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We study the (3+1)-dimensional Gross-Pitaevskii / Nonlinear Schrödinger equation describing a dipolar 
Bose-Einstein condensate. Bound states are computed using accurate numerical techniques. When the 
dipolar strength is negative, the total number of atoms vs. frequency relationship for these bound 
states is multi-valued and possesses a cusp point, which corresponds to a “candlestick” ground state. 
Direct simulations of this ground state exhibit strongly-anisotropic collapse of its nucleus, with different 
contraction rates along the dipole axis and perpendicular to it. We propose an anisotropic self-similar 
theory to explain this dynamics. The physical implications are discussed.

Published by Elsevier B.V.
1. Introduction

Self-similarity and singularity formation are two fascinating 
phenomena of wave dynamics. Nonlinear dispersive waves can ex-
hibit both in the form of self-similar collapse [1–3]. Self-similar 
collapse has been studied and observed in a variety of physical 
systems, such as laser propagation in plasma [4,5], laser propaga-
tion in optical-Kerr media [6], and surface gravity waves in fluids 
[7]. One of the universal equations in nonlinear wave theory is the 
nonlinear Schrödinger (NLS) equation and its generalizations. The 
possibility of collapse and its rate depend on the spatial dimen-
sion. For the focusing cubic NLS equation in (d + 1)-dimensions, 
there is a critical dimension, d = 2, such that collapse is possible 
only when d ≥ 2. Thus far, the theory of singularity formation is 
well-developed in the critical case [1,3]. In the supercritical case 
(d > 2) it is known that the mass in the collapsing region dimin-
ishes to zero during the collapse process, a phenomenon termed 
“weak collapse”. However, the theory is much less developed in 
supercritical case. In addition, there have been few detailed stud-
ies of collapse dynamics in anisotropic NLS equations.

Bose-Einstein condensates (BECs) provide new ways for study-
ing ultracold dispersive matter waves [8,9]. BECs can undergo col-
lapse, which has been observed in many experiments, cf. [10–12]. 
BEC collapse may also be related to gravitational collapse [13,14]. 
BECs offer a natural system to study supercritical collapse dynam-
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ics, since their mean-field is described by a (3+1)D Gross-Pitaevskii 
(GP) or NLS equation. For example, weak collapse was recently 
observed in an isotropic BEC [15]. Transition-metal BECs, such as 
those using 52Cr or 168Er atoms, exhibit strong dipole-dipole inter-
actions [8]. The experiments of Lahaye et al. provided the first ob-
servations of collapse in dipolar BECs and predicted its anisotropic 
nature [16], which they observed shortly thereafter [17] in the 
form of d-wave collapse. Anisotropic collapse in dipolar BECs was 
also reported in [18]. In reality, singularity is always arrested by 
some mechanism, cf. [16]. However, a deeper understanding the 
nature of collapse can provide insight into this complex dynam-
ics.

Motivated by these experimental and theoretical studies, we 
study computationally the anisotropic collapse dynamics in a 
(3+1)D dipolar NLS equation. We compute the bound states (struc-
ture functions) and study their kinetic properties.

2. Preliminaries

The dynamics of the mean-field wavefunction, ψ(r, t), of a 
dipolar BEC can be described by a nonlocal generalization of the 
NLS equation [8,9],

ih̄ψt =
(

− h̄2

2m
� + V ext(r) + 4π h̄2as

m
|ψ |2 + Udip ∗ |ψ |2

)
ψ ,

(1)

where m is the mass of the boson, r = (x, y, z) is the position 
variable in R3, � = ∂2

xx + ∂2
yy + ∂2

zz is the 3D Laplacian, V ext(r) is 
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Fig. 1. For a prolate condensate (elongated along the z axis), most dipoles are 
aligned with the negative side of one atom near the positive side of another atom. 
In this case the overall effect of dipole-dipole interactions is attractive. The situa-
tion is reversed when the condensate is oblate. Thus, dipolar effects [Udip defined 
in Eq. (2)] can vary dynamically between attractive and repulsive depending on the 
shape of the condensate.

an external potential, as is the short-range boson-boson scattering 
length, and the last term models long-range dipolar interactions, 
where the symbol ∗ denotes convolution in R3 with the dipolar 
potential

Udip(r) = Cdd

4π

1 − 3 cos2 θ

|r|3 , (2)

where θ is the angle relative to the dipole axis (which we take to 
the z axis) and Cdd is the strength of the dipolar interactions. We 
consider (9) with the anisotropic harmonic trapping potential

V ext(r) = V 0

[
x2 + y2 + (κz)2

]
, (3)

where V 0 is the potential depth and κ is the anisotropy (aspect-
ratio) parameter. κ < 1 and κ > 1 correspond to a prolate (cigar-
shaped) and oblate (pancake-shaped) potentials, respectively.

The short-range interactions can be tuned between repulsive 
(as > 0) or attractive (as < 0) using a Feschbach resonance. The 
dipolar interactions can straddle the continuum between attractive 
and repulsive effects, depending on the shape of the condensate – 
see Fig. 1. Typically, Cdd > 0, as was the case in the experimental 
study [17] and as is assumed in Fig. 1. In this case, for dipoles po-
larized along the long axis of a prolate BEC (θ ≈ 0), Udip < 0 and 
the overall contribution of the dipolar interactions is attractive be-
cause the dipoles are aligned head-to-toe. On the other hand, for 
dipoles polarized along the short axis (θ ≈ π

2 ) of an oblate BEC, 
Udip > 0 and the overall contribution of the dipolar interactions is 
repulsive because the dipoles repel each other. Note that, as our 
results demonstrate, the condensate’s shape can be oblate even 
when it is trapped in a prolate potential.

On the other hand, it has been predicted that by tilting the 
polarization off-axis and rotating it rapidly, the resulting time-
averaged dipolar interactions give rise to an effective Cdd < 0 [19]. 
In that case, the situation is reversed in the sense that a prolate-
shaped condensate can give rise to repulsive dipolar effects. This is 
the case we study.

2.1. Alternate form of the equations

After standard normalizations (cf. [8]), Eq. (1) takes the form

ih̄ψt =
(

−1

2
� + V ext(r) + g1|ψ |2 + g2Ũdip ∗ |ψ |2

)
ψ , (4)

where g1 is the short-range interaction constant, g2 is the dipolar 
constant, and1

Ũdip(r) = 3

4π

1 − 3 cos2 θ

|r|3 . (5)

1 The coefficient 3 is chosen for convenience.
This is equivalent to normalizing the physical variables to the char-
acteristic nonlinear length scales of the system, which are deter-
mined by the atomic scattering lengths [8]. Two conserved quan-
tities of (4) are the total number of atoms (mass) and energy 
(Hamiltonian), given respectively by

N[ψ] =
∫
R3

|ψ |2 dr (6)

and

E[ψ] =
∫
R3

{ 1

2
|∇ψ |2 + V ext|ψ |2 + 1

2
g1|ψ |4

+ 1

2
g2Ũdip ∗ |ψ |2

}
|ψ |2 dr . (7)

These quantities are useful for our analysis of the bound states 
and collapse dynamics. We remark that many studies choose to 
normalize the wavefunction such that N[ψ] = 1, but we choose 
not to do this, because we are interested studying the bound states 
as the number of atoms vary.

It is useful to recast Eq. (4) in a different form. To do so we use 
an alternative expression for the dipolar potential (5) (cf. [8]),

3

4π

1 − 3 cos2 θ

|r|3 = −δ(r) − 3

4π

∂2

∂z2

(
1

|r|
)

, (8)

where δ stands for the Dirac delta function. Substituting (8)
into (4), observing that the r−1 potential on the right-hand side 
of (8) is proportional to the kernel of the Laplace operator in R3, 
and introducing the field ϕ yields the coupled system

iψt =
{
−1

2
� + V ext(r) + (g1 − g2)|ψ |2 + 3g2ϕzz

}
ψ , (9a)

�ϕ = |ψ |2 . (9b)

System (9) (with V ext = 0) resembles the one derived by Ben-
ney and Roskes [20] for the propagation of surface water waves 
over a deep bottom coupled to a slowly-varying mean field (the 
average water depth). In analogy, for a dipolar BEC, ϕ describes a 
slowly-varying electrostatic potential driven by the local density of 
the bosons, |ψ |2. We remark that a similar looking system arises 
in the study of surface water waves [20], commonly known as the 
Davey-Stewartson system [21]. In contrast to BECs, in water waves 
the surface has two spatial dimensions. This dimensional distinc-
tion has significant consequences on the possibility of singularity 
formation. In particular, the 2D case (as in water waves) is a critical 
dimension for collapse, whereas, for a 3D BEC, the resulting system 
is supercritical. Moreover, this also has significant consequences on 
the collapse dynamics. In particular, it was shown in [22] that the 
solutions of the 2D Davey-Stewartson system can undergo mildly 
anisotropic collapse, where the collapsing region is self-similar to 
the ground state. In contrast, as we show below, solutions of (4)
can undergo strongly anisotropic collapse.

2.2. Instability regions and collapse

Intuitively, for collapse to occur in a dipolar BEC, either the lo-
cal and / or the dipolar interactions need to be attractive. However, 
as noted above, there is no simple criterion to determine when the 
dipolar interactions are attractive. In general for NLS-type equa-
tions, there are conditions that sufficient for collapse and there 
are conditions that are necessary for collapse, but there are no 
conditions that are both necessary and sufficient for collapse [3]. 
Moreover, the theory of collapse is far less developed for supercrit-
ical NLS equations, to which (3+1)D System (9) belongs.
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Lushnikov [23,24] obtained sufficient criteria for collapse of so-
lutions of System (9) in the case g1 < 0 (attractive local interac-
tions) and g2 > 0. Those criteria, which were derived based on a 
generalized Virial Theorem, depend on whether the energy is be-
low a certain critical threshold as well as the width (mean-square 
radius) of the initial wavefunction.

Carles et al. [25] and Antonelli and Sparber [26] obtained nec-
essary conditions for collapse (or sufficient conditions for global 
existence). These studies identify two distinct Unstable Regions2:

• Unstable Region I:

g2 > 0 and g1 < g2 . (10)

• Unstable Region II:

g2 < 0 and g1 + 2g2 < 0 . (11)

Unstable Region I requires attractive local interactions (g1 < 0). Un-
stable Region II requires sufficiently strong and attractive dipolar 
interactions. Unstable Region II suggests that collapse may occur 
even with repulsive local interactions. If this happens, it can be 
said that the collapse is due largely to the dipolar interactions. We 
are chiefly interested in Unstable Region II, which has not received 
much attention. Specifically, we focus on parameters that are in-
side Unstable Region II (g1 = 1 and g2 = −1) and also explore 
parameters that are at the borderline of this region (g1 = 1 and 
g2 = −0.5). It should be recapped that these conditions are only 
necessary for collapse.

3. Bound states and ground states

Based on thermodynamic arguments, a BEC is formed in an 
energetic ground state [8]. Moreover, the possibility of singularity 
formation in NLS-type equations is closely-linked to the existence 
of ground states [27]. For these reasons, it is useful to study the 
kinetic properties of the ground states of System (13). Assuming a 
time-harmonic solution,

ψ(r, t) = u(r)e−iμt , (12)

where μ is called the chemical potential (or frequency), leads to 
the coupled system of equations for a bound state u(r),

μu =
{
−1

2
� + V ext(r) + (g1 − g2)|u|2 + 3g2ϕzz

}
u , (13a)

�ϕ = |u|2 , (13b)

subject to |u(r)| → 0 as |r| → ∞. System (13) is nonlinear and 
elliptic. In general, it admits infinitely many solutions. The standard 
characterization of a ground state (if it exists) is a bound state 
that minimizes the energy (7) subject to a fixed total number of 
atoms (6), i.e.,

ugs(r;μ) = arg min
{

E[u]
∣∣∣ u ∈ H1(R3), ‖u‖2

2 = N
}

. (14)

Once a bound state is found, μ and can be recovered from the 
relation

μ = E[u] + 1

2

∫ {
g1|u|2 + g2Udip ∗ |u|2

}
|u|2 dr . (15)

In this formulation the chemical potential μ depends implicitly on 
N .

2 Accounting for a different normalization constant in Eq. (5).
Existence and uniqueness of ground states of System (13) were 
studied in [26,28,29]. These studies proved that ground states exist 
and are unique in the two unstable regions defined above. We note 
that in [26,28], instead of using Definition (14), the ground states 
were characterized using the Weinstein functional, which has the 
advantage of being scaling-invariant. In [29] it was also observed 
analytically that the trapping potential plays a key role in stabiliz-
ing the ground states.

We also note the anisotropic collapse in generalized NLS-type 
equations with fourth-order dispersion were studied in [30]. In 
[31] the initial stage of anisotropic ring-type collapse in NLS 
equations was studied using a nonlinear Geometrical Optics ap-
proach.

4. Computational methods for bound states

Almost all theoretical studies of dipolar BECs bound states 
have used the Variational Method (Lagrangian averaging), pseudo-
potentials, or similar techniques to reduce the 3D problem (13)
to lower-dimensional approximations, cf. [24,32–41]. However, as 
noted above, singularity formation is sensitive to the dimensional-
ity of the problem. Bao et al. developed a non-uniform spectrally 
accurate gradient flow method for computing the ground states of 
System (9) [42–44] Here we adapt the Accelerated Imaginary-Time 
Evolution Method (A-ITEM) [45], which is a uniform grid FFT-based 
gradient-flow method. As the problem is axi-symmetric, the bound 
states are functions of (r⊥, z), where

r⊥ =
√

x2 + y2 . (16)

We use this symmetry and employ the quasi-discrete Hankel trans-
form [46] along r⊥ and FFT along z. The computational domain 
is chosen to be large enough so that |u| < 10−4 near the bound-
aries.

Instead of using the standard L2-normalization during the iter-
ations, we employ peak-density normalization. Specifically, at each 
iteration, the approximate solution is normalized as

u(n) = nmax

‖u(n)‖2∞
u(n) , (17)

where nmax is a fixed constant. The iterations are stopped when 
the maximum of the residual of Eq. (13a) is smaller than 10−6. 
The physical meaning of nmax is the peak density of the atoms in 
the bound state,

nmax = ‖ψ‖2∞ = ‖u‖2∞ . (18)

Unlike L2 normalization, peak-density normalization typically con-
verges even for unstable bound states [45], which is advantageous 
for our study. Consequently, as discussed below, not all these 
bound states are ground states in the sense of Definition (14).

5. Properties of the bound states

In this section we compute the bound states of System (13) in-
side the Unstable Region II using the parameters g1 = 1, g2 = −1, 
and with the prolate harmonic trapping potential (3) with V 0 = 0.1
and κ = 0.25. We do so over a wide range of peak-densities, i.e., 
0 < nmax < 64. Fig. 2 shows the mapping between the total number 
of atoms and energy of the bound states. There are two distinct – 
but “close” – branches, which are demarcated by a cusp point (B). 
The bound states in the upper branch (such as Point C) possess 
slightly higher energy than those in the lower branch for the same 
number of atoms. Therefore, the upper branch bound states are 
not ground states in the sense of Definition (14). The bifurcation 
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Fig. 2. Bound state energy (7) vs. total number of atoms (6). Points A–D designate 
specific values in parameter space for comparison with Figs. 5 and 6.

Fig. 3. Iso-surface plots of the bound states corresponding to (a) Point A and (b) 
Point C in Fig. 2.

Fig. 4. Mesh plot in the r⊥ − z plane and iso-surface plot of the “candlestick” bound 
state corresponding to the cusp point (Point B) in Fig. 2. The magenta surface de-
lineates the trapping potential. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)

around the cusp point corresponds to transition in the shape of 
the bound states from oblate to prolate, as demonstrated in Fig. 3. 
For graphical purposes the solutions are plotted over the r⊥ − z
plane and (by rotating around the z axis) as iso-contours in 3D 
space.

We remark that all of these bound states are non-oscillatory. 
Hence, even those bound states that are not ground states in the 
sense of (14) are not excited states in the usual sense. In par-
ticular, Fig. 4 shows the ground state at the cusp point, which 
occurs at nmax = 1. We refer to this special ground state as “can-
Fig. 5. Chemical potential (15) vs. peak density (18) for the bound states.

Fig. 6. Number of atoms vs. chemical potential for the bound states.

dlestick” due to its central nucleus flanked by two humps. This 
mode is on the border between oblate and prolate bound states, 
though its overall structure is complex and non-spherical. For the 
mode, N ≈ 609, E ≈ 619, and μ ≈ 1.35. We also note that μ is 
determined implicitly by the choice of nmax. The relationship be-
tween them is shown in Fig. 5. Comparing with Fig. 2 shows that 
the upper branch in the N �→ E mapping has larger peak densi-
ties.

Fig. 6 shows the relationship between N and μ. According to 
the Vakhitov-Kolokolov stability criterion [47], a bound state is lin-
early stable if

N[u(·;μ)]
dμ

> 0 . (19)

Based on Fig. 6 the slope condition is satisfied in both branches, 
which indicates that all these bound states are linearly stable. We 
note that it is fairly common for bound states of NLS equations to 
be linearly (and orbitally) stable, but nonlinearly unstable [3], as 
we also find below.

6. Collapse dynamics

In this section we investigate the collapse dynamics in the Un-
stable Region II. We first recap some of the pertinent theory of 
peak-type collapse for isotropic NLS equations [1,3]. In particular, 
for the cubic NLS equation, near the collapse time, the solution can 
be decomposed as ψ ∼ ψc + radiation, where the collapsing part is 
self-similar,
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Fig. 7. Collapse of the solution of System (9) with the initial conditions (22).

|ψc|2 ∼ 1

L2(t)

∣∣∣∣Q (
r

L(t)
)

∣∣∣∣
2

. (20)

Here Q is a radially-symmetric function, whose maximum is at-
tained at the origin. L(t) is the characteristic width of the collaps-
ing part of the solution, which satisfies

L(t) = C
√

Tc − t , (21)

where C is a constant that depends on the initial conditions. In 
the critical case (d = 2) this was proven rigorously by Merle and 
Raphael [48]. In the supercritical case (d > 2), the rigorous the-
ory is much less developed, but there are many computational 
results that support this theory since the early studies of Zakharov 
et al. [4,49].

To solve System (9) we use the Split-Step technique while uti-
lizing the axi-symmetry, quasi-discrete Hankel transform, and FFT 
as described above. The initial conditions are a slightly perturbed 
candlestick mode, i.e.,

ψ(r⊥, z,0) = 1.02 ugs(r⊥, z;nmax = 1) . (22)

We use the grid sizes dr⊥ = dz ≈ 0.05 and dt ≈ 5 · 10−4.
Fig. 7 shows the collapse of the peak density of the time-

dependent solution3

nmax(t) = ‖ψ(·, t)‖2∞ . (23)

To the eye, the solution remains stable up until it near the sin-
gularity time. This further indicates that this ground state being 
linearly stable but nonlinearly unstable. Figs. 8 and 9 show the so-
lution at different time values. These plots show that the nucleus 
flattens (becomes oblate) while its peak density increases. The two 
humps are still there, but they remain small and do not enter the 
collapsing region.

To investigate this dynamics in further detail, it is useful to re-
cover the widths of the nucleus from the numerical solution. We 
do this using the full-with at half-max (FWHM) along the radial 
and z axes, denoted by Lr(t) and Lz(t) respectively, which are the 
smallest values such that

|ψ(Lr,0, t)|2 = nmax(t)

2
, (24a)

|ψ(0, Lz, t)|2 = nmax(t)

2
. (24b)

To check whether the collapsing nucleus is self-similar, we plot the 
rescaled density along the radial and axial directions, computed as

3 Not to be confused with the peak density of the bound state.
|ψ̃(r⊥,0, t)|2 = |ψ(ξ,0, t)|2/nmax(t) , (25a)

|ψ̃(0, z, t)|2 = |ψ(0, ζ, t)|2/nmax(t) , (25b)

where the dynamically rescaled radial and axial variables are

ξ(t) = r⊥
Lr(t)

, ζ(t) = z

Lz(t)
. (26)

Fig. 10 shows the self-similar structure of the radial and axial 
profiles near the collapse time. In the rescaled coordinates, the 
two humps remain non-negligible, but appear to move away from 
the nucleus. However, in the non-rescaled z variable, these humps 
are approximately “static” (see Fig. 9) while the nucleus’ width is 
shrinking. Comparing the rescaled profiles along the radial and ax-
ial directions, Fig. 11 shows that they appear to approach the same 
self-similar profile as t → Tc . This suggests that the rescaled shape 
of the nucleus is described by a spherically-symmetric function, 
i.e., the nucleus approaches an oblate ellipsoid.

We also plot the aspect ratio Lr(t)/Lz(t) in Fig. 12 as func-
tion of nmax(t) to stretch the dynamics near the collapse time. 
The nucleus becomes gradually more oblate as its width shrinks, 
which further demonstrates the anisotropic nature of this collapse. 
Physically, this corresponds to different contraction rates along the 
dipole axis and perpendicular to it. It is interesting to study the 
rate of this collapse.

Fig. 13 shows that the radial width decreases approximately as 
in the isotropic case (21). In contrast, the axial width decreases 
linearly in time. By extrapolating Lr(t) and Lz(t) beyond the break-
down of the numerical solution, it appears that they both approach 
zero at the same time. Thus, these results suggest that near the 
collapse time, the widths scale as

Lr(t) ∼ √
Tc − t (27a)

Lz(t) ∼ Tc − t . (27b)

We also recover the collapse rate using the peak-density metric

�∞ = 1

nmax(t)
. (28)

Fig. 14 shows that this collapse rate scales approximately as

�∞ ∼ (Tc − t)p , p ≈ 2 . (29)

These results suggest that, near the collapse time, the dynamics 
of the nucleus (the collapsing part of the solution) is self-similar 
and obeys the scaling law

|ψc(r, t)|2 ∼ 1

�∞(t)
|Q (ξ(t), ζ(t))|2 , (30)

using the rescaled variables (26), the rates (27)–(29), and Q is a 
spherically symmetric function, i.e.,

Q (ξ, ζ ) = Q (η) , η(t) =
√

ξ2(t) + ζ 2(t) . (31)

Based on this ansatz, the total number of atoms within the col-
lapsing region scales as

N[ψc] =
∫

|ψc(r, t)|2 dr ∼ 2π

�∞(t)

∫
|Q (ξ, ζ )|2 L2

r Lz ξdξdζ

= L2
r (t)Lz(t)

�∞(t)
N[Q ] = C(Tc − t)2−p , (32)

for some constant C and exponent p ≈ 2. In contrast, for peak-type 
collapse in the isotropic (3+1)D cubic NLS equation, the collapsing 
mass approaches zero (“weak collapse”) at the rate 

√
Tc − t [3].
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Fig. 8. Mesh plots of the solutions at different times.

Fig. 9. Iso-surface plots corresponding to the same time values as in Fig. 8.

Fig. 10. Rescaled profiles of the density in the vicinity of the nucleus along the ξ and ζ axes [Eqns. (25)] at the times shown in the legend.
These results can be interpreted as follows. The attractive dipo-
lar interactions are stronger than two-body local attractive interac-
tions (those corresponding to a focusing cubic term). This leads to 
more rapid collapse, which slows down the radiation of mass from 
the collapsing region.

7. Dynamics at the borderline of Unstable Region II

In this section we investigate the dynamics at the borderline of 
Unstable Region II. To do this, we choose the parameters g1 = 1
(as before) and g2 = −0.5, so that g1 + 2g2 = 0. We compute the 
ground state with nmax = 1 (with the same trapping potential and 
parameters as before), u1(x ), – see Fig. 15. Here it simply takes 
an prolate shape (Lz/Lr ≈ 3.4) trapped inside the prolate potential. 
For this bound state, N ≈ 103, E ≈ 103, and μ ≈ 1.4.

To study its nonlinear stability, the initial wavefunction is cho-
sen as 1.1u1(x ). Fig. 16 shows the ensuing dynamics: the peak 
density undergoes bounded oscillations, while the (normalized) 
widths hardly change at all. This demonstrates that the condensate 
is nonlinearly stable for long propagation times. This result, along 
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Fig. 11. Comparison of the rescaled profiles along the rescaled ξ (dashes) and ζ (dots) axes.
Fig. 12. Aspect ratio of the nucleus vs. peak density.

Fig. 13. Radial and axial widths of the nucleus and best power-law fits near the 
collapse time (dotted curves).

Fig. 14. Blow-up rate (28) of the peak density (log axes).

Fig. 15. Plots of the ground state with g1 = 1, g2 = −0.5, and nmax = 1.
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Fig. 16. Stable dynamics of the condensate’s peak density (left) and normalized axial 
and radial widths (right).

with many other simulations we perform, indicate the criteria for 
Unstable Region II are at close to being sharp, in the sense that, 
when g2 < 0 and g1 + 2g2 < 0, collapse (of an initially-perturbed 
bound state) can occur.

8. Conclusions

The ability to tune the signs of the short and long-range boson-
boson interactions opens the door for novel many-body dynamics 
in BECs. In the Unstable Region II, which corresponds to sufficiently 
strong and attractive dipolar interactions, a family of bound states 
of the generalized Gross-Pitaevskii equation bifurcate from a cusp 
point. The candlestick (cusp-point) ground state is nonlinearly un-
stable and undergoes anisotropic collapse. The scaling laws of this 
collapse dynamics differ significantly from those of isotropic col-
lapse. These results suggest that supercritical collapse with dipolar 
interactions can behave qualitatively different from the isotropic, 
local-nonlinearity case. Moreover, this offers new possibilities to 
control the dynamics of dipolar BECs.
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