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G E O C H E M I S T R Y

Transient rhyolite melt extraction to produce a  
shallow granitic pluton
Allen J. Schaen1*, Blair Schoene2, Josef Dufek3, Brad S. Singer1, Michael P. Eddy4,  
Brian R. Jicha1, John M. Cottle5

Rhyolitic melt that fuels explosive eruptions often originates in the upper crust via extraction from crystal-rich 
sources, implying an evolutionary link between volcanism and residual plutonism. However, the time scales over 
which these systems evolve are mainly understood through erupted deposits, limiting confirmation of this con-
nection. Exhumed plutons that preserve a record of high-silica melt segregation provide a critical subvolcanic 
perspective on rhyolite generation, permitting comparison between time scales of long-term assembly and tran-
sient melt extraction events. Here, U-Pb zircon petrochronology and 40Ar/39Ar thermochronology constrain silicic 
melt segregation and residual cumulate formation in a ~7 to 6 Ma, shallow (3 to 7 km depth) Andean pluton. 
Thermo-petrological simulations linked to a zircon saturation model map spatiotemporal melt flux distributions. 
Our findings suggest that ~50 km3 of rhyolitic melt was extracted in ~130 ka, transient pluton assembly that indi-
cates the thermal viability of advanced magma differentiation in the upper crust.

INTRODUCTION
Extraction of interstitial melt from partially crystallized, upper crustal 
magma reservoirs is considered to be a dominant process in gener-
ating high-silica rhyolite capable of erupting explosively (1, 2). Vol-
canism involving rhyolite poses a substantial societal hazard (3) and 
can alter global climate (4) when the volumes are sufficiently large. 
The segregation of rhyolitic melt from magma reservoirs is a pro-
cess that results in chemical fractionation and should produce com-
plementary crystalline residues that are observable in the upper 
crustal plutonic record (5–15). Evidence of these residues often 
appear in the crystal cargo that has been incorporated into erupted 
products as aggregates (16, 17). However, identifying plutons that 
are unequivocally the residuum of rhyolite extraction (i.e., silicic 
cumulates) can be difficult, perhaps because they are susceptible to 
subsequent partial remelting (18), remobilization (19), and/or pres-
ervation of trapped melt (10, 12), potentially masking diagnostic 
geochemical and textural signatures (7, 11). Accordingly, some 
models for rhyolite generation, mainly inferred from plutons, favor 
magma differentiation in the hotter, lower crust (15 to 45+ km deep) 
(20–25). These models suggest an ephemeral nature of melt-rich 
bodies in the upper crust, whereby magmas sourcing large erup-
tions are viable briefly only during high-flux periods (25, 26). Alter-
native models suggest that magma reservoirs can be incubated in 
the upper crust and might spend 104 to 105 yr at high crystal frac-
tions (27–30) before melt may be removed or rapidly remobilized 
(31). Rhyolites can also be generated by other mechanisms, for ex-
ample, via remelting of crustal material [e.g., (32)]. Our focus here 
is on rhyolite that may be generated via extraction from crystalline 
mush (1, 2).

Central to these models and the production of rhyolitic magma 
is an understanding of the time scales of magma accumulation, 

upper-crustal residence, and subsequent melt extraction. However, 
our knowledge of these time scales is dominated by erupted volcanic 
products, limiting cohesive models that seek connections between 
the volcanic and plutonic realms. Although silicic magma reservoirs 
may grow incrementally over ca. 104 to 106 year time scales, they 
can be remobilized before eruption much more rapidly (ca. 101 to 
103 years) (33). Whereas typical long-term plutonic emplacement 
rates are generally 10−3 to 10−4 km3/year., the accumulation of large 
melt-rich magma bodies capable of erupting is widely thought to 
require magma fluxes one to two orders of magnitude greater (21). 
However, recently, some silicic plutonic systems have been shown 
to exhibit volcanic fluxes (34), providing important constraints on 
the growth rates and eruption potential of fossil magma reservoirs. 
Missing from these pioneering studies are constraints on the time 
scales of melt extraction within a plutonic system that preserves a 
rock record of the full sequence of differentiation building up to this 
evolved stage from initial mafic pulses to production of rhyolite and 
complementary silicic cumulate residues.

The late Miocene (7.2 to 6.2 Ma) Risco Bayo–Huemul (RBH) plu-
tonic complex (~300 km3) in the Southern Andean Cordillera of Chile 
(Fig. 1A) solidified at depths of ~3 to 7 km and has been exhumed 
to expose its uppermost 1.5 km (9, 10, 35). Our recent work has used 
textural, petrologic, geochemical, and mineralogical data to hy-
pothesize that domains of the younger, more silicic Huemul pluton 
represent near end-members of rhyolite melt segregation [now high- 
silica granite, 76 weight % (wt %) SiO2] and complementary residual 
silicic cumulate formation (now quartz monzonite, 62 wt % SiO2; 
Fig. 1A) (9, 10). The older RB pluton is an amalgamation of incre-
mentally emplaced mafic-to-intermediate (51 to 66 wt % SiO2) magma 
batches that thermally primed the upper crust, thereby facilitating 
subsequent high-silica melt extraction in the Huemul pluton (10). 
Here, we test the temporal and thermal feasibility of the melt ex-
traction model for high-silica rhyolite generation by combining 
U-Pb petrochronology (i.e., coupled age and compositional analysis) 
and 40Ar/39Ar thermochronology. We use magma emplacement and 
thermal evolution numerical models to track zircon saturation and 
growth to directly constrain the radioisotopic dates within thermal-
ly viable scenarios of melt evolution. Our results constrain upper 
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Fig. 1. Geologic map and geochronology from the RBH plutonic complex. (A) Geologic map of the RBH complex highlighting internal compositional domains 
[modified from the work of Schaen et al. (9)]. Tatara–San Pedro (TSP) and Pellado (VP) volcanoes. (B) Rank order plot of radioisotopic dates from hand samples within the 
RBH plutonic complex. t represents the time between oldest and youngest zircon date; ty indicates the youngest zircon date for each hand sample. All 206Pb/238U dates have 
been Th-corrected. Asterisks (*) indicate wallrock hornfels that preserve 17 to 9 Ma relic Ar ages from protolith within discordant portions of age spectra. Minimum laser 
ablation (LA) zircon age range of RB1503B from the work of Schaen et al. (9). CA-ID-TIMS, chemical abrasion–isotope dilution thermal ionization mass spectrometry.
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crustal (as shallow as 3.5 km) magma differentiation via melt segrega-
tion from a mush, a process that may precede many rhyolitic erup-
tions (1, 2, 28, 30), over ~130 ka in a pluton.

RESULTS
Petrochronologic fingerprinting of zircon populations
Zircon is a common U-rich accessory mineral that partitions ele-
ments from its host melt, which permits determination of (i) the 
timing of crystallization (36) and (ii) the compositional evolution of 
the magma from which it grew (37, 38). Sixty-nine zircons were 
measured by U-Pb chemical abrasion–isotope dilution thermal ion-
ization mass spectrometry (CA-ID-TIMS; Fig. 1B and table S1). 
These same zircons were previously characterized texturally via cath-
odoluminescence imaging before laser ablation split stream (LASS) 
analysis by Schaen et al. (9). This LASS study focused on rim data 
and determined pluton-scale age relationships and compositional 
evolution of zircon populations for the RBH complex (9). However, 
given the young ages, zircon LASS data are unable to resolve changes 
in zircon composition over time in this system (9). Inheritance in 
the form of scarce (n = 3; this study) 10 to 88 Ma xenocrystic cores 
was also revealed by LASS (9); in both cases, these data are easily 
identifiable and omitted from further discussion. The 206Pb/238U 

ID-TIMS dates from the RBH complex span ~1 Ma, from 7.2 to 
6.2 Ma (Fig. 1B). Zircon crystallization within the northeast portion 
of RB spanned ~240 ka, between 7.193 ± 0.014 and 6.956 ± 0.053 Ma 
(2), with ≤20 ka between domains. Zircon dates support field 
observations of sharp cross-cutting relationships and confirm rapid, 
pulsed, incremental emplacement from RB gabbro to granodiorite 
(10). In contrast, zircon dates from the Huemul span ~190 ka from 
quartz monzonite to high-silica granite, between 6.384 ± 0.022 and 
6.199 ± 0.022 Ma (n = 38; Fig. 1B). Huemul outcrops do not pre-
serve evidence that permits relative age sequencing (10). Instead, 
contacts between domains are gradational with the high-silica gran-
ite structurally overlying the granite (10). Quartz monzonite U-Pb 
dates, which range from 6.384 ± 0.22 to 6.328 ± 0.052 Ma, are re-
solvable from a younger population of zircon (n = 12) in the granite 
and high-silica granite domains with dates from 6.261 ± 0.018 to 
6.199 ± 0.022 Ma. In addition, the youngest zircon in the quartz 
monzonite is older than the youngest zircon from the granite and 
both high-silica granite by 100 to 160 ka. This implies a process that 
preserved a younger zircon population in the granite and in high-silica 
granite domains but not in the quartz monzonite, although there is a 
close spatial association among all three domains (Fig. 1A).

Trace element analyses (TEA) by solution inductively coupled 
plasma mass spectrometry (ICP-MS) on the wash products of ID 
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column chemistry permit integration of diagnostic compositional 
information from the same aliquot as zircon dates (37, 39). The short 
crystallization durations of these plutons make zircon compositions 
critical to illuminate the time scales of magmatic processes and to 
isolate the zircon that Schaen et al. (9, 10) hypothesized might record 
melt extraction. With decreasing zircon age, TE concentrations, in-
cluding all the rare earth elements (REE), apart from Eu, follow Y 
and decrease in RB samples while increasing in Huemul samples 
(Fig. 2A). These zircon TE trends, along with a narrow range of Yb/Dy 
(Fig. 2B), mirror similar fractional crystallization trends in Huemul 
rocks (9, 10), which indicate melt evolution from a common paren-
tal magma. Flat middle to heavy REE bulk rock trends (9) imply that 
Yb/Dy is being controlled by zircon crystallization and not accessory 

titanite. Thus, the larger range in Yb/Dy for RB samples indicates 
late zircon saturation at high crystallinities (80 to 90%) for these 
mafic to intermediate rocks. Distinct fields in the RB zircon TEA 
(Fig. 2A) reinforce the resolvable ages (Fig. 1B) and cross-cutting 
field relationships (9, 10), which together imply chemically distinct 
RB pulses that were rapidly (≤ 20 ka between pulses) and incrementally 
emplaced. Eu/Eu* trends in RBH rocks and minerals (Fig. 2, C and D) 
are a diagnostic indicator of feldspar fractionation and silicic 
cumulate formation (9, 10), which created the quartz monzonite do-
main. The quartz monzonite (bulk, 62 wt % SiO2) and granite (bulk, 
68 to 70 wt % SiO2) zircons display a restricted range (~0.3 to 0.4 in 
the melt) in Eu/Eu* from two rocks with very different bulk compo-
sitions (9, 10), which warrants explanation.

We have cast the zircon TEA into estimates of equilibrium melt 
compositions by using zircon-melt partition coefficients (40). Esti-
mates of the melt composition that the zircon grew from can be com-
pared to a bulk rock fractional crystallization model for Huemul 
(purple band in Fig. 2D) (9). Huemul bulk rock Zr models indicate 
that zircon will begin to saturate at 38% crystallinity (9). Segregation 
of interstitial melt from crystalline magma mush (i.e., a continuous 
framework of crystals) is most efficient within a crystallinity window 
(~50 to 70% crystals) after convection has ceased but before rheo-
logic crystal lockup (1, 2, 41). The quartz monzonite and granite TEA 
data reflect zircon crystallization upon saturation up to the lower 
bound of this optimal crystallinity window, recording parental mush 
conditions just before where melt segregation was viable (Fig. 2D). 
The compositional gap between these domains and the high-silica 
granite zircons is a clear indicator of a short-lived process like rhyolite 
melt segregation (Fig. 2D) (41, 42). Whereas the high-silica granite 
contains zircon inherited from this parental mush, with similar Eu/
Eu* to the quartz monzonite and granite (“generation 1”; Fig. 2D), 
the zircon having the lowest Eu/Eu* records the highly fractionated 
rhyolitic melts formed via extraction (“generation 2”). We used TEA 
to isolate these particular high-silica granite zircons (n = 15) and 
performed statistical bootstrapping (random sampling with replace-
ment) of this measured U-Pb age/uncertainty population. The dif-
ference between minimum and maximum bootstrapped ages by this 
method are then taken as modeled mean zircon crystallization du-
rations. The mean of the mean durations of 15,000 trials from this 
bootstrapped population is 132 ka, with upper and lower bounds of 
204 and 75 ka, respectively, at 95% confidence. To calculate a melt 
flux from these time constraints requires accurate estimates of rock 
volumes. The volume of the high-silica granite domain is between 
34 and 112 km3, depending on the assumed thickness (1.2 to 4 km) 
and whether the pluton is scale invariant (43). This translates to melt 
fluxes between 0.00017 and 0.0015 km3/yr. These magma accumu-
lation rates are minimum estimates, as they do not account for po-
tential volume losses associated with dike propagation or eruption 
of the high-silica granite (35).

Thermal viability of melt extraction
A multiphase/multiscale pluton emplacement model was used to 
simulate thermally viable scenarios for Huemul melt reservoir evo-
lution and extraction (Fig. 3A). These finite-volume simulations 
build upon previous multiphase approaches (41), magma-tectonic 
interaction and accommodation models (44), and stochastic meth-
odology (45). In particular, these simulations extend the approach 
to three dimensions to account for the spatial arrangement of the 
mapped plutons (Fig. 4, A and B). A domain of 40 km by 40 km by 
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60 km (40 km in horizontal directions) is used to include the re-
gional thermal evolution. An initial simplified layered crustal struc-
ture is used with a gabbro lower crust to an intermediate upper crust 
composed of metavolcanics and plutons (Fig. 4, A and B). Compo-
sitional proxies for each layer are based on regional outcrops (46) 
and seismic studies in the nearby Laguna del Maule volcanic field 
(47) and use the model of Abers and Hacker (48). Conservation of 
energy and mass is solved as described in Materials and Methods. 
These simulations are constrained by RBH rock compositions and 
thermodynamic calculations using rhyolite-MELTS (49). The size 
and three-dimensional (3D) structure of the computational domain 
necessitated conducting proxy momentum calculations as a subgrid 
model to compute the separation of melt from crystals (Fig. 4D). 

That is, melt extraction rates were computed using the local melt 
properties, melt fraction, and drag relationships between the melt 
and crystals (Fig. 4D). This one-way coupled approach does not 
calculate emergent melt/deformation feedback but does permit 
computing hundreds of 3D scenarios that are consistent with energy 
conservation and thermodynamics relationships. Uncertainty in 
compositional heterogeneities in the crust, thicknesses of the pluton 
units, crystal size distributions in the partially molten reservoir, and 
thermal structure in the surrounding crust motivated us to vary 
these properties in a stochastic fashion and to report on the range of 
outcomes (Fig. 3A). Each simulation begins with precursor incre-
mental emplacement of RB-sized (26 to 88 km3) magma pulses over 
the time scales represented by their TIMS dates (Fig. 1B). Melt with 
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the composition of the Huemul granite domain is then injected 
into the upper crust at a depth of 5 km, where crystallinity, residence 
time, and local chemistry of all melt are tracked throughout the sub-
grid model (Fig. 3A) (1, 2, 41). This procedure is repeated for a wide 
range of initial Huemul granite volumes and number of pulses span-
ning the range of quartz monzonite ages (Fig. 1B), producing the 
curve defined by circles in Fig. 3A. Across the 3D finite element space 
of each simulation, we have linked these calculations to a zircon 
saturation model (Fig. 4E) (9), which permits estimates of the 
spatiotemporal distribution of extracted melt that has achieved zircon 
saturation (square curve in Fig. 3A). We calculate zircon saturation 
as a proxy for time periods of crystal growth but do not explicitly 
calculate zircon growth rates as limited by diffusion. For any given 
simulation (identical colors in Fig. 3A), the residence time for the 
same volume of extractable melt is a factor of 2 to 3 shorter for only 
the melt that is zircon saturated (Fig. 3A). This emphasizes a critical 
point that the time scales represented by measured zircon dates are 
always inherently minimum reflections of the total magma accu-
mulation (50). For example, the simulation that produced 48 km3 of 
extractable melt over ~275 ka would result in a zircon dataset span-
ning ~20 to 200 ka, with a mean of ~100 ka (highlighted simulation; 
Fig. 3A). All the melt (not just extractable) in the 48 km3 simulation 
is present for ~300 ka, although mostly at very small melt fraction.

To constrain the temporal viability of rhyolite segregation as the 
formation process for the Huemul pluton, the melt durations and 
cooling rates from the numerical simulations are compared to the 
measured U-Pb time scales (Fig. 3B) and 40Ar/39Ar thermochronol-
ogy (Fig. 1B), respectively. The zircon ages from the 48-km3 extract-
ed melt numerical simulation display a comparable distribution 
to the mean zircon crystallization durations from the bootstrapped 
age population (generation 2; Fig. 4C) that were isolated using U-Pb 
CA-TIMS-TEA (Fig. 3B). Whereas null hypothesis testing suggests 
that these two distributions are not identical, their weighted means 
are within the average measurable uncertainty of the TIMS dates 
(Fig. 3B). Given the analytical limitations for these very young 
low-U zircons, the good agreement between the melt extraction 
numerical simulations and our isotopic dates from the rock record 
is notable. This implies from a temporal perspective that extraction 
of ~48 km3 of melt from granitic mush is a viable process to pro-
duce the Huemul high-silica granite.

DISCUSSION
The predominant limitation of melt segregation in the cold upper 
crust is the inevitability of the magma cooling to rock. Whereas 
incubation of crystalline magmas in a state of cold storage (27, 28) can 
enhance mush longevity, segregation of melt (±crystals) is a precursor 
to some styles of rhyolitic eruptions (51). Accordingly, we examine 
the end-member scenario of pure conductive cooling without re-
charge (52) in the numerical simulations to compare maximum cool-
ing rates and minimum thermal time scales to the measured isotopic 
constraints. Using the maximum t of U-Pb dates (Fig. 1B) as an 
estimated duration between zircon saturation (850°C) and the soli-
dus (680°C) for Huemul rocks (9) results in magmatic cooling rates 
of about 650° to 1400°C/Ma. These high cooling rates are consistent 
with crystallization of the youngest zircons coevally to amphibole and 
biotite 40Ar/39Ar closure dates in the same hand samples (Fig. 1B). 
Resolvable biotite and orthoclase 40Ar/39Ar dates (Fig. 1B) also permit 
subsolidus cooling rates between biotite (~320°C) and orthoclase 

(~280°C) closure (53, 54) in the range of 80° to 170°C/Ma. The 
average magmatic cooling rate of the 48-km3 extracted melt simula-
tion is about 600°C/Ma, in good agreement with those calculated 
using the geochronology. This suggests that while cooling was rapid 
in Huemul, segregation of ~50 km3 of melt could have occurred 
in ≤130 ka (Fig. 3B).

Magma accumulation rates calculated using the Huemul TIMS 
dates are lower than those from larger plutonic bodies such as the 
Golden Horn batholith (34), which contain zones (>424 km3) that 
exhibit the high fluxes (~0.0125 km3/yr) comparable to silicic su-
pereruptions (50). Supereruption-sized rhyolitic systems preserve 
higher flux rates than the 0.00017 to 0.0015 km3/yr. rates estimated 
here that formed the Huemul high-silica granite. Eruption rates 
from Oruanui (New Zealand, 530 km3) average 0.85 km3/yr (17); 
young Yellowstone extrusives (Wyoming, USA, ~40 to 70 km3) are 
bracketed between 0.0067 and 0.07 km3/yr (55), and the Bishop 
Tuff (>600 km3, California, USA) preserves rates of 0.0075 km3/yr 
(56). The upper bounds of the fluxes that we calculate for Huemul 
are comparable to some volcanic systems of similar volume 
(30, 50, 57, 58). For example, ~20 km east of the RBH complex, the 
rear-arc Laguna del Maule volcanic field (>40 km3 of rhyolite erupted 
during the last 20 ka) preserves time-averaged magma accumulation 
rates of 0.0023 km3/yr (58) but has also experienced high-flux events 
driven by recharge rates up to 0.03 to 0.04 km3/yr (58). Although 
it remains uncertain whether Huemul produced an eruption, the 
accumulation rates here suggest that this scenario is unfavorable. 
Notwithstanding, mid-to-late Miocene ignimbrites in the surround-
ing area (59) are being studied to test directly whether they may rep-
resent erupted products related to this pluton.

Together, the petro/thermochronology and numerical simulations 
place temporal and thermal constraints on melt segregation and 
imply that ~50 km3 of rhyolite was extracted from an upper crustal 
mush to form the Huemul pluton within ~130 ka at depths as shal-
low as 3.5 km (10). Interstitial melt segregation is a widely invoked 
process for the generation of many styles of eruptible rhyolite from 
upper crustal magma reservoirs (51). Our findings imply that this 
process can occur to form plutons and operate over transient time 
scales while still preserving typical long-term emplacement rates. 
This confirms melt segregation as a viable process of upper crustal 
differentiation to produce both rhyolite and high-silica granite, 
highlighting shallow plutonic systems as important links to the 
volcanic realm whereby similar melt compositions are created via 
mush distillation before eruption.

MATERIALS AND METHODS
U-Pb zircon geochronology
Zircons were separated from each rock sample using standard tech-
niques and dated following Schoene et al. (60); only a brief summary 
is given here. Zircons were dated using CA-ID-TIMS at Princeton 
University. The methods for chemical abrasion are modified from 
those presented by Mattinson (61) to allow for single grain analysis 
(62). Grains were spiked with the EARTHTIME 205Pb-233U-235U 
isotopic tracer [i.e., ET535 (63, 64)], and U and Pb were purified from 
the dissolved sample using methods modified from Krogh (65). Col-
umn rinses were set aside for TEA (37), with methods described below.

Uranium and Pb isotopes were measured on an IsotopX 
Phoenix62 TIMS at Princeton University. Lead was run as a metal 
and measured by peak hopping on a Daly photomultiplier. Uranium 
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was analyzed as UO2 and was measured statically on series Faraday 
cups. Measured ratios were corrected assuming an 18O/16O of 
0.00205 ± 0.00004 (2), corresponding to the modern atmospheric value 
(66). Corrections for mass-dependent fractionation of Pb were done 
using measurements of the 202Pb/205Pb ratio on other samples measured 
with the ET2535 tracer solution. Uranium mass fractionation was 
monitored in real time using the 233U/235U in the ET535 tracer and 
assuming a 238U/235U of the zircon of 137.818 ± 0.045 (2), which rep-
resents the mean value of 238U/235U measured in natural zircon (67).

The zircons were measured over two time periods, which requires 
slight modifications in several aspects of data reduction. First, the 
dead time determination for the Daly ion counter, which drifts 
by ~1 ns as a function of time over months to years, was adjusted to 
match the time when specific zircons were analyzed. Second, the Pb 
blank composition used for common Pb subtraction also was mon-
itored over time, and the data were reduced with the corresponding 
blank composition. This shift corresponds to the use of side filament 
heating for organic interference reduction beginning in 2017; see 
methods in the work of Schoene et al. (60).

A correction for initial secular disequilibrium in the 238U-206Pb 
system due to the exclusion of Th during zircon crystallization (68) 
was made for each analysis using a ratio of zircon/melt partition 
coefficients (fThU) that is specific to the composition of the magma. 
While these partition coefficients are not perfectly known, this choice 
has little impact on the results from this study. For gabbroic to dio-
ritic compositions, an fThU value of 0.4007 is used (69). For granodi-
oritic compositions, an fThU value of 0.2455 is used (69). For quartz 
monzonite compositions, an fThU value of 0.2862 l is used (69). For 
granitic compositions, an fThU of 0.1379 is used (53).

All data reduction was done with the Tripoli and ET_Redux soft-
ware packages (70) using the algorithms presented by McLean et al. (71). 
The U decay constants are from the work of Jaffey et al. (72). All un-
certainties in this study are presented as ±2 and include internal 
uncertainties only. Uncertainties in the tracer composition and decay 
constants are negligible in this particular case for examining cooling 
rates through comparison with the 40Ar/39Ar thermochronology.

Zircon TEA
The TE composition of the unknown zircons was analyzed using the 
TIMS-TEA method of Schoene et al. (37). It uses the wash solutions 
obtained during anion exchange column chemistry during U-Pb 
separations. This solution contains all of the TE from the dissolved 
volume of zircon, except U and Pb, and can be analyzed by solution 
ICP-MS. To accomplish this, the TE aliquots were dried down and 
then redissolved in 3% HNO3 + 0.2% HF + In (1 part per billion). The 
resulting solution was analyzed on a Thermo Fisher Scientific iCAP 
quadrupole ICP-MS using a Teledyne Cetac ASX-100 autosampler. 
Uptake time was 20 s, and 60 s was used to wash the line with 3% 
HNO3 + 0.2% HF between each analysis. Measured elements in-
clude Y, Zr, Hf, REE, Th, and In (used as an internal standard). A 
dilution series of a synthetic zircon solution was used to generate a 
concentration-intensity calibration curve over the range of con-
centrations observed in most zircon TIMS-TEA analyses. Repro-
ducibility was assessed using a homogeneous solution of Plešovice 
zircon (73) in addition to a solution with a known Zr/Hf ratio of 
50. Measurements of procedural blanks were used to monitor for 
laboratory TE contamination. Sets of four unknowns were bracketed 
by measurements of the Zr/Hf and Plešovice standard, and a new 
calibration curve was made for every 20 unknowns. Measurement 

of these unknowns was done concurrently with the dataset presented 
by Chambers et al. (74), and the total number of standards run 
during these sessions is reported here. Solution measurements were 
converted to zircon concentrations by assuming that all of the mea-
sured TE substitute for Zr4+, such that Σ = Zr + Hf + Sc + Y + Nb + 
Ta + REE = 497,646 parts per million (ppm). The results from the 
analyses are presented in table S2. Procedural blanks show no sig-
nificant laboratory TE contamination for the elements of interest. 
Repeat analyses of the Zr/Hf ratio in our Zr/Hf standard solution 
give a weighted mean value of 50.53  ±  0.29 (2; mean square 
weighted deviation, 0.30), within ~1% of the reference value of 50. 
Repeat runs of the Plešovice zircon solution are highly reproducible 
for REE heavier than Nd (fig. S1), with one outlier, and provide 
confidence in our reproducibility of natural zircon TE concentrations.

40Ar/39Ar thermochronology
Twenty-nine 40Ar/39Ar incremental heating experiments were con-
ducted on amphibole, biotite, and orthoclase from the RBH plutonic 
complex along with eight hornfels wallrock samples (groundmass 
and plagioclase) in the WiscAr Laboratory at the University of 
Wisconsin-Madison. Mineral and groundmass separates were iso-
lated by crushing, sieving from 180 to 500 m, magnetic sorting, 
density separation using methylene iodide, and then hand-picking 
under a binocular microscope to remove altered fractions. The 
purified separates were wrapped in aluminum foil, placed in 2.5-cm 
aluminum disks, and irradiated along with the 28.201-Ma Fish 
Canyon sanidine standard (75) at the Oregon State University 
TRIGA Reactor in the Cadmium-Lined in-Core Irradiation Tube 
(CLICIT). Approximately 5 to 20 mg of each separate was placed 
in either a 3 mm by 20 mm trough or a 2 mm by 2 mm well within a 
copper planchette and incrementally heated with a 25-W CO2 laser 
following the procedures by Jicha and Brown (76). Gas was analyzed 
using a MAP 215-50 mass spectrometer. 40Ar/39Ar dates (table S3) 
are calculated using the decay constants of Min et al. (77), and ana-
lytical uncertainties, including J contributions, are reported at 2. 
Corrections for radioactive decay of 39Ar and 37Ar were made using 
the decay constants of Stoenner et  al. (78). The atmospheric 
40Ar/36Ar ratio of 298.56 ± 0.31 is by Lee et al. (79), and interfering 
isotope production ratios are by Jicha and Brown (76) and Renne 
et  al. (80). Each 40Ar/39Ar experiment yields an isochron with an 
atmospheric intercept; thus, we discuss and interpret the plateau 
dates (table S3). Uncertainties in the decay constants are negligible 
in this particular case for examining cooling rates through compari-
son with the U-Pb data. Data reduction was performed using 
ArArCALC software (81). The bulk of the 40Ar/39Ar incremental 
heating experiments on minerals within RBH rocks exhibit well- 
defined concordant age spectra comparable to volcanic experiments 
as a result of rapid cooling. In some instances, initial low-temperature 
steps display younger apparent ages typical of argon loss and/or 
slightly older apparent ages due to either excess argon or 39Ar recoil 
effects (45). In both cases, these steps are excluded from concordant 
plateaus within age spectra that display atmospheric intercepts in 
isochron plots. Some hornfels samples yield saddle-shaped spectra 
with older apparent ages at the high- and low-temperature steps with 
no clear plateau age (44), while others form concordant plateaus. The 
majority of the hornfels experiments display older steps (~17 to 9 Ma) 
toward the high- temperature end of experiments (table S3). These 
older tails in apparent age approach the inferred age of the Eocene to 
Miocene volcanic protoliths (59). Hence, the lower bounds of these 
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“saddle” spectra are plotted in Fig. 1B as an estimate of the timing of 
protolith resetting, but they are not considered plateau dates.

Numerical modeling
We use a 3D finite-volume thermal model to examine the residence 
time of melt in the RBH system. This model builds upon previous 
models that have examined response of the crust to the flux of 
basaltic magma over long time scales (82, 83), extraction of melt from 
a crystalline residue (41), and the interaction of tectonics and melt 
flux in modifying the thermal state of the upper crust (84). The pre-
vious approaches used 2D geometries, but here, we use a 3D geom-
etry to describe the melt residence time, compositional evolution, 
and extraction for prescribed intrusion scenarios. We use a multi-
scale approach and, over the full domain, compute the enthalpy 
balance, composition, and displacement of intrusions to conserve 
mass in response to successive intrusions. We use a multiscale model-
ing approach to make the computation tractable. In the macroscale 
model, we specify that the sum of melt and crystal volume fractions 
is equal to 1 (Eq. 1) and solve the conservation of mass and energy 
(Eqs. 2 and 3), respectively

   ∑ k        k   = 1  (1)

    ∂ ─ ∂ t  (   k      k   ) +    ∂ ─ ∂  x  i  
   (   k      k      ̄  u   i   ) =  R  k    (2)

      k      k    c  k   [     ∂  ̄  T   ─ ∂ t   +    ̄  u   i     ∂  ̄  T   ─ ∂  x  i  
   ]   = −   

∂  ̄  q  
 ─ ∂  x  i  
   +    k    R  k   L   (3)

Here,  denotes volume fraction,  denotes density, u denotes 
velocity terms, q denotes heat flux, R are mass exchange terms asso-
ciated with phase change, and L is latent heat. The k subscripts denote 
the distinct phases, and the i subscripts denote orthogonal directions 
(i = 1, 2, and 3 in these 3D simulations). The overbar denotes spa-
tially averaged quantities over a simulated grid cell. We note that, in 
this context,     ̄  u   i  ,  the average velocity, is solely implemented to dis-
place the crust and intrusions to accommodate successive intrusions 
(84). There is some uncertainty in the accommodation mechanism, 
and for the purposes of these calculations, we assume that the intru-
sions are accommodated by crustal shortening resulting in vertical 
translation (35).

To determine the sensible and latent enthalpy balance during 
melting and crystallization and mass partitioning during phase change 
(R terms in Eqs. 2 and 3), we use the rhyolite-MELTS software (49) 
and have a proxy composition for the surrounding crust and all in-
trusions based on specified major oxide composition. In this way, 
we can associate composition and phase information to each location 
in the entire computational volume similar to the approach used by 
Dufek and Bachmann (41). During crystallization, the Rk value for 
the magma phase would be positive and have an equal but opposite 
complementary term in the crystal phase equation. While this 
approach admits the possibility of examining kinetics in crystalliza-
tion, here, we use rhyolite-MELTS calculations to determine the ap-
propriate mass exchange and set the rates such that, over each time 
step, we maintain equilibrium. Likewise, the latent heat terms are 
derived from the MELTS calculations for self-consistency. We use a 
temperature-dependent thermal conductivity of average continental 
crust as determined by Whittington et al. (85).

The large overall computational volume in these calculations 
(40 km by 40 km by 60 km) makes the detailed examination of mixing 

of crustal and intrusion melts prohibitive, and hence, we have neglected 
this mixing here. For these conditions, post facto examination of the 
simulations found minimal upper crustal melting (<5% total volume 
of all melts in the simulations) at the margins of the intrusions, in line 
with isotopic evidence that suggests that the absence of radiogenic 
crustal melting contributed to the composition evolution of these 
melts (10). This enabled an optimized scheme for tracking the com-
positional proxies in the simulation domain.

As the large, 3D computational volume currently precludes re-
solving crystal scale momentum conservation, we have adopted a 
one-way coupled approach to examine a proxy for melt extraction 
in subgrid scale domains. Here, we use the melt fraction–dependent 
drag relationships (86, 87) used by Dufek and Bachmann (41) pri-
marily developed in multiphase flow engineering applications to 
compute the time-dependent flux of melt and enthalpy. Over each 
time step, a subgrid model is called for each location in the spatial 
domain to compute melt extraction rates. The drag between magma 
and crystals, D, is dependent on the volume fraction of crystals. We 
assume that, above the close packing volume fraction of crystals, the 
single particle drag factor is based on particle Reynolds number us-
ing the Schiller and Naumann correlation, and the total drag factor 
of a collection of particles is given by the correlation of Di Felice to 
account for hindered settling at higher particle volume fraction (86). 
The close packing volume fraction of crystals is unlikely to be a single 
value over the range of shapes, grain sizes, and stress conditions 
experienced, and in these calculations, we use a value of 0.64 ± 0.2, 
where the values are selected randomly in this range for each sub-
grid calculation. For the range of volume fractions of crystals that 
we considered here, we examine only the interplay between melt- 
crystal drag and buoyancy. Here, drag, D, is given by

   D  i   =   
f
 ─  t  c    ( u  m,i   −  u  c,i  )  (4)

Here, f is the total drag correlation

  f =  f  0       m     −   (5)

The single particle drag correlation is given by (87)

   f  0   = 1 + .15   Re  p     .687   (6)

which is appropriate for the relatively limited particle Reynolds numbers 
(Rep) encountered in magmatic flow. The exponent, , is given as

    = 3.7 − 0.65exp [     
−  (  1.5 − log  ( Re  p  )   2 

  ─────────── 2.0   ]     (7)

The crystal’s response time, tc, is

   t  c   =      c     d  c     2  ─ 18    m      (8)

Here, dc refers to the crystal diameter, and m is the melt viscos-
ity (computed on the basis of temperature and composition using 
rhyolite-MELTS). When the volume fraction of crystals exceeds the 
close packing limit, the drag force is given as

   D  i   =      m   ─ K  ( u  m,i   −  u  c,i  )  (9)
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where the permeability, K, is given by the Blake-Karmen-Kozeny 
relationship

  K =       m     3    d  c     2  ─ 
8M(1 −     m     2 )

    (10)

Here, we use a constant M value of 50.
These relationships produce the greatest relative melt-crystal ve-

locities after crystal lockup (41), with little relative motion at very 
low melt fraction (where permeability is low) and at high melt frac-
tion due to the low Stokes number of the crystals in these viscous 
magmas. Physical properties of the melts (such as viscosity) are 
computed using rhyolite-MELTS (49) for the temperature and com-
position in each grid domain. As no spatial information of the 
phases is resolved below the grid scale, we assume that, internally, 
the melt and solid are homogeneous for each subgrid scale calcu-
lation. This is obviously a simplification, and future work should 
focus on evaluating a range of subgrid arrangements. The current 
model does not examine deformation associated with tectonic stresses, 
nor does it resolve crystal clustering or deformation at the small 
scale or other features at the crystal scale such as nonlocal granular 
interactions (88). Hence, the extraction time scales here should be 
viewed as end- members permitted by the enthalpy constraints of 
the problem.

The entire computational volume extends 60 km below the sur-
face (the base of the crust was taken as 50 km in these calculations) 
and 40 km by 40 km in horizontal extent (movies S1 to S5). The 
large-scale model resolution is 100 m in each direction, and simula-
tions are conducted for 1-Ma durations. The initial crust is com-
posed of a layering of metavolcanics and plutons, subvolcanic plutons, 
and basement plutons, respectively, and the inferred density struc-
ture is consistent with seismic profiles from the nearby Laguna del 
Maule volcanic field, Chile (47). While there is uncertainty in the 
initial crustal structure, we examined varying this structure in both 
composition and extent, and it had little effect on the results pre-
sented here, as the upper crustal intrusions generated little crustal 
melting. The initial geotherm considered here has a surface heat 
flux of 70 mW/m2 but rises substantially in response to the intru-
sion scenarios. The initial geotherm assumes a representative radio-
genic heat production of ~8.0 × 10−10 W/kg near the surface, and we 
assume thatw the concentration of heat-producing elements 
decreases exponentially in the crust with a characteristic length 
scale of 16 km.

The RB intrusions have a fixed geometry based on the mapped 
extent of these plutons with depths ranging from 6.4 to 3 km using 
the composition of the gabbro (sample RB1604). The Huemul in-
trusion(s) were varied in a series of stochastic simulations with a 
horizontal footprint of 16 km by 5 km. The proxy composition for 
these intrusions was based on Huemul granite (9). Because of un-
certainty in the thickness of the pluton and to evaluate potential 
multi-intrusion formation scenarios, we examined various volumes 
by varying the total thickness of the intrusion package and evaluated 
single intrusion scenarios and protracted intrusion scenarios lasting 
up to 100 ka. As discussed earlier, we also examine a range of close 
packing values and crystal sizes ranging from ~0.001 to 0.005 m. 
Each of these is randomly sampled every time step/location. We con-
ducted a set of 540 separate simulations to evaluate the range of melt 
volumes and extraction rates through time. Using the major oxide 
composition and calculated temperatures, we also evaluated where 
in each cell zircon saturation is first achieved (assuming that Zr is 

only incorporated in zircon) (36) on the basis of the zircon satura-
tion model (table S4) of Schaen et al. (9). Video files capturing tem-
perature and melt evolution over the course of selected simulations 
are provided in the Supplementary Materials (movies S1 to S5).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/21/eabf0604/DC1
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