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INVARIANT SURFACES OF ORDINARY DIFFERENTTIAL EQUATIONS
: WITH AND WITHOUT TIME LAG

Anthony J. Schaeffef

Lawrence Radiation Laboratory
University of California
Berkeley, California
~ April 7, 1967
ABSTRACT
 Consider the system of differential equations
(1) o b(t) =ele(t -r), x(t - ), &

(2) i(t) = AlO(t - v), €] x(t - ¥) + X0(+ - r), x(t - r), el

where r = O when there is no time lag.' A mapping S : R - Rn is an Invariant

" Surface of (1, 2) ifvthe pair W(t), sly(t)]} is a solution of (1, 2) where.

Y(t) is a solution of the equation

(3) 6(s) = 006(s - ¥), sI6(s - )], €,

which must be defined for all time if r > O. In this paper; for € = 0, it is

assumed that 8,(6) =0 is an invariant surface of (1, 2), and it is shown

that under suitable conditioné on ©, A, and X there exists a unique invariant

surface of'(l, 2) near 3, for g small. The essential conditions on 8, A, and
X are that: |

(a) All be differentiable with respect to x and 6;

/

(b) No characteristic roots of A ever be purely imaginary, and A
‘not dépénd_on O if there is time lag;

(¢) X have a small linear term, plus higher order terms, in x.

More general time lag terms are allowed in the paper and a systematic treat-

. ment of differential equations with time lag is given.
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INTRODUCTION

This paper'shafpeqs results of Sacker'[l], Marica [3], Hale [13], and
Diliberto [14] on the existence‘of Invariant Surfaces of a perturbed system
of‘differential equdtions without timé lag. It also ektends these results
to systems with time lag in a much stronger form than was done previously
(Halany.[9, PP 501-509]). The equations are considered in normal (or polar)

form - that is; after a change of variables has been made that maps a known

invariant surface into the zero vector. (The existence of such changes of

variables is assumed here, as in previous works.) The explicit equations

3
considered here are:

(l) ‘ év= 6(9) X, ¥ 2, 5)
(2) k= a(e) x+ X0, %, ¥, 7, €)
(3) v =¢ {B(g) y + ¥(o, x, y; z, €)}

Ne

1

(L)

(ﬁ)'{C(G)'Z + Z(G, X, ¥y 2, 8)})

and the known surface when ¢ = O is given by {x, y, z} = 0.

‘The work is divided into two parts; the first - Chapters I and ITI < is

- devoted to eqpaﬁions without time lag, and the second - Chapters III and IV -

to equations with fime lag. Lemmas and theorems are numbered by chapter and
result so that 1.3 refers to Result 3 of Chapter 1. Corollaries are numbered
with the main resﬁlt number end a corollary number so fhat 1.3.2 is the second
corollary to Result 1.5:?

Chaptér I is a collection of known results stated or derived in notation
consistent with the rest of the paper. Theorem 1.1 gives rate of growth

estimates for solutions of linear homogeneous time dependent equations when

time depéndent estimates are assumed on the eigenvalues. The estimates are

i



given both fop tiﬁé increasing and time'decreasing. These estimates are used
to derive Lemma 1.2 which asserts the existence of a unique bounded solution
to a linear non-homogeneous time dependent equation with a bounded non-
homogeneous term when the eigenvalues are never purely imaginary. This lemma
is fundamentél fo the paper.

Chapter II contains the existence theorems for the first part. The
main resultz, Theorem 2.2, asserté the.existence of unique invariaﬁt surfaces
of the system (1-4) for small € # O. We assume that A, B, C, @, X, Y, and Z
are continuously differentiable in 6, x, y, z; A{6), B(6), and C(0) never
have purely imaginary elgenvalues; X, Y, and Z are quadratic in x, y, and z
except for a small linear:terﬁ; © is bounded; and the partial derivatives of
A, B, C, 0, X, ¥, and Z must satisfy certain bounds.

In order to see élearly what our results say and to compare them with
previous results, it is convenient to rewrite the equations (1 - 4) in more

.detailf We let w be the vector obtained by grouping x, y, and z as one; for

example, w = {x, y z}. Then we have

(5) é =03“+ E[C<e) + ®R(e; X, ¥, 2, E)] ]
(6) x = A(e) x + [a,(0) + Dy(6, %, ¥, 2, ) v + ey(6, €)]
(7) 3.’ =€ {B(G) y + [6-2(9) + Dg(e; X, ¥, 2, £) W+ eg(eJ 5)]}

(8) &= (3) (c(o) =+ [a5(0) + Dyle, x, ¥, 2, &) w+ egls, &),

Our assumptions -.in Theorem 2.2 - imply that c(g) is small,
@ﬁe,0,0,0,0)=0;dﬁe)EO,Dﬁe,x,y,z,e)issmﬂleﬁe,gm-»O
as £ >0, for 1 =1, 2, 3.

Previous authors, except Sacker [1], have assumed that c(g) =0 and

Ei(e) = 0, where the bar indicates a mean value given by

®)
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Marice [3] and Hale [13] exhibit a change of varisbles that transférms equations

in their form to our form. ,Sacker imposes no condition on d;(8), but the

surfaces he obtains are not continuous in g - the perturbation parameter -

at € = 0. Simple examples dembnstrate that this loss of continuity cannot be

avolded if d;(e) # 0. (See.Diliberto [14].) Previous results have required

- D;(e, 0, 0, O, O) =0, whlle we only require that they be small. Diliberto

and Marica also allow a cross linear term of ”a E(g) x" in the eqpatlon for y.
In Corollary 2.2.1, we allow more general cross linear terms. The essential
requirement is that the extra linear terms do nét destroy the estlmates on
the eigenvalues of A(e), B(g), and C(8). In this paper, we assume that the
equations are continuously differentiable and dbtain Lipschitz continuous
éurfaces. Dil%berto.and Sacker require at least twiée continuous differenti=-
ability to get continubﬁsly differentiablé-surfaces, while Hale and Marica -
assume Liptschitz equatibns and obtain Lipschitz surfaces. We also include é
singular perturbatioh - l/é - term, which other authors have not.
Differential equations with fime lag are introduced in Chapter III.
These eqﬁations aré treated as functionals from é»Banach space to a FEuclidian
space. Theorem 5.i, Lemma . 3.2, and Theorem 3.3 show existence, uniqueness -
Gronwall's Lemma - and continuous dependency, respectively. Lemma 3.5 glves
rate of growth estimates fof aﬁtonomous linear homogeneous equations,_similar

to Theorem 1.1; and Theorem.5.6 generalizes Lemma 1.2 to equations with time

lag. Theorem 3.1k treats Fréchét differentiation of solutions with respect to

initial conditions. Thé results of Chapter III through Theorem 3.1k - with

the exception of Theorem 3.6 - are extensions of well-known results to the time

~ lag case. They are deri#ed rigorously here, in consistent notation, because

of a lack of a collection of such results in any one place.



The remainder of Chapter III is devoted to the initial value problem
with time lag. Usually, in the time lag case, an initial functibn problem is
treated, and then oniy for time increasing. Theorem 3.16 demonstrates the
éxistence and uniqpéness of a solution to the initial value problem in the
class of functions defined for all time and having a certain maximum exponen‘cialG
rate of growth. The assertion is made under the assumption that the equation
is uniformly Lipschitz, and that the Lipschitz constant times the time lag is
less than l/e. ‘Corollary 3.16.2'shows that this solution is the unique
solution defined for all time if the right hand side of the equaﬁion_is bounded.
Corollary 3.16.3 and Theorem 3.17 show continuity and differentiability of
this solution with respect to the initial wvalue.

Chapter IV extends the results of Chapter IT to equations with time lag.
Here it is required that the linear part of (2 - 4) - A, B, and C - be inde-
pendent of g, but the other'assumptions are essentially the same. Our result
isbmuch stronger than the few previous reéultsj for-example, Halany [95
)] 501-509]. Halany considers only a scaler normal - x - perturbation term,
does not allow time lag in the @ vafiable, allows lag of one fixed amount,
and requires uniform asymptotic stabiiity for the linear portion of the x
équation. We, “as before, allow normal, degenerate, and singular perturbation
terms, and all may be vectors. We also allow time lag in 9, and the lag depends
on the solution over an entire interval. We assume that the characteristic
roots of the linear portioné - A, B, and C - never be purely imaginary.

Halany's surfaces are definéd from the real line into a Banach space of
continuous funcfions,vwhile.ours are defined from a Euclidian space to a
‘Euclidiean space. Wé,have to require that the surfaces be defined for all time. 4
This is not a severe resfriction, in particular if the equations are periodic.

In applications, the surfaces one is usgally interested in are defined

naturally for all time.
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'I. PRELIMINARIES IN ORDINARY DIFFERENTTAL EQUATTONS

'This chapter is devoted to deriving and'stating'results that will be

needed in the second chapter. These results are collected here to avoid
interrupting later broofs,

Notation: If x and y are.bomplex n-=vectors and A is a complex' n x n

. ) ‘ : n T )
'~ matrix, then we:will use the notation: x, y e‘Cn; (x, y) = i§i X3 Vi for

S . 1
the standard ‘inner- product; ]xl = {x, x)%, for the norm of x; and

||l =‘W Vs;po .LféL, fpr»thévﬁatrix norm.
.l 2l v |

!
A

The condition in the following lemma 1s used by Sacker [1], which
~ stimulated this lemms. Part of the lemma is stated and proven by Hartmsn

(2, pp. 56, 561.

Temma 1.1: Let A(t) be a complex n x n matrix, continuous for t ¢ £ =

[ Blc RL. Assume  that Ki(t)iis continuous and

A

(1) Re((A(t) x, x)}  NONES

tel, xe C.

iV

(2) . Relda() x, 0] 2 ap(t) |x]?

Let J(t, t,) be the fundamental matrix associated with A(t). Then

(3) HJ(t,'td)U s expl é# A(T) ar) o, o s t, st sp
: . (o] .
(%) l3(t, t ) z expl ét A (7)) arl , astst sp
, Lty |
L a % -
(5) o HJ(t; ﬁo)H < expl 40 M(T) @], astst sp
- (6) 13(t, to)ll 2 expl é r(T)  ar] , oSty stsp
. S 0 .

Remark: By the fundamental matrix associated with A(t), we mean the

matrix solution J(t, t,) of

‘x(t) = A(t) x(+)

&)

;/



that satisfies J(tg, t,) = I, where I is the identity matrix.

Proof: BEstimates (3) and (5) follow directly from Hartman [2, p. 55],

while (4) end gé):follow from (3) and (5) by the argument below given only

~ for (4). We start by noting that

3(t, T) = 3%, to) o Hte, T) - for t, T, to€ £,

ey o ‘ . _ ,
and ”B” z HB';” if B'is an invertable matrix. Thus we have -

3"ty t) = J(t, t,), and hence,

la=3 g, ) = llate, sl s expl [ (7) acl, s58 58
: - e}
Thus we have
13, 0 2 3 X(tg, 0= (e, £)I75
-z expl- 4 a(T) artl ;) L A=tostsp
. (o 20 . : .

Inferchanging the role of t and.to gives (4).

Q.E.D.

‘The following lemms is essentially due to Marica [3, p. 8].

Lemms 1.2: -Let A(t) be a continuous complex n x n matrix defined for

.

811 t € R and satisfyﬁv' - . | (

; (7) Re{{A(t) x, x>}‘§.k:hX[2 . for te R, xe C,

for some A < O. Assume that f(t) is defined for all t € R into R™ and

|£(%)] = K. Then there exists a unique bounded solution, x°(t), of |

(8 i) = A (e 2(8),

and x°(t) satisfies the equation



oy o x°<.t)_ - fow 3, o+ ©) (¢ + 1) »‘“’

where J(t,vtd)Ais the fundamental matrlx associated with A(t)

Proof: The general solution of (8) is

1(10‘) x(t) = J{t, o)'-:-iﬁco + ft J’_.l('f, 0) £(t) ar}.

The integrals

'(11) o afo J-'1<¢,- o>l £(t) dr,
(12) - (%, 0) ftw J‘i(r,-,o) f(¢>'q¢ - ft' s, 1) £(7) ar.

exist and aré uniformly bounded since -

l2(6)] s x5 lavi(z, o)l = llato, <) s e'”,_j s 0;
wmd . l3ts, 0) o 3°ke, o) = lats, T = MEF), ¢ s h,

Where the last two estimates follow from (7) and Lemma, 1.1. Thus, (10) can

~ be written as

x(t) = (¢, o) (x, f --r?(-n 0) £(r) ar} + [i I(t, v) £(v) ar.

The term inside the brackets is a constant and the second term is bounded, so

~ for x(t) to ve bounded,-wefmust have
- o —l v : '\:’ .
X;) = ._/_‘:.00 »J (T: O) f(T) dt, - o Ly

since HJ t O)H —® as t — -0, Thus Xo’ and hence xo(t),are'ﬁniqpely de=

termined and x (t) satisfies (9).

<

Q:E.D.

@ -



Corollary 1.2.1: If in Lemma 1.2 the condition (7) is replaced by
‘Re{(A(t) x, x)} 2z ) | x| for te€ R, xe C8

~for some \.> O, then the'same'conclﬁsion holds, but with x°(t) now given by
. ) o >v m . K .
. . x%(t) = - J(t, t +7) £(t + 7) dr.
: - ' o T
. Proof: ‘In (11) and (12), integrate to + » rather than - » and proceed
aé before. '

-Q.E.D. L o I

Corollary l}2.2:v Let A(t) be a continuous complex n x n matrix defined

on R.  Assume that

A8 0 g
A(t)'——' | . s
o a%)

where Al(t) and Ax(t) satisfy

o lel?

A

Re{QAl(t) £, £))

x Je]

IV

Re((a (%) &, &)

for all t € R and some A > 0. Assume also that X [t, x] is‘defined, bounded,
continuous in t, and.Lipshitz in x for t € R, x € C%, |x| £ p, into C™. Then.

any bounded solution, x°(t), of the equation

_vi(t) = A(t) x (t) + X [t, x(t)]

: satisfieév S : - L |
o ) . . B

. f _Jl(t, t o+ T) X [t + 1, x°(t +7)] dr
Xg(t) =. | o : ’ o ' .
: 4‘£ : Jé(t, t o+ T) 'Xé [+ +1, x°(t + T)J ar
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" where J is the fundamental matrlx as5001at10n with A and X = in, Xé}
Lemms, 1. 3 (Gronwall s lemma) Let N(t) be a real contlnuous function
and. u(t) a non-negative continuous function on the interval [a,/b]. If a

~ continuous function y(t) satisfies

7(8) % 2(e) + [7 u(s) w(s) s
fer e =t S.b, then:onthe’same'interval
o g g ’ :
y(t) = Nt) + [ Ns) u(s) exol f w(r) avl as.
a S .

In particﬁlar,‘if x(t) E‘X is a constant,
y(t) K exp! f uw(s) asl.

See 00p§eiv[h, p. 19] for a proof.
Notatibn'. Let g(x) be a differentisble functlon from Rn into R
Then D g(x ) will denote the Jacobian matrix [Bg/ax] evalunted at Xo
| Lemma 1. k4: (leferentlablllty of Solutions) Let x be an n-vector,
y an m-vector, and assume that 7(t, x, v), Dxf(t, X, v), and.Dyf(t, X, y>ll
are defined and continuous on ali»of R x R® x R% Let X(t, t,, ¢, y) denote

the solution of
x(t) = £lt, x(t), y]

such that X(t,, ty, ¢, y) = ¢. Then the derivatives Dy X(t, t,, ¢, y) and
Dy X(t, tg, ¢, V) exist_for all t for which X(t, t5, ¢, y) exists. Also,

Dy X(t, to, @, y) satisfies the metrix equation.

¢

=DX hil [t; X<t) to; o, y)) y] ° Z, v S 1

where D, X(tg, tos @, ¥y) = 1; and Dy X(t, to ) y) satisfies
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a 'Z."= .D.x”fitt;'_;x(txvt‘o) '¢) y)) y] °© Z + Dy- f[t) X(tﬁ)» _to; ¢,’ Y),; .V] R

where Dy X(tO; toy ¢1 Y) = O?

" The prbof:follows'from Hartman [2, pp..95-98].



~ II. INVARIANT SURFACES OF ORDINARY DIFFERENTIAL EQUATIONS

We now investigate systems of differential equations Sf the form.

W 6(s) =ele(s) (8, ¢

() o) = ale(e), el o x(s) + x[6(t), (%), e,

where 6 andl®vare-m-vect5fs; x and X are n-vectors; and ©, A, X are defiﬁed

for all g € Rm,-x é Rn, [xl;é a,llaklg B. We will assume thét 9,‘A, and X~

aré at least continuously.diffefentiable in 6 and_x, and continuous in g
Definition: A Lipschitz continuous function S(g) from R™ into R is

¢alled an Invariant Surface of the system (1, 2) if for fixed e,

8(t) = (%, o°, 8)

ﬂp) sly(t, 6°, 8)]
is a solution of (;,.é),:whefe ¥(t, 8°, S) is the solution of -
() 5(+) =0(6(t), sle(t)], e,

(%) w0, ¢°, 8) =¢°

We shall show that under suitable conditions on ©, A, and'X, there
exists en invariant surface of (1, 2), unique in some class of functiong for

lsl small but non-zéro. In proving this result, we will:

1. Derive an integralfequation that an invariant surface must
satisfy.
2. Use thils integral equation to define a mapping whose fixed

points are invariant surfaces.

3. Show that the above mapping is a contraction.

o3

-
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' .‘The method originatéd with Marice [3]. Step 1 is done in Lemma 2.1, ahd
Steps 2 and 3 are done in Theorem 2.2.

Lemma.2.1l: Given the system (1, 2), assume  A( 6, &) can be written

,Al(e’ ) .0

Y '_Ag(é: e)

and that there exists a A > O such that

;
1
m
>’_
28
D

(5) _ | e <Al(9) 8) X1 X:,_) .S‘

m
>
i

If for some g # 0, thére‘ exists an invariant surface S(8) of (1, 2),

5(8) = (81(6), 8,(6)), then
s(0) = [0 5MT, 6, ¥) 0 X W, 6, 8), S (T, 6, 8], o) ar

8,(0) =-..'f°°v"uJ;l(r, 0, ¥) o X, W(t, 6, 8), 8 Y1, 6, 8)], e @,

o]
where ¥(1, 6°, S) Saj:isvfiés (3, 4), and Ji('t, 6, ¥) is the :E;undainental matrix
asséciated with:Ai (%, o, S), €l éuch that J(0, @, ¥) = I.

Remark: A'split‘ting of X, X, and S into two components corréspondent
to the assumed splitting 6f A is used implicitly in this lemma. |
| Proof': The proof_wil]: be carried out only in the case when A = A,.
This invblv'es. no loés of 'generality', and the extension to thé general case
will Ee_ clear. To simplify the notation, the subsc'ript "2" will be omitted.

With the simplification, (5) and (6) become

(7) o | . <A(9; E‘) X;"X>!?_8>‘- IXIE.
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Since S(é)“i§ éssﬁmed to exist, ¢(t,ie°, S) is known, and
x(t) = sly(t, 8%, s)] satisfies the equation (2) with o(t) =7y(+t, 6°, s).
By Corollary 1.2.2, it follows thet | |
o ‘w" : : , _ _ ' :
sly(t, 69, 8)1 = -.[) J(t, t+ 1) X (Yt + 7, 6% 8), slu(+ + 1, 8% 8)1, ¢} ar, i
| whefe J‘(t, to) is the fundamenﬁal matrix associated with Aly(t, éo, S), el. -

Fix t and let 9 = ¥(t, 6°, S);, then
' 1//(t.._+ T, .'é‘."., 8) = W[T’ ‘?//(fv', eol, s), sl =w(x, o, Sv),_b_
éince (3) is autoﬁomé?si‘ Thus. .
s(e) = o s, ¢ . ,T);io'x Wiz, o, 8), sli(, e,'sn,a dr.
”We'know that L |

I+ 4_*_ Aly(u, 90) §), el e J(u, t+ 1) du
T '

(8)  a(t+ o, 4+ 7)

il

T+ fc A[w(p, 6, S), el o J(t+ 1, t+ 1) dp..'.‘
o T . '

In this form, the dependence of J on o, T, 8, and ¥ is apparent, so to

emphasize this dépendency, we write

J('t + 0, t+ T) = J(U) T, 6, "//))

and specifically,

J(t) t+T) = J(O) T, 8, ?ﬂ) = J-l(T: O,.G, zp): J-l(fr_: o, W)- ‘

Tt is now clear that J(T, 6, ¥) is the fundamental matrix associated with

AlY(7, o, ¥), el and that J(0, 9, ¥) = I. Thus we obtain

s(e) = =[ N1, 6, ¥) o X W(T, 6, 8), SW(7, 6, 5)], €} ar.



15

This expfession makesisense;for,all 0, independently of any choice of éo'or t.
Q.E.D.

Notation: - Let £(8) be a scaler, vector, or matrix valued function de:
fined for ali 6 € R™ We will use the norm

= ew (e,
R geR™ . :

" where |£(g)] is the absolute value of a SCaler,’dr the Euclidien norm of 2

matrix or veétor;  Also;'we will use the Banach spaces .
Q(pl) = {S:;Rm-ﬁ R™ : HS“ s pl},

" and the subspaces of Q(pi), Q(bl, pp) = {8 € alpy) : DQ S(g) 1is continuous
‘and HD@ SH 2 pé}."

Theorem 2.2: Consider the real system of equations
(9) . o 8(t) =ole(t), x(t], el

(10) ' f"k(t5 = E(s) o {alg(t)] o X(t) + Xﬁ&(t), x(t),-s]},

" where g, © are m-vectors, x and X are n-vectors, and E and A are n X n matrices.
_ Assume that ©, A, X are defined amd bounded for all 6 € R", x € RY,
| x| g'a, IEI s B. Assume also that:

(a) E(e) is the matrix

E(e) = o el 0



()

:(il).f  !

(@

_A(é)_is'the matrix -

Al(e) | 0 : o‘
A(‘el) = 0 Ag(el) o | o
0 0 Aﬁ(e)_] ;o

and thereiexists a N> 0 and matrices Aij(e) (1 =1, 2, 3;

j =1, 2) such that.

| A () 0 S
a(e) = t o Ti=1,2,3
- o 2p(e)

and tne ineqqa1itiés-
o o L
(Ai'l(e) gl’ §l> é_")\- l’;l] o
B | T 1i=1,2,3

. ‘ ‘ 2 . ST

are satisfied for all g € R™.. Also, there exists a conétant

¢y 2 0 such that

o Al 5 <y

log (-, x, o)l = en/2
liog eC+, x, o)l 5 ee,

for'some constant ¢ 2 O.
”X(') X, 8)“ = c3 IXI + CL{_(E)‘ ;
<

”DQ x(-, X) el CBI.I.XI + CL,_(S) _

A

HDG X(')I ?(, E)” 05:

where 0 §_c3 = \/18 and c)(g) =0 as lel - 0.

16

e .
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‘Then there exists a 05°, 01° (p5°), €° (p1°, 0,°) such that far
0 < lel s ¢°

- there exists a unique invariant surface S(@) of (9, lO) in Q(plo) that is

Lipschi‘bz contgnuous with constant -p2'°, and HSH -0 as [| g|| - 0,

Proof: We will, as in Lemma 2.1, assume that the A, temms are not

present; thus (11) becomes
() e s e fel® (1=1,2,5).

Assume that: for some g # 0O, 'pl‘> 0, and p, > 0, there exists an

2

s(e) € Q(bl,'pe) that 1s an invariant surface of the system (9, 10). _Then,

by Lemma 2.1, S(0) satisfies

(3 se) =+ Be) e 5T, 6 9) - X (0, S0, & e,

wheré v(7T) =‘?,0(T', 9, S),satisfies
(1) e(e) =8e(v), ste(t)], &), (0, 8, 8) =6,

and J'E('r, 8, zp),is the fmd@ental mtrix associated with-'q'E(a') 0 Ati//(’r, 6, ¥)]

| such that JE(O,' "9, V) = I. Equation (13) has three terms, corresponding to |

'_ the "1", "e", and;"l/é" in E(e); which will be called the "normal", "degenerate",
and ;’singular" tex;ms,_resf)ec%iv;ly,.when it is necessary to disfinguish them.

If, in the- degenerate- terﬁ_, we make the change of inteératiori variable T — T/ £

and in the singular term the change T — €T, then (13) becomes

(15) 8(6) = -f T, 0,9, &) e X W1, €, SW(T, o)), & ar,

- where
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, , y(t, 6,8 normal
w(t, e) = ¥(%/e, B, S) in the  degenerate  term
CY(et, 0, 8) ' singular o R

.

and J(T, 6, ¥, €) = J(T,»OQ 6, ¥, £) is the fundamental matrix associated with

(16) B T 7Y o o |
Aly(r, &) = 0 a0
| o o 0 Kly(en)]

By (12), we have .if:

(1) o Aaly(a, e, 8, €))%, x) 2 A |

for all g ¢ ﬁm,vnle R, x € R%; thus, by Lémma 1.1, we know -that

(18) " . WfHT;é,W;ENL%“NOrT,G,w,aﬂléed'i Tz 0.

The sup norm is valid hgre, Sinée.(l7) holds uniformly for 6 & 7.

Now, -we defihe a mapping Té on Q(w, ©) from equétion (15) by

(19) 1, 81 (8) = -[ T, 0, ¥, &) » X (7, ), SW(1, )], &} am.

.o -

3

Our procedure is to show fof suitable €5, Py and Po that T8 maps Q(pl, pg).into
itself and is a contraction, Thus T_ will have a unique fixed point in@)(pl)
which clearly-is an invariant surface.

We start by showing Iz sll s o, 1 8] s o, for suitable p end .

]

”TE S” SuPl .go J"_;L(T; 8, ¥, 5) o X {?P(T, 8): S[%U(T:, E)J: e} d'f]

D

00

loXx, -, v, el Il ax.

A
o

From assumption (d), we have
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I = lx €, s, elll 5 e5 sl + eule).
Usiﬁg this and_(18)'yiéids
(20) Iz sll = E:gfpl‘¥ ¢)(e)] }gn M g1 s les o1 + cy(€)I/%,

since ”S” £ py. But c;/x s l/18 by assumption and bu(a) =0 as |g] =0, so

Iz sl = py 1£ Hsu_s Py end gy is small enough that

(21) o _.fch(e) s 17T ™ p1/18, for llel s e,
Now_weishdy that log Tl = 0o 12 l18ll = o1, Iog sl = 0p Tor & suitsble

choice of 0y, Py, and e. Differentiating (19) yields

(22) [9 Ta"s1.(é)_

0g TN, 0, ¥, €) ¢ X W, slyl, &)

S

M, 0, ¥, €) o 0g X (0, SIY], e Dy Yoax

+.

IJ-Tl(T: _ev: v, 8\)'6'Dx X‘W’: S[?l/], g} o .DG S o Dg WJ | v

by the Chain Ruie, where ¥ = (T, e).e To proceed'vwe will need estimtes on |
”DG y(t, )l and HDe J'l(T, 6, ¥, e)ll. We will compute an estimate on
HDQ W(T)H = HDeiw(T, e, S)H (that is, before the change of ihtegration

variable) first. From Lemma 1.4 and (1L4), we obtain

De %U.(T, 9-, S) =
C afvg0 W), s, &) e 0p ¥l)
=T+ [ - o K
B ] k), sly®)], ele 0y sly)]  Dg w()

Thus, taking norms yiélds

Iog 9ol = 1+ £ (g ol = I, el g 8l liog ¥l e,
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| to which we appl-y‘ Gx.'bonwallb's iemr_na to vobtain
log w0l s exp (Lling 6ll + llo el liog sl <3

Putting the asbumed estimates (c) into this yields

hY
O
-
»!

o ¥ # e (D2 ¢ ey o) ),

since ||pg gl = oo i..e.‘b'__ '
'y= Vg +. cp 0o .

Latér we will need ’y >< >\.,‘ s0 .We vreq{;j;re
(e3) . o g,pg.;x/(Bcgv).’, |
aﬁd 't?hen we haye | |
 @M - .». i\7$5V6<M
aﬁd the estirﬁate |
(25) ||59';7#.(T)|| s expley 1) 5 exp(5 & A T/6).

After taking ndrms s the change of integrations variables affects oniy i)elz// in
(22) and most sevérely in the degenerate term. For this term, T — t/e, so (25)

must be replaced by

\

(e6) HDQ TI/(T, ,s)||‘.'§ exp(y 7) = e@(5 A 'r/6'), T2z 0,

This estimate will be used in all terms for notational ease.

. Recall fi‘om (16) that

Now we need to‘estime‘.te HDQ 7=, 6, )

TNz, 6, ¥, &) = J(0, 1, 6, ¥, €), and is the matrix solution of

x(t) = Aly(7, €)] x(t)
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“such that J(T, T, 6, ¥, €) = I. Applying Lemma 1.4 to the colums of J, one

. sees that Dg J mustvéétisfy»
(27) g:ft' , [DG 'J(t) T, G:W, 8)] = A["//(t: o, S‘; 8)1 ° DQ J(t: T, €, v, 8) |
+ {DQ ij(t:‘ e, s, .E).]‘”°‘De 2//(’0, e, s, 8)} ° J(t) T, 0, 7!{; 8))

and that Dg J(7, T, 9, ¥, €) = 0.
The notation used here requires caution becausevmahy Subscripts are concealed
in it. Dg A(+) and Dg J(+) are linear maps from B into the m x m matrices..
Thus Dy A(+) ° Dg w() is still a linearlﬁap from R* into the n x n matrices.
The resulting matrix is then multiplied by J(-).

‘Equation (27) is & linear nonfhomogenoﬁéadifferentia; equation and its
solution is

DQ J(t: T, 0, Y, 5) =

f 'J(t: g, 8, ¥, €>' OYQG A[w;(o" 8)] ° DG 'ﬁl’(c, E) °'-J(°': T, 8, Y, €) do

by the standard method of solving such equations. Taking norms (sup over 6),
we obtain

log at, T, «, ¥, €l =

/7

= | ot oy 5 95 el llog Al llog w(o, el l3(o, T, «5 ¥, el aol,
ST S : _ .
and when t = 0 and T2 O,

(28) gy 7 Xw, - v, el = log 30, v, -, ¥, el =

s log &l S 1360, o, - v, el llog w(a, )l I3(a, %, -5 9, ol ao.

By Lemma 1.1 and (17) (see the remarks around (18)), we have that
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(29) e, 1, -, ¥, el sTex Mo - 1), for oS T.
Putting this, (26), and the estimate log Al = ¢y assumed in (b)_ihﬁo (28) yields
! . . . . . T I‘ . .. .

(30) llog Iz, -, ¥, )l = ¢y é e™No e'?’.’r,e)“(c"’r> do S ¢ e M 1)yl

We now take norms‘iﬁ (22) and then'use estimates (18); (26), end (30)
to obtain | | |
“ANTy YT )
| o e e (e - 1) Iy
o . a _ |
og = / L
, 3_5  J ,t 1o

. . , T '
e lioy Xl lIog sl &

This integral converges. since Y s 5\/6 <\ (see 24). Thus

[\

Iog 7, 8l

A

(2 1 + llog 1 + Ing sl lo, A/0x - )

A

Sc : . ' :
_'&j% [y o5 + cu(s)]’+ ei c3‘+ cy(e) +.Dg C3}/{K - vy

A

{(l.-"' cl/)\") [pl 05 + C)_,_(S)] + 02.05} {6/>\'}’

by (24) and assumptions (d). But. in (d) we also assumed that c5/x s 7/18,

_ 0
- 2
so that 6 pp c3/x s =5 . Also, if

(31) S ppsa pg/[;8 ez(N + cy)]
- and g4 1s small enough,that

(32) - eyle) s2% op/[18(n + ep)] for |el = e,

:hthen for ||g||l = Py ”89 sl| S”pg s A/(3 02)? we have

A

v |
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: P, .
log 2 sllg =+ == py.

_Thus we have shown that, if (31) and (25) hold and ls] is small enough thén ,
T maps Q(pl, p2) into- itself. '

Continuing on our outlined procedure, we now have to show for suitable
' 'P1, Po, € that Té is a contraction. To this end, let Py and pp satisfy (31)
end (23) and let sl, s e -2(pq, pg)'{ Let ¢(t, €) = ¢*(t, 6, 5%, €) be the
solution of (1L) with S =‘si, and J,(t, €) = J;(t, 9, wi; g) be the fundsmental
matrix associated with .‘rA[YPi(t, e)]. We wisH to estimate HTE Sl_ - T, 52H .

From (19), it follows that
[z, st1(6) - [z, 21(6) -
f 7z, @) ¢ x M, €, SN, o), o

3T e X G, €), IR, e, e

{J]'_i(T;_e) - Y, ) o X, s, e
+ M, e) e xlyt, s, el - X0F, steh), el
= : drt.
' + Jél('r; g) o {X[?Pe; Sl(wl), el - X[wgy sl(d/z)) el}
+ 355, €) o (xv2, SY9R), el - xR, 2(92), el
: , /
Thus, ‘ |
- (33) Iz, st -z, ) =
3=, &) - 37 1(% el lIxl ]
+ oz, el use Xl I, ) - v, ol L,
’ T.

+ oz, el llo, Al ling st lwi(r, e) - 2(7, s)ll

+ lazX(s, o)l o, A s - 8°

\
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Now we have to estlmate ||?// ('r, 8) -, (T, 8)” and HJ‘l (T, 6) - J'Ql('r, e,)H,

.;,As before, we will make the estlmate on 30 before the change of variables, uhen :
; . 7 ‘ . :

ivmake the change and use: the worst case estimate.. By (lh) .

nwt 8, s)-zv(t o, s2

] ﬁ o o, Sl[” <T’]’ 900 <T> s [w (T)], P - e
.'5{, .(“% ol + ”D o HDQ sll} Hw () - el + o, @n ns .;-sll a@’
lo, ol usl 2nt+ ||sc>6 @n I, @n uoe lll}fllz// <w> S m” i

;-

acHS»%M(Wﬁ+%2NfWﬁ%¢@WM

IV\-

4 nA'

'Applylng Gronwall s lemma and recalllng the def:.nition of Y (before (23)), we

'obtaln '

o v'u{al'(;)’“- ¢?<§>Au;§ oy lIst ":..s,"‘n:_ re@f_"?.-v ii/«x‘!_’ . 0.

After making ;the':change-.\ .of?variable.s,‘ this ,;bec‘ofnes L |
UM I @i, ol 5 o I8t - L aly, x0
o o o5k, 6 - el

A3(t, ;E)'% Jl(t_,jv.r; 0, 2/,1,_ 'e,)".-.:'Je(.‘q,) 'r, 6;_ 7,1/2, fa)'.:\-'_ L
: .lihen AJ (t ,:. T) sa'-tivs;‘q‘.es: the lin}ea‘r non-homo.genoue ‘ma.tri'x differen;b;ai ..equatior.l'

TG, ) e s w6, )

f'j‘.‘.-;'A{wl(,t', e)] o AX(Y, T")‘-.a-‘AA;(-E)‘; J2(£, T, 0,93, €),



'ﬁ*={;,;wit5;thefinitia;'cohaiéién!AJ<T; T) =0, vhere

; U?$§_Thﬁs, by*ﬁékihg norms gndISettihg‘t_='O,fwé'obtainf:.,

.‘:'Q,Wéfhéve_by £he mean value‘theorémﬂthat j'?‘“EVJ"iV

e laxto, )l

s 4 fﬁhere‘(34)'and-(5)'havé}been uséd..:Clearl&7lwefhavé: SREN

AA(t) A[¢l<t g) ;;fAtwe{t{_%)}! ,f'

. The so%utionléfrfhislequatidn‘is ;

A5ty 1) = [ 3(%, 0, 8, ¥h, ) o 80) © Ip(o, T, 0,97 &) doe

nAJ<o ol - nJ¢<o T,';;;¢l; é)f;esg<b,f%; . ¢ Jelle

. éfo HJ;L(O o,v S w ) a)H HAA(G)H HJQ(G: 'r, )w:e)“d“ e

”AA(O')” “DQ A” “'l// (GJ 5) - "// (0) 8)”

" end thus'g ‘-, _f ~j,'*

n: 1(1, - o = asto, .

 Finally, wé“také*<3u>'ana (35), tactor out |[s* - 57| and e to ovtain -
“ ”51 s [ e Rt ar

HT sl -T, s

o in;(33);thefe; hVﬁﬁ V‘”
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] el @y ){
() =+ calling | + o, sl g 1) [V - 2)fy)
“ lloy ]

. T _ e
A1l we have to show now is I' = [ e (1) a4t < 1.
ST \ o ' o

T ’
J e MNUR(T) ar =
o o

|
1]

e I B E - RIAR - o, xll/;,x

"

+ cp [Hﬂe‘lkll HD S“ IIDQ x| I = - xl/v |

€1 °2“[plkc3 +7c“(8)]/[XQ<K;T,V)JJ+ch/x'\”

Mmoo

+02 [pl' ‘.c5v.+ ou(s) + Po 03]/ [7\.0\. -:"Y.)]‘

' fNow-selecﬁ pi;:pe, an&_éé,such that

o - v o 5 . )

g 6 | ) . . ) < )\.()\."Y) ,
(3 ) S o pl 02, 'C3 <C]_ + )\) X
G pps Moy

DU S : 4.02 ez

ey o | ' MOey)

(58) . : i CL(E) =Y N CE(Cl - )\.) | ‘fOI' IEI s EO.
Then;' s % + % % + %g < 1.

Tt becomes apparent by looking at (21), (23) (31), .(32), (36),_(57),

| and (38) that there exists a p2 )y Py (p2 °) and’ e’ (Pl 5 92 ) such that for

 0 < lgl = (pl , p2 ) there exists a unlque fixed point S(G) of T, in O(pl ),

which in turh is an iﬁvariant surface of (9 10). It is clear that S(6) 1 ‘

Llpschltz coqtlnuous with constant p2 . Also, by itefatiﬁg'(eo)? Qe.see that |
mb“ < 18 ¢)(e) )

17 &

»



&

';f327?

sotnat gl 0 as.|el ol

[

(39 ‘_ | é(’ttv)-

| "‘:-‘,i..(“@’) s g X<’°)

) ,».'_-,'_‘11"'1:'-_1' 5(.) 3l 122 0 5.) H 5 0,
Cle) Iz lies, lH =
eﬂfkesume e;soithet chsat;efies ;

e e,

end P the matrix =

“Q.E.D.

ST

’vT;ffcoroliéry 2.1 Coheider the sysﬁemfv..t

e-®t9(ﬁ§;ixzt}; el

'E'& &« ((ate()) + ;B'rem x(2) -;{xt?fm x(5), sji -

\,where @ ”E, A and X arekas in Theorem 2 2. Let P be a non-singular matrix ,:. |
g ;that commutes with A(G) for all 0. Assume that B(G) is contlnuously dlf- o

'ferentlable in B™ and .ﬁf

S

. where ¢, is the constant in assumption (d) op Theorem 2. 2.; ‘Then the con-

3 ST TN

'e'clusions of Theorem 2. 2 hold for the system (59, ho)

' Remark: The condltlon of this corollary is best motivated by‘oonsidefing. .

an example.‘ Let B(Q) be the matrlx

R (o. .' eBl( ) (e)l
ey - o 5<9>

o 0 e o ﬁf~je'f,f‘ o

: }
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[hz 0 o —\
B ! o W o

LO o '.HB.IJ”

J:where thevblocking is theiseme as in A, It is clear that P commutes with A(e)
_ » 3
e

for e11 0, Then [P B(-) Bl s uv = o, ll7l = % HP =B, for

e some.constant'b.> Condition (L3) becomes
o+ o 52/,

i:.which can be satisfied'by some. yu if c3 =X 3/[5&(27‘1)) ]

Proof': If an invafient surface S(G) exists, then as’ in (15) it satisfies |

S0y = -f 7Y, o, 2 o - wwu, e, swn,o ) ,‘ Bl dT

“where W(6, X, g) =iB(9)ﬂx'+ XKG :x, e) and J and.w are as before ‘jteé m g

o Q(G) = p-1. S(G) Then, since by assumption P commutes with A, P must also

o commute With J, 80 that

(o) - £ Jf%(r{je; v, ‘e> ¥l ;«wc,, <), ® s, o), & aT e

L Thus, if we can show that P l o W satisfies condition (d) on X imposed in
. Theorem 2. 2, then the existence of an invariant surface Q(G) w1ll follow..;w”
.i; But s(8) = P Q(G), 50 thatJthe existence of Q implies the existence of §.

| since P is assumed non-singular. We show only the first gert of (d); the -

Jﬁwrest follows in the same manner. Let x = P w, then

|21 o wle, w, &)l

= IlP‘l 5(-) =l le e e, Py, el
‘salwl +f3[c3 leI +°l+<€)] | .
= [a+ Bvc ) le + B cy(e)

s <x/18> lwl + B ey(e).

Q.E.D.
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.Ip Theorem 2.2;‘i£ waé assumed that X contained a small, but 6tﬁerwise
.arbitrar&, linear term5  Corolleary é.Q.l'treats the case where X has not
'lnecessarily émall cross'linear terms that do not change the eigenvélues of
A(0) vy much. X'may still contain & small additionel linear term. The

following corollary treats the case when the degenerate term is absent.

Corollary 2.2.2: If in Theorem 2.2,
| ERE: |
E( E) = ’ L 1 ;

!
—

R ey |
LA !Al( - > | ,

then conditiohv(c)fméy‘bé weakened to

i

al

I
<
o

ety log (e, x, e)ll =

A
0

o e, % o

with the same cbnciusion holding.
Proof: After the .change of integration varisble made in going from (13)

to (15), the only effect of the degenerate term is in ¥(T, €) and this effect

It

is noticed only in the estimates on |[Dg ¥(t, &)land llyX(7, €) - WE(T,‘e)
- the degenerate term is absent, then the '"worst case" term becomes the normal

term (that is, in w(T)). With the new assumptions, these are

log w(o)ll 5 explvye),

. 2 oyt
G WA GO NS (=S [ LA VA
v' which’are precisely the estimates (26) and (34) that were actually used in

- the proof of Theorem 2.2. The proof of this corollary then proceeds as in

" Theorem 2.2, .
(R Q.E.D.
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'differential equations with time lag. The exhaustiveness is necessary becauset

'.;p. 139])

We will denote an element of Bn with a subscrint N (that7is,,¢r), end |

| III. PRELIMINARIES IN EQUATIONS WITH TIME LAG -

. This_chapter:will be‘devoted'to'a fairly exhaustive'studv of,ordinary

f.of the relative lack of general ba51c theorems proven rlgorously Although
most of the material presented is known -- well known in the case without timeﬂf

"f‘ilag -- some of the materlal appears to be new.: ;v”

. We will treat these equations as functlonals from a Banach snace to &

";Euclldlan.space The approach ‘appears to have orlglnated with Krasovsh11 [5]

zalthough this. work has been 1nfluenced more by Hale [6 7] Hale and Perello-

"1thls work has, been taken from Dleudonne (11]:

- [8], Halany 91, and Oguztorell [10] The functional analy51s necessary for. "lLLJ

Deflnitlon: A functlon f(x) from - [-r, Oj into R is called avRegula+ed ﬂ;ffl

© Function if thevupper 1imit, £(n+) = 11mx+ f(u), ex1sts for n e [- r,vO) and

v_'if and only if f is the unlform limit of step functions, ) The space of all
‘bounded regulated functions from [-r, 0] into Rn is & Banach space under the

" norm, [l£ll = sy o lf(k)l, and will be denoted by B}. (Dieudomné (11, .

. er =

P

“use A as the argument in [ -7, O] Let x(T) be deflned at least on [t - r, t]

‘into R®; then we_will deflne an element xp(t) € B? vy

xp(4) = Ge(t, A) = x(t+2), o s A0

}.The function xr(t)sislthe segment of x(7T) obtained by letting T range from_-
t = r to t.  Let X(t, ¢.) be a mapping from a subset of R x E. into R". Thus,
| for fixed t, X(t, ¢,.) is a functional. A differential equation with time lag

_ will then be written

"-:the lower limit £(n-) = RECW £(n), exists for \ e (-r,‘n (This is true o

e e W %
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) Hm - (e,

where x(t) = hllnb+i [x(t + h) - x(t)] denotes the right-hand derivative of x

at t.  Initial conditions for (1) will be imposed as
r)

| (2) .: : xr(O) =¢2;  that is,_ x(\) = @g(x),‘;r < N\ S o.. -

A function X(t ¢..) will be called continuous (in voth arguments) at

(t°, ¢°) 1f, given € > 0, there exists 81, 5, > O such that
(s, ¢.) f_x(t°, po)l < e

whenever |t - 0] < 8, and ll¢,, - 2 < By, X(t, ¢,) will be called Lipschitz

in ¢r 1T there exists a constant L such fhat,

1 2y] 1
|x(t, 67) - X5, 00)] 5 1 o,

Existence, Uni@uéness, and Continuous Dependence Theorems

Thebrem'3;l: (Existence énd'Uniquenéss)

Let H = [to, to + a] X (¢ : H¢r ‘ OH £ b} be a set in R X BT, Wherc
P2An) is a constant ‘function. Let X(t, ¢,) be a continuous function from H.
into R%. Assume that X(t, ¢,) is wniformly Lipschitz in ¢, with constent L,

 and ﬁniformly bounded by M in H. Then for any ¥2 such that er - ¢°H < /2,
. there exists an d(wg), O<as 8 such that | |

G i) =, xr<t>1,'} (20 =92

R e e e e e e - .

" has the unidue régulated solution. in [tov- r, to + a], which is continuous for
Ttz ot
Proof: We assume without loss that t, = 0. Define the Benach speces

& vy -
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N L (t) regulated for & e [t ~'r, ty* ol f
e () o o

'*_With the sup norm, and deflne a map T from Ca into the space of regulated
(t) ,' RN o . Trsts0 L L

]'(t5j= B . :
(o)+ f x[a,u(o)] dor ",:-v__O s‘tsa;/ o

/.._._/\__.__\:

" The 1ntegral here is well defined because X[t ur( )] is regulated if X(t, ¢ )
i'lS continuous ‘and u(t) is-regulated ;(See Dieudonné [ll Section 8 7] for a A
. discussion of integrals of regulated functions ) It is clear that [Tu] ( )

is defined and regulated for -r = t s . a and- continuous for 0= 'a.”.a{We

. show that for O <o mn (e, /eM} T s s P, Clearly [Tu]r(o) = z[/g, 'slo" .
211 we need to show is _that' [ [Tu (t) . <z>°l| sbfor0stso. Bt L .|

] (6 - 02l < swp IETu (t * x) - ¢r<x)!
-rs A0 .

. 8 sup ' - ST LN
A > ‘

|

/

+
>
v
(@]

wm>¢an+f mmgummd‘{

A
o

o ng-§n~- o, Tt
. sup : o -

v

;since ¢g(x) 1s & constant function and |X| =M. Since zsz‘{b/QM;.a};'wef

ST 0 T g oo
Ple o+ [ M oac, e

'see that 3;u:f']""'t IR T e S f;“ <
nmugwﬁ¢ﬂs“m+ ﬁ=b"'.,fsj" JERIEN
for 05 t = a; We c0mplete the oroof by show1ng that for some (., T dz dz

Tis a contraction.: Thus T hes a fixed point in @ which clearly must be a ,'



solutlon 'to ‘che dl*‘ferentlal equa.tion (3) For v e C Hu“ -

- :f¥?Thus__we_havé'f;f}x?iﬁf;ﬁ 

t

. s0 that if @ L.<1, T is & comntraction on CF, vt

'l"u(t).l

7 % o

thU.S .

g : T D
{> [X(U’ UT(G) B X[c’ ur(c) l dc S B

1A
o &
3

sl 1|ur<q> ,—vuf<c>né ao
The sup is only taken for O < S’.ane Tul and Tu2 agree On . 51;50

The norm 1n the last expressmon above is the Br nor'n, but

e g, Been s feent

coan s o ey s ()l =T - ror s

L RTHETE R

}Q.E;Dgi

I ‘)-,.' S

Lemma 5 2 (Gronwall s) Let u( ),'. v(t) (t) be non-negatlve contlnuous

functlons, u- and v on [a - r, b], and w on- [a, bl Assume that o

Br—o—of-‘ Clea,l’l}" .Ii(t) Hur(t)ll; -But we’_have;‘; S




nu,< >u=. L e el

- v

: . v(t + N) R ..)3’?» -, T t+eNsa

‘ : A s o }j - 't% Lo TR IR

o : ‘ v(t + _)\) +f o w('r ”ur ” ar.. ’ t + N2 a
La S s

:fi__j!-é Hv;._(is)ll f‘f w(r) Hur('f)ll as ”:s._t‘ §b
' The lemma now follows_from Lemms,l.E epplied to'”ur(t)”;hfg.'fﬁzﬂ;;ﬁ.-

Gronwellfs lemmé in,thefﬁiﬁe iegicase_doesfnot.eppeafltoiheveibeenlstated'F?

or ‘proven prevmously R N

. Theorem 3 3' (Continuous Dependence) Let H = [t t + a] X (¢

-t H b} % {wr ,“ ¢r“ C} be a- set in R X Rn x Rm where gr(x) 1s -

'a constant, function. Let X[t ¢r’ v, ] be a function from H to Rn Assume
that X is continuous in t and.¢z,and uniformly Lipschitz in ¢r, with constant
L, in H.  Let wr, e e B e such er er c, and ¢r, ¢r € Br be such trat

: H¢i'- g;”'é b/é, Then there exists an o > 0 such that the equations
Loy ere ey gip g 1. |
x () = xls, xx(e), ¥xl, . xx(0) =¢x(1 =1, 2)

-

~ ‘have unique solutions‘for tg st s t + . Also, if |X(t, Do ui) -

X(t, ¢, ¥3) s e for all t, t st s 5 * a, o, - 3 s b, then -

lxl(t) - x2(t)| f“¢ - ¢rH s et - 1)) M%) g é £ < .+nd.

-Pfoof The ex1stence of ¢ follows immediately from Theorenm 3 1 Al we
have to prove is the estimate on. the difference of the solutions. Leti _4 .

CAt) = x(t) ;'x?(t); tnen
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o TR - eBn) - TR
e = {e(0). - x0) + [ (Lo, xo), Vi) T
- A 0 -
&-f o o =X, x?(g), wﬁ]} do, t.2 tovj_.
. Thus _wé have , B ~ :
A <11!¢i:-<1>§ll U e
Tl wlal e, vty
(1 .‘é | ) o {’ L
o loy-olll : ) vE |
-3 C ' t . o - '
-2
LH¢§.e ¢l + et - 1) *L[ la ()l ar, ~+ =2 ti/ .
B By applying‘Gronwé1l‘s‘iemma with - '
R o ) \
: 1 -2 , . |
B L 1 -
o ey - el e(r - tg) Tt 2t
Y v_ . ) .
we see.that.the résﬁlﬁ féllows: \
Q.E.b. L S  '§\

Linear Equations

Consider the linear differential equation with time lag,
o ox(t) = A(t) o x(t),

where A(t) is & continuous linear functional from B? into R® for fixed t. In

what we will be doing here, A(t) will be assumed continuous in t for all t € R.

Lemma 3.4: Tet A(t) be a continuous linear mapping from BE into R? for
fixed t € R. Assume that A(t) is continuous in t for all t ¢ R. Then there
| :éxists a coﬂtinﬁéus lineapvmapping J(t, t5), called the'fundamenﬁal operator
associaﬁed with A(t), from BL into R%, defined for t 2 t, - r, that maps an

initial condition ¢r into a solution of



.f.: :' ku’) L

That 1s, 1:f‘ ¢> € Br, then x(t) = J(u, to) ° qb satlsfies (l+) and xr(to) =

Also, the mapnlng J. (t t ) from Bn 1nto Bn deflned by

-

o *..?'° o= O N to) e Oy EENEO T

‘is continuous and linear'for'fixed t, defined for t 2 té;'and'the.eqnalitj;°f;}f°'
.J’_(t,gtd)e 3ty ty) o Tnlty, t5) 0
holds for tl t tl -T.

| Proof 'Ex1stence on an intermal [t - r, t - h] follows 1mmediately
ﬁ; from Theorem 3.1. Slnce A(t) is & contlnuous mapplng “for each t € R h can -
be selected independently of t for to in any compact set, S0 that a solutlon R o
‘l on [t - r, t 4 h] can be contlnued to [t - T, t + 2h],'and so on. for all e

S 3‘td - Y. Uniqueness of solutlon follows from Gronwall's inequal:ty 1n ther-.'

,f same manner'as 1n equatlons without time lag Thus, (t t ) ther'v'
:T solution of (h), can be deflned *nquely for all £z to -r. Solutions.uo (h)':::;}

b were shown to depend contlnuously on ¢ “in Theorem 3 5, $0 that J(t t ) 1s a

7'cont1nuoushmapp1ng. It is also linear, 51nce if
o _x(vt) = Ity to) o adn + I(t, ty) ° B Oy, o
. awhere o and'ﬁle.R;fthen -
x(to) J(to,t)'oaqb +J(to, )°B¢ Ot¢ +B¢ SR
: F:Thus, byiuleueness;7"n'

. Y ”

/ ._‘x(t)j; J({,' 'to)' of (o & + B 921,

' Let tl te, and let ¢’£’ 7 (tl, to) ; ¢r | Then ¢clearly J(t, t,) is defined; .
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continuous and linear.  Also, J(t, t1) o ¢§ and J(t, t,) ° ¢% agree on

[t) - r, t1], end thus by uniqueness must agree for all t 2 t, -'r. Thus

S S
I(t, t1) o Ju(tq, to)_ o ¢ = J(t, t) o ¢x for t2t) -1, by 2t
Q.E.D.
We now wish to obtain an expression for the solution of the non-
homogenous equation -

(5) K = Me) om0 28] 5 nls) = o,

. Halany [9, Section 4.3] derives an expression for the soiution'of (5), which

in our notation is

_ S : %
O o o ,
(6? x(’c). = 3(%, %) ¢1_‘ + ,QO (e, ) o I?‘] f<T>, ar,
where I, is the matrix function
) - (') lro, C rsa<ol|
(7 I, = )= | 1
r i h L I, A=0 J F K

\ . o . . ) \.\

The discontinuity of I.. is the reason for using regulated functions rather
. (.

than continuous functions.

For the rest of the qonsideratidné‘in this section, we will restrict
-ourselves to the autonomous cése; that is, A does not depend on t. We define

the function exp,(u) as an element of B% by

A

o exp (u) = {exp (ks N) =_e“>‘". , - -rsxs0).

Definition: A number p.will be called a characteristic root of the

linear functionai A or of the differential equation

R CETT TS
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':if-fhere exisfs:e'non;eero.comp;ek.n;uectorfw for which.
uw: A "(e@r(gj'_'x)_ w ., |

,where‘i is the iéégtiéy'maégix; or equ;velensly ;fo’pppi;}:f

bt} -deto[A ° (expr(u) is.- XI]h;;é.

mhis definltlon can e motlvated oy ' guess1ng a. solutlon to (6) of the

form &Mt we It is known that in any half plane, Re 7 z'y, there are only a

!A'flnlte number of characterlstlc roots of (6), and that these have only frnrce
: mult1p11c1ty Hale [6].proves this when{Br is a space of continuousvfunctlonsp

" Thé result also applles in our case since exp (u) is continuous;' The following °

lemma is proven by Hale and Perello (8] when Bn is a space of continuous

. ‘functlons

mma, 3 2 Let A be a continuous linear mapning from B 1nto R . - Assume

, that no characterlstic roots of A are purely imaglnary Then there exlst suba:

spaces B and BZ of Br and constants u, K, K >0 such that

n - RIS SR
| () B =12%%9 B A | . N
) T t t ) o ¢ is defined and contained in B for all t 1f-'
(0) .3 ,
.Y - L
_¢I‘ €.'B;|_,
(9). (s, £) o ol s xllgpl exlt-to) T R T
o) s, 5) « 03 B Aol (BN, e
R A I R ¢
(@) 1 Tu(t, to) o ¢y is defined end contained in B for all t z t, if
e B |
) a0 e ogl = kel R e

&
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EEEEEE’ 'In our éase;'Where B? is a space of regulated funétions, parts
"‘7(a) end (b) in the ebove lemma fqlldw es in Hale and Perelld since Bf is the
fiﬁite dimensional space of "characteristic" functions of A. The only part
ofv(c)-that is not immediately clear is the estimate (11), but sinée J(t, to)
is a continuous.operator and Y = J}(tO'+ r, tg) ° ¢; ié a’continuous function
(of A), (11) holds with perhaps a_diffefent X. | ,

Fro@ this lemma,_it follows that x(t);thé solutibn of (5) given'in (6), -

can be written

N R O 2(2) O
where ’
(13) | x+(£§v% J<£;:tO) of¢;_+ zo [J<£, o) o 1) £(o) do,
(b x%ﬁiévéit;>6¢£+zbfd£;§5od;1fﬂcyam’

v.with ¢r = ¢; % ¢; and‘Irﬂ; I; + I;. We are now in a position to prove an -
analogy of-Lemﬁa 1.2 and Coroilary 1.2.1. | |

Theoremn 3;6; 'Let'A be a confinuous linear'mgpping from B? into R and\x
() a continuous bbunded function from R to R®. If A has no purely iﬁaginaryv

characteriétic rdots, then any bbunded sclution of
(15) o x(8) = Al x (1) + £(t)

© _that is defined for all t 2 t_ can be written . o B
o0

(16) ) =t s) <[ L5, 5+ o) o TH K o) o

where x-(t;lto) is given by

(17) o Tx (s, 1) =%, v) e 0L+ [ (3%, 0) o Ip) £(0) do.
, SR 3 ‘o

\



,‘Also tnere ex1sts a uniqpe bounded solutlon xo(t) of (15) that is defined for -

"Hj*ﬁall t, glven by fT'ﬂ“,:i’itﬁf.t { .

(18) . ‘ xo(t)"f [J(‘t 't + d) N Ir f('t + o') dc |
'7ff.[ﬂt{i+d)§lpffhiﬁﬁfda3_[ﬁgﬁe

Proof We Know that the general solutlon of (15) is’ given by (12) (13)1 3

o’ : '-,' e :.' R .'-' .~'-.l P ER

t

I Trl_'x-(e_, )l s 138 %) - 5l + L;]&(e,";;S"J;'-I‘-l '|f(a'> [

. and (1k). For £zt

AT

. '()_m. R
|

5K“¢ “ e “H ttO - 4 Ke-p.('t- )M dO‘

xll<z> e ‘““” +MKe“(“°‘°)/u< «,,"'

w\

[ L

'fwhere " and K are constants guaranteed by Lemma, 3 5,and M is a bound on lf(c)|'77"

J

..Thus '(t to) is bounded for all t 2 Of Also,

7fﬁ;¥+§@;f£6)f= j(t t o.¢; + £ [J(t o) e I ] f(c) do '

80

= (e, )

Yo/ ° ((b:‘ * ‘{; ‘ [Jr(to) ‘40') °I:]f( O')do'} '. -
o . .

R T - [ L3(t, o) o 1)) £(0) do,

.. ‘." . H :u X . ‘y t ] by v.,-
if the integrais meke sense and converge. But, J(t,_c)'?-I; ='J(t,;to) o
V;J (to, c) ° I for all t, to, o since I € B+ Theviﬁtegrals conveﬁge; as in f‘}
. Lemma 1. 2 because the estimaue (9) is valid end (o) is bounded. The only wey ,
" for x’ (t) o be bounded, since ]J' (t, to) ° ¢;I S© as t - vy (10), is for its
’ multiplier to'vanieh; that.1s, . | | “
| o = :fw j[J (t ) o +]Hf( ) X e
. = -to Aty o ‘IrA c o.ig

Thus, we are left with the expression

o



)
' .X+(.t: to) = ',é"[J(tJ t,+ O') ° I;] f("t +.0‘> dQ’,

end (16) and (17) follow. Notice that x™(t, t,) is uniquely defined for all
t and t,,and thus the second integral in (18) is valid; but x7(%, t,) need
not be defined for t s t, and is not unique. To obtain an x (%, t ) that is

defined for all t, we follow the procedure used on X . Thus,

(19) (s, ) =35, 8) 0 O - [ L5k, ) e T3] 2(e) @)
o+ [ (3%, o) e I.] (o) do,

if the integrals make sense and converge. But J(t;‘to) °.J§(to, T) o i;'=

'S t. We can assume t, S t because t, will

J(t, T) o IZ fs valid since T £ t

drdp out shortly. The conVergence follows as before. Thus, if we assume that
t .
- o

¢r=[

[ [3p(tg, 7)o T] £(1) ar,
then x'(t, to)‘is defined and bounded for all t, and
| . _ - ,‘o : :
(20) ox(t, t) =S [;{t, t + o) o I.] £(t + o) do,

-00

as stated in (18) independently of t,. To show the uniqueness x_(t, to), let

- y~(t) ve defined and bounded for all t, and

: . o % |
(21) c o y(e) =3, tg) e ynlt) + [ L3k, o) o I £(0) do
) . ' o o -  To o _
for some 7. Thﬁs, as in (19),
_ . T T
y () = 3(t, 15) o Wn (1) - [ [3p(76,0) » I7] £(c) do}
.t ‘ ' . |
+ [ L3t o) o 11] £(0) do

=00

for t 2 Tor Notice that y~(t) is actually independent of T, the term "inside’

the { }'s" is uniformlyvboundéd in T _,and the second integral is actually
- v o



b
. x (u; to) deflned in (20) Thus, since lJ(t;‘To) o {+}] 50 as T o - By
(ll) ‘e see. that ) v | ‘ -
Coyt(t) o X%, to) es T, S
.But,;'as noted 'bef{)re, 'Y-("t) is ihdependent of . T.; this implies equalityl,»and_n o
wniqueness follovs. R
. Q.E.D. .

Celculus in & Banach Space '

Before we can proceed to “the differentiability properties of solutlons we

: collect some facts on dlfferentn.aulon in a. Banach space We have taken ‘ch:s.s :

material almost verbatlm from Chapuer VIII of Dn.eudonn s book [9] , and w:.ll o

- state it w1‘chout proof. - :

Deflnltlon Let E and F be Banach spaces, let f be & continuous man'o:.ng .
. ‘of A, an open subset of E into F. We say that f is (“réchet) d;.ffe*en izble
o at X, € Aif there is & Iinear map u of E 1nto F such that .

im0 - s(ee) < e(a e w) .
xexo,x#xo “x Xo||

<

We will denote the derivative of f at Xo by Dy £(x,).
Lemma 3'.'1: If the continuous map £ from ACE into F is dlfferenulable
. at the poin’c xo, then D f(x ) 1s a uniquely determlned con'tinuous linear

'ma'oolng of E 1nto F

Examoles If £ is a constant func‘clon, then D f(x ) = O, since

IES (x) - £(xg )“—0 ) o ST | e

If f is a con“c:.nuous llnear mapping of b into F then D f(xo) = f for

‘all xo €.E.. Sn.nce £(x) - f(xo) = f(x - x4), thus

I

| l£(x) -"f(xg) - f(x - xq)” = 0.
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Theorem 3.8: (Chain Bule) Let E, F, G be three Banach Spacesj A an

open nelghborhood of xO € E f a continuous mapping of A into F; yo = *(Xo>,

: B an open nelghborhood of yo F; and g a.contlnuous mapplng of B into G.

Then, if f is differentiable at X, and g is differentiable at y,, the mapping

h = g (£] (which is deflned and contlnuous in a neighborhood of X, into G)‘ls

~ differentiable at x., andee have

o n(xy) = By g [2x)] ¢ D, 2(x,).

Abplicatign:LFLet f; g be two continuous mappings of the open subset A

of E into F. If f and g are differentisble at Xy, 50 are £ + g and of (¢ a

scalar), and
Dy £ + 8] (x) =0y (x;) + Dy &(xo),
o, tafJ (x,) = a 9,; 2(x,).

Definitibn Let E be a Banach space A Begment joining two points
a, b € E is the set of p01nts {a + &(b -a): o0s¢t s1).
Theorem 3.9: (Mean Value) Let E, F be two Banach spaces; f a.continuous

mapping into F of a neighborhood:of & segment S joining two points Xgr Xg * Ax

of B. If £ is differentisble at every point of S, then

| Hf(xo'f &%) ,.._’ £(x )l = [lax] . ~§s1;p§fl o, £(x, + EAX“-

Theorem 3. lO' Lef E, T be two Banach spaces; f a differentiable mappingv _

'r'into F of an open nelghborhood A of a segment S 301ning two points X, X + Ax

of E. Then, for each X € A, we have.

| £(x +.Ax)f-4f(x)_-hp¥ f(xo) ° Aé“

s e o, o 20 - 0 o)l
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l Notice that tnese last theorems are not as strong as the ones in ordlnary
‘ Calculus because a p01nt where equallty holds is not guaranteed

Theorem 3 ll° Let A be an open connected subset in a Banach space E,

: (f } a sequence of differentlable mappings of A into a Banach space F. Suppose
"uhat: (1°) there exlsts one po;nt X, € A such “that the sequence (f (x )}
converges in F, (2 ) for every point a € A, there is a ball B(a) of center -

& contained in A such that in B(a) the sequence (D £ ) converges unlformly

' Then for each a € A, the sequence {f } converges uniformly in B(a), moreover,‘

{1

if, for_each x,é A;'f<x) lim f (x) and g(x) llm Dt (x), then g(x)

S o n =

D, (x) for’each x € A '

"Lenma 5.12: Let I=[0, BleRvea compact 1nterval, E and F real

- Banach spaces, f a contlnuous mapping of I><A(A.an open’ subset of E) into F

'Suppose also that D, f(t x) exists and is contlnuous on I X A. Then
B
g(x) = Cfx £(t, x) at

is continuously differentiable in A, and. -
[ S - N
e ,ADX ggx) = (Q E'Dx.f(t, x) at.

Theorem 3.13: - Let I = [o w] and £(t, x) be a function from I X A

e (A an open subset of a Banach space E) into a Banach space F. Suppose'that.
the integral. f (%, x) at converges to g(x ) on A. If Dx f(t, x) exists and -

- is contlnuous‘in I‘X‘A,_and 1f the integral

. . T . A

S0, £(%, x) at
L Px . ,
“converges uniformly on'A, then;Dx g(x) exists on A and

W5p¥4m='fg¥ﬂax)a§j 14'77J~B\
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Proof'r Dieudonné does not state this theorem,‘but-it‘follows from
: Theorem 3 11 and Lemma 3.12 as in the standard real variable analogy See

Apostol [12, P 4i3] for a proof in this case.

Differentiation with'Respect £o Initial Conditions -

Theorem 3,14 Let

CH =[5, b+ al X {8y o, - ¢l sp}erX B,
where gr(k) is a constant function. Let X(t, ¢p) be defined. and continuous
from E into R", and. continuously differentisble in. ¢ for H¢ -t < b. Let

x(t, t,, #,) denote the solution of = . -

(22) o . i(t) = i[t, xr(tl).]_ | )'

: that‘satisfieSj

| (23) o .- .-. ";, xr(to’ to, Bp) = ¢Tf
Then, if [, - ¢, s ®/2, 'th‘ere exists an o'> O such that x(t, tg, $). 1s de-:
fined for t, - r S t S to + Gj &lso if “¢r - &l 5 P/2, then the derivative

O 3
D¢r x(t, to, ¢p) Of x(t, t or ¢.) at </>r exists for to - r st 5t + @, and
(214') B ngr X(t, to) ¢I‘) = J(t: Ato)

T .0
where J(t, t,) is the fundamental operator associated with 2 X[t, xu(t, tg, Op) ]
Proof: The existence of x(t,'fo; ¢£) end @ follows from Theorem 3.1
: R : ' o o
By Theorem 3.4, J(t, t,) exists as long as x(t, ty, ¢,) is defined; that is,

for tg - r 5% 5 5, + 0. All we have to show is the equality (24).  This

reduces to showing'that
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 lim ]x(t ’tm ¢-v' + Mr) - x(t, %o, ¢r) = J( 5 tn) ° A@rl) = 0
N i e | N
el | R

o We aésume"- that t,.= 0, '.w"i‘thou‘t loss, and will supress it. Then J'(‘c')t o M. is

the solution of = S S S
i) = m e, (s, 6] 0 t(8)
’: ' that satiéfies'ér(o) =A¢r ﬁué, _
N AR e S ., ts0) ¢
J(t)omr={ (%) % U on . -‘:..
5 - -'(,Mr(o) + {) o¢r'x[r,‘ X(Tf <‘1>r)_~J .°_f7r<r) o My at;, t 2 0,}?
et (%) = (1) o o My, 8) = x(, 62 + £6,), x%(t) = x<£,'<z>$),‘;b(t>,=g |
Do, x(t, -‘Xg(’c)]{ Then ' R o
(e x<t 60+ 28,) - x(t ¢r> FOR
| (o) - 25 - ()
O B _, ..,'.,-;tgo,
f ([7, xr(’f)] - x['c X (1 )J - D<'r> ° &x(7)) ar,
' L 20
But we h-avé*' ', . o
(26) IX[T xr('r) - X['i 2 ()] - D(T) o er('r)'ll"_
]X(T >L‘(,(T) - X[T, xr('f)] - D(T) ° [xr( ) - ‘xr('f) l
L _+ ID(r) o [x.(v) - xO(x) - erMJ!

s llag(7) = 300l ;ﬁp o, Xl%, wplx)Té o¢¥'xpf;’xg<¢>1n
S IOl p(7) - x0) = (o,

by Theorem 3.10, where ?//r('r) -~ xA(7) as |&¢y ] » 0. By Theorem 3.3, we have



er(T) - xr(T “ HA¢rH eL'r for T2 0, where L = sgp {“D¢r XET"wr]” :

(7, ¢r>’€.H}. ThusA.
(2 B e Y PN R Y Y

for 0s Tsq, Let

axe) =

: 'sap'tu%r- K, V) = By X1, B, 0) ¢ ®);
‘thenA X(Act)r) -0 as IIAq‘) [] -0 by (27) and 'the ‘assumption that D¢ x(t, <7>r)

is continuous. Thus, upon putting (26) and (27) into (?5), we obualn

|%(t) - x°<t> - 5(4) .
(o R N Y L eso

t
\ X IlA@ ll A x(ms ) t+1f I () - x2(7) - ex(Tl ar, t2 0
( , : o

b7

N
to which we apply Gronwall's inequality , yielding .
[x(t) - x%(t) - &(+)]
o . | , 't 50
, L K ool & x(o0,.) £ el't, t 20
K |lagll A x(mr) for rstsoa.
Going back to the difference quotlent we see that
- . L . B . ) N o. . . R A
lim |X(t: tos ¢‘I‘ +A¢r> - X(‘t, tos qbr) - J(t; UO) ° ’rl

60l 0. 50

< 1im KA X(0$_) = 0
Aol -0 A

' Q.E.D.
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Equations with Small Lipschitz Constant

In this séction, we diécﬁss solutions of différentlal equationé with time -

lag or advance that are defined for all time. TIn defining a solution Tor all

' -timé; it is easier to start from an initial'value rather than an initial -
“unctlon as was done in the earller sectlons We show that 1f the Lipschitz
constant 1is small, then there 1s a unique solutlon that has minimum rate of )

z

‘ growth for the 1n1t1al value problem,

We deal with equations with tlme advance, so that. the dlfficult part of

the problem occurs for 9051tlve,u1me; but the results‘are equally valld in the

time.lag»dase,“as a simple ieyersélfof:#ime shbwsl; We‘use fhe-notatioﬁ;
) ) = s, ()] P
for an equétion witﬁ'qdvance, Qhefe

";;r('t) = (xr‘(icl, A) =x(t Qx)} for'bg A S r. )

. With a slight stretch of the notation, we will say. x'(t) € B?.

Sihqe the résults we afe after appeér to be p;evibusly unknoﬁh (and are =

somewhat surprising), it is worthwhile treating the simplest non-trivial case

"before starting formal proofs. The simplest case of'(28) is
(29) o ) *(t) =L x(f +r)

where'x'isva scalar end L > 0. If a solution (29) ls‘déflned for all t z O,
then 1t can be extended uniquely for all t = O, since for tes O.(29) is an
equation with time lag Thus we are looklng for a solution u(t) of (29)
“that is defined for all t = 0 §uch that u(0) = 1. If such & solution exists,
it must satisfy

. . |
(30) . o u(t) =1+ L fo wo + r) do.
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We now show that a Picéafd'iteration scheme converges to

. (31) '>;- ‘ f(ﬁ; r,.L) ={= 1

(4 +‘nr)nfl/nl}
n=o o

uniformly in any compact interval [0, T], if L r e < 1.
Let uo(t) =1 for t = 0. Assume W(t) is defined for t = O, and define
_ s S
L Wty =1+10 [ uo+r) do.
; | L

Our induction hypothesis is that

uN(t) = = IP4(t + nr)n-l/n! ,

n=0
‘which is clearly true for N = 0. Thus -
o - o “
uN+l(t) =1+1L f uw(o +'r) do

A

1+ 2 (Ln+l/ ) f (o + r) (o + (n + l)r’n -1 do

R R
RS =3 1™ t(t+nr)" l/nl,
n=0 o

as'éan éasily be chepked.. t is cleer that‘uN(t) is defined for all t 2 O
and all iﬁtegers NzO by ﬁhe induction step. To show convergence of (31),
fix T > b andllet d > 0 satisfy L(f +98) e =1, which is possible since
Lre< l.: Select nflarée enough that Sterling's estimaté for n! is valia

and that nd =T, Then for O £ t £ T s nd, we have

.Ln 't(-t . nr)n_l ) . L T[n(r N 6)11‘1 -1 n )
) nl ‘L —, (2rn) 172 n =
;' TLe [L(r+8) e)?t 7L e n-;/é .
- T - :
(e /2 n3/2 | | —T/s

_'<2n>

: . Cyn=1, ' ,
Thus,- the sum nZO-Ln.t(t + nr) /n! converges uniformly and absolutely for



O =%t =T, The standard interchange of limit and 1ntegration “hen shows that

| (31) is a solutlon of (50) and hence (29)

We - now show that f(t, T, L) is the unlque solution of (29) with minimum

. rate of growth that satisfies the initial condition x(O) = 1. TLet x(t) be any:

solutlon of (29) that satlsfles x(O) =1and ;
Wﬂﬂlsx’ﬂmr,mfwt;O;

Then, if u(f)'='f(t, r, L) énd-ﬁ(t) = u(t) - x(t), we have

A

Il

llV_
o)

I R A . O F

A

: ot ‘ IR - o ,
lo(t)l é-Llfé. !8<&ijr)l do s KL étrf(c'+ r, r, L) do

x [2(t, T, L) -1 = xz L t(t + nr)* L /n

. Teke the new esfimate (|5(t)| K. Z L t(t + nr) n l/n! and put'it beok in

[8(+)] = f 18(c'+'f)l 4. This yields ls(t)| sk z I? t(t + nr)n‘%/nz,' N

t 2z 0. erate the procedure thus, after the Nth' step,,?
[8(t)] = K ﬁgN ? t(t + nr)n’l/nl , | t 2 0.

" But, since the series (31) converges uniformly'and abéolutely,'the'pertial sums

from N to » must go to zero as N approachesvm- Thus, lo(t)l = 0, and hence
oo x(t) = u(t) for  t 2z o0.

Mot

We now‘show that f(t, r,'L).= e where p_ =L (r, f, L), and Ho 1

3

the characterlstic root. of (29) with minimum real part The characteristic

equation of (29) is (see (8))

(32) > i:.ri'_ o b=1L e,
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Since this cannot be solved éimply for u, we study an inverted problem and

treat L as a function of p;fthat is

L{w) =k ep.r’
~for pz 0. IL(u) has one and only one maximum for pz0(atyus= l/r), and’
'.L(O) = u;éfa L(H> = 0. Hence

< L(u) = (r o)L,

Going back'to‘(525,'§e see that if‘L re<l, then (32) has two real
Ap051t1ve solutlons. Let o be the smaller of these; then Mo < /r, and eMo®
..1s a solutlon of (29) But f(t, f, L) s K efo ,.s1nce f(t, r, L) is the unnge
~solution of (29) withvminimum rate of growth.' Since £(0, r, L) = “Otl =1'

l
5 t=0

the following Gronwallian lemma shows £(t, r, L) = e™0°, since there can only

be one solution of (29) with growth rate’less than et/r.
Lerma 3.15: Let u(t) be defined and positive for t 2 O. Assume that

u(t) satisfies

(33) o wwsx et

I

(34) | S u(ﬁ) »c‘+‘L g Hur<c)“ do,

where Lr e = p <1 and ¢ 2 0. Then

- u(t)‘§ ¢ £(t, r, L) = et/r.
Note: Hur(c)H = sw _ Julo+ ).
' ' 0sNSETY
Proof: |u(t IS K e(t +r)fr_ =X e T mus o :
| e R ' 't
u(t).é c+ KL e‘f ed/r\dc sc+KLer et/r'= c+Kpe /r;

We claim that for N 2 0,



(35) o __u(ﬁ) s c. §“,Lp t(t.f nr)n'l/n1~+ X ON+l_et/r;: .

“wvhich has’ just been shown for N = 0. Assume (35) true at N. Then N

le@(e)l = ¢ = Tt +x) [t +(n+ 1)r)™ ﬁﬂ+Kep 1, /ﬁ
heo T : - |
“and vy (33), |
H, . o 5 I : A e ll31
' u(t)_é c- [1 +. Z (Ln+ /n! ) f (c + r) [o + (n + l) r] dg
‘ A. . n—o i ' ’ M . . v . . . '
4 ._. 
N};. / ed/r-}dciv
. o ,f TR E
N4l ' SN o t r S
c Zo' Ln,t(t +¢nr /nl + K N+2 / s ce

K L e ‘p

+',.,

M

and induction is valid. “Let N = in (35),_then_{ |
w(t) s ¢ £(t; r, L)'sfc'et/r.

. Q.E.D.

oy Y

Finally, we need to show that uo = L £(r, r, L). ‘But, from (32),
Bo = L e“Oré=.L f(r;'r,'L) 3

‘since eFOt = f(t, r, L).

o

Summgriziﬁg ﬁhe ab?vé, if_L r‘e < l,-tﬁen ;_:?;'.
25, 7, 1) = ;%;.'Ln.£<§ + nr)nfl/nx o Mot

Yois ﬁhe unique solﬁtioqvof ]

(6) =L x5+ 7))

“that is defined for al}'ﬁ,'séfisfies

o H\' i4‘ ' X<O) = i:-
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and has minimum rate of growth. Also
(36) o ‘ kg =L f(r, r, 1)< l/r.

The conditioﬁ Lresl becoﬁes more reasonable if 6ne noteévthax ité
._negation implies that the chérécteristic equation (32) has no'real“foots,.and
- thus a uniéue solution withlminimum fate-of growth cannot be definea since
 complex éoots'appear in conjugafe pairs. It may be possible to extend this
'result by constructing a‘real solu@ion with minimum rate of,growth. The
double root case #hen Lre-= 1 is ignored here. . |

 Later wé will need.stronger Gronwallian fype'¥esults;‘in pérticﬁlar,

the case where _ o k R

b ‘
u(t)Aé v(t)'+uL é Hur(c)“,dc-

No general results are aveilsble for this problem yet, but the following
corollaries are strong enough for our needs here and give some hint in the

general case.

Corollary 5.15.1;  Let u(t) be as in the previous lehma, but with (3L4)
1replaced by | N |

- (37) L  “ { : u(f)i"c t+ L i‘.ﬂur(c>” do.

7Y

Then 1t follows that

A

wt) scet (%, r, L) s ¢ et et/r.
. Proof: 3uttingV(35j_ih'(37) yields =
' | t/r.

'h(t) sSct+Kpe'".

Iterating through (37) yields -



fu(t).s ¢ Zl Ln“lt(t + nr)n l/nl + K pN et/r

‘ -'H, for 2ll N 2 l and t O}v Let N’—aw; then _r.zi,

LS

J'u(t)' n=1

B ColE by, S fexpEL f(r, x, L)) - 1/

' §.c't'f(r;~r, L)»exﬁ[i f(r;;:;iL)'t]

Mmoo

c et f(t) r, L)‘ ‘ N |

‘Q-Ec D.

e

c Z t [L(t + nr) /nl f_é[f(#, T;'L) - lJ/L:ﬂ'

5#

. Corollary 3.15.2: Let u(t) be as before, but with (33) replaced by

(38 s seeTan f ool ag,
: S L ST
;-:ewhefe'c g‘OfliThen if e”;vi'r»e\<;l,

U u(t) s e e¥/T/ 1 0).
© Proof': Starting fhe'iﬁeraxion procedure as before, we see that:
— . , A 1 R

ﬁ(t) 2 e et/r +Kp et/x.

-The first iteration through (38) yields -

u(t) §;C‘et/r +cL [ e ec/r do + K p L [ e eo/r do
.. .o , o .

c[l +Lrele t/r + K p2 et/r

) JV\

c[l=+.p]vet/r‘+ K 0° et/r.
Subsequent iterations yield

'liﬁ(p> 2 ¢ et/r ( 2 pn) + K pN +1 et/r.
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for all integers N 2 O and t = 0. Since p < 1, we have oML =0 and

M- . . v : .
D - 1/(1 - o). ‘Thus. the result follows.
n=o0 - . . -

Q.E.D.

Theorem 3.16: Let X[%, ®¥) be defined into.R™, continuous in t, and

Lipschitz in ¢¥ with constent L for'all't in R and all continucus ¢ in B:.
Let ¢§(x) be a consténf function and assume that |X(t; ¢g)[ £ M for all t.

" If Lre<l, then there exists a solution u(t) to the initial value problem.

(39) ) =Xl ()],
Further, u(+t) is'the.uniQue solution of (39, LO) that is

(a) defined for all t, - < t <w, and
(v) . satisfies |u(t)| s H et/? for t 2 0 and some H > 0.

Aso, u(t) satisfies the estimates

A
v

S ()]

}xol + (K/1) (£(t -’fo;'r, L) - 1j , | £ to'.

S

A
A
ot

(h2) o) = Izl + (’/2) [2(x, =, 1) = 1) el(tg- ), ©5 %,

‘ wherg K=M+1L ]xo'- ¢g(o)|g

v

Proof: Assume without 1oss that too= 0. Let ub(t).= x, for t 2 0.

Assume that un(t) is defined and continuous for t 2 O. Then

wp(t) = wi(t, A) = un(t;+ ) '.‘ , . osAasr

is defined, continuous in A, and in By for all t 2 0; and thus X[t, w5(t)]
is defined, and

u

‘ t .r v
n+l(t) = Xo t éL-X[G: un(c)] do



'ﬁ;iéjdefined‘add'continudﬁg;for all t = O, Thu$}>th§;ééquéﬁcev{un(t)}lis de~

2‘fined for t 20, n2 0."

. fwe now show that on any compact interval [0, TJ, thevsequéncé.Tuh(t)} B .

"_converges uniformly to a solution of (39, 40).

g - )l

. for t 'z O, wheré xg(x)

~Cleim that = -0 . 00

ot | o
s [ |xlo, xZ][ do

1A

S

S P S R AR

'xo, OsNsr. Thus,. -~

I S Bl s ket T

N

B I I E5 FU M 9 B e S I

. By the above, (hj)'ié‘ffuébfor n=1. Assume it true for h,éiN,ftben

Thus -

[ (®) = uy(®)

~ end the inductién is valid so that (L3) holds for ell n 20 and all t.2 O.

Let .

1‘”@§(£) ;hu§_i(t)”‘§ K(t ; r) (Lftr; (n+ 1) r]}N-l/N1..gTE

Ty S
é'{) |x(o, xg(c)l --xlo, x.1(0)]] do -

[,

SR
2 lag( o) = uy_1 (o)l
L Nt , S .
KLU SO : - . o
TN (6 + r) [og+ (n+1) )" e B

L] .

Kt [L[ﬁ + (Nv+'l).r]jN7(N +,i)l’

W

o}

H

e}
O T
f (IxLo, ng - Xlo, _d):]l-f‘le'c,_ o)) ao

.3,56




sy

S e ) -l

;imsf,ﬁ

‘I#ng_ ’lun(t) 5 un l(t)l

l%él - (K/L) Z " t(t - nr>§ }/ l;ef; o

;wm,

;lxol +‘(K/L)'(f(t,:;;yi);?:i}éti{ftﬁ;}*’“'

‘M'i'for t O and (hl) ﬁolds;jflt"has already been seen that the serles Lor‘~—‘.

«':f(t, r, L) converges unlformly on [O T] for L r e < l, so 1t follows tnat

-.fi(hh) converges unlformly on [O T] ”Thé;LaCb that u(t) 1s a solutlon of (39)[._'“

' 'fiffollows by the same 1nterchange of llmlt and 1ntegratlon used in the SUaﬁdala;r

‘ »fPlccard 1terat10n proof thau is valld by the unlform convergence,H;Thus;wewM,‘i

jfhave ex1stence for t'z ‘ é'fifQ,u. o
| _. It follows fromAtﬁeAGronwalllaorlemma (3 15) tﬁaf’u(t)'islﬁﬂefunidoer-;Ysﬁ
;;solution of (59, 40) that 1s deflned for O and satlsfles (b) For t s Qviﬁi:
.””?exisUence and unlqueness follow from Theorem 3 l, because (39) is’an eqpaslonlal'r
:.lwlth time delay for t d;l The estlmate (MQ) follows from Gronwall s lemmavg

'7ifor equations w1th tlme delay (Lemma 3 2) and

A

"ffiﬂér(éjl; ol gA(K/L>.gf<¢;'£;-r>f;’1}; :;f]_1‘

" since .

<t
H

;0

PR -, R e .
e - o

,,_
o
o
.

SEY T g e
) < ) - e, e



holds Wluh K Z L Ix l

Corollary 3 16 l Let X[ . ¢r]'be'as in'the'previous'theorem,_but'

‘fassume that ¢' 0 and M O.(thatiis,'X[t;_O] = O)LJ:Then the same conclusion =,

o .
o

1

Corollary 3, 16 2 Let X(t ¢ 2 be as in the prev1ous theorem, buu

¢ ' :' L.

' assume tha lX(t ¢r)l N for all o and all contlnuous ¢ € B Then unere;> A-f7

"TIex1sts a unlque solutlon of (59, hO) uhat is. deflned for all t Lm0 < < &,'hfiz

Proof The condltlons of Theorem 3 l6 are satlsflea so that there'ffw"l
' 'ex1sts a solutlon u(t) ol (59, hO) uhau is deflned for all t and 1s unlque ln

 the class é(t) ]é(t)b =, H e /r,; O, H >'O} But any soluulon v( ) of

.7(59, ho) uhat is’ deflned for all % sauisfles lv(t)l lx°l + M(t g ) IR

Thus ..u( ) is the unlqne solutlon dellned for all t. :fif:

-Q.‘F;.'D. o

. ‘.?:. ..

4_',

Corollary 3, l6 5 Let X(t ¢ ) be as ‘in the prev10us theorem Legy

, ‘u(u, é) be the solution of (39) guaranteed by Theorem 5 16 that satisfies ;'v:lﬁi'k

l u(to, g) = g Then

e
VAR
o+

._<u5_) _‘ j_ | lu(t gl> § u(t, ;2>l !e. - egl (fc - to, r, L>, t

' | Lu-t
fél - gel r, r, L) e ( o ) ‘t ; to‘

xm‘

';-.j,:('h6)_ lu(t 5 ):’-..'-fix(‘.t}.ég)'l

'PrOOf' Let G(t) = Iu( 6, & ) - u(t §2)l and'oo = Lgl‘- ﬁé]:f_Then o ]

vas(t) sXKe /F; for t O and
5(” co,+1] Il s, . wso,

.-and-(hﬁ) folloys?fromzthé»Gronwallian”lemma,‘ For % é'C,jff4 ;

m
M
H

8 f(r, r, L) S 0

llmf;£'~§

‘5(‘0) "

A
I
S

g , By f(r, r,L) + L f Ila. (M as, ** ot
Thus (h6) follows from Theorem 3.2, R D

QED. T

T et

s e e



'Tfthat is deflned for all t o) has minimmn rate of growth and u(o e)

‘::{IS the unlque solutlon of he equatlon.:_' 

e

"1;:that is- de¢1ned for all t é O has mlnlmum rate of growth, and U(O)

fffapplles and

'so that all that 1s needed is.to show 9, u(t &)'— U(t) Thls requlres e o fv'v :

R | co
show1ng that C lim ‘151 _lu(t, 3 +-6)5-”u(u, ) - U(t o 6] o Let o

Theosem 3 17 Let X[t ¢r] map R x Bm 1nto R ‘ Assume Y 1s contlnuous_f -

";iln t, contlnuously aif ferentlable 1n ¢ , and HD ) X[t ¢ ]” L for all t € R
‘fe3'7¢r € Bm Assume also that Lre =p <1 and ]X[t @rJ] M where ¢r( ) 1s:affo]

'1{f;constanu functlon«? Let u(t §) be the unlque solutlon af Qﬂv"&”‘v

| x(t) - X[t & (t)

' jThen u(t g) 1s dlfferent;able with respect t0 g for all t o, and o u(t g) j

:.%ffi%f.t, : AF( IR 'tff(. OHE

it fog u(o, €>,- I.‘?:,ahﬁf; f ;f:}f,fﬁyg_kf;f?ﬂuiff5s 

Proof Slnce X[t, ;];isﬁQifferentiébleffdfféii*@r'e:jB?;sTheoreﬁf3;9 g

'7lxi£;‘¢§j;

X[t ¢21!” RO

I'V\‘

H¢ - 9, il sug HD¢r X[t w H

: M

L H¢l - ¢2H

Thus the existence and unlqueness results apply to equatlons (h?) and (h8)

]6[ —>O




N N I (A I ORI

TNt L
'

(%o, (s, § + 8)] - X0, (s, 8)] |

mo

'-};.D¢? kfc,,ur(d,'g)] ; ﬁf<¢)'P 8515,?,':‘o3n7}1-_¢

bt

[xlo, W0, 8+ 8)) —xlg, w(o, 1)) L

(1867 ey o 1)+ B £ 2 ) -l 1)1

;<9§*f‘f‘§'ﬂ*57"
ot

1 i o e, 01 ¢ S
U o )
Sy T . Lo S N
P el 8 Iy £ 8) - e, 1)+ 5 ST as,
o L

" lehere.by_TheofemHBQlOf(Méaﬁ Valﬁé)f

;;g(;;’SQf_ sop~HD X[o, r(c) .- D¢. X[c; o (c, &) “,.
':_aﬂo‘fhe-Sﬁp.is:er;;oll;Q?(o)'oooh that

(vr(d) =aur(o, g +5)+ (l_ a) ur( c) g) ’ | O §a§ l}
‘1‘iW1uhouo loss, we w1ll aosuﬁe uhot's(c, 5) is non- decrea51ng in elthef argumenu

I‘alone. By conolnuous depenaence (Corollary 3.16.3), we have
”ur(c, g+ 5) ~-ur(c, el = |5[ “(cr+ x r,'L)_.,' "
' Thus,_oombihing, we have
T A RS T T PR
3(49). "Mﬂéﬂl,&l w f(c+1r, r, L) s(c,: 5) do + _L{) la™ (o)l do- - .
B IR -.';.O".-__. ‘ : - o N S e

'We are going to apply Corollary 5 15 2 to (h9), and it 1s here that a s~rongel_ -
_'form of Gronwall s lemma would be helpful rix T > O, and choose €0 > O ‘

Select & small enough that



ety Gavobiary $.is2, - L

0N
e

S e

Estmate (50) can be satlsfled because DCD X[t cb ] is continuous and (5¢) ls-.:"_
--f_pos_sn.bl_'e_ 'becvauAse ._;f(:.c +,.”r, r,\L) "‘7/ -0 as’ c->°° (see (36)) y Thus (h9)
“becomes e | - "

Cay sl ey e dren [ I8l as
. g

LI RIS OIS R

M

FA'?(#).S'[EQ_'ISI]_' t/r /[1 2 p

- sinee 'ac.) vas arbitr?i”bﬂ’?}"“-’“'fe”"see'-.ﬂ?h'é‘c S
Limo o lu(t, 8 £ 8) - ult, £) - U(s) o8| = lim . Xl =00.

G e
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v_xv;V IVVARIANT SURFACES oF ORDINARY DIFFERENTIAL UQUATIONS
- e WITH TIME LAG o .

In uhiS chapter, uhe results of Chapcer II w1ll be genenallzed to -
"equaulons w1th ulme lag.A Tne meuhod w1ll be uhe same 'as befare.y;th'une‘ Lo
De;1n1tlon A bounaed, LlpSChluZ conulnuous functlon s(e) frova Mointo ..

"R w1ll be called an. Invarlanu Surface of_ he system '

@ o | "é-<jtj>f;

o~

- Ke) - 5&;( £+ X06,(), %6, el

'1(2)" _Alf;fs;? ?(f);
T thedgaif5 w(t}reov's) s[w( 'Oi 5)1} 1is a solution of (1, 2); where -
) W(t; _éo) S) lS a soluuion of _' . - < o - c

(3 ,é(-fu‘)’=_‘®{6-r(‘t);_ s(6,(t)], €]
that is defined for all time and such that @

W w(o, 6% 8) = 6.

Lenma b, 1: leen the sySuem (1, 2), assume that there exists a “o > O
such that all characUerlsulc r00us B of uhe cont;nuous llnear opecauo* A(s)"'

- satisfy -

Assume alSo.thafiTofeSOme'a # O;_tﬁere ekiétslan'invariegt‘sﬁrface S(a)_Of
" (1, 2), such that -
N R -\ztel;(t‘); el'='0 (o,(), 56, (01,70

;lS bounded ‘and unlformly LlpS hitz in é% with constant L andffhat»L;;%e <1.
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Then
89) = [ [(-0) . il wr<¢, e s), Sty (0, 8, 9); &) aw

BENECORESES AR ), slyyle, o, )1 e} ao

P

- where J(¢) is the fundamental opéfator éssociated with A(g), and ¥(t, 8, 8) is
the unique solution of (3), (M) that is defined for all t;me.
Proof: Lguatlon (3).in the notation of (5) 1s'G(t) =Y[6 (u), sj Since
Y is Lipschitz end L r e < 1, Theorem 3.16 applies,,and_¢(t,-90, S) lS'uhe'
unique solution of (3) satisfying (&) that is defined for all t. Then by the
definition of an invariant surface; |
S | : g
x(t) = sly(s, 67, 8)]
is e bounded solution Sf (2) that is defined for'all‘time;‘éo‘that Theorem 3.6
applies and we must have.
sly(t, 6%, 8)] =
Ov. v ) . ._ ’. ‘ 'O. R : i 'v O .
= [ [3(-0) o Ir,] L (et + 0, 87, 8), S[wr(t + 0,8, 8)], e}

- f: f;(-c?)' o\I X {w (¢ + 0, 6% s 8), sy (¢ + ¢, 6%, 8)], €} do.

'Since w(ﬁ, 9?, S) is,uhiquely determined.byved, we have
%l/(u + g, 0 , S) = ?//['c, V/(t,}éo, S) 8],
| Let 6 = y(s, 8°, s), fhgn
s(6§ = fo [3(-0) o I;]. X {wrv(q,»'e,v s') ,» .S[?Pr.('c‘r,,.'@‘,. s)1, é}’dc

-Ool

o0

- g,'

This expression is independent of t or 6° and is defined for all 0.

[J(”-’c.;) o I.] X £wl;(o, 6, s‘), s[zﬁi,(o, 8, 8)1, &) do.

Q.E.D.
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Notation: In- nls chapter, Br wu.ll denote uhe space of contl‘mous

function in RD. Ii. is the only non-continuous func ulon we neea here and
[3(-0) o 1] has a_lreaay been discussed.. Let £(-) -be a func ion de;lned on -

RO or B; ‘We will use the norm

Colel - s [,

6 e R
NIE! p e, >n
: "'-,ereB . LR T

_where [|£(+)|| 1s an appropriste norm. As before, we will work in the Banach .-

.spaces
] Q(pl> = (S : R - Rn [H SIH pl}, and the subsnaces of Q(pl)

\

Q(pl pg) = {S € Q(pl) De S(Q) is con’c:.nuous, and I“ De SHI = 92} -

Theorem 4.2+ 'Cor'is.-'ider the system of eéquations . . =

@_ter<t), er'(t)',: el

]

D(E) ° {A o X, < ) + X[@ ( ), f( ), S ijlu_ 

where 6 and (] are m-vectors, x and X are n-vec uOI‘S, "E is an n X 'r'1 matrix, -

and A is a contlnuous livzea.r mappJ_ng from B , lnuO R%. Assur*e thau @ and X

are de ned and bounded for all B, € Brf, X, € B-”, ”xr“ -, end 18‘

As sume also that ¢

(a)' B E(E) s’ 'the matrlx
0 n :'-~ o .- ( /8)I3J



oy T

' (b)‘.f“ I;A;iéltﬁé;bloék'diagonal_operatori_

"t]fi'no cnaracte tic ot is purely 1mag1nary, and u and K

'Q',Lfare the constants guaraﬁoeea by Lemma 3 5

<)MDQ o, ol ez e

ﬂ_]“ Dxr ®< X ol feen

© .for some constant ¢y 2 0. .

iz, K ol = ol ¢ o(e),

Ll

m o

o, x(, xr‘,_{.enni

Chy o imel e
D ~LE A B T S
R SR : T R

””whé%e'§5( ) —>O as- ]g] —>O,_and O ‘c2 u/(l8 K e)

;T_Tnen there ex1sts a pe, pl(pe), € (pq, pg) such, that for- O < Iaf e° +Heréw '
' ‘exists. a’ unloue 1nvar1aﬂu surface S(G) of. (6 7) in Q(po) unat is leschluz

Jf'conulﬁuous w1th constanu 02, and H]SH] -0 as ]g[ —>O

oof Assume uhau fo some €, pl, and pe ‘an ¢nvar1ant sur;ace S(G)

“_exists - FO” thls S(G), equation (6) becomes
BB N em v[e( ), 1-0 (6,(1), sl6,()], &)

'tYS(Gr,'g) i%jégifo%mly Lipschitz:ini9£_sincgf}-nﬁ»;-, S

APt oL



L %’r?s( ~,'fs.>-m;- R
< ll2g, o0 )‘Sk )l + lia, ot ié(-v>.,"é-.lllff-fli'-:zﬁé" o
5 ]€|\  :_[g/g_‘v,{ ‘?.1';9.2»_"1 : Lg ' 3 Lo

E ;=¢t should be nOued here unau, a¢unougn S&?) is” a mapnlﬁg ;rom Rm iﬁtb”i

ZRn, it Lnduces a mabplng S rom‘Bi into BM by
- ,['s',(fqbl;),l(x) = slg, 000,

- and upon differentiation, = -

0, §<¢> 04 = 5 swr.(m.}t_:’i L . o

-~ Thus - takihg'norms'we-haveli
il B . "

. . ot STy
IH SIH |l| SHl , and IHDQ SHI HI D@ S|H-’v-_-f-‘7-~‘.‘-*' N

“This last fect'_hae beeh.;-.taz:it'ly*‘ﬁsﬁed above end will be used later without .~ .

co@menu | o - | - ‘
Conulnulng on YS, we see that 1f lel is: small enougn, then L ~e}< lreo

that Lemma 4.1 applles, and | : |

EOREN l'.f_fﬁ("-’cé>-{°' 171 Xl (o, 05 9), 81035, 6, 9], &) ag

| ‘é --:,'[JE(.;.e)\l .;..I;]-~X(7,Dr(c, 9, S) ’S[‘//r(c, G,S)]’ e} ..(410’4; .’ .

' ﬁﬁere Jﬁ(d) is the funaamen;al 0perauor assocmauea‘wiun IT‘(e) o A As before, -
we W;Ll nouaulonaliyAeuonress the first .Antegfal ' Thls-w;;lerequlfe eeme‘
‘Cahu101 since the estlmates on.w(u, 9 S) are al;;ereﬁuibibfiifé.Oyaﬁa.t E?O. .
ATne”poorer‘est;magee occur}fer t£.0; and we w1]7 heve. uo use them. Theh.S(G)

'vmustvsatisfy”?'--':

. S(e) —"-'é [JE< 0') ° -L X{b’/r(dy 6.;':_5): S[?//r(c;,e, S.)'].) 8} dc;
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=]
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- where o, 6, S) is the unique solution of (8) .that is defined for all time and

satisfies ¥(0, 6, S) = 6.

We now make the change of integration variable used vefore; that is,
T = T/s in the degenerate term and T — g7 in the singular term. Then

0o

(o) Xl (o, €), sl (o, &)1, &} oo,

5(6) = -

o
where 'f"
W, e, 8) normel -
' W(c, a)-é?-j< Y(o/e, €, S) in the degenerate term \
o o ? | | . . |
'*‘§ Y(ea, 6, S) singular '
1\ | 4 ] | )
end j(o) = J(=0) ° Iy, Where now J(g) is the fundamental operator associated

with A. Then by Lemma 3.5 and assumption (b), we have
|5(a)] s xe™, . gzo0.

We definé:Té on Qw, ) by

) I, 810) = o i(a) X(e, ), Sliylo, ), &) do.

Thenfollowing the procedure used before

Clz sl s oLl Ixt-, s, elll 4o
. o] .
s Xleppy + ox(e)] [ o™ do
0O )
Klep p1 + e5(e)]/u. |

R

But X CQ/“ §,l/l8 and 05(5) -0 as | 2] -0, so that HTE‘SH'é plvif sl =0

-l_-

and |z is small enough.



Be;o“e we can, estlmaue HI De S]” o we w:.ll neeo. aV1 estlmate on

”I De %.( 3

" "’Fo* Lem:ra 3 17 %o apnly, we have to assume t‘uau ls] 1s small enougn J’lat

~ '_-Lz-:_ r e < ..L The*'l by Corollary 3 16 l we have nai.; A
lcb( )l . ’Lael ol for all t :
(2, 5, 1) 2, "t._z' 0.) ;rnus

L i w( ol = o et 1ok
eng, after tﬂe Change of mtegramon var;‘abl?, o

L llog vele, s s ol 5 e explry eo)fe}

'se 'e:cp{(_g/2:+'..cl— pe) o, -

' Lét v = p/e +clpge andrequlre '. '

{'_ (20) | " “' - 'f::fj? 92 s ie cle)

o 18 s

) tfllté;wr-(a; g e>Am"_sé. e,

Coming_ back to_l‘“ Dé Te Sm, Je have
g g, ll = 506 log x (I e

ri'w"here

| f' RCrEA v CAc je;sxf ‘s,l e *"i"(b’?f"” i

_By Le;n.zr,a 5.17 we k_now uha DG ?//(c, e, S) sauls;les

'y'
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we have assumed 1n (d) that K e 02/u = ”/;8,50 tnat 1f
T e ks

'andfeo-ié sﬁall’enoﬁgh £hat for 0 < [gl s €9, K
© Then for 'HI'S!H = pl, ]HD@ SHI s oy % u/(B °1 e), we heve ”[DQ xa SH

. then T. maps Q(pl, pg) lnto itself.

<5> mT on el

>69 ‘

(=2, T+ B ) oy X ) 00 S 2 B Wl )

) DeTe _Svm‘, :

"

f lgm uuaer x< >m m% x< >m m@e sm} m@@ wr<c>m a

o]

j‘K ef°2‘91f%j¢3(€)'+'¢2 D2J =£  éy?i§-E?} d6 f_ij DN

"/\

;IM"_

: K e[ce(pi + p2> + c5 a) /<u - ;)Hii?in ;L ﬁ";S; '

o

6 X e[CQ(pl + 92: K C5( ]/H

.'v.,

. kiEstiﬁaée (1;), assumnulon (d); and the deflnlulon of 7 have been used Eut? i.,._

1 6’K;é.b <s)/u-$:'l/5.

' Thus we have shown that 1f (lO} end (12) nold, and 1f le] is small enoug

=)

- To- show that T 1s a cont“acu;on, let Sl 52 € Q<01 bé), VTheﬁ:

Xt ML), o - X0R, £0R), elllas.

; 8] T

SR

L mcn[

/

t

i, "s%<'w§>; el xd std), el

R IR

o, S wR), €

T e Lo L _.1 S ,;[]f'f_J_a

“:’-‘Z’lmi}f'<.-.;+4mxw 0D, o

P .
]

S0, <) - xR, R,
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f g, x< i v -wgm
|

<] 1J<o>l‘<' +“moxl. <l liog 11 lllw AR m T
: | L

| sy, 2 ]l “.sl sgm  _.,' )

‘Before we can proceed ve need to obtain an esumate on “Wl o, ,S, g) -

. w2(c, z s, el | Before the Ghange of varicbles.ve have wfz
lw (t 0, s’ > - Y <t 0,8 )l B

lf mw(d éw/w)}-@wga wa(d}dd ;
:IHDQ @c->m va<c, 30 - w (c, " Ml |

3l S
| J { + llo @< l g ol llw (0, __l> 4,%3 g-,_-:.s?);“l;_" a |

|+ IHD ®( )Hl H!S = 8 m AR R T R
e S SR )

sz_s'c‘l Ills Ll ltl l Ilw <o, l)-'wo, s2> dol

O\a cl'

Thus the Drodf Qf ébfollary 3T15 1’impiies that -
lw (t, 6, s%) - w < 0, s >I
‘l,;fg_cl. st - 2if (e s 14 g
T e S I ey

This is uniform in 6, and is valid for all t. After the change of variebles, ~

..we have

Ml// (0':' ) 2//1'(0') S )[”

ct
[
(@]

s cge HIS - s HI (&7 - D)p, - for
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'jl Tdking'this back.to (;3) yieldsff"vﬁ‘

B s n @ s 0 A T A,

5« un% Xl o, Ol H]De"sm

HI?// (cr,."‘ ) - w (c,.,__g)l'i * d!De x( )IH

cl e[cg pl + 03<a) + c2 pg] ( .;- l)/v +'C f

‘-,'f ol E(_'c)_ os |

' *1;-“' fﬂ
.o T

I

X cl e[cP pl +e (s) + 02 92 f e-uc (’yc l)/V dU

S K cy. f e™HO gy

e

K CQ/P' + K .:Cl. e[02 pl + 03( €)+02p2 ]/ [H(“+'Y)] .

1A

e v)/ (s X cl ¢ )

A .

M“f.,“’.’?/‘@Kcl > &)

o +'Y)/ (4 K _01 s ‘e)' "'. ':4fo'1f'~l‘é[ , §€o SRR

Q
N
- Pt
o
S
1A

oi}Thén T s ;[18 l/ . l/h + l/h <1 and T _1s a contraCulon on Q(pl, pe)

.'7oThe proof now follows as the oroof of Tbeorem 5. 2

Q.E.D..

Coroliary L Q;i;V'If in Theorem M‘E ‘A‘iS'an arb rary contlnuous BRI

‘,ﬂoperator w1th no purely 1mavlnary characterlsulc roots, the tneorem remalns

true.



2.

Proof Constants u and K are’ stlll guaranteed to ex1st by Lemma 5 5,

'and the change of - 1ntegration variable is- still valid, 50 that equation (9)1 4

r.'\

:gbis valid The nroof follows 1denoically.

" Q.E.D.

Corollary h 2 2 If in Theorém 4.2 £he"degenerate ﬁerm.is absent;

‘that lS o

.vfhen condition.(c)'can'be“replaced by

mo-

ety |||oe @( xr, e|H ‘w/@. e) (2&«'e">:-.-l.{j;-'.;!_;f-;

1A

m:f | e”l o

~and the conclusion remains'valid..

ProOf: See Corollary 2. 2 1.

Remark The invariant surfaces’ obtained in this work are entities in o

11‘ucl:i.dian spaces, while prev1ous authors (in paruicular Halany [9 po. 501 509]'

'have had their invariant surfaces be enti ies in Banach ‘spaces of conuinuous
functions Also, there the "Angular variables, 9,'.enter w:.‘thj‘time,delay,, .
which Halany [9, p 509] describes as an open, question "The brice paid for
aschese extensions lS tha+ the surfaces dbtained are nroven 0 be invariant

| only in relation-to.solutions defined for all timet_.?hus if ¢(t) is a -
solution. of (6) that 1s only defined for t to,'if'is not known under'what

'conditions SPW(t)] is’ a solution of (7) for t fo.3 It 1s congectured tnat

-

W(u) “is, not necessarily & soluuion of (7) for t- 2 tozand chat the oehavior-

of SEW(u)];fOr t,é_éo Vill Tave to be deduced‘from'stability results.
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