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Abstract

This work addresses the question of how neu-
ral networks self-organise to recognise familiar
sequential patterns. A neural network model
with mild constraints on its initial architec-
ture learns to encode the direction of spec-
tral motion as auditory stimuli excite the units
in a tonotopically arranged input layer like
that found after peripheral processing by the
cochlea. The network consists of a series of in-
hibitory clusters with excitatory interconnec-
tions that self-organize as streams of stimuli
excite the clusters over time. Self-organization
is achieved by application of the learning
heuristics developed by Marshall (1990) for
the self-organization of excitatory and in-
hibitory pathways in visual motion detection.
These heuristics are implemented through lin-
ear thresholding equations for unit activation
having faster-than-linear inhibitory response.
Synaptic weights are learned throughout pro-
cessing accorSing to the competitive algorithm
explored in Malsburg (1973).

The Perception of Spectral Motion

The processing of sequential stimuli is an essen-
tial component of auditory and visual perception
in many animals. Recent efforts have resulted in
learning algorithms that can be used to encode
sequential patterns within autoassociative Sﬁeiss
& Taylor, 1991; Metzger & Lehmann, 1990; El-
man, 1990) and supervised paradigms (Wang &
Arbib, 1990; Foldidk, 1991). We believe that
these approaches can be successfully extended to
the self-organization of sequential pattern detec-
tors through the integration of a hierarchy of net-
work layers, each of which is sensitive to particular
attributes of a sequential input stream. This re-
port details an implementation of the first module
of a system for building representations of sequen-
tial auditory patterns that are statistically salient
in an animal’s environment. When exposed to an
environment consisting of frequency sweeps, sound
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bursts, and constant frequency components this
module learns to detect direction of motion from
a l-dimensional tonotopic input array.

Neural patterns of response to auditory stimuli
travel from the basilar membrane to the auditory
cortex via the cochlear nucleus, inferior colliculus,
and medial geniculate. There is little doubt that
higher and higher centers of auditory processing re-
spond to auditory stimuli of increasing complexity
and duration (Pickles, 1988). Stimuli with chang-
ing frequency are important to many species for
communication, navigation, and target tracking.
For example, within the mustached bat, sensitivity
to frequency modulated tones (FM) has been found
at the cochlear nucleus (Suga, 1990). Auditory cor-
tex apparently contains large numbers of units that
respond best to species specific calls (Aitkin, 1990)
which are usually temporally and spectrally com-
plex. Whitfield and Evans (1965) discovered that
the majority of a sample of 104 cells of auditory
cortex responded only to frequency modulationina
particular direction. The effect of rate of frequency
modulation on cell response was minimal though
perceptible for some cells. We thus propose that
an important first task of the auditory pathway is
the rate-invariant determination of direction of mo-
tion across the spectrum for non-constant stimuli.

The motion detection model presented here con-
verts an inherently temporal pattern into a spa-
tial code (unit activity). This may be useful if
further processing is to isolate sequential patterns
using spatial learning mechanisms like competitive
learning or the delta rule. Since the non-stationary
aspect of signals is more important to speech that
steady frequency components, direct representation
of frequency change emphasises functionally rele-
vant aspects of acoustic signals. Finally, the pre-
dictive aspect of motion detection should permit se-
quence tracking to be robust in the complex acous-
tic environment faced by most animals.

Auditory Motion Layer
Preprocessing

For testing on actual auditory stimuli, input to
the model approximates response characteristics of
the auditory nerve. These characteristics could
be modeled using a model like that studied in
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Delgutte, 1982), but are merely simulated here.

he important property of the preprocessor is that
it consists of an array of linear bandpass filters, each
followed by adaptation that leads to rapid ON-type
response and then decay to a much lower value.
Consequently, the input stimuli used in these sim-
ulations consists of sequences of binary-valued pat-
terns sweeping across the input field as though ON-
type responses had been filtered through a cutoff-
threshold.

Model and Learning

The topology and learning heuristics of the present
model are adapted from those presented in (Mar-
shall, 1990) for the processing of visual motion and
velocity information. Marshall’s model employed
the shunting equations studied by Grossberg ?1973)
and the competitive learning equations outlined in
Carpenter & Grossberg, 1987). In early simu-
ations it was found that the shunting equations
proposed by Marshall contain a number of strong
linearities that require careful numerical integra-
tion and are therefore computationally expensive.
These equations were revised in order to make pos-
sible the eventual simulation of much larger net-
works necessary to speech processing over the en-
tire audible spectrum. We found that the essential
features of Marshall’s model are retained in the cur-
rent formulation.

The motion detection layer (Figure 1) is a tono-
topic layer of inhibitory clusters, the units of which
are connected to the units of all other inhibitory
clusters in the same layer by excitatory connec-
tions having fixed delay. The clusters themselves
are on-center off-surround anatomies that empha-
size the activation of the unit with greatest acti-
vation. Each input line connects to all units in a
single cluster corresponding to the receptive field
represented by the input line, thus preserving the
tonotopic arrangement of the input units.

Initially the lateral excitatory connections be-
tween units of the motion detection layer are
randomly connection. Over time these connec-
tions Dlﬁ&ﬂile themselves to represent the spatio-
temporal correlations present in the input environ-
ment. Learning is proportional to the degree to
which bottom-up input to a unit coincides with in-
put from units in other clusters. A unit that re-
ceives both bottom-up and lateral excitation tends
to suppress other units in its cluster and, as a re-
sult, learns more strongly than other units in its
cluster. Competition between units ensures that
the units of each cluster respond to different input
patterns.

Unit Equations. The essential attributes of
units in the inhibitory clusters are determined by
the necessity that all units in a cluster activate in
the presence of bottom-up input, and the opposing
requirement that combined lateral and bottom-up
excitation cause winner-take-all behavior. More-
over, the selection of the most strongly activated
unit in a cluster must be rapid, or intermediate ac-
tivation values will corrupt learning. One can distill
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Figure 1: Layer of units responsible for detection
of motion. Inhibitory clusters are enclosed by an
ellipse. All excitatory connections from a single
unit of one cluster are shown.

the essential behavior of Marshall’s motion detec-
tion model to the following four points:

1. The network must be stable.

2. When input to a unit falls to sero the unit’s ac-
tivation must rapidly decay to zero.

At low activation values units in a cluster can be
simultaneously active.

At high activations the unit having greatest ac-
tivation rapidly saturates while simultaneously
suppressing other units in a cluster.

3.

4,

All units in the motion detection layer obey the
equation

(1) zj(t + 1) = 2j(t)[1 — yrAt] + TAt f(I;+

N N
zi(t) + Do whzm(t— k) = Y wi(1+2:(1)")

where f is the linear threshold function

0 z2<0
f(z): z 0<z<1
1 z>1

The unit activation function is the Euler approxi-
mation to the corresponding differential equation,
and discretization is controlled by the value of At.
The parameters 7 and 7 are the time constant of a

unit and its decay rate, respectively. These param-
eters are the same for all units. The w,‘-'} are exci-
tatory synaptic weights from unit i to j, and the



w;; are their inhibitory counterparts. Inhibitory
weights were all set to one value as described in the
next section. For all simulations reported below
the value of the delay along excitatory connections
was k = 10. Bottom-up connections had a delay of
one time step. The use of the linear threshold func-
tion ensures boundedness, whereas the faster-than-
linear inhibition satisfies conditions 3 and 4 above.
At high activation values, the winning unit quickly
saturates and suppresses other units, whereas at
low activation values all units in a cluster remain
active for considerably longer.

Ignoring the nonlinearity f, one can solve for the
equilibrium solution of (1).

5 HE T whzi(t - k) - T wjzd(t)
! -1

When I; = 0 for all j, the network settles to an
equilibrium value of £ = 0. If the lateral exci-
tatory connections are ignored, and the matrix of
inhibitory connections is symmetric, then the net-
work converges to its equilibrium (Cohen & Gross-
berg, 1983). Unless properly chosen, non-sero lat-
eral excitatory connections will introduce positive
feedback that can cause all units in the network
to permanently saturate. In practice this does not
occur because when a connection from one unit to
another is large, the corresponding recurrent con-
nection is very small.

Network Initialization. Initially we set all of
the inhibitory weights within clusters to ﬁ:‘, where

N is the number of units per cluster. Excitatory
weights between all units outside a cluster favor
local connections and were set to

w‘.*'j =(1.0+ r)e(""”""‘“)

where r is a random variable drawn from a uniform
distribution on [-0.3,0.3]. The variable Z; is the
location of the ith unit in the array of units and
corresponds to the index of that cluster within the
entire layer, thus the third cluster has Z; = 3 for all
units ¢ in the third cluster. At present inhibitory
connections are not shaped by learning.

Learning Equations. Learning of excitatory
weights is Hebbian, and follows Malsburg (1973) in
requiring that the sum of all excitatory weights to
a unit remain constant over time. Weight normal-
isation implements competition between incoming
signals that heavily favors connections between si-
multaneously active units.

it = et .p.2
w5 = wy; + €2iT;
w}
T

The network learns on every time cycle. Over time
the synaptic weights encode the spatio-temporal
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Figure 2: Artificially produced stimuli used to ex-
amine self-organization of motion detection. A.
Frequency modulated “up” and “down” sweeps at

two different rates (1/8 and 1/10). B. Bursts con-
sisting of random input for limited durations.
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correlations that occur when delayed lateral exci-
tation is strongly correlated with bottom-up acti-
vation from input to the motion detection layer.
Because shorter connections are initially stronger,
units are more likely to encode local transition in-
formation.

Simulations

FM Sweep Stimuli. The self-organising proper-
ties of the model were studied in conditions corre-
sponding to ideal realisations of input from cochlear
preprocessing. A network consisting of 10 input
units and 10 clusters of 3 motion detection units
was e to FM sweeps beginning at all 10 of the
units (i.e., all ten different frequencies) for 10,000
time steps. Monotonically increasing and decreas-
ing sweeps occurred at 3 different rates (1 frequency
step per 8, 9, and 10 time steps). The input for
cach frequency simulated ON-type cell response by
remaining on for 5 time steps and then falling to
0. Spectral representations of some of these stim-
uli are shown in Figure 2. The inclusion of stimuli
that begin at all frequencies enhances learning of
units along the edges of the motion detection layer
by reinforcing delayed connections from tonotopi-
cally near neighbors. If stimuli begin only at the
edge of a detection layer, distant connections are
most relevant to detection at the other edge and
motion is not disambiguated as well for those units.
All stimuli were separated by periods of sero input
to permit previous activations to decay. In the ab-
sence of input most activations decayed after about
3 iterations.

The values of parameters used in all simulations
are listed below.

[



Description Parameter Value
discretization At 0.2
unit time const. 7 3.3
unit decay const. v 1.1
sum of weights E 1.3
lateral delay k 10
learning rate € 0.07

As would be expected, those networks exposed
to stimuli at a single rate (not shown) develop the
most discriminative code. The presence of stimuli
at other rates blurs the temporal correlations ar-
riving at successive units in the motion detection
layer, but motion detection is quite robust across
the three different rates. The output of input and
some of the output units is shown in Figure 3 for
upward and downward sweeps at the fastest and
slowest rates. For the sake of clarity only a sub-
set of the motion detection outputs are shown, al-
though the units not shown here responded simi-
larly. In the figure the 10 input units are shown
at the bottom of the graph, while the last 4 clus-
ters of units are grouped and drawn above main-
taining their tonotopic relationship. The first 2 se-
quences exhibit upward FM sweeps, whereas the
latter 2 exhibit downward sweeps. Dashed lines
have been placed at activation values of 0.7 to per-
mit comparison of unit activities. Consider down-
ward sweep first. Note that units 28-30, the first
units to fire for downward sweeps, are stimulated
only by bottom-up activation and therefore remain
moderately active but do not show winner-take-all
behavior. Later, unit 27 of the next cluster of units
{)25-27) and then unit 20 of (19-21) receive both

ottom-up and time-delayed lateral activation and
thus go supra-threshold, consistently encoding di-
rection of motion for downward sweeps at all rates.
In like manner, unit 25 encodes direction of mo-
tion for upward sweeps. Disjoint subsets of units in
each cluster learn to encode the two possible direc-
tions, though the cluster (22-24) does not respond
well to downward sweeps. Finally, note that the
response to upward sweeps is both greater in value
and longer in duration. This occurs because later
firing units receive input from a larger set of co-
herent motion detection cells already responding to
direction of motion.

Bursts. It is extremely important that motion
detection learning be robust despite the introduc-
tion of noise and constant frequency components,
since both types of stimuli are well represented in
natural environments. We did not examine con-
stant frequency stimuli, since these involve self-
excitation of one cluster and therefore produce no
correlation between bottom-up excitation caused
by spectral motion and lateral excitation patterns.
However, the effect of bursts like those shown in
Figure 2, which produce spurious correlations, were
simulated. When noise bursts of duration 5, 7, and
10 (random input) were added to the FM task out-
lined above, the motion detection layer still reliably
encoded direction of motion at all rates.
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Discussion

There is an important relationship between stim-
ulus duration and the constant k that determines
the duration of transmission delay. If stimulus du-
ration approaches the value of k, distant units may
be simultaneously active, leading to ambiguity in
the direction of motion. This can cause incorrect
learning or, worse, the development of weights that
cause some units of the network to permanently sat-
urate. Thus, stimulus duration must be sufficient
to permit competition between units in a cluster,
but must not be so great as to cause too many si-
;-nultaneously active units in the motion detection
ayer.

It is instructive to compare this formulation of
feature processing with that which is implied by
bottom-up time-delay systems. If one were to as-
sume that motion sensitivity of the sort advocated
in this report were founded on bottom-up time de-
lays, the motion detection layer would necessarily
have to map dissimilar inputs to the same output
(See Figure 4.) This problem arises because as a
time-delayed pattern sweeps across L2, its mani-
festations at different points in time are entirely
unrelated. In Figure 4 the same input pattern at
two successive points in time is labelled P(t — 1
and P(t). As Rumelhart and McClelland (1986
note, solutions to this problem can be found by in-
corporating a hidden layer of units. Unfortunately,
in this case a hidden layer of units leads to a very
abstract, non-tonotopic code for motion that is not
easily learned without some form of supervision.
These problems are overcome in a very simple man-
ner if bottom-up time delays are replaced by lateral
delays that permit the learning of spatiotemporal
correlations.

This report shows how the shunting equations
used by Marshall (1990) can be reformulated and
combined with a different learning rule to endow a
network layer with the ability to encode direction of
motion. The motion detectors arise as chains of ac-
tive units in response to statistical regularities that
would occur over a 1-dimensional tonotopic array of
units with receptive fields limited to a small band
of frequencies. Members of the chains of motion
detectors that arise for more rapid spectral pat-
terns continue to encode direction of motion, al-
though the code becomes spatially and temporally
sparse. From the standpoint of local computational
constraints, detection of auditory spectral motion
provides a means for discriminating two patterns
that may well excite the same group of neurons on
the basis of direction of motion. Output from the
motion detection network can then be interpreted
by networks that learn spatial patterns, leading to
more general sequential pattern recognition.
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