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ABSTRACT OF THE DISSERTATION 

 

A Methodology to Apply Evidence from Scientific Literature  

to Guide Individually-tailored Evidence-based Medicine 

by 

 

Juan Wu 

 

Doctor of Philosophy in Biomedical Engineering 

University of California, Los Angeles, 2016 

Professor Alex Anh-Tuan Bui, Chair 

 

Knowledge about the biology, etiology, staging, and treatment of a disease can be found in a growing and 

disparate set of sources, including observational clinical data, scientific literature, and clinical guidelines. 

However, effectively utilizing these sources to support clinical decision making remains a challenge. One 

of the challenges stems from the need to integrate knowledge from multiple sources that have heteroge-

neous representation, while locating and appraising evidence relevant to an individual patient can also be 

an issue. The objective of this dissertation is the formulation of an intermediate representation that logi-

cally consolidates and standardizes knowledge fragments across these sources, along with the definition 

of operators on this representation that generate, in a principled manner, the needed elements to facilitate 

answering clinical queries to support evidence-based medicine (EBM). The contributions of this work are: 

(1) a standardized representation, called Phenomenon-Centric Data Model Plus (PCDM+), which adopts 

the probabilistic entity-relationship model and captures and structures information about a disease drawn 

from scientific literature and patient records, emphasizing population-level observations and evidence; 
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and (2) a set of operators that retrieve and infer information about individual patients from the PCDM+ to 

inform clinical queries. This work is demonstrated and evaluated in the domain of intracranial aneurysm.  
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CHAPTER 1. Introduction 

Physicians need to answer certain questions about a disease for clinical tasks. What are the causes of the 

disease? How can it be prevented? How does it progress? Which treatments are effective in controlling 

such progression? To answer these questions, knowledge about a disease may be obtained from multiple 

sources, including observational data from hospitals, which record the treatment courses of patients; sci-

entific literature, which reports findings from clinical trials or other studies; and clinical guidelines, which 

summarize available evidence to guide clinical decision making in specific conditions. However, physi-

cians need a significant amount of expertise and time to integrate these pieces of knowledge in order to 

answer clinical questions, especially when attempting to individualize the information to a specific pa-

tient’s situation. 

Physicians can be assisted in answering these questions by constructing comprehensive disease models, 

such as a Bayesian belief network (BBN), to encode what is known about the etiology and progression of 

the disease and to generate predictions about diagnosis and outcome. In spite of current work in areas 

such as meta-analysis [Chen et al., 2013; Zhong et al., 2013; Buffart et al., 2013] and disease modeling 

[Mant et al., 2005; Harrison and Kennedy, 2005; D’Amelio et al., 2010; Newton et al., 2012], no system-

atic way exists to effectively organize available information across multiple sources and translate perti-

nent data into a comprehensive disease model that is consistent with the knowledge provided.  

Currently, the process of constructing comprehensive disease models is hindered by two issues. First, ex-

isting data models focus on capturing facts such as findings, diagnosis, and treatment but fail to maintain 

the context in which these facts were obtained (e.g., the purpose of data collection, the measurement of 

each finding, the certainty of the findings). Such context is necessary for interpretation of the facts, as loss 

of context leads to the inappropriate secondary use of the data (e.g., without knowing the imaging modali-

ty, the sentence, “the mass is 5.1 × 2.3 cm,” provides little information about the implications of these 

dimensions). The heterogeneous representation of such facts and contexts across multiple sources pre-

sents further challenges. For example, knowledge yielded by clinical observational data and controlled 
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trials differs in the purpose of data collection, data storage, targeted users, knowledge delivery, and repre-

sentation. Such variation calls for a data model that standardizes and captures partial knowledge yet min-

imizes the bias for constructing a comprehensive disease model. Second, information collected from ex-

isting sources is not in a form that is conducive to constructing a disease model. For example, the parame-

ters of a BBN are conditional probabilities of a child node given its parent nodes (e.g., P(C | A, B)), and 

the data source may only provide partial knowledge (e.g., P(C | A) or P(A, B), and qualitative semantic 

relationships); the model requires a more specific biomarker measurement (e.g., nicotine intake, hormone 

level), while the sources only contain broader patient-level information (e.g., smoking history, gender). 

Thus, systematic transforms are needed to integrate and translate original knowledge fragments to param-

eters needed for model construction. 

1.1 Research and Contributions 

To solve the aforementioned problems, the aim of this dissertation research was to:  

[Aim 1]  Create an intermediate representation that logically consolidates and standardizes knowledge 

fragments and the associated context across the sources; and  

[Aim 2]  Develop operators that translate evidence into knowledge elements to inform clinical decision 

making relating to a specific patient. 

The evaluation was performed in the domain of intracranial aneurysm (ICAs). 

1.1.1 PCDM+ 

To address the first problem noted above, I designed a conceptual representation, called Phenomenon-

Centric Data Model Plus (PCDM+), to standardize and organize observations and findings pertinent to a 

disease to facilitate evidence-based medicine. Compared with the original PCDM [Bui and Taira, 2010], 

PCDM+ emphasizes evidence collected at the population-level (e.g., distribution of patient characteris-

tics, survival curves, subgroup analyses). PCDM+ was designed using a probabilistic entity-relationship 

(PER) model as its graphical language, which contains five types of classes:  

1. Entity. An entity holds key concepts, which are used to tell a story of a disease on a patient or a popu-
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lation. The PCDM+ core entities are source, phenomenon, theory, evidence, finding, intervention, be-

havior, research study, population, and statistical analysis.  

2. Relationship. A relationship structures the hierarchy and interactions among entities. Examples of 

PCDM+ core relationships include is-a, part-of, and has-a that represent inheritance, aggregation, and 

composition relations, respectively. Examples of relationships representing interactions are measure, 

support, analyze, and affect.  

3. Attribute. An attribute is a property that describes entities and relationships, emphasizing the context 

of findings such as observation type, unit, accuracy; the certainty of measurement; and the certainty 

of existence. Observation is a class designated to holding such context. Every entity has one or sever-

al attributes. 

4. Arc. An arc delineates relations among attributes that are reported is scientific studies. Relation type 

and conditions where the relation was discovered (e.g., data source, study purpose, location of the 

study, sample size) are stored in an arc class. Hypothesis is the class used to encode such arcs.   

5. Local distribution. A local distribution represents the probability distribution of attributes (e.g., de-

scriptive statistics of the attribute values over a population) and strength of arcs (e.g., statistical meth-

od and significance) from each data source as a means of capturing population-level evidence. Local 

distributions are captured in probability, distribution, and statistical analysis classes.  

The current version of PCDM+ consists of three components: PCDM-Clinic, which encodes clinical ob-

servational data; PCDM-Literature, which captures the evidence from scientific paper; and an Inference-

Layer, consisting of a set of operators that link the PCDM-Literature to PCDM-Clinic to facilitate evidence-

based medicine.  

1.1.2 Operators  

To overcome the second problem noted earlier, transforming unstructured knowledge obtained from data 

sources into formatted knowledge that evidence-based medicine requires, I created operators to translate 

the knowledge encoded within the PCDM+ into a form that can be used to facilitate answering clinical 
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queries. In this work, I designed a set of operators to help enable two applications: (1) facilitate decision 

making in clinical practice by retrieving and aggregating knowledge fragments from published studies for 

a given patient; and (2) to construct BBNs that can help in prognostic tasks. BBNs were chosen as a pre-

dictive modeling framework due to their ability to handle the uncertainty inherent in clinical evidence and 

their capacity to generate predictions with incomplete knowledge.  

Motivated by the first application, I designed three operators to retrieve and synthesize evidence from 

PCDM+ and instantiate:  

1. Patient-population matching. When clinicians appraise evidence from published clinical trial reports 

or observational studies to a specific patient, they first assess if this patient meets the eligibility crite-

ria of this study. This operator links a specific patient case to the populations that this patient is eligi-

ble for, allowing all findings pertinent to these populations to be applied to the individual. Based on 

the standard classes shared by PCDM-Clinic and PCDM-Literature, my initial implementation of the 

operator employs rule-based algorithms and Boolean logic to assess a patient’s eligibility by defining 

a weighted scoring function. 

2. Relation extraction. To facilitate the examination of variables for an outcome of interest (e.g., risk 

factors for rupture, growth, survival) and to elucidate the relations among the variables, this operator 

is designed to retrieve hypotheses stored in PCDM+ that have been tested in published studies and are 

supported by results yielded. Each hypothesis has one or more statistical analyses associated with it. 

Details about each statistical analysis including the pertinent observations, statistical methods, statis-

tical results, significance level, analyzed time, population, and interpretation are also linked and re-

trieved to help physicians assess the evidence strength. This operator is used to assist in topology 

specification in BBN construction.   

3. Probability retrieval. This operator helps the physician to estimate the associated (conditional) proba-

bilities and statistics for a particular patient (e.g., rupture risk and treatment risk) by indexing all of 

the probabilities in PCDM+ that are related and inform the patient’s case. This operator creates a 

probability pool to facilitate parameter estimation for building BBNs. 
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Construction of BBNs requires three elements: variables, topology, and parameters. Building upon the 

operators defined in the first application, I designed operators to transform PCDM+ into BBNs: 

1. Variable selection and discretization. This operator translates PCDM+ entities and attributes into ran-

dom variables in the BBN by following designed inclusion rules. A discretization strategy for a varia-

ble is chosen among the encoded discretization methods enumerated within PCDM+ based on a min-

imized entropy method. 

2. Topology specification. In specifying the model’s structure, an operator is provided to utilize availa-

ble evidence from PCDM+ relationships and arcs to draw the most consistent and efficient structure 

of the BBN. Dependency among variables is drawn and examined within PCDM+ before mapping to 

the BBN. This operator is related to the relation extraction operator described earlier. 

3. Parameter estimation. To estimate the conditional probability tables, partial statistics captured as local 

distribution classes in PCDM+ are used. The partial evidence provides constraints for generating an 

estimated distribution for each variable in the BBN. A Bayesian approach is used to update parame-

ters when new evidence is input into PCDM+. This operator parallels the operator for retrieving relat-

ed probabilities given above. 

1.2 Organization of the Dissertation 

The remainder of this thesis is organized as follows. Chapter 2 provides a literature review on topics re-

lated to this work, while the PCDM+ design, instantiation, and its implementation are described in Chap-

ter 3, emphasizing PCDM-Literature and PCDM-Clinic. The developed operators are described in Chapter 

4 and their use demonstrated through a patient case to answer clinical queries. Finally, Chapter 5 con-

cludes this dissertation and provides recommendations for future work.  
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CHAPTER 2. Background 

A literature review was conducted, focusing on works related to the aims of this dissertation, including 

data sources, evidence-based medicine (EBM), case-based retrieval systems, relational data modeling, 

and Bayesian belief network (BBN). The aims of the review of pertinent literature presented the subse-

quent sections are noted below: 

 To explore the challenges in integrating multiple sources to facilitate evidence-based medicine, I first-

ly examined several data sources that are available for clinical research and clinical decision making, 

including observational data, scientific literature, curated database, existing models, and clinical 

guidelines. The results of this part of the review are given in Section 2.1. 

 A literature review on EBM was conducted to specify the steps required to achieve EBM. In addition, 

because my work focused on two data sources, observational data from medical records and research 

findings from the scientific literature, I reviewed the existing work on utilizing published literature to 

aid decision making in clinical practice. This is described in Section 2.2. 

 Case-based retrieval (CBR) systems in the medical domain are described in Section 2.3. CBR has 

been widely used in clinical settings to retrieve similar patient cases to facilitate decision making on 

new patients. The sources reviewed in this section elucidate the potential use of an underlying repre-

sentation with sufficient context (i.e., PCDM+) to improve similar patient matching.  

 Evidence from published literature contains many relations and probabilities. In order to choose a 

language to implement PCDM+, I explored the existing languages for implementing relational and 

probabilistic models. This analysis is described in Section 2.4. 

 One aim of PCDM+ is to facilitate BBN building. Therefore, current methods of variable selection, 

structure learning, and parameter estimation for constructing BBNs are reviewed in Section 2.5.  

2.1 Data Sources 

Multiple sources are available to construct a disease model, including observational data from daily prac-

tice, published literature, existing structured datasets, other disease models, and clinical guidelines. The 
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types of information provided by each data source and the challenges of utilizing them to construct a dis-

ease model are briefly described below. 

2.1.1 Observational Data 

Observational clinical data are generated as a result of clinical consultations, lab tests, image scans, biop-

sies, and other procedures during patient visits or hospitalizations. These data are informative as they cap-

ture the entire treatment course and provide detailed information on disease etiology, progression, and 

treatment for individual patients. Nevertheless, challenges exist in utilizing these data for creating predic-

tive models as: (1) variations in demographic and clinical characteristics, procedures, treatment courses, 

and visit frequencies are common; (2) information is not standardized and is often reported separately in 

different documents without sufficient context; and (3) missing data can occur due to loss during follow-

up (e.g., patient missing or cancelling an exam), limitation of the local hospital (e.g., lack of a modality, 

procedure or treatment), and/or the patient's medical condition (e.g., a patient suffering from memory loss 

may not able to provide medical and social history). 

2.1.2 Scientific Literature  

Published papers on randomized controlled trials provide details about the process undertaken to validate 

a (causal) hypothesis on a study population. Such publications provide a significant body of evidence 

supporting the efficacy of treatments on different study populations, identifying potential adverse events, 

and characterizing risk factors that may lead to poor survival outcomes. Despite the richness of infor-

mation, several difficulties arise when trying to translate published findings into probabilistic models as: 

(1) while the study design, patient eligibility, data collection process, and statistical analysis are reported 

following certain criteria (e.g., CONSORT [Schulz et al., 2010]), this information remains highly unstruc-

tured and unstandardized; (2) numerical evidence is often not properly considered, and (3) conflicting 

information is reported by different authors.  

2.1.3 Curated Databases  

Researchers have created an abundance of structured datasets by curating unstructured data into research 
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databases, collecting data as a part of randomized clinical trials and constructing large repositories of as-

sociated clinical observations. These repositories are significant in that they provide a large set of cases 

for a disease, allowing models to be trained on an extensive amount of data. However, depending on how 

the data is collected and aggregated, the consistency in the format in which information is reported varies. 

For example, gene expression data may not be normalized across sites and machines, resulting in values 

that are not comparable without adequate pre-processing [Herrero et al., 2003].  

2.1.4 Existing Models 

Given the increase in the volume and scope of available data, the use of machine learning techniques has 

expanded in order to model, relate, and classify available data (e.g., rule learning, decision trees). In addi-

tion, qualitative models such as ontologies that capture the variables, relationships, and attributes, can be 

a source of information in designing a model. For example, the @neurist ontology [Boeker et al., 2007], 

developed to accommodate data collection across multiple sites in Europe on intracranial aneurysm pa-

tients, provides a means to standardize the representation of variables and their states in a model, facilitat-

ing the integration of data from additional sites. 

2.1.5 Clinical Guidelines 

Clinical guidelines (CGs), which are usually produced by (inter)national medical associations or govern-

mental bodies, summarize the highest quality of evidence on prevention, diagnosis, prognosis, therapy, 

risk/benefit, and cost-effectiveness. While CGs provide a high level of evidence on a disease, their impact 

on clinical practice is arguably limited. Possible reasons include [Broughton and Rathbone, 2001]: (1) 

CGs cannot assist clinicians in tailoring care to patients' individual needs, particularly in presence of 

comorbidities and/or conditions characterized by great variation; (2) CGs are time-consuming and hard to 

follow because most of them are too long to read and provide unclear recommendations; and (3) conflict-

ing guidelines provided by different professional bodies can confuse and frustrate practitioners.  
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2.1.6 Challenges and Hypothesis 

As the number of data sources is large, there are important considerations that need to be addressed prior 

to integrating the data into a model. First, existing datasets have typically been collected for a primary 

purpose (e.g., to test a specific hypothesis or answer clinical question), and could be biased when utilized 

to answer secondary questions. For instance, given a database primarily developed to determine the safety 

and effectiveness of endovascular coiling, the patient population will not be sufficient to answer other 

questions associated with aneurysms when treatment is a risk factor. Therefore, the context of original 

data collection (e.g., purpose of the original study, patient eligibility) is needed to identify potential 

sources of bias. A second consideration is the issue of missing data. Missing data remains a common 

problem in creating clinical datasets and may be due to a variety of causes (e.g., information intentionally 

unreported, measurement error, variable added after data collection started). While missing data may be 

addressed through imputation or sampling techniques, the appropriate technique should take into consid-

eration whether or not the data is missing at random. A potential solution to address the issues of bias and 

missing data can be obtained by leveraging information that is captured across multiple sources, supple-

menting each other. Combination of these data sources can improve the prediction accuracy of a compre-

hensive disease model. The challenge in adopting this approach is that each knowledge source has be-

spoke characteristics and unique knowledge representation. Consider, for instance, data collected observa-

tionally versus data from controlled trials. Observational data from daily clinical practice are patient-

oriented and individual level data, while scientific literature is usually study-specific and hypothesis-

driven, with findings reported at population level. Clinical data are captured across disparate medical 

documents, images, pathologic samples, lab tests, genetic tests and other databases; while clinical trial 

results, together with its population characteristics, study design and statistical methods, are presented in 

the published literature. Clinical data are collected for patient healthcare delivery and are written in a lan-

guage that physicians, nurses, and practitioners can understand, whereas clinical trials are usually con-

ducted to test a hypothesis through statistical analyses. 
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2.2 Evidence-based Medicine 

Evidence-based medicine (EBM) is a widely used term in medical practice. It is defined as, “a systematic 

approach to clinical problem solving which allows the integration of the best available research evi-

dence with clinical expertise and patient values” [Sackett et al., 2000].  

2.2.1 Steps to Practice EBM 

The Five-Step Model of Evidence-Based Medicine is widely used to educate medical students [Akobeng, 

2005], and is summarized below. These steps inform the design and usage of PCDM+ in subsequent 

chapters.  

Step 1. Formulation of answerable clinical questions. In this step, physicians need to convert their in-

formation needs into answerable clinical questions. To help clinicians to formulate answerable questions, 

PICO (Patient/Problem, Intervention, Comparison, Outcome) framework was proposed [Huang et al., 

2006], comprising of four elements that should be addressed, namely the patient or problem in question; 

the intervention, test, or exposure of interest; the comparison interventions; and the outcome(s) of interest. 

For example, when a physician encounters a new patient with an unruptured intracranial aneurysm (ICA), 

he/she needs to answer questions such as, “How likely will this aneurysm grow and rupture?” and, 

“Which is a better treatment for this patient, surgical clipping or endovascular coiling?” 

Step 2. Finding the evidence. Physicians need to efficiently determine the best evidence with which to 

answer the clinical questions. Today, with the increasing number of research papers that are accessible 

through curated resources such as PubMed, physicians can obtain newly reported evidence that can be 

applied to patients under their care.  

Step 3. Appraising the evidence. Critically appraising collected evidence for its validity and usefulness is 

a time-consuming and often difficult task. The process comprises of evaluating the quality of the evidence 

provided by each paper given its validity (i.e., are the results valid), importance (i.e., what are the results), 

and applicability to the patient of interest (i.e., are the results useful).  
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Step 4. Applying the evidence. Application of the results of this appraisal in medical practice must incor-

porate a patient’s preferences/values and clinical circumstances (e.g., availability of the treatment, clinical 

expertise for certain surgery).  

Step 5. Evaluating performance. Lastly, the performance of EBM in terms of measurable outcomes 

needs to be evaluated to determine the utility of the approach. 

2.2.2 Applying EBM in the Clinical Setting 

Physicians often turn to publications to gather evidence in order to make treatment suggestions. However, 

the time required to search, read, and summarize evidence from multiple papers can be difficult to find in 

a busy schedule. To address this issue, physicians often rely on resources such as clinical guidelines; ex-

pert-curated summaries like UpToDate [Jaeschke, 2000]; and meta-analyses such as Cochrane Reviews 

[Levin, 2001], which summarize a body of literature into brief, salient points. Nevertheless, when making 

a decision for a given patient case, the physician is left with the task of recalling the evidence pertinent to 

each recommendation.  

Significant efforts are being dedicated to integrating evidence to answer clinical questions that arise in the 

course of care. For example, the HL7 Context-Aware Knowledge Retrieval (InfoButton) standard aids 

clinicians and patients in answering clinical questions by providing personalized links to online resources 

based on information found in the electronic health record (EHR) [Del Fiol et al., 2012]. The linkage be-

tween the EHR and external resources is managed by an InfoButton Manager, which maintains an explicit 

knowledge base of terms with mappings to external resources via a uniform resource locator (URL).  

Furthermore, with the increasingly sophisticated natural language processing and machine learning tech-

niques, it becomes possible to automatically structure the free-text and extract the key findings to apply to 

individual patients. Systems that assist clinicians with answering clinical questions based on evidence 

reported in literature have been widely explored. For instance, CDAPubMed aids clinicians in retrieving 

publications related to their patient by automatically identifying MeSH terms with the medical record and 

searching PubMed using these terms [Perez-Rey et al., 2012]. AskHERMES analyzes complex questions 
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and outputs summaries from indexed resources such as MEDLINE abstracts and PubMed articles [Cao et 

al., 2011].  

While the aforementioned systems perform information retrieval at the document or sentence level, a 

standardized representation will enable concept-level integration and permit users to identify papers that 

are related to a given concept (e.g., aneurysm rupture) and retrieve associated context across all relevant 

papers. The Translational Medicine Ontology (TMO) is one example of such a representation. It is a high 

level, patient-centric semantic representation that is used to integrate EHR data with Linked Open Drug 

Data (LODD) to answer questions relating to clinical trial recruitment and personalized medicine [Luci-

ano et al., 2011]. While both approaches support expressive queries that leverage the underlying 

knowledge base, PCDM+ is distinguished from TMO by two important characteristics: (1) PCDM+ or-

ganizes data pertaining to a “phenomenon” (i.e., a symptom or a diagnosed medical problem) and main-

tains the context surrounding each medical finding; and (2) PCDM+ is more broadly conceived to answer 

a wide range of diagnostic and treatment selection questions, while TMO is targeted towards matching 

specific drug recommendations to individual patients. In addition, in this work, in contrast to the Info-

Button approach, PCDM+ incorporates external knowledge as a part of its representation. In a recent pa-

per, Garcia-Gathright et al. [2016] introduced “contextualized semantic maps,” a graphical design that 

incorporates study population information as context for a particular publication. While this paper is a 

result of research effort in summarizing and linking published literature to individual patients using con-

text information, the context the authors used is limited to patient demographics, risk factors, treatment 

history, and tumor features. PCDM+ provides a wider range of contextual fragments, emphasizing the 

probabilities and statistics.  

Wider application of extracting evidence from literature and applying it to individual patients still faces 

several challenges, including: (1) a standard mechanism to assess which publications contain good evi-

dence is presently lacking; (2) important contextual details about a published study are often lost during 

the process of summarization, which may lead to incorrect interpretation of the conclusion provided by 

the authors; and (3) including published literature only will introduce bias, as articles published in peer-
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reviewed journals tend to focus on positive results and new findings. Nevertheless, these problems may 

be overcome by linking high-quality evidence from systematic research to clinical practice, thereby aiding 

in the effort to make informed medical decisions.  

2.3 Case-based Retrieval in Medical Decision Making 

Medical decision making largely relies on clinical guidelines for well-studied diseases. Clinical guidelines 

are statements that suggest procedures for the diagnosis, management, or prevention of specific diseases 

or conditions, which have been approved by expert panels. However, for diseases where inter-patient var-

iability is extremely high (e.g., non-small cell lung cancer, NSCLC), diagnostic and therapeutic decisions 

always need to be properly tailored to the individual patient’s situation. Examples of non-compliance with 

guidelines are often reported, despite their proved efficacy in improving patient care. Reasons for this can 

be an improper or weak guideline definition, e.g., due to the presence of biases, changes in evidence or, 

more frequently, obsolescence of data and/or procedures [Montani, 2009]. While the guidelines are not 

sufficient for medical decision making, physicians need to identify and solve health problems for patients 

with limited observations from the patient, expertise resulting from years of training, as well as experi-

ence from previously treated patients. A case-based reasoning (CBR) system can identify similar cases 

among a large number of previous cases and facilitate physicians in making clinical decisions.  

CBR is an approach that capitalizes on past experience to solve current problems. Human beings are ro-

bust problem-solvers despite limited and uncertain knowledge, and their performance improves with ex-

perience. These same qualities are desirable in CBR systems. CBR has proved to be especially applicable 

to decision support in medicine; even when guidelines or models are available for certain diseases, histor-

ical cases can provide key background and evidence for proper interpretation.  

Therefore, reasoning from examples is natural for clinicians and case histories have long been essential in 

the training of healthcare professionals. Owing to the increasing amount of medical data yielded by clini-

cal practice and scientific experiments, use CBR systems to enable automatic learning from previous cas-

es can facilitate physicians in making medical decisions.  
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2.3.1 Case-based Retrieval Systems in Medicine 

For decades, researchers have been incorporating case experience in clinical reasoning models to facilitate 

diagnosis and treatment planning [Kolodner and Kolodner, 1987]. A number of sophisticated medical 

CBR systems are presently in use, e.g., SHRINK [Kolodner, 1983], CASEY [Koton, 1988], FLORENCE 

[Bradburn, 1994], CASE-PARTNER [Bichindaritz et al., 1998], CASEREC [Balaa et al., 2003], and 

geneCBR [Jaulent et al., 1997]. The purposes of these systems vary, and include diagnosis, classification, 

tutoring, planning, and knowledge acquisition/management. SHRINK was one of the first CBR systems 

applied in health sciences in the 1980s, where it was used for psychiatric diagnosis and treatment [Kolod-

ner, 1983]. This system uses a structure called DIAGNOSTIC MOPs to represent knowledge pertaining 

to a particular disorder, including signs and symptoms, treatments, and relations to other disorders in the 

same category to aid differential diagnosis. This enables SHRINK to learn from success and failures to 

update its case memory and improve performance. CASEY, another early medical application, integrates 

CBR techniques with an expert system, called the Heart Failure model, to manage patients with cardiac 

disease [Koton, 1988]. The Heart Failure model provides causal explanations for the findings obtained 

(i.e., observable features and their values) and identified states (e.g., presence of a disease, therapy, or 

qualitative assessments of physiological parameters). CASEY uses the Heart Failure model to evaluate 

the significance of the difference between the new case and a retrieved case. If differences are insignifi-

cant, the solution of the retrieved case is adapted. Otherwise, CASEY uses the Heart Failure model to 

generate a new solution.  

In the 1990s, more advanced expert systems, such as FLORENCE [Bradburn, 1994], ALEXIA [Berg-

mann et al., 2005], and ROENTGEN [Nilsson et al., 2004] were developed. FLORENCE, for example, 

models the reasoning of an expert in advising on diagnosis, prognosis, and prescription within a nursing 

domain, using both rule-based and case-based reasoning.  

Most recently, Montani et al. presented a CBR system capable of retrieving similar patients from a data-

base in order to provide a suggestion on the revision of diabetic patient’s therapy scheme. In their system, 

a case is defined as a set of features observed during a visit, with an associated prototypical class, which 
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is the situation that occurs during diabetic patient monitoring. First, an input case is classified to a prede-

fined prototypical class, allowing similar cases in that class to be retrieved using nearest neighbor tech-

niques. This work combines situation assessment with CBR, and incorporates prior knowledge with naïve 

Bayes classification. However, the taxonomic knowledge of the classes is still provided by an expert, and 

is hence not part of the system logic. Schmidt and Gierl [2003] combined temporal abstraction with CBR 

and applied it on the prognosis of kidney function, as well as the temporal spread of infectious disease 

such as influenza or bronchitis. However, as their work is based on complete and well-structured infor-

mation, obtaining the trend descriptions of kidney function, for example, is relatively straightforward. 

Context and situation awareness are two concepts commonly employed in user modeling [Zimmermann, 

2003], and have recently been adapted to CBR within ambient intelligent systems in tourist domain 

[Kofod-petersen, 2006] and flow assurance control domain [Nwiabu, 2011]. 

Historically, early medical CBR systems were typically used in pilot testing or clinical trials. However, 

most CBR systems that have been developed in the past decade are aimed at clinical evaluation and daily 

clinical use. A survey conducted by Begum et al. [2011] reveals a clear trend of multipurpose and multi-

modal CBR systems in healthcare in recent years. Additionally, the data types used to build the case base 

are varied, ranging from text, image and signal, to microarray data. Owing to these advances, CBR appli-

cations in bioinformatics have become promising. Consequently, a need to incorporate other data science 

techniques (e.g., data mining, information extraction) in CBR systems has emerged to structure infor-

mation and to deal with the high dimensionality. 

2.3.2 Case-based Retrieval Components 

Despite differences in purpose and/or data type, all CBR systems comprise of four components: (1) a case 

memory with previous cases stored in suitable format; (2) a case retrieval mechanism to match similar 

cases; (3) a case adaptation process to adjust the solutions of similar cases to that of the new case; and (4) 

a functionality to add the new case to the case base to enable dynamic learning. In this literature review, 
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the focus in on extant studies addressing the first two components of current CBR systems, as these are 

related to the PCDM+ and operator design developed in the present study. 

In the medical domain, a case usually refers to a given medical procedure applied to a patient, such as a 

visit, a treatment, or the execution of a full set of clinical guidelines [Montani, 2011]. Current medical 

CBR systems represent a case in different ways, which can be classified into four main categories: feature 

vector, frame-based, object-oriented, and textual representations [Bergmann et al., 2005]. The feature vec-

tor representation is the most popular, as any observation collected for the diagnosis or treatment planning 

can be represented as a feature, e.g., age, blood pressure, tumor grade, etc. Some features are aggregated 

from several signs. For example, the Glasgow Coma Scale (GCS) comprises eye, verbal, and motor re-

sponses. Hence, a case C with a collection of features (f1, f2, . . . fn) and their values (v1, v2, . . . vn) can 

be represented as a feature vector C = <f1 = v1, f2 = v2, . . . fn = vn>. More sophisticated systems use 

hierarchical representations or generalized cases, where cases are clustered into various prototype classes 

at an abstract level in the case base. Thus, a new case will be first classified into a class, from which simi-

larity cases will be selected. However, all these representations merely focus on the objective measure-

ments, and their contexts are not stored in those representations, e.g., when the measurement was collect-

ed, what was the patient situation by then, etc. 

The second component of a CBR system, the retrieval mechanism, is highly related to its case representa-

tion. The goal of similarity judgment is to determine which cases are most usefully similar, and with high 

adaptability, given the desired results of the CBR process. Even though there are different approaches to 

measuring similarity, such as fuzzy logic and distance metrics, the objective is to classify cases according 

to some features that allow the use of these cases in similar situations [Jurisica, 1993].  

2.3.3 Adding Context to Case-based Retrieval Systems 

The context surrounding medical findings is very important in the medical decision-making process. Ig-

noring context may lead to undesirable events. For example, if it is known that Drug A is effective for 

NSCLC patients, but harmful to those who have liver cancer, then if “having liver cancer” is not included 
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in the case representation, for a new patient who has both NSCLC and liver cancer, potentially detri-

mental decision may be made (i.e., administering Drug A to the patient). This example also highlights the 

importance of representing another type of context in a CBR system: new evidence from basic science or 

clinical trials (e.g., the toxicity of Drug A to liver cancer patients may be discovered later). Integrating the 

breadth of a patient’s overall health situation, as well as entering pieces of evidence from most recent 

works for the disease into the CBR systems, can improve the treatment planning. Additionally, context 

plays an important role in the adaptation process in CBR systems. Once similar cases are selected, the 

next step is to adapt them to a new case. If the context is not stored in the case base, it is difficult to accu-

rately adapt solutions to new cases. One obvious example is treatment availability. If all the previous cas-

es were collected when Treatment A was not available in a particular hospital, the treatment selection will 

be biased, as the system would not suggest the use of Treatment A. Context thus provides important 

knowledge to a CBR system, particularly when considering EBM, by incorporating the patient’s situation, 

the full range of observations, and the evidence yielded by available literature (e.g., clinical trial publica-

tions, new knowledge about the etiology or progression of the disease from basic science experiments) 

that properly inform similarity metrics and ultimately decision making.  

2.4 Relational Data Modeling 

To choose appropriate formalism for PCDM+, several existing models that can represent concepts and 

relations with probabilities were reviewed.  

2.4.1 Entity-relationship (ER) Model 

One of the longstanding representations for data modeling is the Entity-relationship (ER) model [Chen, 

1976], which is commonly used to describe databases containing relational data. The building blocks of 

ER models are entities, relations, and attributes. An entity corresponds to a concept or an object; a rela-

tionship specifies an interaction among entities; and an attribute corresponds to a variable that describes 

the properties of an entity or a relationship. Figure 2.1 depicts an example of an ER model [Heckerman et 

al., 2007]. An ER model represents the structure of a database graphically by defining the entity classes 
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(square), relationship classes (diamond), attribute classes (oval) and their interactions, providing a con-

ceptual view of the database. A relationship has one of the following cardinality ratios: 1:1 (e.g., each lec-

turer has a unique office), 1:M (e.g., a lecturer may tutor many students, but each student has just one tu-

tor); M:M (e.g., each student takes several modules, and each module is taken by several students). The 

cardinality of a relationship is presented at the end of the link as an arc.  

 

Figure 2.1 An example of the ER model [Heckerman et al., 2007]. 

Although the ER model introduces some semantic meaning via cardinality, it is limited to representing 

concepts and relations with rich semantic meanings (e.g., an is-a relationship cannot be represented using 

a classic ER framework) and it also fails to capture the uncertainty of an existence of an entity, a relation-

ship, or an attribute. 

2.4.2 Probabilistic Relation Model (PRM) 

Friedman et al. [1999] proposed probabilistic relation models (PRMs) to model the uncertainty of some 

attribute values, and to specify the probabilities of relations. As an example, let X, Y, and Z represent ob-

ject classes (i.e., entity classes); A, B, and C represent attribute classes; and a dot represent a possession 

relationship between an object and its attributes. Thus, X.A refers to the attribute class A of entity class X. 

A PRM consists of two components: the qualitative dependency structure and the parameters associated 

with it. The dependency structure is defined by associating with each attribute X.A a set of parents 

Pa(X.A). The parents are attributes that can influence X.A directly. They will be instantiated with differ-

ent values for different objects. X.A’s parent can be another attribute in X (e.g., X.B), or another attribute 

of related objects (e.g., if X and Y are related, then, X.A and one of Y’s attributes Y.C may have a de-
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pendent relationship). Given a set of parents Pa(X.A) for X.A, a local probability model for X.A can be 

defined. As Friedman et al. [1999] pointed out, a PRM is more expressive than standard models, such as 

Bayesian networks, and it also extends the algorithms for learning Bayesian network to learn the structure 

and parameter for PRMs.  

Although the PRM model can be a good candidate for implementing PCDM+, this paradigm would com-

plicate PCDM+ as a database schema. The conditional relationships and temporal data cannot be well 

represented using PRM. 

2.4.3 Probabilistic Entity-relationship Model (PER) 

Heckerman et al. [2007] introduced a graphical language for relational data called the probabilistic entity-

relationship (PER) model. A PER model comprises of five class types: entity, relationship, attribute, arc, 

and local distribution. The definitions of entity, relationship and attribute classes are similar to those in 

ER models. Arc classes are used to represent the relationships among attributes, and local distribution 

classes store the canonical distributions of attributes. Compared to ER models and PRMs, PER models 

are more expressive in defining different representations of relationships, such as a “restricted” relation-

ship, self-relationships, and probabilistic relationships. Constraints of a relationship and partial relation-

ship existence can also be represented properly in PER models. 

However, in the course of the literature search, very few examples of PER models were found. Nonethe-

less, I determined that the PER graphical language is suitable for implementing PCDM+. With arc clas-

ses, the relationships extracted from literature can be recorded; and with local distribution classes, the dis-

tribution of attributes can be stored. In this work, I augment the local distribution class to record the prob-

abilities of arcs as well (i.e., relationships among attributes).  

2.4.4 Phenomenon-centric Data Model (PCDM) 

The phenomenon-centric data model (PCDM) is a representation that organizes observational data in 

medical records, modeled after the investigative process in clinical practice [Bui and Taira, 2010]. The 

motivating design principle of PCDM is to view the practice of medicine as a scientific experiment. When 
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a patient visits the hospital with a medical problem (i.e., phenomenon), for instance, “severe headache,” 

the clinical process involves investigating the possible reasons (i.e., theory) for such a phenomenon, mak-

ing a diagnosis, and selecting an optimal treatment. Theories are supported by evidence, which is derived 

from EHRs or external resources. A phenomenon is thus presented as medical findings (e.g., an aneu-

rysm), and a finding has properties at different levels (e.g., aneurysm size, wall shear stress).  

The design of PCDM is aligned with Rudolph Virchow’s (1821-1902) understanding of illness. The ill-

ness is not an entity, but a process. Feinstenian supported this view. Uffe Juul Jensen [2007], commenting 

on Feinstainian’s opinion, observed that, “disease should be understood as evolving entities, entities with 

‘a natural history’.” PCDM models illness as an evolving phenomenon medical practitioners observe until 

it is diagnosed as a disease. Despite its core entities, PCDM still lacks an explicit representation to com-

prehensively integrate evidence from external resources. For example, PCDM defines an entity named the 

external source and a link between external source and evidence, yet it lacks constructs to fully represent 

the evidence yielded by external sources. This work extends PCDM to encode evidence sourced from the 

literature to facilitate clinical decision making. In this work, I also introduce probabilities to support belief 

propagation processes in PCDM+. 

2.5 Bayesian Belief Networks (BBNs) 

Bayesian belief networks (BBNs) are a type of probabilistic graphical model and have been widely used 

in the medical domain to facilitate prediction tasks [Hoot and Aronsky, 2005; Stojadinovic et al., 2009]. 

In a BBN, the variable that we make inference on is called a “target variable,” and the other variables 

contributing to the distribution of this target variable are called “evidence variables.” As a directed acyclic 

graph, a BBN comprises nodes, edges, and conditional probability tables (CPT). A node represents a ran-

dom variable, an edge from node A to node B that represents the dependency between these two varia-

bles, and the conditional probabilities between A and B are stored in a CPT. A is called as a parent node 

of B, and B is a child node of A. BBNs hold the assumption that the configuration of a node is only de-

pendent on its parent(s). Two important concepts, the Markov blanket and d-separation, are introduced as 
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they are frequently used to examine the conditional dependence and independence in BBNs. In this work, 

I adopt these two concepts in PCDM+ and will explain their use in the method section. 

1. Markov Blanket. A Markov blanket for a target variable T (see Figure 2.2), denoted as MB(T), is the 

set of nodes that includes T’s parents, its children, and its children’s other parent (i.e., T’s spouse 

nodes). MB(T) contains all the variables that shield node T from the rest of the network, allowing it to 

maintain the only knowledge needed to predict the behavior of T [Pearl, 1988].  

2. D-separation. D-separation is an important concept in a graphic model and examines conditional 

independency (“D” stands for “dependency”). When T is d-separated from A, it implies no infor-

mation flows from A to T; thus, they are independent. D-separation occurs in four possible situations, 

as shown in Figure 2.3: (a) indirect causal effect; (b) indirect evidential effect; (c) common cause; and 

(d) common effect [Koller and Friedman, 2009]. In the first three cases, T is said to be d-separated 

from A if B is observed; in the last case, T is said to be d-separated from A if B is not observed and 

 A  T 
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 B 

(a)     (b)                      (c)                       (d) 
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Figure 2.2 The Markov blanket of variable T (inside of the rectangle) 

Figure 2.3 (a-c) T is d-separated from A if B is observed; (d) T is d-separated from 

A if B is not observed and none of B's child nodes are observed. 
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none of B's child nodes are observed.  

My work focuses on using BBNs to model the knowledge of a disease for three reasons. First, a belief 

network’s ability to encompass the uncertainty inherent in clinical evidence makes it superior to other 

models in the medical domain. A BBN incorporates prior knowledge with data to efficiently propagate 

the evidence through the network in order to elucidate the causal relations and make inferences in future 

cases. Such a unique characteristic results in its wide use for prediction tasks on diagnosis and prognosis 

[Zhao and Weng, 2011; Hoot and Aronsky, 2005]. Second, a BBN decreases the computational complexi-

ty of encoding a joint distribution over a high-dimensional space and enables informed decision making 

with incomplete knowledge. The etiology and progression of a disease are highly complex phenomena 

and a large number of risk factors are involved. The heterogeneity among patients increases the problem 

complexity. As one type of a probabilistic graphical model, the BBN holds an assumption that distribu-

tion of a child node depends solely on its parent node(s). Conditional independence exists among nodes 

without links, and the joint distribution can be computed using a much smaller number of conditional 

probabilities. Third, several extended versions of the BBN are available to address issues that can arise in 

medical data and make the extension of current work feasible. For example, a dynamic belief network 

(DBN) provides a way to encode the information of time-variant variables (e.g., aneurysm dome size). 

The hierarchical Bayesian network, another extension of the BBN, can relax or embed reasonable as-

sumptions of the network to model the heterogeneity of data sources or features at different levels (e.g., 

genetic, tissue, or system). 

BBN construction involves three main steps: variable selection and discretization, structure learning, and 

parameter estimation. Current methods for implementing these steps are summarized in the following sec-

tions. 

2.5.1 Variable Selection and Discretization 

Variable selection. Variable selection, also referred as “feature selection” in the data mining field, is the 

first step of building a BBN. A good variable selection algorithm reduces the dimensionality of feature 
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space, especially when dealing with a large number of features (e.g., genomic data). Adding a new varia-

ble to the network increases the cost of its construction, as the data quantity and number of parameters 

increase. Variable selection is the process of finding a subset of predictors with the strongest predictive 

power at a minimized cost. A thorough review of feature selection in bioinformatics can be found in ex-

tant literature [Saeys et al., 2007]. 

Stepwise regression and genetic algorithms are two examples of current techniques that have been devel-

oped to select a subset of variables automatically from data. Stepwise regression has been widely used in 

high-dimensional models [Wasserman and Roeder, 2009; Ing and Lai, 2011]. Regression can be forward 

or backward. Forward selection involves starting with no variables in the model, testing the addition of 

each variable using a chosen model comparison criterion, adding the variable (if any) that improves the 

model the most, and repeating this process until adding further variables does not improve the model per-

formance. In contrast, backward elimination starts with a full set of variables, eliminates a variable each 

time that least contributes to the model, and repeats until the model can no longer be improved. Genetic 

algorithms, on the other hand, transform the variable selection into a natural selection process. Initiated 

with a random set of solutions (i.e., variables/topology), each solution may evolve with “crossover” or 

“mutation” operators to produce the next generation. Solutions are selected according to some fitness 

function. Stopping criteria are designed to terminate the process. A genetic algorithm modified for feature 

selection [Leardi et al., 1997] has been widely used for variable selection for a wide range of data types, 

such as on microarray [Xuan et al., 2011], mass spectrometry [Li, 2008], imaging [Handels, 1997] and 

other mixed data sources. Applications of genetic algorithms for BBN construction can be found in perti-

nent literature [Gevaert et al., 2007; Larranaga et al., 2007; Correa et al., 2011].  

A variety of Bayesian variable selection methods based on Gibbs sampling have been proposed, including 

the stochastic search variable selection (SSVS) [George and McCulloch, 1993], the unconditional priors 

(UP) approach [Kuo and Mallick, 1998], and the Gibbs variable selection (GVS) [Dallaportas et al., 

2000]. These Bayesian approaches estimate the marginal posterior probability that a variable should be 

included in the model. A review of Bayesian variable selection was given by O'Hara and Sillanpää 



24 

 

[2009]. In contrast to regression methods, Bayesian approaches can facilitate the integration of ancillary 

information regarding variables under study through prior probability distributions. For example, Hill et 

al. [2011] proposed an approach to incorporate pathway- and network-based information to aid prior elici-

tation for Bayesian variable selection studies in order to identify a subset of molecular features that may 

jointly influence cancer drug response. 

Several researchers [Koller, 1996; Cooper, 1997] have suggested that the Markov blanket of a target vari-

able is a key concept for solving the variable selection problem. Aliferis et al. [2003] introduced a Mar-

kov blanket algorithm, called HITON, for optimal variable selection. While this algorithm can find 

MB(T) automatically, its soundness is limited by the sample size and other strong assumptions. 

In summary, current algorithms permit automatic variable selection, but the choice of the comparison or 

termination criteria can be subjective. In addition, they may overfit the data and fail to represent the do-

main in the real world. In my work, I augment domain knowledge from scientific literature with the clini-

cal data to facilitate variable section. 

Discretization. Variables in BBNs can be categorical (e.g., tumor stage, gender) or continuous (e.g., age, 

tumor size). Currently, two approaches can be adopted to deal with continuous variables in BBNs: assign 

the variables to specific families of parametric distributions (e.g., Gaussian distribution), or discretize 

them and learn a network structure over the discretized domain. There is a tradeoff between these two 

methods. In hybrid BBNs, where continuous variables and categorical variables exist simultaneously, 

great effort has been dedicated to estimating the distribution of continuous variables and addressing the 

inference within such mixed models [John and Langley, 1995; Cobb et al., 2007]. With discretization, 

information loss is introduced and inference is thus approximated. In this work, I choose to discretize var-

iables to simplify the inference tasks.  

A discretization algorithm repeats the process of selecting a cut point and evaluating the accuracy until 

the optimal cut point within the range of data value is obtained. The speed and accuracy of the method are 

usually used as criteria when comparing different algorithms. A method can be supervised or unsuper-

vised depending on whether the class information is exploited when discretizing the data. For example, 
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Fayyad and Irani [1993] proposed an entropy-based supervised method to minimize the joint entropy of 

the continuous variable and the classification variable. Discretization can be local or global. Local dis-

cretization methods deal with each variable independently, while global discretization methods determine 

the discretization of a set of variables simultaneously. Chmielewski and Grzymala-busse [1996] presented 

a method to transform any local discretization method (e.g., equal interval width method, equal frequency 

per interval method) into a global one. Chou et al. [2008] proposed a global approach based on minimized 

entropy in rough sets classification. A review of discretization methods was provided by Liu [2002].  

Discretization in BBNs can be integrated as a part of the structure learning process. Friedman and Gold-

szmidt [1996] introduced a method based on the Minimal Description Length (MDL) principle for choos-

ing a threshold for the discretization while learning the network structure. This method starts with two 

partitions of a continuous variable and then iterates the partitioning until there is no further improvement 

in the MDL score. Given a BBN structure, this method discretizes each continuous variable in the Markov 

blanket of the target variable. Clarke and Barton [2000] proposed an algorithm for partitioning continuous 

variables before and during BBN construction using Bayesian or MDL metrics.  

In my work, PCDM+ maintains a collection of possible discretization strategies of variables from each 

data source. These discretization strategies are derived from scientific experiments that allow researchers 

to draw conclusions with significant relationships. Therefore, I assume that they provide a deeper clinical 

meaning beyond just fitting the data well. I subsequently employ some of the existing algorithms to 

determine the optimal partitioning way.  

2.5.2 Structure Learning 

Two current approaches to specifying the structure of the network are based on (1) asking experts to spec-

ify the topology, or (2) learning the structure automatically from data. Most structure learning algorithms 

can be classified into one of three groups: score-based, constraint-based, or hybrid structure learning. 

Score-based algorithms search for a structure that best matches the data by introducing a score function 

such as a minimum description length-based scoring function [Larn and Bacchus, 1994], and BDe Metric, 
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which is a score equivalent to a Dirichlet posterior density [Heckerman et al., 1996]. Constraint-based 

algorithms use constraints (i.e., conditional independence statements) to form the network, determined by 

statistical tests (e.g., Pearson's chi-squared test). Ji et al. [2005] presented a hybrid algorithm that inte-

grates an independence test with a scoring metric. Stajduhar and Dalbelo-Basić [2010] applied a search-

and-score hill-climbing algorithm and a constraint-based algorithm in order to learn a BBN from censored 

survival data and compared the performance of different BBNs. Tang and Srihari [2012] proposed two 

algorithms to assess dependency between variables using the chi-squared test of independence between 

pairs of variables and the log-likelihood evaluation criterion for the network.  

In sum, current methods suffer from two important limitations: expert-defined topology may not account 

for hidden variables, and constraint- or score-based structure learning algorithms that learn the topology 

from data directly may result in an unreasonable relationship that will lead to inaccurate inference and 

explanation. The literature search performed as a part of the present study revealed paucity of studies that 

incorporate relations extracted from literature to facilitate structure learning. In my work, by integrating 

evidence from clinical observational data and scientific literature, I explore how the topology provided by 

PCDM+ can yield more granular relationships that cannot be learned from clinical data alone. I put forth 

the idea that the topology learned from PCDM+ can have greater clinical significance when compared 

with a data-driven topology, and potentially more granularity relative to that yielded by an expert-defined 

topology. 

2.5.3 Parameter Estimation 

Some authors considered learning the structure and parameters at the same time (e.g., Bayesian model 

averaging [Hoeting et al., 1999]). However, I mainly focus on how to estimate parameters with a known 

topology. As new evidence of some nodes becomes available, CPTs are updated to reflect that the confi-

dence of belief on the distribution of those nodes has been updated upon reviewing the evidence. Parame-

ter estimation is an active learning process and has been discussed previously [Tong and Koller, 1997; 

Bauer et al., 1997].  
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With complete data. Different techniques have been developed to estimate parameters from data direct-

ly. Among them, Maximum Likelihood Estimation (MLE) and Bayesian estimation are two classic meth-

ods that can be adopted to learn parameters with complete data [Heckerman, 2008]. When using MLE, it 

is assumed that a parameter theta is unknown but fixed. An ML estimate of theta is the value that maxim-

izes the likelihood of data (i.e., P(data | theta)). When using the Bayesian approach, we treat theta as a 

random variable, assume a prior probability, and use data to compute its posterior probability. Thus, the 

difference between these two techniques is that MLE is a point estimator while Bayesian estimation pro-

vides a posterior distribution of the parameter. A drawback of MLE is that, when available samples are 

small, the estimation is inaccurate; in contrast, different priors may need to be tested in Bayesian estima-

tion. In my work, PCDM+ integrates multiple data sources, resulting in large sample size, and the proba-

bilities from literature can be used to formalize a proper prior if Bayesian estimation is used.  

With missing data. Dealing with missing data is an integral step of parameter estimation. Missing data in 

clinical observations or studies can occur for various reasons, leading to different “missingness” patterns 

[Guideline on Missing Data in Confirmatory Clinical Trials, 2009]:  

 Missing Completely at Random (MCAR) occurs if the probability of an observation being absent 

does not depend on observed or unobserved measurements. A typical example is a patient moving to 

another city for non-health reasons. This patient could be considered a random and representative 

sample drawn from the total study population.  

 Missing at Random (MAR) describes a situation when the probability of a missing observation de-

pends on observed measurements only. For example, when patient attrition occurs due to lack of effi-

cacy, it would be appropriate to impute poor efficacy outcomes subsequently for this patient. 

 Missing Not at Random (MNAR) occurs if the probability of an observation being absent depends on 

unobserved measurements. For example, after a series of visits with good outcomes, a patient drops 

out due to lack of efficacy. In this scenario, the value of the unobserved responses depends on infor-

mation not available for the analysis, and thus, future observations cannot be predicted by the model 

without bias.  
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Eekhout et al. [2012] provided a recent review on how missing data are reported and handled in extant 

research. Although not all missing data in longitudinal studies are missing at random, the assumption of 

MAR holds in most cases. Several parameter fitting algorithms, such as multiple imputation [Patrician, 

2002], expectation maximization (EM) [Shiaikh et al., 2010], Gibbs sampling [Chen et al., 2012] and 

Markov chain Monte Carlo (MCMC) [Mao and Li, 2005], have been used to impute missing data from 

longitudinal studies. Most of them assume that MAR holds.  

A number of techniques have been developed to address missing data and estimate parameters for BBNs 

directly from observational data; however, little work has been done to utilize the partial statistics report-

ed in scientific literature to compute or update the probabilities in BBNs. Zhao and Weng [2011] devel-

oped a weighted Bayesian network by combining electronic health records and PubMed knowledge, yet 

their work is limited to using only the occurrence of certain concept pairs in PubMed journal abstracts as 

a prior conditional probability. Nikovski [2000] discussed how to combine partial statistics and domain-

dependent constraints to construct a BBN for medical diagnosis. In my work, I utilize a Bayesian ap-

proach to combine the clinical observational data and partial statistics from scientific literature to impute 

missing data in order to facilitate parameter estimation. 
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CHAPTER 3. Phenomenon-Centric Data Model Plus (PCDM+) 

This chapter describes how I achieved Aim 1 of this dissertation: 

[Aim 1]  Create an intermediate representation that logically consolidates and standardizes knowledge 

fragments and the associated context across the sources.  

The Phenomenon-Centric Data Model Plus (PCDM+) is a conceptual representation aiming to logically 

consolidate fragmented evidence from published literature and medical records. Using PCDM+, I link the 

evidence to medical records to facilitate the clinical decision-making process for individual patients. 

PCDM+ is an extension of the original PCDM framework [Bui and Taira, 2010]. PCDM was built to or-

ganize observational data in medical records pertinent to a phenomenon of interest (e.g., symptoms) to 

illustrate the investigative process in clinical practice (e.g. from symptoms to diagnosis). PCDM+ builds 

upon this foundation to integrate multiple data sources (e.g., clinical observational data and scientific lit-

erature) to further facilitate evidence-based medicine. PCDM+ adopts the core entities, attributes, and 

relationships from PCDM, but emphasizes the population-level evidence reported from clinical trials with 

new constructs, described herein. 

3.1 PCDM+ Development 

PCDM+ was developed using previously reported methodologies that were employed to create other bi-

omedical ontologies [Luciano et al., 2011; Smith et al., 2005]. A requirements analysis was performed to 

enumerate the types of information to be incorporated into PCDM+. Additional entities were added to 

PCDM based on the results of the requirements analysis and the manual annotation of the medical records 

of 15 patients with ICA and 15 published papers. A systematic approach was formulated to instantiate the 

PCDM+ with the clinical scenario outlined above.  

3.1.1 Understanding User Requirements  

The objective of PCDM+ is to support physicians in the following tasks [Sackett et al., 2000]: pose a clin-

ical question; acquire relevant literature related to answering the question; appraise each study in the col-

lected literature; and apply relevant evidence to the individual patient in relation to the original question.  



30 

 

To understand the user requirements, five board-certified clinicians from a range of subspecialty disci-

plines were informally interviewed to identify differences in information seeking behavior when reading 

published papers. Four of the five clinicians indicated that they read published literature regularly to keep 

abreast of new treatments and techniques. Additionally, they searched for evidence from the literature 

when having low confidence in their own decision, especially when presented with rare diseases or com-

plex situations. These practicing physicians looked not only at study conclusions but also assessed patient 

characteristics and study design to ascertain whether the reported findings were applicable to their pa-

tients. While all of the clinicians had a general desire to understand associated statistical analyses in pub-

lished studies, they found interpreting this information difficult due to the lack of expertise. Three re-

quirements were identified and used to guide the design of PCDM+ entities that: (1) capture key findings 

from medical records and clinical literature; (2) represent the context surrounding the key findings, in-

cluding statistics; and (3) semantically relate entities to support a wide range of queries.  

3.1.2 PCDM+ Design 

To create a standardized representation that structures and consolidates knowledge and associated context 

across medical records and scientific literature, the PCDM+ design aimed to achieve three sub-goals: 

1. Determining the type of information needed from each source that can be used to support evidence-

based medicine; 

2. Establishing data modeling constructs involving entities, relationships, and their attributes to stand-

ardize this information from each source; and  

3. Defining classes that link medical records to the relevant findings reported in the literature using the 

data modeling constructs. 

As such, core entities in PCDM+ were identified based on a combination of top-down and bottom-up ap-

proaches. In the top-down approach, commonly referenced guidelines were reviewed, including: the PI-

CO (Population, Intervention, Comparison, and Outcome) framework [Huang et al., 2006], which is 

widely used as an organizational strategy for posing clinical questions to improve retrieval results; 
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Schardt et al. [n.d.], which summarizes common types of clinical questions and identifies the best study 

type to answer each (Table 3.1); and Guyatt et al. [1994], which suggests a set of questions that readers 

should ask when assessing and applying evidence from the literature (Table 3.2). In addition, existing re-

porting guidelines were examined to enumerate key characteristics of randomized controlled trials (e.g., 

CONSORT [Schulz et al., 2010]), observational studies (e.g., STROBE [Vandenbroucke et al., 2007]), 

case reports (e.g., CARE [Gagnier et al., 2013]), and systematic reviews (e.g., PRISMA [Moher et al., 

2009]).  

 

Table 3.1 Categories of clinical questions and the types of research studies used to answer these questions, derived from [Schardt 

et al., n/a]. 

Common type of questions Type of study 

Diagnosis. Select and interpret diagnostic tests. Prospective, blind comparison to a gold standard or cross-
sectional 

Therapy. Select treatments that minimize harm and 

cost, while maximizing positive changes. 
Randomized controlled trial; cohort study 

Prognosis. Estimate the patient’s likely clinical course 

over time and anticipate potential complications or fac-
tors that influence response to treatment. 

Cohort study; case control; case series 

Etiology. Understand the origin of a disease or condi-

tion. 
Cohort study; case control; case series 

 

Table 3.2 Key questions to pose when evaluating extant literature on therapies (reproduced from Guyatt et al. [1994]). 

Are the results of the study valid? 

 Was the assignment of patients to treatments randomized? 

 Were all patients who entered the trial properly accounted for and attributed at its conclusion? 

  Was follow-up complete? 

  Were patients analyzed in the groups to which they were randomized? 

 Were patients, health workers, and study personnel “blind” to treatment? 

 Were the groups similar at the start of the trial? 

 Aside from the experimental intervention, were the groups treated equally? 

What were the results? 

 How large was the treatment effect? 

 How precise was the estimate of the treatment effect? 

Will the results help me in caring for my patients? 

 Can the results be applied to my patient care? 

 Were all clinically important outcomes considered? 

 Are the likely treatment benefits worth the potential harms and costs? 

 

To assist with the interpretation of reported statistics, guidelines for reporting statistics (e.g., SAMPL 

[Lang et al., 2013]) were reviewed and key concepts were noted for incorporation as properties in 
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PCDM+. For instance, PCDM+ aims to assist in identifying statistical information reported in the 

literature (e.g., sample sizes, p-values, confidence intervals), organizing this information in a manner that 

assists a “lay” audience with querying and validating statistical results (e.g., assessing whether a given 

statistical test is appropriate). From the existing reporting guidelines, a list of entities and attributes that 

are commonly required for each study type was created, and entities that are unique to certain study type 

were also recognized. Complementing the literature review, expert opinions were consulted and a list of 

variables that are considered as important clinical features was provided by an expert in the domain of 

intracranial aneurysm.  

In the bottom-up approach, medical records of 50 aneurysm patients and 50 scientific publications on 

intracranial aneurysm, its natural history and treatment comparison were reviewed. The aim was to verify 

the list of entities and attributes obtained from the top-down approach, to understand their representation 

formats in each source, and to identify variables that are required, but were not identified in the top-down 

approach.   

Figure 3.1 provides a high-level view of the base PCDM+ schema that resulted from the aforementioned 

process. PCDM+ comprises of three components: (1) PCDM-Clinic, (2) Inference Layer, and (3) PCDM-

Literature. PCDM-Clinic and PCDM-Literature are used to encode evidence sourced from medical records 

and published literature, respectively. They share a set of classes (e.g., intervention) and have their own 

unique classes (e.g., probability). Inference Layer is designed to enable the linkage between evidence 

yielded by the patient’s records and the statistics from published literature to support EBM. This is 

achieved with a set of operators, described in Chapter 4. Table 3.3 enumerates entity names, descriptions, 

examples, and the source from which the entity was derived.  
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Table 3.3 PCDM+ core entities (listed in alphabetical order). 

Entity Description Example Source 

Assessment A statistical or clinical judgment with 
what have been observed 

This patient has an enlarged aneu-
rysm 

PCDM 

Behavior The way a phenomenon evolves over 
time 

Aneurysm growth; aneurysm rupture PCDM 

Evidence  Information used to support a theory A brain aneurysm is observed in 
CTA images 

PCDM 

Finding An observed manifestation of a phe-
nomenon 

Brain aneurysm PCDM 

Hypothesis Hypothesized relations between varia-
bles that can be used to explain the 
disease etiology and progression 

Older females have a higher risk of 
developing aneurysms 

PCDM, 
STROBE, 
CONSORT, 
PRISMA 

Intervention An act having a preventive, diagnostic, 

therapeutic, or rehabilitative effect on a 
phenomenon 

CTA imaging; surgical clipping PCDM, PICO, 
CONSORT 

Observation Information collected by observing or 
measuring a property or a behavior 

4.5 mm AP x 2.1 mm TR x 3.6 mm 
CC 

PCDM 

Patient A person with a history of medical prob-
lems 

Jane Smith PCDM, PICO, 
CARE 

Phenomenon A medical problem of interest Headache; subarachnoid hemor-
rhage 

PCDM, PICO 

Population A group of patients that are selected for 
a specific purpose 

Patients from UCLA Medical Center 
that satisfy criteria for ICA coiling.  

PICO, 
STROBE, 
CONSORT 

Probability Reported percentage or conditional 
probability  

p(size < 7 mm) = 30%;  

p(grow=yes | size < 7 mm) = 0.10 

SAMPL, 
STROBE 

Property A feature of a medical finding Aneurysm size PCDM, 
STROBE 

Research 
Study 

The process of acquiring and analyzing 
data, which yields evidence that sup-
ports or refutes a theory 

A study to examine the factors relat-
ed to aneurysm rupture 

PICO,  

EBM tutorial 

Statistical 
Analysis 

A component of data analytics to as-
sess a hypothesis, including input, 
method, result, and assessment 

 SAMPL 

Study  

Variable 

A feature, either observed or theoreti-
cal, that is examined in a research 
study 

Patient age, aneurysm size, hyper-
tension 

STROBE, 
CONSORT, 
PRISMA 

Source A resource from which evidence is de-
rived 

EHR, literature PCDM 

State A snapshot of findings, observations, 
and properties for a specific time 
point/encounter 

Aneurysm size, shape, and location 
as measured during a single imaging 
study 

PCDM 

Stream Temporal ordering of entities over time A patient’s finding history  PCDM 

Theory A possible explanation of a phenome-
non 

A growing aneurysm that puts pres-
sure on surrounding areas, causing 
a headache 

PCDM 
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In PCDM+, a contextual fragment is defined as being any supporting information that characterizes the 

quality and process by which evidence for a finding is collected. Motivating examples for capturing this 

contextual information include: (1) deciding if the findings yielded by a study (e.g., initial aneurysm size 

has a significant correlation with aneurysm growth) can be applied to a specific patient (i.e., whether the 

patient satisfies the study’s eligibility criteria); (2) appreciating the context related to a risk factor (e.g., 

aneurysm size), such as measurement units (e.g., millimeters), level of certainty (e.g., definite, appears to 

be, less likely, unlikely, does not exist), and data type (e.g., continuous, categorical); (3) clearly delineat-

ing differences in assumptions, interpretation, and measurement error related to how information is ac-

quired (e.g., magnetic resonance imaging versus conventional angiography); and (4) assessing the 

strength of information for a given relation based on sample size, statistical significance level (e.g., α = 

0.01 vs. 0.05) and evaluation metric (e.g., p-value). Collectively, these “fragments” are semantically re-

lated together (e.g., interprets, described by, has observation) in PCDM+, allowing users to retrieve the 

context around a given observation. For instance, given a behavior, PCDM+ may return all relevant prop-

erties and associated study hypotheses.  

 

 

 

Figure 3.1 PCDM+ core entities. For clarity, only the major entity constructs, relationships, and attributes are illustrated. Dashed 

lines indicate is-a class inheritance. 
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Figure 3.2 shows a portion of the PCDM+ that has been instantiated for the ICA domain. Rectangles with 

thickened borders represent entities that have been instantiated with information from a patient case and 

are derived as subclasses of base PCDM+ entities (given in italics). In this illustration, the PCDM+ has 

been instantiated with information about the patient’s smoking status and observed change in aneurysm 

size. The observation captures the individual value of a property from the medical record. For example, a 

property (e.g., aneurysm size) may have an observation (e.g., 6.3 mm AP × 6.6 mm TR × 5.3 mm CC) 

from a patient’s radiology report in the EHR. The probability (e.g., P(aneurysm size < 7 mm) = 75%) 

from the literature based on a reported study of 165 patients is captured in the probability entity. Findings 

reported in literature (e.g., “smoking leads to aneurysm growth”) are evidence that can be utilized for 

clinical decision making, which are encoded in study hypothesis class. Each study hypothesis may have 

multiple statistical analyses reported from different studies, whereby each statistical analysis is subse-

quently linked to the contextual fragments such as input, population, significance assessment, and statis-

tical result.  

 

  

Figure 3.2 A demonstration of PCDM+ in aneurysm domain with a patient case and one paper. Some attributes and entities are 

omitted in order to accentuate the main aspects of the paradigm. 
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3.2 Probabilistic Entity-relationship (PER) Model  

One way to implement PCDM+ is to design it as a probabilistic entity-relationship (PER) model [Heck-

man, 2004]. As mentioned Chapter 2, there are several advantages of PER models relative to entity-

relationship (ER) and probabilistic relational models (PRMs). The PER model structure makes it suitable 

for meeting the expressiveness requirement of PCDM+. There are five class types in a PER model: entity, 

relationship, attribute, arc and local distribution. While the entity, relationship, and attribute classes are 

basic constructs and correspond to those in ER models, the arc class is used to represent the relationship 

between attributes, and the local distribution class serves to capture the distribution of an attribute. The 

details of each class in PCDM+ are described in the following sections. 

3.2.1 Entity, Relationship, and Attribute  

In entity-relationship (ER) models, an entity refers to a concept or an object; a relationship is defined 

among entities; and attributes are properties of entities or relationships. The core entities, relationships, 

attributes, together with the stream concept in PCDM, have been adopted and redefined in PCDM+. 

These classes not only help standardize the representation of key findings; they are also designed to main-

tain the context of the observed phenomenon. 

Core entity classes 

 Source: A person, publication or other record or document that provides information. 

 Phenomenon: A problem of interest under investigation in clinical practice or in clinical research. 

Symptom and Disease, for example, are two subclasses of Phenomenon. Phenomenon is hierarchical, 

(i.e., several lower-level phenomena can be grouped together to form a higher-level phenomenon and 

“part-of” relationship is maintained between entities at different levels). Phenomenon can evolve over 

time as a disease progresses or interventions take effect, e.g., symptoms can evolve into a medical 

problem. This change of phenomenon is captured in a temporal stream.  

 Theory: An explanation of the phenomenon. Hypothesis is a subclass of theory. When new evidence 

is introduced into the model, the belief about each theory will be updated. Thus, the theory entity is 
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also placed into a stream to maintain the dynamic updating of its certainty. 

 Evidence: Scientific experiments or observation data that support a theory. Evidence bridges a data 

source to the theory it supports. 

 Finding: A physical manifestation of a phenomenon at a certain biological level. A Finding is usually 

revealed by exam(s) and its attributes are measured based on results of the exam(s). A Finding is put 

into a “finding history” stream to track the change of its attributes along time.  

 Intervention: Any event having preventive, diagnostic, therapeutic or rehabilitative aims. Exam and 

Treatment are two subclasses of Intervention. For instance, Exam is the superclass for Blood Test, 

Image Scan, Biopsy and other tests. Likewise, Treatment is the superclass for Medication, Radiother-

apy, Surgery, Chemotherapy, and other therapies. An intervention entity is input into a stream to form 

an “intervention history” that has an “exam history” and “a treatment history” as sub-streams.  

 Behavior: Any significant change of a finding that results in a clinical presentation. Aneurysm Rup-

ture and Aneurysm Growth, for example, are subclasses of Behavior. Note that behavior defined in 

PCDM+ is different from a human behavior, such as intervention, and is rather a behavior of a dis-

ease. 

PCDM+ adds new entities to capture population-level evidence from scientific literature:  

 Research Study: The process of acquiring and analyzing patient data. A study reveals evidence to 

update (either supporting or failing to support) a theory. It is linked to source information and is 

mapped to at least one population, from which the study was conducted. Observational Study and Ex-

periment are two subclasses of study. Similar to a phenomenon entity, Study is a hierarchical entity. 

One study can comprise several (smaller) studies, for example, subgroup analysis in a clinical trial.  

 Population: A specific collection of patients under study. Thus, Patient is the only element class in a 

population class. Population is also a hierarchical entity (e.g., the experimental group in a trial is a 

sub-population of the recruited population); a subgroup can be a sub-population of the experimental 
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group. A list of constraints on Patient’s and/or Finding’s attributes serves as inclusion criteria to a 

certain population.  

 Statistical Analysis: A collection of methods used to process large amounts of data in a study. Instanc-

es of Statistical Method are used to make up a Statistical Analysis. 

 

Core relationship classes 

A relationship class in PCDM+ is used to describe the relationship among entities. Such a relationship can 

be a physical, spatial, functional, temporal, or conceptual relation. I emphasize three core relationship 

classes to represent relations among abstract entity classes as they play important roles in the specification 

of graphical models later (e.g., the topology of a belief network). These relations are not innovative but 

are rather adopted from existing descriptive logic: 

 is-a: An inheritance relationship. This relationship exists among a class and its subclasses. If class X 

is a specialization of a generalization class Y, I define X is a subclass of Y, where Y is a super-class 

of X. Examples are “hypothesis is a theory” and “treatment is an intervention.” Within an “X is-a Y” 

relationship, attributes of the superclass Y are inherited by the subclass X. For example, attributes of 

Intervention such as “intervener,” “duration,” “location,” and “device” are inherited by Treatment. 

Similarly, Surgery, as a subclass of Treatment, inherits these attributes and other attributes Treatment 

has. This leads to a hierarchy of superclass/subclass relationships.  

 part-of: An aggregation relationship. The relationship exists when multiple classes are aggregated to 

form a new entity class. Examples are “aneurysm location is part of morphology” and “aneurysm size 

is part of morphology.” A special form of the “part-of” relation occurs when a collection of the same 

entity class generates a new class (e.g., “A patient is part of a population”). This is the case because 

composition is a special form of aggregation. I use the “has-a” relation to represent composition and 

use “part-of” to represent aggregation but not a composition in PCDM+. 
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 has-a: A composition relationship. This relationship exists when a class X comprises class Y (i.e., the 

class Y is the only element of class X). Examples are “population has a patient” and “statistical anal-

ysis has a statistical method.” It is neither a “is-a” relationship nor the inverse of “is-a” (e.g., “popu-

lation has a patient” does not mean “population is a patient” or “patient is a population”). Certain at-

tributes will be transferred from Y to X within a relation “X has a Y,” but the collection X has new 

attributes that its element Y does not have (e.g., Patient does not have the attribute “sample size” of 

Population). Broadly speaking, it can be an inverse of “part-of” relation. However, in PCDM+, while 

one entity class can be in multiple “part-of” relationships (e.g., Morphology), it can be in no more 

than one “has-a” relationship (e.g., Population). 

The abovementioned abstract relationship classes may be placed under different superclasses to indicate 

different relationships (e.g., part-of can be physically-part-of or conceptually-part-of). Additional seman-

tic relationships that are common in the clinical domain among entity classes are also defined. Examples 

are: measure, e.g., “exams measure findings”; support, e.g., “evidence support theory”; analyze, e.g., 

“statistical methods analyze findings”; affect, e.g., “intervention affects finding.” Some of these relations 

may also have subclasses. For example, affect has its subclasses treat, prevent and interact_with; and an-

alyze has its subclass assess.  

Core attribute classes 

While the entity or relationship classes provide containers to hold key findings and their relations, such 

findings and relations are characterized by properties, which are stored in attribute classes. Every entity or 

relationship class has a unique set of attributes. PCDM+ defines attribute classes to not only represent a 

given feature, but also to document the context of the feature measurement. For example, in the statement, 

“this aneurysm measures 3.85 mm CC × 3.53 mm TR in size,” from a patient's medical documents, the 

feature is mapped to the entity instance aneurysm dome size; and its context includes: (1) this is a quanti-

tative measurement; (2) the unit is mm; (3) the precision of the measurement is +/- 0.02; and (4) the diam-

eter in anterior-posterior (AP) dimension is missing, but the transverse (TR) diameter is 3.85, and the 

craniocaudal (CC) diameter is 3.53. If given more context about this statement, we may find the modality 
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used is computed tomography (CT), and the exam is a CT angiogram. All this information is captured in 

PCDM+ for an accurate description of the observation. As another example, from a clinical trial paper, 

the statement, “mean size of the aneurysms was 5.7 mm,” does not convey its complete significance or 

meaning unless we read the entire paper to find which dimension it refers to, what modality was used to 

measure it, and how many patients were included in the study. Thus, to capture complete knowledge of 

intracranial aneurysm morphology, besides the dome size, observational data of aneurysm shape, location, 

neck size, and neck orientation are also needed to instantiate the aneurysm morphology entity. PCDM+ 

defines these entities, a “part-of” relation among these entities and morphology, along with the corre-

sponding attributes.  

In summary, the core entity, relationship, and attribute classes in PCDM+ serve as standardized contain-

ers for findings and observations in order to maintain precise and comprehensive knowledge. When new 

knowledge becomes available (e.g., a new source/population/patient/finding), PCDM+ instantiates these 

classes and updates the theories that help to explain the phenomenon.  

3.2.2 Arc and Local Distribution  

While entity, relationship and attribute classes may be sufficient to represent individual-level observations, 

arc and local distribution classes in PCDM+ are used to maintain population-level evidence and the asso-

ciated context that is frequently reported in scientific literature. An arc records a relation between attrib-

utes, and a local distribution quantifies an attribute’s distribution. I extended the local distribution to also 

quantify an arc regarding its statistics.  

Arc. Two subtypes of arc exist in PCDM+ to capture population-level observations and evidence, respec-

tively:  

 Observational arc: An observational arc AB in PCDM+ indicates conditional probabilities among 

attributes A and B have been calculated/obtained from some observational data, but no analysis is 

conducted using this data. For instance, in the UCLA aneurysm research database, it can be estab-

lished that the conditional probability of (rupture=yes|age<50) for a sample of 1,000 patients is 0.12. 
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Thus, an observational arc does not provide direct evidence of a relation, but rather captures the par-

tial statistics that can be reused for parameter estimation in a probabilistic or statistical model.  

 Experimental arc: An experimental arc AB indicates that a relation between A and B has been dis-

covered in one or multiple studies. For example, in concluding the paper, Juvela [2000] stated, “active 

smoking status at the time of diagnosis was a significant risk factor for aneurysm rupture.” This as-

sertion can be mapped to PCDM+ as an arc between “smoking status” and “aneurysm rupture.” The 

relation type can be associated, dependent, or causal; and can also be negative (e.g., “the study shows 

that aneurysm size is not an independent indicator of rupture”). 

When an arc is instantiated by a study, it is also related to a “context slot” that stores the conditions from 

which the arc was derived (e.g., the study purpose, the study time and location, and the studied sample 

size). A context slot is an instantiation of a subset of entity-relation-attributes in PCDM+. For example, a 

context slot can be instantiated with information retrieved from statistical analysis, observation, popula-

tion and source entities. 

Local distribution. In PCDM+, a local distribution class is augmented to capture the partial statistics 

from different data sources, including attribute distributions, conditional probabilities among attributes, 

and statistics of a discovered relation. It quantifies an attribute or an arc with descriptive or inferential 

statistics. Correspondingly, two subtypes of local distribution class exist in PCDM+: 

1. Local attribute distribution (LtD): A LtD class is used to capture the descriptive statistics of an attrib-

ute or an entity (e.g., age, gender, aneurysm location, aneurysm size) from observational data and 

available literature. The aim of capturing these partial statistics is to estimate the distribution parame-

ters and reuse the data for integration. The most frequently reported descriptive statistics include 

range/minimum/maximum values and percentages of each state in the sampled population. These de-

scriptors can be typically found in the textual body of published articles (e.g., “Of the 6,697 aneu-

rysms studied, 91% were discovered incidentally. Most aneurysms were in the middle cerebral arter-

ies [36%]”), as well as the tables of patient characteristics (Table 3.4). With a large number of patient 
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data (e.g., from the electronic health record), it is also possible to summarize and calculate descriptive 

statistics and include them into LtD classes.  

Table 3.4 Example of statistics reported in clinical trial literature [Juvela et al., 2000]. 

Characteristic Ruptured Aneurysm Unruptured Aneurysm All Patients 

no. of patients 33(23%) 109(77%) 142 

woman 22(29%) 54(71%) 76(54%) 

age (yrs)    

        median 36.8 43.6 41.9 

        range 22.6-57.6 14.6-60.7 14.6-60.7 

aneurysmdiameter (mm)    

        mean(SD) 5.6(4.9) 4.9(3.2) 5.1(3.7) 

        median(range) 4(2-25) 4(2-26) 4(2-26) 

        2-6 23(20%) 93(80%) 116(82%) 

        7-9 6(37%) 10(63%) 16(11%) 

        10-15 2(33%) 4(67%) 6(4%) 

        16-20 1(50%) 1(50%) 2(1%) 

        21-26 1(50%) 1(50%) 2(1%) 

 

2. Local arc distribution (LrD): A LrD class stores inferential statistics that quantify the certainty of a 

relation. For instance, Juvela et al. [2000] reported, “RR = 1.46, 95% CI = 1.04-2.06, p = 0.033,” to 

quantify the relation stated in, “active smoking status at the time of diagnosis was a significant risk 

factor for aneurysm rupture.” These statistics can be stored in an LrD associated with the arc smoking 

status  aneurysm rupture. The context of these statistics—such as the statistical method (e.g., log-

rank test), significance level (5%), and reported way for determining a p-value (e.g., two-tailed 

test)—is important in interpreting the statistics. This methodological information is also associated 

with the statistics in LrD classes. While most of the clinical trial literature reports on frequentist sta-

tistics such as a p-value, a few researchers employ Bayesian statistics (e.g., Bayesian factors) to report 

a relation. Therefore, LrD is designed in a way to capture probabilities from both perspectives.  
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In summary, arc and local distribution classes capture population-level evidence qualitatively and quanti-

tatively and enable PCDM+ to integrate knowledge from scientific literature to update the theories and 

evidence. 

Example 3.1 Mapping from data to PCDM+. Key findings and their context derived from clinical doc-

uments for aneurysm patients are mapped into PCDM+ to instantiate the attribute and local distribution 

classes, while the evidence and the associated context obtained from selected published literature on an-

eurysm rupture are used to instantiate the arc and local distribution classes. Below is an example of data 

from multiple clinical documents, including physician notes and radiology reports, which record the 

treatment course of a patient with an unruptured aneurysm: 

“This patient is a 45-year-old man with an incidentally detected wide-necked 7 mm anterior 

communicating artery aneurysm based on the anatomy appreciated from the CTA. Social Histo-

ry…He has been smoking one-half packs per day since his teenage years. He does not drink alco-

hol. Family History: no family history of intracranial aneurysms or subarachnoid hemor-

rhage…We performed stent-assisted coil-embolization on November 6, 2011. The coil-

embolization is successful. A small amount of residual aneurysm opacification remains at the 

right base of the aneurysm. The patient will return for a followup MRI and contrast enhanced 

MRA in 3 months, and a catheter angiogram in 6 months. “ 

Through a PubMed search of “aneurysm rupture risk factors,” a list of journal articles was acquired, with 

two supplying the following evidence: 

1. “Cigarette smoking, size of the unruptured intracranial aneurysm, and age, inversely, are important 

factors determining risk for subsequent aneurysm rupture. Active smoking status as a time-dependent co-

variate was an even more significant risk factor for aneurysm rupture (adjusted RR 3.04, 95% CI 1.21–

7.66, p = 0.02)” [Juvela et al., 2000]. 
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2. “The risk of rupture increased with increasing size of the aneurysm. As compared with aneurysms in the 

middle cerebral arteries, those in the posterior and anterior communicating arteries were more likely to 

rupture” [Morita et al., 2012]  

 

 

Figure 3.3 A demonstration of PCDM+ [some attributes are eliminated] 

As shown in Figure 3.3, key concepts from these clinical documents can be captured in PCDM+ entities 

and attributes; the discovered relations among smoking, age, aneurysm size, aneurysm location and rup-

ture from literature are recorded in PCDM+ arcs. 

3.2.3 Limitations of a PER Model and an Alternative Solution 

While a PER model satisfies most of the requirements of PCDM+ design, it has its limitations. First, in a 

PER model, an arc only defines a relation between two attributes. But in PCDM+, where the aim is to 
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capture any relation reported in a published paper, it is also necessary to express such a relation between 

two entities, or between an attribute and an entity. Moreover, arcs in the PER model fail to capture multi-

variate analyses, involving relations among multiple variables. Second, though the local distribution class, 

a PER model is also able to capture the distribution of an attribute, whereas PCDM+ aims to capture the 

statistics associated with a reported relation as well. The standard PER model does not allow a local dis-

tribution to be associated with an arc. Third, there are no existing tools to practically implement a PER 

model.  

To mitigate these limitations and implement PCDM+ with existing tools, the current version of PCDM+ 

uses an extended ER model with entities and attributes that fulfill the functions of the arc and local distri-

bution classes in a PER model: the arc class was replaced by the hypothesis class, which is able to repre-

sent relations among entities, between an entity and attribute or among attributes; and multivariate anal-

yses are fully captured. The local attribute distribution (LtD) class is replaced by probability and distribu-

tion classes in PCDM+; the local arc distribution (LrD) class is replaced by the attribute “statistical result” 

of the statistical analysis entity. 

3.3 Clinical Scenarios in Intracranial Aneurysm (ICA) 

PCDM+ provides a generalizable framework for any disease. In this dissertation, intracranial aneurysm 

was selected as the disease domain to demonstrate the applications of PCDM+. In the following sections, 

I describe the formulation of PCDM+ based on the results yielded by a requirements analysis and de-

scribe four core entities (Population, Study, Probability, and Statistical Analysis) that are introduced in 

PCDM+ to capture population-level evidence sourced from literature. Clinical scenarios drawn from the 

domain of ICAs are presented as driving examples, based on which use cases and applications are de-

scribed, demonstrating different aspects of PCDM+ use in answering pertinent clinical questions.  

Approximately 3.2% of the population has an unruptured brain aneurysm [Juvela, 2011]. Most individu-

als with a brain aneurysm may never notice its presence, but if an aneurysm ruptures, subarachnoid hem-

orrhaging may result with an associated mortality rate of up to 50% [Suarez et al., 2006]. Unruptured an-
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eurysms are detected incidentally when the patient undergoes an imaging study of the brain, typically for 

other clinical indications. Identification of risk factors for rupture is critical in managing such patients, as 

it remains unclear whether intervention is required (i.e., in many cases, the aneurysm may neither grow 

nor rupture). Patients with unruptured aneurysms typically have three treatment options: (1) observation, 

which consists of routine follow-ups to assess whether the aneurysm grows; (2) surgical clipping, which 

is an invasive procedure that involves performing a craniotomy and affixing a clip around the aneurysm 

neck; or (3) endovascular coiling, which is a minimally invasive procedure in which detachable coils are 

inserted into the aneurysm using a micro-catheter. In deciding on the appropriate treatment, a clinician is 

tasked with understanding the patient’s medical history, along with weighing the risks and benefits asso-

ciated with each treatment option.  

3.3.1 Patient Cases  

I selected two patient cases to demonstrate the design and application of PCDM+ to link evidence ob-

tained from published literature in order to facilitate answering clinical decision-making questions. These 

are real patient cases from UCLA Medical Center and their records shown here were documented in an 

interventional neuroradiology consultation notes. 

Patient Case 1: “A 70-year-old white woman with incidental finding of right posterior communicating 

artery aneurysm came to our institution for consultation. She has a medical history of head and neck can-

cer. She was a smoker from age 20 to 25. She denies any alcohol consumption or recreational drug use. 

Her blood pressure is 106/65. She has a family history of stroke and hypertension. The aneurysm parame-

ters are 6.3 mm AP × 6.6 mm TR × 5.3 mm CC according to the CT angiogram.” 

Patient Case 2: “This is a 52 y.o. male who was referred for evaluation of a cerebral aneurysm . . . . A 

CTA of his brain demonstrated a 3×6 mm aneurysm of the A1 segment of the right anterior communi-

cating artery. He has a strong family history of aneurysm and SAH. His father and brother have been di-

agnosed with cerebral aneurysms. He is a nonsmoker and denies alcohol use.” 
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Treatment suggestions by the interventional neuroradiologist for each case are also recorded: “I have dis-

cussed these findings with the patient and recommended a diagnostic cerebral angiogram and treatment 

with coil embolization. As there may be a wide neck, we will pretreat with ASA and Plavix.” 

3.3.2 Clinical Decision Making 

According to the clinical narrative, variables such as history of cancer, smoker status, family history, and 

aneurysm characteristics have relevance in calculating a patient’s risk of rupture. While many of these 

variables have been widely documented in extant research studies, clinicians lack tools to easily incorpo-

rate this information into rupture risk assessment. While risk calculators have been published [Killeen and 

Kockro, 2013] risk is modeled using data from specific trials and patient populations, which result in a 

risk calculation that may not be accurate, or even applicable to an individual. A more objective approach 

towards risk assessment is to tailor the retrieval of scientific evidence to answer the following questions 

based on the unique characteristics of an individual: 

 Which studies are relevant to the patient so that evidence from those studies can be applied to the pa-

tient?  

 What evidence is available to explain the etiology of the aneurysm?  

 What are the reported risk factors that are prognostic for aneurysm growth and rupture?  

 Which risk factors are important to make predictions on aneurysm growth and rupture for this particu-

lar patient?  

 Which is a better treatment for this patient, surgical clipping or endovascular coiling, based on the 

supporting evidence? 

Hence, the goal of PCDM+ is to encode and match findings reported in relevant literature to a patient’s 

medical record, thereby assisting physicians in answering these questions. 

3.4 PCDM+ Instantiation  

The following sections describe how the PCDM+ model is instantiated with data from the EHR and pub-

lished literature. Generally, the process involves the following steps: (1) selecting papers related to brain 
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aneurysms from PubMed; (2) adding results and associated context from each paper; and (3) incorporat-

ing details about a patient that are drawn from his/her medical record. Each step is described in detail be-

low.  

3.4.1 Paper Selection  

Patient Case 1. A PubMed search was conducted in April 2014, returning over 20,000 papers on intra-

cranial aneurysms. The initial search results were further filtered based on the availability of full-text con-

tent, whether the study was performed on humans, and the presence of the search terms “unruptured” and 

“growth,” resulting in 71 papers. All 71 papers were manually reviewed to obtain a broad understanding 

of potential properties, behaviors, relations, and observations that are relevant to aneurysm growth and 

rupture. This resulted in a subset of 22 papers selected as representative studies that would be used to in-

stantiate the PCDM+. For each selected paper, an annotator worked to create instances of appropriate core 

entities, encoding information from the paper in the model. This information was then used to answer the 

clinical questions listed in Section 3.1 as a part of the evaluation. 

Patient Case 2. For Patient Case 2, I used another set of 20 papers. The reason for selecting a set of pa-

pers that are different from those for Patient Case 1 is that the patient characteristics of these two patients 

are different. These papers were carefully pre-selected by using the following criteria: (1) seminal papers 

on natural history and treatment risk assessment were selected and the significance of 12 papers was ap-

proved by a physician at UCLA Interventional Radiology; and (2) PubMed search conducted in January 

2015, with keywords “brain aneurysm, wide neck, coiling” with filters “free full text,” “published in re-

cent 5 years” and “human” yielded 31 papers. To obtain evidence of strong relevance, only 8 out of these 

31 papers were selected according to the sample size (>100). Finally, 20 papers were selected, 12 of 

which are seminal papers with approval from a domain expert, and the remaining 8 are recent papers pub-

lished in PubMed. 
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3.4.2 Paper Mapping  

The mapping of a paper’s contents aims to identify all contextual fragments in terms of PCDM+ entities 

(e.g., Population, Study) and relations. The process of manually annotating each paper and mapping this 

information to PCDM+ is summarized in the following five steps (Figure 3.4).  

The paper used in this example is titled “Natural history of asymptomatic unruptured cerebral aneurysms 

evaluated at CT angiography: Growth and rupture incidence and correlation with epidemiologic risk fac-

tors” [Villablanca et al., 2013]. 

 For a given study, annotate the paper and identify the hypothesis, population, variables, and the main 

results.  

 Create a Source instance and add the context including paper metadata, study design, eligibility crite-

ria, sample size, and other context.  

 Find the conclusion of the study and map any relation statement to a PCDM+ Hypothesis instance 

(e.g., the hypothesized statement “smoking is associated with growth” is represented as “smoking-

Figure 3.4 Mapping a paper into PCDM+ to identify all contextual fragments. The paper used in this example is “Natural history of 

asymptomatic unruptured cerebral aneurysms evaluated at CT angiography: Growth and rupture incidence and correlation with epide-

miologic risk factors” [Villablanca et al., 2013]. 
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growth”); and map the variables to PCDM+ entity instances (e.g., “aneurysm size” as a Property in-

stance and “growth” as a Behavior instance).  

 For each entity instance (e.g., “aneurysm size”, “growth”), add an Observation instance to maintain 

context such as definition, unit, data type, discretized states, technique/modality, and descriptive sta-

tistics; and add a Probability instance to capture the marginal probabilities.  

 For each Hypothesis instance, add a Statistical Analysis instance to capture context fragments includ-

ing statistical method, p-value, assessment, and significance level; link to the corresponding Probabil-

ity instance that records associated conditional probabilities or related measures as the input of statis-

tical analysis.   

3.4.3 Patient Case Mapping 

Incorporating information from the patient record involves mapping patient demographics, vital signs, 

and encounter information to the PCDM+ and extracting structured information (e.g., location, shape, 

measurements) from clinical narratives. The Division of Interventional Neurosurgery within the Depart-

ment of Radiological Sciences completes a case report form (CRF) to collect structured information on 

each individual seen at our academic medical center. This form provides a list of data elements that are 

considered important information in the management of aneurysm patients, including demographics, 

medical history, social history, clinical presentation, imagining follow-up, hemodynamics, treatment, and 

outcome (see Table 3.5). At institutions that do not utilize CRFs as part of their workflow, information 

will need to be extracted from clinical documents, a longstanding challenge [Cambria and White, 2014] 

that is beyond the scope of this work; results of an automated pipeline were previously reported for aneu-

rysm-related information [Wu et al., 2012].  

Table 3.5 Aneurysm Case Report Form data element (the categorical states for each data element and more details about hospital 

course are omitted for space limitation). 

Section Data Element 

Demographics Medical record number, date of birth, gender, ethnicity, country of birth, weight, height, blood 
pressure 

Medical history Hypertension, aneurysm, arteriovenous malformation, diabetes, heart disease, head injury, 
inherited disease, current medications 

Family history Hypertension, aneurysm, arteriovenous malformation, diabetes, heart , disease, head injury, 
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inherited disease 

Social history Smoking history, alcohol use, recreational drug use 

Clinical presenta-
tion 

Present illnesses, Fisher CT score, Glasgow coma score, rupture status, date collected 

Treatment Date of treatment, anatomic result, immediate clinical outcome, complications, assistance, 
treatment type 

Hospital Course Date admitted, date discharged, days in ICU, days in hospital, vasospasm, seizure, shunt 

Image analysis Modality, date of scan, number of aneurysms, side, aneurysm shape, aneurysm location, 
sac_AP, sac_TR, sac_CC, neck_AP, neck_TR, neck_CC, dome/neck ratio, vessel angle, 
inclination angle 

Clinical  

follow-up 

Date of follow-up, Glasgow coma score, modified Rankin score, Karnofsky performance score 
(KPS), clinical outcome 

Hemodynamics Flow pattern, flow stability, flow division, flow impact, flow impingement, flow jet concentra-
tion, flow jet section 

 

 

Figure 3.5 Mapping a patient case into PCDM+. The Patient Case 1 described in Section 3.1 is illustrated. 

The following steps were used to map the patient case into PCDM+ and are also depicted in Figure 3.5: 

 Map the patient’s documents to the CRF. 

 Instantiate a Patient entity by adding attributes such as ID, gender, name, birth date, and ethnicity. 

 Create instances in PCDM+ corresponding to the data elements in the CRF, e.g., “intracranial 

aneurysm” as a Finding instance and “aneurysm size” as a Property instance. 

 For each entity instance (e.g., aneurysm size), create an Observation instance to capture its observed 

value and the context, including definition, data type, unit, and modality/technique. 

3.5 PCDM+ Implementation 

This section describes the tools and programming languages used to implement the PCDM+. A descrip-

tion of the types of clinical queries that can be answered using PCDM+ is also given. 
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3.5.1 PCDM+ in OWL Format 

PCDM+ was initially implemented using Protégé 4.3 [Del Fiol et al., 2012]. Currently, the model con-

tains 7,289 axioms; 5,989 logical axioms; 76 entities; 32 relationships; and 59 attributes with the 22 pa-

pers selected to perform evidence-based medicine on Patient Case 1. The experiments and evaluations 

conducted on Patient Case 1 were based on the Protégé version of PCDM+.  

Figure 3.6 is a graphical depiction of the PCDM+ instantiated with information from Patient Case 1 and a 

paper on the relationship of “initial aneurysm size is a risk factor for aneurysm growth,” as described in 

previous sections. According to the medical record, the patient had an aneurysm that measured 6.3 AP × 

6.6 TR × 5.3 CC mm. The authors reported that 75% of unruptured aneurysms were less than 7 mm, and 

there is a 14% chance that the aneurysm will grow.  

 

Figure 3.6 Integrate the patient case and a paper in PCDM+. The link between hypothesis “size-growth” and “Aneurysm size (as 

a Study variable)” is omitted. Some other instances are omitted as well due to the space limitation. 

As shown in Figure 3.6, the aneurysm measurements are captured as a property called Observed Value 

related to an Observation, while the chance of aneurysm growth (i.e., 14%) is represented as a conditional 

probability statement P(grow = yes | size < 7 mm) as an instance of a Probability. As evidence from mul-

tiple papers and patient records is added to the PCDM+, information from each data source is maintained 

as an independent instance. As a result, PCDM+ is capable of returning all evidence related to a given 

entity. Figure 3.7 provides a portion of this encoding.  
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Figure 3.7 PCDM+ in RDF/OWL format. (A) definition of abbreviations in the entity namespace (e.g., “model” is short for 

the URI of PCDM+); (B) definition of entities (e.g., Behavior is defined as a subclass of Evidence); (C) definition of relation-

ships among entities (e.g., hasObservation is defined as a relationship between Behavior or Property and Observation); (D) 

instantiation of entities, linked with hypotheses (e.g., Aneurysm Growth is added as an instance of Behavior, with relations to 

Smoking, Aneurysm Size, Rupture, Aneurysm Location, Aneurysm Number, and History of Stroke); and (E) instantiation of 

hypothesis with statistical analysis conducted (e.g., Smoking_AneurysmGrowth is an instance of Hypothesis with an statistical 

analysis from Study 018). 
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3.5.2 PCDM+ in XML Format  

During the first experiment with Patient Case 1, I experienced issues when using the Protégé user inter-

face to define probabilities. Therefore, an XML format of PCDM+ was generated. MySQL workbench 

(version 6.3) (Oracle Corporation, 2016) was used to create a database with 10 tables to store different 

fragmented evidence. The experiments conducted on Patient Case 2 were based on the XML version of 

PCDM+. After mapping 20 papers into XML format, 60 unique study variables, 78 unique hypotheses, 

182 statistical analyses, and over 1,000 probabilities were recorded.  

3.6     PCDM+ Evaluation 

This section describes the tasks and the results of PCDM+ evaluation. Two experiments were performed 

to assess: (1) the utility of PCDM+ in selecting papers of interest; (2) the completeness and correctness of 

the PCDM+ design. The performance among annotators was also compared when they manually extract-

ed relations and concepts from papers. The experiments were conducted using Patient Case 1 described in 

Sections 3.3.1 and the 22 papers (the paper selection process was described in Section 3.4.1).  

3.6.1 Experiment Design 

 Experiment 1. In Experiment 1, an expert with domain knowledge of ICAs was asked to review 22 

papers, design a set of specific questions (Table 3.6), and identify papers that can provide answers to 

these questions. PCDM+ was then queried to assess its ability to identify the relevant studies, with 

precision/recall metrics computed accordingly. The objective was to retrieve papers that can help the 

physician gain more information to assist in EBM for a specified patient. The criteria used to filter 

papers in this experiment include: (1) selecting papers pertaining to studies that examined relation-

ships among certain variables (e.g., Questions 2 & 3) and further to select those in which authors re-

port significant relationships only (e.g., Question 1); (2) to select papers reporting on studies that had 

a sample population to which the patient is similar (e.g., Question 4); and (3) to select papers that re-

ported outcome analysis for certain treatment (e.g., Question 5).  

 Experiment 2. In Experiment 2, eight biomedical informatics students were recruited to annotate 11 
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papers retrieved from PCDM+ in Section 4.3.1 (Table 4.7). These annotators were given a tutorial on 

intracranial aneurysms; therefore, they had a basic understanding of this disease domain. Each paper 

was randomly assigned to three different annotators to independently generate a complete list of the 

relations, concepts and observations; as such, each annotator reviewed four full-text papers (one was 

given five papers). The annotators were asked to complete a table capturing: relation statements re-

ported in the papers (including those with and without statistical tests); the concepts involved in each 

relation; and the statistical significance (yes/no/NA) of each relation. I subsequently analyzed the an-

swers provided by all the annotators to generate a full list of concepts, relations, and observations for 

each concept and relation. This list was then compared against the information captured in the 

PCDM+ instantiation of the papers.  

3.6.2 Evaluation Results  

Table 3.6 shows the questions related to Experiment 1. In the assessment task, for the first criterion (i.e., 

Questions 1-3), precision and recall were 73.7% (14/19）and 93.3% (14/15), respectively. For the sec-

ond criterion (Question 4), precision was 83.3% (10/12) and recall was 100% (12/12). Finally, for the 

third criterion of Experiment 1 (Question 5), both the precision and recall were 100%. Overall, PCDM+ 

achieved a precision of 96.8% (30/31) and a recall of 81.1% (30/37), respectively, in Experiment 1. This 

suggests that physicians can query PCDM+ to select papers that satisfy their criteria.   

Notably, there was one false positive and seven false negatives in the results. Error analysis was conduct-

ed to elucidate the reasons for these false results, as noted below: 

 False positives. One false positive was returned, involving a paper that evaluates the impact of hyper-

tension and nicotine on the size of ruptured intracranial aneurysms. This paper (Paper ID: 020) re-

veals that aneurysm size is a dependent parameter on hypertension and cigarette smoking in ruptured 

aneurysms. The encoded relation in PCDM+ is Hypertension_Smoking_Aneurysm-Size_Rupture. 

While this paper was returned by the model to answer Question 3, the expert did not consider that the 

aim of this study was evaluating initial aneurysm size as a risk for rupture. Its authors did not solely 
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examine whether initial aneurysm size is predictive of rupture, but rather compared the size of rup-

tured aneurysms from patients with and without hypertension and a history of smoking. In hindsight, 

the relation encoded in the model should instead be Hypertension_Smoking_Aneurysm-Size with 

ruptured aneurysms as context.  

 False negatives. There were seven false negatives that PCDM+ failed to retrieve. For Question 1, two 

papers were not retrieved by PCDM+, as it recorded “low wall shear stress” as a property different 

from “wall shear stress.” For Question 3, three relevant papers assessing the influence of initial aneu-

rysm size on rupture were not identified as their authors did not report results in the result or discus-

sion/conclusion section of the paper (hence, PCDM+ did not capture these relations in the mapping 

process). Lastly, two relevant studies were not retrieved in answering Question 4, as the authors did 

not directly report the mean age of the studied population; instead, they reported the mean age of sub-

groups. PCDM+ captured the subgroup information, but did not combine those subgroups to form in-

formation pertaining to the entire studied population. 

Table 3.6 Evaluation Task 1 questions. 

1. Which studies report significant relationships between wall shear stress and aneurysm rupture? 

2. Which studies evaluate the relationship between aneurysm growth and rupture? 

3. Which studies assess if initial aneurysm size is a risk factor for aneurysm growth or rupture? 

4. Which studies involve population with average age >50? 

5. Which papers report the outcome of endovascular coiling?  

 

Based on this analysis, PCDM+ is capable of retrieving the majority of papers that satisfy a query. Exper-

iment 1 also supports the premise that the contextual information in PCDM+ is useful for filtering papers. 

In Experiment 2, the completeness and correctness of the PCDM+ design was evaluated. A list of con-

cepts, relations, and their observations were generated by summarizing the answers provided by the eight 

annotators. In the 11 papers, 72 unique relations were found, with 216 observations. Among all relation 

observations, 85 were reported to be statistically significant, 114 were found not to be statistically signifi-
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cant, and 18 were not supported by statistical tests. In addition, 66 unique concepts were used in these 

relation statements, with 118 observations. 

Analysis conducted as a part of Experiment 2 revealed that all annotators and PCDM+ were able to cap-

ture the majority of the relations reported in the papers. PCDM+ captured 61 relations (84.7%) and 197 

observations of these relations (91.2%) (Table 3.8). The relations that PCDM+ failed to capture can be 

found in Table 3.7. Markedly, differences among annotators were due to two reasons: (1) in some cases, 

relation statements were mentioned in a paper (e.g., in its discussion section) but were not directly con-

cluded by the authors (e.g., references to a secondary study), and thus it was not clear if such relations 

should be captured (or not); and (2) the representation of relations differed between annotators (e.g., in 

one study, a multivariate analysis was performed to evaluate the influence of six morphological factors on 

aneurysm rupture—some annotators captured this as six different relations, while others reported it as a 

single relation).  

Table 3.7 Relations and the number of observations retrieved by annotators versus PCDM+ from 11 eligible papers (in the 

PCDM+ column, when PCDM+ captured all the observations, the cell is empty; when PCDM+ captured some observations, the 

cell is filled with the number of observations captured by PCDM+; when PCDM+ missed the entire relation, the cell is filled with 

a “NO”)  

Unique Relation number of observations PCDM+ 

Age_Growth 1  

Age_Rupture 10 8 

Age_SmokingHistory 1 NO 

Age_SurgicalOutcome 1  

AlcoholUse_AneurysmFormation 2  

AlcoholUse_Growth 1  

AneurysmalSymptoms_SurgicalOutcome 1 NO 

AneurysmClinicalPresentation_Rupture 1 NO 

AneurysmLocation_EndovascularOutcome 1  

AneurysmLocation_Growth 4  

AneurysmLocation_Rupture 7  

AneurysmLocation_SurgicalOutcome 1  

AneurysmMultiplicity_Growth 2  

AneurysmMultiplicity_Rupture 3  

AneurysmShape_Growth 1 NO 

AneurysmSize_Age 2  

AneurysmSize_EndovascularOutcome 1  
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Unique Relation number of observations PCDM+ 

AneurysmSize_Growth 3  

AneurysmSize_Rupture 28 25 

AneurysmSize_SurgicalOutcome 1  

ArtrialFibrillation_AneurysmFormation 2  

AspectRatio_Rupture 9  

BloodPressure_Rupture 3  

BodyMassIndex_AneurysmFormation 2  

CoronaryArteryDisease_Growth 2  

Diabetes_AneurysmFormation 2  

Diabetes_Growth 2  

EllipticityIndex_Rupture 3  

EnergyLoss_Rupture 1  

FamilyHisotryOfAneurysm_Growth 3  

FamilyHistoryOfMyocardialInfarction_AneurysmFormation 2  

FamilyHistoryOfSAH_Rupture 1  

FamilyHistoryOfStroke_AneurysmFormation 2  

FlowSpeed_Rupture 1 NO 

Gender_Growth 3  

Gender_Rupture 1  

Growth_Rupture 6  

HeartDisease_AneurysmFormation 2  

HeightWidthRatio_Rupture 5  

HistoryOfSAH_Rupture 2  

HistoryofIschaemicCerebrovascularDisease 1  

HistoryOfSAH_Growth 3  

HistoryOfStroke_Growth 2  

HistoryOfTIA_Growth 2  

Hypercholesterolemia_AneurysmFormation 2  

Hypertension_AneurysmFormation 2  

Hypertension_Growth 3  

Hypertension_Rupture 2  

Hypertension_SmokingHistory_AneurysmFormation 1  

InflowAngle_FlowPenetration 2 NO 

InflowAngle_FlowSpeed 2 NO 

InflowAngle_Rupture 5  

InflowAngle_WSS 2  

Migraine_AneurysmFormation 2  

MuralCalcification_Growth 1 NO 

NonsphericityIndex_Rupture 8  

NumberOfAneurysm_Growth 2  
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Unique Relation number of observations PCDM+ 

NumberOfVortices_Rupture 3  

OSI_Rupture 3  

PhysicalExercise_AneurysmFormation 2  

ResidentTime_Rupture 2 NO 

SizeRatio_Rupture  8  

SmokingHistory_AlcoholUse 1  

SmokingHistory_AneurysmFormation 2  

SmokingHistory_Growth 4  

SmokingHistory_Rupture 3  

SystolicBP_Rupture 1  

Thrombus_Growth 1 NO 

Treatment_AneurysmalSymptoms 1 NO 

Treatment_SAH 1  

UndulationIndex_Rupture 2  

WSS_Rupture 13  

 

Table 3.8 Relations and their observations retrieved from 11 eligible papers (only statistical significance, definition or state as a 

context, and paper ID are presented due to space limitation). 

Relations Significance Definition/ state used in the 
relation 

Paper 
ID 

Age_Growth N  11 

Age_Rupture N age at the time of diagnosis 12 

Age_Rupture N  14 

Age_Rupture N age = (31-40 yrs) vs. (<30 yrs) 22 

Age_Rupture N age = (41-50 yrs) vs. (<30 yrs) 22 

Age_Rupture N age (>51) vs. (<30 yrs) 22 

Age_Rupture Y age as a continuous variable 22 

Age_Rupture N age = (31-40 yrs) vs. (<30 yrs) 22 

Age_Rupture Y age = (41-50 yrs) vs. (<30 yrs) 22 

Age_Rupture N age (>51) vs. (<30 yrs) 22 

Age_Rupture Y age as a continuous variable 22 

Age_SmokingHistory Y  22 

Age_SurgicalOutcome Y age>=50 vs. <50 yrs, outcome 
= poor vs. good 

14 

AlcoholUse_AneurysmFormation N alcohol >=18 U/week 16 

AlcoholUse_AneurysmFormation N alcohol >=18 U/week 16 

AlcoholUse_Growth Y  11 

AneurysmalSymptoms_SurgicalOutcome Y aneurysmal symptoms other 
than rupture 

14 

AneurysmClinicalPresentation_Rupture N rupture = SAH, aneurysm clini-
cal presentation: symptomatic 

22 
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Relations Significance Definition/ state used in the 
relation 

Paper 
ID 

aneurysm, incidental aneu-
rysm, and prior SAH  

AneurysmLocation_ 

EndovascularOutcome 

Y location = posterior circulation 
vs. anterior circulation 

14 

AneurysmLocation_Growth N  10 

AneurysmLocation_Growth Y posterior circulation vs. non-
posterior circulation 

10 

AneurysmLocation_Growth N  11 

AneurysmLocation_Growth N  18 

AneurysmLocation_Rupture N location= ICA vs. =ACA 13 

AneurysmLocation_Rupture N location= ICA vs. =MCA 13 

AneurysmLocation_Rupture N location= ICA vs. =VABA 13 

AneurysmLocation_Rupture Y location=anterior circulation vs. 
=posterior circulation 

13 

AneurysmLocation_Rupture Y location = tips of basilar artery 
vs. internal carotid ar-
tery,rupture = haemorrhage 

14 

AneurysmLocation_Rupture Y location = cavernous artery vs. 
internal carotid artery,rupture = 
haemorrhage 

14 

AneurysmLocation_Rupture Y location = posterior communi-
cating artery vs. internal carotid 
artery,rupture = haemorrhage 

14 

AneurysmLocation_SurgicalOutcome Y location = posterior circulation 
vs. anterior circulation 

14 

AneurysmMultiplicity_Growth N alpha = 0.05 10 

AneurysmMultiplicity_Growth N  18 

AneurysmMultiplicity_Rupture NA  12 

AneurysmMultiplicity_Rupture N  13 

AneurysmMultiplicity_Rupture N rupture = SAH 22 

AneurysmShape_Growth Y  18 

AneurysmSize_Age Y  22 

AneurysmSize_Age N  22 

AneurysmSize_EndovascularOutcome Y diameter >12 mm 14 

AneurysmSize_Growth N size>10 mm vs. size<=10 mm 11 

AneurysmSize_Growth N average initial size 12 

AneurysmSize_Growth Y initial size 18 

AneurysmSize_Rupture N  4 

AneurysmSize_Rupture N  4 

AneurysmSize_Rupture N  4 

AneurysmSize_Rupture Y average of maximum diameter 5 

AneurysmSize_Rupture Y height 5 

AneurysmSize_Rupture N average of maximum diameter 5 
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Relations Significance Definition/ state used in the 
relation 

Paper 
ID 

AneurysmSize_Rupture N height 5 

AneurysmSize_Rupture Y average of maximum diameter 5 

AneurysmSize_Rupture Y height 5 

AneurysmSize_Rupture N average of maximum diameter 5 

AneurysmSize_Rupture N height 5 

AneurysmSize_Rupture N average of maximum diameter 5 

AneurysmSize_Rupture N height 5 

AneurysmSize_Rupture Y size at the end of follow-up 12 

AneurysmSize_Rupture N size=(5-9.9 mm) vs. (<5 mm) 13 

AneurysmSize_Rupture Y size=(10-24.9 mm) vs. (<5 mm) 13 

AneurysmSize_Rupture Y size=(>25 mm) vs. (<5 mm) 13 

AneurysmSize_Rupture NA  14 

AneurysmSize_Rupture NA  14 

AneurysmSize_Rupture Y maximum diameter = 7-12 mm, 
rupture = hemorrhage 

14 

AneurysmSize_Rupture Y maximum diameter >12 mm, 
rupture = hemorrhage 

14 

AneurysmSize_Rupture N size = (7-9 mm) vs. = (2-6 mm) 22 

AneurysmSize_Rupture N size = (10-26 mm) vs. = (2-6 
mm) 

22 

AneurysmSize_Rupture Y size as a continuous variable 22 

AneurysmSize_Rupture N size = (7-9 mm) vs. = (2-6 mm) 22 

AneurysmSize_Rupture Y size = (10-26 mm) vs. = (2-6 
mm) 

22 

AneurysmSize_Rupture Y size as a continuous variable 22 

AneurysmSize_Rupture Y size >7 mm vs. <7 mm 22 

AneurysmSize_SurgicalOutcome Y diameter >12 mm 14 

ArtrialFibrillation_AneurysmFormation N  16 

ArtrialFibrillation_AneurysmFormation N  16 

AspectRatio_Rupture N  4 

AspectRatio_Rupture N  4 

AspectRatio_Rupture N  4 

AspectRatio_Rupture N  5 

AspectRatio_Rupture N  5 

AspectRatio_Rupture Y  5 

AspectRatio_Rupture N  5 

AspectRatio_Rupture N  5 

AspectRatio_Rupture NA AR>1.6 --> rupture 6 

BloodPressure_Rupture N Here it refers the BP at the 
beginning of the follow-up. 
mean arterial blood pressure = 
diastolic BP+(systolic BP-

22 
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Relations Significance Definition/ state used in the 
relation 

Paper 
ID 

diastolic BP)/3.  

BloodPressure_Rupture Y here it refers to the BP at the 
end of the follow-up 

22 

BloodPressure_Rupture N mean arterial pressure after 
adjusted for age 

22 

BodyMassIndex_AneurysmFormation N Body mass index >=30 16 

BodyMassIndex_AneurysmFormation N Body mass index >=30 16 

CoronaryArteryDisease_Growth N  10 

CoronaryArteryDisease_Growth N  10 

Diabetes_AneurysmFormation N  16 

Diabetes_AneurysmFormation N  16 

Diabetes_Growth N  10 

Diabetes_Growth N  10 

EllipticityIndex_Rupture Y  4 

EllipticityIndex_Rupture N  4 

EllipticityIndex_Rupture N  4 

EnergyLoss_Rupture Y  6 

FamilyHisotryOfAneurysm_Growth N family history of ICA 10 

FamilyHisotryOfAneurysm_Growth N  11 

FamilyHisotryOfAneurysm_Growth N family history of ICA 10 

FamilyHistoryOfMyocardialInfarction_AneurysmFormation Y  16 

FamilyHistoryOfMyocardialInfarction_AneurysmFormation N  16 

FamilyHistoryOfSAH_Rupture NA  12 

FamilyHistoryOfStroke_AneurysmFormation Y Stroke here includes ischemic 
and hemorrhagic stroke but 
excludes subarachnoid hemor-
rhage 

16 

FamilyHistoryOfStroke_AneurysmFormation Y Stroke here includes ischemic 
and hemorrhagic stroke but 
excludes subarachnoid hemor-
rhage 

16 

FlowSpeed_Rupture NA  6 

Gender_Growth N  10 

Gender_Growth N  10 

Gender_Growth N  11 

Gender_Rupture N rupture = SAH 22 

Growth_Rupture N  11 

Growth_Rupture Y absolute diameter growth 12 

Growth_Rupture Y growth percentage for aneu-
rysms with and without rupture 

12 

Growth_Rupture Y  18 

Growth_Rupture Y  18 
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Relations Significance Definition/ state used in the 
relation 

Paper 
ID 

Growth_Rupture N annual growth rate  12 

HeartDisease_AneurysmFormation N  16 

HeartDisease_AneurysmFormation N  16 

HeightWidthRatio_Rupture N  5 

HeightWidthRatio_Rupture N  5 

HeightWidthRatio_Rupture Y  5 

HeightWidthRatio_Rupture N  5 

HeightWidthRatio_Rupture Y  5 

HisotryOfSAH_Rupture Y  13 

HisotryOfSAH_Rupture N  13 

HistoryofIschaemicCerebrovascularDisease Y  14 

HistoryOfSAH_Growth N prior aneurysmal SAH 11 

HistoryOfSAH_Rupture NA  12 

HistoryOfSAH_Rupture Y rupture rate 14 

HistoryOfStroke_Growth Y  10 

HistoryOfStroke_Growth N  10 

HistoryOfTIA_Growth N  10 

HistoryOfTIA_Growth Y  10 

Hypercholesterolemia_AneurysmFormation N  16 

Hypercholesterolmia_ 

_AneurysmFormation 

Y  16 

Hypertension_AneurysmFormation Y  16 

Hypertension_AneurysmFormation Y  16 

Hypertension_Growth N  10 

Hypertension_Growth N  10 

Hypertension_Growth N  11 

Hypertension_Rupture NA  12 

Hypertension_Rupture N at the beginning of the follow-
up. Hypertension is defined as 
a systolic pressure repeatedly 
greater than 160 mm Hg, 
diastolic pressure greater than 
95 mmHg, or as the use of an-
tihypertension medication.  

22 

Hypertension_ 

_SmokingHistory_AneurysmFormation 

Y  16 

InflowAngle_FlowPenetration NA  5 

InflowAngle_FlowPenetration NA  5 

InflowAngle_FlowSpeed NA  5 

InflowAngle_FlowSpeed NA  5 

InflowAngle_Rupture Y  5 

InflowAngle_Rupture N  5 
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Relations Significance Definition/ state used in the 
relation 

Paper 
ID 

InflowAngle_Rupture Y  5 

InflowAngle_Rupture N  5 

InflowAngle_Rupture Y  5 

InflowAngle_WSS NA  5 

InflowAngle_WSS NA  5 

Migraine_AneurysmFormation N  16 

Migraine_AneurysmFormation N  16 

MuralCalcification_Growth N  18 

NonsphericityIndex_Rupture Y  4 

NonsphericityIndex_Rupture N  4 

NonsphericityIndex_Rupture N  4 

NonsphericityIndex_Rupture N  5 

NonsphericityIndex_Rupture N  5 

NonsphericityIndex_Rupture Y  5 

NonsphericityIndex_Rupture Y  5 

NonsphericityIndex_Rupture N  5 

NumberOfAneurysm_Growth N  10 

NumberOfAneurysm_Growth Y  10 

NumberOfVortices_Rupture Y  4 

NumberOfVortices_Rupture N  4 

NumberOfVortices_Rupture N  4 

OSI_Rupture Y average OSI 4 

OSI_Rupture Y average OSI 4 

OSI_Rupture Y average OSI 4 

PhysicalExercise_AneurysmFormation Y exercise >= 3 times /week 16 

PhysicalExercise_AneurysmFormation Y exercise >= 3 times /week 16 

ResidentTime_Rupture Y relative resident time 4 

ResidentTime_Rupture NA  6 

SizeRatio_Rupture  Y  4 

SizeRatio_Rupture  Y  4 

SizeRatio_Rupture  Y  4 

SizeRatio_Rupture  N  5 

SizeRatio_Rupture  N  5 

SizeRatio_Rupture  Y  5 

SizeRatio_Rupture  N  5 

SizeRatio_Rupture  Y  5 

SmokingHistory_AlcoholUse Y  22 

SmokingHistory_AneurysmFormation Y  16 

SmokingHistory_AneurysmFormation Y  16 
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Relations Significance Definition/ state used in the 
relation 

Paper 
ID 

SmokingHistory_Growth N current or previous cigarette 
smoking 

10 

SmokingHistory_Growth N current or previous cigarette 
smoking 

10 

SmokingHistory_Growth N  11 

SmokingHistory_Growth Y  18 

SmokingHistory_Rupture NA  12 

SmokingHistory_Rupture Y at the time of diagnosis 22 

SmokingHistory_Rupture Y as a time-dependent covariate 22 

SystolicBP_Rupture N after adjusted for age 22 

Thrombus_Growth N intraluminal thrombus 18 

Treatment_AneurysmalSymptoms NA Treatment = operation (surgery 
and coiling) vs. observation 

14 

Treatment_SAH NA Treatment = operation (surgery 
and coiling) vs. observation 

14 

UndulationIndex_Rupture Y  4 

UndulationIndex_Rupture N  4 

UndulationIndex_Rupture N  4 

WSS_Rupture Y average WSS 4 

WSS_Rupture Y maximum intra-aneurysmal 
WSS 

4 

WSS_Rupture Y low WSS area 4 

WSS_Rupture N WSS gradient 4 

WSS_Rupture Y average WSS 4 

WSS_Rupture N WSS gradient 4 

WSS_Rupture N maximum intra-aneurysmal 
WSS 

4 

WSS_Rupture N low WSS area 4 

WSS_Rupture Y average WSS 4 

WSS_Rupture N WSS gradient 4 

WSS_Rupture N maximum intra-aneurysmal 
WSS 

4 

WSS_Rupture N low WSS area 4 

WSS_Rupture N time-averaged WSS 6 

 

Concepts representation and extraction. Of the 66 concepts and 118 observations, PCDM+ successful-

ly captured 58 concepts (87.9%) and 104 observations of concepts (88.1%). Table 3.9 shows the 58 

unique concepts encoded in PCDM+. The concepts that were annotated by the annotators but missed by 

PCDM+ include length of time, death, aneurysmal symptoms other than rupture, flow penetration, mural 
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calcification, intraluminal thrombus, inflow inlet, and resident time. The results yielded by Experiment 2 

suggest that PCDM+ is capable of representing the predominance of concepts and observations that anno-

tators also noted. Moreover, PCDM+ captured more than the average number of observations that the an-

notators were able to identify in many of the papers (9 of 11 papers).  

Consistency among annotators. Experiment 2 also tested the consistency among annotators when they 

structured evidence from published literature into relations, concepts, and statistics. Table 3.10 shows the 

concepts that appear in each paper and the performance of each annotation and PCDM+. Based on this 

information, Table 3.11 was created to show the numbers of concepts annotated by annotators as well as 

the number of concepts encoded in PCDM+. The mean and variance of this measure are also provided. 

Notably, the variance among annotators changed across papers: marked variances exist among 4 of the 11 

papers, with negligible variances were noted in the remaining papers. The percentage of agreement also 

varies according to the papers. One possible reason is that each paper had a different level of complexity 

relating to reporting structure, statistical analyses performed, and a number of hypotheses examined. The 

results indicated that inconsistency among annotators existed and varied across papers. PCDM+ captured 

the same (or greater) average number of observations as that achieved by users for most papers. 

Table 3.9 List of 66 unique concepts in alphabetical order retrieved from 11 eligible papers by PCDM+. 

age of patient family history of stroke medical history of diabetes 

alcohol use flow velocity/inflow speed medical history of heart disease 

aneurysm diameter gender of the patient medical history of hypercholes-
terolemia 

aneurysm height growing aneurysms medical history of migraine 

aneurysm height width ratio growth mural calcification 

aneurysm location growth rate nonsphericity index 

aneurysm multiplicity hemorrhage number of aneurysm 

aneurysm shape history of aneurysmal SAH number of vertices 

aneurysm size history of hypertension OSI 

aneurysm type history of ischaemic cerebrovas-
cular disease 

penetration of flow 

aneurysm volume history of SAH regular physical exercise 

aneurysmal symptoms other than rupture history of stroke relative resident time 

aspect ratio history of transient ischemic at-
tack 

risk of SAH 
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average-wss image follow-ups risk of UIA 

body mass index inflow angle rupture 

death inflow inlet rupture rate/ cumulative rate of 
bleeding  

ellipticity index intraluminal thrombus size ratio 

endovascular outcome length of time smoking history/status 

energy loss low wss area surgical outcome 

family history of ICA maximum-wss systolic BP 

family history of MI mean arterial pressure undulation index 

family history of SAH medical history of AF wss gradient 

 

Table 3.10 Concepts that appear in each paper and the performance of each annotation and PCDM+ (indicated with an “X”) 

Paper ID Reported Concepts Annotation 1 Annotation 2 Annotation 3 PCDM+ 

4 aneurysm size  X X  

  size ratio X X X X 

  undulation index X X X X 

  ellipticity index X X X X 

  nonsphericity index X X X X 

  average wall shear stress X X X X 

  maximum wall shear stress X X X X 

  wall shear stress gradient   X X 

  low WSS area X X X X 

  average OSI X X X X 

  number of vertices X X X X 

  relative resident time X X X X 

  rupture X X X X 

5 Dmax X X X X 

  height X X X X 

  height width ratio X X X X 

  size ratio X X X X 

  inflow angle X X X X 

  nonsphericity index X X X X 

  sidewall aneurysm X X X X 

  bifurcation aneurysm X X X X 

  aspect ratio  X X X 

  penetration of flow  X   

  flow velocity  X   

  wall shear stress  X   

  rupture X X X X 

6 aspect ratio  X   
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Paper ID Reported Concepts Annotation 1 Annotation 2 Annotation 3 PCDM+ 

  energy loss X X X X 

  wall shear stress X X X X 

  inflow speed X X   

  inflow inlet  X   

  resident time X X  X 

  rupture X X  X 

10 growth rate X X X X 

  number of aneurysm X X X X 

  a history of stroke X X X X 

  growth X X X X 

  aneurysm location X X X X 

  a history of transient ischemic attack X X X X 

  gender of the patient  X  X 

  initial aneurysm size  X  X 

  length of time   X  

11 excessive alcohol consumption X X X X 

  age of the patient X  X X 

  growth X X X X 

  gender of the patient X  X X 

  smoking status X  X X 

  history of hypertension X  X X 

  prior aneurysmal SAH X  X X 

  family history intracranial aneurysms X  X X 

  aneurysm size X  X X 

12 aneurysm location  X  X 

  length of time  X   

  aneurysm size  X X X 

  rupture X X X X 

  growth X X X X 

  age of the patient  X X X 

  annual growth rate X X X X 

  history of hypertension   X X 

  smoking history   X X 

  family history of SAH   X X 

  history of previous SAH   X X 

  aneurysm multicity   X X 

13 a history of SAH X X X X 

  aneurysm location X X X X 

  aneurysm size X X X X 

  rupture X X X X 
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Paper ID Reported Concepts Annotation 1 Annotation 2 Annotation 3 PCDM+ 

14 age of patient X X X X 

  surgical outcome X X X X 

  aneurysm location X X X X 

  aneurysm size X X X X 

  unruptured aneurysm X X X X 

  previous ischaemic cerebrovascular 
disease 

 X  X 

  aneurysmal symptoms other than 
rupture 

 X X  

  endovascular outcome   X X 

  rupture rate   X X 

16 smoking history X X X X 

  history of hypertension X X  X 

  family history of stroke X X X X 

  medical history of hypercholesterole-
mia 

X X X X 

  regular physical exercise X X X X 

  alcohol use X   X 

  body mass index X   X 

  medical history of diabetes X   X 

  medical history of AF X   X 

  medical history of heart disease X   X 

  medical history of migraine X   X 

  family history of MI X   X 

  risk of UIA X X X X 

  risk of SAH  X  X 

18 rupture X X X X 

  growing aneurysms X  X X 

  aneurysm size X X X X 

  aneurysm volume X  X X 

  growth X  X X 

  (tobacco) smoking history X X X X 

  image follow-ups X    

  aneurysm location  X  X 

  aneurysm multiplicity  X  X 

  intraluminal thrombus  X   

  mural calcification  X   

  aneurysm shape  X  X 

22 aneurysm diameter (size) X X X X 

  age of patient X X X X 

  smoking status X X X X 
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Paper ID Reported Concepts Annotation 1 Annotation 2 Annotation 3 PCDM+ 

  rupture rate    X 

  rupture X X X X 

  risk of SAH X   X 

  gender of the patient X   X 

  multiplicity of aneurysm X   X 

  cumulative rate of bleeding (rupture) X  X X 

  systolic BP X   x 

  mean arterial pressure X   x 

  hemorrhage  X  X 

  death  X   

  aneurysm location   X X 

  alcohol consumption(use)   X X 

  a history of hypertension   X X 

 

Table 3.11 Observations captured by each annotator and PCDM+. 

Paper PCDM+ observations 

of concepts 

     # observations of concepts by annotators 

Mean Variance Percent agreement 

Paper 1 12 12 0.67 84.62% 

Paper 2 10 12 2.89 69.23% 

Paper 3 4 5 4.22 28.57% 

Paper 4 8 7 0.67 66.67% 

Paper 5 9 7 10.89 22.22% 

Paper 6 11 6 6.22 25% 

Paper 7 4 4 0 100% 

Paper 8 8 7 2.67 55.56% 

Paper 9 14 8 11.56 35.71% 

Paper 10 9 7 0.67 25% 

Paper 11 15 8 2.67 25% 
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CHAPTER 4. Operators 

This chapter describes the work performed to meet the Aim 2 of this dissertation: 

[Aim 2]  Develop operators that translate evidence into knowledge elements to inform clinical decision 

making relating to a specific patient.   

After PCDM+ is instantiated with the knowledge fragments of a disease (e.g., intracranial aneurysms) or 

a phenomenon (e.g., rupture) from multiple sources, the next step is to use the evidence it encodes to in-

form clinical decision making relating to individual patients. As an intermediate representation aimed at 

integrating knowledge about the disease from multiple sources, PCDM+ has potential in two applications: 

(1) to enhance clinical research on understanding the disease by guiding disease modeling, and (2) to im-

prove clinical practice by facilitating individually-tailored medical decision making. The knowledge ele-

ments needed to realize these two applications are captured in the PCDM-Inference Layer, and several 

operators are designed to achieve the knowledge integration and translation. Based on the PCDM+, I de-

veloped three operators to guide disease modeling (i.e., for the construction of Bayesian belief networks, 

BBNs). I also created operators (overlapping with the BBN construction operators) to retrieve and link 

fragments of evidence found in literature relevant to an individual patient. This work is demonstrated by 

answering clinical queries that arose during the medical decision-making process in ICA treatment.  

4.1 Operators for Evidence-based Medicine  

When physicians practice evidence-based medicine (EBM) by integrating evidence from observational 

studies and randomized clinical trials (RCTs), they need to search among a large volume of literature, 

extract the useful evidence, and assess if it is relevant to the targeted patients. The utility of PCDM+ 

stems from its ability to integrate information from patient records and published literature to answer clin-

ical questions. The development of PCDM+ focused on three types of queries: 

1. Patient-paper matching. Given the patient characteristics, which papers are relevant for a clinician to 

consider as part of the decision-making process?  
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2. Disease etiology and behavior. What is the patient’s risk of forming an aneurysm? How likely will 

this patient’s aneurysm grow?  

3. Treatment planning. Which treatment is better for this patient, endovascular coiling (EC) or surgical 

clipping (SC)? What are the prognostic variables that may indicate whether a patient will have im-

proved or worsening neurologic outcomes? 

To pose a query to the model, the question can be deconstructed into a set of variables and relationships. 

For example, the question, “How likely is it that this patient’s aneurysm will grow?” may be broken into 

two separate questions pertaining to information sourced from literature and the patient record: (1) what 

are the reported risk factors for aneurysm growth (from the literature); and (2) what risk factors does the 

given patient have? For example, based on the structure of PCDM+, the entity instance “growth” is asso-

ciated with the relation instance “size-growth” that has been referenced in several papers. By retrieving all 

the hypothesis tests associated with the “size-growth” relationship, information from papers in which re-

searchers discuss potential risk factors that contribute to aneurysm growth is retrieved. By leveraging the 

semantic relationships, all observations can be linked to their sources (e.g., a specific paper and popula-

tion) and population characteristics (e.g., characteristics of the individuals that were studied). Therefore, 

to utilize the evidence that has been structured in PCDM+ to answer these three types of clinical queries, 

several operators were designed to aid in patient-paper matching, hypothesis examination, and risk esti-

mation. These operators are called: patient-population matching, relation extraction, and probability re-

trieval.   

4.1.1 Patient-population Matching  

In the first step in evaluating evidence for an individual patient, the papers that contain pieces of 

knowledge that are applicable to the given patient are selected.  

Query 1: “Given the patient characteristics, which papers are relevant for a clinician to consid-

er as part of the decision-making process?” 



73 

 

While a few papers may pertain to case studies, most report research findings obtained by studying a 

sample population. In PCDM+, every piece of evidence is linked to the study population from a published 

study it originates from. Given that a single paper may reference more than one group of participants that 

took part in the studies it reports on, I call this operator patient-population matching instead of patient-

paper matching operator. 

One method to achieve patient-population matching is to use the eligibility criteria for this population as 

selection criteria. The eligibility criteria of a study are encoded in PCDM+ as an attribute of a population. 

By following these steps, one can use the patient-population matching operator: 

1. The method getEligibilityCriteria (Population pop) is used to query PCDM-Literature to retrieve the 

eligibility criteria of the population pop (see Table 4.1); 

2. Encode each subject criterion as a “feature name-logic operator-feature value” form (see Table 4.2). 

3. Use the methods getFeatureName (Eligibility Criterion ec), getLogicOperator(Eligibility Criterion ec), 

and getFeatureValue (Eligibility Criterion ec), return the feature name, logic operator, and feature val-

ue related to eligibility criterion ec.  

4. Use the method getObservedValue(Study Variable sv) to retrieve the observed value of study variable 

sv from PCDM-Clinic (see Table 4.3);  

5. Assess if the observed value from the patient satisfies the subject criterion reported in the literature. 

This process is accomplished by (1) linking the subject variables in PCDM-Literature to the corre-

sponding feature in PCDM-Clinic; (2) finding the values for the feature in both PCDM-Clinic and 

PCDM-Literature; (3) using a rule-based algorithm to assess if the value from the patient case meets 

the defined criterion; (4) returning a value indicating that the criterion is not satisfied (e.g., 0); satis-

fied (e.g., 1); or is missing (e.g., N/A) for each subject criterion (see Table 4.4); 

6. If there are missing values: 

a. When one of the criteria is unsatisfied, return 0; 

b. When all criteria are satisfied except for the missing ones, this can be mitigated by weighting the 

matching score with the ratio of the number of criteria that were satisfied to the total number of 
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the criteria. A threshold is chosen for a matching score function to determine whether to include 

that population or not. For example, in the case shown here, a matching score with one missing 

value out of five criteria is 4/5 = 0.8.   

Table 4.1 Eligibility criteria are recorded in the population table. 

pop_id sample_size eligibility_criteria subpopulation 

pop001 142 patients,  
181 aneu-
rysms 

(1)Patients with unruptured intracranial aneurysm were included. 
(2)All patients with a conservatively treated ruptured aneurysm 
were excluded.    
(3)Patients with mycotic or fusiform atherosclerotic aneurysms 
were excluded.    
(4)Patients with uncommon intracavernous carotid artery aneu-
rysms were excluded.    
(5)Patients with symptomatic aneurysm were included in the study 
only if SAH was excluded by a lumbar puncture within a few days 
after the onset of symptoms. 

pop001.subpop001, 
pop001.subpop002, 
pop001.subpop003. 

 

Table 4.2.  

 

 

 

 

Table 4.3 Patient case 1 

Patient Lily Bruin 

Age 70 years old 

Gender female 

Clinical presentation incidental 

Aneurysm rupture no 

Aneurysm location right PCoA* 

Aneurysm size 6.3×6.6×5.3 mm 

Aneurysm shape saccular 

Modality CTA** 

Family history of stroke yes 

Family history of hypertension yes 

Medical history head and neck cancer 

Smoking status former-smoker 

Alcohol use none 

Blood pressure 106/65 

Treatment No 

(*PCoA: Posterior Communicating Artery; **CTA: Computed Tomography Angiography) 

Aneurysm.rupture = no AND 
Aneurysm.treatment = no AND 
Aneurysm.shape != fusiform AND 
Aneurysm.property != mycotic or atherosclerotic AND 
((Aneurysm.clinicalPresentation !=symptomatic) OR 
(Aneurysm.clinicalPresentation = symptomatic&SAH = no)) 

 

Table 4.2 Eligibility criteria are represented in feature name-mathematical symbol-feature value form in a Boolean model. 
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Table 4.4 Matching result for each eligibility criterion. 

Eligibility Criteria Matching Score (1/0) 

Aneurysm rupture = no  1 

Aneurysm treatment = no 1 

Aneurysm shape != fusiform  1 

Aneurysm property != mycotic or atherosclerotic  N/A 

(Clinical presentation != symptomatic)) OR 

((Clinical presentation = symptomatic AND SAH = no)) 

1 

4.1.2 Relation Extraction 

In clinical practice, physicians’ aim is to identify features that are risk factors for a certain outcome (e.g., 

rupture), so that given the observed characteristics of a patient, the physician can estimate the risk. In the 

domain of ICA, two types of risk are considered: rupture risk and treatment risk (i.e., the risk of mortality 

and morality).  

Query 2: “What are the risk factors for aneurysm rupture? Is the aneurysm this patient has at 

the high risk of rupture?” 

If the rupture risk is low, taking other factors into consideration as well (e.g., age), a routine observation 

rather than clipping or coiling of the aneurysm (i.e., watchful waiting) may be chosen as an optimal 

treatment. If the risk of rupture is high, then treatment risk needs (e.g., the risk of clinical complications) 

to be estimated. For example, if the risk associated with performing endovascular coiling is higher than 

that related to surgical clipping treatment for a particular patient, clipping should be selected as the opti-

mal treatment. To answer queries relating to risk estimation, two operators were designed in this work: 

relation extraction and probability retrieval. This section illustrates the former via an operator that em-

beds information retrieval functions based on the PCDM+ design.  

The relation extraction operator contains two main methods: 

(1) A method called getRelation(Study Variable sv) that returns all relations with a study variable sv rec-

orded in PCDM+ from the Hypothesis table; 

(2) A method called getStatAnalyses(Hypothesis h) that returns all statistical analyses associated with 

hypothesis h from PCDM+. Each statistical analysis is retrieved from PCDM+ with the context, in-



76 

 

cluding the statistical assessment (i.e., significant or not), the statistical result (e.g., p = 0.002), statis-

tical method, analysis time, population, and source information.  

For example, if a physician would like to explore the risk factors of aneurysm rupture, the method get-

Relation(aneurysmRupture) is used to retrieve all the hypotheses that state relations between aneurysm 

rupture and risk factors (see Table 4.5). Among these relations, if a physician is interested in knowing 

details about a specific relation (e.g., aneurysm size and aneurysm rupture), the getStatAnalyses (“aneu-

rysm size is a risk factor of aneurysm rupture”) method is used to retrieve multiple statistical analyses that 

have been performed to assess the significance of this relationship in various studies (see Table 4.6). 

Table 4.5 Relations of “aneurysm rupture” retrieved from PCDM+ 

Study variables Hypothesis statement 

gender, aneurysm rupture “patient gender is a risk factor of aneurysm rupture” 

age, aneurysm rupture “patient age is a risk factor of aneurysm rupture” 

aneurysm size, aneurysm rupture “aneurysm size is a risk factor of aneurysm rupture” 

aneurysm location, aneurysm rupture “aneurysm location is a risk factor of aneurysm rupture” 

daughter sac, aneurysm rupture “daughter sac is a risk factor of aneurysm rupture” 

hypertension, aneurysm rupture “hypertension is a risk factor of aneurysm rupture” 

 

Table 4.6 Statistical analyses of “aneurysm size is a risk factor of aneurysm rupture” retrieved from PCDM+ 

Statistical 
method 

Statistical 
result 

Statistical 
assessment 

Analysis 
time 

Population 
 

Study 
 

Cox Model with a 
stepwise proce-
dure 

p=0.036 significant at the end of 
the follow-up 

pop001 study001 

NA p=0.03; 
p<0.001 

significant at the end of 
the follow up 

pop002.subpop001.group001 study002 

… … … … … … 

multivariate anal-
ysis with the pro-
portional hazards 
methods 

p=0.01; 
p<0.0001 

significant at the end of 
the follow-up 

pop004.subpop001 study004 
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4.1.3 Probability Retrieval 

While the relation extraction operator is able to return the reported relations and the associated statistical 

analyses, the probability retrieval operator is designed to retrieve associated probabilities and distribu-

tions. The goal of this operator is to provide the currently available evidence to facilitate answering que-

ries such as: 

Query 3: “How likely will this patient’s aneurysm grow and rupture?” 

In PCDM+, marginal probabilities (e.g., P(age), P(aneurysm size)) and distributions of certain patient 

characteristics are captured. These probabilities and distributions are helpful in assessing whether a given 

patient’s information is within the distribution a study characterizes. In addition, PCDM+ maintains con-

ditional probabilities (e.g., P(rupture = yes| aneurysm size = 2-6mm), P(rupture = yes| age <50 year old)) 

from multiple papers. While these probabilities are not full joint conditional probabilities that can be used 

to answer the query directly, they provide important insights into how much a given risk factor can influ-

ence risk estimation. The probability retrieval operator is thus designed to retrieve the marginal probabili-

ties, distributions, and conditional probabilities from PCDM+ that are related to a particular case. To 

achieve this, multiple methods were created: 

1. Method getObservedValue(Study Variable sv, Patient p) returns the observed value of a study varia-

ble sv from patient p. Study Variable is a class in PCDM-Literature and it is a superclass of Behavior, 

Property, and Intervention entities. 

2. Method getDistribution(Study Variable sv, Population pop) returns the marginal probability and/or 

distribution of study variable sv from population pop. 

3. Method getProbability(Study Variable sv1, Study Variable sv2) returns the conditional probabilities 

between these two variables, sv1 and sv2 (e.g., aneurysm size and aneurysm rupture). 

4. Method getProbability (Study Variable sv1, Study Variable sv2, Value v) returns the Prob(sv1|sv2=v).  

As an example, when a patient has an aneurysm 6 mm in size, the returned marginal probability of aneu-

rysm size is obtained, as shown in Figure 4.1, while Figure 4.2 shows the returned conditional probability 

of rupture given aneurysm size.  
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Using these three operators, the evidence encoded in PCDM+ can be translated into elements needed to 

answer physicians’ queries relating to specific patients. Figure 4.3 depicts the evidence-based medicine 

process after patient cases and published literature are mapped into PCDM+. Importantly, the Inference 

Layer is where the operators are employed. A systematic demonstration of those operators is given in Sec-

tion 4.3.  

Figure 4.1 Retrieved distribution of aneurysm size Figure 4.2 Retrieved probability of aneurysm rupture condi-

tioned on aneurysm size 

Figure 4.3 Evidence-based Medicine based on PCDM+ 
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4.2 Operators to Build BBNs  

BBNs are commonly used for prediction tasks. In the domain of intracranial aneurysms, when a patient is 

found with an unruptured aneurysm, it is crucial to make a prediction on the rupture risk. The example 

below outlines how a BBN is created and instantiated to make predictions on aneurysm rupture based on 

PCDM+. Three sets of operators were designed to translate knowledge from PCDM+ into BBN elements, 

including the variables, topology, and conditional probabilities needed to instantiate a graphical model.  

4.2.1 Variable Selection and Discretization 

When constructing a BBN, it is first necessary to select variables and define their possible states. PCDM+ 

entities and attributes provide a pool for variable selection. I consider two issues when defining inclusion 

criteria in the variable selection step: (1) whether a variable has a relation with the target variable; and (2) 

whether the data for the variable and the relation is available and sufficient to perform parameter estima-

tion (i.e., the conditional probabilities). The operator for variable selection starts with the search for the 

Markov blanket (MB) of a target variable T in PCDM+ and gradually expands the search space to other 

variables determined by MB(T). Next, each variable is examined on its “missingness” in the data sources. 

Here, “missingness” refers to the proportion of data absent for a certain variable within a population. 

When a variable exceeds a predefined level of missingness (e.g., variables that have few or no recorded 

observations), semantically related variables can be identified using PCDM+ (e.g., super- or subclasses 

can be considered). The steps for variable selection are given below: 

1. Define the target variable T and search for a corresponding attribute A or entity X in PCDM+. Set A 

as a decision node.  

1.1. The user defines a target variable T whose state will be predicted based on observations given 

for the other evidence variables. 

1.2. The user queries PCDM+ to search for entity or attribute which corresponds to T. 



80 

 

1.3a If T does not exist in the PCDM+, the user can create a new entity or attribute of an existing enti-

ty. By assigning the relationship with other existing entities, some of the attributes or arcs can be 

transferred from existing entities to the new one; 

1.3b If T exists in PCDM+ as an entity X, select one of its attributes, A, to form a target variable in 

the BBN. Set A as a decision node and the process continues at step (2); or 

1.3c If T exists in PCDM+ as an attribute A, set A serves as a decision node. Find the entity it belongs 

to, e.g., X, and go to step (2).  

2. Find the Markov blanket of A and X in PCDM+ and extend it through is-a, has-a, and part-of rela-

tionships to get a superset.  

2.1. Place any entity that has a relationship with entity X into an entity set Y; assign any attribute that 

shares an arc with A to the attribute set B. Find all the elements of Y and B.  

2.2. Examine the dependency strength intuitively. If the relation is weak (e.g., with insignificant p-

value, or the number of studies revealing this relation is less than a predefined threshold), a sub-

stitute entity or attribute in PCDM+ is recommended (e.g., a super- and/or subclass) to continue 

to the following step. 

2.3. Collapse the entities at different levels to allow different views of the desired Markov blanket.  

3. Examine the missingness of each element in the extended Markov blanket. 

3.1. For each attribute Bi belonging to B (i=0, 1, 2, ... n), examine its missingness by retrieving its 

Local attribute Distribution (LtD), which encodes the distribution of the observations of this at-

tribute in a sampled population.  

3.2. Calculate an integrated LtD using designed function with all the recorded LtD of Bi from multi-

ple sources. Enable the user to select data sources to perform this step. 

3.3. If the missing data can be ignored (e.g., below some predefined threshold, such as 90%), Bi be-

comes a BBN node; otherwise, consider omitting Bi or finding a substitute entity or attribute to 

form a BBN node, e.g., another attribute of the same entity, or if it is an aggregated entity, use 

one of its components.   
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Functions designed to facilitate these steps include: 

 Methods for collecting and returning the entities and attributes that have relationships or arcs with a 

specific attribute. Constraints are allowed to filter the returned results (e.g., at least two studies indi-

cated the relation).  

 Methods used to calculate the missingness percentage of a selected attribute on each population 

and/or data source. 

An example of variable selection. Figure 4.4 demonstrates how PCDM+ entities and attributes (left) are 

mapped to BBN nodes (right). First, we find the rupture in PCDM+ and set it as a decision node; we then 

find that smoking history, size, location, and age have associated arcs. We examine the missingness of 

these attributes and entities in the observational clinical data and find that “pack-years” is seldom report-

ed in smoking history, but “smoking status” is reported for 92% of the patients. Therefore, “smoking sta-

tus” is mapped into the BBN as a node. Next, we examine the context of the size entity among journal 

articles and notice that 96% of articles refer to “the longest diameter of the aneurysm” when defining 

“size,” thus a node called “maximal diameter” is defined in the BBN. By applying the function 

Max(height, width, depth), the data pertaining to “size” in PCDM+ is translated into a “maximal diameter” 

in the BBN.  

 

Figure 4.4 Mapping PCDM+ entities and attributes to BBN nodes 
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In considering discretization, a finite number of states for each BBN node needs to be defined. The goal 

of discretization is to simplify parameterization (i.e., keep the number of discrete states as small as possi-

ble) while minimizing information loss (i.e., approximate the original distribution as much as possible).  

Methods designed to facilitate the discretization process are: 

 Merging and splitting operators that can be applied to merge/split states within the studied population 

to check the distribution of observational data for categorical variables. 

 A function for selecting the optimal discretization among available strategies in PCDM+. Allow users 

to select the decision criteria (i.e., based on mutual information with decision node only or with all re-

lated nodes). 

In this work, the following two variable types are considered: 

1. Categorical variables. For categorical variables (e.g., “smoking status” and “aneurysm location”), 

PCDM+ has already defined standardized categories for each. The problem is that there may be con-

siderable number of missing data instances in certain categories (e.g., aneurysms are seldom found in 

the basilar artery but commonly develop in anterior/posterior communicating arteries). In this case, 

the merging operator is used to merge the sparse states properly to simplify parameterization.  

2. Continuous variables. For continuous variables, PCDM+ records discretized states over different 

studies and maintains a list of discretization strategies with the operator to select an optimal strategy. 

Local and global discretization methods are encoded in this operator for the user to select. The local 

discretization method is based on minimizing entropy; the global discretization method discretizes 

each variable to maximize its mutual information with respect to all directly related variables.  

An example of discretization. We define the states of the variables selected in the last step: age, smoking 

status, maximal diameter, location, and rupture. In PCDM+, rupture is a decision node and the probabil-

ity of a rupture is a function of time P(rupture)=f(t). The possible states of rupture at a given time are ei-

ther “yes” or “no.” Different possible discretization strategies of age are stored in PCDM+ from the in-

dexed articles. For instance, Juvela [2000] discretized age into <30, 31-40, 41-50, and 51-60 groups while 

UCAS Japan [2012] used only two categories (<70, >=70). The unit of age is years old. We discretize the 
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age in UCLA aneurysm dataset and compare the entropy of age after using these two different partition-

ing strategies. Classification (<70,>=70) is selected as a better strategy as it leads to a smaller entropy in 

the age variable, where entropy is calculated using the following equation: 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑎𝑔𝑒) = −∑ 𝑝𝑖
𝑚
𝑖=1 𝑙𝑜𝑔2𝑝𝑖, 

where 𝑝𝑖 refers to the percentage of people within the population whose age belongs to the discretized 

state i when age is discretized into several states (e.g., <30, 30-40, 41-50, 51-60). The defined states of 

each variable in the BBN are shown in Figure 4.5. 

 

Figure 4.5 Getting discrete states for each variable from PCDM+. 

4.2.2 Topology Specification 

After selecting the variables and defining the possible states, the next step is to specify the topology (i.e., 

to decide the (in)dependencies among variables). With PCDM+, topology specification becomes a pro-

cess of selecting and mapping the relationships and arcs from PCDM+ to edges in BBN. However, a 

mismatch exists between PCDM+ and BBNs: edges in a BBN indicate dependency, while relationships 

and arcs in PCDM+ entail a semantic meaning. Thus, to make this transition successful, I focus on: (1) 

specifying which relationships and arcs represent dependency relations; (2) assessing the existence of the 

dependency and independency; and (3) determining the level of detail the network should have.  
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Relation examination. In PCDM+, two constructs represent a relation: relationships and arcs. The for-

mer represents relations among entities, while the latter captures relations among attributes. Most rela-

tionships are predefined and a new relationship may be added when new knowledge is entered into 

PCDM+ (e.g., a new relationship may be adopted by mapping an external ontology to PCDM+). Arcs are 

instantiated when evidence from scientific literature is mapped into PCDM+. In topology specification, I 

examine each relationship and arc to determine if it is a dependency relation. For example, relationships 

among entities such as effect, cause, and treat indicate dependency, while measure, has source, and ana-

lyze do not. Arcs among attributes are named with the reported relation type and not all of them are de-

pendent relations.  

Relation assessment. I assess the dependency between any attributes of interest (e.g., the decision node T 

and other attributes and entities from PCDM+).  

 Dependency. Methods that can be adopted to assess dependency include: reassessing the significance 

of a trial result using Bayesian statistics (e.g., Bayes factor [Dienes, 2011; Goodman, 1999]); and in-

tegrating multiple arcs into one to assess the strength of evidence and determine if a dependency ex-

ists. The examination includes those attributes that have conflicting evidence reported. The steps per-

formed when integrating multiple relations among two attributes in PCDM+, A and B, to determine 

the relation dependency between them, are outlined as follows:  

1. Translate frequentist statistics reported in each article that reports a relation between A and B, 

such as a p-value and confidence interval (CI), to Bayes factor (BF) by adopting the method pro-

posed by Goodman [1999]. Store the BF in the Local arc Distribution (LrD). If conflicting arcs 

exist, go to step (2); otherwise, continue at step (3). 

2. Use a Bayesian approach to integrate the Bayes factors from multiple journals into a single BF. 

The method is adopted from meta-analysis. While meta-analysis usually takes a hazard ratio (HR) 

as an input parameter, here, BF serves as an input.  

3. Set a threshold or a range for BF, and check if the integrated BF is above the threshold or within 

bounds to determine the dependency.  
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4. If the dependency is confirmed, draw the corresponding edge in BBN; if not, do not draw the 

edge.  

 Independency. While conditional dependencies are recorded in PCDM+ from different sources as 

arcs and conflicting arcs between two attributes can be integrated using the abovementioned method, 

the independency can be inferred from the structure in PCDM+. I use the concept of d-separation  

from BBNs to examine the independencies among attributes in PCDM+ (examples of d-separation 

are given in Chapter 2). PCDM+ records the restrictions of certain conditional probabilities. Thus, in 

topology specification, the restrictions are taken into consideration. An example is given in Figure 

4.6, where B is a deterministic function of C and D (i.e., if C and D are observed, the state of B is de-

termined). In this case, observing C and D can infer the independency of A and T. This is translated 

into a constraint to specify the topology.  

 
Topology adjustment. After finding the (in)dependent relations with the decision nodes, the topology 

can be adjusted by considering: (1) missing data and (2) desired details. As missing data was discussed in 

Chapter 4.2.1, only the latter issue is discussed here.  

The following methods designed to facilitate the topology specification process: 

 A function to retrieve LrD for a given attribute pairs (A, B).  

 A function to translate P value to BF for each LrD instance and store it. 

 A function to integrate multiple BFs to an integrated BF. 

  C   D 

  T   A 

  B 

Figure 4.6 An example of independency between A and T with added restriction among the attributes. 
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 A function to pass a defined threshold or range of BF to make the final judgment of dependency be-

tween A and B. 

PCDM+ is designed using an object-oriented approach. Therefore, PCDM+ is able to facilitate construc-

tion of an object-oriented BBN. In an object-oriented BBN, nodes belonging to the same class or at the 

same level in the hierarchy can be aggregated and collapsed to simplify the computation. This can be 

achieved through is-a and part-of relationships in PCDM+, as more literature-based evidence is included 

into PCDM+.  

 

Figure 4.7 Mapping PCDM+ arcs to BBN edges 

An example of topology specification. Continuing with the running use case, we first examine the de-

pendencies between rupture and other entities and attributes in PCDM+. The dependency between rupture 

and risk factors age, smoking history, and size is confirmed. The independency among age, smoking his-

tory and size is reassessed and a correlation between smoking history and aneurysm size is found in one 

journal article; hence, an edge from smoking status to maximal diameter is drawn. As smoking status and 

rupture is d-separated if the maximal diameter is observed, we change the edge from smoking status to 

rupture into a dashed line to indicate conditional independence. Moreover, with more evidence from liter-
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ature entering into PCDM+, the dependency between smoking status and rupture is further explored on a 

molecular level (as is shown by the dash lines). Figure 4.7 provides an illustration of this translation.  

4.2.3 Parameter Estimation 

PCDM+ not only stores individual data that instantiates each attribute, it also contains population-level 

statistics from LrD and LtD classes, including marginal probabilities, such as P(age<55), and conditional 

probabilities, like P(age<55 | rupture=yes), from different studies. The challenges with parameter estima-

tion from PCDM+ are threefold: 

1. At the individual patient level, any missing data needs to be imputed to compute an accurate condi-

tional probability.  

2. At the population level, the statistics from sources cannot be directly used to populate the conditional 

probability tables and the desired joint conditional probabilities need to be computed based on partial 

statistics (e.g., to compute P(A|B,C) given P(A|B) and P(A|C)).  

3. After obtaining the conditional probabilities from observational clinical data and scientific literature, 

it is necessary to determine how they should be combined and how the system can actively learn the 

parameter when new data sources are mapped to PCDM+.  

The methods developed to address these three issues are described below. 

Missing data. As missing data is a major problem when dealing with a large amount of clinical data, I 

focus on creating an operator to impute missing data with the information encoded in PCDM+ to facilitate 

parameter estimation. PCDM+ has two features that can be employed to impute missing data: (1) it cap-

tures the context of findings at the individual level, which can be used to examine missingness; and (2) it 

stores domain-dependent constraints and conditional relationships that can be used to compute missing 

data. While the current algorithms developed to deal with missing data neither ignore the context of find-

ings nor take into consideration domain-dependent constraints, the developed operator can improve cur-

rent approaches (e.g., parameter estimation based on maximum entropy).  
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After imputing the missing values, a Bayesian approach is used to combine the probabilities from litera-

ture and the frequencies calculated from individual-level data. The parameters can be updated when new 

evidence is entered into PCDM+.  

Example parameter estimation. The partial statistics sourced from pertinent literature are stored in the 

PDCM+ LrD or LtD classes. We apply the operator with multiple imputation algorithms to address miss-

ing values and calculate the required conditional or marginal probabilities from the observational data. 

After using the probabilities from the literature as prior knowledge, we update the parameters by incorpo-

rating the probabilities from observational data to obtain posterior probabilities. Each parameter is updat-

ed independently using the described Bayesian approach. Figure 4.8 shows the estimated parameters and 

their sources. The topology is obtained from the last step described in Section 4.2.2.  

 

Figure 4.8 Estimating BBN parameters from PCDM+ Local Distribution classes 
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4.3 Use Cases  

To provide an illustration and pilot validation of the operators designed as a part of this study, I per-

formed queries a PCDM+ that was instantiated with Patient Case 1 and 2, and a set of 22 papers for Pa-

tient Case 1 (see Chapter 3 for details on paper selection and paper mapping process). For convenience, I 

restate the Patient Case 1 here: 

Patient Case 1. “A 70-year-old white woman with an incidental finding of right posterior communicating 

artery aneurysm came to our institution for consultation. She has a medical history of head and neck can-

cer. She was a smoker from age 20 to 25. She denies any alcohol consumption or recreational drug use. 

Her blood pressure is 106/65. She has a family history of stroke and hypertension. The aneurysm parame-

ters are 6.3 mm AP × 6.6 mm TR × 5.3 mm CC according to the CT angiogram.” 

Clinical queries relating to this patient case that I aimed to facilitate answering are: 

1. Patient-population matching. Given the patient characteristics, which populations are the ones 

this patient is eligible for so that the evidence acquired from these populations can be appraised to 

this patient? 

2. Disease etiology and behavior. What are the risk factors for aneurysm formation, growth, and 

rupture? How likely will this patient’s aneurysm rupture?  

3. Treatment planning. Which treatment is better for this patient, endovascular coiling (EC) or sur-

gical clipping (SC)? What are prognostic variables that may indicate whether a patient will have 

improved or worsening neurologic outcomes? 

For Patient Case 1, PCDM+ was expressed in RDF/OWL (Resource Description Framework/Web Ontol-

ogy Language). Queries were formulated using SPARQL and were executed against the model using the 

Jena library, a Java-based implementation of an OWL-reasoner. Figure 4.9 depicts an example SPARQL 

query. The query starts with the definition of the prefix used in the SPARQL code (Fig 4.9A), upon which 

a “SELECT…WHERE…” clause is used to retrieve the associated data elements (Figure 4.9B). This 

sample code is used to retrieve the risk factors of aneurysm growth (Figure 4.9C) and all the observations 

of those relations (Figure 4.9D) across the eligible papers. 
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Figure 4.9 SPARQL query sample code to retrieve reported relations involves aneurysm growth. A. The Prefix defines the ab-

breviation used in the SPARQL code; B. a “SELECT…WHERE…” clause is used to retrieve the associated data elements. C. 

Risk factors of aneurysm growth are retrieved; D. All the observations of those relations are retrieved across the eligible papers. 

4.3.1 Patient-Population Matching 

Using the patient-population matching operator, 11 of the 22 papers were returned as relevant to the pa-

tient’s specific case, including papers on aneurysm etiology, growth, rupture, and treatment (Table 4.7). 

Table 4.7 Relevant papers retrieved from PCDM+ 

Paper ID  First Author Title 

004 Xiang, J. Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. 

005 Baharoglu, M.I. Identification of a dichotomy in morphological predictors of rupture status between 
sidewall- and bifurcation-type intracranial aneurysms. 

006 Qian, Y. Risk analysis of unruptured aneurysms using computational fluid dynamics technol-
ogy: preliminary results. 

010 Chien, A. Enlargement of small, asymptomatic, unruptured intracranial aneurysms in patients 
with no history of subarachnoid hemorrhage: the different factors related to the 
growth of single and multiple aneurysms. 

011 So, T.Y.  Risk of growth in unruptured intracranial aneurysms: a retrospective analysis  

012 Chmayssani, 
M. 

Relationship of growth to aneurysm rupture in asymptomatic aneurysms ≤ 7 mm: a 
systematic analysis of the literature. 

013 Ishibashi, T. Unruptured intracranial aneurysms: Incidence of rupture and risk factors. 

014 Wiebers,D.O. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of 
surgical and endovascular treatment. 

016 Vlak, M.H.M. Independent risk factors for intracranial aneurysms and their joint effect: a case-
control study. 

018 Villablanca, 
J.P. 

Natural history of asymptomatic unruptured cerebral aneurysms evaluated at CT 
angiography: growth and rupture incidence and correlation with epidemiologic risk 
factors. 

022 Juvela, S. Natural history of unruptured intracranial aneurysms: probability of and risk factors 
for aneurysm rupture. 
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The other papers were excluded for several reasons, including (1) the patient did not satisfy the eligibility 

criteria of the study (e.g., a study aimed to study middle artery aneurysms, but the patient has a posterior 

communicating artery aneurysm); (2) the patient had missing observations for features mentioned in the 

study eligibility criteria (e.g., “no vasospasm”); (3) the treatment comparison studies that have “receiving 

a treatment” as an eligibility criterion were excluded as the patient had not yet received treatment; and (4) 

reviews that do not provide statistics were excluded.  

4.3.2 Aneurysm Etiology, Growth, and Rupture 

Using SPARQL queries to execute the relation extraction operator, all the relations involving aneurysm 

formation, aneurysm growth, and aneurysm rupture were retrieved, respectively. For each retrieved rela-

tion, statistical analyses associated with each relation, including the statistical results, statistical assess-

ment, source, and population, were also retrieved. Table 4.8, 4.9, and 4.10 show the risk factors retrieved 

from PCDM+ for aneurysm formation, growth, and rupture, respectively. “NA” in the significance col-

umn indicates that no statistical measure was stated in the paper. The context column provides infor-

mation on the definition of variable, states of categorized variables, and type of statistical analysis used. 

Table 4.8 Some risk factors for aneurysm formation and associated context 

Risk factor examined Statistical result Statistical assessment 

Smoking OR=3.0 (95%CI =2.0-4.5) Significant 

Regular Exercise OR=0.6 (95%CI =0.3-0.9) Negatively significant 

Hypertension OR=2.9 (95%CI =1.9-4.6) Significant 

Diabetes OR=0.9 (95%CI =0.4-2.1) Not significant 

Family History of Stroke OR=1.6 (95%CI =1.0-2.5) Significant 

Gender Not reported Significant 

Hypercholesterolema OR=0.5 (95%CI =0.3,0.9) Negatively significant 

 

Table 4.9 Risk factors for aneurysm growth examined in the literature 

Risk factor examined Significance Paper ID Context 

Age No 011  

Alcohol Use Yes 011  

Aneurysm Location No 010 Location = posterior circulation vs. non-posterior circula-
tion; growth = single aneurysm growth (yes/no) 

Yes 010 Location = posterior circulation vs. non-posterior circula-
tion; growth = multiple aneurysm growth (yes/no) 

No 011  
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No 018  

Aneurysm Multiplicity No 010  

No 018  

Aneurysm Shape Yes 018  

Aneurysm Size No 011 size>10 mm vs. size<=10 mm 

No 012 average initial size 

Yes 018 initial size 

Coronary Artery Dis-
ease 

No 010  

Diabetes No 010  

Family history of  

Aneurysm 

No 010  

No 011  

Gender No 006  

No 010  

History of SAH No 011  

History of Stroke Yes 010 single aneurysm growth 

No 010 multiple aneurysm growth 

History of TIA No 010 single aneurysm growth 

Yes 010 multiple aneurysm growth 

Hypertension No 010  

No 011  

Mural Calcification No 018  

Number of Aneurysms No 010 single aneurysm growth 

Yes 010 multiple aneurysm growth 

Smoking History No 010 current or previous cigarette smoking 

No 010 current or previous cigarette smoking 

No 011  

Yes 018  

NA 012  

Yes 022 smoking status at the time of diagnosis 

Yes 022 smoking as a time-dependent covariate 

Thrombus No 018  

 

Table 4.10 A detailed list of risk factors for aneurysm rupture reported from literature. 

Risk factor examined Significance Paper ID Context 

Age No 012 age at the time of diagnosis 

No 014  

No 022 age = (31-40 yrs) vs. (<30 yrs) 

No 022 age = (41-50 yrs) vs. (<30 yrs) 

No 022 age (>51) vs. (<30 yrs) 
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Yes 022 age as a continuous variable 

No 022 age = (31-40 yrs) vs. (<30 yrs) 

Yes 022 age = (41-50 yrs) vs. (<30 yrs) 

No 022 age (>51) vs. (<30 yrs) 

Yes 022 age as a continuous variable 

Aneurysm Clinical 
Presentation 

No 022 rupture = SAH; Aneurysm clinical presenta-
tion=symptomatic aneurysm vs. incidental aneurysm vs. 
prior SAH. 

Aspect Ratio No 004 univariate analysis 

No 004 multivariate analysis with other morphological factors 

No 004 multivariate analysis with other morphological and he-
modynamic factors 

No 005 among sidewall aneurysms only; univariate analysis 

No 005 among bifurcation aneurysms only; univariate analysis 

Yes 005 all aneurysms. univariate analysis 

No 005 among sidewall aneurysms only; multivariate analysis 

No 005 among bifurcation aneurysms only; multivariate analysis 

NA 006 AR>1.6 vs. <1.6 

Blood Pressure No 022 BP at the beginning of the follow-up was used. Mean 
arterial blood pressure = diastolic BP + (systolic BP − 
diastolic BP)/3 

Yes 022 here it refers to the BP at the end of the follow-up 

No 022 mean arterial pressure after adjusted for age 

Ellipticity Index Yes 004 univariate analysis 

No 004 multivariate analysis with other morphological factors 

No 004 multivariate analysis with other morphological and he-
modynamic factors  

Energy Loss Yes 006  

Flow Speed NA 006  

Gender No 022 rupture = SAH 

No 011  

Yes 012 absolute diameter growth 

Growth Yes 012 growth percentage for aneurysms with and without rup-
ture 

Yes 018 all aneurysms in this study 

Yes 018 among saccular aneurysm only 

No 012 annual growth rate  

Height Width Ratio No 005 among sidewall aneurysms only; univariate analysis 

No 005 among bifurcation aneurysms only; univariate analysis 

Yes 005 all aneurysms. univariate analysis 

Yes 005 among sidewall aneurysms only; multivariate analysis 

No 005 among bifurcation aneurysms only; multivariate analysis 

History Of SAH Yes 013 among all aneurysms in the study 
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No 013 Only among the small aneurysms < 5 mm 

NA 012  

Yes 014 rupture rate 

Hypertension NA 012  

No 022 Here it refers to the status at the beginning of the follow-
up. Hypertension is defined as a systolic pressure re-
peatedly greater than 160 mm Hg, diastolic pressure 
greater than 95 mmHg, or as the use of antihypertension 
medication.  

Inflow Angle Yes 005 among sidewall aneurysms only; univariate analysis. 

No 005 among bifurcation aneurysms only; univariate analysis 

Yes 005 all aneurysms; univariate analysis 

Yes 005 among sidewall aneurysms only; multivariate analysis 

No 005 among bifurcation aneurysms only; multivariate analysis 

Nonsphericity Index Yes 004 univariate analysis 

No 004 multivariate analysis with other morphological factors 

No 004 multivariate analysis with other morphological and he-
modynamic factors 

No 005 among sidewall aneurysms only; univariate analysis 

No 005 among bifurcation aneurysms only; univariate analysis 

Yes 005 all aneurysms; univariate analysis 

No 005 among sidewall aneurysms only; multivariate analysis 

Yes 005 among bifurcation aneurysms only; multivariate analysis 

Number Of Vortices Yes 004 univariate analysis 

No 004 multivariate analysis with other morphological factors 

No 004 multivariate analysis with other morphological and he-
modynamic factors 

Oscillatory Shear Index Yes 004 average OSI, univariate analysis 

Yes 004 average OSI, multivariate analysis with other morpholog-
ical factors 

Yes 004 average OSI, multivariate analysis with other morpholog-
ical and hemodynamic factors 

Size Ratio Yes 004 univariate analysis 

Yes 004 multivariate analysis with other morphological factors 

Yes 004 multivariate analysis with other morphological and he-
modynamic factors 

No 005 among sidewall aneurysms only; univariate analysis 

No 005 among bifurcation aneurysms only; univariate analysis. 

Yes 005 all aneurysms; univariate analysis 

Yes 005 among sidewall aneurysms only; multivariate analysis 

No 005 among bifurcation aneurysms only; multivariate analysis 

Smoking History NA 012  

Yes 022 at the time of diagnosis 

Yes 022 as a time-dependent covariate 
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Systolic BP  No 022 after adjusted for age 

TNF-α Yes 011  

Undulation Index Yes 004 univariate analysis 

No 004 multivariate analysis with other morphological factors 

No 004 multivariate analysis with other morphological and he-
modynamic factors 

Wall Shear Stress Yes 004 average WSS, univariate analysis 

Yes 004 maximum intra-aneurysmal WSS, univariate analysis 

Yes 004 low WSS area, univariate analysis 

No 004 WSS gradient, univariate analysis 

     Yes 004 average WSS, multivariate analysis 

 No 004 WSS gradient, multivariate analysis 

No 004 maximum intra-aneurysmal WSS, multivariate analysis 

No 004 low WSS area, multivariate analysis 

No 006 time-averaged WSS 

 

In addition to using the relation extraction operator to retrieve the risk factors of aneurysm formation, 

growth, and rupture with associated statistical measurement, I also used probability retrieval operator to 

determine all the probabilities that can be used to estimate the rupture risk for the patient. 

Table 4.11 Some conditional probabilities of rupture from PCDM+ to facilitate rupture risk estimation 

Patient Characteristics Observed Value P(rupture = yes | Patient’s ob-
servation) 

Age 70 yo 15.45% 

Gender female 25% 

Clinical presentation incidental 4.42% 

Aneurysm rupture no  

Aneurysm location right PCoA 12.34% 

Aneurysm size 6.3×6.6×5.3 mm 11.76% 

Aneurysm shape saccular 9.65% 

Modality CTA  

Family history of stroke yes 24.14% 

Family history of hyper-
tension 

yes 21.45% 

Medical history head and neck cancer  

Smoking status former-smoker 12.56% 

Alcohol use none  

Blood pressure 106/65 27.14% 

Treatment No  

               (*PCoA: Posterior Communicating Artery; **CTA: Computed Tomography Angiography) 
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The rupture risk can also be estimated by constructing a BBN with rupture risk as targeted variable. Based 

on this retrieved information, a belief network was created (Figure 4.10 and 4.11) to answer predictive 

questions such as, “How likely is it that this aneurysm will rupture?”  

 

Figure 4.10 The process of creating a BBN to explain and predict aneurysm formation from PCDM+. A solid arrow in the BBN 

indicates a relation (either an association or a causal relation) between nodes. A dashed arrow indicates a translation from a 

PCDM+ entity/attribute to a BBN node or a link. 

 

 

Figure 4.11 Examples of relations associated with aneurysm growth and rupture as reported in matched papers. A solid arrow 

indicates a relation (either an association or a casual relation) between nodes. The two nodes “aneurysm growth” and “aneurysm 

rupture” are the target variables of interest. Solid ovals (blue) represent concepts that are observed in the patient, while dashed 

ovals (yellow) denote concepts that are missing in the patient records. 
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Here, I demonstrate the potential application of translating PCDM+ to a BBN in order to answer clinical 

questions. By using the operators previously designed for BBN building (Section 4.2), variables in the 

networks are translated from PCDM+ entities (e.g., aneurysm formation is a Behavior entity) or attributes 

(e.g., gender is an attribute of Patient entity); links between variables are translated from relations in 

PCDM+ (e.g., the arrow from gender to aneurysm formation represents the “gender-formation” relation-

ship in PCDM+), and probabilities captured in PCDM+ are then used to estimate the BBN parameters. 

4.3.3 Treatment Planning 

I retrieved all the treatment studies discussed in the 22 papers to ascertain the prognostic factors reported 

in these papers. Study type is recorded as an attribute of a study and the filter “study type = treatment” 

was used. PCDM+ retrieved five treatment studies from of the set of 22 papers, one of which was exclud-

ed as the patient did not satisfy the eligibility criteria of the paper (i.e., the authors only studied the poste-

rior circulation aneurysms and the patient has a posterior communicating aneurysm, which is located in 

the anterior circulation). Using the relation extraction operator, a list of prognostic factors for unfavorable 

clinical outcomes of SC and EC reported in these papers was retrieved (see Table 4.12).  

Table 4.12 Prognostic factors for unfavorable treatment outcome. SC= surgical clipping; EC= endovascular coiling. 

Prognostic factor Treatment Statistical result Statistical assessment 

Age>70  SC P=0.039 Negatively significant 

Family history of stroke  EC P=0.004 Significant 

Aneurysm Location SC and EC Not reported Not significant 

Aneurysm Size  SC and EC Not reported Not significant 

Multiplicity of aneurysm SC P=0.013 Significant 

Diabetes SC P=0.027 Significant 

Hypercholesterolemia  SC P=0.00 Significant 

Smoking  SC  P=0.021 Significant 

EC P=0.016 Significant 

 

Based on this evidence retrieved from PCDM+ and given that the patient has a family history of stroke, 

age is ~70, no smoking history, no history of diabetes, and an unruptured aneurysm, endovascular coiling 

is suggested as a better treatment than surgical clipping.  
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CHAPTER 5. Conclusion 

This chapter summarizes the findings and contributions of this dissertation. Future directions are also pre-

sented to further contextualize the impact of this research. 

5.1 Contributions 

This work addresses the need for a systematic process that can be adopted to synthesize knowledge of a 

disease across multiple sources (e.g., medical records, published literature, clinical guidelines, expert 

opinions, and existing models). Knowledge synthesis can facilitate clinical decision making pertaining to 

individual patients. An intermediate representation was created to consolidate and standardize knowledge 

fragments and associated context across medical records and scientific literature, and operators were cre-

ated to translate evidence from this representation to a format useful for answering clinical queries relat-

ing to specific patient cases. My research resulted in two key contributions: 

1. I created an intermediate representation, called Phenomenon-Centric Data Model Plus (PCDM+), to 

logically consolidate and standardize knowledge fragments and associated context across medical 

records and scientific literature. PCDM+ comprises three components: PCDM-Clinic, PCDM-

Literature, and Inference Layer. PCDM-Clinic captures individual patient-level observations, PCDM-

Literature contains the population-level findings from pertinent scientific literature, and Inference 

Layer maintains the evidence that was filtered and translated from PCDM+ by operators to answer 

individual-tailored clinical questions. A requirement analysis revealed that three features are desirable 

when designing such a standard representation to integrate disease knowledge: (1) classes to encode 

key findings; (2) classes to capture associated context; and (3) semantic matching across the sources. 

By adapting a probabilistic entity-relationship model, PCDM+ extended PCDM to satisfy these re-

quirements. The evaluation tasks highlight the completeness and correctness of the representation in 

its ability to faithfully capture information from patient records and published literature. 

2. I developed operators that translate evidence from PCDM+ into aggregated knowledge elements 

needed to inform clinical decision making. Patient-population matching, relation extraction, and 
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probability retrieval operators help to translate PCDM+ into knowledge elements that can assist in 

answering clinical queries about a specific patient. Based on the representation of eligibility criteria in 

PCDM+, the patient-population matching operator employed a rule-based algorithm to assess if a pa-

tient satisfies the eligibility criteria of sampled populations in research studies. The relation extraction 

operator allows the users to explore the examined relations and their statistical strength to offer in-

sights on various risk and prognostic factors, and further assist topology specification in disease mod-

eling. The probability retrieval operator returns distributions of features (e.g., demographics, clinical 

presentation, morphology, treatment) that are observed in the targeted patients as well as probabilities 

of outcome variables (e.g., rupture, survival) conditioned on those factors. These probabilities can be 

utilized to estimate the risk in clinical settings, as well as provide constraints to estimate the parame-

ters in disease modeling. In this work, additional operators were designed to facilitate BBN construc-

tion in variable selection and discretization, topology specification, and parameter estimation. Use 

cases demonstrated the functionality of these operators in answering clinical queries of a given patient 

case with an unruptured brain aneurysm.   

5.2 Challenges and Future Work 

This dissertation focused on the capacity of PCDM+ for capturing and operationalizing information from 

medical records and clinical publications. PCDM+ can be effectively used by target users (e.g., clinical 

translational researchers, practicing physicians) to derive new insights into how a complex disease should 

be managed in specific patients. I present the challenges, limitations and future work in this section. 

 Generalizability. I demonstrated PCDM+ functionality through use cases in the domain of 

intracranial aneurysm but did not explore its application in other domains. However, PCDM+ pro-

vides a collection of abstract classes that should be generalizable to other disease domains by creating 

domain-specific instances. 

 Natural language processing. Clinical publications are a key source in which domain knowledge is 

formally captured and subsequently used as evidence to support medical decisions. Publications are 
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written in natural language and include figures and tables that are challenging to define in a systemat-

ic and computer-aided way to appraise and apply the evidence to specific patients. PCDM+ formaliz-

es published research findings (e.g., behaviors, relationships, and observations) in a standardized, ma-

chine interpretable manner that supports information retrieval, quality control, and ultimately clinical 

decision support. In this work, mapping from data sources to PCDM+ was performed manually. 

However, the standardized classes of PCDM+ provide a structure in which frame-based natural lan-

guage processing (NLP) representations can serve as input. Future work would include the use of 

NLP to automate this process to make this work scalable to large corpora of published biomedical lit-

erature.  

 Context and provenance. Often, information sourced from the literature is distilled into a few key 

points (e.g., individuals with incidental, < 7 mm aneurysms without previous SAH should be ob-

served rather than undergo an intervention), losing most of the context about the study based on 

which the conclusion is made. Without this surrounding context, data integration for clinical decision 

support tools is difficult, as the applicability of a recommendation cannot be specifically matched to 

individuals. Therefore, an important challenge in evidence-based medicine is to define and structure 

the context that is associated with key findings so that evidence relevant to a specific patient can be 

easily found and retrieved. Relevant results can be properly interpreted and appraised to provide more 

targeted treatments. PCDM+ demonstrates the research effort of capturing contextual and provenance 

metadata from clinical records and published clinical literature, allowing multiple population findings 

to be extracted and restructured into forms that are applicable to specific patient cases. Based on 

PCDM+, the operators help achieve the goal of facilitating answering individually-tailored medicine 

queries. However, in the current dissertation, the contextual metadata in PCDM+ has not been fully 

utilized and more sophisticated operators need to be developed to achieve the potential of PCDM+ to 

achieve contextual EBM. 

 Probability estimation. Physicians often need to estimate the risk of clinical outcomes (e.g., rupture, 

survival) and explain this information to their patients to convey sound judgment in treatment plan-
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ning. A great amount of population evidence provided in the literature (e.g., probabilities, distribu-

tion, and statistics) is often overlooked in the research area of EBM. PCDM+ provides a formal struc-

ture to maintain marginal, conditional, and joint probabilities with context (e.g., the definition of that 

probability as a percentage of aneurysm vs. percentage of patient, follow-up period, and annually 

probability vs. cumulative probability). PCDM+ can, therefore, be used to generate a library of prob-

abilities that can be referenced by physicians. However, the challenge remains in how to consolidate 

these fragmented probabilities from different studies with a different context in a fully systematic 

manner. Similarly, additional work would be required to determine how to summarize probabilities 

from many contexts to generate an overall statistically and clinically meaningful assessment. 

 Probabilistic model building. Related to the prior point, as a potential extension of this work, the 

aim should be to improve PCDM+’s ability to create probabilistic models, like BBNs, reported the 

literature. While prior work has described utilizing information from literature [Antal, 2004], these 

applications are frequently limited to defining variables and a network topology based on information 

described in the papers. This work describes a way to transform a PCDM+ instantiation into a BBN. 

PCDM+ entities/attributes serve as variables, relations encoded in PCDM+ form the network 

topology, and documented probabilities define the BBN’s conditional probabilities. However, com-

bining the partial statistics captured in PCDM+ to form full conditional probability tables and an 

overall joint probability distribution is still an ongoing task. The mathematical and computational 

challenges of synthesizing probabilities to generate a joint probability may be solved with optimiza-

tion algorithms such as MaxEnt, Gibbs sampling, and constraint-based optimization. However, the 

challenge of reusing these probabilities correctly persists, as they are derived from different sources 

with different contexts. For instance, the probability of rupture can represent different information 

across studies: some authors report an annual rupture rate, while others report the cumulative rupture 

rate over a follow-up period.  

 Knowledge heterogeneity. During the process of populating PCDM+ with information, several re-

porting inconsistencies were encountered: (1) the use of different names for the same property across 
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different sources (e.g., aneurysm size and maximum diameter are synonymous in many papers); (2) 

the same name in different sources refers to different properties (e.g., wall shear stress can mean av-

erage weighted wall shear stress or maximum wall shear stress); and (3) the same continuous proper-

ty may be discretized differently in different papers (e.g., age is discretized as <70, >=70 in one pa-

per, but <30, 30-50, 51-70, and >70 categories were employed in another study). PCDM+ helps users 

manage the heterogeneity of information by standardizing the terminology across sources and assign-

ing a preferred name to each variable at the concept level. PCDM+ also explicitly captures properties 

such as feature definition, discretized states, and synonyms as contextual fragments to enhance the 

understanding of an observed variable. Given multiple discretization mechanisms, the discretization 

operator designed in this work can suggest optimal discretization for continuous variables based on 

maximum entropy.   

 Clinical research versus clinical practice. A large gap was noted between data that is collected dur-

ing research and what is reported in clinical practice. Many variables analyzed in research were not 

routinely observed or collected as part of the standard of care. For ICAs, aspect ratio, undulation in-

dex, nonsphericity index, ellipticity index, and size ratio are variables often examined in studies that 

explore morphology as part of rupture risk assessment. Although these parameters are not directly 

available from clinical data, each can be calculated from clinical variables such as aneurysm neck di-

ameters, height, vessel angle, aneurysm volume, and surface area. Hemodynamic parameters, such as 

wall shear stress, flow pattern, a number of vertices, and oscillatory shear index cannot be sourced 

from medical records unless computational fluid dynamics simulations are performed to provide es-

timated values. While many factors exist as to why variables in research have not been translated clin-

ically (e.g., due to computational requirements, issues with reproducibility/standardization), PCDM+ 

formalizes this information in a way that is more directly sharable. This functionality also indicates 

that PCDM+ has another potential use to report newly identified significant risk factors and prognos-

tic factors in clinical research and suggest collect observations of those factors in clinical settings.  
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 Evidence strength assessment and evidence synthesis. In this work, PCDM+ attempted to compre-

hensively represent all available evidence for a phenomenon. It also incorporates context concerning 

strength of evidence and is capable of providing additional guidance to physicians and statisticians. 

However, the model and operators do not automatically assess accuracy of certain data sources rela-

tive to others. Nor does it provide an explicit mechanism to deal with conflicting evidence. For in-

stance, if multiple papers report differently on a given relationship (non-significant vs. significant vs. 

inversely significant), PCDM+ will not automatically synthesize multiple observations and suggest a 

conclusion of such a relation. Rather, PCDM+ provides users with the original information to make 

such an assessment. Based on PCDM+, separate applications could be developed in the future to syn-

thesize the evidence and assess its strength or detect conflicting evidence.  

 Patient-population matching. Patient-population matching in this work revealed that determining if 

a patient satisfied study eligibility criteria was not a necessary or sufficient condition for determining 

which studies are applicable to individuals. By capturing variables and their distributions in popula-

tions, PCDM+ provides a basis for a more robust probabilistic approach for performing patient-

population matching in the future. Similarly, patients often have missing data in their medical records 

for a number of reasons. This work demonstrates a representation of eligibility criteria and a naïve 

mechanism that can be applied to handle missing data. However, an explicit representation of eligibil-

ity criteria capable of handling missing and inconsistent information is desired. To overcome this is-

sue, more structured and comprehensive clinical trial eligibility criteria frameworks [Milian et al., 

2012; Dameron et al., 2013] can be integrated to help address missing patient information.  

 Temporality. Another direction for future work will be to extend PCDM+’s ability to represent 

changes in knowledge over time via its temporal stream constructs, thus managing evidence propaga-

tion. The stream construct has been previously reported [Bui and Taira, 2010]. A stream represents 

data sequence in the medical records (e.g., sequence of patient states), or the progression of evidence 

towards a final diagnosis in differential diagnosis. The future efforts should focus on adapting the 

construct to model: (1) the clinical course of a patient or population (e.g., sequence of events resulting 
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in a clinical outcome); (2) the experimental flow of a study (e.g., understanding the sequence of inter-

ventions given in a clinical trial); and (3) the evolution of our understanding of a given phenomenon 

(e.g., changes in theories or hypotheses that explain an observation).  

 Matching physicians with recommendations. Another potential PCDM+ application is to provide a 

physician “profiling” system. After using PCDM+ to provide information about a patient and the rec-

ommendations from the literature, one can further imagine mining the EHR and the past performance 

for the specific physician to elucidate his/her outcomes pertaining to a particular procedure/treatment. 

For example, if a patient with certain characteristics comes to the hospital with clinical presentation 

of a brain aneurysm, PCDM+ can be used to retrieve relevant matching papers and provide the treat-

ment recommendation (e.g., the coiling procedure). Because PCDM+ keeps the past patients’ records, 

the physician’s performance regarding coiling procedure will be retrieved (e.g., how many coiling 

procedures he/she performed and how many were successful).  

 Expressive representation language. A suitably expressive representation language for PCDM+ is 

lacking. In this work, I proposed to construct the classes in PCDM+ as a PER model. However, cur-

rent representations like OWL have no standard to represent probabilities and statistics. Similarly, 

currently available tools such as Protégé and databases do not fully achieve the functions of PCDM+. 

Hence, a formal standard needs to be adopted for expressing uncertainty in OWL and supporting tools 

to specify probabilities. 
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