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Abstract

A fully implantable brain-computer interface (BCI) can be a practical tool to restore independence 

to those affected by spinal cord injury. We envision that such a BCI system will invasively acquire 

brain signals (e.g. electrocorticogram) and translate them into control commands for external 

prostheses. The feasibility of such a system was tested by implementing its benchtop analogue, 

centered around a commercial, ultra-low power (ULP) digital signal processor (DSP, 

TMS320C5517, Texas Instruments). A suite of signal processing and BCI algorithms, including 

(de)multiplexing, Fast Fourier Transform, power spectral density, principal component analysis, 

linear discriminant analysis, Bayes rule, and finite state machine was implemented and tested in 

the DSP. The system’s signal acquisition fidelity was tested and characterized by acquiring 

harmonic signals from a function generator. In addition, the BCI decoding performance was tested, 

first with signals from a function generator, and subsequently using human electroencephalogram 

(EEG) during eyes opening and closing task. On average, the system spent 322 ms to process and 

analyze 2 s of data. Crosstalk (<−65 dB) and harmonic distortion (~1%) were minimal. Timing 

jitter averaged 49 μs per 1000 ms. The online BCI decoding accuracies were 100% for both 

function generator and EEG data. These results show that a complex BCI algorithm can be 

executed on an ULP DSP without compromising performance. This suggests that the proposed 

hardware platform may be used as a basis for future, fully implantable BCI systems.

I. Introduction

Every year, between 250,000 and 500,000 people in the world suffer a spinal cord injury 

(SCI), which can lead to permanent disability [1]. Paralysis due to SCI decreases quality of 
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life for the affected individuals and their family members and can lead to medical 

complications such as cardiovascular problems and pressure ulcers. In the US alone, the 

primary and secondary health care costs associated with SCI are estimated to be ~$50 billion 

per year [2]. Thus, practical solutions for restoring motor functions after SCI are desperately 

needed. Brain-computer interfaces (BCI) can be used to bypass the damaged spinal cord and 

facilitate direct brain-control of prosthetic devices such as exoskeletons or functional 

electrical stimulation systems. Recent studies have shown that using invasively acquired 

electrocorticogram (ECoG) signals is promising for BCI application [3], [4]. However, such 

ECoG-based BCIs utilize large, power-hungry electronics and external computers, which 

limit their use to lab settings only. Some researchers proposed to address this problem by 

developing intracranial implants capable of acquiring brain signals and wirelessly 

transmitting them to an external computer for processing [5], [6]. However, this approach 

does not fundamentally circumvent the reliance on an external computer. Furthermore, such 

bulky systems are unlikely to gain a widespread adoption by the target patient population. 

Therefore, a practical low power BCI that is highly portable, always available, and 

aesthetically pleasing must be developed.

We hypothesize that all of these criteria can be met with a fully implantable ECoG-based 

BCI (Fig. 1A). This system is envisioned to include a skull unit, which is used to amplify 

and serialize up to 64-channel electrocorticogram (ECoG) signals into a single channel. 

These signals are routed to a chest wall unit (CWU), which digitizes, de-multiplexes, and 

processes the signals to decode the underlying intentions (Fig. 1B). The digitizer is designed 

to capture up to the high-γ band (80–160 Hz), which is known to modulate with movements 

[3], [4]. The CWU also includes a wireless transceiver to facilitate communication with 

external prosthetic devices and diagnostic units. The entire system is expected to be powered 

by a battery with wireless recharging capability. The fully implantable nature of this system 

will make it highly portable and always available. Furthermore, the absence of any 

transcutaneous electronic components greatly mitigates the infection risk and makes the 

system aesthetically acceptable to potential recipients. In this study, we developed a 

benchtop analogue of this proposed fully implantable BCI system and validated its functions 

with artificial signals as well as with human electroencephalogram (EEG) signals.

II. Methods

To mimic the function of a fully implantable BCI system, a custom amplifier array and 

multiplexer (mux) were used as an analogue to the skull unit, and an ultra-low power (ULP) 

digital signal processor (DSP) development board was used to simulate the CWU. The DSP 

was programmed with a custom BCI algorithm, and this system’s functions were tested 

using artificial and human EEG signals. The system performance was used to determine this 

platform can be used as a basis for a fully implantable BCI system.

A. Design

A commercially available development board (EVM5517, Spectrum Digital Inc, Stafford, 

TX) for the TMS320C5517 (“C5517”, Texas Instruments, Dallas, TX) DSP was connected 

to a 4-channel mux (MAX4618, Maxim Integrated, San Jose, CA). The mux was then 
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connected to either a function generator or a custom EEG amplifier for testing (described 

further below). This setup was implemented on prototyping boards.

Consistent with our previous EEG-based BCI systems [7], [8], the basic function of the 

proposed system is to be able to decode a user’s brain signals into one of two states. To this 

end, the BCI was designed to operate in two modes. First, a training mode involves 

collecting brain signals while cuing the user to perform idling or moving tasks. Then, in the 

online mode, the BCI predicts the state from brain signals acquired in real time. Common to 

both modes of operation are the following signal acquisition and processing procedures. 

Digitized 10-bit signals from the C5517’s analog-to-digital-converter (ADC) were stored in 

a pair of 16-bit unsigned integer arrays with additional metadata embedded in the unused 

bits (Fig. 2). These arrays were stored in the DSP’s internal random access memory (RAM), 

allowing the BCI to run at high speed. They were also written into an SD card (serving as an 

analogue for an embedded MMC storage module in a future fully implantable BCI system), 

which facilitates the system’s ability to perform long-term ECoG recordings. Signals were 

subsequently demultiplexed and converted to power spectral densities (PSD) using Fast 

Fourier Transform (FFT). The PSD were then binned into the following EEG bands: α (8–

12 Hz), low-β (12–20 Hz), high-β (20–30 Hz), and low-γ (30–40 Hz).

During training, 40-s of signals underlying the state A and 40-s underlying state B were 

collected to train the BCI decoder. Specifically, the binned PSD underlying the two states 

were used to derive dimensionality reduction transformation consisting of a combination of 

principal component analysis (PCA, set to retain 99.7% of variances) and linear discriminant 

analysis (LDA). This resulted in a dimensionality reduction from 16 D (4 bins × 4 channels) 

to 1 D. The class-specific means and variances of these 1 D features were then used to 

obtain the posterior probability of each class by utilizing the Bayes rule with unpooled 

Gaussian likelihoods and equal priors. Similar to out prior EEG-based BCIs [7], [8], the 

current BCI’s online mode was modeled as a binary state machine with the state transition 

parameters established through a calibration procedure. To this end, 20-s long signal samples 

underlying each state were acquired and processed in the frequency domain in the same 

manner as the training data above. Upon transforming these calibration samples into 1 D 

features, the Bayes rule was applied to obtain the posterior probability of state B given 

feature f, P(B|f). Note that P(A|f) = 1 − P(B|f). For each state, the average of P(B|f) was 

calculated and used as the state machine transition threshold, i.e. TA = mean{P(B|f ϵ A)} 

and TB = mean{P(B|f ϵ B)}.

In the online mode, 2-s long data windows were processed in the same manner as the 

calibration data. The posterior probability, P(B|f), was calculated using the Bayes rule and 

compared to the state transition thresholds in real time. If P(B|f) ≤ TA, the state machine 

either remains in state A or switches from state B to A. If P(B|f) ≥ TB, the state machine 

either remains in state B or switches from state A to B. If TA < P(B|f) < TB, the BCI defaults 

to the current state. Note that these state transition rules allow the state to be maintained 

without having to keep the posterior probability constantly above or below the respective 

threshold. In this study, BCI outputs were streamed to the debug console on a desktop 

computer in order to monitor the BCI system’s performance. The details of these operations 

are illustrated in Fig. 3.
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B. Function Generator Test

The BCI system was first tested using artificial signals to ascertain its ability to reproduce 

and decode the acquired signals. To this end, a function generator was used to generate 100 

mVpp sine wave signals with various frequencies at 400 mV offset. The signals were 

acquired through one of the mux input channel, while the remaining 3 channels were 

grounded. Signals were recorded at 4000 Hz and subsequently exported via the SD card for 

analysis. Time domain plots and power spectrum were used to assess signal acquisition 

fidelity, cross-talk specification, total harmonic distortion (THD) and the correct encoding of 

mux and timing meta-data.

Next, BCI operation was also tested by using a sine wave to simulate the brain signals 

underlying state A and a square wave of the same frequency to simulate brain signals 

underlying state B. These signals were generated during the training mode, and a BCI 

decoding model was generated as described above. During the online mode test, alternating 

20-s long periods of sine and square waves were sent to the system while the BCI decoded 

the signals in real time. This was repeated for a total of 200 seconds. The number of 

correctly decoded samples as well as the total number of decoded samples were recorded to 

ascertain the system’s performance.

Both the signal fidelity and BCI tests were performed at 13, 113, and 223 Hz.

C. Human EEG Test

A custom-made 4-channel bio-amplifier [9] was connected to the 4 channels on the mux. 

Note that signal fidelity was not examined here, as this has already been tested in [9].

The system’s ability to decode brain signals was tested with human EEG. An able-bodied 

male subject (20 yo) underwent EEG placement over electrodes Oz, O1, O2, and POz 

(referenced to AFz) according to the 10–20 international standard. Training EEG was 

acquired by the system at 250 Hz/channel using the procedure described above. The subject 

was instructed to alternate between eyes open (state A) and eyes closed (state B).

Similar to the function generator test procedure, the online mode involved the subject 

alternating between 20-s periods of eyes open and 20-s periods of eyes closed conditions for 

a total of 200 s. The BCI system decoded the underlying EEG signals into either states and 

the performance was assessed as the percentage of correctly decoded samples.

III. Results

The BCI software occupied 101 kB (101 thousand bytes), and 180 kB was allocated to heap, 

where runtime variables were stored. The internal RAM capacity totaled 327 kB, which 

allows the remaining 46 kB to be used for future expansion of the BCI without the need for 

external RAM.

A. Function Generator Test

The system was tested with sine waves at 13 Hz, 113 Hz, and 223 Hz to assess signal 

acquisition fidelity, and the results are summarized in Table I. Representative time and PSD 
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plots are shown in Figs. 4 and 5, respectively. Since the crosstalk specification was below 

−65 dB for the 3 grounded channels, the mux encoding was deemed to be correct.

The ADC overhead was 59 μs. The processing time overheads relative to each 2-s long data 

sample were as follows: 0.24% demux, 0.16% FFT, 14.5% PSD, and 1.23% binning. For 

instance, PSD calculations took 290 ms to process 2-s long data. The SD card writing 

significantly impacted the other DSP functions, since it caused 70–75 ms gaps in the 

recorded signals. Thus, this feature was disabled during the human EEG testing.

B. Human EEG Test

After calibration, the state transition thresholds were found to be TA=0.0125 and TB=0.99, 

which indicated a high level of separability between the EEG underlying the eyes open and 

closed states. Ideally TA and TB should be 0 and 1, respectively. During the online BCI test, 

the mean of P(B|f ϵ A) was 0.00582±0.0297, while the mean of P(B|f ϵ B) was 

0.910±0.229. Note that the state machine eliminated false transitions from state B to A. This 

resulted in an overall online BCI decoding accuracy of 100%, indicating that over 200-s 

period, there were 100 correct decisions.

IV. Discussion and Conclusions

The current study demonstrates that it is possible to execute critical BCI functions, including 

EEG acquisition, processing, and decoding using a custom amplifier array, mux, and a 

commercial ULP DSP. Despite the limited computing resources available on the DSP, this 

BCI system is still capable of high fidelity recording and highly accurate decoding of brain 

signals. Furthermore, the capabilities and performances are similar to those running on full-

sized computers with larger number of brain signal channels [10].

With the current configurations, the ULP DSP was estimated to consume up to 100 mW at 

full load and <10 mW during idle [11]. Based on preliminary simulations, the maximum 

power dissipation from a chest wall implant was within physiological tolerance. Also, a 

1000-mAh battery can power the system for ~14 h at full power or >100 h at idle power. 

Based on [12], a user is expected to operate the BCI at full power for 26.7% of a 24-h 

period, bringing the average power consumption to 34 mW (~38 h on one charge).

Future work will involve integrating the DSP with our previously developed 64-channel 

amplifier array and mux [13] and a more efficient, custom-made ADC. The custom ADC 

should be able to circumvent the internal ADC overhead to allow high-γ band acquisition on 

all 64 channels. Ultimately, this setup will be tested in a population of subjects with ECoG 

electrode implants. However, the utilization of 64 channels will most likely exceed the 

memory capacity of the DSP. Hence, more efficient implementations of the BCI algorithm, 

e.g. using streaming PCA [14], will be necessary. Also, various optimization procedures can 

further improve the efficiency of the BCI algorithm to reduce the power consumption and 

extend the battery life.

Finally, all necessary components will need to be implemented into a dedicated printed 

circuit board (PCB) for the CWU implant. Currently, it is estimated that these critical 
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components will occupy ~5×6 cm2. This PCB area is similar to that of a commercial deep-

brain stimulator CWU.
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Fig. 1. 
(A) Design overview and (B) schematic of the future fully implantable BCI system. (C) 

Design of the benchtop analogue tested in the present study. Frequency values indicate 

bandwidth.
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Fig. 2. 
Data storage structure for one sample. The first 10 bits store the signal. The next 2 bits store 

the mux state (which channel). The last 20 bits store the differential elapsed time of each 

sample in units of 1/50 ms and can also be used to store other meta-data.
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Fig. 3. 
Software design block diagram.
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Fig. 4. 
Time domain plots. The sine wave (223 Hz) was only sent to Channel 1.
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Fig. 5. 
Welch power spectrum for the sine wave test at 223 Hz on Channel 1. Note that the DC bias 

was removed first.
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TABLE I

The sine wave test was conducted at 4000 Hz sample rate (1000 Hz per channel) with a 100 mVpp test signal.

Freq. (Hz) Meas. freq. (Hz) Dt (μs) Crosstalk spec. (dB) THD (%) BCI online accuracy (%)

13 13.6 987±37.7 −65.7 1.19 100

113 113.3 1001±106 −68.0 0.41 100

223 222.7 1000±3.85 −67.6 0.27 100

Freq. = Test frequency. Meas. freq. = Measured frequency as shown in PSD. dt = time between samples (ideal dt = 1000 μs). Crosstalk spec. = 
PSD(f, ch1) - PSD(f, chi) at the worst case. THD = total harmonic distortion.
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