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ABSTRACT OF THE THESIS 

 

The Pragmatic Demands of Mathematics:  

Examining Elementary School Students’ Oral Language Use in Mathematical Explanations 

 

by 

 

Anne Blackstock-Bernstein 

 

Master of Arts in Education 

University of California, Los Angeles, 2014 

Professor Alison L. Bailey, Chair 

 

As new academic standards and assessments are being implemented in the majority of U.S. states 

in 2014, students are being required to communicate effectively about their mathematical 

understanding. While linguistic and discourse proficiencies in English (i.e., lexical, grammatical, 

and genre knowledge) are essential to participating in classroom discussions of mathematics, it is 

also necessary for students to make use of pragmatic skills in order to ensure that they are 

effectively communicating. In the current study, I examined the oral explanations of 126 3rd 

(n=65) and 5th (n=61) grade students who completed a mathematics activity and then explained 

the mathematical procedures they used. Analyses explored how the complexity of the 

mathematical procedure (i.e., how many steps were involved) affected the communicative 

competence of the student’s explanation. Additional analyses considered how grade and the 
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English learner (EL) status of the 61 EL students in the sample might influence these 

relationships. Findings indicate that students who used more complex mathematical procedures 

struggled to orally communicate the details of their procedures more so than students who used 

simpler procedures. Younger students (3rd graders) and EL students may be more susceptible to 

these challenges. Implications for instruction in this era of new standards are considered. 
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The effective communication of mathematical understanding will be essential to the 

academic success of U.S. students under new academic standards and assessments. These 

standards, which were adopted by the majority of U.S. states in 2014, require that students 

display their mathematical content knowledge through classroom discourse with instructors and 

peers. For instance, the Common Core State Standards stipulate that in order to achieve 

proficiency in math, students must be able to explain what a mathematics problem is asking, how 

to solve it, and why their solution makes sense (National Governors Association Center for Best 

Practices & Council of Chief State School Officers [CCSSO], 2010). For decades, similar 

guidelines for high-quality mathematics instruction have encouraged teachers to engage students 

in discussions about mathematics in order to build and solidify mathematics knowledge and 

gauge student understanding (Boaler, 2008; National Council of Teachers of Mathematics 

[NCTM], 1991). However, it is a challenging task for students to achieve the linguistic 

descriptiveness and precision that is required for mathematical explanations to be 

comprehensible to their listeners (Moschkovich, 2002) and this challenge is likely intensified for 

students whose primary home language is not English (Moschkovich, 2012). Since the 

introduction of the Common Core, there has been an effort to understand how the new cognitive 

and linguistic demands of mathematics classrooms might affect student performance, particularly 

for English learners (ELs; Bailey, 2013, April). The purpose of the current study is to add to this 

nascent understanding by examining how students, both EL and English proficient, meet the 

pragmatic demands of communicating mathematically. 

English learners are students who have been identified by their schools as requiring 

additional English language supports in order to access academic content. The number of EL 

students in U.S. classrooms is increasing; in California alone there are 1.41 million EL students 
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in public schools, the majority of whom are in the elementary grades (California Department of 

Education [CDE], 2014). Teachers are held accountable for ensuring that EL students achieve 

proficiency not just in English language development, but also in content areas like math. In the 

last decade, there has been substantial research examining the effect of English language 

proficiency on students’ performance on mathematics tasks and assessments (Abedi & Lord, 

2001; Wright & Li, 2008). These studies have repeatedly demonstrated that EL students score 

lower on standardized mathematical measures than their non-EL counterparts, in part due to the 

linguistic complexity of test items (Abedi & Gándara, 2006; Martiniello, 2008). However, 

studies are only just beginning to address how the interaction between language proficiency and 

mathematics might play out as students are required to produce mathematical explanations in the 

classroom (Bailey, Blackstock-Bernstein, & Heritage, under review). 

To participate fully in academic English discourse, students must be skilled in selecting 

the appropriate vocabulary terms, producing sentences using conventional English syntax, and 

organizing these sentences into a coherent and cohesive explanation. In addition, students must 

be able to meet the pragmatic demands of using the English language in conventional and 

expected ways in order to convey their content understanding (Bailey, 2012; Cazden, 2001). To 

accomplish this, students must identify what knowledge they share with the listener (either 

classmate or teacher) and then determine how much detail and descriptiveness is necessary to 

convey their meaning. As teachers increasingly use students’ explanations to evaluate 

mathematical understanding and make instructional decisions, it is important for educators to 

understand what factors may interfere with or contribute to the communicative effectiveness of 

students’ explanations (Bailey et al., under review). 
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The current study examines the mathematical procedures students used during a 

mathematics activity and the pragmatic features of their explanations about those procedures. 

The aim is to understand how the complexity of the mathematical procedures students use might 

in fact affect their abilities to use oral language to effectively explain their reasoning. The 

explanations that students produce serve a specific pragmatic purpose—to communicate the 

student’s mathematical message clearly and concisely to a naïve listener. Therefore, a student’s 

performance during this explanation can be assessed in terms of its communicative competence; 

that is, whether the student used language to convey their mathematical ideas in a way that is 

understandable to the listener (Cazden, John, & Hymes, 1972) and without too much or too little 

information (Grice, 1975). Analyses explore how the complexity of each student’s mathematical 

procedure (i.e., how many steps were involved) affected the communicative competence of that 

student’s explanation. 

Background 

The current study is guided by a sociocultural theoretical framework in which language 

and mathematical learning are viewed as social activities (Vygotsky, 1978). Learning about 

mathematics involves active participation in the classroom community, which requires 

engagement in classroom discourse (Moschkovich, 2002). There is substantial evidence that, in 

particular, communicating self-explanations to others is a valuable tool for mathematics learning 

(Chi, de Leeuw, Chiu, & LaVancher, 1994; Esmonde, 2009). Describing, explaining, and 

justifying a mathematical procedure to a teacher or classmate is a means through which students 

gain mathematical knowledge (Gersten & Baker, 2000; Secada, 1992). These verbal exchanges 

of information promote mathematical learning because they require students to organize and 

clarify their thoughts in order to express them to others (Rogoff, 1998). Students also fill in gaps 
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in their understanding and develop new perspectives following input from others (Webb & 

Mastergeorge, 2003). During these classroom interactions, students simultaneously internalize 

principles, recognize patterns, monitor their mathematical understanding, reflect on their 

thinking, and relate it to their existing knowledge about mathematics (Chi, Bassok, Lewis, 

Reimann, & Glaser, 1989; Franke et al., 2007).  

The Common Core mathematics standards have acknowledged the educational 

importance of mathematical discourse by encouraging student explanations in standard 

classroom practice and by using student explanations to assess conceptual understanding 

(CCSSO, 2010). However, there are inherent challenges in providing the reflective explanations 

demanded by the Common Core, because people often lack awareness of their own mental 

processes (Wilson & Clarke, 2004). Even adults are often unable to accurately report how they 

solved problems (Nisbett & Wilson, 1977). Verbal reports are especially difficult for children, 

whose cognitive and linguistic abilities are not fully developed (Cavanaugh & Pelmutter, 1982).  

Communicative Competence in Explanations 

A student’s ability to produce a concise and comprehensible explanation represents her 

communicative competence during that explanation. One aspect of communicative competence 

is sociolinguistic competence, which involves the speaker’s ability to convey information in a 

way that is appropriate for the specific social context (Canale & Swain, 1980). Recently, Kelly 

and Bailey (2013) showed how authentic discourse practices frequently require that children 

navigate the intersection of two linguistic genres, for example, by telling narratives within the 

texts of a conversation. In the context of the mathematics discourse in the current study, students 

must embed their explanations within a conversation with a hypothetical classmate. Conversation 

requires that the speaker understand the function of the interaction, her role in this interaction, 
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and the knowledge that is shared by both the speaker and the listener (Canale & Swain, 1980). 

Explanation requires that the speaker organizes information clearly and provides sufficient detail 

and elaboration to convey a process or sequence of events (Bailey, 2012). 

Therefore, in order for a student to achieve sociolinguistic competence during a 

mathematical explanation, she must use sufficient detail and descriptiveness to convey her 

knowledge about the mathematical procedure to a target audience who may only share portions 

of that knowledge (Grice, 1975; Ninio & Snow, 1996). This descriptiveness requires the 

selection of words that are precise and appropriate for the context (Nathan & Knuth, 2003), 

including the use of temporal discourse connectors (e.g., then, next, until, when) to link together 

the steps being explained. These connective words and phrases, which are a hallmark of 

academic English in general (Bailey, 2012), serve a pragmatic function by indicating to the 

listener when each step should occur in relation to others and thereby articulating a cohesive 

sequence of propositions (Fraser, 1999). The lexical precision gained by sufficient use of 

temporal discourse connectors could make it possible for a listener to replicate the student’s 

procedure based solely on the student’s verbal directions. 

Mathematical Strategy and Explanations 

In the classroom, students are expected to produce mathematical explanations that 

include a description of how they would solve a given problem and why they would use that 

particular procedure (Franke et al., 2007). During this process, students can often choose from a 

range of strategies and procedures that vary in complexity, speed, accuracy, and relative 

probability of success (Siegler & Jenkins, 1989). 

As children progress through school, they learn and experiment with new mathematical 

procedures, and the relative frequency with which they use each procedure changes with time 
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(Siegler & Lin, 2009). According to Siegler and Lin’s “overlapping-waves” model of 

development, some previously preferred procedures become less frequent, some become more 

frequent, and others fluctuate. Gradually, newer, more effective procedures replace older, 

inferior ones. For example, for solving an arithmetic problem, the procedure of counting on 

one’s fingers is generally phased out as a child learns to retrieve arithmetic facts like 8 + 4 = 12. 

Some mathematical procedures, including those that require more steps, involve more working 

memory—which stores and processes information—than others (Ashcraft & Krause, 2007; 

Ayres, 2001; Baroody, 1984; LeFevre, DeStefano, Coleman, & Shanahan, 2005).  

It is possible that the cognitive demand of these varying mathematical procedures would 

affect students’ abilities to explain them using oral language, because language production 

carries its own cognitive demands. While some of these demands are language-related (e.g., 

lexical retrieval and sentence formulation; Levelt, Roelofs, & Meyer, 1999; Bock, 1982), others 

are sociolinguistic and related to the student’s pragmatic understanding of the knowledge they 

share with their audience and the expectations of the social context they are in (Hymes, 1972). 

Students must use this pragmatic understanding to produce explanations that are sufficiently 

detailed and precise for their audience to understand (Shatz & Gelman, 1973). In addition, some 

mathematical procedures—such as counting—lend themselves to internalized verbalization and 

may therefore be easier to articulate than others (Ginsburg et al, 1983). The present study 

examines how the language of students’ mathematical explanations may vary depending on the 

mathematical procedures they use. 

The Present Study 

In order to understand how various mathematical procedures might be related to 

pragmatic language competencies, the present study will: 1) examine the communicative 
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competence of students’ oral explanations of a mathematical procedure, 2) compare the 

communicative competence of students’ explanations based on the mathematical procedures they 

chose to use, and 3) explore the influence of grade level and English learner (EL) status on the 

relationship between mathematical procedure and communicative competence. Specifically, the 

present study uses secondary data analysis to answer the following questions. 

RQ1. What is the relationship between the complexity of the mathematical procedures 

that elementary school students use during a mathematics activity and the communicative 

competence of the students’ oral explanations? 

RQ1a. How does this relationship between mathematical procedure and 

communicative competence differ as a function of grade? 

RQ1b. How does this relationship between mathematical procedure and 

communicative competence differ as a function of EL status? 

I hypothesize that communicative competence will be adversely affected by the cognitive 

demand of more complex mathematical procedures. Because the cognitive demand of conducting 

the mathematics itself is increased for students who use more complex mathematical procedures, 

I hypothesize that the communicative competence of these students’ explanations will decrease. 

Students who must use working memory to recall, explain, and justify a larger number of 

procedural steps will have fewer cognitive resources available for language production and will 

therefore be more likely to overlook some steps or fail to explain them fully. I hypothesize that 

this relationship will be especially strong for younger students and English learners, whose 

English language proficiency is still developing.  
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Method 

The current study is a correlational investigation of the relationship between complexity 

of mathematical procedures and clarity of oral explanations, using secondary analysis of existing 

data that was collected as part of a larger longitudinal research project (the Dynamic Language 

Learning Progressions project, or DLLP) that focused on language development (Bailey & 

Heritage, 2014; Bailey, Kelly, Blackstock-Bernstein, Chang, & Heritage, 2014, April). 

Participants used a range of self-selected mathematical procedures to complete a mathematics 

task and then produced oral explanations about the procedures used. Explanations were analyzed 

for a number of lexical and pragmatic features. 

Participants 

Participants were 126 students in 3rd (n=65) and 5th grades (n=61), as shown in Table 1. 

Students were participants in the larger project, which recruited students in grades K–6 from five 

schools: two public elementary, one public charter elementary, one laboratory school at a public 

university, and one public charter primary center (K–1st grades) that did not contribute students 

for the current study. All schools were located in a large urban area in Southern California. 

Children and parents at all sites provided assent and consent, respectively, in accordance with 

University and school IRB procedures. All 3rd and 5th grade students who completed the 

mathematics activity at Time 1 of two time points were included in the current study.1 

 Participants were English learners (n=61) and monolingual English or English proficient 

students (n=65). English proficient students were either native English speakers or students who 

had previously been redesignated from EL to Fluent English Proficient (i.e., RFEP, or former 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
1	
  Students at other grade levels were not included in the current study due to a lack of data that was essential to the 
investigation (e.g., developmental adaptations to the mathematics task resulted in very little diversity in the 
mathematical strategies used by kindergarteners; a limited number of EL students were recruited at the remaining 
grade levels). 
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EL) by their school district. All EL students were native Spanish-speakers, according to testing 

data and teacher reports. Of the students designated as English learners by the California English 

Language Development Test (CELDT2; n=55), the majority (80%) were at Intermediate or above 

levels of overall English proficiency according to the test. Students (n=53)3 had an average scale 

score of 515.25 (SD = 45.90) out of 761. 

Table 1 

Student Demographics  
 
Demographic 

Total 
(n=126) 

English proficient 
(n=65)ª 

English learner  
(n=61) 

Gender 
   Female 

 
68 

 
28 

 
40 

   Male 58 37 21 
Grade     
   3rd grade 65 30 35 
   5th grade 61 35 26 

a Includes monolingual English speakers and former EL students 

The mean age at the time of data collection was 8 years; 7 months for 3rd grade and 10 

years; 8 months for 5th grade. According to school records, the ethnic background of participants 

was predominantly Latino (65.9%), followed by Caucasian (11.9%), Multi-racial/ethnic (10.3%), 

Asian (5.6%), African American (4.0%), and Other (2.4%). 

Although socioeconomic information was not collected for individual students, schools 

were selected in part to attain socioeconomic diversity within the sample. At the charter 

elementary school, 99% of students were eligible for free or reduced-price lunch. The school’s 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
2	
  The CELDT is a standardized test administered during the fall of each year to all California K-12th grade public 
school students whose primary home language is not English (CDE, 2013a). The CELDT is not administered to 
students enrolled in independent schools, and thus CELDT data are not available for six EL students in the current 
study. The CELDT identifies students who are Limited English proficient (LEP) and determines the level of English 
language proficiency of these students in four domains: listening, speaking, reading, and writing. A student’s scale 
score for each domain is used to determine a performance level (1 = Beginning, 2 = Early Intermediate, 3 = 
Intermediate, 4 = Early Advanced, and 5 = Advanced), and an overall performance level is calculated as the sum of 
all four domains. Once students are classified as RFEP by a set of district criteria, they no longer take the CELDT.  
	
  
3	
  Scale scores were not available for two students who took the CELDT.	
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2012-2013 Academic Performance Index (API) of 772 was lower than the California state 

average of 791. At one public school, 58% of students were eligible for free or reduced-price 

lunch. The school’s 2012-2013 API of 785 was slightly lower than the California state average of 

791. At the second public school, 35% of students were eligible for free or reduced-price lunch. 

The school’s 2012-2013 API of 884 far exceeded the California state average of 791.  

Although socioeconomic information was not collected for individual students, schools 

were selected in part to attain socioeconomic diversity within the sample (Bailey, Blackstock-

Bernstein, & Chang, 2014). Three of the schools participate in the state’s free or reduced-price 

lunch program, which serves as a proxy for SES; 35%, 58%, and 99% of students were eligible 

for the program at these three schools. These same schools participate in the state testing 

program and had Academic Performance Indices (APIs) of 772, 785, and 884, representing a 

range of performances in contrast to the California state average of 791. Median household 

income at the laboratory school, which does not participate in the state testing or student lunch 

programs, was provided in an income range category of $150,000–$199,999, with annual 

incomes ranging from $10,000 to over $1,000,000. 

The majority of students performed at the Advanced (31%) or Proficient (32.5%) 

performance levels on the mathematics segment of their most recent standardized tests. On the 

CST-Mathematics (n=77), students had an average scale score of 375.32 (SD = 85.85) out of 

600, which is classified as Proficient. On the Stanford 10-Mathematics (n=47)4, students had an 

average scale score of 666.04 (SD = 48.82) out of 800, which is classified as Proficient. 

Students’ scale scores were converted to z scores based on norming sample means and standard 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
4	
  Mathematical testing data are not available for two students at the laboratory school. 	
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deviations in order to combine results from both assessments. When combined, the distribution is 

fairly normal, with an average scale score just below the mean (z score of -0.07). 

Procedures 

Data collection. Data used for the current project were collected from November through 

February of the 2012-2013 academic year. Three female researchers were trained to administer 

the mathematics activity and student interviews. The task was designed to engender language 

that is inherent in mathematical reasoning as it is reflected in the Common Core State Standards 

(National Governors Association Center for Best Practices & Council of Chief State School 

Officers, 2010). Specifically, the students were expected to interact with mathematical concepts 

of counting and cardinality and express their reasoning through both oral and written 

explanations (Bailey & Heritage, 2014). Sessions took place in English in a private room or 

hallway on school grounds during the school day. Sessions were recorded using audio equipment 

(digital voice recorders and smart phones) to create an audio file of each task session. Each 

student was presented with a quantity of Unifix cubes (plastic interlocking blocks) and asked to 

find the total number of cubes. This quantity differed by grade: 50 cubes for 3rd graders and 100 

cubes for 5th graders to account for anticipated differences in cognitive demand across grades. 

Students were told to find the total using whatever method they wished. 

After providing an answer, students were asked to respond to a series of oral and written 

questions about the procedure they used and their justification for that procedure. The current 

study focuses only on the culminating oral language question, which asked students to 

decontextualize their explanation by explaining it to a hypothetical naïve listener: Pretend you 

are talking to a classmate who has never done this activity. When you're ready, tell him/her how 
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to use the cubes to find out how many there are and why using the cubes this way helps him/her. 

Each session took between five and fifteen minutes for the full series of questions. 

As the students used the cubes to complete the mathematics activity, interviewers 

completed a Mathematical Strategy Checklist based on their observations of the student’s 

behavior (DLLP project, 2011). The checklist was designed to capture students’ 

developmentally-driven counting behaviors and strategies. The following procedural elements 

were included: 1) whether the student grouped the cubes, 2) what number the student grouped 

them by, 3) whether the student connected the cubes, 4) whether the student pushed aside the 

cubes, 4) what method was used to calculate the total (repeated addition, multiplication, or 

counting), and 5) the student’s final answer. Researchers were instructed to take detailed notes of 

what the student was doing with the cubes during the activity (e.g., whether the student grouped 

the cubes by color, the sequence of the student’s procedural steps, etc.). 

Data processing. Analyses for the current study were conducted on the transcripts 

available from the larger project, which were transcribed by a trained graduate student and then 

verified by an additional graduate student. For the automated natural language parsing employed 

in the larger project, a second version of each transcript was created to remove dysfluencies such 

as repetitions, false starts, retraces, abandoned utterances, and conversational topics that were 

unrelated to the mathematics task. These versions of the transcripts were used for the current 

investigation. 

Following this verification process, a researcher independently transcribed a random 

selection (15%) of the audio files. Transcript accuracy was calculated by comparing the two 

versions of the transcripts at both the word and sentence level. Agreement was high—on 

average, 92.3 percent of word and sentence boundaries matched. 
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Measures 

Performance during mathematical activity. The researcher’s notes and observations of 

the student’s procedure (as recorded on the DLLP Mathematical Strategy Checklist) were used to 

determine what the student did mathematically during the activity. These notes were then 

interpreted using two measures aimed at capturing different facets of students’ performance—the 

mathematical strategies they used and the complexity of their procedures (based on the number 

of steps). During coding, researchers were blind to students’ background characteristics, 

including grade, EL status, and mathematics proficiency. 

Mathematical strategy. The mathematical strategy (counting, addition/repeated addition, 

or multiplication) used by each student was defined as the most sophisticated mathematical 

strategy the student implemented during the activity. For example, a student who used counting 

as part of a procedure that ultimately used multiplication was coded as using multiplication. 

Complexity of mathematical procedure. Each student’s procedure was also represented 

as a modular sequence of steps, based on Shrager and Siegler’s SCADS model (Strategy Choice 

And Discovery Simulation; 1998) and Fuson’s (1988) discussion of models of counting. The 

DLLP Mathematical Strategy Checklist was used to determine the number of steps each student 

used. Eight discrete possible steps could be identified: arranging cubes in a line (often by 

connecting them); grouping cubes; pushing aside counted cubes; counting cubes by one; 

counting the number of groups; counting the number of cubes in each group; using repeated 

addition to add groups; and multiplying. These steps occurred in combinations that are listed in 

Appendix A. For the purposes of the current study, the more steps involved in the procedure, the 

more complex it is considered. For example, the 5-step process of 1) grouping the cubes, 2) 

connecting the cubes in each group, 3) counting the cubes in each group, 4) counting the number 
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of groups, and 5) multiplying the number of groups by the number of cubes in each group is 

more complex than the one step process of 1) counting by ones without pushing aside or 

connecting. 

A second researcher coded 15% of the DLLP Mathematical Strategy Checklists in order 

to compute reliability for the identification of mathematical strategies and complexity of 

procedures using Cohen’s kappa. There was almost perfect agreement between coders, κ = .93. 

Communicative competence of explanation. Communicative competence in this study 

is defined as the student’s ability to meet the English-language discourse demands of providing a 

mathematical explanation. It requires the use of sufficient detail and descriptiveness such that a 

hypothetical naïve listener could identify each step of the student’s mathematical procedure. 

Multiple measures were used to capture different facets of communicative competence. During 

coding, researchers were blind to students’ background characteristics. 

Sociolinguistic competence score. For each explanation, a researcher tallied the number 

of mathematical steps that could be identified based on the verbal information provided by the 

student. Sociolinguistic competence was calculated as the proportion of steps the student 

explained in relation to the total number of steps the student actually used to perform the task 

(see Complexity of mathematical procedure on page 15). Each student’s sociolinguistic 

competence score was a decimal ranging from 0 to 1 (e.g., 0 = No procedural steps adequately 

explained; 0.5 = Half of procedural steps adequately explained; 1 = All procedural steps 

adequately explained). An explanation with a higher score is considered easier for the listener to 

understand. A second researcher coded 20% of the explanations in order to calculate reliability. 

There was substantial agreement between coders, κ = .77. 
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Proportion of sequenced steps. Each explanation was evaluated for the student’s use of 

sequencing words to link together their mathematical steps. A researcher counted how many 

steps in the explanation were accompanied by a sequencing word or phrase that indicated when 

the step should occur in relation to others (e.g. “First group the cubes. Then count how many 

cubes are in each group.”). Then a proportion was calculated for the number of steps the student 

explicitly sequenced in relation to the total number of steps they explained. Students who only 

used one step were excluded from analyses utilizing this measure. A second researcher coded 

20% of the explanations in order to calculate reliability. There was substantial agreement 

between coders, κ = .80. 

Replicability. For each explanation, a researcher determined whether the student provided 

enough verbal information to replicate the mathematical procedure. The researcher 

simultaneously assessed the student’s use of precise vocabulary and logical sequencing in order 

to determine the replicability of the explanation. These ratings provide a holistic measure of the 

descriptiveness of students’ explanations (Yes = Enough descriptiveness to replicate procedure; 

versus No = Not enough descriptiveness). A second researcher coded 20% of the explanations in 

order to calculate reliability. There was substantial agreement between coders, κ = .76. 

Length of explanation. The length of each explanation was measured by the total 

number of words (TNW) the student used. This measure was used in order to check that the 

length of explanations did not vary depending on students’ grade, EL status, or mathematics 

proficiency. This value was calculated using a web-based corpus management and analysis 

system that was created for the larger project. The system was programmed to use natural 

language parsing (NLP), and the accuracy of automated calculations was confirmed. 
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English learner (EL) status. Creating a variable to represent EL status for the current 

study posed unique challenges. Different metrics were used at one of the schools, so for the 

purposes of this study, students have to be classified as either EL students or English proficient 

students based on similar but non-identical sources of data. For students who attend the charter 

and public schools (n=77), information from Home Language Surveys, which parents completed 

at the time of school entry, was used by the state to identify students who speak a home language 

other than English. These students are then administered the California English Language 

Development Test (CELDT), and the results of this standardized assessment are used to make 

EL classifications. The laboratory school does not use a standardized measure of English 

language proficiency; therefore, for each of the students enrolled (n=49), a combination of 

factors was used to secure an EL status value, using a process similar to the State’s and those 

used in previous research (Crosnoe, 2009). First, admissions records were used to identify 

students whose parents reported a home language other than English. Two additional criteria 

were used to estimate the current English language proficiency of these students. Results of a 

teacher survey administered for all students in the sample identified students whose teachers 

rated their English ability as a 1 on a scale from 1 = Below Average to 3 = Above Average on 

three or four domains (listening, speaking, reading, or writing). Results from the Stanford 10 

assessment (see description below) were used to identify students who scored at the Below Basic 

level on the Language portion of the assessment. Students who were identified by either of these 

processes and who have a home language other than English were classified as English learners 

for the purposes of this study. 

Mathematics proficiency level. Students’ achievement in mathematics was determined 

using school-administered standardized test scores. Available mathematics achievement data 
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varied based on which school the student attended. For students in the current study who 

attended the charter and public schools (n=77), performance levels for the California Standards 

Tests (CST) were used (see description below). For students who attended the laboratory school 

(n=49), performance levels from the Stanford 10 were used (see description above). While the 

CST is criterion-referenced and the Stanford 10 is norm-referenced, both tests are designed to 

assess students’ understanding of the mathematical concepts and processes included in 

California’s state standards. The concepts measured by both tests are the same: number sense 

and operations; algebra; geometry and measurement; and data analysis, statistics, and probability 

(CDE, 2013; Pearson Assessments, 2011). The students’ performance levels were placed on a 

common scale in order to create a combined measure of mathematics proficiency. 

California Standards Tests–Mathematics (CST-Mathematics). The CST is administered 

to all California 2nd-11th grade public school students in the spring of each year. The CST-

Mathematics is a component of the CST that measures student achievement with respect to 

California’s mathematics content standards. Based on their performance on this test, students are 

assigned a scale score and a performance level (Far Below Basic, Below Basic, Basic, Proficient, 

or Advanced). Internal consistency reliability for the 2013 third and fifth-grade CST-

Mathematics was α = .94 (CDE, 2013b).  

Stanford Achievement Test Series, Tenth Edition (Stanford 10). The Stanford 10 is a 

test that is commercially available for Kindergarten through 12th grade students. The Stanford 10 

measures student achievement in multiple subject areas, including language and mathematics. 

Based on their performance on each component of the test, students receive scale scores and 

performance levels (Below Basic, Basic, Proficient, or Advanced). Split-half reliability 
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coefficients (KR-20) for the Stanford 10 range from the .80s to .90s (Pearson Assessments, 

2011). 

Analytic Plan 

I conducted descriptive analyses of all mathematical and pragmatics measures, as well as 

correlations among the three pragmatics measures. I then conducted inferential statistical 

analyses to look for effects of grade, EL status, and mathematics proficiency (as measured by 

standardized assessments) on the various measures. To address the primary research question, I 

used Pearson’s chi-square statistic and a series of t-tests and one-way ANOVAs to examine 

associations between mathematical procedure and various pragmatic aspects of students’ 

explanations, including sociolinguistic competence. To address the secondary research questions, 

I conducted two-way factorial ANOVAs and logistic regressions to look for interactions of grade 

and EL status on the relationship between mathematical procedure and the pragmatics measures. 

Results 

Descriptive Statistics for Mathematical Measures 

As expected, students (n=126) used a range of mathematical strategies—counting, 

repeated addition, and multiplication—to complete the activity. The majority (51.6%) of students 

used addition, followed by counting (34.1%) and multiplication (14.3%). The specific 

mathematical procedures ranged in complexity from one to five steps, as shown in Figure 1. The 

most common, used by 34.1 percent of the sample, was a four-step repeated addition procedure 

in which students: 1) grouped the cubes, 2) connected the cubes, 3) counted how many cubes 

were in each group, and then 4) added the groups together (e.g., skip counting by fives: “5, 10, 

15…”). The next most common (13.5%) was a two-step counting procedure in which students: 1) 



  

 19 

connected the cubes (without grouping), and then 2) counted them individually. See Appendix A 

for a complete description of each possible mathematical procedure and its level of complexity.  

	
  
	
  
Figure 1. Number of steps used during mathematics activity (n = 126) 

 

Associations between Mathematical Measures and Background Variables 

Chi-square analyses indicated that the type of strategy used (i.e., counting, addition, or 

multiplication) did not differ significantly between 3rd and 5th graders or between English 

learners and English proficient students.	
  ANOVA findings indicated that the mean number of 

mathematical steps used during the activity also did not differ by students’ grade or EL status. 

These findings suggest that the different numbers of cubes presented to the two grade levels did 

not lend themselves to particular strategies and thereby skew strategy use by grade. 

There was a significant positive correlation between mathematics proficiency level and 

the number of mathematical steps the student used during the activity, rs = .27, p = .002, as 

shown in Figure 2. To confirm the effect of mathematics proficiency on mathematical strategy 
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the CST-Mathematics and Stanford 10-Mathematics assessments into two (Proficient or Non-

proficient) in order to meet the requirements for chi-square analyses (a minimum expected count 

of 5 cases per cell). There was an association between binary mathematics proficiency level and 

mathematical strategy used during the activity, χ2(2, n = 124) = 8.74, p = .013. 

 

Figure 2. Mean number of steps used during activity, by mathematics proficiency level (n = 124) 

Descriptive Statistics and Correlations for Pragmatics Measures and Length 

The three pragmatics measures were positively correlated with one another. 

Sociolinguistic competence was correlated with the proportion of steps that were accompanied 

by sequencing words, r = .58, p < .001, as well as with the ability of a listener to replicate the 

student’s procedure, r = .45, p < .001. Replicability and proportion of steps with sequencing 

words were also correlated, r = .29, p = .001. 

Explanations ranged from 14 to 234 words total, with a mean of 69 words (SD = 41). The 

length of students’ explanations did not vary significantly based on grade, EL status, or 
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mathematics proficiency level. Overall, students (n = 123)5 produced explanations whose 

sociolinguistic competence scores ranged from 0.00 to 1.00. The mean was 0.64 (SD = 0.31), 

meaning that, on average, students clearly explained 64 percent of the mathematical steps they 

used during the activity. On average, approximately one fifth of the steps students (n = 120)6 

explained were linked to other steps using a sequencing word (M = 0.22, SD = 0.27). Half of the 

students (n = 120) did not use sequencing words to describe temporal relationships among any of 

their mathematical steps. The majority of students (61.1 percent; n = 126) did not provide 

enough verbal information for the listener to replicate their procedure.  

Associations between Pragmatics Measures and Background Variables 

Overall, there was no effect of grade on sociolinguistic competence scores. When 

analyzed separately by EL status, however, a positive effect of grade was found for English 

proficient students, t(61) = -2.26, p = .028. English proficient students in 5th grade demonstrated 

higher sociolinguistic competence than those in 3rd grade, as shown in Table 2. For EL students 

(n=60), no relationship was found between grade and sociolinguistic competence scores, 

meaning that 3rd and 5th grade EL students scored similarly. There were no significant effects of 

grade on rate of sequencing words or replicability, either overall or when examined separately by 

EL status. 

There were, however, notable differences between English learners and English 

proficient students on all three pragmatics measures. On average, English proficient students 

demonstrated higher sociolinguistic competence than EL students, t(121) = 2.71, p = .008. See 

Table 2. When examined separately by grade, 5th grade English proficient students had higher 

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
5	
  Three students were removed from all further analyses involving sociolinguistic competence scores, because they 
explained a different mathematical procedure from the one they used during the activity. 
	
  
6 Only students who used more than one step during the activity were included in analyses about sequencing steps. 
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sociolinguistic competence scores than EL students, t(56) = 3.30, p = .002, but no statistical 

differences were found between 3rd grade EL students and English proficient students. 

Table 2 

Sociolinguistic competence, by grade and EL status (n = 123) 
 

 

English proficient  

(n = 63) 

M (SD) 

English learner  

(n = 60) 

M (SD) 

Total 

M (SD) 

3rd Grade (n = 65) 
 
5th Grade (n = 58) 
 
Total 

.63 (.27) 
 
.78 (.25) 
 
.71 (.27) 

.58 (.36) 
 
.54 (.31) 
 
.56 (.34) 

.60 (.32) 
 
.68 (.30) 
 
.64 (.31) 

 

English proficient students also used sequencing words to link together a greater 

proportion of their mathematical steps (M = 0.30, SD = 0.29) than English learners (M = 0.13, 

SD = 0.21), t(118) = 3.68, p < .001. The same was found when looking at 3rd grade, t(59) = 2.35, 

p = .022, and 5th grade, t(57) = 2.56, p = .013, separately. Finally, English proficient students 

were more likely than English learners to provide enough information for the listener to replicate 

their mathematical procedure, χ2(1, N = 126)  = 7.97, p = .005.  

There were a number of relationships found between mathematics proficiency level 

(according to standardized assessments) and students’ performances on the pragmatics measures. 

For example, when analyzed separately by grade, there was a relationship between mathematics 

proficiency level and sociolinguistic competence amongst 5th graders, F(4, 55) = 5.37, p = .001, 

but not amongst 3rd graders. There was also a positive effect of mathematics proficiency level on 

students’ use of sequencing words to link together steps in their explanations, F(4, 113) = 3.32, p 

= .013. Finally, students who were rated Proficient on the binary proficiency measure were more 
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likely to produce explanations that had enough information for the listener to replicate the 

mathematical procedure, χ2(1, N = 124)  = 9.58, p = .002. 

What is the relationship between the complexity of the mathematical procedures that elementary 

school students use during a mathematics activity and the communicative competence of the 

students’ oral explanations? 

 As predicted, the complexity of the mathematical procedure a student used (based on the 

number of steps) was negatively associated with the sociolinguistic competence of their 

explanation, F(4, 118) = 3.30, p = .013, as shown in Figure 3. Similarly, there was a relationship 

between mathematical strategy and sociolinguistic competence, but only when strategy was 

broken into a binary variable (counting vs. addition/multiplication), t(121) = 2.81, p = .039. 

Students who used counting had higher sociolinguistic competence scores (M = 0.72, SD = 0.30), 

on average, than students who used addition or multiplication (M = 0.60, SD = 0.31). 

 

Figure 3. Mean sociolinguistic competence score, based on number of mathematical steps used 
(n = 123) 
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No significant relationships were found between mathematical strategy or complexity of 

procedure and other measures of communicative competence, namely the replicability of 

students’ explanations or the rate of sequencing words used. 

How does the relationship between mathematical procedure and communicative competence 

differ as a function of grade? 

Contrary to the hypothesis that younger students and EL students would be more strongly 

affected by the cognitive demand of explaining a more complex mathematical procedure, there 

was no interaction effect of grade on the relationship between mathematical procedure (number 

of steps used) and sociolinguistic competence scores, F(3, 114) = 0.35, p = .790. This suggests 

that the sociolinguistic competence scores of 3rd and 5th graders were not affected differently by 

the complexity of the mathematical procedures they used. However, the main effect of 

mathematical procedure on sociolinguistic competence scores was significant amongst 3rd 

graders, F(4, 60) = 2.63, p = .043, but not amongst 5th graders, F(3, 54) = 2.36, p = .081. See 

Figure 4. 
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Figure 4. Mean sociolinguistic competence scores of 3rd and 5th graders, based on the number of 
mathematical steps used during the activity 

 Grade did not have a significant interaction effect on the relationship between the 

complexity of mathematical procedures and students’ use of sequencing words, nor were there 

any apparent differences when ANOVAs were conducted separately by grade. A logistic 

regression showed that there was no significant interaction effect of grade on the relationship 

between complexity of mathematical procedure and the replicability of students’ explanations. In 

addition, no significant interactions of grade were found between mathematical strategy (either 

as a binary or three-level variable) and any pragmatics measures. 

How does the relationship between mathematical procedure and communicative competence 

differ as a function of English learner status? 
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 There was no overall significant interaction effect of EL status on the relationship 

between mathematical procedure (number of steps used) and sociolinguistic competence scores, 

F(3, 114) = 1.93, p = .129, meaning that the sociolinguistic competence scores of EL and English 

proficient students were not affected differently by the complexity of the mathematical 

procedures they used. However, the main effect of mathematical procedure on sociolinguistic 

competence scores was significant amongst EL students, F(4, 55) = 4.53, p = .003, but not 

amongst English proficient students, F(3, 59) = 1.50, p = .223. 

There was not a significant interaction of EL status on the relationship between 

mathematical procedure and students’ use of sequencing words. However, separate analyses of 

EL and English proficient students indicated that for EL students, there was a significant positive 

relationship between the number of mathematical steps used and the proportion of steps that the 

student sequenced, F(3, 52) = 2.95, p = .041, whereas there was no significant effect for English 

proficient students, F(3, 59) = 0.94, p = .428. 

A logistic regression showed that there was no significant interaction effect of EL status 

on the relationship between mathematical procedure and the replicability of students’ 

explanations. No significant interactions of EL status were found between mathematical strategy 

(either as a binary or three-level variable) and any pragmatics measures. 

Discussion 

The purpose of this correlational, cross-sectional study was to examine the influence of 

mathematical strategy on the communicative competence of 3rd and 5th grade students’ oral 

explanations. The main objective was to determine whether students have more difficulty 

communicating clearly about certain mathematical procedures and to see whether this differed 

across grade level and EL status. 
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Relationship between Mathematical Procedure and Sociolinguistic Competence 

 The findings supported the primary hypothesis that students who use more complex 

mathematical procedures—as measured by either strategy type or number of mathematical 

steps—struggle with sociolinguistic competence when asked to orally communicate the details of 

their procedures more so than students who use simpler procedures. There are a number of 

potential explanations for this finding. First, it is possible that engaging in a more complex 

mathematical procedure requires the use of more cognitive resources, thereby leaving the student 

with fewer cognitive resources available for the production of a well-constructed explanation. It 

is also possible that the verbal act of explaining a complex mathematical procedure is more 

challenging than explaining a simple one; the student needs to explain a greater number of steps 

and link them together in a cohesive way, so there are more possibilities for omissions or 

ambiguities. 

 In the following explanation, a 3rd grade girl described her five-step procedure (grouping 

the cubes by color, connecting the cubes in each group, counting how many cubes are in each 

group, counting how many groups there are, multiplying) without including much detail about 

what steps were involved: 

You should use the cubes this way, because it'll be easier to count. And if they're all the 
same amount and the same length, and you count them, and there's ten, you can tell that 
there's fifty, because there's fifty rods.  
This student received a sociolinguistic competence score of 0.20, because she only 

described one step (“count them”) out of the five that she used. Even that one step is ambiguous, 

because she does not link the pronoun them to a clear referent—does she mean count the cubes 

in each rod or count the number of rods? It is possible that she neglected to mention her four 

remaining steps because of cognitive overload due to the complexity of her mathematical 

procedure. She may also have omitted steps because it was difficult for her to separate her 
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procedure into discrete steps and then articulate these to a listener. Regardless of the reason, her 

explanation of a complex mathematical procedure displayed less sociolinguistic competence than 

many explanations about simpler procedures. For example, the following explanation was 

produced by a 3rd grade boy who described his two-step procedure clearly: 

You have all the Unifix cubes on the right and none on the left. Take two and put them on 
the left. Do it with another pair until you count two, four, six, eight all the way to the 
number that the cubes have, which I counted fifty. 
He received a sociolinguistic competence score of 1.00—the maximum score—because 

he explained both of his two steps (count, push aside counted cubes). It is important to note that 

both students’ explanations illustrated their linguistic skills; they both used mathematical 

terminology (e.g., “amount,” “length,” “pair”) and conventional syntax, including complex 

sentences. However, the second explanation demonstrated greater sociolinguistic competence by 

providing clear descriptions (e.g., the set-up of the materials at the beginning of the activity) and 

avoiding the ambiguous pronouns and deictic terms (e.g., “this way,” “they,” “them”) that made 

the first example hard to follow. 

Although there were no significant interactions of grade or EL status on the negative 

relationship between mathematical procedure and sociolinguistic competence, there was support 

for the corresponding hypotheses that younger students (3rd graders) and EL students would be 

more strongly affected by the cognitive demand of explaining a more complex mathematical 

procedure. When viewed separately by grade, the main effect of mathematical complexity on 

sociolinguistic competence was only significant for 3rd graders, suggesting that 5th graders are 

less susceptible to the challenges of explaining a complex mathematical procedure. Similarly, 

when viewed separately by EL status, the main effect was only significant for EL students, 

suggesting that English proficient students are less susceptible as well.  
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Taken together, these results suggest that perhaps the relationship between mathematical 

strategy and sociolinguistic competence is influenced by a combination of mathematical content 

knowledge and language proficiency. The cognitive and pragmatic demands of explaining a 

complex mathematical procedure may not be as challenging for 5th graders—who likely have a 

more sophisticated understanding of mathematical operations than 3rd graders—and for English 

proficient students—who likely have more extensive experience with the English language. This 

is only a tentative interpretation of the findings, due to the small sample size of the current study, 

but it could have important implications for mathematical instruction. 

It is possible that students are already receiving instruction that may influence their 

mathematical discourse. One tentative finding in the current study indicated that in EL students’ 

explanations, the more mathematical steps they used, the greater the proportion of steps they 

accompanied with a sequencing word. In contrast, English proficient students’ use of sequencing 

words was unrelated to their mathematical strategies and procedures. It is possible that EL 

students have received English language instruction that has specifically targeted their use of 

sequencing discourse connectors to overtly signal the ordering of steps. Perhaps they have been 

instructed to use discourse connectors when explaining lengthy step-by-step processes, such as 

complex mathematical procedures. 

Assessing Pragmatics in Mathematical Explanations 

In order to measure students’ pragmatic competencies during mathematical explanations, 

three measures were designed for this study. Two of these—sociolinguistic competence score 

and replicability—represented a broad evaluation of each student’s ability to explain their 

mathematical procedure fully and in sufficient detail. The following 3rd grade EL boy, for 

example, produced an explanation that was considered replicable by researchers: 
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Count these cubes by one by one, but if they're stuck together, then you count by twos. 
But you can stick them together so you can find it out. Then until when you finish all 
sticking them together, you could just count them. You can count them by different ways. 
From this explanation, it sounds like he recommends sticking together two cubes and 

then counting the cubes by twos, which was, in fact, the procedure he used. Although he uses 

some non-conventional phrasing (e.g., “then until when,” “count them by different ways”), his 

instructions are clear to the listener. He uses precise mathematical terms (e.g., “count by twos”) 

and sequencing (e.g., “when you finish…”), which help the listener follow his procedure. Some 

students produced explanations that were not easily decipherable. For example, one 3rd grade EL 

girl described her procedure as follows: 

Stack them in. You could do it by finding like a red one and a yellow one. That's it. 

Although her procedure involved one step—counting—she does not use the precise 

wording (i.e., “count”) that would signal this to a listener. Her explanation is short and imprecise, 

creating a difficult task for a listener who is trying to replicate her procedure. 

The third measure—use of sequencing words—measured a specific discourse feature of 

mathematical explanations that plays a role in making meaning for the listener. By using 

sequencing words to establish a temporal ordering of their steps, students provide their listeners 

with a clear description of their procedure. For example, the following 5th grade English 

proficient girl used “then” to sequence all of her steps: 

You can take the cubes and put them into stacks of ten. And then make as many stacks of 
ten as you can. And then you can line them up and then count them. And there were ten  
stacks, which is a hundred.  

This stands in contrast to the following example, in which a different 5th grade English 

proficient girl did not use any sequencing words:  

You should make groups of ten using the cubes to find out how many there are, because 
it's easier to count by tens than doing it one by one. 
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Although she described two identifiable steps (“make groups of ten” and “count by 

tens”), she did not link them together temporally. A naïve listener may not know whether 

counting by tens is a prerequisite of grouping by tens, a component of the grouping process, or a 

follow-up step. 

The three pragmatics measures were positively correlated, which suggests that, for 

example, explanations with a greater proportion of steps explained are likely to contain more 

sequencing words, and a listener is more likely to be able to replicate that procedure based on the 

student’s words. 

Group Differences in Pragmatics Measures 

Overall, students had difficulty performing well on the suite of pragmatics measures 

designed for this study. Few students explained all of their steps, sequenced all of their steps, or 

provided enough information that a listener could replicate their procedure. However, some 

groups of students performed better than others. On average, English proficient students 

sequenced a greater proportion of their steps than EL students and were more likely to produce 

explanations that could be replicated by a listener. English proficient 5th graders were the highest 

performing group, receiving higher sociolinguistic competence scores than English proficient 3rd 

graders and EL 5th graders. Interestingly, there was no effect of grade on EL students’ 

sociolinguistic competence scores, and no effect of EL status on 3rd graders’ scores. This 

suggests that perhaps there is an increase in pragmatic L1 development during the time between 

3rd and 5th grades—a time during which children may become more attuned to their listeners’ 

needs and more linguistically capable of providing sufficient information—that EL students have 

not yet reached in English. Importantly, the length of students’ explanations did not vary based 

on their grade or EL status, indicating that 5th graders and English proficient students were not 
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simply producing more words than 3rd graders and EL students and thereby achieving greater 

sociolinguistic competence. 

Students with high mathematics proficiency levels (based on standardized tests of 

achievement) performed better on the pragmatics measures than students with lower proficiency 

levels. Their explanations were more likely to be replicable, they contained higher proportions of 

sequencing words, and amongst 5th graders, they had higher sociolinguistic competence scores. 

These findings suggest that producing a sufficiently clear mathematical explanation is easier for 

students with high mathematics achievement. Perhaps the cognitive demand of the mathematics 

task is lower for these high achieving students, and therefore they have more cognitive resources 

available for language production. Alternatively, there may be cognitive and mathematical skills 

that are measured by both the standardized assessments and the pragmatics measures used in this 

study. Furthermore, the greater a students’ conceptual understanding of the mathematical ideas 

they are explaining, the easier it likely is for them to verbalize them. For example, the following 

explanation was produced by a 5th grade English proficient girl whose mathematics proficiency 

is Advanced, according to the SAT10: 

If you want to find out how many cubes there are, and you want to do it the most efficient 
way, the way that I would do it would be that I would connect ten of them. And then I 
would just keep making sticks of ten. And then at the end, I would count to see how many 
sticks of ten there would be. And then you would do that times ten, and then you would 
get your answer. And you should use that way because it's an efficient way that you can 
do quickly. 

 
She was able to clearly explain her process of grouping, connecting, and multiplying 

without getting confused about the mathematical operations behind this strategy. Her explanation 

can be contrasted against one produced by a 5th grade English proficient girl whose mathematics 

proficiency is Below Basic based on the SAT10: 

What number are you really sure about that might equal this number that you're going to 
do without counting? I would go with ten if it's an even number. And if it's an odd 
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number, it's sort of like a prime and composite number. So if it's a prime, it's only one 
and itself. So if it's an even number, it's a composite number. And if it's an odd number, 
it's a prime number. So then how much do you think is in this? About eighty or a hundred. 
So then spread them so how much do you get to a hundred. So that's ten. So ten for each 
one. So one, two, three, four, five. And then count how much there are in each one. One, 
two, three, four, five. One, two, three, four, five. And there's your answer. There's a 
hundred. 
This student is describing a similar strategy to the one in the previous example, but this is 

not clear from her explanation. She introduces the unnecessary mathematical concepts of prime 

and composite numbers and fails to explain how they are related to her procedure. It is possible 

that her struggle to explain her procedure clearly is related to a misunderstanding about the 

mathematical concepts she is attempting to describe. 

Limitations and Future Directions 

As some of the examples described in this paper illustrate, it is important to consider 

students’ use of gesture when examining how they communicate with their listeners (Goldin-

Meadow, 1999). Gesture is a resource that students often use to make meaning in mathematical 

classrooms (Lemke, 2003) as well as to lighten cognitive load (Goldin-Meadow, Nusbaum, 

Kelly, & Wagner, 2001). Therefore, an important limitation in the current study is the lack of 

video data of students’ explanations. Videos may have helped decipher explanations that relied 

on the use of deictic terms (e.g., “this,” “that,” “here”) to explain specific procedural steps 

(Bailey et al., under review). Some of these terms may have been accompanied by gestures to the 

Unifix cubes, thereby providing necessary (non-verbal) references that had been lacking in the 

student’s verbal explanation. Future studies should collect video data in order to examine how 

students’ non-verbal communicative acts contribute to their communicative competence. 

In addition, students in the current study were recruited from twelve classrooms across 

four schools. While the academic diversity of the sample was valuable in creating a broad 

distribution of students, it is possible that differences among the classrooms may have played a 
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role in students’ abilities to engage in mathematical discourse. The sample in the current study 

was too small to investigate this possibility statistically. Future studies should examine curricular 

and pedagogical differences among classrooms and explore any effects on the mathematical 

strategies that students use or on the pragmatic features of their mathematical explanations. It is 

possible, for instance, that students in some schools or classrooms may not have had the 

opportunity to learn particular mathematical strategies or that some classrooms allow for fewer 

opportunities to engage in mathematical discourse and receive feedback on mathematical 

explanations, particularly in the case of EL students (Bailey et al., under review). 

Due to the data collection procedures used in the larger project, the explanations students 

produced were not necessarily authentic representations of the mathematical discourse that 

occurs in classroom instructional settings. Students in the current study responded to a scripted 

prompt and were not asked follow-up questions if their explanations were unclear. Teachers in 

elementary school mathematics classrooms often ask questions in response to students’ ideas in 

order to clarify ambiguities, identify reasoning behind student errors, and ask for elaboration 

(Franke et al., 2009). Future studies should either be conducted in classroom settings or provide 

students with more opportunities to respond to targeted questions and develop more clarity in 

their explanations. 

Despite these limitations, the current study begins an important exploration into the 

relationship between mathematical strategy and students’ abilities to discuss mathematics in a 

pragmatically appropriate way. In a similar study with a larger sample size, researchers could 

investigate how grade, EL status, and mathematical proficiency work together to influence the 

effect of mathematical strategy on the pragmatics of students’ explanations. These studies should 

investigate additional pragmatic features of students’ explanations beyond those featured in the 
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current study. Future studies should also qualitatively examine students’ explanations in order to 

determine what distinguishes those with low sociolinguistic competence from those with high 

sociolinguistic competence. 

Conclusion 

As a result of new academic standards, mathematics teachers are faced with using 

students’ explanations to gauge their understanding of mathematical concepts. The findings from 

this study begin to illuminate the ways in which students’ explanations may be influenced by 

factors aside from mathematical understanding of the specific concepts at hand. For example, 

students who used more complex mathematical procedures performed worse on a measure of 

sociolinguistic competence. This was especially true for younger students and EL students, who 

may still be developing the necessary linguistic and pragmatic competencies.  

These findings can help inform teacher training and teacher practice in elementary school 

mathematics classrooms by emphasizing the importance of students’ pragmatic competencies. 

Students need to take account of their listeners’ needs when communicating mathematically, and 

this becomes more difficult when they must explain complex mathematical strategies. In 

evaluation of students’ mathematical understanding, teachers should consider the effect that 

students’ mathematical strategies may have on their abilities to convey meaning. An unclear 

mathematical explanation may not be an indication of a lack of mathematical understanding.  

Teachers should consider oral explanations as just one of many ways that students can 

demonstrate their mathematical understanding. In order to support pragmatic development, 

students should be encouraged to actively consider the needs of the audience and to meet those 

needs by providing sufficient detail and descriptiveness. In the classroom, teachers should model 

precise mathematical explanations and explicitly draw students’ attention to the pragmatic 
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features that make an explanation clear and accessible. Students should be given frequent 

opportunities to hear and assess other students’ mathematical explanations as well as produce 

and refine their own. These opportunities will not only support pragmatic development but may 

also contribute to students’ conceptual understanding of mathematical content. 
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Appendix A: Coding Manual for Complexity of Mathematical Procedure 
 

Strategy Possible # 
of steps* 

Description of steps used 

Counting 1 1. Counting without connecting, grouping, or pushing aside cubes 
 2 1. Connecting cubes (in sticks of any length) 

2. Then counting the cubes 
  1. Counting cubes  

2. While pushing aside cubes that have already been counted 
  1. Grouping cubes without connecting  

2. Then counting all the cubes by 1s 
 3 1. Connecting cubes (in sticks of any length) 

2. Then counting the cubes 
3. While pushing aside cubes that have already been counted 

Repeated 
addition 

3 1. Grouping cubes without connecting 
2. Then counting how many cubes are in each group 
3. Then using repeated addition to add the groups (e.g. “5, 10, 15, 
20…”) 

 4 1. Grouping cubes 
2. Then connecting cubes in each group 
3. Then counting how many cubes are in each group 
4. Then using repeated addition to add the groups (e.g. “5, 10, 15, 
20…”)  

  1. Grouping cubes without connecting 
2. Then counting how many cubes are in each group 
3. Then using repeated addition to add the groups (e.g. “5, 10, 15, 
20…”) 
4. While pushing aside cubes that have already been added 

 5 1. Grouping cubes 
2. Then connecting cubes in each group 
3. Then counting how many cubes are in each group 
4. Then using repeated addition to add the groups (e.g. “5, 10, 15, 
20…”) 
5. While pushing aside cubes that have already been added 

Multiplication 4 1. Grouping cubes without connecting 
2. Then counting how many cubes are in each group 
3. Then counting how many groups there are 
4. Then multiplying 

 5 1. Grouping cubes 
2. Then connecting cubes in each group 
3. Then counting how many cubes are in each group 
4. Then counting how many groups there are 
5. Then multiplying 

	
  



  

 38 

References 

Abedi, J., & Gándara, P. (2006). Performance of English Language Learners as a Subgroup in 

Large‐Scale Assessment: Interaction of Research and Policy. Educational Measurement: 

Issues and Practice, 25(4), 36–46. 

Abedi, J., & Lord, C. (2001). The language factor in mathematics tests. Applied Measurement in  

Education, 14(3), 219–234. 

Ashcraft, M. H., & Krause, J. A. (2007). Working memory, math performance, and math 

anxiety. Psychonomic Bulletin & Review, 14(2), 243–248. 

Ayres, P. L. (2001). Systematic mathematical errors and cognitive load. Contemporary 

Educational Psychology, 26(2), 227–248. 

Bailey, A. (2012). Academic English. In J. Banks (Ed.), Encyclopedia of Diversity in Education 

(pp. 4–9). Thousand Oaks, CA: Sage. 

Bailey, A. (2013, April). Implications of the Common Core for English Language 

Development/Proficiency (ELD/P) Standards: A role for learning progressions of 

language development. Paper presented at the annual meeting of the American 

Educational Research Association, San Francisco, CA. 

Bailey, A., Blackstock-Bernstein, A., & Chang, S. (2014). A Technical Guide to the Dynamic 

Language Learning Progressions Data Set with Descriptive Analyses. 

Bailey, A., Blackstock-Bernstein, A., & Heritage, M. (under review). At the Intersection of 

Mathematics and Language: Examining Mathematical Strategies and Explanations of 

English Learner and English Proficient Students. Journal of Mathematical Behavior. 

Bailey, A.L. & Heritage, M. (2014). The Role of Language Learning Progressions in Improved 



  

 39 

Instruction and Assessment of English Language Learners. TESOL Quarterly, 48(3), 

480–506. 

Bailey, A.L., Kelly, K.R., Blackstock-Bernstein, A., Chang, S., & Heritage, M. (2014, April). 

Empirical Study of Elementary Student Explanations: Generating Dynamic Language 

Learning Progressions. Paper presented at the annual meeting of the American 

Educational Research Association, Philadelphia, PA. 

Baroody, A. J. (1984). The case of Felicia: A young child's strategies for reducing memory 

demand during mental addition. Cognition and Instruction,1(1), 109–116. 

Boaler, J. (2008). What's Math Got to Do with It?: Helping Children Learn to Love Their Most  

Hated Subject-and Why It's Important for America. New York, NY: Penguin. 

Bock, J. K. (1982). Toward a cognitive psychology of syntax: Information processing 

contributions to sentence formulation. Psychological Review, 89(1), 1–47. 

California Department of Education (2013a). Technical Report for the California English 

Language Development Test (CELDT) 2012−13 Edition.  

California Department of Education (2013b). California Standards Tests Technical Report. 

Spring 2013 Administration. Retrieved from 

http://www.cde.ca.gov/ta/tg/sr/documents/cst13techrpt.pdf. 

California Department of Education. (2014). CalEdFacts: Facts about English Learners in  

California. Retrieved from http://www.cde.ca.gov/ds/sd/cb/cefelfacts.asp. 

Canale, M., & Swain, M. (1980). Theoretical bases of communicative approaches to second 

language teaching and testing. Applied Linguistics, 1, 1–47. 

Cavanaugh, J. C., & Perlmutter, M. (1982). Metamemory: A critical examination. Child 

development, 53(1), 11–28. 



  

 40 

Cazden, C. B. (2001). Classroom Discourse: The language of teaching and learning. 

Portsmouth, NH: Heinemann. 

Cazden, C. B., John, V. P., & Hymes, D. (1972). Functions of language in the classroom. New 

York, NY: Teachers College Press. 

Chi, M., Bassok, M., Lewis, M., Reimann, P., & Glaser, R. (1989). How Students Study and Use 

Examples in Learning to Solve Problems. Cognitive Science, 13(2), 145–182. 

Chi, de Leeuw, Chiu, & LaVancher. (1994). Eliciting Self-Explanations Improves 

Understanding. Cognitive Science, 18(3), 439–477. 

Crosnoe, R. (2009). Family-School Connections and the Transitions of Low-Income Youth and

 English Language Learners from Middle School into High School. Developmental 

Psychology, 45(4), 1061–1076. 

Dynamic Language Learning Progressions Project (DLLP project). (2011). UCLA Subcontractee 

from the USDOE, Enhanced Assessment Grant to Wisconsin Center for Education 

Research. 

Esmonde, I. (2009). Explanations in Mathematics Classrooms: A Discourse Analysis. Canadian 

Journal of Science, Mathematics and Technology Education, 9(2), 86–99. 

Franke, M., Webb, N., Chan, A., Battey, D., Ing, M., Freund, D., & De, T. (2007). Eliciting 

Student Thinking in Elementary School Mathematics Classrooms (CRESST Report 725). 

Los Angeles, CA: University of California, National Center for Research on Evaluation, 

Standards, and Student Testing (CRESST). Retrieved from 

http://www.cse.ucla.edu/products/reports/r725.pdf. 

Franke, M. L., Webb, N. M., Chan, A. G., Ing, M., Freund, D., & Battey, D. (2009). Teacher  



  

 41 

questioning to elicit students’ mathematical thinking in elementary school 

classrooms. Journal of Teacher Education, 60(4), 380–392. 

Fraser, B. (1999). What are discourse markers? Journal of pragmatics, 31(7), 931–95. 

Fuson, K. C. (1988). Children's counting and concepts of number. New York, NY: Springer. 

Gersten, R., & Baker, S. (2000). What we know about effective instructional practices for 

English-language learners. Exceptional children, 66(4), 454–471. 

Ginsburg, H., Kossan, N., Schwartz, R. & Swanson, D. (1983). Protocol methods in research on 

mathematical thinking. In H. Ginsburg (Ed.), The Development of Mathematical Thinking 

(pp. 7–47). New York, NY: Academic Press. 

Goldin-Meadow, S. (1999). The role of gesture in communication and thinking. Trends in 

cognitive sciences, 3(11), 419–429. 

Goldin-Meadow, S., Nusbaum, H., Kelly, S. D., & Wagner, S. (2001). Explaining math: 

Gesturing lightens the load. Psychological Science, 12(6), 516–522. 

Grice, H. P. (1975). Logic and Conversation. In P. Cole and J. Morgan (Eds.), Speech acts: 

Syntax and Semantics (pp. 41–58). New York, NY: Academic Press. 

Hymes, D. (1972). On communicative competence. In J. B. Pride & J. Holmes (Eds.), 

Sociolinguistics: Selected Readings (pp. 269–293). Harmondsworth: Penguin. 

Kane, R. B., Byrne, M. A., & Hater, M. A. (1974). Helping children read mathematics. 

New York, NY: American Book Co. 

Kelly, K. R., & Bailey, A. L. (2013). Dual Development of Conversational and Narrative 

Discourse: Mother and child interactions during narrative co-construction. Merrill-

Palmer Quarterly, 59(4), 426–460. 

LeFevre, J., DeStefano, D., Coleman, B., & Shanahan, T. (2005). Mathematical cognition and 



  

 42 

working memory. In J. I. D. Campbell (Ed.), Handbook of mathematical cognition (pp. 

361–378). New York, NY: Psychology Press. 

Lemke, J. L. (2003). Mathematics in the middle: Measure, picture, gesture, sign, and 

word. In M. Anderson, A. Sáenz-Ludlow, S. Zellweger, & V. V. Cifarelli (Eds.), 

Educational perspectives on mathematics as semiosis: From thinking to interpreting to 

knowing (pp. 215–234). Brooklyn, NY: Legas. 

Levelt, W. J., Roelofs, A., & Meyer, A. S. (1999). A theory of lexical access in speech 

production. Behavioral and brain sciences, 22(1), 1–38.  

Martiniello, M. (2008). Language and the Performance of English-Language Learners in Math 

Word Problems. Harvard Educational Review, 78(2), 338–368. 

Moschkovich, J. (2002). A situated and sociocultural perspective on bilingual mathematics 

learners. Mathematical thinking and learning, 4(2–3), 189–212. 

Moschkovich, J. (2012). Mathematics, the Common Core, and language: Recommendations for 

mathematics instruction for ELs aligned with the Common Core. Commissioned Papers 

on Language and Literacy Issues in the Common Core State Standards and Next 

Generation Science Standards, 94, 17. Retrieved from 

http://ell.stanford.edu/publication/2-mathematics-common-core-and-language.  

Nathan, M. J., & Knuth, E. J. (2003). A study of whole classroom mathematical discourse and 

teacher change. Cognition and instruction, 21(2), 175–207. 

National Council of Teachers of Mathematics. (1991). Professional standards for teaching 

mathematics. Reston, VA: National Academies Press. 

National Governors Association Center for Best Practices, Council of Chief State School 

Officers. (2010). Common Core State Standards for Mathematics. National Governors 

Association Center for Best Practices, Council of Chief State School Officers. 



  

 43 

Washington D.C. Retrieved from http://www.corestandards.org/wp-

content/uploads/Math_Standards.pdf. 

Ninio, A., & Snow, C. E. (1996). Pragmatic development. Boulder, CO: Westview Press. 

Nisbett, R. E., & Wilson, T. D. (1977). Telling more than we can know: Verbal reports on 

mental processes. Psychological review, 84(3), 231–259. 

Pearson Assessments (2011). Stanford 10 Information Packet. Retrieved from  

http://www.pearsonassessments.com/hai/Images/PDF/Webinar/Stanford_Testing_Info_P

acket1272011.pdf. 

Rogoff, B. (1998). Cognition as a collaborative process. In W. Damon (Ed.), Handbook of child 

psychology: Vol 2 (pp. 679–744). New York: Wiley. 

Secada, W. G. (1992). Race, ethnicity, social class, language, and achievement in mathematics. 

In D. Grouws (Ed.), Handbook of research on mathematics teaching and learning: A 

project of the National Council of Teachers of Mathematics (pp. 623–660). New York, 

NY: Macmillan. 

Shatz, M., & Gelman, R. (1973). The development of communication skills: Modifications in the 

speech of young children as a function of listener. Monographs of the society for 

research in child development, 38(5), 1–38.  

Shrager, J., & Siegler, R. S. (1998). SCADS: A model of children's strategy choices and strategy 

discoveries. Psychological Science, 9(5), 405–410. 

Siegler, R. S., & Jenkins, E. (1989). How children discover new strategies. Hillsdale, NJ: 

Lawrence Erlbaum. 

Siegler, R. S., & Lin, X. (2009). Self-explanations promote children's learning. In H. S. Waters 

& W. Schneider (Eds.), Metacognition, strategy use, and instruction (pp. 85–112). New 



  

 44 

York, NY: Guilford. 

Vygotsky, L. S. (1978). Mind in Society: The development of higher mental processes. 

Cambridge, MA: Harvard University Press. 

Webb, N. M., & Mastergeorge, A. (2003). Promoting effective helping behavior in peer-directed 

groups. International Journal of Educational Research, 39(1), 73–97. 

Wilson, J., & Clarke, D. (2004). Towards the modeling of mathematical metacognition. 

Mathematics Education Research Journal, 16(2), 25–48. 

Wright, W. E., & Li, X. (2008). High-stakes math tests: How No Child Left Behind leaves  

newcomer English language learners behind. Language Policy, 7(3), 237–266. 




