this contradicts Lemma 3.5.12 saying that
R(v′st) ∩R(x) = ∅ in D. Therefore, it is not possible that t + 1 ∈ Pj, t /∈ Pj, and b′ /∈ R(Qij).
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This completes the proof of the induction step for the top contour of Dj.

Thus, we showed that the bottom and top contour of Dj ⊂ r(D)∗j has horizontal steps
given by v−1[k] and Pj respectively. Moreover, after rotating r(D)∗j clockwise 90 degrees
and reflecting it across a vertical axis, we obtain the desired region R(Pj), that yields the
composition factor diagram for Uj, as a subset of r(D). For an example of this transformation
see Figure 3.11. Note that in this way a northeast lattice path L↗ in r(D)∗j becomes a
southwest path L↙ in r(D). Also, horizontal steps of L↗ become vertical steps of L↙. This
completes the proof of the theorem.

Corollary 3.5.15. Let w = xv where v ∈ WK
max and `(w) = `(x) + `(v). Given a pair

(v,w), where w is a standard reduced expression for w, for each j ∈ J the module Uj is
indecomposable and the Plücker coordinate ∆Pj is irreducible.

Proof. By construction of the diagram Dj, its bottom and top contour do not intersect, ex-
cept on the boundary of r(D)∗j , and moreover R(Pj) ⊂ R(Qk). In particular, the composition
diagram for the module Uj is connected. This shows that Uj is indeed indecomposable, and
then Theorem 3.5.4 implies that the associated Plücker coordinate ∆Pj is irreducible.

An explicit description of the endomorphism quiver ΓUv,w

In order to understand the endomorphism quiver, we need to analyze morphisms between
indecomposable summands of Uv,w.

Recall that for a box bi ∈ R(x), Ui denotes the associated summand of Uv,w. Also, recall
that Rect(bi) is the maximal rectangle in D whose southeast corner is bi.

Theorem 3.5.16. Consider (v,w) where v ∈ WK
max and w = xv is length-additive. Let w =

xv = xwkv′ be a standard reduced expression for w. For any pair of modules Ui, Uj ∈ indUv,w
there exists an irreducible morphism Ui → Uj in addUv,w if and only if one of the following
conditions holds:

(i) Rect(bj) is obtained from Rect(bi) by removing a row

(ii) Rect(bj) is obtained from Rect(bi) by removing a column

(iii) Rect(bj) is obtained from Rect(bi) by adding a hook shape.

Moreover, there exists at most one irreducible morphism between Ui and Uj.

Before proving Theorem 3.5.16, we make the following key observation.

Remark 3.5.17. Let f ∶ Ui → Uj be a homomorphism, and suppose that N is an indecom-
posable direct summand of imf . Then because imf is a submodule of Uj and is (isomorphic
to) a quotient of Ui, the composition diagram for N embeds into those for Ui, Uj. Moreover,
N is closed under predecessors in Ui: for all vertices x and y ∈ I in the composition diagrams
for N and Ui, respectively, such that y lies immediately above x in Ui (that is y

x or y
x ) we
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have that y is also in the composition diagram for N . Similarly, N is closed under successors
in Uj: for all vertices x, y ∈ I in the diagrams for N,Uj such that y lies immediately below x
in Uj (that is x

y or x
y ), we have that y is also in the diagram for N .

Conversely, for any N that is closed under predecessors in Ui and closed under successors
in Uj we get a morphism f ∶ Ui → Uj with image N .

We will prove Theorem 3.5.16 in two steps. First we treat the case v′ = e, i.e. v = wK .

Proposition 3.5.18. Theorem 3.5.16 is true when v = wK, i.e. v′ = e.

Proof. By the proof of Theorem 3.5.14 all indecomposable summands of U = Uv,w are of the
form given in Figure 3.15. Moreover, we must have Sk = SocUi = SocUj and either ci + ri = k
or ai + ri = n − k for any Ui ∈ indU . Thus, we can rephrase the statement of the theorem in
terms of these new parameters ai, ci, ri that define a given summand of U . Here both (ia)
and (ib) correspond to case (i) of the theorem, depending if bi is above or below the main
diagonal. Similar correspondences hold for the remaining cases.

(ia) ri = rj + 1, ai = aj, and ci + ri = cj + rj = k

(ib) ri = rj, ci = cj − 1, and ai + ri = aj + rj = n − k

(iia) ri = rj, ai = aj − 1, and ci + ri = cj + rj = k

(iib) ri = rj + 1, ci = cj, and ai + ri = aj + rj = n − k

(iiia) ri = rj − 1, ai = aj + 1, and ci + ri = cj + rj = k

(iiib) ri = rj − 1, ci = cj + 1, and ai + ri = aj + rj = n − k.

By the construction of the region Dj ⊂ Dv,w (see Figure 3.13), given Ui ∈ addU defined by
ai, ri, ci a module Uz defined by az, rz, cz is also in addU if rz ≤ az and either az = ai, cz ≥ bi or
cz = ci, az ≥ ai. Indeed, every module in addU corresponds to a unique box in R(x). Given
a box bi ∈ R(x) associated to the module Ui, all the boxes bz ∈ D above and to the left of bi
are also in R(x). The module Uz with the above properties is precisely the one coming from
such a box bz ∈ R(x). Thus, Uz ∈ addU as claimed.

Below we consider an arbitrary morphism f ∶ Ui → Uj, and using the particular structure
of the modules we show that it factors through another summand U ′ of U . Moreover, we
obtain two maps Ui → U ′ and U ′ → Uj whose composition is f together with additional
conditions on the structure of U ′. Since we are interested in the case when f is irreducible,
we can reduce f to the case Ui → U ′ = Uj or U ′ = Ui → Uj. We then continue in the same
way replacing f by one of the two morphisms. At every step we obtain more information
about the particular structure of Ui and Uj until we recover the case listed in the theorem.

Let f ∶ Ui → Uj be a nonzero nonidentity morphism in mod Λ. Since Uj has a one-
dimensional socle it follows that imf , which is a submodule of Uj, is indecomposable. Let
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sk

sk

ai

ci

ri ri

n − k
k

Figure 3.15: Module Ui

N = im f . By Remark 3.5.17 it is closed under predecessors in Ui and closed under successors
in Uj. Moreover, the socle of N is also Sk, and we obtain the configuration depicted in
Figure 3.16. Here, rz ≤ ri, rj, rz + c′z ≤ rj + cj, and rz + az ≤ rj + aj. Conversely, for every such
N as in the figure we obtain a nonzero morphism Ui → Uj.

First, we consider the case ri + ci = k and rj + cj = k. Note that N is not necessarily in
addU . Thus, we construct a module Uz ∈ ind Λ of the same structure as Ui, Uj defined by
az = ai, rz, and cz such that cz + rz = k. Since rz ≤ ri and cz ≥ ci it follows that Uz ∈ indU .
We also obtain maps g ∶ Ui → Uz and h ∶ Uz → Uj such that f = hg. This implies that f is
reducible in addU unless g = 1 or h = 1.

As we are interested in irreducible morphisms f , suppose first that h = 1. Thus, Uz = Uj
and f = g. If rz = ri, then Ui = Uz and g = f = 1 contrary to our original assumption that f is
not the identity morphism. Now, if rz < ri consider a module Ut defined by at = ai, rt = rz + 1
and ct such that ct + rt = k. In particular, ct = cz − 1. Since rt ≤ ri and ct > ci it follows that
Ut ∈ addU . In this case, we note that f factors through Ut. That is, there exist maps ρ, π as
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f

Ui Uj

UzN
rzrz

c′z
az

cz

hg

Figure 3.16: Morphism f ∶ Ui → Uj with image N

below

Ui
f=g //

ρ ''
Uz

Ut
π

77

such that f = πρ. Note that by definition π /= 1 as ct /= cz. Since we are interested in
irreducible morphisms f , we consider the case ρ = 1 and f = π. If f = π then we have Ui = Ut
and Uj = Uz. By construction, ai = aj, ri = rj + 1 and ci + ri = cj + rj = k, which agrees with
case (ia). Conversely, by the structure of Ui and Uj it is easy to see that such f is indeed
irreducible in addU .

Now, consider the case g = 1. Thus, h = f and Uz = Ui =X. Let Uq be the module defined
by aq = az + 1, rq = rz, cq = cz, provided that az + rz < n− k. Observe that Uq ∈ addU because
rq = rz and cq > az. If aq + rq ≤ aj + rj, we see that f factors through Uq. In particular, there
exist morphisms σ, δ as below

Uz
f=h //

σ ''

Uj

Uq
δ

88

where f = δσ. Since we are looking for irreducible maps we take δ = 1. Note that σ /= 1
as az < aq. In the case δ = 1 we have f = σ is injective, and Uz = Ui, Uq = Uj. Therefore,
ri = rj, ai = aj −1, and ri+ci = rj +cj = k, which is precisely the conditions of case (iia). Also,
because f is injective, we can see by the particular structure of Ui and Uq that it is actually
irreducible in addU .

It remains to consider the the case f = h and az + rz = aj + rj. First, we observe that
rz /= rj, as otherwise Ui = Uz = Uj and f is the identity map. Thus, let Up be the module
defined by rp = rz + 1, ap = az − 1, cp = cz − 1, provided az, cz are both nonzero. In this case,
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Up ∈ addU because rp ≤ rj and ap ≥ aj. Thus, we see that f = h factors through Up

Uz
f=h //

ε ''

Uj

Up
θ

77

where f = θε. Note that ε /= 1 by construction, therefore we consider the case θ = 1. Thus,
f = ε and Uz = Ui, Uj = Up, where ri = rj − 1, ai = ai + 1, and ci + ri = cj + rj = k. In particular,
this agrees with case (iiia) of the lemma. Again, since f is injective it is easy to see that it
is irreducible in addU .

Finally, suppose that f = h and az + rz = aj + rj as above, but az = 0 or cz = 0. If az = 0
then rz = aj + rj. We also know that Uz maps invectively into Uj via f . Therefore, rz ≤ rj
which implies that aj = 0. We obtain Uz = Ui = Uj and f is the identity morphism. This is a
contradiction. On the other hand, if cz = 0 then rz = k. Since rz ≤ rj ≤ k, we obtain rj = k.
Also, aj + rj ≤ k implies that aj = 0 and we deduce a contradiction as above.

This completes the proof when ci+ri = cj +rj = k. A similar argument applies in the case
ai + ri = aj + rj = n − k. Therefore, it remains to consider the situation when ri + ci = k and
aj + rj = n − k while ri + ai < n − k and cj + rj < k and vice versa. In particular, we want to
show that every morphism in this case is reducible. Suppose that f ∶ Ui → Uj where ri+ci = k
and rj + cj = n− k while ri + ai < n− k and cj + rj < k. The other case follows similarly. Now,
obtain a module Uu defined by ru = ri, au + ru = n − k, cu + ru = k. Note that Uu is different
from both Ui and Uj. Moreover, Uu ∈ addU because ru = ri and au > ai. We obtain that f
factors through Uu. In particular, f is reducible in addU and the resulting maps Ui → Uu
and Uu → Uj are between types of modules that we considered earlier. This shows that such
f does not yield any new irreducible morphisms, as desired.

In the second step in the proof of Theorem 3.5.16, we relate morphisms between sum-
mands of Uv,w, and morphisms between summands of UwK ,xwK

where w = xv and v ∈WK
max.

Lemma 3.5.19. Let w = xv, where v ∈ WK
max and `(w) = `(x) + `(v). Denote the cluster-

tilting modules coming from a standard reduced expressions for the pairs (wK , xwK) and
(v,w) by U,U ′ respectively. Let Ui, Uj ∈ indU and let U ′

i , U
′
j ∈ indU ′ be the corresponding

summands of U ′. Then, there exists a bijection between irreducible morphisms Ui → Uj in
addU and irreducible morphisms U ′

i → U ′
j in addU ′.

Proof. By [2, Proposition 5.16] there are equivalences of categories Cx
∼Ð→ Cv,w and Cx

∼Ð→
CwK ,xwK . In particular, the categories Cv,w and CwK ,xwK are also equivalent. By [30, Remark
5.2] this equivalence identifies the two cluster-tilting modules U and U ′. In particular,
this implies that there is a bijection between irreducible morphisms Ui → Uj in addU and
irreducible morphisms U ′

i → U ′
j in addU ′.

Together Proposition 3.5.18 and Corollary 3.5.19 prove Theorem 3.5.16. Next, we present
the main theorem of this section.



CHAPTER 3. A CLUSTER STRUCTURE ON SCHUBERT VARIETIES 56

Theorem 3.5.20. Let w = xv be a length additive factorization and v ∈WK
max. For a standard

reduced expression w of w, the labeled quiver ΓUv,w coincides with Qv,w.

Proof. By Definition 3.3.1 and Theorem 3.5.16, the quivers coincide. And by the construction
of ∆Pj and Lemma 3.5.8, the labels of the vertices coincide as well.

As a corollary, we obtain Proposition 3.3.3.

3.6 The proofs of Theorem 3.1.6 and Theorem 3.1.7

In this section we first prove Theorem 3.1.7, and then deduce Theorem 3.1.6 from it.

The proof of Theorem 3.1.7

Let v ≤ w be permutations where v ∈WK
max and w = xv is a length-additive factorization. By

Leclerc’s result (Theorem 3.5.1 and Proposition 3.5.2), the cluster algebra R̃v,w he constructs
is equal to C[Rv,w]. So we need to identify his cluster algebra with the one coming from
plabic graphs.

Let w’ be a standard reduced expression for w′ ∶= xwK and let Gv,w be the graph obtained
from the bridge graph BwK ,w’ by applying v−1 to the boundary vertices. We label the faces
of Gv,w using the target labeling and let Qv,w be the labeled dual quiver of Gv,w with the
vertex labeled v−1([k]) removed. So far, we have shown that Qv,w is the rectangles seed
(Proposition 3.4.11), and that Qv,w agrees with ΓUv,w (Theorem 3.5.20).

Now, let G be a plabic graph obtained from Gv,w by a sequence of moves (M1)-(M3).
The boundary faces of G have the same labels as the boundary faces of Gv,w. Let Q be the
dual quiver of G, with the vertex labeled v−1([k]) removed. Recall that a square move at
a face of a plabic graph changes the dual quiver via mutation at the corresponding vertex.
So we can obtain Q from Qv,w by a sequence of mutations. On the other hand, this same
sequence of mutations can be performed on the corresponding cluster-tilting module Uv,w
and its labeled quiver ΓUv,w resulting in a new module U and its labeled quiver ΓU . Now,
labeling Q with target labels, we claim that Q = ΓU . The two quivers are clearly equal if we
ignore the labels, so we only need to show that the labelings coincide. In order to do so, we
first establish that the face labels of G have the following property.

Definition 3.6.1. Let I, J ∈ ([n]
k
). We say I and J are weakly separated if for all a, b ∈ I ∖ J

and c, d ∈ J ∖ I with a < b and c < d, we never have that a < c < b < d or c < a < d < b.

Proposition 3.6.2. Let v ≤ w be permutations where v ∈ WK
max and w = xv is a length-

additive factorization. Let G be a reduced plabic graph that can be obtained from Gv,w by a

sequence of moves (M1)-(M3). If I, J ∈
→●
F (G), then I and J are weakly separated.
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Proof. Recall from Lemma 3.4.12 that Hmir
v,w is the graph obtained from BwK ,w’ by reflecting

in the mirror and applying w−1 to the boundary vertices. There is a clear one-to-one corre-
spondence between faces of Gv,w and faces of Hmir

v,w , and the target labels of corresponding
faces in each graph agree. Further, performing a sequence of moves to corresponding faces
of Gv,w and Hmir

v,w will result in two graphs with the same target face labels. So instead of
considering the plabic graph G, we will consider the plabic graph H we obtain by performing
an analogous sequence of moves to Hmir

v,w .
First, we deal with the case when w = w0. From the definition of Hmir

v,w , Hmir
v,w0

is a normal
plabic graph with boundary vertices labeled 1, . . . , n going clockwise. It follows immediately

from [39, Theorem 1.5] that
→●
F (H) consists of pairwise weakly separated sets.

Now, suppose w < w0. Note that by construction, Hmir
v,w0

can be obtained from Hmir
v,w by

adding additional bridges. In other words, Hmir
v,w is a subgraph of Hmir

v,w0
, whose boundary

labels are inherited from the trips of Hmir
v,w0

. Thus, one can perform a sequence of moves to
this subgraph to obtain H as a subgraph of a reduced plabic graph. The weak separation of
target labels of H follow again from [39, Theorem 1.5].

This property is important because of the following lemma, which will ensure that square
moves on Gv,w correspond to valid 3-term Plücker relations.

Lemma 3.6.3. Let G be a relabeled plabic graph such that the elements of
→●
F (G) are pairwise

weakly separated, and let f be a square face of G whose vertices are all of degree 3. Suppose
the trips coming into the vertices of f are Ti→a, Tj→b, Tk→c, and Tl→d reading clockwise around
f (see Figure 3.17). Then a, b, c, d are cyclically ordered.

Proof. Consulting Figure 3.17, the target labels of faces around f are Rab,Rbc,Rcd,Rad,
where R is some (k − 2)-element subset of [n] and Rab ∶= R ∪ {a, b}. The fact that Rad and
Rbc are weakly separated implies that either a, b, c, d or a, c, b, d is cyclically ordered. The
fact that Rab and Rcd are weakly separated implies that the former is true.

We can now show that if G is a relabeled plabic graph move-equivalent to Gv,w, square
moves on G agree with the categorical mutation of modules in Cv,w. This, together with
Theorem 3.5.20, completes the proof of Theorem 3.1.7.

Lemma 3.6.4. Let G be a reduced plabic graph that is move-equivalent to Gv,w. Suppose
that the (target) labeled quiver Q(G) = ΓU , for some cluster-tilting module U ∈ Cv,w. If G′ is
obtained from G by performing a square move at some face F of G, then

Q(G′) = ΓU ′

as labeled quivers, where U ′ denotes the mutation of U at the corresponding indecomposable
summand UF of U .
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Proof. The label of the square face F and its surrounding faces are given in Figure 3.17.
Here, R is a (k − 2)-element subset of [n] and Rac stands for R ∪ {a, c}. Thus, F has label
Rac in G and after the mutation it has label Rbd. By Proposition 3.6.2, the target face
labels of G are pairwise weakly separated, so by Lemma 3.6.3, a, b, c, d are cyclically ordered.
Now, consider the local configuration in ΓU around the vertex ∆Rac corresponding to the
summand UF of U . By definition of mutation, U ′ = U/UF ⊕U ′

F , where U ′
F is defined by the

two short exact sequences as follows.

0 // U ′
F

// URbc ⊕URad // UF // 0 0 // UF // URab ⊕URcd // U ′
F

// 0

where we identify summand of U with the labels of the corresponding faces in G. By the
properties of the cluster-character map ϕ this yields the relation

ϕUFϕU ′
F
= ϕURbcϕURad + ϕURabϕURcd .

Note that if one of the faces adjacent to F has label v−1([k]) then the associated module
Uv−1([k]) is the zero module and ϕUv−1([k]) = ∆v−1([k]) = 1 by Remark 3.4.13. In this case, the

relation above still holds. Since the two labeled quivers Q(G) and ΓU coincide, each function
ϕUE ∈ C[Rwk,w], where E is a face in G, is simply a Plücker coordinate coming from the
label of the face. In particular, we have the following.

ϕUF = ϕRac = ∆Rac ϕURab = ∆Rab ϕURbc = ∆Rbc ϕURcd = ∆Rcd ϕURad = ∆Rad

Therefore, the relation above becomes

∆RacϕU ′
F
= ∆Rbc∆Rad +∆Rab∆Rcd

which is precisely a three-term Plücker relation in the corresponding skew Schubert variety.
Thus, we conclude that ϕU ′

F
= ∆Rbd. This shows that the two labeled quivers Q(G′) and ΓU ′

agree.

Remark 3.6.5. Since all graphs in Lemma 3.4.12 give rise to the same labeled seed (up to
reversing all arrows in the quiver, which does not affect mutation), and a sequence of moves
on any one can be translated to a sequence of moves on any other that effects the dual quiver
in the same way , Lemma 3.6.4 shows that any reduced plabic graph move-equivalent to a
graph in Lemma 3.4.12 gives rise to a seed for πk(Rv,w).

The proof of Theorem 3.1.6

We now explain how to deduce Theorem 3.1.6 from Theorem 3.1.7.
Recall that for v ∈ WK

max, πk(Rv,w0) = X○
λ, where V ↙(λ) = v−1([k]). The decorated

permutation corresponding to πk(Rv,w0) is v−1w0.
Recall also that we can obtain v−1 in list notation from λ by labeling the southeast border

of λ with 1, . . . , n going southwest and first reading the labels of vertical steps going northeast
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Figure 3.17: Plabic graphs G′ and G respectively, and the labeled quiver Q(G)

and then reading the labels of the horizontal steps going northeast. To obtain v−1w0, we
reverse the order in which we read the border of λ, first reading the labels of horizontal steps
going southwest and then reading the labels of the vertical steps going southwest. So v−1w0

is equal to the permutation π↙λ appearing in Theorem 3.1.6.
Let x ∶= w0v−1. The factorization w0 = xv is length-additive. Let w’ be a standard

reduced expression for w′ ∶= xwK . If we take BwK ,w’, apply w−1
0 to the boundary vertices,

and “reflect in the mirror”, we obtain a graph Hmir
v,w0

which has trip permutation π↙λ and
whose boundary vertices are labeled with 1, . . . , n clockwise. According to Theorem 3.5.20
and Lemma 3.4.12, if we label the dual quiver of Hmir

v,w0
using target labels, we obtain a

seed for the coordinate ring of (the affine cone over) X○
λ. And by Remark 3.6.5, if G is

any reduced plabic graph move-equivalent to Hmir
v,w0

(that is, with boundary vertices labeled
1, . . . , n clockwise and trip permutation π↙λ ), then the (target) labeled dual quiver Q(G)
gives a seed.

3.7 Applications

In this section we give applications of Theorem 3.1.6 and Theorem 3.1.7.

The coordinate rings of Schubert and skew-Schubert varieties

Combining Theorem 3.1.6 and Theorem 3.1.7 with [36, Theorem 3.3] and [35], we obtain the
following corollary.

Corollary 3.7.1. Let v ≤ w, where v ∈ WK
max and w = xv is length-additive. Then the

cluster algebra C[ ̃πk(Rv,w)] is locally acyclic, and thus is finitely generated, normal, locally
a complete intersection, and equal to its own upper cluster algebra.
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Combining our result with [16, Theorem 1.2], we find that the quivers giving rise to the
cluster structures for Schubert and skew Schubert varieties admit green-to-red sequences,
which by [24] implies that the cluster algebras have Enough Global Monomials. Hence, we
have the following corollary.

Corollary 3.7.2. Let v ≤ w, where v ∈WK
max and w = xv is length-additive. Then the cluster

algebra C[ ̃πk(Rv,w)] has a canonical basis of theta functions, parameterized by the lattice of
g-vectors.

Skew Schubert varieties whose cluster structure has finite type

In [46], Scott classified the Grassmannians whose coordinate rings have a cluster algebra of
finite type. She showed that in general the cluster algebras have infinite type, except in the
following cases: the coordinate ring of Gr(2, n) has a cluster algebra of type An−3, while the
coordinate rings of Gr(3,6), Gr(3,7), and Gr(3,8) have cluster algebras of types D4, E6,
and E8, respectively.

It is straightforward to classify for which skew Schubert varieties πk(Rv,w) the cluster
structure described here is finite type. It depends only on wv−1. We will need the following
two facts.

Proposition 3.7.3 ([6]). Let Q and Q′ be orientations of trees T and T ′, respectively. If Q
can be obtained from Q′ by a sequence of mutations, then T and T ′ are isomorphic.

Lemma 3.7.4 ([14, Remark 5.10.9]). Let Q be a quiver and let Q′ be a subquiver of Q
consisting of some vertices of Q, which inherit being frozen or mutable from Q, and all
arrows between them. Then if Q is mutation equivalent to a (disjoint union of) type ADE
Dynkin diagram, so is Q′.

Proposition 3.7.5. Let v ≤ w, where v ∈ WK
max and w = xv is length-additive. Let λ =

λ↗(x([k])) and let λ′ be the diagram obtained from λ by removing all boxes that touch the

southeast boundary of λ. Then the cluster algebra A = C[ ̃πk(Rv,w)] given in Theorem 3.1.7
is

1. type A if and only if λ′ does not contain a 2 × 2 rectangle;

2. type D if and only if λ′ = (i,2) or its transpose for i ≥ 2;

3. type E6, E7, or E8 if and only if λ′ or its transpose is one of (3,3), (3,2,1), (4,3),
(4,2,1), (3,3,1), (5,3), (5,2,1), (4,4), (4,2,2).

In particular, the cluster algebra associated to the Schubert variety Xλ is of finite type if
and only if λ′ is in the above list.
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Figure 3.18: Up to transposition, the smallest partitions giving rise to quivers of types
E6,E7,E8, whose mutable parts are shown on the right. The boxes corresponding to mutable
vertices are shaded. Adding any number of boxes to the first row or column of these partitions
only adds isolated frozen vertices to the quiver, and so also gives rise to a quiver of type
E6,E7,E8.

Proof. 1. The backwards direction follows from the fact that if λ′ does not contain a
2 × 2 rectangle, then Qv,w is an orientation of a path. For the other direction, recall
that the mutable part of all type A quivers can be obtained from a triangulation of a
polygon [14, Lemma 5.3.1]. It is not hard to see that there is no arrangement of 4 arcs
in a triangulation that gives the quiver we draw from a 2 × 2 rectangle according to
Definition 3.3.1, so if λ′ contains a 2 × 2 rectangle as a subdiagram, A is not type A.

2. The backwards direction follows from inspection of the associated quivers; if one mu-
tates at the vertex in the northwest box, one obtains an orientation of a type D
Dynkin diagram. If ∣λ′∣ ≤ 8, then necessity follows from direct computation and Propo-
sition 3.7.3. Four partitions of 8 are not finite type (see Figure 3.19), so by Lemma 3.7.4
any partition containing one of these four will not be finite type. The partitions of 9
that are not of type A, are not (7,2) or its transpose, and do not contain a partition
of 8 that is infinite type are shown in Figure 3.19; they are all infinite type. Thus, the
only partitions of 9 that are finite type and not type A are (7,2) and its transpose.
From this, we can conclude that A is type D only if λ′ = (i,2) or its tranpose. Indeed,
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A is infinte type if λ′ is not type A and contains any partition of 9 that is not (7,2)
or its transpose, or, equivalently, if λ′ ≠ (i,2) or its transpose.

3. By direct computation, using Proposition 3.7.3.

●
��
●oo
��
●oo ●oo

●
OO

●
OO

oo ●
OO

oo

●
OO

●
��
●oo
��
●oo
��
●oo ●oo

●
OO

●
OO

oo ●
OO

oo ●
OO

oo

●
��
●oo ●oo ●oo

●
OO

●
OO

oo

●
OO

●
OO

●
��
●oo
��
●oo ●oo ●oo ●oo

●
OO

●
OO

oo ●
OO

oo

●
��
●oo
��
●oo

●
OO

��
●
OO

oo ●
OO

oo

●
OO

●
OO

oo

●
��
●oo ●oo ●oo ●oo

●
OO

●
OO

oo

●
OO

●
��
●oo
��
●oo

●
OO

●
OO

oo ●
OO

oo

●
OO

●
OO

●
OO

Figure 3.19: These partitions (and their transposes) are the smallest partitions giving
rise to quivers of infinite type, whose mutable parts are shown on the right. The boxes
corresponding to mutable vertices are shown in green. Adding any number of boxes to the
first row or column of these partitions only adds isolated frozen vertices to the quiver, and
so also gives rise to a quiver of infinite type.
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Figure 3.20: A series of Schubert varieties which yield the type Dn cluster algebras.
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Applications to the preprojective algebra

As an application of Theorem 3.5.14, we obtain an explicit way to compute the summands
of a cluster-tilting module Uv,w, whereas Leclerc’s definition is constructive. This provides a
novel connection between Plücker coordinates and the structure of the summands of Uv,w. It
is an interesting problem to determine whether this correspondence extends beyond the case
of Schubert and skew-Schubert varieties. Such a combinatorial interpretation of the modules
would be useful in computing morphisms between the summands of Uv,w for arbitrary (v,w).
Moreover, given two modules U,U ′ ∈ Cv,w that correspond to Plücker coordinates ∆P ,∆P ′

on the positroid variety πk(Rv,w), it is natural to ask whether we can detect an extension
between U and U ′ in terms of the corresponding lattice paths L↙P , L

↙
P ′ . In particular, this

would tell us whether two cluster variables ∆P ,∆P ′ are compatible in the cluster algebra
C[ ̃πk(Rv,w)]. This could provide new insights into the representation theory of preprojective
algebras.

Moreover, when w = xv is length additive and v ∈ WK
max, we can explicitly write down

many of the seeds for the pair (v,w) using the combinatorics of plabic graphs. Thus we find
that these cluster algebras have all the nice properties mentioned in Section 3.7 (they are
locally acyclic, equal to their upper cluster algebra, admit green-to-red sequences, have a
canonical basis of theta functions, etc).

3.8 Skew Schubert varieties

Besides decorated permutations,

Γ

-diagrams are another combinatorial object indexing positroid
varieties. These diagrams first appear in [7], in the study of the prime spectrum of quantum
matrices, and then also in [41], in relation to positroid cell stratification of the totally non-
negative Grassmannian. In this section we will give a recipe for the

Γ

-diagrams of the skew
Schubert varieties, i.e. the positroid varieties of the form πk(Rv,w), where v ∈ WK

max and w
has a length-additive factorization xv. Recall that in this case, x ∈ KW . The trip permuta-
tion of such a positroid is v−1xv. While we do not know a combinatorial characterization of
these trip permutations, we can describe the corresponding

Γ

-diagrams.

The

Γ

-diagrams associated to skew Schubert varieties

We first need some preliminary notions, following [29].
For a Young diagram λ that fits inside of a k × (n − k) rectangle, let u↗λ ∈ KW be the

Grassmannian permutation of type (k,n) with u↗λ ([k]) = V ↗(λ).

Definition 3.8.1. An ⊕-diagram (“o-plus diagram”) O of shape λ is a Young diagram λ
that has been filled with 0’s and +’s. We say O is of type (k, n) if λ fits into a k × (n − k)
rectangle. An ⊕-diagram is a

Γ

-diagram (“Le-diagram”) if the “

Γ

-property” holds: there is
no 0 such that there is a + above it in the same column and a + to its left in the same row
(see Figure 3.21).
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c
⋮

b ⋯ a

Figure 3.21: The

Γ

- property: if b, c = + then a = +.

Suppose λ fits inside of a k×(n−k) rectangle. By Lemma 3.2.1, given a reading order, we
can obtain a reduced expression u for u↗λ from λ. Fixing a reading order, each ⊕-diagram O
of shape λ gives a subexpression r of u, obtained by replacing each simple transposition in a
box filled with a + by a 1. The permutation r given by this subexpression does not depend
on the reading order [29, Proposition 4.6], so we will denote it by r(O) (for the “reading
word” of O).

Note that by [41, Lemma 19.3], O is a
Γ

-diagram if and only if r is a positive distinguished
subexpression of u (see Definition 3.9.1).

Proposition 3.8.2. Let M be a

Γ

-diagram of shape λ with reading word r, and let u = u↗λ .
Then M corresponds to the positroid variety πk(Ru−1w0,r−1w0

)

Proof. By [41, Theorem 19.1], M corresponds to πk(Rr−1,u−1). Note that in the compete
flag variety, the map Bx → Bxw0 gives an isomorphism between Rv,w and Rww0,vw0 . The
proposition follows immediately.

Remark 3.8.3. Let v ∈ WK
max and u ∈ WK

min. The

Γ

-diagram of πk(Rv,w0) ≅ X○
v−1([k])

has shape λ↙(v−1([k])) and every box contains a +. For u ∈ WK
min, the

Γ

-diagram of
πk(RwK ,wKu) ≅ (Xu−1([k]))○ is the k×(n−k) rectangle where all boxes above L↙

u−1([k]) contain

0’s and all boxes below contain +’s.

We can use

Γ

-moves to change ⊕-diagrams into

Γ

-diagrams.

Definition 3.8.4. [29, Section 5] Suppose O is an ⊕-diagram containing a rectangular sub-
diagram where all non-corner boxes are filled with zeros and the northeast and southwest
corners are filled with pluses (shown below). If b is 0, a

Γ

-move changes b to + and changes
a either from 0 to + or from + to 0.

a 0 0 0 +
0 0 0 0 0
+ 0 0 0 b
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0 +
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+ +
+ +

+ +
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0 +
+ +

Figure 3.22: Two

Γ

-moves.

+ + + 0

+ 0 0 0

0 0 0

0

0 0 + 0

+ + + 0

0 0 0

0

Figure 3.23: On the left, Ox,v and on the right, M(Ox,v) for x = (1,2,4,7,3,5,6,8) and
v = (4,3,8,2,7,6,1,5).

Note that these are actually the rectangular

Γ

-moves of [29, Definition 4.11].
See Figure 3.22 for examples of

Γ

-moves.
The key properties of

Γ
-moves are as follows.

Lemma 3.8.5. [29, Lemma 4.13, Proposition 4.14] Let O be an ⊕-diagram.

1. O can be made into a

Γ

-diagram M (“

Γ

-ified”) by a finite sequence of

Γ

-moves.

2. If O′ is related to O by a sequence of

Γ

-moves, then r(O) = r(O′).

3. M =∶M(O) does not depend on the sequence of

Γ

-moves.

Now, consider x ∈ KW and v ∈ WK
max such that `(xv) = `(x) + `(v). Recall from

Lemma 3.5.12 that L↗
x([k]) lies above L↙

v−1([k]). Let λx and λv be the partitions above L↗
x([k])

and L↙
v−1([k]), respectively.

Definition 3.8.6. Let Ox,v be the ⊕-diagram of shape λv with the boxes in λx filled with
+’s and all other boxes filled with 0’s (see Figure 3.23).

Proposition 3.8.7. M(Ox,v), the

Γ

-ification of Ox,v, is the

Γ

-diagram of πk(Rv,xv).

Remark 3.8.8. Proposition 3.8.7, together with the definition of Ox,v (which is determined
by two noncrossing lattice paths in a rectangle, i.e. a skew Young diagram), is the reason
that we refer to these positroid varieties as skew Schubert varieties.
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Proof. Let M ∶= M(Ox,v). Note that u↗λv (that is, the Grassmannian permutation of type
(k,n) which maps [k] to V ↗(λv)) is equal to w0v−1. The reading word of Ox,v, and thus of
M , is w0v−1x−1; this follows from the fact that there is a reading order for λv which reads
the boxes of λv ∖ λx before the boxes of λx. So by Proposition 3.8.2, M corresponds to
πk(Rv,xv).

3.9 A cluster structure not realizable by relabeled

plabic graphs

If πk(Rv,w) is not a skew Schubert variety, it is in general impossible to realize the seeds
from Leclerc’s construction (Theorem 3.5.4) as labeled quivers coming from (generalized)
plabic graph. Indeed, this can fail even in Gr(2,5). Before giving an example, we briefly
review Leclerc’s construction for the pair (v,w), where v ∈WK

max, v < w and w is a reduced
expression for w.

Definition 3.9.1. Let v ≤ w be permutations and w = sit⋯si1 a reduced expression for w.
The positive distinguished subexpression for v in w is a reduced expression v = vt . . . v1 where
vj ∈ {sij , e}. We give v in terms of the products v(j) ∶= vj . . . v2v1. We set v(0) = e and

v(j) = { sijv(j−1) if vv−1
(j)sij < vv−1

(j)
v(j−1) otherwise.

In other words, the positive distinguished subexpression for v is the rightmost subexpres-
sion for v in w, working from right to left.

Let v be the positive distinguished subexpression for v in w = sit⋯si2si1 . Let w(j) =
sij⋯si2si1 for 1 ≤ j ≤ t and let v(j) = vj⋯v1 be as in the above definition. Let J ⊂ {1, . . . , t}
be the collection of indices j such that vj = e. According to Theorem 3.5.4, the clus-
ter variables in the seed corresponding to (v,w) are the distinct irreducible factors of

∏j∈J ∆v−1
(j)

{[ij]},w−1(j){[ij]}
.

Example 3.9.2. Consider v = (2,5,1,4,3), w = (5,3,4,2,1) and the following reduced
expression w for w, where the positive distinguished subexpression for v is in bold:

w = s1s2s1s3s2s4s3s2s1.

Note that w does not have a length-additive factorization ending in v.
If one computes the generalized minors ∆v−1

(j)
([ij]),w−1(j)([ij])

coming from Theorem 3.5.4,

they are not all irreducible. However, if we associate Plücker coordinates to the irreducible
factors of these generalized minors (as in Section 3.5), we obtain ∆13, ∆23,∆14,∆45,∆15.

However, {13,23,14,45,15} cannot be the set of face labels of a relabeled plabic graph
for Gr(2,5). This comes from the fact that the number 2 appears only once among the set
{13,23,14,45,15}. In more detail, suppose G were such a relabeled plabic graph. G has no
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internal faces and no lollipops. Without loss of generality, G is source-labeled. The face f
labeled 23, is adjacent to one other face, labeled 13. So consider the trip T beginning at 2
and ending at j. We know that f is the only face to the left of this trip, and that T must
pass through vertices of degree 2 only. Then the trip beginning at j is again T , traveled in
the opposite direction. Thus, j must be in the label of every face besides f , a contradiction.

On the other hand, {13,23,14,45,15} is a subset of the face labels of a plabic graph for
the top cell in Gr(2,5), since it is a weakly separated collection. Further, variables in the
rectangles seed for the skew-Schubert varieties is always a subset of the face labels of a plabic
graph G for the top cell (and the quiver for the rectangles seed is obtained from Q(G) by
deleting some vertices and freezing others). One might ask if the seeds given in Leclerc’s
construction can always be obtained from a plabic graph for the top cell in this way. The
following example will show that this is not the case.

Example 3.9.3. Consider v = (3,2,7,6,1,5,4), w = (7,6,4,2,5,3,1), and the following
reduced expression w for w, where the positive distinguished subexpression for v is in bold:

w = s1s2s3s2s1s4s5s4s3s2s6s5s4s3s2s1s5s2

The irreducible factors of the generalized minors ∆v−1
(j)

([ij]),w−1(j)([ij])
are ∆135, ∆126, ∆235,

∆345, ∆145, ∆467, ∆127, and ∆125 (the first variable is mutable and the others are frozen).
Note that 467 and 235 are not weakly separated, so this set of Plücker coordinates cannot
be a subset of the face labels of a plabic graph for the top cell.
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Chapter 4

Many cluster structures on positroid
varieties

The work in this chapter is joint with Chris Fraser, and has appeared on the arXiv [18].
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For open Schubert varieties Π○
µ, the results of the last chapter show that the coordinate

ring C[Π̃○
µ] is a cluster algebra, and each reduced plabic graph G for Π○

µ determines a seed
ΣT
G for this cluster algebra. An analogous result for arbitrary positroid varieties was proved

by Galashin and Lam [19] afterwards, using instead the source seeds ΣS
G. In this chapter,

we study the effect of relabeling the boundary vertices of G by a permutation ρ, in order
to better understand the relationship between these two cluster structures. Under suitable
hypotheses on the permutation, we show that the relabeled graph Gρ determines a cluster
structure not for Π○

µ but for a different open positroid variety Π○
π. As a key step in the

proof, we show that Π○
π and Π○

µ are isomorphic by a nontrivial twist isomorphism. Our
constructions yield a family of cluster structures on each open positroid variety, given by
plabic graphs with appropriately permuted boundary labels. We conjecture that the seeds
in all of these cluster structures are related by a combination of mutations and Laurent
monomial transformations involving frozen variables, and establish this conjecture for (open)
Schubert and opposite Schubert varieties. As an application, we also show that for certain
reduced plabic graphs G, the source seed ΣS

G and the target seed ΣT
G are related by mutation

and Laurent monomial rescalings.
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4.1 Introduction

In this chapter, we turn to the general case of arbitrary positroid varieties. Positroid varieties
are irreducible projective subvarieties of the Grassmannian—so named by Knutson–Lam–
Speyer [28], who showed they are the algebro-geometric counterparts to Postnikov’s positroid
cells [41]. They can be defined as closures of the images of Richardson varieties of the full
flag variety under the projection to the Grassmannian (as in Section 3.1), or alternatively,
as closures of the intersections of (several) cyclically shifted Schubert varieties. Associated
to each positroid variety Π is its open positroid variety Π○, a smooth Zariski-open subset of
the positroid variety defined by the non-vanishing of certain Plücker coordinates. From the
perspective of cluster algebras, the natural object to study is the affine cone Π̃○ over the open
positroid variety in the Plücker embedding. Positroid varieties in Gr(k,n) are indexed by
permutations of type (k,n)1; we write Π̃○

π for the positroid variety indexed by permutation
π. As with open Schubert varieties, each positroid variety corresponds to the equivalence
class of reduced plabic graphs with trip permutation π.

The motivation for the work in this chapter is the following fact, noted by Muller–Speyer
in [36] (and well-known by experts): for G a reduced plabic graph, the source seed ΣS

G and the
target seed ΣT

G are typically not related by mutation. Moreover, A(ΣS
G) and A(ΣT

G) typically

have different cluster and frozen variables, though as algebras A(ΣS
G) = A(ΣT

G) = C[Π̃○
π].

Muller and Speyer conjectured the following, in slightly different language.

Conjecture 4.1.1 ([37, Remark 4.7]). Let G be a reduced plabic graph. Then ΣS
G and ΣT

G

are related by a quasi-cluster transformation.

A quasi-cluster transformation [17] is a sequence of mutations and well-behaved rescalings
of cluster variables by Laurent monomials in frozen variables (cf. Section 4.3). If two seeds
which give different cluster structures on V are related by a quasi-cluster transformation,
then the two cluster structures have the same cluster monomials and define the same positive
part of V .

Our first main result establishes many different cluster structures on Π̃○
π, which are all

determined by seeds from relabeled plabic graphs (cf. Definition 4.4.1). Instances of seeds
from relabeled plabic graphs appeared previously in [47], in the course of comparing Leclerc’s
approach [30] to cluster structures in open positroid varieties with the seeds coming from
plabic graphs.

If G is a reduced plabic graph with boundary vertices 1, . . . , n and ρ ∈ Sn, the rela-
beled plabic graph Gρ is the same planar graph but with boundary vertices relabeled to
be ρ(1), . . . , ρ(n) (cf. Figure 4.1)2. Each relabeled plabic graph Gρ gives rise to a pair

ΣT
Gρ = (

→●
F (Gρ),QGρ). We make a technical assumption on ρ and the trip permutation π of

Gρ using the partial order ≤○. This partial order is induced by the right weak order on affine

1Positroid varieties are usually indexed by decorated permutations; our convention in this chapter is all
fixed points are colored white (see Section 4.3).

2The trip permutation, target face labels, etc. of Gρ are computed according to the relabeled boundary.
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permutations (cf. Definitions 4.3.21 and 4.3.22), and is the “weak order version” of Post-
nikov’s circular Bruhat order. The condition πρ ≤○ π ensures that the Plucker coordinates
associated to the boundary faces of Gρ are non-vanishing on Π̃○

π, which is a necessary condi-
tion for the seed to determine a cluster structure. Assuming this condition, we characterize
when ΣT

Gρ gives a cluster structure on Π̃○
π. One of the equivalent conditions is in terms of

weak separation; see Definition 4.3.8 for the definition.

Theorem 4.1.2 (Theorem 4.5.24, Corollary 4.6.16). Suppose π, ρ ∈ Sn such that πρ ≤○ π
and set µ = ρ−1πρ. Let G be a reduced plabic graph with trip permutation µ, so that Gρ has
trip permutation π. Then the following are equivalent:

1. ΣT
Gρ is a seed in C(Π̃○

π) and A(ΣT
Gρ) = C[Π̃○

π].

2. The number of faces of Gρ is dim Π̃○
π. Equivalently, dim Π̃○

π = dim Π̃○
µ.

3. The Plücker coordinates
→●
F (Gρ) associated to the boundary faces (equivalently, to all

faces) of Gρ are a weakly separated collection.

4. The open positroid varieties Π̃○
π and Π̃○

µ are isomorphic.

Moreover, if any (hence, all) of the above conditions hold, the positive part of Π̃○
π determined

by ΣT
Gρ is the positroid cell Π̃○

π,>0.

Figure 4.1 gives an illustration of Theorem 4.1.2.
In stating (2), we have used the well known fact that dim Π̃○

G is the number of faces
of G. In stating (3), we have used a result of Farber and Galashin [11, Theorem 6.3]. The
isomorphism Π̃○

π → Π̃○
µ in (4) is a generalization of the Muller-Speyer twist automorphism of

an open positroid variety [37].
Theorem 4.1.2 provides many seeds ΣT

Gρ which give a cluster structure on Π̃○
π. When Π̃○

π

is a Schubert or opposite Schubert variety, the set of boundaries ρ which give seeds for Π̃○
π

is the ≤○-order ideal below π−1 (Proposition 4.7.11). For other π, it is some subset of this
order ideal, picked out by a length condition (Definition 4.7.5).

Among the seeds covered by Theorem 4.1.2 are the target seed ΣT
H and the source seed

ΣS
H for H a usual plabic graph with trip permutation π (cf. Remark 4.7.2). The seeds ΣT

H

and ΣT
Gρ are not related by mutation unless ρ is the identity. However, we conjecture the

following, which is a direct generalization of Conjecture 4.1.1.

Conjecture 4.1.3. Suppose H is a plabic graph with trip permutation π, and Gρ is a rela-
beled plabic graph with trip permutation π satisfying the conditions of Theorem 4.1.2. Then
the seeds ΣT

H and ΣT
Gρ are related by quasi-cluster transformations.

We emphasize that in general, if Σ and Σ′ give two different cluster structures on a variety,
they may not be related by quasi-cluster transformations. Zhou [50] gives an example of this
for the cluster algebra of the Markov quiver.
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Figure 4.1: The left graph is a reduced plabic graph with trip permutation π = 465213. It
encodes an open positroid variety Π̃○

π. The three graphs on the right are relabeled plabic
graphs with trip permutation π. Ignoring the permuted boundary labels, the four plabic
graphs represent four different open positroid varieties, isomorphic to each other by Theo-
rem 4.5.24. The face labels of each graph together with the dual quiver give seeds which
determine 4 different cluster structures on Π̃○

π. These four seeds are related by quasi-cluster
transformations.

We remark that when the conclusion of Conjecture 4.1.3 holds, each seed ΣT
Gρ can be

rescaled to give a seed in A(ΣT
H) whose cluster variables are Plücker coordinates times a

Laurent monomial in frozen variables. So the seeds ΣT
Gρ are (conjecturally) a source for

seeds in A(ΣT
H) whose clusters are Plücker coordinates times units. In general A(ΣT

H) may
contain very few seeds from usual plabic graphs, so we view relabeled plabic graphs as a
(conjectural) source for a much larger class of seeds in A(ΣT

H) which are combinatorially
well-understood.

We establish Conjecture 4.1.3 completely for Schubert and opposite Schubert varieties.

Theorem 4.1.4 (Theorem 4.7.12). Suppose Π̃○
π is an open Schubert or opposite open Schu-

bert variety. Then Conjecture 4.1.3 holds. In particular, for H a reduced plabic graph with
trip permutation π, the source seed ΣS

H and the target seed ΣT
H are related by a quasi-cluster

transformation.

We also give partial results towards Conjecture 4.1.3 for arbitrary open positroid varieties
in Theorem 4.7.4. From these results, we obtain a positive answer to Conjecture 4.1.1 for
Π̃○
π where π is toggle-connected (cf. Definition 4.7.5).



CHAPTER 4. MANY CLUSTER STRUCTURES ON POSITROID VARIETIES 72

Theorem 4.1.5 (Corollary 4.7.8). Suppose π ∈ Sn is toggle-connected, and let H be a reduced
plabic graph with trip permutation π. Then the source seed ΣS

H and the target seed ΣT
H are

related by a quasi-cluster transformation.

Outline. In Section 4.2, we provide background on open positroid varieties, as well as
bounded affine permutations and the partial order ≤○, following [41, 28, 46]. We also recall
quasi-cluster transformations [17]. Section 4.4 introduces the main players: relabeled plabic
graphs and Grassmannlike necklaces. Section 4.5 introduces Theorems 4.5.14 and 4.5.19.
Section 4.6 establishes isomorphisms of open positroid varieties via twist maps. It assumes
some familiarity with the main constructions in [37]. Section 4.7 introduces Theorem 4.7.4
concerning toggle-connected positroids, and gives examples of families of toggle-connected
positroids. Section 4.8 collects some longer proofs.

4.2 Background on cluster algebras and positroids

4.3 Positroid varieties

One way to define positroid varieties is as projections of open Richardson varieties in the full
flag variety to the Grassmannian Gr(k,n), as we saw in Section 3.1. Knutson–Lam–Speyer
[28] gave an alternate definition using the combinatorics of positroids developed by Postnikov
[41] (and show that the two definitions agree). We review their definition here.

A real k×n matrix M is totally nonnegative if ∆I(M) ≥ 0 for all I ∈ ([n]
k
). A collection of

k-subsetsM⊂ ([n]
k
) is a positroid if it is the column matroid of a totally nonnegative matrix;

i.e., if there exists a real matrix M such that ∆I(M) > 0 for I ∈ M and ∆I(M) = 0 for
I ∉ M. The closed positroid variety ΠM is the subvariety of Gr(k,n) whose homogeneous
ideal is generated by {∆I ∶ I ∉ M} [28]. That is,

ΠM = {x ∈ Gr(k,n) ∶ ∆I(x) = 0 for all I ∉ M}.
This chapter is concerned with the open positroid variety Π○ ⊂ Π, a Zariski-open subset

of Π which we will define after reviewing more combinatorial objects indexing positroids.

Combinatorial objects that index positroids

Positroid are naturally labeled by several families of combinatorial objects. We focus on
Grassmann necklaces here, which are easily in bijection with the decorated permutations
defined in Definition 2.2.4. These objects and the results in this section are due to Postnikov
[41] unless otherwise noted.

We make the following expositional choice, which streamlines the combinatorial back-
ground and also the statements of our results. We will only give the definitions for loopless
positroids. A positroid M ⊂ ([n]

k
) is loopless if for every i ∈ [n], there exists an I ∈ M with
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i ∈ I. If a positroid is not loopless, than one can work over the smaller ground set [n] ∖ {i}
without affecting any of the combinatorial or algebraic structures below in a significant way.
Geometrically, if a positroid M has a loop i, then k × n matrix representatives for points in
Π○
M will have the zero vector in column i. One can project away the ith column and work

instead with an isomorphic positroid subvariety of Gr(k,n − 1).
The first combinatorial object indexing positroids gives rise to frozen variables in the

cluster structure(s) on Π̃○.

Definition 4.3.1. A forward Grassmann necklace of type (k,n) is an n-tuple I⃗ = (I⃗1, . . . , I⃗n)
in ([n]

k
) such that for every a ∈ [n], one has a ∈ I⃗a and I⃗a+1 = I⃗a∖a∪π(a) for some π(a) ∈ [n].

Dually, a reverse Grassmann necklace of type (k,n) is an n-tuple ⃗I = ( ⃗I1, . . . , ⃗In) in ([n]
k
)

such that for all a ∈ [n], one has a ∈ ⃗Ia and ⃗Ia−1 = ⃗Ia ∖ a ∪ σ(a) for some σ(a) ∈ n.

Remark 4.3.2. The objects just defined might more properly called loopless Grassmann
necklaces, because they correspond bijectively with loopless positroids. We will drop the
adjective loopless.

Definition 4.3.3. A permutation π ∈ Sn has type (k,n) if ∣{a ∈ [n]∶a ≤ π−1(a)}∣ = k.

If I⃗ is a forward Grassmann necklace, then it follows from the definition that the map
a ↦ π(a) is a permutation of [n]. Moreover, the permutation π determines the necklace I⃗.
One has

I⃗1 = {a ∈ [n]∶a ≤ π−1(a)} (4.3.1)

and the remainder of the necklace can be computed from the data of I1 and π using the neck-
lace condition. This establishes a bijection between (loopless) forward Grassmann necklaces
of type (k,n) and permutations of type (k,n).

Dually, for a reverse Grassmann necklace ⃗I, the map i ↦ σ(i) is a permutation of [n],
and a similar recipe allows one to recover ⃗I from the permutation σ.

Now we explain how (loopless) positroid subvarieties of Gr(k,n) are in bijection with
Grassmann necklaces of type (k,n), hence also with permutations of type (k,n).

For any i ∈ [n], let <i denote the order on [n] in which i is smallest and i − 1 is largest,
i.e. i <i i + 1 <i ⋯ <i i − 1. For a pair of subsets S = {s1 <i ⋅ ⋅ ⋅ <i sk}, T = {t1 <i ⋅ ⋅ ⋅ <i tk}, we
say that S ≤i T if sj ≤i tj for all j.

Note that i is maximal in the order <i+1.

Definition 4.3.4. Let M⊂ ([n]
k
) be a positroid. For i ∈ [n], let I⃗i be the <i-minimal subset

ofM, and let ⃗I i be the <i+1-maximal subset ofM. The Grassmann necklace ofM is defined
as I⃗M ∶= (I⃗1, . . . , I⃗n) and the reverse Grassmann necklace is ⃗IM ∶= ( ⃗I1, . . . , ⃗In).

Postnikov proved that I⃗M (resp. ⃗IM) is in fact a forward (resp. reverse) Grassmann
necklace. Moreover, the permutations π and σ encoding I⃗M and ⃗IM are related via σ = π−1.
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In our proofs, we frequently use the fact that we can read off the positroidM from either
of its necklaces I⃗ and ⃗I. This construction is known as Oh’s Theorem [38]:

M= {S ∈ ([n]
k

)∶ S ≥i I⃗i for i ∈ [n]} = {S ∈ ([n]
k

)∶ S ≤i+1
⃗I i for i ∈ [n]} . (4.3.2)

In summary, (loopless) open positroid varieties Π̃○ ⊂ G̃r(k,n) can be bijectively labeled
by a forward Grassmann necklace I⃗ of type (k,n), or equivalently by a permutation π of type
(k,n), or equivalently by a reverse Grassmann necklace ⃗I of type (k,n)3. We write Π̃○

π, I⃗π,
and ⃗Iπ to indicate the open positroid variety, Grassmann necklace, and reverse Grassmann
necklace indexed by π.

Open positroid varieties

LetM be a loopless positroid of type (k,n). It corresponds to forward Grassmann necklace
I⃗ of type (k,n). Then the open positroid variety Π○

M is the Zariski-open subvariety of ΠM
on which the necklace variables are non-vanishing:

Π○ = {x ∈ Gr(k,n)∶∆I(x) = 0 for all I ∉ M and ∆I(x) ≠ 0 for I ∈ I⃗}.

We let Π̃, Π̃○ ⊂ G̃r(k,n) ⊂ C(n
k
) be the affine cone over Π,Π○ ⊂ P(n

k
)−1. The remainder of

this chapter studies cluster structure(s) on Π̃○.
Algebraically, the coordinate ring of Π̃ is the quotient C[Π̃] = C[Gr(k,n)]/J where J is

the ideal ⟨∆I ∶ I ∉ M⟩. The coordinate ring C[Π̃○] is the localization of C[Π̃] at the Plücker
coordinates ∆(I⃗).

Remark 4.3.5. A more geometric definition of open positroid varieties is that they are
the varieties obtained by intersecting n cyclically shifted Schubert cells, i.e. by intersecting
Schubert cells with respect to the standard ordered basis (e1, . . . , en) and each of its cyclic
shifts [28].

Plabic graphs and weak separation

Recall the definition of a reduced plabic graph G, its trip permutation πG and its target and

source face labels
→●
F (G) and

←●
F (G) from Definition 2.2.7. We only work with reduced plabic

graphs in this chapter, and often omit the adjective. We also assume that G has no isolated
boundary vertices. Since we work with loopless positroids, we also assume henceforth that G
has no black lollipops (interior black vertices of degree one, connected to a boundary vertex).

First, some facts that we will need in the future.

Remark 4.3.6. For reduced graphs G, the number of faces of the graph G is the dimension
of Π̃○

π(G).

3whose permutation is π−1
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Remark 4.3.7. Let Fa be the boundary face of G which is adjacent to boundary vertices

a−1 and a. Then the face label
→●
I (F ) is the ath element of the forward Grassmann necklace:

→●
I (Fa) = I⃗a ∈ I⃗π(G). Likewise, source labels of the boundary faces are the reverse Grassmann

necklace ⃗I of M.

The following definition allows us to describe target collections
→●
F (G) ⊂ ([n]

k
) intrinsically

(i.e., without references to graphs G).

Definition 4.3.8 (Weak separation). A pair of subsets I, J ∈ ([n]
k
) is weakly separated if

there is no cyclically ordered quadruple a < b < c < d where a, c ∈ I ∖ J and b, d ∈ J ∖ I.
A weakly separated collection C ⊂ ([n]

k
) is a collection whose members are pairwise weakly

separated.
For a positroid M, a weakly separated collection C ⊂ M is called maximal if I ∈ M ∖ C

implies that {I} ∪ C is not weakly separated.

Maximal weakly separated collections which contain Grassmann necklaces are exactly
the target face labels of plabic graphs.

Theorem 4.3.9 ([39]). Let M be a positroid with Grassmann necklace I⃗ and decorated
permutation π. The following are equivalent.

1. The collection C ⊆M is a maximal weakly separated collection containing I⃗.

2. The collection C is equal to
→●
F (G) for some plabic graph G with trip permutation π.

One can phrase square moves entirely in terms of weakly separated collections as follows.

Definition 4.3.10 (Square move). Let C ⊂ ([n]
k
) be a weakly separated collection and I ∈ C.

Suppose there are cyclically ordered a < b < c < d ∈ [n], and a subset S ∈ ( [n]
k−2

), such that
I = Sac, and moreover each of Sab,Sbc, Scd,Sad ∈ C. (We abbreviate Sac ∶= S ∪ {a, c}.)
Then C′ ∶= C ∖I ∪(Sbd) is again a weakly separated collection. The passage C → C′ is referred
to as a square move on C.

Weakly separated collections give an alternate way of proving that all seeds ΣT
G from

reduced plabic graphs G with the same trip-permutation are related by a sequence of moves.

Theorem 4.3.11 ([39]). Let M be a positroid with Grassmann necklace I⃗. Let C1,C2 ⊂ M
be maximal weakly separated collections satisfying I⃗ ⊂ Ci for i = 1,2. Then C2 can be obtained
from C1 by a finite sequence of square moves (with each intermediate collection C satisfying
I⃗ ⊂ C ⊂M).
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Source and target cluster structures from plabic graphs

Recall the source seed ΣS
G and target seed ΣT

G of a reduced plabic graph G (Definition 2.2.9).

Performing a square move at a face Plücker
→●
I (F ) ∈

→●
F (G) amounts to performing a

mutation at the variable
→●
I (F ) in the seed ΣT

G. We conclude that all seeds {ΣT
G∶πG = π} are

mutation-equivalent in C[Π̃○
π]. We also have the dual statement for the source seeds.

Theorem 4.3.12 ([19]). If G has trip permutation π, then the source seed ΣS
G ⊂ C(Π̃○

π)
determines a cluster structure on Π̃○

π. The positive part Π̃○
π,>0 determined by this cluster

structure is the positroid cell {x ∈ Π̃○
π ∶ ∆I(x) > 0 for I ∈ Mπ}.

We call the cluster structure on Π̃○
π given by source seeds ΣS

G the source cluster structure.

Remark 4.3.13. Leclerc [30] established that for open Richardson varieties Rv,w ⊂ F`n,
there exists a seed Σ ⊂ C(Rv,w) such that the inclusion A(Σ) ⊆ C[Rv,w] holds. In some cases,
he showed that in fact A(Σ) = C[Rv,w]. Applying any isomorphism φ ∶ C[Rv,w] → C[Π̃○],
Leclerc’s results imply that φ(A(Σ)) is equal to C[Π̃○] for some positroid varieties, including
Schubert and skew Schubert varieties, and is a cluster subalgebra of C[Π̃○] in general. For a
particular choice of φ, Serhiyenko, Williams, and the second author showed that for Schubert
varieties, φ(Σ) is a target seed ΣT

G; for skew-Schubert varieties, φ(Σ) is ΣT
Gρ for Gρ a relabeled

plabic graph with a particular boundary (c.f. Definition 4.4.1) [47]. Galashin and Lam later
showed that, under a different isomorphism ψ ∶ C[Rv,w] → C[Π̃○], ψ(Σ) is a source seed ΣS

G.

They also showed that ψ(A(Σ)) is the entire coordinate ring C[Π̃○].

Remark 4.3.14. Our aesthetic preference is for forward Grassmann necklaces (rather than
reverse ones) so we choose to work with target-labeled seeds ΣT

G rather than source-labeled
ones as in Theorem 4.3.12. Using twist maps, one can deduce from Theorem 4.3.12 that the
target-labeled seeds also determine a cluster structure on Π̃○

π, which we call the target cluster
structure. We give a more general version of this style of argument in Theorem 4.6.15.

A motivating fact for Chapter 4 (observed by Muller-Speyer and Leclerc) is that the
seeds ΣT

G and ΣS
G are typically not mutation-equivalent, i.e. they do no lie in the same seed

pattern.

Quasi-equivalent seeds and seed patterns

Muller and Speyer conjectured that the source and target cluster structures are “the same”
for an appropriate notion of equivalence in which one is allowed suitable Laurent monomial
transformations involving frozen variables. Such a notion was systematized by the first
author in [17]). As always, we assume we are in the situation outlined in Remark 2.1.9, and
V is a rational affine algebraic variety.
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For a seed Σ of rank r and a mutable index i ∈ [r], consider the exchange ratio

ŷi = ∏
j∈[m]

x
(no. arrows j→i)−(no. arrows i→j)
j . (4.3.3)

This is the ratio of the two terms on the right hand side of the exchange relation when one
mutates at xi.

Definition 4.3.15 ([17]). Let Σ and Σ′ be seeds of rank r in C(V ). Let x, Q̃, xi, ŷi denote
the cluster, quiver, etc. in Σ and use primes to denote these quantities in Σ′. Then Σ and
Σ′ are quasi-equivalent, denoted Σ ∼ Σ′, if the following hold:

• The groups P,P′ ⊂ C[V ] of Laurent monomials in frozen variables coincide. That is,
each frozen variable x′i is a Laurent monomial in {xr+1, . . . , xm} and vice versa.

• Corresponding mutable variables coincide up to multiplication by an element of P: for
i ∈ [r], there is a Laurent monomial Mi ∈ P such that xi =Mix′i ∈ C(V ).

• The exchange ratios (4.3.3) coincide: ŷi = ŷ′i for i ∈ [r].

Quasi-equivalence is an equivalence relation on seeds.
Seeds Σ,Σ′ are related by a quasi-cluster transformation if there exists a finite sequence

µ of mutations such that µ(Σ) ∼ Σ′.

Definition 4.3.16. We say that seed patterns S1 and S2 are quasi-equivalent if there are
seeds Σ ∈ S1 and Σ′ ∈ S2 such that Σ ∼ Σ′. Equivalently, S1 and S2 are quasi-equivalent if some
(hence any) pair of seeds Σ1 ∈ S1 and Σ2 ∈ S2 are related by a quasi-cluster transformation.
We also say that the corresponding cluster algebras A(Σ1) and A(Σ2) are quasi-equivalent.

By [17, Section 2], if p ∈ [r] is a mutable vertex, then seeds Σ ∼ Σ′ if and only if
µp(Σ) ∼ µp(Σ′). This justifies the equivalent formulations in the above definition.

Geometrically, replacing a seed Σ by a quasi-equivalent seed Σ′ amounts to reparame-
terizing the domain of the cluster chart (C∗)m ↪ V by a Laurent monomial transformation.
This does not change the image of this chart (i.e., the cluster torus).

The following lemma is immediate from the definitions.

Lemma 4.3.17. If S1,S2 ⊂ C(V ) are quasi-equivalent seed patterns, both determining a
cluster structure on V , then the cluster algebras A(S1) and A(S2) have the same sets of
cluster monomials and give rise to the same notion of totally positive part V>0 ⊂ V . Each
cluster of A(S1) can be obtained from a cluster of A(S2) by rescaling its cluster variables by
appropriate Laurent monomials in frozen variables.

We remind the reader of Conjecture 4.1.1, which states that the source and target cluster
structures on Π̃○

π are quasi-equivalent.
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Remark 4.3.18. The target and source collections of a plabic graph G are related by

a permutation of indices: we have
→●
I (F ) = π(

←●
I (F )) for any face F . The permutation

π determines the automorphism of Gr(k,n) by column permutation. We warn that this
automorphism does not preserve the subvariety Π̃○

π. On the other hand, Muller and Speyer
defined a more subtle automorphism τ⃗π ∈ Aut(Π̃○

π), the right twist map. By straightforward
calculation using [37, Proposition 7.13], the pullback of a source seed along τ⃗ 2

π is quasi-
equivalent to a target seed: one has (τ⃗ 2

π)∗(ΣS
G) ∼ ΣT

G. Thus, establishing Conjecture 4.1.1 is

the same as establishing that τ⃗ 2
π ∈ Aut(Π̃○

π) is a quasi-cluster transformation, or that τ⃗ 2
π is a

quasi-automorphism in the language of [17]. We expect the stronger statement that τ⃗π is a
quasi-cluster transformation.

Affine permutations

The notions of positroid and Grasmmann necklace bear cyclic symmetry that is hidden when
we label them by permutations π. To make this cyclic symmetry more apparent, we also
index positroids by certain affine permutations following [28]. We collect here the basic
notions concerning affine permutations for use in our constructions and proofs.

Convention: we use Greek letters π, ρ, ι, µ . . . for ordinary permutations and use Roman
letters f, r, i,m, . . . , for affine permutations.

Definition 4.3.19. Let S̃n denote the group of bijections f ∶Z → Z which are n-periodic:
f(a + n) = f(a) + n for all a ∈ Z. There is a group homomorphism av∶ S̃n ↠ Z sending
f ↦ 1

n ∑
n
a=1(f(a) − a). We denote by S̃kn ∶= {f ∈ S̃n∶av(f) = k}. We say that f ∈ S̃n is

bounded4 if a < π(a) ≤ a + n for all a ∈ Z. We denote by Bound(k,n) ⊂ S̃kn those bounded f
with av(f) = k.

By n-periodicity, any f ∈ S̃n is determined by its window notation [f(1), . . . , f(n)], i.e.
its values on [n] ⊂ Z.

For f ∈ S̃n, the length of f is

`(f) ∶= #{i ∈ [n], j ∈ Z∶ i < j and f(i) > f(j)}.

We have a group homomorphism S̃n ↠ Sn sending f to the permutation f ∶a ↦ f(a)
mod n. The restriction of this map to Bound(k,n) gives a bijection

Bound(k,n) → {permutations of type (k,n)}.

If f ∈ Bound(k,n), we say that it is the bounded affine permutation associated to f , and
vice versa.

4Our definition of bounded differs slightly from the standard definitions since we work with loopless
positroids.
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One advantage of working with affine permutations is the following. Suppose that f ∈
Bound(k,n) is the affine permutation associated to a permutation π. Then

dim Π̃○
π = # of faces in a graph G with trip perm. π = k(n − k) + 1 − `(f). (4.3.4)

The first of these equalities was already discussed in Section 4.3.

Right weak order on S̃kn

The kernel of the map av, S̃0
n, is a Coxeter group of type Ãn−1 (cf. [4, Section 8.3]). The

Coxeter generators are the simple transpositions si = [1, . . . , i+ 1, i, . . . , n] for i = 1, . . . , n− 1,
together with s0 = [0,2, . . . , n−1, n+1]. The transpositions T ⊂ S̃0

n are the affine permutations
tab swapping values a+jn↔ b+jn for all j ∈ Z. The Coxeter length function is the restrition
of the length function defined above to S̃0

n.

Definition 4.3.20. Let f, u, v ∈ S̃n satisfying f = uv. The factorization f = uv is length-
additive if `(f) = `(u) + `(v).

The Coxeter group S̃0
n is partially ordered by right weak order ≤R. For f, u ∈ S̃0

n and
v = f−1u, one has u ≤R f if and only if f = uv is length-additive. Cover relations in the right
weak order on S̃0

n correspond to (n-periodically) sorting adjacent values of f . Each such
cover relation amounts to right multiplication by an appropriate Coxeter generator si.

The cosets of S̃n/S̃0
n are {S̃kn ∶ k ∈ Z}. We choose ek ∶ a ↦ a + k as the distinguished coset

representative for S̃kn. The map S̃0
n → S̃kn given by w ↦ ekw is a length-preserving bijection.

Definition 4.3.21. Suppose u, f ∈ S̃kn, and let v ∶= u−1f . Then u ≤R f if and only if
e−1
k u ≤R e−1

k f in S̃0
n, or, equivalently, if and only if f = uv is length-additive.

The equivalence of the two definitions follows immediately from the fact that v ∈ S̃0
n and

that multiplying by ek does not change length.
Moving down in the right weak order on S̃kn corresponds to (n-periodically) sorting the

values of f . The minimal element in (S̃kn,≤R) is the permutation ek. We denote the associated
permutation ek = k + 1 . . . n1 . . . k by εk.

By (a similar argument to) [28, Lemma 3.6], the subset Bound(k,n) ⊂ S̃kn is a lower order
ideal of the poset (S̃kn,≤R). That is, if f ∈ Bound(k,n) and g ∈ S̃kn with g ≤R f , then in fact
g ∈ Bound(k,n).

To streamline theorem statements, we also consider the partial order on permutations of
type (k,n) induced by (Bound(k,n),≤R).

Definition 4.3.22. Suppose ι, π are permutations of type (k,n), with associated affine
permutations i, f ∈ Bound(k,n), respectively. Then we define ι ≤○ π if and only if i ≤R f .
The partial order ≤○ is the circular weak order on permutations of type (k,n).
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Remark 4.3.23. Postnikov defined a circular Bruhat order on permutations of type (k,n)
[41, Section 17]. One can define a weak order analog of the circular Bruhat order by removing
some cover relations; our circular weak order is the dual of that order.

Finally, we give more details on length-additivity and the right weak order on S̃kn. It has
a characterization in terms of left and right associated reflections, as in the S̃0

n case.
For f ∈ S̃n, the set of right associated reflections of f is

TR(f) ∶= {ta,b ∶ `(ft) < `(f)}.
The set of left associated reflections TL(f) is defined similarly. It is not hard to see that

if i < j with i ∈ [n] and j ∈ Z satisfies f(i) > f(j), then ti,j ∈ TR(f), and vice versa. We have
∣TR(f)∣ = ∣TL(f)∣ = `(f).

Lemma 4.3.24. Let x, y ∈ S̃n. Then `(xy) = `(x) + `(y) if and only if TR(x) ∩ TL(y) = ∅.

Proof. Suppose av(x) = p and av(y) = q. Then there exist w, v ∈ S̃0
n such that x = epw and

y = veq. Because right and left multiplying by eb does not change length, `(xy) = `(x) + `(y)
if and only if `(wv) = `(w) + `(v). It is a standard fact from Coxeter theory that `(wv) =
`(w) + `(v) if and only if TR(w) ∩ TL(v) = ∅ [4, Exercise 1.13]. Since TR(w) = TR(x) and
TL(v) = TL(y), we are done.

The right weak order in S̃kn also has a variety of characterizations in terms of left and right
associated reflections, which are exactly analogous to the S̃0

n case. The proofs are routine,
so we omit them.

Lemma 4.3.25. Let f, x ∈ S̃kn. Let y ∶= x−1f . The following are equivalent:

1. x ≤R f

2. TL(x) ⊆ TL(f)

3. TR(y) ⊆ TR(f).

4.4 Relabeled plabic graphs and Grassmannlike

necklaces

Plabic graphs with relabeled boundary

Recall that every reduced plabic G for an open positroid variety Π̃○ gives rise to two seeds,
ΣS
G and ΣT

G, both of which determine cluster structures on Π̃○.
The main combinatorial object which we explore is a plabic graph whose boundary ver-

tices have been relabeled. These relabeled plabic graphs will be our source for additional
seeds in C(Π̃○).
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Definition 4.4.1. Let G be a reduced plabic graph of type (k,n) and ρ ∈ Sn a permutation.
(Thus, G has boundary vertices 1, . . . , n in clockwise order.) The relabeled plabic graph Gρ

with boundary ρ is the graph obtained by relabeling the boundary vertex i in G with ρ(i).
The plabic graph G is the underlyling graph of Gρ.

The trip permutation π of Gρ, target labels
→●
I (F ) for F ∈ Gρ, and target collection

→●
F (Gρ) ⊂ ([n]

k
) are defined in the same way as in Section 2.2, taking into account the relabeling

of boundary vertices5. The target seed is ΣT
Gρ = (∆(

→●
F (Gρ)),Q(G)), with ∆→●

I (F )
declared

frozen when F is a boundary face.

Although we refer to ΣT
Gρ as the target seed, we are not yet interpreting it as a seed for

any particular open positroid variety.
Figure 4.1 shows three examples of relabeled plabic graphs with their target collections.

Each of these graphs has trip permutation 465213. The trip permutations of the underlying
graphs are 456312, 564123, and 546132 respectively (in the order top center, bottom center,
right).

Remark 4.4.2. We have the following relationships between G and Gρ. If G has trip
permutation µ then Gρ has trip permutation π(Gρ) = ρµρ−1. The face collections are related

by
→●
F (Gρ) = ρ(

→●
F (G)). In particular the boundary faces of Gρ are given by ρ(I⃗µ).

Example 4.4.3. Let G be a reduced plabic graph with trip permutation π. Consider the

relabeled graph Gπ−1 . The trip permutation of Gπ−1 is also π, and the face labels
→●
F (Gπ−1)

are π−1(
→●
F (G)) =

←●
F (G). Thus, the source seed ΣS

G is equal to the target seed ΣT

Gπ−1
, and so

Definition 4.4.1 includes both the target and source seeds of usual plabic graphs.

We adopt the following setup throughout the rest of the chapter. Let π be a permutation
of type (k,n) with open positroid variety Π̃○

π. Let Pπ ⊂ C[Π̃○
π] denote the abelian group in

the frozen variables ∆(I⃗π). Let f ∈ Bound(k,n) be the affine permutation associated to π.
Let Gρ be a relabeled plabic graph with trip permutation π, whose underlying plabic

graph G therefore has trip permutation µ = ρ−1πρ. The following conditions are clearly
necessary for ΣT

Gρ to determine a seed in C(Π̃○):

(P0) [k-subsets] The graph G, or equivalently the permutation µ, has type (k,n). In par-
ticular, µ has an associated affine permutation m ∈ Bound(k,n).

(P1) [Units] If a boundary face of Gρ has target label I, then ∆I is a unit in C[Π̃○].

(P2) [Seed size] The underlying graph G has dim Π̃○
π many faces. Equivalently by (4.3.4),

`(m) = `(f).
5That is, if ρ(i) ; ρ(j) is a trip of Gρ, then π(ρ(i)) = ρ(j), and one puts the value ρ(j) in

→●
I (F ) for

every face F ∈ Gρ to the left of this trip. Again,
→●
F (Gρ) ∶= {∆→●

I (F )∶F ∈ Gρ}.
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The conditions (P0), (P1), and (P2) are certain compatibility conditions between per-
mutations π, ρ ∈ Sn. In Section 4.5 we show that (P0) and (P1) hold when πρ ≤○ π. In
Section 4.5 we completely characterize when (P2) holds, assuming that πρ ≤○ π.

Grassmannlike necklaces

The following combinatorial objects describe the possible boundary faces in a relabeled plabic
graph (cf. Lemma 4.4.10).

Definition 4.4.4 (Grassmannlike necklace). A Grassmannlike necklace of type (k,n) is an
n-tuple I = (I1, . . . , In) of subsets Ij ∈ ([n]

k
), with the property that for some permutation

ρ ∈ Sn, we have
Ia+1 = Ia ∖ ρa ∪ ιa for all a ∈ [n] (4.4.1)

where ρa ∈ Ia for all a6.
The permutation ρ ∶ a ↦ ρa is the removal permutation of I . It follows that the map

ι ∶ a ↦ ιa is also a permutation of [n], called the insertion permutation. We define the trip
permutation of I as π = ιρ−1, which maps ρa → ιa for all a ∈ [n].

We write I = Iρ,ι,π to summarize that a Grassmannlike necklace I has removal, inser-
tion, and trip permutations ρ, ι, π. Since any two of these permutations determine the third,
we sometimes write I●,ι,π, Iρ,●,π or Iρ,ι,● for this necklace.

Remark 4.4.5. Our Definition 4.4.4 is closely related to the cyclic patterns of Danilov,
Karzanov and Koshevoy [10] and also of Grassmann-like necklaces as defined by Farber and
Galashin [11]. We have borrowed the latter terminology, although we stress that Defini-
tion 4.4.4 does not require that I is a weakly separated collection, as was required in [10,
11].

We depict Grassmannlike necklaces by writing

I = I1

ι1
⇄
ρ1
I2

ι2
⇄
ρ2
I3

ι3
⇄
ρ3
⋯
ιn−1
⇄
ρn−1

In
ιn
⇄
ρn
I1, (4.4.2)

i.e., by indicating the removal and insertion permutations in the picture. It is helpful to think
of this picture wrapping around cyclically. The trip permutation can be read by reading up
the “columns” of this picture.

Example 4.4.6. A forward Grassmann necklace I⃗π is a Grassmannlike necklace with re-
moval permutation the identity and insertion permutation π. A reverse Grassmann necklace
⃗Iπ is a Grassmannlike necklace with insertion permutation ι = 23 . . . n1 and removal permu-

tation π−1ι.

6the index a is considered modulo n here and throughout.
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Example 4.4.7. Let ⃗Iπ = ( ⃗I1, . . . , ⃗In) be a reverse Grassmann necklace. It will frequently

be convenient for us to consider the Grassmannlike necklace ⃗I(k+1)
π consisting of the terms

of ⃗I in the following shifted order:

⃗I(k+1)
π = ( ⃗Ik+1, ⃗Ik+2, . . . , ⃗In, ⃗I1, . . . , ⃗Ik). (4.4.3)

The insertion permutation of this Grassmannlike necklace is the Grassmannian permutation
ι = εk and the removal permutation is ρ = π−1εk.

We also sometimes consider the Grassmannlike necklace ⃗I(n)π ∶= ( ⃗In, ⃗I1, . . . , ⃗In−1), which
has insertion permutation ι =id and removal permutation π−1.

We list some basic properties of Grassmannlike necklaces.

Lemma 4.4.8. Let Iρ,ι,π = (I1, . . . , In) be a Grassmannlike necklace. Then Iρ,ι,π is uniquely
determined by ρ and ι. In particular,

I1 = {a ∈ [n]∶ρ−1(a) ≤ ι−1(a)} (4.4.4)

and the remaining elements are determined from I1 using ρ, ι, and (4.4.1).

Proof. The only thing to show is (4.4.4). Consider a ∈ [n]. Then a is removed from Iρ−1(a)
only and inserted into Iι−1(a)+1 only. This means that a is in Ij for j = ι−1(a) + 1, ι−1(a) +
2, . . . , ρ−1(a). This cyclic interval includes 1 exactly when ρ−1(a) ≤ ι−1(a).

For a Grassmannlike necklace I = (I1, . . . , In) and σ ∈ Sn, let σ(I ) ∶= (σ(I1), . . . , σ(In)).

Lemma 4.4.9. Let Iρ,ι,π = (I1, . . . , In) be a Grassmannlike necklace and let µ denote the
permutation

ρ−1ι = ρ−1πρ = ι−1πι. (4.4.5)

Then I = ρ(I⃗µ) = ι( ⃗I(n)µ ). In particular, Iρ,ι,π is of type (k,n) if and only if µ is of type
(k,n).

Proof. Let I⃗µ = (I⃗1, . . . , I⃗n). Setting a = ρ(b) in (4.4.4), we obtain I1 = {ρ(b) ∈ [n] ∶ b ≤
(ρ−1ι)−1(b)}. This is ρ(I⃗1). Now, ρ(I⃗j+1) is ρ(I⃗j) ∖ ρ(a) ∪ ρ(µ(a)). Since µ = ρ−1ι, this is
exactly the necklace condition, and I = ρ(I⃗µ). The second equality is similar.

As we have discussed above, if Gρ is a relabeled plabic graph whose trip permutation is
π, then the permutation (4.4.5) is the trip permutation of the underlying graph G.

Lemma 4.4.10. Let Gρ be a relabeled plabic graph of type (k,n) with trip permutation π.
Let F1, . . . , Fn be the boundary faces of Gρ in clockwise order with F1 is the face immediately
left of vertex ρ(1).
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Then (
→●
I (F1), . . . ,

→●
I (Fn)) is the Grassmannlike necklace I = Iρ,●,π. Moreover, every

Grassmannlike necklace arises in this way as the boundary face labels of a relabeled plabic
graph Gρ, read clockwise.

Proof. The underlying graph G of Gρ has trip permutation µ ∶= ρ−1πρ (Remark 4.4.2). Let
(I⃗1, . . . , I⃗n) be the forward Grassmann necklace with permutation µ.

By Remark 4.4.2,
→●
I (Fj) is equal to ρ(I⃗j). By Lemma 4.4.9, this is equal to the jth

subset in I . So I = (
→●
I (F1), . . . ,

→●
I (Fn)).

Conversely, if I = Iρ,ι,π is a Grassmannlike necklace, consider any plabic graph G with
trip permutation ρ−1πρ. The boundary face labels of the relabeled plabic graph Gρ (which
has trip permutation π) will be I .

4.5 When relabeled plabic graphs give seeds

Toggles and the units condition

We give a natural sufficient condition for a Grassmannlike necklace to be a unit necklace,
i.e. for the boundary face labels of Gρ to satisfy the k-subsets condition (P0) and the units
condition (P1).

Definition 4.5.1 (Unit necklace). Let I be a Grassmannlike necklace with trip permutation
π and let Pπ ⊂ C[Π̃○

π] be the free abelian group of Laurent monomials in the target frozen
variables ∆(I⃗π). We say I is a unit necklace if ∆(I ) ⊂ Pπ.

Conjecture 4.5.2. The group of units of the algebra C[Π̃○
π] coincides with the group Pπ.

The following operation on Grassmannlike necklaces allows us to construct many unit
necklaces, starting from the forward Grassmann necklace.

Definition 4.5.3 (Toggling a necklace). Let I = Iρ,ι,π be a Grassmannlike necklace sat-
isfying ρa−1 ≠ ιa and ρa ≠ ιa−1 for some a ∈ [n]. The operation of toggling I at position a
yields a new necklace I ′ whose permutations are given by (ρ′, ι′, π′) = (ρ ⋅ sa−1, ι ⋅ sa−1, π).

In other words, if

I = I1

ι1
⇄
ρ1
I2

ι2
⇄
ρ2
⋯

ιa−1
⇄
ρa−1

Ia
ιa
⇄
ρa
⋯
ιn−1
⇄
ρn−1

In
ιn
⇄
ρn
I1,

then toggling at a produces the Grassmannlike necklace

I ′ = I1

ι1
⇄
ρ1
I2

ι2
⇄
ρ2
⋯

ιa
⇄
ρa
I ′a

ιa−1
⇄
ρa−1

⋯
ιn−1
⇄
ρn−1

In
ιn
⇄
ρn
I1,

where I ′a = Ia−1 ∖ ρa ∪ ιa = Ia ∖ ιa−1 ∪ ρa−1.

Remark 4.5.4. Toggling does not affect the trip permutation or the type of a Grassmannlike
necklace. Toggling at position a is an involution.
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Definition 4.5.5. Let w ≠ z, y ≠ x ∈ [n] and consider a pair of chords w ↦ x and y ↦ z
drawn in the circle with boundary vertices 1, . . . , n. These chords are called noncrossing if
they do not intersect (including at the boundary). Two noncrossing chords w ↦ x and y ↦ z
are aligned if we either have w <w y <w z <w x or w <w x <w z <w y (or, if w = x, we have
w <w y <w z). We say that toggling in position a is noncrossing (resp. aligned) if the chords
ρa−1 ↦ ιa−1 and ρa ↦ ιa are noncrossing (resp. aligned).

Example 4.5.6. Consider the Grassmann necklace of type (3, 6)

I⃗π = 123
4
⇄
1

234
6
⇄
2

346
5
⇄
3

456
2
⇄
4

256
1
⇄
5

126
3
⇄
6

(4.5.1)

whose trip permutation and insertion permutation are π = ι = 465213 (see the left of Fig-
ure 4.1 for a reduced plabic graph with this trip permutation).

The toggles of I⃗ at 3 and 5 are aligned, and all other toggles are crossing. Toggling I⃗
at 3, we obtain the Grassmannlike necklace Toggling I⃗ at 5, we obtain the Grassmannlike
necklace

I1 ∶= 123
4
⇄
1

234
6
⇄
2

346
5
⇄
3

456
1
⇄
5

146
2
⇄
4

126
3
⇄
6
. (4.5.2)

I2 ∶= 123
4
⇄
1

234
5
⇄
3

245
6
⇄
2

456
2
⇄
4

256
1
⇄
5

126
3
⇄
6
. (4.5.3)

Relabeled plabic graphs whose boundaries are these necklaces are shown in the top center
and bottom center of Figure 4.1.

For Grassmannlike necklaces which can be obtained from I⃗π by a sequence of noncrossing
toggles, we can obtain information about the matroidMπ directly from I●,ι,π. This is rem-
iniscent of Oh’s theorem describing the positroid Mπ in terms of the Grassmann necklaces,
but is a weaker statement.

Lemma 4.5.7 (Proved in Section 4.8). Let I = (I1, . . . , In) be a Grassmannlike necklace that
can be obtained from the forward Grassmann necklace I⃗π by a finite sequence of noncrossing
toggles.

If y <z π(z) and y ∉ Iρ−1(z), then Iρ−1(z)∖z∪y ∉ Mπ. Likewise, if π(z) <z y and y ∈ Iρ−1(z),
then Iρ−1(z) ∖ y ∪ π(z) ∉ Mπ.

Remark 4.5.8. Suppose that I = (I1, . . . , In) and let I (r) = (Ir, . . . , In, I1, . . . , Ir−1) be a
cyclic shift of this necklace. The conclusion of Lemma 4.5.7 is invariant under cyclic shift.
Thus, if the conclusion holds for I , it holds for its cyclic shift I (r). We use this in the
proof of Proposition 4.6.7.

Now, we turn our attention to producing a unit necklace from I⃗π by applying a sequence
of toggles. The key ingredient is the following observation.

Remark 4.5.9. Toggling is related to three-term Plücker relations as follows. Consider a
generalized necklace I = (I1, . . . , In) and a position a at which a toggle can be performed,
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involving two chords which are not loops. Let S ∶= Ia−1∖{ρa−1, ρa} ∈ ( [n]
k−2

). Nearby the toggle,
the subsets Ia−1, Ia, Ia+1 take the form

Sρa−1ρa
ιa−1
⇄
ρa−1

Sιa−1ιa
ιa
⇄
ρa
Sιa−1ιa.

Let I ′i = Sρi−1ιi be the result of toggling, and let S1 = Sιi−1ρi−1 and S2 = Sιiρi. We have the
following Plücker relation in C[Gr(k,n)]:

∆Ia∆I′a =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∆Ia−1∆Ia+1 +∆S1∆S2 if the toggle at a is aligned

∆Ia−1∆Ia+1 −∆S1∆S2 if the toggle at a is noncrossing and nonaligned

∆S1∆S2 −∆Ia−1∆Ia+1 if the toggle at a is crossing.

(4.5.4)

Proposition 4.5.10. Suppose that by a finite sequence of noncrossing toggles, we move
from the forward Grassmann necklace I⃗π to a Grassmannlike necklace I = (I1, . . . , In). Let
I ′ = (I ′1, . . . , I ′n) be the result of performing a noncrossing toggle to I in position a. Then

∆(I ′a) =
∆(Ia−1)∆(Ia+1)

∆(Ia)
∈ C[Π̃○

π] (4.5.5)

and I ′ is a unit necklace.

Proof. From (4.5.4), it suffices by induction to show that when we perform a noncrossing
toggle on I , either S1 ∉ M or S2 ∉ M (using the notation of Remark 4.5.9).

Suppose we wish to perform a noncrossing toggle at the necklace I = Iρ,ι,π reachable

from I⃗ by a sequence of noncrossing toggles. Let
π(a)
a

be the insertion and removal values

to the left of the subset which is going to be toggled, i.e. we are toggling at the subset
Iρ−1(a−1)+1 ∈ I . Let L = Iρ−1(a) and R = Iρ−1(a)+1 so that we are toggling at R, and locally the

necklace looks like L
π(a)
a
R

t
π−1(t)X for some t ∈ [n] and X ∈ ([n]

k
).

Since the toggle is noncrossing, we either have that {t, π−1(t)} ⊂ (a, π(a)) or {t, π−1(t)} ⊂
(π(a), a), where (a, π(a)) denotes the cyclic interval a <a a + 1 <a . . . ,<a π(a) and similarly
for (π(a), a).

In the first situation the subset S2 can be written as R ∖ π(a) ∪ t with t <a π(a). Hence
S2 ∉ Mπ via Lemma 4.5.7.

In the second situation we can write S1 = L ∖ π−1(t) ∪ π(a). Since we are in the second
situation, we have π(a) <a π−1(t) so that S1 ∉ Mπ by Lemma 4.5.7.

Example 4.5.11. Consider the Grassmann necklace I⃗π from Example 4.5.6. By Oh’s The-
orem (4.3.2), the positroid corresponding to π is Mπ = ([6]

3
) ∖ {345,156}. A reduced plabic

graph with trip permutation π is on the left of Figure 4.1.
Performing an aligned toggle on I⃗π at 3 replaces 346 with 245. By a 3-term Plücker

relation we have
∆346∆245 = ∆234∆456 +∆246∆345.
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However, ∆345 vanishes on Π̃○
π, so in C[Π̃○

π] we have the relation

∆346∆245 = ∆234∆456.

In other words, the new variable ∆245 is the Laurent monomial ∆234∆456

∆346
in C[Π̃○

π], which is

the monomial transformation (4.5.5). Similarly, toggling I⃗π at 5 replaces 256 with 146, and
we have ∆146 = ∆456∆126

∆256
in C[Π̃○

π].

Though Proposition 4.5.10 holds in the generality of noncrossing toggles, for the rest of
this chapter we restrict our attention to aligned toggles. As justification for this we have:

Lemma 4.5.12. Suppose that I = (I1, . . . , In) is a weakly separated Grassmannlike necklace
whose trip permutation π is a derangement. Then any noncrossing toggle is an aligned toggle.

Proof. Let
x
⇄
w
Ia

z
⇄
y

be the chords nearby a noncrossing toggle. By definition of toggle and

the derangement assumption, we have {w, y} ∩ {x, z} = ∅.Thus, x, z ∈ Ia+1 ∖ Ia−1 while
w, y ∈ Ia−1 ∖ Ia+1. If the toggle is not aligned, then the numbers w,x, y, z have cyclic order
either w < x < y < z or w < z < y < x. So Ia+1 and Ia−1 are not weakly separated.

Thus, if we are interested in staying entirely within the world of weakly separated neck-
laces, then aligned toggles are all that we need to consider. As a second justification, the set
of necklaces that can be reached from I⃗π by a sequence of aligned toggles is easy to describe:
they are the necklaces I●,ι,π with ι ≤○ π, as the next lemma shows.

Lemma 4.5.13. Let ι, π be permutations of type (k,n) with associated affine permutations
i, f ∈ Bound(k,n). Consider the Grassmannlike necklace I = I●,ι,π.

Suppose ι ≤○ π. Then the toggle of I at a is aligned if and only if isa−1 ≤R f , or
equivalently, if ιsa−1 ≤○ π.

Proof. Let f be the bounded affine permutation associated to π, and let r ∶= f−1i, so that
f ∶ r(a) ↦ i(a). We are assuming that i ≤R f .

Suppose that isa−1 ≤R f . Since the toggle of I at a and the toggle of I●,ιsa−1,π involve the
same chords, we may switch i and isa−1 if necessary, and so may assume that i(a− 1) > i(a).

This means that ti(a−1),i(a) ∈ TL(i) ⊂ TL(f), where the last inclusion is by Lemma 4.3.25.
Thus, tr(a−1),r(a) ∈ TR(f), and in particular r(a − 1) < r(a). By the boundedness of f , we
have r(a − 1) < r(a) < i(a) < i(a − 1) ≤ r(a − 1) + n. Reducing modulo n, we have that
ρa−1 <ρa−1 ρa <ρa−1 ιa <ρa−1 ιa−1 (or that ρa−1 = ιa−1 and ρa−1 <ρa−1 ρa <ρa−1 ιa). So the chords
ρa−1 ↦ ιa−1 and ρa ↦ ιa are aligned.

Now, suppose the chords ρa−1 → ιa−1 and ρa → ιa are aligned. If i(a − 1) > i(a), then we
have isa−1 ⋖R i ≤R f , so we assume i(a−1) < i(a). Notice that in this case TL(isa−1) = TL(i)∪
{ti(a−1),i(a)}, so it suffices to show that ti(a−1),i(a) ∈ TL(f), or equivalently, that r(a−1) > r(a).

Suppose for the sake of contradiction that r(a − 1) < r(a). Since f is bounded, we have
that i(a − 1) − n ≤ r(a − 1) < i(a − 1) and i(a) − n ≤ r(a) < i(a). So either r(a − 1) < r(a) <
i(a − 1) < i(a) or r(a − 1) < i(a − 1) < r(a) < i(a).
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In the first case, note that r(a), i(a−1), i(a) ∈ [i(a)−n, i(a)]. Reducing modulo n, we will
have ρa <ρa ιa−1 <ρa ιa or ρa = ιa <ρa ιa−1. Also, the number ρa−1 cannot satisfy ρa−1 <ρa ιa−1.
This means that the chords ρa−1 → ιa−1 and ρa → ιa are not aligned, a contradiction.

In the second case, by the boundedness of i, i(a − 1), r(a), i(a) ∈ [a, a + n]. Reducing
modulo n, we will have ιa−1 <ιa−1 ρa <ιa−1 ιa. The only way we can obtain aligned chords is
if ιa−1 ≤ιa−1 ρa−1 <ιa−1 ρa. This is possible only if i(a − 1) ≤ r(a − 1) + n < r(a), or, in other
words, if r(a − 1) < r(a) − n. By the boundedness of f , there is some b ∈ (r(a − 1), r(a))
with f(b) = r(a). Because i(a − 1) < r(a) < i(a), when we right-multiply f by a sequence
of length-decreasing simple transpositions, we never change the relative order of the values
i(a − 1), r(a), i(a). But by assumption, i can be obtained from f by right-multiplication by
such a sequence, and the values i(a − 1), i(a) are adjacent in i. This is a contradiction.

Combining Proposition 4.5.10 and Lemma 4.5.13, we obtain the following result on unit
necklaces.

Theorem 4.5.14. Let π, ι be permutations of type (k,n) such that ι ≤○ π. Then the Grass-
mannlike necklace I = I●,ι,π is of type (k,n) and is a unit necklace in Π̃○

π. Moreover, ∆(I )
is a basis for the free abelian group Pπ ⊂ C[Π̃○

π].

Remark 4.5.15. Theorem 4.5.14 provides us with many n-tuples of Plücker coordinates
which are bases for the abelian group Pπ ⊂ C[Π̃○

π] – we get one such n-tuple for each element
in the lower order ideal beneath f in (Bound(k,n),≤R). In particular, we obtain an explicit
construction of many Plücker coordinates which are units in C[Π̃○]. Any such Plücker
coordinate cannot be a (mutable) cluster variable in any cluster structure on Π̃○.

We have the following corollary of Theorem 4.5.147:

Corollary 4.5.16. Let I⃗ = I⃗π be a forward Grassmann necklace and let ⃗I be the reverse
Grassmann necklace with permutation π−1. Then ∆( ⃗I) is a basis for Pπ. That is, the group
of Laurent monomials in the target frozens ∆(I⃗) coincides with group of Laurent monomials
in the source frozens ∆( ⃗I) inside C[Π̃○].

Proof. Recall that εk = ek is the Grassmannian permutation k + 1⋯n1⋯k. Because ek is the
minimal element of Bound(k,n), εk is the minimal element of ≤○, and in particular εk ≤○ π.

The Grassmannlike necklace I●,εk,π is the shifted reverse Grassmann necklace ⃗I(k+1)
π . By

Theorem 4.5.14, we conclude that ⃗I is a unit necklace and that ∆( ⃗I) is a basis for Pπ.

The seed size condition and the proof of the main theorem

Consider π a permutation of type (k,n) and ρ a permutation such that πρ ≤○ π. Let Gρ be a
relabeled plabic graph with trip permutation π. The target labels of its boundary faces are
I = Iρ,ι,π, where ι = πρ. By Theorem 4.5.14, I has type (k,n), so the k-subsets condition

7This was known, but we do not think it has been stated explicitly previously.
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(P0) is satisfied. By the same theorem, I is a unit necklace, and so the boundary face labels
of Gρ satisfy the units condition (P1).

Now, let µ ∶= ρ−1πρ = ι−1πι be the trip permutation of the underlying graph G. It
has type (k,n) by Lemma 4.4.9. Let m ∈ Bound(k,n) be the bounded affine permutation
corresponding to µ. The seed size condition (P2) is that the bounded affine permutations
m,f have the same length.

First, we note that the relation µ = ι−1πι can be lifted to a relation among bounded affine
permutations, so m can be computed without passing to permutations of type (k,n)

Lemma 4.5.17. Suppose π, ι are permutations of type (k,n) such that ι ≤○ π and set µ ∶=
ι−1πι. Let f, i,m ∈ Bound(k,n) be the bounded affine permutations associated to π, ι, µ,
respectively. Then m = i−1fi.

Proof. Because reducing modulo n is a group homomorphism, it’s clear that i−1fi = µ. It is
also clear that i−1fi ∈ S̃kn, so all that remains to prove is that i−1fi is bounded.

Let r ∶= f−1i ∈ S̃0
n so that i−1fi = r−1f .

We start with the two line notation for f ; that is, the numerator is f and the denominator
is the identity permutation e0 ∈ S̃0

n. Since i ≤R f , we can obtain i in the numerator of this
array by repeatedly swapping adjacent numbers b > a in the numerator. We obtain r in the
denominator by applying the same sequence of swaps.

Focusing on any particular value x ∈ Z, using boundedness of f , we see

⋯ ⋯ x ⋯ ⋯
⋯ x − n ⋯ ⋯ x

in that order (specifically, x in the numerator appears strictly left of x and weakly right of
x − n in the denominator). Also, note that f(x − n) ≤ x < f(x). Thus, we will never swap
f(x) and x in the numerator, or x and f(x). So the relative order of these three symbols (x
in the numerator, x,x − n in the denominator) is preserved for all i and r.

Let a be given. Let x = i(a) be the value in the numerator at position a. By the argument
above, the x in the denominator is in a position strictly right of position a. The position of
x in the denominator is r−1(x), so we have a < r−1i(a). And the x−n in the denominator is
weakly to the left of a, so we have r−1(i(a) − n) = r−1i(a) − n ≤ a. So r−1i is bounded.

Remark 4.5.18. In the situation of Lemma 4.5.17, we have that i ≤R f , so `(m) ≤ `(f)
always. This means that a relabeled plabic graph Gπ−1ι with trip permutation π has at least
dim Π̃○

π many faces.

Theorem 4.5.19. Let π, ι be permutations of type (k,n) such that ι ≤○ π. Let f, i ∈
Bound(k,n) be the bounded affine permutations associated to π and ι, respectively, and let
m ∶= i−1fi. Then `(m) = `(f) if and only if the Grassmannlike necklace I●,ι,π is weakly
separated.

This is the equivalence (1) ⇔ (2) from the main Theorem 4.5.24. The proof of Theo-
rem 4.5.19 is given in Section 4.8.
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Example 4.5.20. Consider the Grassmannlike necklaces I1,I2 from Example 4.5.6. Both
are unit necklaces with trip permutation π = 465213. The bounded affine permutation
associated to π is f = [4,6,5,8,7,9]. For I1, the insertion permutation ι is associated to
bounded affine permutation i = fs4. The requirement that `(i−1fi) = `(s4i) = `(f) is the
requirement that the values 4,5 are sorted in i (which is true.). Theorem 4.5.19 asserts that
I1 is therefore weakly separated (which can be verified directly).

We give examples of unit necklaces that are not weakly separated in Figure 4.2.

Remark 4.5.21. Let f ∈ Bound(k,n). Notice that e−1
k fek ∈ Bound(k,n) has the same length

as f because right or left multiplication by the elements {eb∶ b ∈ Z} does not affect length.
Theorem 4.5.19 implies that the Grassmannlike necklace I with insertion permutation εk
and trip permutation f is weakly separated. As remarked previously, I is the (shifted)
reverse Grassmann necklace ⃗I with permutation π−1 (see Example 4.4.7); it is well-known
that ⃗I is weakly separated.

It turns out (in the setting that πρ ≤○ π) that the seed size condition (P2) is sufficient

to establish that
→●
F (Gρ) is a cluster on Π̃○

π. Before outlining the proof of this, we recall the
following result of Farber and Galashin.

Theorem 4.5.22 ([11, Theorem 6.3]). Let Gρ be a relabeled plabic graph with trip permu-
tation π, and let I = Iρ,●,π be the Grassmannlike necklace consisting of target labels of

boundary faces of Gρ. If I is weakly separated, then so is the target collection
→●
F (Gρ).

Remark 4.5.23. Farber and Galashin prove moreover that the map
→●
F (G) →

→●
F (Gρ), i.e.

the permutation ρ, is a bijection between maximal weakly separated collections C ⊂ ([n]
k
)

satisfying I⃗ρ−1ι ⊂ C ⊂Mρ−1ι and maximal weakly separated collections C′ satisfying I ⊂ C′ ⊂
Din

I , where Din
I ⊂ ([n]

k
) are the k-subsets lying in the convex hull of I in the plabic tiling

(cf. [11, Definition 4.6].)

We now arrive at our main theorem.

Theorem 4.5.24. Let Gρ be a relabeled plabic graph with trip permutation π. Let µ be the
trip permutation of the underlying plabic graph G. Suppose that πρ ≤○ π. Let I be the
Grassmannlike necklace given by the target labels of boundary faces of Gρ.

Then the following are equivalent:

1. The number of faces of Gρ is dim Π̃○
π. Equivalently, dim Π̃○

µ = dim Π̃○
π.

2. The Grassmannlike necklace Iρ,πρ,π (equivalently, the target collection
→●
F (Gρ)) is a

weakly separated collection.

3. The open positroid varieties Π̃○
π and Π̃○

µ are isomorphic.
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4. The seed ΣT
Gρ determines a cluster structure on Π̃○

π.

Proof. The equivalence of the two formulations of (1) is Equation (4.3.4). The equivalence
of the two formulations of (2) is Theorem 4.5.22.

Conditions (1) and (2) are equivalent by Theorem 4.5.19 and Equation (4.3.4).
Condition (4) and condition (3) both clearly imply (1).
Condition (4) implies (3): assumption (4) says that C[Π̃○

π] = A(ΣT
Gρ). By Theorem 4.3.12,

C[Π̃○
µ] = A(ΣT

G). Since these seeds have the same quiver, the cluster algebras are isomorphic
as rings so that (3) holds.

We show that (1) implies (3) in Theorem 4.6.8 below, via a twist isomorphism Π̃○
π → Π̃○

µ

generalizing the twist automorphism of Muller and Speyer [37].
To show that (1) implies (4), we first establish that ΣT

Gρ is a seed in C(Π̃○
π) in Proposi-

tion 4.6.12 and then deduce that A(ΣT
Gρ) = C[Π̃○] in Theorem 4.6.15.

When ρ is the identity permutation, Theorem 4.5.24 says that target seeds ΣT
G determine

cluster structures in Π̃○
π as claimed in Remark 4.3.14.

Remark 4.5.25. When I is not weakly separated, we see no good way of creating a seed
whose frozen variables are I and whose cluster variables are Plücker coordinates. Perhaps
there is a “natural” construction of seeds with frozen variables I and whose cluster variables
are not Plücker coordinates.

4.6 Twist isomorphisms from necklaces

We explain in this section how, in the setting of Theorem 4.5.14, a Grassmannlike necklace
I encodes a twist map between two open positroid varieties. If I satisfies Theorem 4.5.24
(2), this twist map is an isomorphism.

Grassmannlike twist maps

Endow Ck with an inner product ⟨⋅, ⋅⟩, and let Mat○(k,n) denote the space of full-rank k ×n
matrices. Let I = (I1, . . . , In) be a Grassmannlike necklace. We use the notation

D(I ) = {M ∈ Mat○(k,n)∶∆I(M) ≠ 0, for all I ∈ I }

to denote the Zariski-open subset of k × n matrix space defined by the non-vanishing of
Plücker coordinates ∆(I ). We use the same notation D(I ) ⊂ Gr(k,n) to denote the image
of these matrices in the Grassmannian. For M ∈ Mat○(k,n), we use Ma to denote the ath
column of M .

Definition 4.6.1 (Twist maps along I ). Let I = (I1, . . . , In) be a Grassmannlike necklace
of type (k,n) with removal permutation ρ and insertion permutation ι. Let M ∈ D(I ) ⊂
Mat○(k,n) have columns M1, . . . ,Mn. Then the right twist of M along the necklace I is



CHAPTER 4. MANY CLUSTER STRUCTURES ON POSITROID VARIETIES 92

the matrix τ⃗I (M) ∈ Mat○(k,n) whose ath column τ⃗I (M)a is the unique vector such that
for all b ∈ Ia,

⟨(τ⃗I (M))a,Mb⟩ =
⎧⎪⎪⎨⎪⎪⎩

1 if ρ(a) = b
0 else.

(4.6.1)

Similarly, the left twist of M along I is the matrix ⃗τI (M) such that for all a, τ⃗I (M)a
is the unique vector such that for all b ∈ Ia+1,

⟨( ⃗τI (M))a,Mb⟩ =
⎧⎪⎪⎨⎪⎪⎩

1 if ι(a) = b
0 else.

(4.6.2)

Notice that Equations (4.6.1) and (4.6.2) do define unique vectors, since by assumption
the columns of M indexed by Ia form a basis of Ck.

When I = I⃗π, we write τ⃗π ∶= τ⃗I . When I = ⃗I(n)π (c.f. Example 4.4.7), we write ⃗τπ ∶= ⃗τI .
The map τ⃗π (restricted to Π̃○

π) coincides with the right twist map τ⃗ ∈ Aut(Π̃○
π) defined

by Muller and Speyer [37] 8. Similarly, ⃗τπ (restricted to Π̃○
π) coincides with ⃗τ ∈ Aut(Π̃○

π),
also defined in [37]. Muller and Speyer prove that the right and left twist maps are mutual
inverses in Aut(Π̃○

π).

Remark 4.6.2. In [37], the right twist map τ⃗ is defined as a piecewise-continuous map
on Mat○(k,n), whose domains of continuity are the open positroid varieties. In particular,
Muller and Speyer do not fix a Grassmann necklace in their definition. We choose to fix
a necklace. As a result, τ⃗π is well-defined on the Zariksi-open subvariety D(I⃗π). Likewise,
⃗τπ is well-defined on D( ⃗Iπ). We stress that the left and right twist maps are not inverses

on the larger domain D(I⃗π) ∩D( ⃗Iπ). We do prove however, that on this domain ∆I(x) =
∆I( ⃗τπ ○ τ⃗π(x)) for certain Plücker coordinates I ∈ ([n]

k
) (cf. Lemma 4.6.14).

An identical argument as the proof of [37, Prop. 6.1] shows that the twist maps in
Definition 4.6.1 descend from Mat○(k,n) to Gr(k,n).

The next theorem follows by closely analyzing the proof of [37, Prop. 6.6].

Theorem 4.6.3 (Muller-Speyer). Let π be a permutation of type (k,n). Then the right twist
map τ⃗π descends to a regular map D(I⃗π) ↠ Π̃○

π. Similarly, the left twist map ⃗τπ descends to
a regular map D( ⃗Iπ) ↠ Π̃○

π.

Proof. Let I⃗ = I⃗π and ⃗I = ⃗Iπ.
We already know that τ⃗π ∶D(I⃗) → G̃r(k,n) is a regular map.
To show that τ⃗π lands in Π̃○

π we need to show that all coordinates in ∆(([n]k )∖Mπ) vanish

on the image and show also that all coordinates in ∆(I⃗) do not vanish. We have the same

8generalizing Marsh and Scott’s twist map for Gr○(k,n) [34].
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determinantal formula [37, Lemma 6.5] describing Plücker coordinates of τ⃗π(x). Using this
formula we see that ∆(I⃗) is non-vanishing on the image (cf. [37, Equation (9)]).

We use the same formula to see that ∆J vanishes on the the image of τ⃗π when J ∉ Mπ.
Let us clarify a confusing point. In the proof of [37, Proposition 6.6], Muller and Speyer
argue an implication id ∈ I⃗jc , by taking a representative matrix A of x ∈ Π̃○ and making
an argument about linear independence of columns of A. The assumption x ∈ Π̃○ is more
restrictive than the assumption x ∈ D(I⃗). However, the implication id ∈ I⃗jc is a property of
the necklace I⃗π and the positroid Mπ, i.e. it is not a property of matrix representative A.
The rest of the proof of [37, Proposition 6.6] proceeds without change.

Finally, the map is surjective because it is an automorphism when restricted to Π̃○ ⊂D(I⃗).
The claims about ⃗τπ follow by a symmetric argument.

A permutation ρ ∈ Sn determines an automorphism of Mat○(k,n), and likewise Gr(k,n),
by column permutation:

[A1 ⋯ An] ↦ [Aρ(1) ⋯ Aρ(n)] .

We denote these automorphisms by the same symbol ρ. This automorphism acts on Plücker
coordinates via ∆I(ρ(X)) = ±∆ρ(I)(X) where the extra sign ± is the sign associated with
sorting the values ρ(i1), . . . , ρ(ik).

The twists along a Grassmannlike necklace can be described completely in terms of the
right and left twists τ⃗π and ⃗τπ, together with column permutations:

Lemma 4.6.4. Let π be a permutation of type (k,n), and consider the Grassmannlike neck-
lace I = Iρ,ι,π. Let µ ∶= ρ−1ι.

We have

τ⃗I = τ⃗µ ○ ρ and ⃗τI = ⃗τµ ○ ι

as rational maps on Mat(k,n) or G̃r(k,n). In particular, the image of τ⃗I and ⃗τI is con-
tained in Π̃○

µ.

Proof. First we discuss the equality τ⃗I = τ⃗µ ○ ρ. Let I⃗µ = (I⃗1, . . . , I⃗n), and I = (I1, . . . , In).
By Lemma 4.4.9, ρ(I⃗a) = Ia.

The domain of τ⃗µ ○ ρ is ρ−1(D(I⃗µ)). We have that ∆I⃗a
(ρ(x)) = ±∆ρ(I⃗a)(x) = ±∆Ia(x)

for any x ∈ Gr(k,n). Thus ρ−1(D(I⃗µ)) = D(I ), so τ⃗µ ○ ρ and τI have the same domain of
definition.

Let x ∈D(I ) be represented by the matrix M ∈ Mat(k,n), so ρ(x) is represented by the
matrix [Mρ(1)⋯Mρ(n)].
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Let δ denote the Kronecker delta. The definition of τ⃗µ ○ ρ(x) is that

⟨(τ⃗µ ○ ρ(M))a, ρ(M)b⟩ = δa,b for all b ∈ I⃗a, i.e. (4.6.3)

⟨(τ⃗µ ○ ρ(M))a,Mρ(b)⟩ = δa,b for all b ∈ I⃗a, i.e. (4.6.4)

⟨(τ⃗µ ○ ρ(M))a,Ms⟩ = δa,ρ−1(s) for all s ∈ ρ(I⃗a), i.e. (4.6.5)

⟨(τ⃗µ ○ ρ(M))a,Ms⟩ = δa,ρ−1(s) for all s ∈ Ia, i.e. (4.6.6)

⟨(τ⃗µ ○ ρ(M))a,Ms⟩ = δρ(a),s for all s ∈ Ia, (4.6.7)

so that the condition defining (τ⃗µ ○ρ(M))a is exactly the condition (4.6.1) defining τ⃗I (M)a.
So τI and τ⃗µ ○ ρ are the same map.

The second equality holds by a similar argument, noting that ι( ⃗Ia) = Ia+1 by Lemma 4.4.9.

To discuss inverses of twists, we need the following notion.

Definition 4.6.5. Let I = Iρ,ι,π be a Grassmannlike necklace. The dual necklace I ∗ is
the Grassmannlike necklace with removal permutation ι−1, insertion permutation ρ−1, and
trip permutation µ = ρ−1ι.

By Lemma 4.4.9, if I = Iρ,ι,π and the trip permutation π has type (k,n), then the dual
necklace I ∗ has type (k,n).

Example 4.6.6. The dual necklace of a Grassmann necklace I⃗π is the necklace ⃗I(n)π .

Proposition 4.6.7. Let π be a permutation of type (k,n), and let I = Iρ,ι,π be a Grass-
mannlike necklace, with dual I ∗. Let µ ∶= ρ−1ι. Let εr ∈ Sn be the permutation εr ∶ a ↦ a + r
(taken modulo n).

Suppose that for some r ∈ [n], we have ι ○ εr ≤○ π, and further that I ∗ is a unit necklace
in Π̃○

µ.

Then on Π̃○
π ⊂D(I ), both compositions

⃗τI ∗ ○ τ⃗I and τ⃗I ∗ ○ ⃗τI

are the identity map idΠ̃○
π
.

Proof. Suppose I = (I1, . . . , In). The Grassmannlike necklace with insertion permutation
ι ○ εr and removal permutation ρ ○ εr is a cyclic shift I (r+1) = (Ir+1, . . . , In, I1, . . . , Ir) of I .
The two necklaces have the same trip permutation, π. By Theorem 4.5.14, if ι ○ εr ≤○ π then
I is a unit necklace in Π̃○

π (since this is true of the shifted necklace).
This means that Π̃○

π is indeed a subset of D(I ). By Lemma 4.6.4, the image of τ⃗I and
⃗τI are both contained in Π̃○

µ. By assumption, I ∗ is a unit necklace, so τ⃗I ∗ and ⃗τI ∗ are

defined on Π̃○
µ. In particular, the compositions are well-defined.

We focus on the composition ⃗τI ∗ ○ τ⃗I . Note that by Lemma 4.6.4 and the definition of
I ∗, ⃗τI ∗ = ⃗τπ ○ ρ−1. So the image of the composition is contained in Π̃○

π.
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Let M ∈ Π̃○
π be given. We would like to show that M is the image of ρ−1 ○ τ⃗µ ○ρ(M) under

⃗τπ.
Rewriting the equality (4.6.7) in terms of b = ρ(a), we have

⟨(ρ−1 ○ τ⃗µ ○ ρ(M))b,Ms⟩ = δb,s for all s ∈ Iρ−1(b) and for all b. (4.6.8)

We need to show that M satisfies the defining equalities of ⃗τπ(ρ−1 ○ τ⃗µ ○ ρ(M)), which
are the equalities

⟨(ρ−1 ○ τ⃗µ ○ ρ(M))b,Ms⟩ = δb,s for all b ∈ ⃗Is and for all s. (4.6.9)

Noting that b ∈ Iρ−1(b) from the necklace property, we can set s = b in (4.6.8) and conclude

that (4.6.9) holds when b = s. Equation (4.6.8) also implies that (4.6.9) holds for b ∈ ⃗Is ∖ s
when s ∈ Iρ−1(b).

It remains to show that when b ∈ ⃗Is∖s and s ∉ Iρ−1(b), then (ρ−1○ τ⃗µ○ρ(M))b is perpendic-
ular to Ms. By (4.6.8), it would suffice to show that Ms is in the span of {Ma∶a ∈ Iρ−1(b) ∖ b}.

To show that this is true, we apply Lemma 4.5.7 to Iρ−1(b) with z = b and y = s.
Note that we can apply this lemma to I since it holds for I (r+1), cf. Remark 4.5.8.
The hypothesis of the lemma requires that that we show s <b π(b). Since b ∈ ⃗Is, we
have that Mb ∉ span(Mb+1, . . . ,Ms). On the other hand, from the definition of π(b), we
have Mb ∈ span(Mb+1, . . . ,Mπ(b)). It follows that s <b π(b). So by Lemma 4.5.7, we have
Iρ−1(b) ∖ b ∪ s ∉ Mπ, or in other words, Ms is in the span of {Ma∶a ∈ Iρ−1(b) ∖ b} (since these
vectors are independent).

A symmetric argument shows that the second composition is the identity on Π̃○
π.

Let ι, π, µ,I be as in Proposition 4.6.7, and let f,m ∈ Bound(k,n) be the bounded affine
permutations corresponding to π and µ, respectively. We always have `(m) ≤ `(f) (c.f.
Remark 4.5.18), hence dim Π̃○

µ ≥ dim Π̃○
π. But by Theorem 4.5.19, equality holds only when

I is weakly separated, which is not always the case (cf. Figure 4.2). So τ⃗I ∶ Π̃○
π → Π̃○

µ and

⃗τI ∶ Π̃○
π → Π̃○

µ are certainly not always isomorphisms. Our next result says that they are
isomorphisms whenever their domain and codomain have the same dimension.

Theorem 4.6.8. Let I = Iρ,ι,π be a Grassmannlike necklace with ι ≤○ π. Let I ∗ be the
dual necklace with trip permutation µ = ρ−1ι. Suppose that dim(Π̃○

π) = dim(Π̃○
µ). Then

τ⃗I ∶ Π̃○
π → Π̃○

µ is an isomorphism of open positroid varieties with inverse ⃗τI ∗ ∶ Π̃○
µ → Π̃○

π.

One has similarly that ⃗τI ∶ Π̃○
π → Π̃○

µ is an isomorphism of open positroid varieties with

inverse τ⃗I ∗ ∶ Π̃○
µ → Π̃○

π.

Proof. Let f,m, i ∈ Bound(k,n) be the bounded affine permutations corresponding to π,µ
and ι, respectively, and set r ∶= f−1i. Our assumptions are that f = ir−1 is length-additive
and `(m) = `(f). By Lemma 4.5.17, m = i−1fi = r−1i. The assumption that `(m) = `(f)
implies that m = r−1i is length-additive.
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We would like to apply Proposition 4.6.7, so first we need to show that I ∗ is a unit
necklace in Π̃○

µ. We will do this by finding an appropriate rotation of I ∗.

Recall that since i ∈ Bound(k,n), i = ek ĩ for some ĩ ∈ S̃0
n. Note also that r−1 ∈ S̃0

n, so
r−1ek ∈ S̃kn. The factorization m = (r−1ek)̃i is clearly also length-additive, so r−1ek ≤R m by
definition. As m ∈ Bound(k,n) and (Bound(k,n),≤R) is a lower order ideal in (S̃kn,≤R),
we conclude that r−1ek ∈ Bound(k,n). The associated permutation of type (k,n) is r−1ek =
ρ−1 ○ εk, and we have ρ−1 ○ εk ≤○ µ. So the Grassmannlike necklace L = (L1, . . . , Ln) with
insertion permutation ρ−1 ○ εk and trip permutation µ is a unit necklace in Π̃○

µ. But L is
just a rotation of I ∗: we have I ∗ = (Ln−k+1, . . . , Ln, L1, . . . , Ln−k). So I ∗ is a unit necklace
in Π̃○

µ, and also fulfills the hypotheses of Proposition 4.6.7.
The statements now follow immediately from applying Proposition 4.6.7 to the pair of

necklaces I ,I ∗ and to I ∗, (I ∗)∗ = I .

Example 4.6.9. Consider the intermediate necklace I1 from Example 4.5.6. This is the
set of boundary target labels for the relabeled plabic graph Gρ in the top center of Fig-
ure 4.1. The underlying plabic graph G has trip permutation µ = 564123. Since I1 is weakly
separated, the two positroid varieties Π̃○

π and Π̃○
µ are isomorphic via the right twist along I1.

By Oh’s theorem, a matrix [M1, . . . ,M6] gives a point in Π̃○
µ if the columns M3 and M4

are parallel and that the necklace variables I⃗µ (i.e. the boundary labels of the left graph)
are non-vanishing.

On the other hand, the defining conditions for membership in Π̃○
π are that ∆345 and

∆156 vanish, but the necklace variables (4.5.1) (or equivalently, any of the necklaces from
Example 4.5.6) are non-vanishing.

The isomorphism Π̃○
π ≅ Π̃○

µ is not implied by any obvious dihedral symmetries. It is also
not apparent at the level of matroids: Mπ has 18 bases, while Mµ has 16.

Inverting boundary measurements

In this section, we use twist maps along necklaces to deduce that ΣT
Gρ gives a cluster structure

on Π̃○
π.

The following observation is used several times in this section. Consider f ∈ Bound(k,n)
with f = π. Consider a < b ∈ Z such that `(tabf) < `(f), and let a′, b′ ∈ [n] be their reductions
mod n.

Lemma 4.6.10 ([37, Lemma 4.5]). With f, π, a′, b′ as above, let G be a reduced plabic graph

with trip permutation π and let I ∈
→●
F (G) be a target label. If b′ ∈ I, then a′ ∈ I also.

We can partially order [n] according to whether the conclusion of Lemma 4.6.10 holds.
By Lemma 4.6.4, twist maps along necklaces involve column permutation, which intro-

duce unwanted signs in Plücker coordinates. Our next lemma allows us to compensate for
these signs in our constructions.
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Lemma 4.6.11. Let Gρ be a relabeled plabic graph as in the statement of Theorem 4.5.24(2).
Then there exists an involutive automorphism ε ∈ Aut(Gr(k,n)) with the property that for

any I ∈
→●
F (G) and y ∈ Gr(k,n) we have

∆ρ(I)(y) = ∆I(ρ(ε(y))). (4.6.10)

The automorphism ε rescales the columns of k×n matrix representatives by appropriately
chosen signs. The argument is similar to [37, Proposition 7.14].

Proof. Let f,m, i ∈ Bound(k,n) be the permutations associated to π,µ, ι and set r = f−1i.
From the assumption (2) we have `(m) = `(r−1i) = `(r−1) + `(i).

Consider an infinite matrix z with k rows and with columns (zi)i∈Z. Let r act on z by
permuting columns, so r(z)i = zr(i). Then

∆I(r(z)) = det(zr(i1), . . . , zr(ik)) (4.6.11)

= (−1)#{a<b∈I×I ∶`(rtab)<`(r)}∆r(I)(z) (4.6.12)

= (−1)#{a<b∈I×I ∶`(tabr−1)<`(r−1)}∆r(I)(z) (4.6.13)

= (−1)#{a<b∈I×[n]∶`(tabr−1)<`(r−1)}∆r(I)(z) (4.6.14)

=∏
a∈I

(−1)#{b∈[n]∶`(rtab)<`(r)}∆r(I)(z). (4.6.15)

The second equality is sorting the columns; the third is the statement that inversion of affine
permutations does not affect length. The fourth equality follows from Lemma 4.6.10 since

`(tabm) = `(tabr−1i) ≤ `(tabr−1) + `(i) < `(m)

using length-additivity. The last line is immediate.
Now we specialize zi = yi mod n and compare the sign relating ∆r(I)(z) to ∆ρ(I)(y). Write

r(I) = r1 < r2 < ⋯ < rk. If ra < 0, then ra must sort past ∣r(I) ∩ [1, ra + n)∣ many values in
order for it to occupy the correct place in ρ(I). By the dual argument when ra > n, we have:

∆r(I)(z) = ∏
a∶ra<0

(−1)#r(I)∩[1,ra+n) ∏
a∶ra>n

(−1)#r(I)∩(ra−n,n]∆ρ(I)(y).

Let (δ ∶ ra < 0) denote 1 if ra < 0 and zero otherwise and define similarly (δ ∶ ra > n). We
define the sign

εa = (−1)#{b∈[n]∶`(rtab)<`(r)}+(δ∶ra<0)(#r(I)∩[1,ρa))+(δ∶ra>n)#r(I)∩(ρ(a),n]

and define an automorphism ε′ ∈ Aut(Gr(k,n)) rescaling the ath column by the sign εa (for
a = 1, . . . , n). Let ε ∈ Aut(Gr(k,n)) rescale the ath column by the sign ερ(a) so that ε′ ○ ρ =
ρ ○ ε. Combining the two calculations above, we have ∆ρ(I)(y) = ∆I(ε′ρ(y)) = ∆I(ρε(y)) as
desired.
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We follow the notation in [37], denoting by (C∗)E/(C∗)V −1 the algebraic torus of edge
weights on Gρ modulo restricted gauge transformations at vertices, and by CF an algebraic
torus whose coordinates are indexed by the faces of Gρ. (Neither of these algebraic tori is
sensitive to the relabeling of the boundary vertices.)

For a plabic graph G, there is a boundary measurement map D̃G from (C∗)E/(C∗)V −1 →
G̃r(k,n). The Ith Plücker coordinate of a point in the image is the weight-generating
function for matchings of G with boundary I.

For a relabeled plabic graph Gρ, we define D̃Gρ ∶= ρ−1 ○ D̃G. Up to sign, D̃Gρ is the
weight-generating function for matchings of Gρ with given boundary (taking into account
the relabeling of vertices according to ρ).

We also have a rational map
→●
FGρ(●)∶ G̃r(k,n) → (C∗)F given by evaluating the Plücker

coordinates ∆(
→●
F (Gρ)). This evaluation map agrees with the composition

→●
FG(●) ○ ρ up to

sign. More specifically, by Lemma 4.6.11 we have
→●
FGρ(●) =

→●
FG(●) ○ ρ ○ ε.

Muller and Speyer defined an invertible Laurent monomial map ∂⃗∶ (C∗)F → (C∗)E/(C∗)V −1

whose inverse is denoted M⃗. We do not use any properties of either ∂⃗ or M⃗ beyond that
they fit into the commutative diagram [37, Theorem 7.1] and are monomial maps.

Proposition 4.6.12. Suppose Gρ is a relabeled plabic graph with trip permutation π satis-
fying Theorem 4.5.24(1) and let µ be the trip permutation of the underlying graph G. Then
we have a commutative diagram

(C∗)F (C∗)E/(C∗)V −1

Π̃○
π ρ−1(Π̃○

µ)

∂⃗

D̃Gρ
→●

F Gρ(●)

ε○ ⃗τπ

. (4.6.16)

In particular the domain of definition of
→●
FGρ(●) is an algebraic torus and ∆(

→●
FGρ) ⊂ C(Π̃○

π)
is a seed.

Before the proof of Proposition 4.6.12, we mention a corollary related to total positivity.
Recall that Π̃○

π,>0 = {x ∈ Π̃○
π ∶ ∆I(x) > 0 for all I ∈ Mπ}.

Corollary 4.6.13. Suppose ι ≤○ π are permutations of type (k,n) and the Grassmannlike
necklace I = Iρ,ι,π is weakly separated. Let µ ∶= ρ−1ι. Then τ⃗I ○ ε(Π̃○

π,>0) = Π̃○
µ,>0.

Proof. By Proposition 4.6.12, the map τ⃗I ○ε∶ Π̃○
π → Π̃○

µ can also be expressed as a composition

D̃G ○ ∂⃗ ○
→●
FGρ . Each of the maps in the composition sends R>0-points to R>0-points and is

surjective on such points.

Proof of Proposition 4.6.12. From the commutativity of the left square in [37, Theorem 7.1],
we have

M⃗ =
→●
FG(●) ○ ⃗τµ ○ D̃G (4.6.17)
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as maps (C∗)E/(C∗)V −1 → (C∗)F .
We seek to prove the commutativity:

M⃗ =
→●
FGρ(●) ○ ε ○ ⃗τπ ○ D̃Gρ =

→●
FG(●) ○ ρ ○ ⃗τπ ○ ρ−1 ○ D̃G. (4.6.18)

Since D̃G is invertible, it suffices to prove that

→●
FG(●) ○ ⃗τµ =

→●
FG(●) ○ ρ ○ ⃗τπ ○ ρ−1 (4.6.19)

as maps Π̃○
µ → (C∗)F . Let F be a face of G and y ∈ Π̃○

µ. Set x′ = ⃗τµ(y) and x = ρ ⃗τπρ−1(y).
By Theorem 4.6.8 we have ⃗τµτ⃗µ(x) = x′. So to establish (4.6.19) we need to prove that if

I =
→●
I (F ) is a target label of a plabic graph with trip permutation µ and if x ∈ D(I⃗), then

∆I(x) = ∆I( ⃗τµτ⃗µ(x)). We prove this in Lemma 4.6.14 below. The commutativity of (4.6.16)
is proved.

By the commutativity of the diagram, the domain of definition of
→●
FGρ(●) is the image

of ⃗τπD̃Gρ = ⃗τI ∗ ○ D̃G. Thus, it is an algebraic torus because ⃗τI is an isomorphism by
Theorem 4.6.8. Any regular function on Π̃○ restricts to a regular function on this algebraic

torus, hence to a Laurent polynomial in its basis of characters ∆(
→●
FGρ). This shows that

every regular function can be expressed as Laurent polynomial in ∆(
→●
FGρ). Thus, ∆(

→●
FGρ)

generates the function field C(Π̃○
π). Since dim Π̃○

π = #
→●
FGρ we conclude that ∆(

→●
FGρ) is

algebraically independent and thus ΣT
Gρ is a seed in C(Π̃○

π).

Lemma 4.6.14. If I =
→●
I (F ) is the target label of a reduced plabic graph with trip permuta-

tion π, and if z ∈D(I⃗π), then ∆I(z) = ∆I( ⃗τπ τ⃗π(z)).

Proof. Since we always deal with ⃗τπ and τ⃗π in this proof, we omit the subscript π.
As discussed above, the conclusion of Lemma 4.6.10 endows [n] with a partial order

which we will denote by ≺ during this proof. That is, if a ≺ b, then b appears in the target
label I of a plabic graph whenever a does.

Let M be a matrix with columns M1, . . . ,Mn, representing a point z ∈D(I⃗π) . We claim
that for any b ∈ [n], we have

( ⃗τ τ⃗(M))π(a) ∈ span{Mπ(b)∶π(a) ≺ π(b}. (4.6.20)

By Lemma 4.6.10, since π(a) ∈ I⃗π(a), we have {π(b)∶π(a) ≺ π(b)} ⊂ I⃗π(a). Therefore,

since z ∈ D(I⃗π), the column vectors on the right hand side of (4.6.20) are linearly indepen-
dent. By the definition of ⃗τ we have ⟨( ⃗τ τ⃗(M))π(a), τ⃗(M)π(a)⟩ = 1. Assuming (4.6.20), and
using the definition of τ⃗ , it would follow that the coefficient of Mπ(a) in ⃗τ τ⃗(M))π(a) is 1.
Choosing an ordering of columns that refines the partial order ≺, the matrices (Ma)

a∈
→●

I (F )
and (( ⃗τ τ⃗M)a)

a∈
→●

I (F )
are then related by a triangular matrix with ones on the diagonal,
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hence the two matrices have the same determinant. This is the desired equality of Plücker
coordinates ∆I(z) = ∆I( ⃗τπ τ⃗π(z)).

So it remains to establish (4.6.20). We have

( ⃗τ τ⃗(M))π(a) ∈ (span(τ⃗(M)x)
x∈ ⃗Iπ(a)∖π(a)

)
⊥
⊆ ⋂
x∈ ⃗Iπ(a)∖π(a)

span(My)y∈I⃗x∖x (4.6.21)

⊆ ⋂
x∈ ⃗Iπ(a)∩(a,π(a))

span(My)y∈I⃗x∖x. (4.6.22)

We list those x appearing in (4.6.22) from left to right so that a < xs < ⋯ < x1 < π(a) in
cyclic order. Let w be in the cyclic interval (a, π(a)). It follows by comparing the definitions
of ⃗Iπ(a) and I⃗w that

π(w) ∈ (w,π(a)) if and only if w ∉ {x1, . . . , xs}. (4.6.23)

We claim inductively that

t

⋂
j=1

span(My)y∈I⃗xj∖xj = span(My)y∈I⃗π(a)∖{π(x1),...,π(xt)}.

When t = 0 we interpret the left hand side as an empty intersection (hence, as all of Ck) and
the base case holds since M ∈ D(I⃗). Evaluating the inductive claim when t = s and using
(4.6.23) we see that the right hand side is spanned by Mπ(a) as well as various Mπ(b)’s where
b < a < π(a) < π(b) which is the claim (4.6.20).

Assuming the claim for a given t ∈ [0, s), we have

t+1

⋂
j=1

span(My ∶ y ∈ I⃗xj ∖ xj) = span(My)y∈I⃗xt+1∖xt+1 ∩ span(My)y∈I⃗π(a)∖{π(x1),...,π(xt)})

= span(My ∶ y ∈ I⃗π(a) ∖ {π(x1), . . . , π(xt)} ∩ I⃗xt+1 ∖ xt+1)
= span(My)y∈I⃗π(a)∖{π(x1),...,π(xt+1)}.

The first equality is the inductive assumption. To establish the second equality, we claim that
(I⃗xt+1 ∖ xt+1) ∪ (I⃗π(a) ∖ {π(x1), . . . , π(xt)})) ⊆ I⃗xt+1+1. The first containment is the definition

of Grassmann necklace and the second containment follows from (4.6.23). Since M ∈ D(I⃗),
the vectors {My ∶ y ∈ I⃗xt+1+1} are independent. Thus, we can replace the intersection of spans
with the span of the intersections, justifying the second line. Passing from the second line
to the third again follows from (4.6.23), noting that π(xt+1) ∈ I⃗π(a) but is not in I⃗xt . This
completes the inductive proof, establishing (4.6.20).

Theorem 4.6.15. Suppose πρ ≤○ π and let Gρ be a reduced plabic graph with trip permutation
π. Suppose Gρ satisfies Theorem 4.5.24(1). Then we have the equality of cluster algebras
A(ΣT

Gρ) = C[Π̃○
π].
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Proof. First we claim that the analogue of the double twist formula [37, Proposition 7.13]
holds. Let ϕ ∶= τ⃗µ ○ τ⃗I ○ε = τ⃗ 2

µ ○ρ○ε∶ Π̃○
π → Π̃○

µ. We claim that ϕ∗(ΣS
G) ∼ ΣT

Gρ , i.e. that the seed

obtained by pulling back the source collection ΣS
G ⊂ C[Π̃○

µ] along ϕ is quasi-equivalent to the
target seed ΣT

Gρ . Indeed, we can rewrite our commutative diagram (4.6.16) and combine it
with the right diagram in [37, Theorem 7.1] to obtain a commutative diagram

(C∗)F (C∗)E/(C∗)V −1 (C∗)F

Π̃○
π Π̃○

µ Π̃○
µ.

∂⃗

D̃G

M⃗

→●

F (Gρ)(●)

τ⃗I ○ε τ⃗µ

←●

F (G) (4.6.24)

Repeating the proof of [37, Proposition 7.13] using this diagram we obtain the formula

∆←●

I (F )
(ϕ(y)) = ∆

ρ(
→●

I (F ))
(y) ∏

i∈
←●

I (F )

∆Ii(y)
∆Ii+1(y)

. (4.6.25)

The Plücker coordinate on the left is in
←●
F (G) whereas the Plücker coordinate ρ(

→●
I (F )) ∈

→●
F (Gρ) and likewise for the necklace variables Ii, Ii+1 ∈ I . Since I is a unit necklace, the
multiplicative factor on the right hand side of (4.6.25) is in Pπ as required by Definition 4.3.15.
To complete the proof that ϕ∗(ΣS

G) ∼ ΣT
Gρ , we need to check that the ŷ’s in these two seeds

coincide. That is, we need to show that the multiplicative Pπ-factors on the right hand side
of (4.6.25) cancel out when we compute the Laurent monomial ŷ. This follows from the well-
known fact that each of the ŷ monomials is homogeneous with respect to the Zn-grading on
C[Π̃○

π] given by the degree in the column vectors: the number of times that a given i appears
in the numerator of each ŷ cancels with the number of times it appears in the denominator,
and thus the same is true of each ∆Ii/∆Ii+1 .

Since ϕ∗(ΣS
G) ∼ ΣT

Gρ , we have then that

A(ΣT
Gρ) = A(ϕ∗(ΣS

G)) = ϕ∗(A(ΣS
G)) = ϕ∗(C[Π̃○

µ]) = C[Π̃○
π].

This completes the proof of Theorem 4.5.24. We also have the following corollary about
the positive parts of Π̃○

π determined by seeds from relabeled plabic graphs.

Corollary 4.6.16. Suppose πρ ≤○ π. Suppose Gρ is a relabeled plabic graph with trip permu-
tation π and satisfies Theorem 4.5.24(1). Then the positive part of Π̃○

π determined by ΣT
Gρ is

equal to Π̃○
π,>0. That is,

{x ∈ Π̃○
π ∶ ∆→●

I (F )
(x) > 0 for all faces F of Gρ} = {x ∈ Π̃○

π ∶ ∆I(x) > 0 for all I ∈ Mπ}.
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Proof. Let I = Iρ,ι,π. It is weakly separated. Let µ ∶= ρ−1ι.
Notice that one of the containments is obvious, since by Proposition 4.6.12, the target

face labels of Gρ are in Mπ.
The other containment follows from Corollary 4.6.13 and its dual statement, which is

that ε ○ ⃗τI ∗(Π̃○
µ,>0) = Π̃○

π,>0. Indeed, suppose that for some x ∈ Π̃○, all Plücker coordinates

in
→●
F (Gρ) are positive. By Corollary 4.6.13, τ⃗I ○ ε(x) ∈ Π̃○

µ,>0. From the dual statement, we
have that

ε ○ ⃗τI ∗(τ⃗I ○ ε(x)) = x ∈ Π̃○
π,>0.

4.7 Quasi-equivalence and cluster structures from

relabeled plabic graphs

In this section, we investigate the relationship between the different cluster structures on
Π̃○
π given by Theorem 4.5.24, and verify Conjecture 4.1.1 for a class of positroids we call

“toggle-connected.”
First we restate a conjecture from the introduction:

Conjecture 4.7.1. Let Gρ be a relabeled plabic graph satisfying the conditions of Theo-
rem 4.5.24, determining a cluster structure on Π̃○

π. Let H be a plabic graph with trip permu-
tation π. Then the seeds ΣT

Gρ and ΣT
H are related by a quasi-cluster transformation, i.e. the

cluster structures A(ΣT
Gρ) and A(ΣT

H) are quasi-equivalent.9

Remark 4.7.2. In Example 4.4.3 we explained that ΣS
G = ΣT

Gπ−1
. This however does not fit

into the framework of Theorem 4.5.24 and Conjecture 4.7.1 because when ρ = π−1, ι ∶= πρ
does not have type (k,n). We now explain how this can be fixed via appropriate cyclic shifts.

Let G be a graph with trip permutation π. The relabeled graph H ∶= Gε−1k has trip
permutation i − k ↦ π(i) − k. Setting ρ ∶= π−1εk we have that ι = εk has type (k,n). The
corresponding µ is ε−1

k πεk mapping i ↦ π(i + k) − k. Thus, µ is the trip permutation of the
relabeled graph H.

By Example 4.4.3 we have ΣS
G = ΣT

Gπ−1
= ΣT

Hρ . That is, the source-labeled seed of G is of

the form ΣT
Hρ for an appropriate H with trip permutation µ and ρ of type (k,n), as required

in Theorems 4.5.14 and 4.5.24.

Remark 4.7.3. If Conjecture 4.7.1 holds, then the positive part of Π̃○
π determined by ΣT

Gρ

would agree with the positive part determined by ΣT
H . And, indeed, Corollary 4.6.16 shows

that all of these positive parts are the same, supporting Conjecture 4.7.1.

We have the following result in the direction of Conjecture 4.7.1.

9In the language of [17], this conjecture says that the map τ⃗I ○ ε from Section 4.6 is a quasi-isomorphism
of the target structures on Π̃○

π and Π̃○
µ.
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Theorem 4.7.4. Suppose πρ ≤○ π and πσ ≤○ π. Let Gρ and Hσ be relabeled plabic graphs
with trip permutation π satisfying Theorem 4.5.24(1) and let I1 = Iρ,●,π and I2 = Iσ,●,π be
the Grassmannlike necklaces corresponding to their boundary faces.

If I1 and I2 are related by an aligned toggle at some position, then the cluster algebras
A(ΣT

Gρ) and A(ΣT
Hσ) are quasi-equivalent.

The proof of Theorem 4.7.4 is in Section 4.8. Informally, the argument is that one can
find an appropriate relabeled plabic graph Gρ with trip permutation π so that the aligned
toggle relating I1 and I2 can be realized as “performing a square move” at a boundary
face of Gρ. This operation is a quasi-cluster transformation. We make this precise using the
plabic tilings of [39].

The following graph summarizes the quasi-equivalences which follow from Theorem 4.7.4.

Definition 4.7.5. Fix f ∈ Bound(k,n) and let Sepf be the set of i ≤R f such that `(i−1fi) =
`(f). Define an (undirected) graph TGf on Sepf by putting an edge between i and w if
w = isa for some a. That is, TGf is obtained from the Hasse diagram of the lower order
ideal of f in (Bound(k,n),≤R) by deleting all elements i ≤R f with `(i−1fi) ≠ `(f) (see
Figure 4.2).

If i,w ∈ Jf are in the same connected component of TGf , we write i ∼f w. We say that
f is toggle-connected if f ∼f ek.

We define an analogous graph for permutations of type (k,n) by applying the map f ↦ f
everywhere, and use the same notation.

Remark 4.7.6. Each vertex of TGf corresponds to a Grassmannlike necklace satisfying
condition (2) of Theorem 4.5.24, thus to a cluster structure on Π̃○

π. The edges of TGf

record when two such necklaces are related by an aligned toggle. By Theorem 4.7.4, any
two necklaces in the same connected component of TGf determine quasi-equivalent cluster
structures.

Example 4.7.7. Continuing Examples 4.5.6 and 4.5.20, we have that Sepf agrees with the
lower order ideal of f in (Bound(3,6),≤R); it consists of permutations f = [4,6,5,8,7,9],
[4,5,6,8,7,9], [4,6,5,7,8,9], and e3. In this case, TGf is the Hasse diagram of this lower
order ideal, i.e. TGf is a 4-cycle. In particular, f is toggle-connected.

By Theorem 4.7.4, all four of the seeds ΣT
Gρ from Figure 4.1 give rise to quasi-equivalent

cluster structures. Each of these cluster structures has finite Dynkin type A2.
For the leftmost graph, i.e. for the target structure, three of the five clusters come from

plabic graphs. The five cluster variables are

∆124,∆246,∆236,∆356,∆346∆125, (4.7.1)

listed so that adjacent cluster variables form a cluster. The last cluster variable in (4.7.1) is
a product of two Plücker coordinates hence is not the target label of a plabic graph.

The same goes for the rightmost graph, i.e. for the source labeling, with cluster variables
∆236, ∆246, ∆124, ∆145, and ∆146∆235.
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Figure 4.2: The ≤○ lower order ideal of π = 5761432, a permutation of type (4,7). For
each ι ≤○ π, the Grassmannlike unit necklaces I●,ι,π is displayed (to save space, elements of
I⃗π are omitted from intermediate necklaces). The weakly separated necklaces, which have
insertion permutation ι ∈ Sepπ, are in black. For example, any necklace containing 2456,1347
is not weakly separated. Edges are cover relations in ≤○: solid edges are edges in TGπ, while
dashed edges are not. Since there is no solid path from the top to the bottom, π is not
toggle-connected.

For the two intermediate cluster structures, every cluster comes from a relabeled plabic
graph and every cluster variable is a Plücker coordinate. The cluster variables for the top
center graph are ∆124, ∆246, ∆236, ∆235, and ∆125. Those for the bottom center graph are
∆124, ∆246, ∆236, ∆136, and ∆134.

We see that the Plücker coordinates

∆123,∆234,∆346,∆456,∆256,∆126,∆146,∆245 ∈ Pπ,

while the Plücker coordinates

∆124,∆246,∆236,∆356 ≡ ∆136 ≡ ∆235,∆134 ≡ ∆125 ≡ ∆145

are cluster variables (or a cluster variable times an element of Pπ) in each of the 4 cluster
structures. We use ≡ to denote equality up to multiplication by an element of Pπ. One can
check that ∆135 = ∆356∆125

∆256
is a nontrivial cluster monomial. This accounts for 18 Plücker

coordinates, and the remaining two are 345,156 ∉ Mπ.

Combining Remark 4.7.2 with Remark 4.7.6, we have the following.

Corollary 4.7.8. If π is toggle-connected, then the source and target cluster structures on
Π̃○
π are quasi-equivalent.
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Remark 4.7.9. It is an unfortunate fact of life that not every π ∈ Bound(k,n) is toggle-
connected. We do not see a way of constructing a quasi-cluster transformation from the target
structure to the source structure purely within the world of Plücker coordinates and square
moves. On the other hand, our results break up this problem into smaller subproblems
(namely, the subproblem of finding a sequence of quasi-cluster transformations between
connected components of TGπ).

We end this section by investigating TGπ for open Schubert and opposite Schubert vari-
eties, and showing that Conjecture 4.7.1 holds for these classes.

Definition 4.7.10. A (loopless) open positroid variety Π̃○
π ⊆ G̃r(k,n) is an open Schubert

variety if π has a single descent and no fixed points before the descent. It is an open opposite
Schubert variety if the numbers 1, . . . , k and k + 1, . . . , n appear in increasing order in π and
none of k + 1, . . . , n are fixed points.10

Proposition 4.7.11. Let Π̃○
π be an open Schubert or opposite Schubert variety. Then for all

ι ≤○ π, ι ∈ Sepπ.

Proof. First, suppose Π̃○
π ⊂ G̃r(k,n) is an open Schubert variety, so π has a single descent.

That is, there is a single a such that π(a) > π(a + 1). Since π has no fixed points in [a], all
of π(1), . . . , π(a) are not anti-excedences of π. On the other hand, all of π(a + 1), . . . , π(n)
are anti-excedences of π, so a = n − k.

The bounded affine permutation f corresponding to π satisfies f(b) = π(b) for b ∈ [n− k]
and f(b) = π(b) + n for b = n − k + 1, . . . , n. If a < b and f(a) > f(b) with a ∈ [n], then b > n,
since the window notation of f consists of an increasing sequence. Additionally, we have
f(a), f(b) ∈ [n + 1,2n]. This means that the right associated reflections of f all have the
form tab where a ∈ [n] and b > n and the left associated reflections of f all have the form tab
where a, b ∈ [n]. Thus, TL(f) ∩ TR(f) = ∅.

Now, consider any i ≤R f , so f = iw is length-additive. By Lemma 4.3.25, TL(i) ⊆ TL(f)
and TR(w) ⊆ TR(f), so in particular, TL(i) ∩TR(w) is empty. By Lemma 4.3.24, this means
that wi is length-additive. Since i−1fi = wi, we have that `(i−1fi) = `(w) + `(i) = `(f), so
i ∈ Sepf . This implies that ι ∶= i is in Sepπ. Since the choice of i was arbitrary, this completes
the proof.

The proof for opposite Schubert varieties is similar.

As an immediate corollary, we obtain the following.

Theorem 4.7.12. Let Π̃○
π be an open Schubert or opposite Schubert variety. Then each

relabeled plabic graph Gρ with trip permutation π whose boundary satisfies πρ ≤○ π gives rise
to a cluster structure on Π̃○. Moreover, all of these cluster structures are quasi-equivalent.

In particular, Conjecture 4.1.1 holds for Π̃○
π.

10Open Schubert varieties correspond to Le-diagrams that are filled entirely with pluses. Open opposite
Schubert varieties correspond to Le-diagrams whose shape is a k × (n− k) rectangle and whose zeros form a
partition.
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Remark 4.7.13. Open skew-Schubert varieties are another class of positroid variety, indexed
by skew-shapes contained in a rectangle. Relabeled plabic graphs with a particular boundary
were shown to give a cluster structure on open skew-Schubert varieties in [47]. In fact, it is
not difficult to show that open skew-Schubert varieties are toggle-connected, and moreover
that the cluster structure given in [47] are quasi-equivalent to the target and source cluster
structures.

4.8 Proofs

We prove Theorems 4.5.19 and 4.7.4, as well as various subsidiary lemmas mentioned in the
text.

Proof of Lemma 4.5.7

Recall the definition of noncrossing and aligned chords and toggles from Definition 4.5.5.
By Remark 4.5.9, if we perform an aligned toggle at a necklace I satisfying I ⊂ Mπ

then the new necklace I ′ ⊂Mπ as well.
Since ρ and ι determine I , we will frequently omit the subsets Ii, writing the removal

and insertion values in the following two-line notation:

I = ι1
ρ1

ι2
ρ2
⋯ιn−1

ρn−1

ιn
ρn
. (4.8.1)

Now we prove Lemma 4.5.7 which is needed in the proof of Theorem 4.5.14.

Proof of Lemma 4.5.7. Let I⃗π be a forward Grassmann necklace. Suppose I = (I1, . . . , In)
is a Grassmannlike necklace which can be obtained I⃗π by a sequence of noncrossing toggles.

We prove the following more specific claim which readily implies the desired statement.
We abbreviate L = Iρ−1(a) and R = Iρ−1(a)+1.

Claim: There exist sets S,T ⊂ [n] ∖ {π(a), a}, with

L = I⃗a ∖ (π−1T ∪ S)∐(T ∪ π−1S) (4.8.2)

R = I⃗a+1 ∖ (π−1T ∪ S)∐(T ∪ π−1S) (4.8.3)

such that the pair of chords π−1(s) ↦ s and a ↦ π(a) are noncrossing for all s ∈ S, and
likewise the chords π−1(t) ↦ t and a↦ π(a) are noncrossing for all t ∈ T .

In (4.8.2), let us clarify that the use of ∖ implies that the second set is contained in the
first. (We do not adopt that convention in most other parts of the chapter.) However, it not
important that the sets π−1(T ),S are disjoint, and it is also not important that the sets S
and T are disjoint (i.e., we allow for removing an element that is in S and then adding it
back in if it is in T ).

We will establish this claim by induction on `(f) − `(i) and then explain why it implies
the statement in the lemma.
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The base case of (4.8.2) holds with S = T = ∅. The subsets L and R only change meaning
when we toggle at either L or R. If we toggle at R, things look locally like

L
π(a)
⇄
a

R
t
⇄

π−1(t)
X. (4.8.4)

Let us denote by L′,R′ the new versions of L and R after the toggle. Then R′ = X =
R ∖ π−1(t) ∪ t. The subset L′ is subset obtained by toggling at R; we clearly also have
L′ = L ∖ π−1(t) ∪ t. So L′,R′ both evolve according to the formula (4.8.2) in this case. The
claimed statement that these chords are noncrossing holds by assumption. Note also that
t ≠ π(a). The argument in the case that we toggle at L rather than at R is similar, with the
local picture looking like

X
s
⇄

π−1(s) L
π(a)
⇄
a

R (4.8.5)

and the subsets evolving according to the formula L′ = L∖ s∪π−1(s) and R′ = R∖ s∪π−1(s).
Note again that s ≠ a, π(a). The claim holds by induction.

Since the chords π−1(s) ↦ s and a↦ π(a) are noncrossing, we either have that {s, π−1(s)} ⊂
(a, π(a)) or that {s, π−1(s)} ⊂ (π(a), a) (with both of these considered as cyclic subintervals
of [n]). And similarly for {π−1(t), t}. From (4.8.2), it follows that

# (R ∩ (a, π(a))) = #I⃗a+1 ∩ (a, π(a)).

If J = L ∖ a ∪ y = R ∖ π(a) ∪ y where y <a π(a), then

# (J ∩ (a, π(a))) = # (R ∩ (a, π(a))) + 1 > #(I⃗a+1 ∩ (a, π(a)))

so that J ∉ Mπ using Oh’s Theorem.
Likewise, let J = L ∖ y ∪ π(a) in the situation π(a) <a y. Then

#I⃗a ∩ [a, π(a)] = # (L ∩ [a, π(a)]) = #(J ∩ [a, π(a)]) − 1,

so that J ∉ Mπ using Oh’s Theorem.

Proof of Theorem 4.5.19

By Remark 4.5.9, aligned toggles correspond to those in which the Plücker relation has signs
IiI ′i = Ii−1Ii+1 + S1S2. Such a relation “looks like” the three-term Plücker relation encoding
a square move on weakly separated collections. However, such a Plücker relation does not
necessarily correspond to a square move on weakly separated collections; that is, performing
an aligned toggle does not preserve weak separation. So not all of the necklaces I●,ι,π with
ι ≤○ π are weakly separated.

Recall our general setup: we have i ≤R f associated to associated to permutations ι, π
of type (k,n). We define µ = ι−1πι which is a permutation of type (k,n), associated to
m ∈ Bound(k,n). By Lemma 4.5.17, m = i−1fi. We always have `(m) ≤ `(f) and we want
to characterize when `(m) = `(f).

To simplify statements, let r = f−1i, so m = r−1i.
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Lemma 4.8.1. We have `(m) < `(f) if and only if there exists a transposition t ∈ T satisfying
both `(tr) < `(r) and `(ti) < `(i).

In other words, if t = tij, then the values i and j are “out of order” in both ρ and ι (when
both permutations are appropriately upgraded to affine permutations).

Proof. Since i ≤R f , the factorization f = ir−1 is length-additive: `(f) = `(i) + `(r−1). So
`(m) = `(f) if and only if the factorization m = r−1i is length-additive: `(r−1i) = `(r−1)+`(i).

By Lemma 4.3.24, `(r−1i) = `(r−1)+`(i) if and only if TR(r−1)∩TL(i) = ∅. Also TR(r−1) =
TL(r), so we are done.

We now prove half of Theorem 4.5.19, namely that `(m) = `(f) is sufficient to guarantee
that I●,ι,π is weakly separated.

Proof of sufficiency. We will suppose that I is not weakly separated and show that there
exists a transposition t ∈ T as in the statement of Lemma 4.8.1.

First we rephrase weak separation of I as a condition on the removal and insertion
permutations ρ and ι. A 4-tuple of circularly ordered numbers a < b < c < d are a witness for
nonseparation of I if and only if there are values x, y ∈ [n], such that

{a, c} ⊂ ι([y, x)) and {b, d} ⊂ ρ([y, x)) (4.8.6)

{a, c} ⊂ ρ([x, y)) and {b, d} ⊂ ι([x, y)). (4.8.7)

Visually, we can “chop” I in the positions Ix and Iy, breaking [n] = β1∐β2 in two
cyclic intervals βi. In β1 we see {a, c} in the insertion permutation and {b, d} in the removal
permutation while in β2 we see the opposite.

Now we switch from thinking about permutations ρ, ι to thinking about affine permuta-
tions. We consider the two-line notation (4.8.1) (extended bi-infinitely and n-periodically in
both directions) whose numerator is i and whose denominator is r = f−1i. Reducing values
modulo n yields the permutations ι, ρ respectively.

As in the proof of Lemma 4.5.17, we can reach this two-line notation by starting with
the two-line notation whose numerator is f and whose denominator is the identity e0 ∈ S̃0

n,
and n-periodicallly performing swaps of adjacent columns. In particular, any column vector
β
α

appearing in the two-line notation satisfies α ≤ β ≤ α + n.

As in the proof of Lemma 4.5.17, the appearance of any x ∈ Z in the top row is weakly
to the left of x in the bottom row.

Suppose a < b < c < d are a witness against weak separation as in (4.8.6). We can
uniquely lift these to linearly ordered numbers a < b′ < c′ < d′ ∈ N such that b′ ∈ {b, b + n}
and so on. Initially, the numbers a, b′, c′, d′ appear sorted in the order a, . . . , b′, . . . , c′, . . . , d′

in the denominator of the two-line notation. To reach I , we perform a sequence of column
swaps so that {a, c′} and {b′, d′} are adjacent to each other in the bottom row.



CHAPTER 4. MANY CLUSTER STRUCTURES ON POSITROID VARIETIES 109

For example, this might happen by starting with a, . . . , b′, . . . , c′, . . . , d′ in the bottom row,
performing swaps until we reach a, . . . , b′, c′, . . . , d with b′, c′ adjacent, and then performing
the swap that switches b′, c′ yielding a, . . . , c′, b′, . . . , d. Once we have done this, the values
c′, b′ henceforth remain out of order in the bottom row, and in particular we would have
`(t(b′,c′)r) < `(r). If we perform a further sequence of swaps and arrive at the picture

{b, d}
{a, c}⋯

{a, c}
{b, d}

modulo n, we conclude that the picture in fact looks like

{b′, d′}
{a, c′}⋯

{a + n, c′ + n}
{b′, d′} ⋯{b′ + n, d′ + n}

{a′ + n, c′ + n},

using the fact a in the top row appears left of a in the bottom row, etc. The values b′, c′ are
also out of order in the numerator, i.e. we have `(tb′c′i) < `(i), as desired.

We have been considering the special case where b′ swaps past c′, but it is straightforward
to see that it is necessary to perform at least one of the swaps (d past a, a past b′, b′ past
c′, or c′ past d′) and the argument is identical.

Now we prove the second half of Theorem 4.5.19, i.e. that the condition `(m) = `(f) is
necessary for the necklace I to be weakly separated.

Proof of necessity. We will show that if there exists a < b such that `(tabr) < `(r) and
`(tabi) < `(i), then we can chop the two-line notation (4.8.1) in two pieces as in (4.8.6)
and (4.8.7). As in the above proof of sufficiency, we work with two-line notation for affine
permutations. By assumption, the two-line notations looks like

⋯b⋯a⋯⋯⋯
⋯⋯⋯⋯b⋯a⋯. (4.8.8)

The relative positions of the a in the numerator and the b in the denominator are not
important for our argument.

We chop the necklace as indicated by vertical bars

⋯b
⋯ ∣⋯a⋯⋯⋯⋯b⋯∣ ⋯

a⋯ (4.8.9)

(that is, just after the b in the top row and just before the a in the bottom row). Let
B− ∶= (−∞, a)∩ bottom row and T − ∶= (−∞, a)∩ top row. We claim that B−∖T − is nonempty.
We have that π−1(a) ∈ B−. Then the claim follows from noting that if z ∈ T − then there
exists an element of B− which is strictly less than z (namely, the element π−1(z)).

We can likewise set B+ ∶= (b,∞)∩ bottom row and T + ∶= (b,∞)∩ top row. Then π(b) ∈ T +
and we claim that T + ∖ B+ is nonempty. This follows similarly from as above, noting that
if z ∈ B+ then there exists an element of T + which is strictly greater than z (namely, the
element π(z)).

Letting z− ∈ B− ∖ T −, z+ ∈ T + ∖ B+, we have z− < a < b < z+ are a witness against weak
separation.
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Proof of Theorem 4.7.4

Our main tool to prove Theorem 4.7.4 are the plabic tilings of [39, Section 9]. We briefly
review the definition here.

Let p1, . . . , pn be the vertices of a regular n-gon in the plane, listed clockwise. For I ⊂ [n],
we use the notation p(I) ∶= ∑i∈I pi. As usual, we abbreviate X ∪ {a} as Xa.

Given a weakly separated collection C ⊂ ([n]
k
), the associated plabic tiling T (C) is a 2-

dimensional CW-complex embedded in R2. The vertices are p(I) ∶ I ∈ C. Faces correspond
to nontrivial black and white cliques in C. For X ∈ ( [n]

k−1
), the white clique W(X) consists

of all I ∈ C which contain X. Similarly, for X ∈ ( [n]
k+1

), the black clique B(X) consists of all
I ∈ C which are contained in X. A clique is nontrivial if it has more than two elements.
The elements of a white clique, for example, are Xa1, . . . ,Xar, where a1, . . . , ar are cyclically
ordered; we have edges between p(Xai) and p(Xai+1) in T (C). The edges between vertices
in a black clique are similar.

Lemma 4.8.2. Let Iρ,ι,π be a generalized necklace such that ι ≤○ π, and say I = (I1, . . . , In).
Then I does not contain a quadruple Ia, Ia+1, Ib, Ib+1 such that either (Ia, Ia+1) = (Xu,Xw)
and (Ib, Ib+1) = (Xv,Xx), or (Ia, Ia+1) = (X ∖u,X ∖w) and (Ib, Ib+1) = (X ∖ v,X ∖x), where
u→ w and v → x are crossing chords.

Proof. We argue by contradiction. Suppose we have (Ia, Ia+1) = (Xu,Xw) and (Ib, Ib+1) =
(Xv,Xx) for crossing chords u → w and v → x. Since u is removed from Ia, we have that
a = ρ−1(u). We also have that w = π(u). Since the chords u → w and the chords v → x
cross, we know that one of v, x is in the cyclic interval from u to π(u). Let’s say it’s x
(the other case is identical). That is, we have x <u π(u). By Lemma 4.5.7, this means that
Iρ−1(u) ∖ u ∪ x =Xx is not in the matroid Mπ. But by Theorem 4.5.14, I is a unit necklace
and so in particular, all terms are in Mπ, a contradiction.

The other case is identical.

Proof of Theorem 4.7.4. Let I = Iρ,ι,π be a weakly separated necklace with ι ≤○ π. Suppose
that one can perform an aligned toggle at position j, resulting in a necklace I ′ = Iρ′,ι′,π

that is also weakly separated. We would like to produce relabeled plabic graphs Gρ and Hρ′

with trip permutation π whose target seeds are quasi-equivalent.
If ιj = ρj, then every relabeled plabic graph with boundary ρ has a white lollipop at ρj.

In this case, it is easy to find relabeled plabic graphs Gρ and Hρ′ whose target seeds are
identical (just move the white lollipop appropriately). Similarly, the ιj−1 = ρj−1 case is easy,
so we may assume ιj−1, ρj−1, ιj, ρj are distinct.

We are in the situation where Ij−1 = Suv, Ij = Svx, Ij+1 = Swx, with u < v < w < x in
cyclic order. Toggling at j produces I ′j = Suw. Since I and I ′ = I ∖Ij ∪I ′j are both weakly
separated, [40, Lemma 5.1] implies that I ∪ {Sux,Svw} is also weakly separated. By the
proof of Proposition 4.5.10, at most one of Sux,Svw is in the matroid Mπ.

Let C be a maximal weakly separated collection containing I ∪{Sux,Svw}, and let T (C)
be the corresponding plabic tiling.
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Notice that Ij ≠ Ia for any a ≠ j, since otherwise I ′ would not be weakly separated. Let
(J1, . . . , Jr) be the tuple obtained by deleting all adjacent occurrences of the same subset in
I (i.e. if Ia = Ia+1 = ⋯ = Ib, we delete Ia+1, . . . Ib). Note we have not deleted Ij.

We will show our result first in the case when all the subsets J1, . . . , Jr are distinct. In
this case, (J1, . . . , Jr) is a generalized cyclic pattern of [10]. It satisfies conditions (C1-C4)
of [10]; (C1), (C2), and (C4) are immediate and (C3) follows from Lemma 4.8.2. By [10,
Proposition 5.2], the polygonal curve ζ through p(J1), p(J2), . . . , p(Jr), p(J1) (in that order)
is non-self-intersecting. It is not hard to see that the line from p(Ja) to p(Ja+1) is either an
edge of T (C) or it cuts across a face of T (C). In particular, ζ does not intersect any edges
of T (C) in their interior.

In T (C), p(Ij−1), p(Ij), p(Ij+1), p(Sux), p(Svw) are (up to rotation) arranged

p(Ij)

p(Sux)

p(Svw)

p(Ij+1)p(Ij−1)

with edges as shown. There are no other edges involving p(Ij). From this picture, we
see that exactly one of {p(Sux), p(Svw)}, say p(R), is inside the curve ζ.

As noted in [11, proof of Theorem 6.3], if one takes the part of T (C) enclosed in ζ and
constructs the dual plabic graph (with boundary vertices labeled so that the target label of
the face dual to p(I) is I), one obtains a relabeled plabic graph Gρ with trip permutation
π. By Proposition 4.6.12, the target face labels of Gρ are elements ofMπ, since ∆→●

I (f)
does

not identically vanish on Π̃○
π. Thus, of the two vertices p(Sux), p(Svw), the one p(R) that

lies inside ζ is the one where R ∈ Mπ.
Now, let C′ ∶= C ∖ Ij ∪ I ′j; that is, C′ is obtained from C by performing a square move

at Ij. Note that the tiling T (C′) differs from T (C) only inside the rectangle with vertices
p(Ij−1), p(Ij+1), p(Sux), p(Svw). Let ζ ′ be the polygonal curve in T (C′) obtained from ζ by
replacing the vertex p(Ij) with the vertex p(I ′j). Again, ζ ′ is a non-self-intersecting curve.

Let Hρ′ be the relabeled plabic graph dual to the part of T (C′) enclosed by ζ ′.
We claim that the target seeds ΣT

Gρ and ΣT
Hρ′ are quasi-equivalent. Notice that the interior

face labels of the two relabeled plabic graphs agree, and all boundary face labels agree except
Ij and I ′j. So the only thing to check is the ŷ condition. For all faces except the one labeled
by R, no arrows or neighbors have changed, so those ŷ variables have not changed. Around
R, in ΣT

Gρ we see the picture below on the left; in ΣT
Hρ′ , we see the picture below on the right.

If the dotted ( resp. dashed) arrow is present on the left, it is not on the right. There may
be other arrows to other vertices, but they are the same in both seeds; the arrows may also
all be reversed. For simplicity, we write I for ∆I .
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Ij

R

Ij+1Ij−1
Ij−1Ij+1

Ij

R

Ij+1Ij−1

By Proposition 4.5.10, ∆I′j
is equal to

∆Ij−1
∆Ij+1

∆Ij
. It is easy to see that ŷ(∆R) is the same

in both seeds.
Now, we deal with the case when the tuple (J1, . . . , Jr) contains some repeats. In this

case, the polygonal curve ζ through p(J1), p(J2), . . . , p(Jr), p(J1) will have self-intersections.
However, Lemma 4.8.2 implies that these self-intersections will occur only at p(Ja), where
Ja is some subset that appears more than once.

Break the tuple (J1, . . . , Jr) up into sub-tuples K 1, . . . ,K q where K i = (Ja, Ja+1, . . . , Jb)
contains no repeated elements and is as long as possible. Likewise, break ζ up into polygonal
curves ζ1, . . . , ζq passing through the elements of subtuples. Each of these subtuples is a
generalized cyclic pattern a la [10], so by the argument above, ζ i encloses a part of T (C)
which is dual to a relabeled plabic graph with boundary faces K i. We claim that the union
of the parts of T (C) enclosed by ζ i is dual to a relabeled plabic graph with boundary faces
J1, . . . , Jr. The only thing to worry about is if some curve ζ i encloses ζ`. In this case, in
the relabeled plabic graph with boundary faces K i, we would have K ` appear as internal
face labels. That is to say, in the underlying plabic graph with boundary faces ρ−1(K i),
we would have ρ−1(K `) appear as internal face labels, so in the dual plabic tiling, ρ−1(K `)
would lie inside the polygonal curve through ρ−1(K i).

But this is impossible. Let µ = ρ−1ι. Notice that the Grassmann necklace I⃗µ = ρ−1(I )
is not connected (in the sense of [39, Definition 5.4]), and the sub-tuples ρ−1(K i) are the
connected components of I⃗µ of size greater than one. Plabic graphs with trip permutation µ
are not connected, and each connected component of such a graph is encircled by boundary
faces labeled with ρ−1(K i) for some i; this follows from [39, Proposition 9.7]. In the dual
plabic tiling, the polygonal curve through ρ−1(K i) does not enclose ρ−1(K `) for any i, `.

So we take Gρ to be the plabic graph dual to the parts of T (C) which lie inside of ζ i for
some i. The rest of the argument proceeds as in the first case, noting that Ij is in only one
K i, and so p(Ij) is only in one curve ζ i.
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