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Abstract

Lifshitz Holography
by
Tom Griffin
Doctor of Philosophy in Physics
University of California, Berkeley

Professor Petr Horava, Chair

In this dissertation, we examine the holographic description of strongly-coupled quantum
field theories with Lifshitz fixed points. After reviewing the standard dictionary of Lifshitz
holography, we carry out the holographic renormalization procedure for two different bulk
gravitational theories that support asymptotically Lifshitz spacetimes. The first bulk theory
is relativistic gravity with a massive vector and the second is an anisotropic theory of gravity.

In the bulk theory of relativistic gravity with a massive vector, we find that the holo-
graphic counterterms induced near anisotropic infinity take the form of the action for Horava-
Lifshitz (HL) gravity, with the appropriate value of the dynamical critical exponent z. In
the particular case of 3 4+ 1 bulk dimensions and z = 2 asymptotic scaling near infinity, we
find a logarithmic counterterm, related to anisotropic Weyl anomaly of the dual CFT, and
show that this counterterm reproduces precisely the action of conformal gravity at a z = 2
Lifshitz point in 2 + 1 dimensions, which enjoys anisotropic local Weyl invariance. We find,
however, that only one of two independent central charges appears in the anomaly.

We next argue that bulk HL gravity provides the minimal holographic dual for Lifshitz-
type field theories with anisotropic scaling and dynamical exponent z. First we show that
Lifshitz spacetimes are vacuum solutions of HL gravity, without the need for additional
matter. Then we show that it reproduces the full structure of the z = 2 anisotropic Weyl
anomaly in dual field theories in 2 + 1 dimensions, while its minimal relativistic gravity
counterpart yields only one of two independent central charges in the anomaly.

Finally, we search for static asymptotically Lifshitz black hole solutions in HL gravity.
In contrast to general relativity, we find that these static solutions do not have black hole
horizons and instead contain naked singularities. In general, we argue that it is necessary to
search for stationary (but non-static) black holes with universal horizons.
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Chapter 1

Introduction to Holography

Quantum field theory (QFT) provides the foundation for describing phenomena in parti-
cle physics, statistical mechanics and condensed matter physics. While many perturbative
techniques have been developed to study quantum field theories at weak coupling, analyzing
strongly-coupled field theories has been notoriously difficult. Given the ubiquity of QFTs in
describing our physical world, the development of a tool that provides us with any informa-
tion about the behavior of field theories at strong coupling is of great potential value.

Gauge-gravity duality is the surprising conjecture that, in some cases, a QFT can math-
ematically be described by a (quantum) theory of gravity. At first, this may not seem to be
much of a simplification since quantum gravity is perhaps even more difficult to formulate
and understood. But gauge-gravity duality is a strong-weak duality, which means that a
strongly-coupled QFT corresponds to a weakly-coupled theory of gravity and vice-versa. In
this way, the two descriptions are complementary to each other. Furthermore, in some spe-
cific limits, the dual gravitational theory can even be treated classically, making the theory
very tractable. This, amazingly, means that properties of strongly-coupled QFTs can be
studied using a weakly-coupled classical theory of gravity.

The first example of a gauge-gravity duality was provided by Maldacena [1], which pro-
vided strong evidence that the NV = 4 supersymmetric SU(N) Yang-Mills on R*™! is dual
to Type IIB string theory on AdSs x S°. In this example, the classical gravity limit of the
string theory describes the strongly coupled Yang-Mills QFT in the large N limit. Further
examples of the duality soon followed and it became known as the AdS/CFT correspon-
dence. Note that a key feature of this duality is that the QFT exists in a smaller number
of spacetime dimensions than the gravity dual. For this reason, the duality has also become
to be known as holography. We will provide a brief heuristic overview of the AdS/CFT
correspondence, as well as its extension to nonrelativistic systems, in Section 1.2 below (for
more complete reviews see, e.g., [2, 3, 4, 5, 6]). Before proceeding, let us briefly outline the
content and structure of this dissertation.
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1.1 Outline

Following the introduction to holography presented in this chapter, Chapter 2 provides a
brief review of the theory of Hofava-Lifshitz (HL) gravity. An overview of the systematics of
holographic renormalization in Lifshitz spacetimes is then given in Chapter 3. An illustrative
example of the holographic renormalization procedure is worked through in Chapter 4 for
the simple example of pure Einstein gravity with cosmological constant. Chapters 1-4 serve
as background material needed for the remainder of the dissertation. All of the content in
Chapters 1-4 has appeared previously in the literature.

Chapters 5 and 6 feature original research conducted by the author in conjunction with
Petr Horava and Charles Melby-Thompson, as published in [7]. Tt involves the holographic
renormalization of Lifshitz space with a relativistic bulk theory and the subsequent calcula-
tion of the z = 2 Weyl anomaly. Chapter 5 builds on work by [8, 9] and in addition writes
the results using an ADM decomposition on the boundary and generalizes it to any number
of spatial dimensions. Chapter 6 presents the first holographic calculation of a z = 2 gravita-
tional Weyl anomaly and classifies such anomalies. It also confirms the natural appearance
of conformal HL gravity in the Weyl anomaly.

Chapter 7 features original research conducted by the author in conjunction with Petr
Hotava and Charles Melby-Thompson, as published in [10]. It presents a novel Lifshitz
spacetime solution of a low-energy HL gravity action and applies the procedure of holographic
renormalization to once again calculate the z = 2 Weyl anomaly.

Chapter 8 involves original research conducted by the author in conjunction with Petr
Hotava and Omid Saremi. It involves a search for static Lifshitz black hole solutions of the
low-energy HL gravity action of Chapter 7 that had not yet been attempted in the literature.

Finally, Chapter 9 summarizes the main findings of this dissertation.

1.2 The AdS/CFT Correspondence

We begin by identifying the gravitational theories that are dual to a class of QFTs known
as conformal field theories (CFTs). A CFT in d spacetime dimensions is invariant under
the symmetries of the SO(d,2) conformal symmetry group. The conformal group includes
Poincaré transformations as well as the scale symmetry

at — bat, (1.1)
and the special conformal transformations:

xt — Brg?
o 1.2
Y1 0B x + B2 (1.2)

where b and B* parametrize the symmetry transformation and p = 1,...d. Note that (1.1)
scales the time and space coordinates isotropically.
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In looking for a gravitational dual, we need to look for a space-time metric which has
SO(d,2) as its isometry group, that is, the conformal symmetry is realized geometrically.
The metric we are looking for is that of (d+ 1)-dimensional Anti de Sitter (AdS) spacetime!:

) 2
ds® = (%) Muwdrtdx” 4 (E) dr?. (1.3)

r

(From now on, we will set its radius of curvature ¢ = 1 for convenience.) This AdS metric
is a solution of pure Einstein gravity with negative cosmological constant. Recall that the
AdS metric in (1.3) has a boundary at r = oo and a horizon at r = 0. We denote the region
between the boundary and the horizon as the bulk.

It is easy to check that (1.12) is invariant under the scaling symmetry:

at — bat, r— %, (1.4)

and the special conformal symmetry:

aH — BF(z? 4+ r7?)
1—-2B-x+ B*a22+1r2)’

" — r—r(l—2B-x+ Bz +1r77)). (1.5)
We also see that in addition to the original d spacetime coordinates of the CFT, the metric
(1.12) has an addition dimension, r, known as the radial coordinate. How is this radial
direction to be interpreted in the original CF'T? The key to this interpretation comes from the
fact that r is rescaled under the scaling symmetry (1.4). We already have an interpretation for
what this scaling means in a field theory: it represents flow under the renormalization group.
So, heuristically, we can think of the radial direction as representing the renormalization
group energy scale of the dual field theory, with the region near r = oo (the boundary)
representing the field theory at high (UV) energies and the region near r = 0 (the horizon)
representing low (IR) energies. Of course, a CFT by definition does not change with energy
scale and, correspondingly, AdS spacetime has the isometry (1.4) under changes of r.

The next challenge is to describe not just a CFT, but also a CFT that is deformed
by relevant operators so that it flows away from conformality in the IR. Clearly the dual
gravitational theory can no longer be purely AdS spacetime, since this is invariant under
the scaling symmetry. What we need is a space-time that asymptotically looks like AdS as
r — oo but deviates away from AdS in the rest of the spacetime. In this way, we see we can
describe a QFT near a conformal fixed point by a gravitational dual in asymptotically AdS
spacetime?.

This gives a suitable physical interpretation of the AdS background of the bulk gravity
theory. The next question to ask is what do bulk fields in the gravitational field theory
represent in the dual QFT? In fact, a bulk field corresponds to a local operator in the CF'T.

'The AdS metric is written here in the Poincaré patch.
2 Asymptotically AdS spacetimes will be defined more precisely in Section 3.1.
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For example, the stress-energy tensor of the CFT is dual to gravitational modes in the bulk®.
To provide some more concrete details of the correspondence in terms of partition functions,
consider the example of a free scalar field in AdS spacetime:

1
S = -5 /ddxdr\/—G (G‘”’aﬂq)auq’ + M2(I)2> + Set, (1.6)

where S,; contains the boundary counterterms necessary to any remove divergences®. The
equation of motion for the scalar has two solutions, which behave asymptotically near the

boundary (r — 00) as ® ~ r~2+, where Ay = £ £ /(%)? + m2. That is:

O — ar B proit as r — oo. (1.7)

® will be dual to some local scalar operator O in the dual CFT. However, the dual CFT
depends on the boundary condition that is chosen for ®. If a Dirichlet (standard) boundary
condition is chosen for the scalar (® — ¢or~2- as r — 00), then the dual operator O, will
have scaling dimension A, . Furthermore, we can now use the AdS/CFT correspondence to
calculate the generating function for the operator O, , with source ¢:

<eif¢oo+>CFT = /Dq)eis ~ eiS’Eq.ofMotion (1.8)

where the last equality is satisfied when the gravitational theory can be treated classically.
(1.8) allows us to calculate all CFT correlation functions involving O, by functional differ-
entiation. With this choice of boundary conditions, « in (1.7) represents the source ¢, for
O, and 3 contributes to (Oy).

We can instead use a Neumann (alternative) boundary condition, setting the renormalized
radial momentum?® on the boundary to Il — Jor 2+ as r — oco. The dual operator O_ now
has scaling dimension A_ and (1.8) becomes:

With these alternative boundary conditions, 8 in (1.7) now acts as the source Jy for O_ and
a contributes to (O_). In fact, the theory with alternative boundary conditions is related
to the theory with standard boundary conditions by a Legendre transformation:

<eifjoo_>oFT' B /D¢Oef¢OJO <6if¢00+>CFT' (1.10)

3CFTs always have a stress-energy operator and this explains why we always require dynamical gravity
in the bulk.

4The first counterterm takes the form S, = — fboundary ddx\/fig(%q)2 + ...), where gop = 7?14 is the
induced boundary metric [11].

5This is defined as lIg = —10, P + ﬁ‘%}ft ~—10,P—A_D+ ...
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Furthermore, the addition of a double-trace deformation to the boundary field theories in-
duces a flow from the CFT’ in the alternative quantization to the C'F'T in the standard
quantization. More details on the choice of boundary conditions and their interpretation
can be found in [12, 13].

The well-known BF-bound [14, 15] states that the allowed boundary conditions for a
scalar in AdS spacetime depends upon the scalar’s mass. The standard boundary condition
is only allowed for m? > —(d/2)? whereas the alternative boundary condition is only allowed
for 1 — (d/2)? > m?® > —(d/2)?. This implies that the operator O, has scaling dimension
A, > d/2 and the operator O_ has scaling dimension (d —2)/2 < A_ < d/2. Recall that
the scaling dimension of any scalar operator in a unitary CFT satisfies the unitarity bound
A > (d —2)/2 and thus every such operator can be related to a scalar in the bulk with an
appropriate choice of boundary condition.

1.3 Lifshitz Holography

The AdS/CFT correspondence provides a dual description of conformal fixed points. But
there is another class of nonrelativistic fixed points that occurs in quantum field theories
known as Lifshitz fixed points. Such Lifshitz QFTs in D 4 1 spacetime dimensions are
invariant under the Lifshitz symmetry group, which contains Fuclidean symmetry in the
spatial dimensions, time translation symmetry and the following scaling symmetry:

t—bt, a'—=ba', i=1,...D. (1.11)

Note that there is an anisotropy between time and space, with the degree of anisotropy
measured by the dynamical critical exponent z. Systems with such Lifshitz scaling appear
frequently in quantum and statistical field theory of condensed matter systems [16], especially
in the context of Lifshitz multicritical points, and in nonequilibrium statistical mechanics.
More recently, in a seemingly unrelated development, anisotropic Lifshitz-type scaling (1.11)
has played a central role in the new approach to quantum gravity initiated in [17, 18]. This
anisotropic theory of gravity will be reviewed in Chapter 2.

Once again, we look for dual gravitational theory with a metric that has the Lifshitz
symmetry group as its isometry group. The result is the metric of Lifshitz spacetime in

D + 2 dimensions,
2

d
ds* = —r®dt* + ridx* + % (1.12)
r

The holographic gravity duals of Lifshitz-type QFTs should therefore have (1.12) as their
solution. This geometry appears as a solution in several effective theories, such as the theory
considered in [19] in which bulk Einstein gravity is coupled to a massive vector, and more
recently also in a variety of constructions obtained from string theory [20, 21, 22, 23|. It will
sometimes be useful to rewrite (1.12) in the coordinate u = %:
du?

u?

1

u2z

1
ds® = ———dt* + —dx* + (1.13)
u2
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Using the action of (1.6), we can again analyze the behavior of a bulk scalar field, now
for Lifshitz spacetime. Once again, the equation of motion for the scalar has two solutions,
which behave asymptotically near the boundary (r — 0o) as ® ~ r~2+ where now:

2
Ai:D;Zi\/(D;Z) +m2. (1.14)

In Lifshitz spacetime, the allowed boundary conditions still depend upon the mass of the
scalar but needs to be modified from that of AdS spacetime [24]. The standard boundary
condition is now allowed for m? > —i(D + 2)? whereas the alternative boundary condition
is allowed for —3(D + 2)? < m? < 22 — 2(D + 2)*. This implies that the operator O, has
scaling dimension Ay > 1(D + z) and the operator O_ has scaling dimension (D — z) <
A_< %(D + z). As before, this range covers all scalar operators above the unitarity bound

of A>1(D - 2).

1.4 Weyl Symmetry and Weyl Anomalies

So far we have examined field theories in flat space but one can also extend the holographic
duality to field theories on a curved spacetime background. Let us take a CFT and add
a curved spacetime background g,,(z). This has a gravitational dual formulated on an
asymptotically locally AdS spacetime background:

o _dr? o v
ds® = gl (G (1, z)datdx”), (1.15)

where g, (7, ) = g (z) as r — oco. Spacetime diffeomorphism transformations in the bulk
gravitation theory translate asymptotically into a Weyl transformation of g, (z):

Gu(x) = em(x)gw(:v). (1.16)

So we would expect the field theory to be invariant under the Weyl transformation (1.16).
This is indeed true classically but there is one subtlety we must take into account. In the
statement of the AdS/CFT correspondence (1.8), both sides are infinite (at least initially)
and need to be carefully regulated in order for this equality to make sense. On the field
theory side, standard UV divergences appear and require conventional renormalization. On
the gravity side, the divergences are IR effects that come from the fact the volume of AdS
spacetime becomes infinite as r — co. These divergences can be dealt with systematically
using the procedure of holographic renormalization (see Section 3.2). But in the renormal-
ization procedure of a QFT it is not always possible to maintain the classical symmetries;
quantum anomalies can appear [25]. Thus the dual field theory is Weyl invariant except for
the possible presence of a Weyl anomaly.

Similarly, in Lifshitz holography, the dual Lifshitz field theories will be invariant under
an anisotropic version of the Weyl symmetry, up to a possible anomaly. The calculation of
these Weyl anomalies, using the technique of holographic renormalization, is one of the main
results of the dissertation.



Chapter 2

Review of Anisotropic Gravity

Before continuing with the formulation of Lifshitz holography, we take a detour to introduce
anisotropic gravity which will prove to be very useful in later chapters. An anisotropic
theory of gravity with Lifshitz-like anisotropic scaling at short distances was first introduced
by Hotava [17, 18] and we shall refer to this theory as Horava-Lifshitz (HL) gravity (see,
e.g., [26, 27, 28] for some reviews). In this chapter, we briefly review some features of HL
gravity, concentrating on aspects relevant for the main points of this dissertation.

2.1 Main Features of HL Gravity

The theory can be formulated in the general number of d = D+1 spacetime dimensions. Since
the spacetime manifold M is assumed to carry a preferred foliation structure F, consisting
of codimension-one leaves ¥ of constant absolute time, it is natural to use nonrelativistic
coordinates t and x = {2%,7 = 1,... D}, adapted to the foliation. In such coordinates, the
theory is then described by specifying its fields and its symmetries. The gravity field metric
multiplet consists of fields

N, Ni, Gij, (2 1)

familiar from the ADM decomposition of the relativistic metric on spacetime: N is the lapse
function', N; the shift vector, and g;; the spatial metric on the leaves 3.

In the simplest version of the theory, the gauge symmetries are given by those spacetime
diffeomorphisms that preserve the preferred foliation F. Such foliation-preserving diffeomor-
phisms Diff(M, F), generated by

ot = f(t), dx' = £'(x, 1), (2.2)

contain one fewer gauge symmetry per spacetime point than the symmetries of general
relativity. Theories of gravity with anisotropic scaling whose symmetries are as large as
those of general relativity can be constructed [29], but we will not deal with them here.

!The lapse function is taken to be a function of both space and time, which is known in the literature
as the non-projectable case.
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The action respecting the symmetries of Diff(M, F) consists of a kinetic term,

1
Sk =53 dthx\/_N( K7 — AK?), (2.3)
K
where .
Kij = N (0rg9ij — VilN; — V;N;) (2.4)

is the extrinsic curvature of ¥, K = K}, and \ is dimensionless coupling constant; and a

potential term
1
Sv=— dt d”x\/gNV, (2.5)
with V a scalar function independent of the time derivatives of all fields. Specifically, the
potential term V is a local function of the Riemann tensor of the spatial metric g;;, its
covariant derivatives and the spatial vector field V;N/N. At low energies, only the most

relevant operators will contribute to the potential, resulting in the low-energy potential:

O;VNVN (2.6)

Sy = — / dtd°'z \JgN |8 [ (R—2A) + e

The novelty compared to General Relativity is in the three couplings 8, A and «, which in
GR are fixed to A = f =1 and a = 0. Note that turning on the a coupling is important for
the consistency of anisotropic gravity [30, 26]: Taking the naive o — 0 limit in (2.6) would
lead to a non-closure of the constraint algebra.

When A = 0, the flat spacetime RP*? is a solution of anisotropic gravity with potential
(2.6). The propagating graviton modes consist of the transverse-traceless tensor polariza-
tions with dispersion relation w? = Bk? (here k = /k;k; is the magnitude of the spatial
momentum), plus an extra scalar graviton polarization, with dispersion

w? = i f(&)—ﬁiw {1 +D (Z—f — 1)} k2. (2.7)

The requirement of stability and perturbative unitarity around flat spacetime constrains the
couplings to be in the range g > 0,

268D
2
< .
o< 28 25)
and

A>1 or A<Z1/(D+1). (2.9)

As one flows to higher energies, higher derivative operators will become important in the
potential V. Anisotropic gravity is of interest because it allows one to flow to a Lifshitz
fixed point at higher energies. When z equals the number of spatial dimensions D, several
interesting things happen: First, the theory becomes power-counting renormalizable, when
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we allow all terms compatible with the gauge symmetries in the action. In addition, the
effective spectral dimension of spacetime flows to two at short distances, in accord with the
lattice results first obtained in the causal dynamical triangulations approach to quantum
gravity in [31, 32, 33], and independently confirmed recently in [34]. Moreover, when z = D,
one can further restrict the classical action by requiring its invariance under the local version
of the rigid anisotropic scaling, which acts on the spacetime metric via anisotropic Weyl
transformations. This leads to an anisotropic version of conformal gravity [17], which will
be described in Section 2.2.

In higher dimensions, and for higher values of 2z, the number of available relevant and
marginal terms that can appear in V proliferates quickly. One can further limit the indepen-
dent terms by imposing an additional symmetry. For example, one can impose the detailed
balance condition [17, 18]. This condition means that V is constructed from an auxiliary
local action W in D Euclidean dimensions, as the sum of squares of the W equations of
motion:

. (2.10)

with an appropriately chosen non-derivative DeWitt metric tensor G;;re. This condition —
inspired by the theory of non-equilibrium systems — has a straightforward generalization in
the presence of matter. When the theory is in detailed balance, the number of independent
couplings in V reduces to the number of independent couplings in W.

2.2 Conformal HL Gravity

Under certain circumstances, we can impose additional gauge symmetries to further constrain
the classical action of gravity with anisotropic scaling. When z = D, one can require
invariance under a local version of the anisotropic scaling (1.11), which acts on the metric
multiplet by anisotropic Weyl transformations

N — e N N; — 62wNZ' Gij — €2wgz‘j, (211)

with an arbitrary local function w(¢,x). We denote the group of anisotropic Weyl transfor-
mations (2.11) with dynamical exponent z by Weyl, (M, F). Crucially, this group extends
the group of foliation preserving diffeomorphisms into a semi-direct product [17, 35]

Weyl, (M, F) x Diff(M, F). (2.12)

Indeed, the commutator between an infinitesimal foliation-preserving diffeomorphism 4§y, ¢
of (2.2) and an infinitesimal generator ,, of the anisotropic Weyl transformation (2.11) yields
another infinitesimal anisotropic Weyl transformation,

[5‘”’ 6(f7 fi)] = 6fatw+§iai‘*” (213)

with the same fixed — but otherwise arbitrary — value of z. On the other hand, had we
tried to extend Diff(M, F) into the full spacetime diffeomorphism group, the closure of
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the symmetries would have forced the relativistic scaling with z = 1. Thus, anisotropic
Weyl symmetry is only possible when we relax the spacetime diffeomorphism symmetry to
the symmetries of the preferred foliation F. Insisting on the additional symmetries (2.11)
implies that the coupling constant A must take a fixed value, A = 1/D. We will refer to it
as the “conformal value” of .

Conformal anisotropic gravity (with z = D) can be formulated for any number of spatial
dimensions, but in Chapter 6 we will make use of the D = 2 theory in detail and we therefore
focus on this case. For the case of D = 2, which requires z = 2, the unique kinetic term is

1 2 ( g 1 2)
2k% g 2
One can easily check that this term is indeed invariant under (2.11) and, moreover, satisfies
the detailed balance condition.
The potential term V is also strongly constrained by the condition of anisotropic Weyl

invariance (2.11). In D = 2, where the Riemann tensor of the spatial metric reduces to the
Ricci scalar R, there is only one term that can appear in V:

iV, N INV,;N >
VIViN_ VINV } (2.15)

1
Sy=— | dtd’x JgN IR
v 253,/M X9 { TN N?

This term is also invariant under (2.11), but it does not satisfy the detailed balance condition:
There is no local action that would yield this term as the sum of squares of its equations of
motion.? Thus, pure z = 2 conformal gravity in 2 + 1 dimensions with detailed balance has
no potential term.

This conformal z = 2 gravity in 2 4+ 1 dimensions can be coupled to scalars X°(t,x).
Anisotropic Weyl invariance of the classical action will be preserved when we assign scaling
dimension zero to X*. The kinetic term becomes

1 | 1 .
Sg = — dtd2x\/§N K ;K% — -K?| + —/ dtdQXQ (8tX“ — N’VZ-X“)Z. (2.16)
2k% g 2 2 S N
Even under the condition of detailed balance, this coupled theory develops a nontrivial
potential. There is a unique potential term compatible both with anisotropic conformal
invariance and the detailed balance condition,

. 1 2
Sy = / dt d®x /g N {(VZVZ»X“)Q + K2 (vixavjxa — §gijv’fxavkxa) } . (217)
M

This theory, of z = 2 conformal gravity coupled to scalars and satisfying the detailed balance
condition, first appeared in [17] as the worldvolume action of “membranes at quantum crit-
icality”, whose ground-state wavefunction on Riemann surface ¥ reproduces the partition

2However, as was discussed in [17], one can get V ~ R? by squaring the equation of motion of a nonlocal
action: the Polyakov conformal anomaly action [ dzx\/gR%R.
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function of the critical bosonic string on 3. The Euclidean action in D = 2 dimensions which
yields (2.17) via the detailed balance construction is simply given by the action familiar from
the critical string,

1 -
W = §/d2x\/§ngViXavaa. (2.18)

We recognize the first term in (2.17) as the square of the X* equation of motion, and the
second term as the square of the energy-momentum tensor obtained from the g;; variation
of (2.18).
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Chapter 3

Holography in Asymptotically Lifshitz
Spacetimes

In this chapter, we discuss some general features of Lifshitz holography that are universal
and independent of the precise model. This chapter also serves as an overview of the the
technique of holographic renormalization, which will be described qualitatively here. First
we must precisely define the notion of asymptotically Lifshitz spacetime.

3.1 Anisotropic Conformal Infinity and
Asymptotically Lifshitz Spacetimes

The notion of conformal infinity plays a central role in general relativity [36, 37]. It is
constructed by mapping the original metric GG, on a manifold M via a smooth conformal
Weyl transformation to

G = P (2)G 0, (3.1)

such that the rescaled metric G w 1s extendible to a larger manifold M, which contains the
closure M of M as a closed submanifold. The idea is to define the conformal infinity of M
to be the set M \ M. The scaling factor £ must extend to M and satisfy certain regularity
conditions at M \ M (the most essential being that it should have a single zero there and
that its exterior derivative should be nonzero), but is otherwise arbitrary. A change from one
permissible scaling factor to another is interpreted as a conformal transformation at M\ M:
Hence, conformal infinity carries a naturally defined preferred conformal structure.

This notion of conformal infinity allows one to define precisely, and in a coordinate-
independent way, the notion of an event horizon (and hence the notion of black holes), as the
boundary of the causal past of the future infinity. Moreover, it allows us to define precisely
the concept of spacetimes which “asymptotically approach” a chosen vacuum solution “at
infinity.” In the example of AdS, this picture is naturally compatible with the physical ideas
of holography: The conformal infinity of AdS is of codimension one, and carries the natural
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conformal structure induced from the asymptotic isometries of the bulk, just as predicted
by the holographic dictionary.

As pointed out in previous work [35], the intuition of holographic renormalization in
Lifshitz spacetime clashes with this classic notion of conformal infinity as defined by Pen-
rose. This tension has been remedied [35], for spacetimes carrying the additional structure
of an asymptotic foliation, by generalizing Penrose’s notion of conformal infinity to reflect
the asymptotic anisotropy permitted by the foliation. The basic idea is simple: When M
carries a preferred foliation at least near infinity, we can use the anisotropic Weyl transfor-
mation (2.11), instead of the relativistic rescaling (3.1), to map M inside a larger manifold
M such that M C M. Even in this case, the rescaling factor = e* must satisfy regularity
conditions at M \ M. In particular,  must have a simple zero there. With a judiciously
chosen value of z, the anisotropic conformal infinity M \ M can be of codimension one.
Moreover, it naturally inherits a preferred “anisotropic conformal structure,” with confor-
mal transformations given by those foliation-preserving diffeomorphisms that preserve the
boundary metric up to an anisotropic Weyl rescaling.

The resulting notion of anisotropic conformal infinity for Lifshitz spacetime matches the
intuitive expectations from holography [35]. In the case of the Lifshitz spacetime (1.12), we
start with the metric as given in (1.13). We interpret this geometry as carrying a natural
codimension-one foliation by leaves of constant ¢, at least near u — 0. This additional
structure of an asymptotic foliation gives us the additional freedom to use anisotropic Weyl
transformations (2.11) without violating the symmetries. Choosing the rescaling factor

Q=u (3.2)

and applying the anisotropic Weyl transformation (2.11) maps the Lifshitz metric in the
asymptotic regime of u — 0 to the flat metric,

ds” = —dt* + dx? + du®. (3.3)

u can now be analytically extended from u > 0 to all real values. The anisotropic con-
formal infinity of the (D + 2)-dimensional Lifshitz spacetime is at u = 0. Topologically,
it is RP*!, and very similar to the conformal infinity of the Poincaré patch of AdSp.s.
However, even though the induced metric on anisotropic conformal infinity at v = 0 in
(3.3) looks naively relativistic, one must remember that its natural symmetries are not rel-
ativistic: This conformal infinity carries a preferred foliation by leaves of constant ¢, and a
natural anisotropic conformal structure characterized by dynamical exponent z. The natural
symmetries are given by those foliation-preserving diffeomorphisms that preserve the met-
ric up to an anisotropic Weyl transformation [35]. In addition to the spatial rotations and
spacetime translations of RP*!, one can easily check that this symmetry group contains also
the anisotropic scaling transformations (1.11). Thus, the conformal structure of anisotropic
conformal infinity nicely matches the expected conformal symmetries of the dual field theory.

Equipped with the notion of anisotropic conformal infinity of spacetime, we can now
give a precise definition of spacetime geometries that are “asymptotically Lifshitz”. Simply
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put, given a value of z, a spacetime is said to be asymptotically Lifshitz if it exhibits the
same anisotropic conformal infinity as the Lifshitz spacetime for that value of dynamical
exponent z. This definition follows the logic that leads to the notions of asymptotic flatness
and asymptotic AdS [36, 37|, and extends such notions naturally to the case of anisotropic
scaling.

As a part of their definition, the spacetimes which are asymptotically Lifshitz must carry
an asymptotic foliation structure near their anisotropic conformal infinity. In the context of
holographic renormalization, this condition translates into an important restriction on the

form of the vielbein fall-off,
0

e—i — 0, as r — 0o. (3.4)
r

This provides an answer to a question discussed in [8]: Our definition of asymptotically
Lifshitz spacetimes using the notion of anisotropic conformal infinity requires that the sources
for the energy flux vanish.!

With the definition of “asymptotically Lifshitz” at hand, it is now possible to define
precisely black holes and their event horizons in Lifshitz spacetimes, by referring to the
properties of the anisotropic conformal infinity of spacetime just as in the more traditional
spacetimes which have codimension-one isotropic conformal infinity.

3.2 Holographic Renormalization in Asymptotically
Lifshitz Spacetimes

Holographic duality in asymptotically AdS spacetimes — or, by logical extension, in asymp-
totically Lifshitz spacetimes — relates the partition function of a bulk gravity system with
Dirichlet boundary conditions at conformal infinity to the generating function of correlators
in the appropriate dual quantum field theory. At low energies and to leading order, this
correspondence gives the connected generating functional W with sources f(© on the field
theory side, in terms of the on-shell bulk gravity action evaluated with Dirichlet boundary
conditions given by f(©:

W[f(O)] = _Son—shell [f(o)] (35)

Both sides of this correspondence are divergent: Standard ultraviolet divergences appear
on the field theory side, and they require conventional renormalization. This behavior is
matched on the gravity side, where the divergences are infrared effects, due to the scales
that diverge as we approach the spacetime boundary. Holographic renormalization [38, 39,
40, 41, 42, 43] (for reviews, see [44, 11, 45]) is the technology designed to perform the
subtraction of infinities on the gravity side, in the form of divergent boundary terms in the
on-shell action, and to make precise sense of (3.5).

IMore precisely, it would be sufficient to impose (&e? —9j€?)/r* — 0 at infinity, a constraint which also
emerges naturally in the vielbein formulation of gravity with anisotropic scaling. In this dissertation, we
impose the stronger condition (3.4).
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Recent papers [8, 46, 47] have performed various steps of holographic renormalization
in Lifshitz spacetime at the non-linear level, and this dissertation builds on the results
established there. Since we choose for our analysis the Hamiltonian approach to holographic
renormalization [48, 49], our treatment is closest to that of [8].

Hamiltonian approach to holographic renormalization

The original analysis of holographic renormalization relied on properties of asymptotic ex-
pansions near the conformal infinity of spacetime [50, 51, 52]. The Hamiltonian approach
of [48, 49] aspires to give a somewhat more covariant picture, and the results of the earlier
asymptotic expansion approach can be reproduced from it [48]. Either way, we start by
choosing a radial coordinate, r, in some neighborhood of the anisotropic conformal infinity
of the Lifshitz spacetime M, such that the hypersurfaces of constant r are diffeomorphic to
the boundary OM, and they equip M near M with a codimension-one foliation structure.?
This foliation should not be confused with the preferred foliation of the anisotropic conformal
boundary by leaves of constant ¢t — the asymptotic regime of our spacetime carries a nested
foliation structure, with leaves of constant radial coordinate r further foliated by leaves of
constant ¢.

Our task is to evaluate the on-shell action as a functional of the boundary fields, and
perform the corresponding renormalization. Because of the infinite volume of Lifshitz space,
the on-shell action diverges, and must be regularized by inserting a cutoff at finite volume
and identifying terms that diverge in the asymptotic expansion in the cutoff, and then
renormalized by introducing appropriate counterterms to eliminate the divergences. The
on-shell action is regulated by cutting the bulk spacetime off at some value r < oo of the
radial coordinate. If M, is the cut-off manifold, its boundary OM, represents a regulated
boundary of spacetime. The on-shell action is a function of the regulator r, and the boundary
fields which include the metric multiplet, NV, N; and g;;, plus all sources associated with the
bulk matter ®, which we collectively denote by ¢. From now on, we simply denote the
on-shell action S,,,_snen — viewed as a functional of the boundary values of the fields — by S,
and parametrize it as

Sw/ dtd’x /g NL. (3.6)
oM

Since the on-shell action S is a function of r and the boundary values of the fields, we
can naturally interpret it as a solution to the Hamilton-Jacobi equation, regarding r as the
evolution parameter. This is the starting point for the Hamiltonian approach to holographic
renormalization. The Hamilton-Jacobi theory implies that the first variation of the on-shell
action with respect to the boundary fields gives the conjugate momenta. In the holographic
dictionary, the boundary fields serve as sources in the field theory, and their conjugate

2In our conventions, M is at r = oo. The choice of u = 1/r instead of r as a coordinate near M would
be more appropriate, since u is finite through M. In this section, we leave this more rigorous coordinate
choice implicit.
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momenta are thus directly related to the one-point functions of the operators conjugate to
the sources.

A convenient way of computing the divergent part of £ is to organize the terms with
respect to their scaling with r. More precisely, we define the dilatation operator by

) ) § )
= b N— +2N,— +2 --——§ Ayp— .

where Ay collectively denotes the asymptotic decay exponents of the bulk matter fields ®.
Quantities of interest can then be decomposed into a sum of terms with definite scaling
dimension under 5. For example, the object of our central interest, £, can be expanded as

L= Z LB 4 LE+D) Jog (3.8)
A

Throughout this dissertation, superscripts in parentheses on any object O always denote
the scaling dimension in the decomposition of O as a sum of terms of definite engineering
scaling dimensions. For example, Tf(ﬁ; is the constant part of the stress tensor, and R® is
the dimension-two part of the scalar curvature.

The individual terms of the expansion (3.8) satisfy

opLB) = —ALB  for A#z+D. (3.9)
When A = z + D, the scaling behavior is anomalous,
opLETP) = —(z 4 D)LEHD) 4 LEHD), (3.10)
with the inhomogeneous term satisfying
OpLEHD) = — (2 4+ D)LEHD), (3.11)

This logarithmic term in (3.8) reflects the possibility of an anisotropic Weyl anomaly.

The dynamical equations for the divergent part of £ are determined as follows. Since
the on-shell action satisfies the Hamilton-Jacobi equation, its radial derivative is determined
in terms of the Hamiltonian. Because the fields have fixed asymptotic behavior, in the
asymptotic region the radial derivative is equivalent to the anisotropic scaling operator,

d
r— & 0p. 3.12
dr D ( )
The Hamilton-Jacobi equation then relates the action of d, on the on-shell action to the
Hamiltonian of the system. Using the bulk equations of motion, one obtains a first-order
differential equation for £ in terms of the boundary values of the fields that can be solved
iteratively in the expansion in eigenmodes of dp,.
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Equivalently, one can expand the Hamiltonian constraint in eigenmodes of d,,. The struc-
ture of these equations allows for the momentum modes to be obtained recursively in terms
of the boundary data. In this method, the dilatation operator acting on the on-shell action
gives an expression linear in the canonical momenta, so that the values for the momenta
obtained recursively from the Hamiltonian constraint give rise directly to the desired ex-
pression on-shell action. The resulting on-shell action will have divergent pieces that can be
expressed as local functionals of the boundary data. These pieces can be subtracted, leading
to the finite renormalized on-shell action.
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Chapter 4

Illustrative Example: Holographic
Renormalization in AdS

Let us begin with a simple example that illustrates many of the key calculations of holo-
graphic renormalization. We will examine the theory of general relativity with cosmological
constant but no other matter fields, which has AdS spacetime as a background solution.
The holographic renormalization of this theory has been examined extensively in the litera-
ture (e.g., [38, 41, 48]) but it will be useful to repeat it here before proceeding to the more
complicated cases in Lifshitz holography.

4.1 The Bulk Action and Notation

The bulk spacetime relativistic action is:

1
871G ap1

S = ;/ d®zdrv/—G (R — 2A) +
M

die /=g K. 4.1
]_67TGd+1 /8/\/[ g ( )

Note that in order for AdS spacetime (1.3) to be a classical solution, we set
1
A= _§d(d —1). (4.2)
We denote the metric in the bulk by:
ds? = G de'dr’ = gapdr®ds’ + —-. (4.3)
The boundary is at r = oo. d is the number of spacetime dimensions on the boundary
and so there are d + 1 spacetime dimensions in the bulk. For coordinate indices, «,f

are used for the d spacetime boundary indices (z®) and p,v are used for the d 4+ 1 bulk
dimensions (z%,7). V, represents the covariant derivative for the metric g,5. Note that in
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(4.3), the bulk diffeomorphisms have been gauge fixed by setting the the radial shift vector!
N, = 0, and the radial lapse function N’ = 1/r. This radial gauge is adopted throughout
this chapter. Note that in this radial gauge, the extrinsic curvature on the boundary is
Ko = 55(0rgap — VaNs — VNo) = 10,9as/2.

It is often convenient to work in terms of vielbeins, which we define via

d 2
ds® = nMNEﬁ/[EZJ,de“dx” = nABeﬁegda:adxﬁ + T—TQ (4.4)

For the internal frame indices, M, N = 0, 1, ..., d are used for the d+1 bulk dimensions, A, B =
0,1,....,d — 1 are used for the d spacetime boundary indices. The vielbeins allow coordinate
indices to be changed to frame indices and vice versa, for example T4 = efefT7.

In order to distinguish the Riemann tensor of the two different metrics G, and gag,
we use the notation wherein (d + 1)-dimensional quantities are written in curly letters (for
example, R for the Ricci scalar) and the d-dimensional quantities are written in standard
italics.

4.2 Radial Decomposition

When written in radial ADM variables N'; N, and g¢.g, the bulk action (4.1) becomes (when
ignoring surface terms)

1
S = —/ dd:vdr\/—gN(KQ—KagKo‘ﬁjLR—ZA) : (4.5)
167TGd+1 M
Varying this action with respect to the radial lapse function N gives the Hamiltonian con-
straint:

K? — Kop K = R — 2A. (4.6)

This equation will be useful in later sections. Furthermore, we define? the (radial) momenta
corresponding to the metric g, by:

T —

N Vo' 687"904,8

= K" — ¢*’K. (4.7)

4.3 Functional Derivatives and the Stress Tensor

We will be applying the Hamilton-Jacobi formalism in the radial direction to perform the
holographic renormalization. We form the on-shell action by taking the bulk action (4.1)

'Recall that A" and N, are defined via G,o = N, and G, = N2 + g*’ N, N
2This differs from the usual canonical momenta by a factor of \/—g(—167G4.1)~"! in order to simplify
some of the subsequent equations.
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and evaluating it as a function of the boundary fields:

1
S = —/ d?x /—gL. 4.8
167TGd+1 OM g ( )

As in the standard Hamilton-Jacobi theory, the radial momenta (4.7) can be obtained by
functional differentiation of this on-shell action:
<o _ _167Gay 05 .
V=9 09ap
Equivalently, the variation of the on-shell action is:

1

5S = ——/ dz/=g [18ges] =
167TGd+1 OM g[ gﬁ}

(4.9)

1
B 167TGd+1

/ dz\/—g [271'&56%565] (4.10)
oM

The boundary stress-energy tensor 7% g is defined by functional differentiation of the on-shell
action with respect to the vielbeins eZ. Therefore, the variation of the on-shell action can
also be written as:

1
6 = ——n— dan/—q [T%goe? 4.11
where
167Gyp1 4 0S
T = — i 4.12
B /—_g Ca 5€aB ( )
By comparing (4.10) and (4.11) we get the following relation:
Taﬂ - 27Taﬁ~ (413)

We will use the results of this section to determine the stress-energy tensor from the on-shell
action.

4.4 Analysis of Linearized Constant Modes

The bulk fields in general relativity will correspond to operators in the dual quantum field
theory. To elucidate these operators and their scaling dimensions it is useful to conduct
an analysis of the constant linearized modes around the AdS background. By constant, we
mean that the modes are independent of  (but can depend on 7).

Before doing this, recall that the bulk theory has a gauge group of diffeomorphisms
(0Gw = 0,(°Gry + 0,(°G 6 + (70,G ), so some modes will be pure gauge. Since we will
only be looking at the linearized modes, we can substitute in our background solution of
G =, Gra =0, Gag = gag = rNag’

5o = 0.~ 50,
T

r2
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1
5Gro¢ = T26T§Bnocﬁ + _Qaa<T7
r
0Gap = aaCWQnm + 8[3(77’2%7 + 21" Nagp- (4.14)

When choosing the radial gauge of (4.3), we must maintain G,, = §G,, = 0, which re-
quires (" = r¢ and (* = #naﬁﬁgg , where ( is independent of r. This leaves the following
diffeomorphisms unfixed:

59045 = 8o<65<u + 2T2C77a5' (415)

In addition, we are just looking at constant modes so we can take dg,s5 to be independent of
x® (but it can depend on 7). This means that ¢ must be independent of both z® and r and
so (4.15) becomes

5ga5 = 2T2C7]aﬁ' (416>

This is a pure gauge mode, even after the radial gauge has been chosen. We can now analyze
the linearized modes. We only consider the modes that are constant in x*. By the above
discussion, we take

9op = 2 [Nap(1+1) + tag), (4.17)

where %t 5 = 0 and t, ¢, are functions of r only. We now substitute this into the equations
of motion (R, = 2(R — 2A)G,,), keeping only terms linear in t,5 and ¢ to get:

where a prime denotes differentiation with respect to . Other than the pure gauge mode of
(4.16), this equation has general solution t,5 = ¢1as —|—cgagr_d for traceless constants cj,5 and
C2aB- Clap 1s the asymptotic value of g,3 and thus it represents a source for the stress-energy
tensor 7% These linearized modes give a contribution to the bulk stress-energy tensor of:

Tap ~ —dcaapr™. (4.19)

Thus co4p contributes to the expectation value of Tyg and, from the exponent of r, we can
deduce that the CF'T stress-energy tensor operator has scaling dimension d as expected.

4.5 Boundary Source Fields and Asymptotic Scaling

The boundary conditions are specified by fixing the sources for the various field theory
operators on the boundary. We can use the results of Section 4.4 to determine the asymptotic
behavior of the fields. The correct boundary condition involves the following finite fixed
source as  — 0o (denoting the source by a bar):

A
gh =S (4.20)

@ r
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The above scaling behavior allows us to determine the scaling behavior of other quantities
near the boundary. Any boundary quantity can be written in terms of the source fields and
then the scaling behavior can be read off from the resulting exponents of r. Consider a
general object O. When written in terms of the boundary source fields, we say that the term
in O scaling as r~2 is of “order A” and denote it by O®). For example, e has order —1,
Yap has order —2, y*# has order 2 and R has order 2.

We can also use the leading order behavior of the fields (4.20) to determine the leading
order behavior of the momenta:

K8 = (421
7O = 270l = —2(d — 1)nas. (4.22)

Note also that (4.12) implies that the term £®) in the on-shell action determines 74 B(A).

4.6 Holographic Renormalization Equations

When the action (4.1) is evaluated on shell as a function of the boundary fields we write it
as:

1

S = —/ dz \/=gL. 4.23
167TGd+1 M g ( )

A convenient way of computing the divergent part of £ is to organize the terms with
respect to how they scale with . More precisely, we define the dilatation operator by:

)
_ d A
4 —/é)de <e“5€ﬁ>. (4.24)

This operator asymptotically represents r—.

”
L can then be decomposed into a sum of terms as follows:

L= LW+ LDogr. (4.25)

A>0

Note that from the form of (4.23), £L*) only results in a divergent term in the on-shell action
if A < d. Furthermore, we include a logarithmic term at order d due to the possibility of a
Weyl scaling anomaly. The individual terms of the expansion (4.25) satisfy

SpLW = —A LB for A+#d, (4.26)

S LD = —(d) LD + LD, (4.27)
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Op LY = —(d) LD, (4.28)
Applying d to the on-shell action (4.23) and using (4.12) yields:
(d+0p)L =T, (4.29)
Expanding this at each order then results in:
(d—A)L@ = —74,&) (4.30)

except for A = d, when this becomes
£ = —7a,®) (4.31)

This allows us to solve for the anomaly. The above equations imply that the anomaly term
can also be found by:
£®) = lim ((d - A)ﬂ“). (4.32)
A—d

Note that the value of £ cannot be found by this asymptotic analysis.

We now move on to finding an explicit expression for these divergent terms in the on-shell
action £, Recall from (4.6) that the variation of the bulk action (4.1) with respect to A
produces the constraint equation:

K? - K ,pK*® = R —2A. (4.33)

We will now expand this equation in its dilatation eigenvalues and then substitute it into
(4.30) to yield an expression for £,

Explicitly, noting that K pK4P — K% = K g7, the left hand side of (4.33) contains a
term at order A equal to —K (/2 g ABA/2) _ D a2 2K P ABA=9)  Using (4.21), the s = 0
term of this sum is then equal to the right hand side of (4.30). Therefore, combining these
results, the terms in the on-shell action are given for A # 0 by:

(d—A)LB) = oW 1 &), (4.34)
where the quadratic term Q®) is given by
0B _ [ Z 2K1(48g7TAB(A—s)] 4 KI(L‘%/Q)WAB(A/Q)’ (4.35)
0<s<A/2

and the source S is
S =R-2A. (4.36)

When A =0, (4.34) becomes:
(d—0)L® = 280, (4.37)
S can also be expanded in its dilatation eigenvalues and the only contributing terms are:

SO = —2A=d(d-1),
S® = R (4.38)
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4.7 Calculation of Divergences

We now proceed to use the holographic renormalization equations of Section 4.6 to calculate
the divergent terms in the on-shell action at each order. From the form of S in (4.38), it
is clear that there will only be divergent terms at order A = 2k for £ € N. Once these
divergent terms have been calculated, counterterms must be added to the action in order to

1
subtract these divergences. With a boundary cutoff at » = —, the counterterms are
€

1 -
Sep = ——— / d'z/—g LB — LD og(e)| . (4.39)
* 167TGd+1 IM 0§d
Non-derivative counterterms
At order 0, we have:
(0)
£O = 2‘2 =2(d—1). (4.40)

This divergent term in the on-shell action results in the following divergence in the stress
tensor (see Section 4.3):

TO = —2(d — 1)nas. (4.41)

Note that this agrees with the previous result in (4.22).

Two-derivative counterterms
Up to total derivatives, the divergent term in the on-shell action of order 2 is:
(d—2)L® = S® =R, (4.42)
This gives the following contribution to the stress tensor (see Section 4.3):
(d=2)T5% = 2Rap —nasR. (4.43)

In addition, this divergent term leads to the well known Weyl anomaly in d = 2 (using
(4.32)):

£ = lim ((2 - A)L’(A)) ~R. (4.44)
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Four-derivative counterterms

At fourth order we have:

(d—4)L® = K@r4P@). (4.45)
2
Note that mas = Kap — gapK implies that 7%, = —(d — 1)K and so K,3 = Tap — —de_goi@
Therefore:
(d—4LW = KHrAEe
2
_ 7T(2) WAB(Q) B (7TAA( ))2
Y e
2
_ Y p@pase _ (T0a7)
4 AB d—1
= ! [(2Rap — 04R)(2R"? — 6"PR)] — 1
T A(d—2p LT TAR A(d—1)
1 d
_ R wRAB _ R?). 4.46
g (R = ) (440

In particular, this result leads to the well-known expression for the Weyl anomaly in
d =4 (using (4.32)):

. 1 1
L7 = lim ((4 - A)UA)) =7 <RABRAB - gRQ) : (4.47)

Higher-derivative counterterms

The divergent terms calculated above are all the divergent terms for d < 6. For higher
dimensions there will be further divergences, which can be calculated systematically using
this method.
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Chapter 5

Lifshitz Holography 1: GR with a
massive vector

Now that we have had some practice with the holographic renormalization of AdS spacetime,
we move on to Lifshitz holography. The first theory we examine is the simplest one in the
literature, first found in [19], in which bulk Einstein gravity is coupled to a massive vector.
In this chapter we carry out the holographic renormalization of this theory and in the next
chapter we analyze some of the implications of the calculation.

5.1 The Bulk Action and Notation

The bulk spacetime relativistic action is:

= —_— vas AN — ZF, F™ — —m? z
S 1677GD+2/Mdtd x dr G(R 7 Fw 5 ANA)

/ dt d°x /=g K. (5.1)
oM

87TGD+2

Note that in order for the Lifshitz spacetime (1.12) to be a classical solution, we set
1
m?> =Dz and A= —3 (2> + (D — 1)z + D?). (5.2)

The Lifshitz metric is sourced by a non-zero condensate of the vector field, with background

solution:
Aa = adl, (5.3)

with 5 .
o? = —(ZZ_ ). (5.4)

Note that the non-zero condensate of this massive vector field in the time direction causes
the dual field theory to be non-relativistic, with anisotropic scaling between space and time.
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Therefore, in addition to distinguishing boundary and bulk coordinates (as was done in
Chapter 4), we now also need to distinguish boundary spacetime coordinates from boundary
spatial coordinates. So let us clarify our notation for this chapter. The bulk metric is written
as follows, with the boundary at r = oco:
dr?

ds®* = G datdr” = gagdxadxﬁ + 7
i i i j dr?
= —N2dt* + v;;(dz' + N'dt)(dz’ + N7dt) + = (5.5)

We take D to be the number of spatial dimensions on the boundary and so there are D + 2
spacetime dimensions in the bulk and d = D + 1 spacetime dimensions on the boundary. For
coordinate indices, i, j are used for the D spatial boundary indices ('), whereas a, 8 are used
for the D+1 spacetime boundary indices (¢, z') and p, v are used for the D+2 bulk dimensions
(t,z% 7). @a represents the covariant derivative for the metric g,s and V; represents the
covariant derivative for the metric ;;. Note that in (5.5), the bulk diffeomorphisms have been
gauge fixed by setting the the bulk shift vector N, = 0, and the bulk lapse function N' = 1/r.
This radial gauge is adopted throughout this chapter. Moreover, in order to distinguish the
lapse and shift variables in the bulk from those of the ADM decomposition on the boundary,
we refer to the bulk variables N and N as the “radial lapse” and “radial shift”. In this
radial gauge, the extrinsic curvature on the boundary is K5 = %v(&»gaﬂ —@QJ\/ 8 —@5/\/&) =
70rGap /2.
It is often convenient to work in terms of vielbeins, which we define via

dr?
ds* = UMNEyEZ{de”dJ;V = ﬁABeﬁegdxadxﬁ + LQ
r
. ) . ) d 2
= —N?de* 4 §sefe] (do' + N'db)(da! + NVdt) + - (5.6)
r

For the internal frame indices, M, N = 0,1, ..., D+ 1 are used for the D + 2 bulk dimensions,
A, B=0,1,...,D are used for the D + 1 spacetime boundary indices and I,.J =1,..., D are
used for the D spatial boundary indices.

In order to distinguish the Riemann tensor and the extrinsic curvature tensor of the three
different metrics G, gop and 7;;, we use the notation wherein (D + 2)-dimensional quan-
tities are written in curly letters (for example, R for the Ricci scalar), (D + 1)-dimensional
quantities are written in standard italics and D-dimensional quantities are written with hats.

5.2 Radial Decomposition

When written in radial ADM variables N, N, gas, the bulk action (5.1) becomes (when
ignoring surface terms)

1
S = —— | d%dr/—gN(K? - K 3K*? + R —2A
167G ps /M vdr V=9N gl
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1 1 1 1
e R R — SF Y m?A? S A O‘). 5.7
IN? TR oz A g AAT ) (5.7)

We define! the radial momenta corresponding to the metric g,5 and the vector field A, by:

ﬂ.aﬁ o 167TGD+2 0S _ Kaﬁ . gaﬁK,
vV —9 5argaﬂ

_167Gpys 08 F°
V=g 060, A, N

Varying the action (5.7) with respect to the radial lapse function N gives the Hamiltonian
constraint:

(5.8)

1 1 1 1
K? — Ko K% — 5T = 5 N2m2A2 = R—2A — ZFM;FW — §m2.AaAa, (5.9)

which will be useful in later sections.

5.3 The ADM decomposition

We next need to perform an ADM decomposition of g3, separating out the time from the
space coordinates on the boundary.

ADM decomposition in the metric formalism

In our calculations, we decompose the metric g,s on the (D + 1)-dimensional boundary of
spacetime into the ADM decomposition

Gt = —N? + NiNi? Gij = YVijs 9t = Ni,
w1 . N!NJ w N

A N v

This metric leads to the following Christoffel symbols:

ON NV;N NNEK,;
+

Ft

i N N + N

4 g ['N; NiNIV.N . NiNINFK
I = 7NV;N + N7, (WJ) - TJ - ’VUNijNk - T]k7

ViN NI,
N N
IThis differs from the usual canonical momenta by a factor of \/—g(—167Gpy2)~! in order to simplify
some of the subsequent equations.

t
Fti
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: _— N7\  NINFEKy,
I, = NY"Ky + NV, | — | - ———
ti v k;"_ V (N) N )
t j
Yo = N
.. K;N*
ko _ k 2
Fij = Fij_Ta

- 1
where K;; = ﬁ(&mj — V;N; — V,N;) is the D-dimensional extrinsic curvature.
These result in the following (D + 1)-dimensional Ricci scalar R for the metric g, in
terms of R, the D-dimensional Ricci scalar for the metric v;;:

. 2V'V,N A A VA \VAAZ
R=R-"" 4 K,KY - K? -t 5.10
where:
ij Nj 2
_ N; NjVZ-Nj i N NjVjNZ- NiVij
Y, = 8t(N> + N +2N’K;; — 3N; K + N N (5.12)

ADM decomposition in the vielbein formalism

The vielbeins are defined by gos = eaefnap and y;; = é/é/6;;. The (D + 1) dimensional
boundary has vielbeins e? given by:

e’ = Ndt, el = el (N'dt + dz*) = N'dt + é'. (5.13)
The Ricci rotation coefficients are defined by de® = Q a5Ce? A eB:
, ViN
de® = V;Ndz' Ndt = ]IV el ne, (5.14)
V,NL &0l .
de! = | N N])e‘]/\eo—i—QJKIeJ/\eK. (5.15)
This means that:
VN
Q' = —— 5.16
07 IN ) ( )
Q. =0, (5.17)
V, ;NI ol
Qs = — — ] 1
VNI &0él VN 4igny K
Q! = — — 1) = — — Iy = 5.20
of (SN o )~ 5N N )T (5:20)
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Note that by definition €2 158° = —Q54°. The covariant derivative is then given by:
@QVB = aOcVB - wozBCVCa (521)
where wapc = —Qapc + Qacp + Qpca. Note that wapc = —wacr. Also UJ[AB]C = —QABC

and wep® = 2Qp°.

5.4 The massive vector

By a choice of frame, we take the massive vector to be:
As = (a+ )5y, (5.22)

Also, the massive vector has a non-zero component in the r direction, which the equation of
motion for A, gives as:
VOF, VANT
A= ——T% = — W), (5.23)

m2 m2

Then:

Ay = etAy=e(a+1p) = N(a+ ). (5.24)
The only non-zero component of Fip is:

Fy = —F,; = 0;A, = aV;N + V;(Nv). (5.25)

The non-zero components of F*% are:

) ) f)/ijFi ) (,.Yiij o ,.yzk:N])Fl
Flt=—FY = =%, F'= 7 3 (5.26)
Therefore we have that:
a 2(0&V1N + VZ(Nw))(C(VZN + Vl(Nw))
FupF4P = F\gF* = — o
202V, NV'N 4aV¢(Nw)ViN 2Vi(N1p)Vi(Nw)
= - - - = . (527)

5.5 Functional derivatives and the stress tensor

As before, we will be applying the Hamilton-Jacobi formalism in the radial direction to
perform the holographic renormalization. We form the on-shell action by taking the bulk
action (5.1) and evaluating it as a function of the boundary fields:

1
S = —/ dt d°x /4 NL. 5.28
].67TGD+2 OM ﬁ ( )
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As in the standard Hamilton-Jacobi theory, the radial momenta (5.8) can be obtained by
functional differentiation of the on-shell action:

167TGD+2 0S _167TGD+2 0S

7-‘-05[-3 — - , 7Ta = _— . 529
V=9 09ap V=9 0Aq (5.29)
Equivalently, the variation of the on-shell action is:
1
68 = ——r— / d'z/=g [T 8 gap + T A4 5.30
5700 Jon 9 [7709as ] (5.30)
_ 1 d — o o B s B A
= d's\/—g |(27%5 + T Ag)egle, + T 0AA| . (5.31)
167TGD+2 M

The boundary stress tensor T%g, however, is defined by functional differentiation of the on-
shell action with respect to the vielbeins eZ, while holding the vector field with frame indices
(Aa) fixed. Note that Ay = « + ¢ is the only non-zero component of A4. Therefore, the
variation of the on-shell action can also be written as:

1
55:——/ Az /N [T*56e? + mu00)] 5.32
67Crrs Jon, VAN [T O] (5.32)
where
TAB _ _167TGD+2 A oS o _167TGD+2§ (533)

e , Ty = ——————.
VAN T deB v VAN 6y
One fact to remember is that a non-relativistic stress tensor is not necessarily symmetric.
Ty is the vacuum expectation value (vev) of the energy density, 7% is the vev of the energy
flux, T9; is the vev of the momentum density and 77, is the vev of the stress tensor.

By comparing (5.31) and (5.32) we get the following relations:

Top = (2Tap + TaAg)el, Ty =T, (5.34)
Rearranging these expressions we have the following:
1
TAB — §(TAB —WAAB), 71'1./40 :TIO _TOI- (535)

Finally, by using the expressions for the vielbeins derived in Section 5.3, we can write
the stress tensor as:

167G ps 5
7%, = L —Fre = .
: e (5360
167G s 69
0 — _Tb+2 77
T = N (5.37)
NS 1,68
I 51
Ty = —16mGoy [ﬁNdNJ+\/7NeZ 5@;’}

(5.38)

I
_ _167TGD+2[N s 2, 55}

+ €, €5 ——
JINONT T AN Gy
We will use these expressions to determine the stress tensor and vector momentum from the
on-shell action.
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5.6 Analysis of Linearized Constant Modes

As in Section 4.4, the bulk fields will correspond to operators in the dual quantum field
theory and it is useful to conduct an analysis of the constant linearized modes around the
Lifshitz background. We parametrize the linearized fields by:

1 : 1 1 .
e =r*(1+ §f)dt +rogdat, el = rFoldt 4+ (67 (1 + §k) + Ekli)dxl, v =aj, (5.39)

where k;;0” = 0 and where f, j,v1;, va;, ki; are functions of r only. At the linearized level,
this is equivalent to the following parametrization of the metric and massive vector:

gu=—1*1+f),  gu= T’ZHl(—Uli ty), gy =701+ k) + ki),
Ay = ar*(1+ §f +7), A; = arvy;. (5.40)

Since the equations and background solution have D-dimensional rotational symmetry, the
linearized equations of motion decouple into scalar, vector and tensor equations and we can
analyze each separately. But first we examine the pure gauge modes that appear.

Pure gauge modes

Before doing this, recall that the bulk theory has a gauge group of diffeomorphisms (6G,,, =
0,(°Gry + 0,(°G e +¢°0,G,, and 0A, = 0,(° A, + (?0,A,,), so some modes will be pure
gauge. Since we will only be looking at the linearized modes, we can substitute in our
background solution of Grr = 7%’ Gra = 0, Gij = 0Gij = Tz(;ij, Gtt = gt = —T’QZ, Git = gt = 0,
A, = ar?s’:

2 T 2 T
6Grr = T‘_zaTC - 7“_3C )

, 1
0G,; = T28TCJ5ij+_28i<T7
T

1
5G = —1%0,C' + 50C,
r
0gu = —27”2Z8tct - 227"2'2_1@7
6gn = —170,(" + 170,76y,
(591;]' == r287;§k(5jk -+ 7“283-('“5“? + 2T’Cr(3ij,
SA; = 0 lar® + azr* (7,
0A, = 0.(tar?,
0A;, = 0. (5.41)
When choosing the radial gauge of (5.5), we must maintain 6G,, = 6G,; = §G,; = 0, which
requires (" = r(, (' = 55690;¢ and (' = —55:9,(, where ( is independent of 7. This leaves

the following diffeomorphisms unfixed:

1
Ogr = ;aSC—QZTQZQ
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z+1
0git = B 0;0:¢,

z
0gi; = aiajC+2T2C5ija
(5./415 - _%auatC"i_&ZTZCa
A, = ———0,0,C,

2r?
JA; = 0. (5.42)

In addition, we are just looking at constant modes so we can take dgy, dgit,0g;; to be inde-
pendent of z*,¢ (but they can depend on r). This means that ¢ must be independent of a7,
t and r and so (5.42) becomes

0gu = —227’2'2(7

5git - 07

5gij = 2r’Coy,

0A; = azr?(,

0A, = 0,

0A; = 0. (5.43)

This is a pure gauge mode, even after the radial gauge and massive vector frame (5.22) have
been chosen.

Scalar modes
We now substitute our linearized scalar modes (f, k, 7) into the equation of motion:

1 1 1 1
RMV = E(QA - Z HVFMV)G/'LV + 5 auFUV + §m2"4ﬂ"4’/’ (544)

keeping only linear terms. The resulting equations for (u,v) = (r,7), (u,v) = (¢,t) and
(u,v) = (i,7) respectively are:

0 = D**K" +3D%*FK + Dr*f" + (3D +2z—2)rf —4(z — 1)(D — 1)(25 + rj’),
0 = Drif"+ (D*+3D+2z—2)rf + 2D*k' — 4(z — 1)[D?*j + (D — 1)(zj + r5")],
0 = D(z+2D+ 1)rk’ + Dr*k” + (D 42z — 2)rf + 4(z — 1)(zj + rj’), (5.45)

where a prime denotes differentiation with respect to r. The equation of motion for the
massive vector (VAF,, = m?A,) gives a further equation when p = ¢:

0 = 72f"+25"+ Dzrk/ + (D + 1)rf' +2(D + z+ 1)rj’. (5.46)
These linear equations have the following general solution (for z # D):

_ D4+z2-1) a D+z-1) o (D+2z-1) ¢
J (Z — 1) rD+z (Z _ 1) TA‘*' (Z . 1) T'A—’
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2 a  2B3:-D-2-B)c 2Bz-D-2+p5) c

k = (D_’_Z)TDJrz_ (D+Z+5Z> T'A++ (D—FZ_ﬁz) TA*_FQC’
B 2D c 2(BD—-1)z—D(D—-1)—(D—-1)8,) ¢
/ (D + z) rP+= * (D+z+8.) ri+
~2(BD—1)z (_DDJEI,Z :;);F (D —-1)5.) 713_ + ¢y —22(, (5.47)

where c1, c9, 3, ¢4, ¢ are arbitrary constants and

Ay = %(z + DB, B.=/GLDP+8:-1)z=D). (548

When z = D, the general solution is instead:

(2D —1)c; +colnr
- T DO-1 = @

le+clnr BD—1) ¢
k = 5 7»2D —+ 2D2(D — 1) TQ—D — 2(D — 1)03 h’lr + QC,

¢ +clnr (3D —1) ¢
f = =) — QD(D_1>r2—D+2D(D—1)031nT—1—c4—2zC. (5.49)

As explained previously, ( is a pure gauge mode.

Vector modes

We now substitute our linearized vector modes (vy;, v2;) into the equation of motion (5.44)
and only keep linear terms. The resulting equation for (u,v) = (t,1) is:

0 = (z—1)(D+1)(vy +vi) + (z4+ D+ Drvh, — (D — z + 3)rvl, + r? (vl — vf,). (5.50)

The equation of motion for the massive vector (V*F,, = m?A,) gives a further equation
when p = i:

0 = 72, +(D+1)rv); — (D+2z—1)(2 — Dy + 2rvh + 2(z — Vg, (5.51)
These two linear equations have the following general solution:
v = eyttt o e (PHD g pm (224D
z—1) (2 =2)(D+2) L —(D+1) (D+32-2) —(224+D—1) 559
+ e—2-D) CoiT +—(D—|—z) C3iT . (5.52)

where cy;, co;, 34, c4; are arbitrary constants.

Vo; = C4z'7’_(
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Tensor modes

Finally, we substitute our linearized tensor mode (k;;) into the equation of motion (5.44)
and only keep linear terms. The resulting equation for (u,v) = (i, 7) is:

0 = 7’k + (z+ D+ 1)rkj;. (5.53)

D+z

This has general solution k;; = c1;; + c%jr_( ) for traceless constants ciij and cy;.

Analysis of the modes

We can identify each pair of linearized modes with an operator in the dual field theory. In the
dual field theory, the nonrelativistic stress-energy tensor is made up of the energy density
£ and the spatial stress tensor Hé-, which have dimension z + D, the momentum density
P;, which has dimension D + 1 and the energy flux, &;, which has dimension 2z + D — 1.
As shown in [8, 9], we can identify c4, ¢4, c1; and cy;; as the sources for £, P;, & and H;
respectively. Furthermore, c;, c9;, c3; and cy;; contribute to expectation values of £, P;, &;
and Hé- respectively. Note that there is not a separate source for the trace of H; since the
anisotropic scaling implies that z€ + II! = 0. We now also have scalar modes (cp and c3),
which correspond to a new dual operator Oy, of dimension A,. The + sign here depends on
whether the standard or alternative boundary condition is chosen for this mode (see Section
1.2). If the standard boundary condition is chosen, then ¢ is the source and the O, has
dimension A, . If % <z<DforD>1(orl1<z< % for D = 1), then the alternative
boundary condition can be chosen instead, which results in cg being the source and O,
having dimension A _.

5.7 Boundary Source Fields and Asymptotic Scaling

The boundary conditions are specified by fixing the sources for the various field theory
operators on the boundary. Using the results of the previous section, our boundary conditions
involve the following finite fixed sources as r — oo (denoting each source with a bar):

¥

0 I
=0 €a —I €u 7
= — = — = . 5.54
€ rz ) € r ) ¢ T_A* ( )

In order to have a foliation on the boundary, it is necessary to set €’ (the source for the
energy flux £%) equal to zero [8]. For all of this chapter, we have set €2 = 0.

Note that T, is the vacuum expectation value of the operator sourced by &2. In other
words, €2 is the source for the energy density £ and the energy flux £, whereas ¢/, is the
source for the momentum density P; and the stress tensor IT';. 1 is the source for O, the
operator dual to the massive vector ¢. The operator Oy, is relevant for z < D and irrelevant
for z > D. Therefore, for z > D, we must take ¢» = 0 in order to preserve the asymptotic

boundary conditions above. In the case z = D, the operator is marginal and there is some
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evidence suggesting that it becomes marginally relevant in the case of D = 2 [53]. We have
assumed in the boundary conditions (5.54) that the standard boundary condition has been
chosen for . If the alternative boundary condition is chosen instead, one simply replaces
A_ by A, in (5.54) and identical results are obtained in what follows. Note that in this case
the operator O, is always relevant.

The scaling dimensions discussed here are the classical scaling dimensions, consistent with
the fact that we perform our analysis near the ultraviolet fixed point with fixed z. In the
bulk, this corresponds to the asymptotic analysis in the vicinity of the space-time boundary
at conformal infinity. Hence, in our analysis we systematically ignore most of the possible
nontrivial infrared dynamics, such as the flow - generically expected in Lifshitz-type theories
- towards lower values of z under the influence of relevant operators.

The above scaling behavior allows us to determine the scaling behavior of other quantities
near the boundary. Any boundary quantity can be written in terms of the source fields &4
and ¢ and then the scaling behavior can be read off from the resulting exponents of 7.
Consider a general object @. When written in terms of the boundary source fields, we say
that the term in O scaling as 7~ is of “order A” and denote it by O®). For example, €’
has order —z, e/ has order —1 and 1 has order A_. This means that N has order —z, N;
has order —2, 7;; has order —2 and ¥ has order 2.

From (5.10), R has components of order 2 and 2z given by:

~ 2V'V;N

R® = R ~ (5.55)
R®*) = KKV - K+ ]it\% + v;/". (5.56)

From (5.27), FapF*? has components of order 2, 2+ A_ and 2 + 2A_ given by:
(FapF?)® = —M?vj"\[ﬂ, (5.57)
(Fapmyeia) = ATEOVE, (5.59
(Faprmyeass = ZVNOVINY) (5.50)

Also, AyA4 = —(a +9)? has components of dimension 0, A_,2A_:

(AgAHD = —a?, (5.60)
(AQANHB) = 204, (5.61)
(AgAMBER) = g2, (5.62)

Note that (5.33) implies that the term £ in the on-shell action determine 7% ®), 70,4+~

TIO(A+Z_1), TIJ(A) and 7.{.w(A—A_)‘
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We can also determine the leading order divergences of the momenta from the asymptotic
boundary conditions (5.54):

K% =,  gL,O s, (5.63)

Also, the zero-component of the vector momentum is given by:
7o =1Eo =10, Ay + AcK% — rdp A, . (5.64)
This gives:
Wéo) = ak%" = az, (5.65)
7 = w0+ ak% 5 K% = ak% A 1 (2 - ALy (5.66)

Remember that 7, = 7°.

5.8 Holographic Renormalization Equations

When the action (5.1) is evaluated on shell as a function of the boundary fields we write it
as:

S:—/ dt d°x /4 NL. 5.67
].67TGD+2 OM ﬁ ( )

A convenient way of computing the divergent part of L is to organize the terms with respect
to how they scale with r. More precisely, we define the dilatation operator by:

o o o
D 0 I
== A_ . .
0. /8./\/1 dt d”x (Ze“éeg + 6“(5@,{ @D(w) (5.68)

This operator asymptotically represents ra—.

-
L can then be decomposed into a sum of terms as follows:

L=>> LW+ LD ogr. (5.69)

A>0

Note that we include a logarithmic term at order z + D due to the possibility of a Weyl
scaling anomaly. The individual terms of the expansion (5.69) satisfy

opLB = —ALD  for A#z+ D, (5.70)

SpLETD) = —(z 4 D)LEHD) 4 f4D) (5.71)
SpLEHD) = (4 D)LEHD), (5.72)
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Applying 5 to the on-shell action (5.67) and using (5.33) then yields:
(z+ D+ 6p)L=—2T% — T+ A_vpmy. (5.73)

Expanding this at each order then results in:

(z4+D—A)L® = A A,wﬂpr_A’), (5.74)
except for A = z + D, when this becomes
E(A) = _ZTOO(A) o TII(A) + A_wﬂ_q(/)AfA—). (575)

This allows us to solve for the anomaly. The above equations imply that the anomaly term
can also be found by:

£® = lim [(z+D- A)L(A)]. (5.76)
A—z+D

Note that the value of £&+P) cannot be found by this asymptotic analysis.

We now move on to finding an explicit expression for these divergent terms in the on-shell
action £®). Recall from (4.6) that the variation of the bulk action (4.1) with respect to N
produces the constraint equation:

1 1 - 1 1
K? - K pKAP — §7TA7TA — Q—mZ(vAm)? = R—2A — ZFABFAB — 5m%zlA,ztA, (5.77)

where we have also used (5.23) and are working in the radial gauge. Expanding this equation
in its dilatation eigenvalues (utilizing (5.35), (5.63), (5.65), (5.66)) and then substituting it
into (5.74) yields an expression for L) (see [8] for more details). Explicitly, the terms in
the on-shell action are given for A # 0, A_ and 2A_ by:

(z+D—A)LB) = oW &), (5.78)

where the quadratic term Q®) is given by

s — s —s = Dav —s
Q¥ = Z [2K§1])37TAB(A )+ 7T1(4)7TA(A )+ —Q(VAWA)( WV g )A )}
0<s<A/2;s#£A m

+ {KI(LSB—)TAB(AA_) + K(gOA—)WO(A2A_)w_'_7T§A—)ﬂ_I(AA_)]

1 | -
n {Kﬁ/z)ﬂAB(A/z) i §7T,(4A/2)7TA(A/2) + TW(VAWA)(A/2)2:| , (5.79)

and the source S is 1 )
S=R-2A— ZFABFAB — 5m%ztA,atA. (5.80)
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We also have the following exceptions to the above formula:

(z4+D)L® = 250 (5.81)
(z+D—A)LED) = (AL —2)pr) + 8@, (5.82)
(z+ D — 2A_)£(2A*) = (A_— z)l/mff*) + K{(ﬁgf)ﬂ_AB(A,)
1
+ EWI(LXAJWA(A,) _}_S(QA,)' (5.83)

S needs to be calculated at each order. The calculation in Section 5.7 shows that R has
components of order 2 and 2z, F4pFAP has components of order 2,2 + A_,2 + 2A_ and
A4 A4 has components of order 0, A_, 2A_, resulting in:

1
SO = —2A—i—2m o’ =(2+D)(z+ D —1), (5.84)
SA-) = mParp = Dzap, (5.85)
1 D

SeA) §m2¢2: TZW’ (5.86)

1 L 2V'V;N o?V'NV;N

@ _ p@ _ (g, AR\ _ p_ iV a” i '
Se+A) _Z(FABFAB)(%AJ — N2( ?ﬁ)’ (5.88)
1 VHNY)V,;(N

S(2+2A_) — _Z(FABFAB)(2+2A—) — ( lgi\[Q ( dj)) (589)
S§® = R = ;K7 — K? + total derivatives. (5.90)

5.9 Calculation of Divergences

We now proceed to use these formulae to calculate the divergent terms in the on-shell action
at each order. Once these divergent terms have been calculated, counterterms must be added

1
to the action in order to subtract these divergences. With a boundary cutoff at r = —, the
€

counterterms are

1 D
- N E LETD) 91
Set 167G p2 /3M WAV [ £ ele)) (591)

0<A<z+D

; (z+D -t vl
We shall determine £ and £&+P) only up to total derivatives of the form \/_ N N
This will not allow us to determine anomalies in £&P) that are total derivatives (such as
was found for D = z =1 in (4.44)), but we shall see that this suffices for our calculation of
anomalies in D = z = 2. Therefore, we can drop the total derivative terms in (5.90). We
now proceed to calculate the divergences at each order.
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Non-derivative counterterms with ¢ = 0

At order 0, we have:

25
£0 = — =2(z+D—1). (5.92)

This yields 745" = —2(z + D — 1)645.

Non-derivative counterterms involving

First we evaluate the order A_ and 2A_ counterterms. Using (5.63, 5.65, 5.66) and inserting
this into (5.78) we have

(z+D—-A LB = —(z- A,)wwff) + 8B = (2 — A )paz + Dzarp  (5.93)
LA = zav, (5.94)
which yields TAB(A_) = —zapdp.
Note that 745 = %(TAB —714Ap) = K45 — K55 and this means that:
oy _ Loy a0y 1 @&
™0 = E(T 0 —am,  —ym,’ )= —50m, (5.95)
A 1 A zo
,/TIJ( ) — §TIJ( ) — _T¢5IJ7 (596)
A (A-) Oéﬂ'(A_) ZOéw
Ko = A _ T .
D 5D + 5 (5.97)
(A-)
QT (D — 1) ZOﬁﬂ
KO (A=) — o (A-) K(A,) - P ]
0 7% 4 5 + (5.98)
[ (A0) (A | a)sT am
KJ = Ty —f-K 75{]: 5D 5J. (599)
Substituting this into the expression W(()A’) = aKOO(A_) + (z — A_)® derived above gives:
(A-)
T D—-1 zZo
) = a(——2 2; ) + Zw) +(z— A, (5.100)
_ 2D(2z—1—-A_) Dz(2z—-1—-A_)
(A-)
o D-wD-1) " xp-1 " (5.101)
Therefore, using this result for W(()A*):
2z—1—A_) zaa) az(z—D—A")
ga - o =— 5.102
2(z+ D —1) v 2 2(z+D—1) i ( )
- D—-1)2z2—-1-A_) zap  az((2D—1)z— (D —-1)A_)
o @ _ o ax( - 5.103
0 +D-1 VT3 2(z+D—1) v, (5.103)
2z —1—A_
g8 o2 ) yo, (5.104)

2(z+ D —1)
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Then:
1
(z+D—2A )L = (- A,)wﬂff_) + Kl(ﬁg‘)ﬂAB(A‘) + §Wf4A_)7TA(A_) + 84
(A-)
_ ay o amy (D=1 zap 1 (a
= —(z —(AA;)anrw + (— 5D + 5 )(—aomw )
am, 2o 1 (A Dz
+( g )(— 5 ) + 5(”5;; )2 - TW
 DapP(42° — 4z —42A_+ 1420+ A% + 2+ D —1)
B 2(z+ D —1)
_ Dzp*(z4+D—-2A)2z—1—-A_) (5.105)
B 2(z+ D —1) ’ '
Dzp?(2z—1—-A_)
£eA) 5.106
20z+D—-1) ( )
where A_ = 1(z+ D — 3.) and 8. = \/(2 + D)2 +8(2 — 1)(z — D) has been used.
2
. . 4 (2A0) Dzyp?(2z —1—A_) ,
This result yields T g = — 0t D—1) 0” 5. Next we can calculate:
Z p—
(z+D—3A)L02) = K(GHTAPRA) 4 K (3700,
Daz*(2z—1—-A_)(z—D — A_)¢3
4(z+ D —1)?
+Da22((2D —Dz—(D-1)A)2z2—-1- A_)z/]:,;
2(z+D —1)2
Daz*(2z—1—A_)(—D+ (4D — 1)z — (2D — 1)A_
— 1/}3
B 4(z+ D —1)2 ’
3Daz?(2z—1—A_)(—-D+ (4D — 1)z — (2D — 1)A_)
hich vields =4 — _ 2
WIHER VISR Ty 4(:+D-3A)(z+D—1)? 4
This allows us to calculate K1(42BA -,
oea) _ 1o ean (2a0) @y Loeay 1
™0 = §(T 0 —am, " —ymy ) = —gamy T = 11#7% , (5.107)
1 1
wl 00 = S = e, (5.108)
A (A-)
@aly _ T4 1 ey (D=1 Al
(24)
am D—1 2D —1
KO, 50 B peeany _ O 21() ) ( - )W;AJ? (5.110)
1 1
KIJ(QA—) — 7TIL](2A7) + K(QA—)élj - (Eaﬂ'fﬁA—) + Ewﬂ_fbA_))éIJ- (5111)

Higher order non-derivative terms can be calculated in a similar manner.
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Two-derivative counterterms with ¢ =0

The divergent term in the on-shell action of order 2 is:

~ 2V'V;N N a*V'NV,;N

_ 2 _ <@ _
(z+D—-2)L S R N e (5.112)
Up to a total derivative, this becomes:
- WINV;N
(z+D—2)L? = R+O‘T. (5.113)

This gives the following contribution to the stress tensor (see Section 5.5):

~ QZViViN 042vale

(2 _
(z+D-2)Tpy = R- N T anz
(z+D-2T37 7 =0
Nr, . o*V'V;N a?VINV;N
B (1+2) _ e itV i
s N o +V Vv ]Xf v NQVNj\f '
2 A 2V,V, a*ViNV,
(z+D=2T}) = 2Ry~ —"—+ —5

ZVZVZN _ &2V2NV1N

+6,,(~R+ )
;@ . 2(D-1)V'V;N o*D—2)V'NV,N
z+D-27,” = —(D-2)R+ ~ - o .

1
At order 2z there is a contribution from the quadratic term ) [(V AWA)(Z)}Z. Note that:
m

(VM) = (947 — wpBrp)®) = (947 — 20,54 75)@
= (9(r°®) — 20, 7"} = (8y(—2a) — 20" z0)
= —azK, (5.114)

where expressions from Section 5.3 have been used. Therefore, up to total derivatives:

1 N 2
(4 D = 2)L0) = S 4 [(V4m4))|

2m?2
= RyKT - Kt (—azR)?
= K — D+12m2(—az )
_ KK_%K (5.115)

Two-derivative counterterms involving v
We can also calculate various divergent terms involving ¢, for example:

L aViNVi(NY)

_ A
(z+D—2—A_)L@2) = KGIT4BO) o~
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I Vs (D — 00(2) i 1
© 2(z+D-1) [((QD 1>Z' (D =DA)TT + (22 =1 = A )T
_aVViNy | aViNV'NY
N N?
_ azy _

2:+D—1)(z+ D —2)
[((QD 1)z~ (D—1DA_)(R -

2)

OZZViViN OCQVZNVlN
+ )
N 2N?2 .
2(D -~ DV'ViN  o*(D - 2)V1NV,-N)]
N 2N?

+(22—1-A_)(—(D-2)R+

B aViV;N N aV;NViNy
N N2 ’

(5.116)

Or, by defining some constants:

. ;N NV'N
£(2+A—) — _w (ClR—I—CQVVl + Vz \Y )’

AT (5.117)

where:

az(—2+ D — A_ + 3z)
2D-242)(D—-142)(z+D—-2-A_)
a4 +2D* — (44 (a? —2)A )z + (1 —2D)(a® = 2)2> + D((2+ (o — 2)A_)z — 6))
@ = 2D-2+2)D—1+2)(:+D—-2—-A_) ’
a(=8—4D* — (=12 +?(2+ A )z + (3a® —4)22 + D(12 + (a? — 8)2))

4D =242)(-1+D+2)(—2+D —-A_+2)

&1

C3 =

(Note that for z = D =2 we have ¢; = 3, ¢ = 3 and ¢ = —1.)
This results in:

V'V;N V:NV'N

) = aR+o N TG (5.118)
and also:
: : V,NV'N V,ViN ViNV,
T()(3+A7) = —C1¢R - CQVZVZ'@Z) - CgTw + 2c3 N w + 2c3 N w, (5119)
T =0 (5.120)
et A N bk i ViNVINY  ViNV'e
THA) W(cﬁpR + oV WH Gz~ C3T)’
3 V;NV' V,NV'N
TI(3+A7) = 5]J(01¢R — Cy N w + c3 N2 w)
- VINV V;NV VINV ;N
—2c1Y Ry + ¢ ! N s + ¢y J ¥ I — 2y I NQJ P
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ViVi(N V,V,(N
—25”@1—]\([ ¥) + 20— }’\; @0)7 (5.121)
A . VNV V;NVN ViVi(N
TII(2+ - (D —2)(c19R — ¢ N L4 R ¢) - 201#- (5.122)

There are many more two-derivative terms involving 1. For example:

(24D —2-2A)L@2A8) = oR(G)pAB@) 4 7 08)AR)
T Kﬁ;)TAB(HA,) + K(()OA’)WO(Q)Q/J + S@r2a) (5.123)

This has been calculated explicitly in the case D = z = 2:

V'V;N B V'NV;N

242A-) _ 2
£ v 8N 2N?2

)+ Zwviviw. (5.124)

Four-derivative counterterms with ) =0

At fourth order we have:

(z+ D —4)LW

_ %WAB(Q) + %Wf)WA(Q)
1 (VZ»NViN>2 VZ-NV"NR n VV,N V;NV’N

= — || —=— Qy————— a
ap| '\ N? N2 SN N2

VINVIN . ViV;N . ViV,;N\2 . .
+G4T ij as R + CL6< > -+ a7R3j + a8R2 . (5125)
where:
ay = —2D2*(=2+ D+ 2)*(—1+D+2)(—4+ B+ D+ 2)?,

ap, = 32(z—1)* 4+ D*(—11+ 2(6 + 2))
+D3(52 — 38, — 2(T7 + 2B, — (34 + B.)z + 2%))
+D?(16(—8 + B.) + 2(2(116 + B,) + z(—145 — 8B, + 2(9 + B.)z + 32%)))
+D(z — 1)(16(—8 + ;) + 2(184 + 2(—68 — 56, + 2(—13 + 5, + 52)))),

ay = 2z(z—1)(D*+ D*(B. — 2) +16(2 — 1)z + D*(8 — 483, + 2(—16 + 28, + 32))
+Dz(—4(—8 + B.) + 2(—24 + B, + 52))),

a3 = —22(D*z—4)+32(z — 1)+ D3(=2(7T+28.) + (21 + 3. — 2)2)
+D?(32 + 188, + 2(—60 — 1153, 4 2(10 + 28, + 32)))
+D(z —1)(8(8 + B.) + 2(—40 — 66, + 2(—18 + 3. + 52)))),

a; = —42D(z—2)(D—1+42)(8+ D*—82—2Dz+ 52+ B.(—4+ D + 2)),
as = —42°(D*+ D*(B. —22) +8(z — 1)z + D(8 + B.(z — 4) — 32%)),

ag = —42(D —1)(D*+ D*(B, —22) +8(z — 1)z + D(8 4 B.(z — 4) — 32%)),
a; = —42°D(D —1+2)(8+ D* — 82 — 2Dz + 52> + B.(D — 4 + 2)),

ag = 22(D*4 D*B, —2) +8(z —1)2% + D*(8 — 48, + 2(—8 4+ 2B, + 32))
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+Dz(8 — 48, + 2(—8 + . + 52))).

In the above expression we have used the following identities for terms in the action (up to
total derivatives):

Ns_ T\ N oNS_ -
V.V;NV'V'N (ViNV1N>2 _ 3V,NVNVIV,;N N (VZViN>2 _ VINVINR;;
N2  N? IN3 N N2 )
V'VINR;; V'V,NR
N 2N
T : R
For D = 2 we have further simplifications because R;; = Eéij and so:
y _ (2—2) V:NV'N\?2 Vi:NV'N . V'V;N V;NV’N
et = LB (TATVY AT, TON TS
V'V;N - ViV;N\2 ~
+by R+b5< ) +b6R2}, (5.126)
where:
by = —22%z4+1)(z—2+ 86,7
by = 124362 — 1122 —22° 4 52* + B.(—2 — Tz + 2°),
by = 42*(z—6+3.),
by = —22(36 — 4z — 722 +52° + B.(2* — 2 — 6)),
by = —42%(z—6+B.),
bs = —4z(z—6+4.),
be = —2°(z—6+8.).
Note that in the important case where z — 2 (and still D = 2):
oy ) (2—2) V:NVIN\2 B VV,;N V;NV’N
(z —2)C = 3( = ) — | (5.127)

A wuseful check is for z = 1, which is the usual relativistic AdS case. The standard known
result ([41] and also (4.46)) is that the 4th order term involving only spatial derivative is (up
to total derivatives):

L4 —

E (RagRaB

{ VVN (f% V.V )(Rij_ViVjN>

EEE Ea ]

D —
D 1 QVVN
; ( )>}

N

/\}—‘

N
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- 1 B (V,-NWN>2 3V,NVINV'V;N N ViINVINR;;
(D —3)(D —1)2 N2 2N3 N2
1V,ViN. D—1/V'V;N\2 .~ ~. D+1.
—— — : — R.RY + ——R?|. 12
D N i D ( N ) Fi Y+ 4D R (5.128)

This agrees exactly with the general result above. Of course, for z = 1 there will also be
contributing terms at this order which come from the 4z and 2 + 2z order terms (these will
involve time derivatives). )
An easily computable case is D = 1 (for which R = 0). The above expressions yield
—3)V,;NV'N
(: =gy = E=3)

: 1223N2 .
scaling anomaly, this expression vanishes.

. For z = 3, which is when this would possibly generate a

Four-derivative counterterms involving 1

There are many possible four-derivative counterterms involving ¢, for example:
(24D —4— A LU = o g Q) pABCHA) 4 7D pAC+A) | B PABW - (5199)

The right hand-side has been explicitly calculated and found to be zero in the case where
z=2and D = 2.

Higher-derivative counterterms

The divergent terms calculated above are all the divergent terms with ¢y = 0 for D + z < 6.
For higher values of D and z there will be further divergences, which can be calculated
systematically using this method.
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Chapter 6

The Anisotropic Weyl Anomaly for
D=2z=2

In this section we use the results of the previous chapter to calculate the anisotropic Weyl
anomaly for the specific case of D = z = 2. Before examining the specific theory from
Chapter 5, we begin by classifying the possible terms that can appear in the anomaly in this
case.

6.1 Classification of Anisotropic Weyl Anomalies for
D=2z=2

Just as in the relativistic case, a theory which has the classical symmetry under anisotropic
Weyl transformations can develop an anomaly in this symmetry at the quantum level. Under
the transformations

5wN = ZN(SCU, (5le = QN,L'(SW, 5w7ij = 2’}/1‘]‘(5(.4), (61)

the anomaly will show up as a nonvanishing variation of the partition function Z[N, N;, v;],
of the general form

6w log Z[N, NZ,’}/”] = —/ dt dDX ﬁNA(SCU, (62)
oM

where A is now a function of N, N;, and ~;;.

We wish to determine what terms can arise in \A. As in the relativistic case, this question
is cohomological in nature.! We introduce a nilpotent BRST operator @, which acts on
the metric multiplet via the infinitesimal anisotropic Weyl transformations (6.1), with dw

!The cohomological approach to the relativistic Weyl anomaly was developed in [54, 55, 56]; see [57],
Chapter 22, for a general review of this approach.
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replaced by a Grassmann parameter ¢ of ghost number one. We can represent this operator
as

J J J
= N— +2N;— +2v;;— | . .
Q c(z sv Tt 15Ni+ %jé%j> (6.3)

Since @ is nilpotent, the variation of the anomaly vanishes:
Q dtd’x /YN Ac=—Q%log Z = 0. (6.4)
oM

This puts a constraint on the terms that can arise as A.

As usual, some of these terms can be removed by including appropriate counterterms. If
a term in the anomaly can be expressed as the variation some local counterterm, this (gravi-
tational) counterterm can be subtracted from the action, thereby eliminating the associated
anomaly. Therefore the physical anomaly can be considered to lie in the cohomology of @,
at ghost number one. The number of possible independent terms (i.e., generalized central
charges) in the anomaly will be determined by the dimension of this cohomology.

In the case of 2+1 dimensions with z = 2, the anomaly must be — on dimensional grounds
—a sum of terms of dimension four, lying in the cohomology of (). The list of possible terms is
rather large; however, all but two are cohomologically trivial and can therefore be eliminated
using local counterterms. The only two terms that cannot be removed are:

~ ~ .. 1 -
K K9 — §K2, (6.5)
. VINV,N ViV,N\?
(R— vz T ) : (6.6)

As usual, this cohomology analysis only reveals the complete list of terms which may in
principle occur in the anomaly. Whether or not such terms are generated in a particular
theory is a dynamical question, which requires an additional calculation. Both anomaly
terms should be expected to appear in the anomaly of generic z = 2 field theories in 2 4+ 1
dimensions:

. VINV,N  ViV,N\>
ALy U

i 1 2
A= CK(KUKJ — §K > + CV(R — N2 N

with two independent central charges, cx and cyy. What is the form of the anomaly that
appears for the setup examined in Chapter 57 We shall see that the first cohomology class
(6.5) indeed arises in the holographic computation of the anisotropic Weyl anomaly (cx # 0)
but, interestingly, the second one (6.6) does not (c¢y = 0).

6.2 D =2z=2 Anomaly for GR with a Massive Vector

The holographic renormalization in Lifshitz spacetime for GR with a massive vector was car-
ried out in Chapter 5. We will rewrite the main results from the holographic renormalization
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for the specific case of D = 2 below. Although our main interest will be in z = 2, we start by
considering general z. If we set ¢» = 0, the terms that will give rise to divergent contributions
in the on-shell action for z < 4 are £, £&_ £22) and £®. As shown in Chapter 5, the
holographic renormalization equations can be computed in terms of the boundary metric
multiplet (N, N;,7;;), giving (up to total derivatives)

O = 2(z+1), (6.8)
L% = R+ %zwjvﬂ, (6.9)
(2-2)L%) = KyRY+° ; g (6.10)
i 2
2= = CiG Ty {_42(2 ~o+00 (F5)
+ (124362 — 112 — 22° + 52" + B.(2° — 72 — 2)) (—VUXZZ'NY
22 (36— 42 — 722+ 525 + B.(22 — 2 — 6)) V'V;N Vj]]\(zjjv

INV;N . "WV;N . A
+(z =6+ 8.) {422%1% - 422%}2 — 2’ R? ] } . (6.11)

When z = 2 is approached, the divergent terms of dimension four become logarithmic, and
the residue of the A = 4 (or A = 2z) terms at the z = 2 pole give rise to L®). Specifically,
we get

L® = lim [(z — LW 4+ (2 — 2)5(2’3)} . (6.12)

z—2

With this substitution, the z = 2 divergent terms in the on-shell action are

L9 = 2(z+1)=6, (6.13)
1. 1V'NV,;N

£® = shH 1 (6.14)

~ NN 1~

LW = K;K" —§K2. (6.15)

The coefficient £® of the logarithmic divergence can be recognized as the unique kinetic
term (2.14) for Lifshitz gravity with local conformal invariance in 2+ 1 dimensions, invariant
under the z = 2 anisotropic Weyl transformations (2.11). This is one of the central results
of this chapter.

The expression for the counterterms has no potential term — 7.e., the only derivatives that
appear in the counterterm are the time derivatives. This is in spite of the fact that there
exists a term with spatial derivatives, written down in (2.15), which is invariant under the
local z = 2 anisotropic Weyl transformations and which is not a total derivative. In other



CHAPTER 6. THE ANISOTROPIC WEYL ANOMALY FOR D = z =2 50

words, in terms of the central charges defined in (6.7), we have ¢y = 0 and the anomaly
satisfies the detailed balance condition.

It is surprising, at least at first sight, that such a potential term is not generated in
the logarithmic counterterm of holographic renormalization in Lifshitz space. Indeed, as we
showed in Section 6.1, this term (6.6) represents a non-trivial cohomology class appropriate
to appear as an anomaly. What would be a minimal generalization of our holographic setup,
which would generate such a term in the anomaly? One might suspect that a different
dynamical embedding of the Lifshitz space may perhaps produce a more general set of
holographic counterterms, allowing (6.6) to appear. Even in the embedding considered
here, we have not turned on the most general sources in the boundary, and one can ask
whether allowing nonzero ¢ generates new counterterms. However, a detailed calculation
(see (5.129)) reveals that turning on v also preserves detailed balance, and does not lead to
the appearance of the second independent counterterm (6.6). In Chapter 7, we shall present
a different theory where both anomaly terms do arise.

6.3 Gravity with a Massive Vector Coupled to Bulk
Scalars

In order to probe further the structure of holographic counterterms in Lifshitz spacetime, it
is useful to add additional matter fields in the bulk theory. The holographic renormalization
procedure can be easily repeated with the inclusion of scalar fields in the bulk. We will see
that for a marginal scalar at z = 2, there is a new logarithmically divergent counterterm, giv-
ing rise to a new, nongravitational contribution to the anisotropic Weyl anomaly. However,
we will see that this new counterterm also satisfies the detailed balance condition: Even in
the presence of the bulk scalars, the second gravitational counterterm (6.6) — which violates
detailed balance — is not generated.
The bulk scalar action takes the standard relativistic form

1
Sputk, x = —5/ A/ -G (G‘“’@HX“&,X“ + /ﬂXaX“) . (6.16)
M
In this section, we set d = 3, and again follow the procedure of [8], with appropriate modi-
fications to include the scalar fields. The holographic renormalization equations of [8] now
become

(z+2—A)LB) = QW) 4 &) (6.17)

where the quadratic and source terms Q and S are modified to
QW) = QW) 4 8r Gy (7)) 1 167Gy Y (RUFHAT) (6.18)

S<A/2; s#A_

and
S =38 — 8G9, X)X + 12 XX ). (6.19)
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In this expression, 7 = rd, X is the scalar momentum and the scalars fall of asymptotically
as 72~ where

p=A_(A_—2—2).
The additional source terms only contribute at orders A = 2A_, 2+ 2A_ and 2z + 2A_:

SCA) = _8rGutX X, (6.20)
SCHA) = [87G40, X0 X | *AY) = _8r GV X VXY, (6.21)
5(2z+2A_ ana yal (22242 87TG4 a 7 a
8(2 +2A) _ [87TG48QX 9°X }(2 +2A-) _ W(atX - N'V; X )2. (622)
We now specialize to the case of a marginal scalar, that is, a scalar which has A_=o0.

Note that this also means that the scalar is massless since > = A_(A_ —2 —2) = 0. We
are interested in calculating its contribution to the anisotropic Weyl anomaly in the case
z = 2. The divergent pieces of the on-shell action that appear at orders A = 2 + 2A_ and
A = 2z + 2A_ are straightforward to calculate as they only receive contributions from the
source terms,

(z — 28 )LCH2A) = _8rG,V, X ViX®, (6.23)
- P Y& )
(2 — 2 — 2A_)L@+2A) — %(atxa — NV, X2 (6.24)

By taking the functional derivative of this term in the on-shell action with respect to the

metric, the contribution to the boundary stress energy tensor can be calculated. For example,
for A =24 2A_

(z — 2A T2 = 872GV, XViX©, (6.25)
(z —2A T3P = 167G,V XV, X + 81GyV, X V' X%, (6.26)
(z — 2A_ T34 — . (6.27)

In addition, by taking the functional derivative with respect to the scalar, the boundary
scalar momentum can be calculated, via

o1 08
N 76X
For example, one gets
- . 1 . ViINV,; X
(z — 2A_ )70 +A-) = —y VINViX") = —VIV, X" — = (6.28)

The higher order counterterms are more involved because they receive contributions from
the quadratic piece. For example,

(z— AL — 2A_)LOHA-+28) — pe(Co)pABR+2A-)
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oy 3 (24+2A_)
_ 32— A T00(2+2A_) 29— 1—-A_ TI
e +2(22 )1}
a) X
= 32— A )78 6.29
e , (6.29)
using the fact that T’ ! (2+2%_) = 0, as calculated above. Note that for z = 2 this becomes
LEFA-F28) — _yTO0C+24-)  The calculation of this term is useful even when the source
for the massive vector v is set to zero. This is because we can determine Wfpﬂm’) by taking
the functional derivative with respect to 1:
A oA )R Y 3, A TOO(“M*)} . 6.30

The following terms also receive contributions from the quadratic piece:

R _ . - 2
(z — 2 — 2A_ L0280 — QnggTAB(erzA_) 4 7r1(42)7TA(2+2A_) + 871G, (ﬁa(2+A_)> , (6.31)

_ - % - 1 X -
_ 2424 _ 242A_ _
(z— 2 —4A_)LWH1a) = gQRAIpABEI2A) 4 §7rf4 I pA@+2A-), (6.32)
These are the terms that will contribute to the scaling anomaly when z = 2. After a lengthy

calculation of the right hand sides for z = 2, the following result is obtained (up to total
derivatives):

(z—2—2A)LUHR) = 927G, (V,VIX")2, (6.33)
- - 1 . -
(z —2—4A_)LWH2-) = ZT;3+2A—)TIJ(2+2A,)7

) ) 1 .
= 167°G2 <ViX“VjX“VZXbV7X” - 5(vl-Xavv(aV) (6.34)

By combining all these results, the contribution of the massless scalars to the logarithmically
divergent counterterm when z = 2 is (by (5.76)):

LY = lim (2 - 2)LOH28) 4 (2 = 2) L0280 4 (- 9)£l48-)
z—
87TG a i a i yva
- N24(8tX — NV, X% 4 27G4(V; VI X)?

+ 167G (vixavjxavixbvfxb — %(vixaviXaV) . (6.35)

Together with the gravitational counterterms from the previous section, the total countert-
erm action for z = 2 is given by

1 1. 1V,NVIN] 1 .
v = — [ dtd’xAN SRy oYLy, XeViXe
S /W x\/7 {16WG4[6+2R+4 e } (VXY
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1 1 1 : 1,
_ - LI 12 - a iY7. v a)2 - iY77 Y a)2
log e [167TG4(K”K 2K )+ e (0, X" — N'V,; X" + 8(V VX%
) ) 1 )
+ 7G4 (VZ-X“VjX“V’XbV]Xb - 5(v,)wvv(@)?)] } : (6.36)

Interestingly, this logarithmically divergent counterterm takes the form identical to the ac-
tion written down in Section 2.2, describing the coupling of z = 2 gravity and z = 2 Lifshitz
matter in 2 + 1 dimensions. This action is invariant under z = 2 anisotropic Weyl transfor-
mations, with the scalars transforming with weight zero, and satisfies the detailed balance
condition. We see that the property of detailed balance, satisfied by the logarithmic coun-
terterms in the absence of extra matter, persists in the presence of the marginal scalar fields.

Two additional comments are worth making:

(1) The relative sign between the potential terms and the kinetic term in the logarithmic
counterterm is opposite to the sign one would expect from the action of a unitary theory
with z = 2 scaling in real time. This is not very surprising, and corresponds to the fact
already appreciated in the relativistic case: The holographic counterterms do not have to
reproduce the action of a unitary theory, as is clear from the appearance of the higher-
derivative conformal gravity action in the holographic counterterms in AdSs.

(2) In the classical theories with Lifshitz scaling, the coupling constants in front of the
individual contributions to the potential term are not related by any symmetry to the kinetic
terms. Therefore, they represent classically marginal couplings. In the structure of our
counterterms, we find this freedom realized only partially: A uniform overall rescaling of
all the couplings in the potential can be accomplished by a shift in r, but it appears that
the interaction with the bulk relativistic system eliminates the apparent freedom of the
relative rescaling between different contributions to the potential from species unrelated by
any symmetry in the boundary theory. This mechanism deserves further study.

6.4 Explaining Detailed Balance

Now that we have accumulated some evidence suggesting that the appearance of the detailed
balance condition in the structure of the counterterms is rather generic, it would be desirable
to obtain a more systematic explanation of this fact. It would be interesting to see why this
principle should be naturally satisfied in the context of holographic renormalization.

A closer look at the structure of the holographic renormalization equations reveals a
possible answer: In the procedure we followed in 3 + 1 bulk dimensions, the potential terms
in the counterterm at order four are generated by quadratic terms in the stress-energy tensor
and field momenta at order two. These momenta arise from the functional differentiation of
the counterterm at order two. Consider the counterterm appearing above at order two:

1 { A EV"NV,»N

1 .
5(2):—/ dt d*x /AN — SV XOVIXO 6.37
et VN e > N? g VATV (6:37)
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This Lagrangian is exactly the one used in the detailed balance condition in [17], in the case
where N does not depend upon spatial coordinates.? Hence, the detailed balance relation, as
reviewed in Section 2.1, is simply a consequence of the relationship between two counterterms
implied by the holographic renormalization in asymptotically Lifshitz spacetime.

It should be noted that in the above procedure, the presence of the massive vector com-
plicates the equations and make the detailed-balance-like relation between the two actions
less transparent. This means that the detailed balance condition is unlikely to hold in more
complicated theories with Lifshitz spacetime solutions. But the logarithmic counterterm
potential terms (with scaling dimension four) are nonetheless directly derivable from the
counterterms with scaling dimension two.

In fact, an analogous result also holds in the relativistic case of holographic renormal-
ization in AdSs5, where the second order counterterm is simply the Einstein-Hilbert action
and the conformal anomaly is the action Sgy,s of conformal gravity in 3 + 1 dimensions: It
turns out that S, is obtained by squaring the functional derivative of the Einstein-Hilbert
action. The reason behind this relationship is the same: S, and the Einstein-Hilbert ac-
tion appear as two counterterms, linked via the holographic renormalization procedure into
a condition reminiscent of detailed balance.

A closer look also reveals that the holographic justification for the detailed balance condi-
tion being satisfied by the logarithmic conterterm quickly ceases to be valid with increasing
spacetime dimension. However, this property does not disappear completely: Instead, the
holographic renormalization machinery implies a more complex relation between the loga-
rithmic counterterm and the variational derivatives of the entire hierarchy of the power-law
counterterms.

6.5 Analytic Continuation to the de Sitter-like
Regime

In relativistic AdS/CFT correspondence, the Hamilton-Jacobi formulation of holographic
renormalization — with the radial direction r as the evolution parameter — can be easily
continued analytically to de Sitter space. Upon this continuation, the evolution parameter
r becomes the real time 7, and the analytic continuation of the counterterms gives useful
information about the wavefunction W of the Universe on superhorizon scales [59, 60, 61].
In particular, in the case of AdSs; continued analytically to dSs, the exponential of the
logarithmic counterterm (known to take the form of the relativistic conformal gravity action
Seonf in 3 4 1 dimensions) is related to the wavefunction via

|U|? = e Seons, (6.38)

In this chapter, we have analyzed holographic counterterms in the Lifshitz space background,
and in the case of z = 2 and 3+ 1 bulk dimensions, we also found a logarithmic counterterm

2Detailed balance in the nonprojectable theory has been discussed recently in [58].
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in the form of a z = 2 multicritical conformal gravity action. It is natural to ask whether
an analytic continuation exists, similar to the one studied in [59, 60, 61|, so that the z = 2
anisotropic conformal gravity action similarly produces the square of the wavefunction of the
dual system. The answer appears to be yes, and the dual system is a gravity theory with an
interesting kind of spatial anisotropy.

Reintroducing the length scale L, in the spacetime metric of the Lifshitz space at z = 2,

d 2
ds* = L? <—7‘4dt2 +rdx* + %) , (6.39)
r

we can analytically continue our results by taking r = in and L, = —iL, and relabeling
t =y, which leads to the following spacetime:

ds? = 12  ntdy? 2 Jxc2 dn? A
This spacetime can be viewed as a spatially anisotropic, “multicritical” version of de Sitter
space. We found the on-shell action for asymptotically Lifshitz space to be (with the cutoff
at r=1/¢,.):

L? )
- ’” / dt ®x \JYN(LD + LB 4 LD — LW ]oge,)
167TG4 aMl/er
L f  Lim )
= v dt X \/FginNgin § —1 n W W oge, v, (6.41
167TG4/8M1/ST X \/Vpin Ny { e T L Ly Oge} (6.41)

where the quantities with fins are defined to be finite as 7 — oo (that is, O®) = O;fn)ef).
The analytic continuation implies that the cutoff changes to €, = —ie,, where ¢, < 0. Note
that all terms in the on-shell action remain real after the analytic continuation, except for
the logarithm, which now has an imaginary part since loge, = log(—e¢,) + iw/2. Thus, after
this analytic continuation, the square of the ground-state wavefunction for the spatially
anisotropic version of de Sitter space is given solely by the coefficient of the logarithmic

counterterm,

2
|W|? = \615\2:exp{—i/ dQXdyﬁNﬁ(4)}. (6.42)
16G4 Jom

In the case of the theory studied in Section 6.2, we found that £® is the action of z = 2
conformal Lifshitz gravity in detailed balance. It depends only on the y derivatives but not
the x derivatives of the metric. Thus, the ground-state wavefunction (6.42) represents a
theory with spatial anisotropy, ultralocal along all but one spatial dimension, similar to the

theory discussed in [62, 63].
In the theory with bulk scalars studied in Section 6.3, £ was found to be the action of
z = 2 conformal Lifshitz gravity coupled to z = 2 scalars, still satisfying the detailed balance
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condition. This action has a nontrivial potential term, of fourth order in the x derivatives
of the scalars. Notably, the sign of this potential term, which we commented on at the end
of Section 6.3, is such that the analytically continued £ appearing in (6.42) is positive
definite.

6.6 Discussion

We have calculated that the D = z = 2 anisotropic Weyl anomaly for the action in (5.1).
Furthermore, we have seen that the anomaly naturally takes the form of conformal Lifshitz
gravity. This conformal gravity theory unexpectedly obeys the condition of detailed balance
(because ¢y = 0). Is it possible to find a holographic duals of more general QFTs with both
central charges (cy and cg) independently nonzero? Before we embark on this pursuit, we
should first check that QFTs whose central charges cx and ¢y are both nonzero indeed exist.
Examples of strongly coupled Lifshitz field theories are very scarce to say the least, but our
point can be made by considering the theory of the free z = 2 Lifshitz scalar ®. When & is
minimally coupled to background HL gravity,

S = /dt N {% (0@ — N'V,;®)° = N (vivicbf} :

this theory is classically invariant under (2.11) (with 6® = 0), but develops an anisotropic
Weyl anomaly at the quantum level. This anomaly was calculated in [64], and it turns out
to have ¢,y = 0. One could perhaps speculate that ¢,y = 0 might be a universal property of
all consistent QFTs, hence eliminating the need for finding gravity duals with ¢y # 0. A
simple counterexample comes from coupling ® to background gravity non-minimally, adding

. VINV;N ViV,N)?
2 2 7 7 2
—e /dtd {L‘ﬁN{R— N2 + N } P

to Sg¢. Even with this non-minimal coupling, this theory stays classically invariant under the
anisotropic Weyl transformations (again with 6® = 0), and develops a quantum anomaly.
We calculated this anisotropic Weyl anomaly using the (-function regularization, and found
cx = 1/(32m) and ¢y = —e?/(87).

Having demonstrated the existence of QFTs with ¢y # 0, we can now ask how to repro-
duce this second central charge in a holographic gravity dual. One could look for relativistic
bulk models more complicated than (7.1). Instead, in Chapter 7, we will consider a holo-
graphic setup where the bulk gravity theory is nonrelativistic. Such constructions could
extend the list of nonrelativistic field theories amenable to a holographic description to a
broader class, in which those nonrelativistic theories that have a relativistic bulk dual may
well be only a minority.
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Other various interesting open questions remain. First of all, our calculation of the Weyl
anomaly® can be generalized to larger values of D and z. In particular, at z = 3 in 4 + 1
bulk dimensions, we expect the appearance of logarithmic counterterms taking the form of
the action for z = 3 multicritical conformal gravity in 3 + 1 dimensions, introduced in [18].
Moreover, now that we have seen that the classical action of multicritical gravity appears
from string-inspired holography, it would also be interesting to see whether the full dynamics
of multicritical gravity can also be engineered from string theory, perhaps by taking judicious
scaling limits of backgrounds without Lorentz invariance.

3A Weyl anomaly involving 2 time derivatives will appear whenever z = D. When (z + D) is an even
integer, there are possible anomaly terms involving (z + D) spatial derivatives.
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Chapter 7

Lifshitz Holography 2: HL Gravity

In Chapter 5, we used a relativistic bulk gravity coupled to matter as a holographic dual to a
Lifshitz field theory. Indeed, the overwhelming share of work on Lifshitz holography (starting
with [65]) follows this route. In the relativistic case, the coupling to matter is necessary, as
the Lifshitz spacetime with z # 1 does not solve the Einstein equations in the vacuum. But
another natural option is available: Instead of adding ad hoc matter to Einstein gravity so
that (1.12) becomes a solution, one can modify gravity itself. In this chapter, we will follow
this alternate path, and show that the Lifshitz spacetime is a vacuum solution of minimal
HL gravity, with no additional matter. The preferred foliation of the Lifshitz spacetime,
required for its embedding into HL gravity, is simply the foliation by leaves of constant .
Note that the value of the dynamical critical exponent of the HL gravity theory in the bulk,
which we denote by zg, is not required to be the same as the dynamical critical exponent, z
for the dual Lifshitz field theory.

HL gravity may enjoy better short-distance properties than Einstein gravity (if it is
dominated at high energies by its own zp > 1 scaling), but here we will follow the “bottom-
up” strategy common in relativistic holography, and work only in the low-energy bulk gravity
approximation. This is equivalent to the large N limit in the dual field theory. In this low-
energy limit, HL. gravity is dominated by the most relevant terms compatible with the gauge
symmetries.

7.1 The Bulk Action and Notation

We consider only the low-energy limit, of the simplest theory of HL gravity without matter
(see Section 2.1 for details). Even though at low energies we are effectively driven to zp = 1,
this does not mean that the low-energy theory would just reproduce relativistic gravity:
Even at low energies, there are generally imprints of the underlying microscopic anisotropy.
The low-energy action is

S = Skg+S5y+ San, (7.1)
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where:

1

Sk = = [ dtd’zdr/gN (KuK® — AK?),

2K M R B
1 D o>V, ,NV*N
- N _ & Va'tV AV

Sy 5.3 Mdtd zdr/gN (B(R —2A) + 5 2 ),

1
Sen = 2.2 dtdPz VN 26K.

K= Jom

The novelty compared to General Relativity is in the three couplings £, A and «, which in
GR are fixed to A = f = 1 and a = 0. This action results in the following equations of
motion, when varying N, N, and g, respectively:
2 V,NV°N _V°V,N
Ky K® + AK? + R+ A+ 2 (e g Ya
oK%+ +REA S ( e I )

VK" - A\V'K = 0

VVN o VaVN 1 (R4 Mg — WPV NVN - a? VuNV,N
N Gab ab N 5 Gab 1 N2 Gab 5 e

]- gacgbd a
UK K — ANKKy) — = (K. 4K — AK?)g, — K — \K g
+2A(Kac K ) = 5 (K Jou + N VA g

1 -
—i—NVC[(KaC — AK Gac) Ny + (Kpe — AK gpe) Ny — (Kap — AKgap) N = 0 (7.2)

Note that the third equation of motion can be simplified by substituting the first equation
of motion into it:

a? VeV.N V,VsN a2V, ,NV,N
1— — _ — rart Ve
( 2 ) N Gab _I' Rab ]av + 2 N2
UK, K — NKKp) — N(K, K — NK2) gy + 2299 91 ra(iced — \K g
R ~ M) — (K Jou + L ¢

1 .
5 VI = AKgud) Ny + (Ko = AKgu)No = (K = AKga)Ne) = 0 (7.3)

We find that Lifshitz space (N = 7%, N, = 0, g;; = 120, grr = %2, gri = 0) is a solution to
the low-energy action (7.1), without any additional matter fields being necessary. Demanding
that Lifshitz space is a solution of the equations of motion (7.2) in this low-energy theory
determines one of the extra couplings,

28(> — 1)

P 7.4
a — (7.4)

relates the value of the cosmological constant to our choice of scale,

(D+z—1)(D + 2)

A=-— ,
2
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and leaves the value of \ undetermined.

In [30, 66], a bound on the possible values of a was derived from the requirement of
perturbative unitarity. It is pleasing to see that this bound is respected by (7.4) for all
values of z.

Let us again clarify our notation for this chapter. We take D to be the number of spatial
dimensions on the boundary and so there are D + 2 spacetime dimensions in the bulk and
d = D + 1 spacetime dimensions on the boundary. For coordinate indices, 7, 7 are used for
the D spatial boundary indices (z°), whereas a, b are used for the D + 1 spatial bulk indices
(r,x%). The bulk fields are the metric gq, the shift vector N, and the lapse function N. We
need to separate out the radial parts of g4, that is, we introduce ADM variables in the radial
direction:

= N? + NN° gri =N 9ij = Yij- (7.6)
Note that we can gauge fix the bulk foliation-preserving diffeomorphisms by setting the the
bulk shift vector N; = 0, and the bulk lapse function N' = 1/r. This radial gauge is adopted
throughout this chapter. In order to distinguish the lapse and shift variables in the bulk
from those of the ADM decomposition on the boundary, we refer to the bulk variables C N
and N as the “radial lapse” and “radial shift”.

There are now many curvature quantities which causes confusion if one is not careful.
Let us now define all of them here. The Ricci tensor of the (D + 1)-dimensional metric gy is
R, and the Ricci tensor of the D-dimensional metric ;; is RZ] @a represents the covariant
derivative for the metric gq, and V; represents the covariant derivative for the metric 7;;.
The various extrinsic curvatures are defined as follows:

Ky = 2]}[ (atgab - V oy — VbNa),
1
Kij = 530 = Vil = ViNG). (7.7)

Note that in the radial gauge, K;; = 50,7;;. This is different notation from that used in
Chapter 5.

7.2 Radial Decomposition of the Action

We need to carry out a radial decomposition of the action using the radial ADM variables
introduced in (7.6). With this radial decomposition, the bulk action (7.1) becomes:

1 N A A N N .
= 55 / dt d”x dr /YN N {Kin” — AK? = 2(KK;; — AKK) ¢ + (K KV — AK?) ¢

1)\ 2\

(BN — VN'N; — 0,(N¢))? — ——(K — K¢)(ON — V'NN; — 9,(N¢))

N2N2 %N N
2]\72N2 (9, —QN’Cika+N2Vi<¢W>>< —AINK;N! + N2V (qjv )
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Ay 2 . i 2
0NE VN _ )\ @ VNVIN o 9N

2
NN N 2 N2 2 NN)
+ terms proportional to M} (7.8)

+B(R+ K? — KyKY +

r

where we have defined ¢ := . We will not need the terms proportional to N, since we

will be choosing the radial gauge N; = 0, N = % in all equations that follow.
The Hamiltonian constraint is obtained by varying the action with respect to N:

1 . . 2 iy

SPPi+ Py + 28PK + %ﬁ + (KK — AK2)% + (1 — M2 — 20Kell
/¢ 2 \7. i

V,;N_QA)Jra V.NVIN

= KK — AK? + B(R — 2 T
— V(NI +

+2(1 —) <at(ﬁn)
N
_2AV((K — K)Ni)

N

200, (VA(K — Ko))
JIN

- %vi(d)N)Pi + VP, (7.9)

where we have defined for convenience:

(0,N; — 2N K, N* + N2V, (25))
Pij = g(’;%j —Kij),  Pii= 1 I;VN A

Note that the Hamiltonian constraint (7.9) can be simplified to become:

1 . . 2 .
SPPi+ Pyk? +26PK + %W + (KK — A% + (1 — MII2 — 20K oTI

(1
1_, N . 2V,NVIN
~ VION)P = KK = MK + B(R —20) + %% + tot. der., (7.11)

OA VA,
VN AN

Using the action in (7.8), we can also define’ the (radial) momenta conjugate to v;;, N;
N and ¢ as:

where the total derivatives are of the form

g 262 68
P .— I 7.12
VAN 3(8,7i5) (7.12)
g g N i, g g Nipi  Nvpj
= PY P~ (RY — MRy )0+ (K — Moy — Mot — - T

!These differ slightly from the usual definition of canonical momenta in order to simplify some of the
subsequent equations.
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2k* 08 P

_ 2 05 _ -
P = 7 50N = a*P 4+ 26K + 2(1 — N\)oIl + 2\ (K — Ko), (7.14)
2
o= \%"N 5<(;f¢) = 2(1 — MII + 2M(K — K¢). (7.15)

7.3 Functional Derivatives and the Stress Tensor

As before, we will be applying the Hamilton-Jacobi formalism in the radial direction to
perform the holographic renormalization. We form the on-shell action by taking the bulk
action (7.1) and evaluating it as a function of the boundary fields:

1
S=-— dtd”x \/YNL. (7.16)
2’1 OM
As in the standard Hamilton-Jacobi theory, the momenta can be obtained by functional
differentiation of the on-shell action:

pii _ 2% 868 |
VN 67
P 2% 05
VNN
p o 2
VY ON
252 6
po— 2h 05 (7.17)
VIN 69
Equivalently, the variation of the on-shell action is:
1 D P ; o
2/{2 OM N

We can extract some formulae from these equations that will be useful to us later on. Con-
tracting (7.12) with ~;; and using the definitions in (7.10) gives:

Y3 P7 = K(B(D —1) 4+ (1 = AD)¢*) + fPD — (1 — AD)¢pK — AD¢Il — N,P'.  (7.19)
Then inverting (7.14) and (7.19) for P and K, we have the useful results:
(268D — (D —1)a*)P = 27y, P9 + 2K\ — 1)¢? — 2(\ — 1)p K

+2(D 4+ A= 1)¢ll 4+ 2N;P' — (D —1)P,
B(a*(D —1) =28D)K = o*y;P7 —a*(K(1 = AD)¢* — (1 — AD)pK — ADIl — N; P")
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—BDP 4 BD(2K(=A¢?) 4 2(1 — NIl + 2X¢K). (7.20)
A
We can also define the boundary stress-energy tensor 745 = 2> \/(;QN@ and then:
T% = —P=—[a*P + 28K +2(1 — \)oIl + 2X(K — Ko¢)] (7.21)

') = —[efPesi+e/(Ples+2P7e)]

= —(P/N;+ P'N;+2P"))

= —2(P';+ BPS; — (K — AK6)) o + (KT — A8 9> — Aohell)  (7.22)
T° = —NPle,;=—-NP =—P; (7.23)

7.4 Analysis of Linearized Constant Modes

We have seen in the previous section that Lifshitz space is a vacuum solution in HL gravity
with a negative cosmological constant. As usual, the bulk fields in HL gravity will correspond
to operators in the dual quantum field theory. To elucidate these operators and their scaling
dimensions it is useful to conduct an analysis of the constant linearized modes around this
background.

Before doing this, recall that the bulk theory has a gauge group consisting of all foliation
preserving diffeomorphisms, so some modes will be pure gauge. The foliation preserving
diffeomorphisms are:

6gab = azccgbc + abgcgac + Ccacgab + fatgaln
5Na - aacb‘]\[b + CbabNa + (atcb)gab + (atf)Na + fatNaa
5N == CaaaN + ((9tf)N "— fatN (724)

We are just looking at constant modes (that is, the ¢ are independent of x and ¢, but
can depend on r). In addition, since we are only looking at the linearized modes, we can
substitute in our background solution of N = r*, N, =0, g;; = 7“25,5, Grr = %2, gr = 0 and
so the gauge transformations become:

0gij = 21 0y,

2 T
597’7‘ = _ar(£)7
T T
5gir = 120,("0,
oON, = 0,
SN = zr* (" (7.25)

To maintain the radial gauge that we are using (N = 1, N; = 0) we must set dg,, = 6g;» = 0.

Even with this choice of radial gauge, if we take (" = 37 for some constant ¢ then we have
a pure gauge scalar mode:

0gij = <T26ij7
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ON = %rz,

We can now analyze the linearized modes. We only consider the modes that are constant
in x and ¢ since this is enough to extract the scaling dimensions of the dual operators.

1
NZTZ(1+§f)7 gij = r°[(1 + k)b + ti5],
1
Grr = —3 N, = T271j7 N; = 721}1’7 gri = 0, (727>

where ¢;;0;; = 0. Furthermore, we are only examining the modes constant in x and ¢ so
k, f,J,v; and t;; are functions of r only. The powers of r in each coefficient has been chosen
here for later convenience. We now substitute this into the equations of motion, keeping
only terms linear in k, f,j,v; and ¢;;. Since the background solution preserves rotational
symmetry in the D transverse spatial dimensions, we can examine the linearized scalar,
vector and tensor modes decouple. The scalar modes must satisfy four linearized equations
of motion, obtained from (7.2) and (7.3):

2
D(D + z+ 1)rk’ + Dr*k" + %((D +z+Drf +r%f") = 0,
(D+1—2)rf + (1 —2)r*f" — Dz(2rk’ + k") = 0,
(D+z+0)rf +r2f" —2((D+1+2)rk +07%k") = 0,
1=Nr?"+(1=N(D+z+1rj'+D(z-1)j = 0. (7.28)
This has general solution:
]{? = <+ 037"_(2+D),
f = Cz+cy—csDr D),
jo= car S oA (7.29)

where Aéﬂ = Z;D {1 + \/ 1+ %} and (, cg, c3, ¢4 and ¢y are constants. As explained

above, ( is a pure gauge mode.

We can repeat the procedure for the vector and tensor modes. When substituted into
the linearized equations of motion, the vector mode must satisfy v} = 0, leading to v; = ¢y;
for some constant ¢i;. The tensor mode has equation of motion (D + z 4 1)rt}; + r%t]; = 0,
which is satisfied by t;; = c1;; + czijr’(D“) for traceless constants cy;; and cy;;.

c2, €14, C145 are the asymptotic values of the fields and so, just as in previous works involving
Lifshitz holography [8, 7], they act as sources for the non-relativistic stress tensor complex?
&, P;, IT:. The energy density € and spatial stress tensor I’ have dimension z 4 D, while the
momentum density P; has dimension D + 1. The novel element here is the scalar graviton
mode (¢4 and c¢5), which corresponds to a new dual operator of dimension A.. The + sign
here depends on whether the standard or alternate boundary condition is chosen for this
mode. This additional scalar graviton is examined further in the next section.

2Note that there is no source for the energy flux, &;, a result similar to what was found in [8] when one
requires the boundary to have a foliation.
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7.5 The Scalar Graviton

We can obtain some interesting limits on the possible values of A from an argument analogous
to the Breitenlohner-Freedman bound.

Although we have embedded Lifshitz geometries as vacuum solutions into Lifshitz gravity
without extra matter, the theory propagates an extra scalar polarization of the graviton. It
is this scalar graviton whose behavior is sensitive to A, and which plays effectively the role
of “matter” that is being added in this theory to the tensor gravitons of general relativity.

The scaling dimensions associated with the asymptotic behavior of the bulk scalar gravi-
ton near anisotropic conformal infinity are

2+ D 4(z—=1)D
Ar =2 {li\/1+<>\_1)(Z+D)2}. (7.30)

In the dictionary of Lifshitz holography, these become the scaling dimensions of the dual
operators in the non-relativistic CFT. If the “standard” boundary condition is chosen, the
scaling dimension of the dual operator is A, whereas if the “alternate” boundary condition
is chosen, the scaling dimension of the dual operator is A_.

Requiring that the scaling dimensions A, be real gives an interesting constraint on the
values of A when z > 1. There are two ways to satisfy this reality condition: Either A > 1,
or

(z — D)?>+4D
(z+ D)?
Recall that in the flat spacetime, perturbative unitarity of the graviton spectrum in the bulk
requires either A > 1 or A < 1/(D + 1). Hence, (7.31) opens up a new, BF-like window of

the allowed values of A. For example, in the special case of interest when z = D, \ can now
consistently dip into the region

A< (7.31)

1 1
<A< =,
D+1~— =D
previously forbidden by unitarity around the flat spacetime.
The reality condition is the only constraint if one chooses the “standard” boundary
condition. However, if one chooses the “alternate” boundary condition then there is an
additional restriction, corresponding to the unitarity bound [67, 24] of A > 2 5~ In our case
this corresponds to:

(7.32)

(D Z 2 _ (zA—_liD < _@ e (7.33)

Only in this region can either boundary condition be chosen (much like in the relativistic
AdS/CFT for the values of scalar masses in the window —m%, < m? < —m%, + 1). For
example, when z = D, there are two consistent sets of boundary conditions provided \ < %.
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7.6 Boundary source fields and asymptotic scaling

The boundary conditions are specified by fixing the sources for the various field theory
operators on the boundary. In accordance with our analysis of the falloff of the linearized
modes in Section 7.4, our boundary conditions involve the following finite fixed sources as
r — oo (denoting each source with a bar):

N~ Nre oy~ g, Now Np?oo g gr e, (7.34)

where Ay = A_ if the “standard” boundary condition is chosen for the scalar graviton and
A, = Ay if the “alternate” boundary condition is used.

The above scaling behavior allows us to determine the scaling behavior of other quantities
near the boundary. Any boundary quantity can be written in terms of the source fields
Vi N, N; and ¢ and then the scaling behavior can be read off from the resulting exponents
of r. Consider a general object O. When written in terms of the boundary source fields, we
say that the term in O scaling as 72 is of “order A” and denote it by O®). For example,
N has order —z, N; has order —2, 7;; has order —2, 4% has order 2 and ¢ has order Ay.
Note that since 7;; has non-trivial scaling behavior, it is useful to use tangent space indices
(which we denote by I,.J = 1,..., D) so that raising and lowering indices does not change
the scaling. For this reason, we use these tangent space indices for any operator O®) when
we need to specify how it scales. Then substituting (7.34) into (7.10) we can evaluate the
leading asymptotic behavior of P, K;s, P! and II:

PO=z  KyO=g,  PVo0 I =(z-Ae  (739)

7.7 Holographic Renormalization Equations

When the action (7.1) is evaluated on shell as a function of the boundary fields we write it
as:

1
S=_— dtd°x /7y NL. (7.36)
26 Jom
A convenient way of computing the divergent part of £ is to organize the terms with respect
to how they scale with r. More precisely, we define the dilatation operator by:

4] 4] ] o

B :/ dt dPz (2N — + 2N;— + 27y;;— — Ay
D oM ( ]572'3' @ 5¢

= N ). (7.37)

This operator asymptotically represents r—.

-
L can then be decomposed into a sum of terms as follows:

L= L4 L ogr. (7.38)

A>0
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Note that we include a logarithmic term at order z + D due to the possibility of a Weyl
scaling anomaly. The individual terms of the expansion (7.38) satisfy

opLW™ = —ALB)  for A# 2+ D, (7.39)
SpLEHP) = (2 4+ D)LETD) 4 LEFD) (7.40)
opLETP) = — (2 + D)LETD), (7.41)

Applying the 5, to the on-shell action (7.36) and using (7.18) yields:
(24 D +0p)L = 2P + 2N; P' + 27;; P7 — Ayorr. (7.42)
Using (7.14, 7.15, 7.19), this can be written in terms of the variables defined in (7.10):

(z4+D+0p)L = (20°+2BD)P +28(z+ D — 1)K +2((z — Ay)(1 — A) — DN)olI
—2(1 — (z = Ay + D)NO(K — K¢). (7.43)

We will now use the Hamiltonian constraint to find the holographic renormalization
equation. This will be a recursive equation allowing us to solve for the divergent pieces
of the action order by order. Expanding the Hamiltonian constraint (7.11) in dilatation
eigenvalues gives:

Z [PI(S)P}A_S) + 2K§?P1J(A*3) + QﬁP(S)K(A_S) + QBK(S)P(A—S)
S<A/2
+a?POPA=) L o(1 — NIOTIA
+2¢2 (Icg‘?]_Aqb)ICIJ(A_S_Azb) o )\IC(S—A¢)IC(A—5—A¢))
—2ACEm R pIT(A—s) — QA/C(A*S*AM@‘[(S)]
+1P1(A/2>7;(A/2> AL (a2
2 1 I
2
HoBPARCB/) | %'])(A/2)7D(A/2) 4 (1= \ITAAA/2)
+¢2<K§?/2*A¢)K1J(A/2—A¢) o /\,C(A/Z—A¢)IC(A/2—A¢)>
1 AL ~
—ONCA/2Re) g1 (A/2) Nvf(ng)P}A Bemll S, (7.44)

where:
a?V;NV'N

~ Dy 50 ~

+ tot. der.. (7.45)
The s = 0 terms in the sum in (7.44) are:
28(D — KW 4 228" +28DPW) + 2a?PA), (7.46)
The s = Ay terms in the sum in (7.44) are:

2[(1 = A)(z — Ay) — AD]@ITA~2¢) 4 26%[1 — (D + 2z — Ay) A28, (7.47)
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Therefore, substituting (7.44) into (7.43) yields our final expression for £(4). Explicitly,
the terms in the on-shell action are given (for A # 0, Ay, 2A4, 2 + D) by:

(z+D—-A)LB = QoW 1 8B (7.48)
where:
NP A o? V;NViIN
S = KyK7—X\K?+ B(R—2A) + - NT
—2(1 — (2 — Ay 4+ D)N)GK + tot. der., (7.49)
_o® = Z [PI(S),P}A—S) + 2,C§«?’])PIJ(A*S) + %P(S)K(A—s)

s<A/2,57#0,A4
+2BKOPA=S) 1 @2PEPA=) 4 o1 — \TTWTA~
+2¢2 (IC%]?AMICIJ(A_S_AM i )\’C(S—A¢)K(A—S—A¢))
—2ACETR) GITA=9) — g NC(A=5=80) 1))
1
+§73[(A/2)73§A/2) —l—/Cg?/Q)PU(A/Q)

2
FoaPBAKB/2) | %P(A/Q)P(A/z) L1 = AT/
+¢2(IC(I§‘/2—A¢)’CIJ(A/2A¢1) _ )\’C(A/2—A¢)}C(A/2_A¢))
—2AARAGITISD — T (NP, (7.50)

We have the following exceptions to the above formula:

(z+D)LO = 28© = _4pA, (7.51)
(z+ D —Ay)LB?) = 0, (7.52)
(24 D —204)L3%%) = [D(1 —AD) —2DA(z — Ag) + (1 = A) (2 — Ay)*)¢%. (7.53)

When simplified, (7.53) becomes L24¢) = [(z — Ag)(1 — ) — AD]¢?, which yields 7(4¢) =
2[(z — Ay)(1 — X) — AD])¢ and I1'2¢) = (2 — A,)¢ as expected.

Furthermore, note that when A = z+ D, L&) cannot be determined by this asymptotic
analysis, but the logarithmic divergence (which contributes to the anisotropic Weyl anomaly)
can be determined using [7]:

LEP) = lim  ((z+D —A)LW). (7.54)

A—z+D

From the form of the holographic renormalization equations we expect divergent terms
to appear whenever A = 2n + 2mz + 2rA, + s(z + A,) for n,m,r, s € N.
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7.8 Calculation of Divergences

Now that we have the general formula (7.48) needed for holographic renormalization, we
proceed to calculate the divergent terms at each order. Once these divergent terms have been
calculated, counterterms must be added to the action in order to subtract these divergences.

1
With a boundary cutoff at »r = —, the counterterms are
€

Sctz—L dthxﬁN[ Z LB — LED) og(e) | . (7.55)
oM

2K2
0<A<z+D

: : (24D) Yt Vi
We will determine £ and £&+P) only up to total derivatives of the form \/_ N R
This will not allow us to determine anomalies in £&P) that are total derivatives (such as
was found for D = z =1 in (4.44)), but we shall see that this suffices for our calculation of
anomalies in D = z = 2. Therefore, we can drop the total derivative terms in (7.49). We
now proceed to calculate the divergences at each order.
At order 2 and z + Ay we have:

. a’V;NV'N

2) _ <2 _
(z+D—-2)L® = §@ = BR+ - ——5—, (7.56)
(24D —2—Ag)LETR) = SEFR) — _9(1 — (2 — A¢ + D)\)oK. (7.57)
For higher order divergences we now have contributions from Q®) so we must begin to
2 2
calculate the canonical momenta using (7.17). We have that 7 = w05 and so
VIN 06
(D — A7 = —2(1 = (2 — Ay + D)NK. (7.58)
Furthermore, 2(1 — \)II®) = 7(*) — 2\K so:
21— \)(D — AHIH) = —2(1 — 2\)K. (7.59)

Thus at order 2z we have:
(24D —22)L£®) = 8% 4 9@ — [, KU - \K? — (1 — )I®T®

N2 (1 —2))? 9
K;;K AK (1—)\)(D—A¢)2K' (7.60)

This generates a logarithmically divergent term when z = D in which case:
a1
(z+ D —22)2:°L%) = K, KV — 5[(2, (7.61)

which has anisotropic Weyl invariance.
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Next we move on to the calculation of the fourth order divergence, that is, divergent
terms involving four spatial derivatives. We first find the necessary momenta by varying £
and using (7.17):

2w i Ve
AD-2p® — gy CYNVN VIV

> N2 YT N
R6"  VRVNG | VIVIN

D—9 PIJ(Q) _ _RIJ
A M . 1
« (% k
-_— .62
2 N2 + 4 N2 (7.62)
Utilizing (7.20) we then get:
(4) 2)p1J(2) 2)1(2) o’ (2)p(2)
15} V;NV'N 9 V,NV'N - ViV;NV.NVIN
= a—o[al(_ N2 ) + CLQ—N? R + a3 N J N2
V*NV'N . V'V;N 4 V'V;N 4
+G4T ij T as R+ aﬁ( N )
+G7Rinij + CLgR2], (763)
where:
ay = 42*(D+z—-1)(z+ D —2)%
ap = —4+32+22°—2°—D(2*—22-3),
as = —22(z—1)(D+ 2),
az = 2z(2* —3z+2+ D(—4+ 2)),
a; = 4z(z—=2)(D+2z-1),
as = 422
ag = 4Z(D — 1),
a; = 42*(D+z—1),
ag = —2°(D+z). (7.64)
For D = 2 we have:
s 15} V;NV‘N 9 V,;NVN . ViV;N VjijN
V'V;N - V'V;N R
+-by R+ bs( )2+ bg R, (7.65)
where:
bo = 424(2’ + 1),
by = =224+ T7242,

b2 = —422,
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by = 2z2(z—3)(z+2),

b4 = 42’2,
b5 = 42,
be = 2°. (7.66)
When z = 2, this becomes:
(z—2)LW = - —m % ). (7.67)

Once again, this has anisotropic Weyl invariance.

7.9 Analysis and Discussion

For z 4+ D < 6, the divergences in the on-shell action calculated above represent all possible
divergences (when we take the source ¢ = 0). In particular, if D = 2z = 2, the counterterms
we need to add to the action to remove these divergences for a cutoff at r = % is:

1 B~ BV:NVIN
= —— dt d*x /YN R4
Set 2 |, X/ {65+23+4 e
S . NVIN VN
—1oge[(K,-jK”——K2)+ﬁ(R—vNZ +v; )2]}. (7.68)

2 24
Note that if we take ¢ # 0 then additional counterterms involving ¢ will likely be needed
(for certain values of )\, z and D) in order to remove divergences such as (7.53) and (7.57).3
From the logarithmic counterterm in (7.68), we find that there is an anisotropic Weyl
anomaly for D = z = 2 of the form:

1 1

. A B . W,NVIN ViV,N

2
48/-@2< N2 N )"

(7.69)

It is indeed of the most general form, with the two independent central charges given in
terms of two low-energy couplings in minimal HL gravity: cx = 1/(2x?) and ¢y = 3/(48k2).

Now that we have seen that HL gravity provides candidate holographic duals for QFTs
with anisotropic Lifshitz scaling, is it possible to apply HL gravity also to QFT's with isotropic
z = 1 scaling? Interestingly, the limit 2 — 1 corresponds to a — 0, the “unhealthy
reduction” [26] of nonprojectable HL gravity, and may therefore be difficult to make sense
of. This is perhaps to be expected: z = 1 QFTs with such gravity duals would likely exhibit
isotropic dilatation symmetry without full relativistic conformal symmetry, a phenomenon
whose examples are few and far between. Further study of our holographic duality in the
a — 0 limit may shed new light on this rare class of QFTs.

3The case D = z = 2 and A\ = % has been calculated explicitly and no additional counterterms are
needed here
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Finally, throughout this chapter we have used the effective low-energy limit of HL gravity,
dominated by the terms of the lowest dimension in the action. We have been agnostic about
how the model is completed at high energies. This completion may come from additional
degrees of freedom, perhaps via an embedding into string theory; or it can be via a self-
completion of HL. gravity, due to highly anisotropic scaling at short distances. This latter
possibility would be particularly interesting, as it could open a new door away from the
large N limit and small bulk curvature. Complementary results about another form of
nonrelativistic holography with HL gravity have also been presented in [68, 69]. Our results,
and those of [68, 69], thus provide further evidence for the picture proposed originally in [7],
that the natural arena for nonrelativistic holography is nonrelativistic HL. gravity. It remains
to be seen whether — as suggested in [7] — the nonrelativistic field theories whose holographic
duals happen to be relativistic indeed represent only a minority among all theories with
gravity duals.
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Chapter 8
Lifshitz Black Holes in HL Gravity

In the standard AdS/CFT correspondence, a field theory at finite temperature is dual to a
static black hole in the bulk. For this reason it is interesting to search for static black hole
solutions of the HL: gravity action (7.1) studied in Chapter 7. Furthermore, the properties
of black holes in HL gravity are also of interest and having a holographic interpretation of
them would be beneficial. Before searching for Lifshitz black hole solutions in HL gravity,
we begin with a simple example to illustrate the main techniques. We examine the theory
introduced in Chapter 4 with action (4.1): pure Einstein gravity with cosmological constant.

8.1 Illustrative Example: (GGeneral Relativity

We want to find the most general black hole solution to the action (4.1) that is static, has
rotational and translational symmetry in the x® coordinates and is asymptotically AdS.
Without loss of generality, we can choose the gauge where the metric takes the form:

ds* = G d”d”——fQthszd—TZJrde (8.1)

s° = Guditdx” = r rops TTAX .
where h and f are arbitrary functions of r. Since we want the black hole to be asymptotically
AdS, we require f — 1 and h — 1 as r — oco. We denote the number of spatial dimensions
on the boundary by D =d — 1.
The non-zero (D + 2)-dimensional Christoffel symbols are:

1w 1 f
7 = ———— It o=-4
rr r h ) tr r + )
- f/ 1 . 1 ..
Ftt - f2h27’4(7 + ;)7 Fgr = ;527
F;j = —]'LQT’s(SZ‘j. (82)

The non-zero components of the (D + 2)-dimensional Ricci tensor are:
_D+1_(f/>/_3f/_(D+1>h/_<f/)2_h/f/
r? f rf r h f h f’

RT‘T‘ -
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Ry = fzh%«‘*(D—;r1 + (ﬂ)’ + w‘g + %%, + (f?,)2 + %/fTI)

Rij = —h%%? + %/ + fTI). (8.3)
Einstein’s equation (R, = (R — 2A)G,,) gives three equations of motion:

o = -Ela-wy- Ly 2L BEDE (Lp 2L

0 = D; S(1-n)+ (f7,)’ = +3)f7/ %% + (‘707,)2 + %§

0 = DTng(1—h2)+%+%. (8.4)

Adding the first equation to the second gives fTI = %, which implies f = h. The third
equation of motion then becomes:

0 = (D+1)(h*—1)+r(h?. (8.5)

This has general solution h? = f2 =1 — p, where p = v % a =D+ 2z =D+ 1 and ~ is
an arbitrary constant of integration. It is easily checked that this solution satisfies all of the
equations of motion.

In this simple case, this solution can be found analytically, but later we will be dealing
with a more difficult equation without a simple analytic solution. So it will be useful here
to analyze this solution without knowing its explicit form. Notice that the second and third

equations in (8.4) can be combined (using f7/ = %/) to form:
f'o D21 e
(y+ 22 o (5.
If we let 0 = TTfI and 7 = Inr, then this becomes:
d
0 = ﬁ +ao + 207, (8.7)
where a = D+1. Of course, the solution can be found analytically to be o = X(r) = glL
—p

But we can also analyze the solution 3(r) without knowing the full analytic solution. (r)
satisfies the differential equation (8.7), i.e., % +aX+2%?% = 0. The differential equation has
fixed points at ¥ = 0 and 3 = —3. Note that ¥ = 0 is an attractive fixed point and ¥ = —3
is a repulsive fixed point for increasing 7. For decreasing 7, these are reversed.

The solutions that have the appropriate asymptotic behavior converge to the ¥ = 0 fixed
point as 7 — oo. If we follow this solution back by decreasing 7 the solution with v > 0
must have originated at > = oo and the solution with v < 0 must have originated from the
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2(r)
— >0
- y<0
L _ r
L ———————————————————
|y|D+1—_ ______
-
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-
—8/2 ————————— -

Figure 8.1: The function ¥(r) for the AdS-Schwarschild solution in General Relativity, de-
rived in Section 8.1. For v > 0 the solution originates from Y = oo while for v < 0 it
originates from the X = —a/2 fixed point.

¥ = —§ fixed point. This behavior for ¥(r) is shown in Figure 8.1. This translates into
the form of f(r) and h(r) that is shown in Figure 8.2.  We see that the 7 < 0 solution is
smooth all the way back to » = 0 but the v > 0 solution has a (coordinate) singularity at
r= yﬁ. Of course, it is well known that this coordinate singularity can be removed by a
change of coordinates and the space-time can be extended. r = ”yD%rl is an event horizon for
the black hole. The v < 0 solution has no event horizon. In either case, there is a curvature
singularity! at r = 0 for any D > 1. So we see that the v > 0 solution has a singularity at
r = 0 shielded by an event horizon at r = yﬁ, whereas the v < 0 solution has a naked
singularity at » = 0.

Calculation of the mass

We now calculate the mass of the solutions found above using M = ﬁ faM dPz /=g T£n.

Here T({Om is the renormalized energy density after subtracting off divergent pieces. The di-
vergent pieces can be obtained from the holographic renormalization results of Chapter 4.
The static solution (8.1) is currently not written in the radial gauge (N = 1/r, N, = 0)

'The Kretschmann scalar is R,,,,R*7? = 2(D +2)(D + 1) + D*(D? — 1)p?, which becomes infinite at
r=0(p=o00) for any D > 1. In D = 1, there is no longer a curvature singularity, but it can be shown that
r = 0 is still a singular point [70].
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Figure 8.2: The functions f(r)* = h(r)? for the AdS-Schwarschild solution in General Rela-
tivity, derived in Section 8.1. The v > 0 solution is only shown outside the event horizon at

asymptotic form? (with p = yr—%)

that was used for the holographic renormalization calculation. So in order to use the coun-
terterms that we calculated we need to switch to this gauge. The solution we found has the

dr?

ds* = —r*(1 — p+ ..)dt* + + r?dx®.
(I=pt o )d + 5=
Changing coordinates to the radial gauge (by letting r — r(1

(8.8)

+ % + ...)) results in:
ds* = —r*(1 — &+...)dt2+—+T2(1+B+...)dxz. (8.9)
a r? a
Then, using Knp = 10,9ap/2 we have:
D(D—1
Ktt —T2(1 + u

D 12a +...),
K;; = T2<1_Q

)04
5o T )0

20f course, in this simple example, this is actually the exact solution, but we only need the asymptotic

behavior.

(8.10)
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Transforming to tangent space indices, this becomes:

Ky = —(1+%+...),
Ky = (1—g+...)5u,
K = D+1+.., (8.11)
and therefore
T = 2(K00+K):2D(1—g+...). (8.12)

From (4.41) we know that the divergent term at order zero is ng) = 2D and so the finite
piece is:

Tir = —Dp+ ..., (8.13)

which gives a contribution to the mass of:

_ 1 D fin D~ D
= _—167TGD+2 /d xV—gTy" = 167Cpoa /d X. (8.14)
Therefore v > 0 corresponds to a positive mass solution while v < 0 is a negative mass
solution.

As a check of the holographic renormalization procedure, we can calculate the contribu-
tion to the on-shell action of our solution and confirm the calculation of the divergent terms.
Using Einstein’s equation (R, = 3(R — 2A)G,,) and (8.11) we have that:

1
S = —/ dt dPx dr v/—G (R — 2A) + / dtdPx~/—g K
167TGD+2 M oM

8mGpya2
1 r=1/e¢

= — dthx/ drret (=2(D +1
Tz el I (—2(D +1))

1
dt dPx (2D + 1+ ...
e [ e )

1

- o /W dt dPx ((%)a(w) 4. (8.15)

Indeed the only divergent term from the holographic renormalization procedure evaluated
on this solution is (4.40), L£© = 2D, and so the divergent terms match.

8.2 Static Lifshitz Solutions in HL Gravity

We want to now search for Lifshitz black hole solutions for the anisotropic theory of gravity
with action (7.1). Specifically, we want to find the most general solution that is static, has
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planar symmetry and is asymptotically Lifshitz. Since this theory is defined on a manifold
with foliation, we define a static solution to mean that the metric has a Killing vector
(0;) that is orthogonal to the hypersurfaces of the foliation (defined by ¢ =constant). In
particular, this means that we take N, = 0. We will also be searching for solutions which
have z > 1. Without loss of generality, we can choose the gauge where the metric complex
takes the form:

dr?

2
ds” = h2r2

+ r2dx?, N = fr?, N, =0, (8.16)

where h and f are arbitrary functions of r. Since we also want the black hole to be asymp-
totically Lifshitz, we require f — 1 and h — 1 as r — oco. The three equations of motions
that arise from varying (7.1) can be rearranged into the form:

rh/ rf’

_ . h2_-1) =
G+ wath?=1) = o,
rf’ rh/ rf
e = o,
NN
(a+1)7+ f +77 = O. (817)
—1
where a = 2+ D and ¢ = %
Now, eliminating h from the last two equations in (8.17), gives:
’T‘f/ T2f// ,r,f/ ’T‘f/
(a+1)7+ 7 +(7)2—|—c(7)3 = 0, (8.18)
and letting o = TTf/, we get
ro’ +aoc +20% +co® = 0. (8.19)

This is a first-order differential equation possessing a one parameter family of solutions.
Denote the solution to this equation by o = 3(r). Substituting % = 3 into the first and
second equation in (8.17) then implies that the only solution for A is:

S 8.20
0+ 25 + o2 (8.20)

Also, writing f in terms of X gives:

2= exp (/dr%) (8.21)

It is now easy to check that this solution solves all three equations of motion above.
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An analytic form for ¥ is difficult to obtain but we can expand the solution near the
boundary (r = c0) as a power series in p = yr~“, where 7 is a constant of integration. The
results are:

a
Y o= o4t (L+ace/8)p + (14 ac/3)p" + ..),
9 ac 5 ac 4

= 1—p——p"— —p'+ ..
f P=gf ~ g T
ac ac ac

2 = 1—p——p*——p— —p"+ ... 22

e Ny s Vs (8.22)

We can also find a more explicit form for the function f. Note that the third equation
of (8.17) can be rearranged to give:

(a+1) rf" rh

At = 0
d a1
D patlp gy —
G =0
rotinf = constant:%, (8.23)

where the constant has been determined by the asymptotic boundary expansion given above.

Since TTfI =3, (8.23) allows us to write f as:

2.2 2 2
2 axy- _ay 2y _ aY -2 ~1
o= L2EsE = 1prasy (a+2% +cX°) = W(CLE +2X7 +¢). (8.24)
Note that when z — 1, this solution reduces to the usual AdS-Schwarzschild solution of
Section 8.1: ¥ = g2 and f2=h*=1-p.

8.3 Analysis of solutions

We start by investigating the behavior of the function (7). From the previous section, 3
satisfies the differential equation ¥’ + aX + 2X%2 + ¢X3 = 0 and has asymptotic behavior

Y~ gL asr — oo. If we define 7 = Inr, then the differential equation becomes:

d
- +al+ 257+ e3P = 0. (8.25)
-

This differential equation has three fixed points at ¥ = 0, X = ¥, and X = X_, where
Yo = @ Note that ¥4 < 0. Furthermore, ¥ = 0 and ¥ = ¥_ are attractive fixed
points and ¥ = ¥, is a repulsive fixed point as 7 increases. For decreasing 7, the opposite
occurs.

The solutions that have the appropriate asymptotic behavior (3 ~ 7% as 7 — oco) must
converge to the ¥ = 0 fixed point as 7 — oo. If we follow this solution back by decreasing 7
the solution with v > 0 must have originated at > = oo and the solution with v < 0 must
have originated from the ¥ = 3, fixed point. This behavior is shown in Figure 8.3. We

treat these two cases, v > 0 and v < 0 , separately:
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—_— >0

- y<0
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———————

Figure 8.3: The function ¥(r) for the static Lifshitz solution in HL gravity. For v > 0 the
solution originates from Y = oo while for v < 0 it originates from the ¥ = ¥, fixed point.
Compare to the AdS-Schwarzschild solution of Figure 8.1

v >0

In this case ¥ — oo as 7 decreases and so we can understand the solution better in the
Y} — oo regime by approximately solving the differential equation for ¥ large:

dX
— = —(aX+2%% 4 c¥%) &~ —cX?,
dr 1
Y~ . (8.26)
2¢(T — 70)

where 79 is a constant of integration. So we can expand in a Taylor series in u = /7 — 7y to
find:

1 4u 4 — 3ac
yo= —(1-— + u? + .,
\/QCu( 34\/20 A 603 )
n: o= 2au(1 — B
au”( 3\/%u+ % U+ ..,
2
acry 4 8
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This expansion is only currently valid for u > 0 (7 > 7). If we change coordinates from r
to u then the spatial metric near v = 0 looks like:

d 2
ds® = h; 5+ rldx?
r
d 2
= 4 u4—3ac 2 + €T
5( — saut e+ )
_ du? + €2 (1 + 2u? + ... )dx> (8.28)
21— g+ S ) R '

and the lapse function is given by:

4 8
u+ —u?+ )

V2  3c

4 8 9

\/Q_Cu + (3—0 +22)u” + ...). (8.29)
In the u coordinate, this metric is now smooth through v = 0 and we can extend the
spacetime. Letting u = —\/T — 79 and 7 = In7 we can now solve for the rest of the solution
as 7 — 00 (u — —oo). Note that uX is finite at © = 0 and requiring this to be continuous
means that for u just less than zero, ¥ is large and negative. So as 7 — oo, 3 will approach the
fixed point at ¥ = ¥_ as shown in Figure 8.4. The Taylor series expansion in p = 72>~ +4)
near this point ¥ = X _ looks like:

2
2 acy
N2 — 7“2f2 — e?z’rg—l—Zzu ( +
4621170
CLC’}/2

= 4e2Dno (1+

Y = S (145+..),

7o a
he = SRR _Z+)ﬁ(1+...),
72 o= kc(i;a;_&)ﬁ@ + ), (8.30)

where k and 7, are constants chosen to match the solution at w = 0. Here, h and_ f are
defined exactly as in (8.16) but with a tilde on h, f and r. Note that h?> — oo and f? — 0
as 7 — 00. The leading order behavior of the spatial metric as 7 — oo is:

k
~2(17—;7)d732 + fdeQ, (831)
7 _—a

ds® ~

and the leading order behavior of the lapse function is

ks

N~

(8.32)

for some non-zero constants k; and k.
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(V)]

Figure 8.4: Extending ¥ as a function of u. It approaches the ¥ = ¥ _ fixed point as u — —o0
(7 — 00).

In summary, we find that there is no horizon at r = €™. The solution can be smoothly
extended through this point (by switching to u coordinates) and f? is non-zero everywhere.
Furthermore, from the form of (8.28), the measurement of distances in the x’ directions
decrease as r decreases from infinity, until a minimum throat is reached at r = ™ (u = 0).
After that, the measurement of distances increase as u — —oo (7 — 00).

v <0

In this case ¥ — Y, as 7 decreases and so we can understand the solution better in the
> — 3, regime by letting ¥ = Y, + € and approximately solving the differential equation
for small € > 0:

dx
- = —(aX + 252 4 c¥?),
de
7 —cX (B4 — B )e,
e~ boec(_E”(E*_E’)T — [)062(2++¢1)T7 (8.33)

where by is a constant of integration. Then, to leading order in € (that is, as 7 — —00):

P~ ——— — 0,
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Figure 8.5: The function f? for the static Lifshitz solution in HL gravity. Compare to the
AdS-Schwarzschild solution of Figure 8.2. Note that unlike in Figure 8.2, f? in the v > 0
solution does not have a zero at » = €™ and there is no horizon. This v > 0 solution is only
shown outside the coordinate singularity at » = €™, where a coordinate change to first u and
then 7 must be implemented to move to smaller radii (see text for details).

ary?

——5 C€
2a71 Y2
4e2amy%

ay?

~ E6b0622+7—(2+ — Z_) — OQ. (834)
T

P~ Xy —%-)

The forms of f(r) and h(r), for both the v > 0 and v < 0 solutions, are shown in Figures
8.5 and 8.6.

Curvature singularities

For the above static solution we have that the spatial curvature is:

/

R = —Dh*(D+1+ 2%)
= —DR*(D+1+2(-X +a(h?-1)))

= —2aD — Dh*(D + 1 —2a — 2%)

aD(D +1—2a—2Y%)

e B R

(8.35)



CHAPTER 8. LIFSHITZ BLACK HOLES IN HL GRAVITY

h2

- y>0

== y<0
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—____________

Figure 8.6: The function h? for the static Lifshitz solution in HL gravity. Compare to the
AdS-Schwarzschild solution of Figure 8.2. The v > 0 solution is only shown outside the

coordinate singularity at r = €™, where a coordinate change to first « and then 7 must be
implemented to move to smaller radii (see text for details).

Therefore ¥ — Y4 (or equivalently® h? — oo) always indicates a curvature singularity
except possibly if D + 1 — 2a — 2¥ = 0 there. For z > 1, this exception occurs if and only
if D =1and X — X,. Therefore, except possibly for this special case, every static solution
presented above has a (naked) curvature singularity. Note also that R is finite at 7 = 7
(where [X] — 00), as expected.

Other curvature quantities (0,R, V,RV*R, R, R, RabcdR“de) have also been calculated

and they share the same properties as R, being singular when ¥ — Y. except for the case
when D =1 and ¥ — X,.

Calculation of the mass

We now calculate the mass of the solutions found above using M = — [ _, d”z /AN T,
Here Tof(f" is the renormalized energy density after subtracting off divergent pieces. The
divergent pieces can be obtained from the holographic renormalization results of Chapter 7.
The static solution (8.1) is currently not written in the radial gauge (N = 1/r, N, = 0) that
was used for the holographic renormalization calculation. So in order to use the counterterms
3 2 _ a
Recall that h* = FOESRIDESSIE

84
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that we calculated we need to switch to this gauge. From (8.22), the solution currently has
the asymptotic form near the boundary (with p = yr=?):

dr?
d 2 — 2d 2
’ P2l—p+.) &
1
N = r*(1- 5P+ ) (8.36)
Changing to the radial gauge (by letting r — r(1 + 2£ + ...)) results in:
a

d
ds* = Lz +7r2(1 4+ Ly L )dx3,
r a

Dp
N = r(1——+.. .
( 5 +...) (8.37)
Then, in this gauge:
R = —D((D+1)+(z—1)p+..),
VoNVEN
— N = z2(z4+ Dp+...),

K = D(1-p/2+..),

P = (24+Dp/2+..). (8.38)
We can then calculate Ty using (7.21):
Too = a*P +28K +2(1 — NIl + 2Xp(K — Ko)

_ 52(22— 1)

— 5[2(2+D—1)—§p+...]. (8.39)

(z4+Dp/2+...)+28D(1 —p/2+ ...)

The results of Chapter 7 (see, for example, (7.35)) indeed give the divergent piece for this
solution as Tég) = 20(z + D — 1) and so we have:

BDp

TIn -

00 . + ..,
5D’Y/ D

M = — . 4
o d”x (8.40)

Therefore v > 0 corresponds to a positive mass solution while v < 0 is a negative mass
solution. We can also calculate the contribution to the on-shell action (using the asymptotic
boundary expansion) to check that the divergent terms cancel:

r=1/e
S = b dt d°x / drr* ' (2(z+ D)(z — 1) + 0p + ...)
oM r

2
2K -0
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dt dPx (
252 /(9‘/\/[

— 2,{2 Wdth z (2(

)*2D(1 —p/2+ ...)

m|,_.m|n—\

) (z+D—1)—Dy+..). (8.41)

Indeed from (7.51), £© = 28(z + D — 1), so the divergent terms cancel as they should, and

Sfin ~ —5212,] /. o At dPx. There may be also be additional finite contributions to S/™ from

the interior of the spacetime.

8.4 Discussion

Let us begin by summarizing the above results. We have found that, for every A, z > 1
and mass M, there is a unique static, planar symmetric, asymptotically Lifshitz solution of
the action (7.1). For the positive mass solutions, distances on the z’ plane decrease as r
decreases until a minimum throat is reached*. Past this point, distances begin to increase
again until a curvature singularity is reached in the IR. This solution has no horizon and
thus represents a naked singularity.

The negative mass solutions for D > 1 are simpler and have a naked curvature singularity
at r = 0, similar to the negative mass AdS-Schwarzschild black hole solution in Section 8.1.

Therefore all static, planar-symmetric, asymptotically Lifshitz solutions in D > 1 HL
gravity have a naked curvature singularity, unlike the static black hole solutions found in
General Relativity. It is therefore necessary to widen our search for asymptotically Lifshitz
black hole type solutions in HL gravity; we must examine stationary (but non-static) black
hole solutions, which have N, # 0. These solutions have a Killing vector d; which is not
orthogonal to the leaves of the foliation of the manifold. In fact, in some cases it is possible
for 0; to become tangential to the leaves of the foliation (this requires N = 0), creating what
is known as a universal horizon [71, 72, 73, 74, 75]. Since any signal must propagate forwards
in ¢, this can create a causal boundary of the spacetime. This occurs even though the theory
is nonrelativistic and allows signals to travel faster than light. No analytic solution for a
z > 1 Lifshitz black hole with a universal horizon has so far been found in HL gravity®, even
though an asymptotic expansion has been written down [75].

For an interesting example of a stationary (but non-static) solution, consider the Painlevé
type ansatz:

d
ds? = i +r2dx?,  N=r*, N.=f(r), N, =0 (8.42)
r?
This solves the equations of motion if and only if f = ¢;r™ with either:
4D(z — 1) z2—D—2
A=1-—- = 7 d = — 8.43
EEE an n 5 , ( )

4This is the point r = ¢™ described in Section 8.3.
5An analytic solution for z = 1 has been written down [75], but HL gravity suffers from other problems
in this @ — 0 limit, as described in Section 2.1.
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or

1

This does not have a universal horizon for » > 0 since N is non-zero everywhere. Note,
however, that a relativistic observer would experience a metric with Gy = —(N? — N,N%) =
—(r?% — A&r?*+)implying a relativistic event horizon at r = |c;|Y/*"~Y. Superluminal
signals, however will escape this horizon. For z > 1, there is a singularity in the extrinsic
curvature K at r = 0 and there is no universal horizon to hide this singularity.

Clearly the next step is to search for stationary, planar, asymptotically z > 1 Lifshitz
solutions which have singularities hidden behind a universal horizon. Finding an analytic

solution would allow the thermodynamic properties of these black holes to be studied.



88

Chapter 9

Conclusions

In this dissertation, we have seen how the holographic dictionary of the AdS/CFT corre-
spondence can be extended to describe a more general gauge/gravity duality between gravi-
tational theories in Lifshitz spacetime and quantum field theories with a Lifshitz fixed point.
In particular, we have seen how the the procedure of holographic renormalization can be
applied to theories with a Lifshitz spacetime background solution.

One useful piece of information that comes out of the holographic renormalization proce-
dure is the form of the anisotropic Weyl anomaly. In this dissertation, we have shown that
this anisotropic Weyl anomaly takes the form of conformal Horava-Lifshitz (HL) gravity. In
particular, for z = 2 and D = 2 boundary spatial dimensions, we have classified the possible
anomalies and found that there are only two independent terms: A term with two time
derivatives and a term with four spatial derivatives. Therefore HL gravity appears naturally
in the anomaly structure of Lifshitz holography.

The first theory analyzed in Chapters 5 and 6 is one with a relativistic gravitational
theory in the bulk and the Lifshitz background solution supported by a massive vector.
The holographic renormalization of this theory is carried out in this dissertation and (for
z = D = 2) results in one of the possible anomaly terms but not the other. This led us
to search for a different gravitational theory in Chapter 7 which has Lifshitz spacetime as
a background solution. This is the second appearance of HL gravity in this work; it was
discovered here that Lifshitz spacetime is a vacuum solution of HL gravity with negative
cosmological constant. This suggests that HL gravity in the bulk is the natural setting
for Lifshitz holography, a view also supported by recent work [69]. Using the holographic
renormalization procedure applied to the HL bulk gravity, the anisotropic Weyl anomaly
was once again calculated for z = D = 2, and this time, both possible terms appear in the
anomaly.

In order to further probe the HL gravity theory used in Lifshitz holography, Chapter 8
searches for asymptotically Lifshitz, planar, static black hole solutions of the theory. It is
shown here that all such static solutions for D > 1 possess naked curvature singularities,
that is, there is no form of horizon that hides these singularities. It is argued that one
must generalize to stationary black holes in order to find black hole solutions containing a
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universal horizon. Finding an analytic solution for a z > 1 Lifshitz black hole in HL. gravity
would be very useful for providing a thermodynamic interpretation for these objects in HLL
gravity.

Throughout this dissertation, we have seen the appearance of HL gravity in Lifshitz
holography. Regardless of whether HL gravity is relevant for the description of gravity in
our world, it plays a key role in the holographic description of nonrelativistic quantum field
theories with Lifshitz fixed points.
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