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Functional analysis of low-grade glioma genetic 
variants predicts key target genes and transcription 
factors

  

Mohith Manjunath,† Jialu Yan,† Yeoan Youn, Kristen L. Drucker, Thomas M. Kollmeyer, 
Andrew M. McKinney, Valter Zazubovich, Yi Zhang, Joseph F. Costello, Jeanette Eckel-Passow, 
Paul R. Selvin, Robert B. Jenkins, and Jun S. Song

Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA (M.M., J.Y., P.R.S., J.S.S.); 
Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA (M.M., 
J.Y., Y.Z., J.S.S.); Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, 
Illinois, USA (Y.Y., P.R.S.); Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, 
USA (K.L.D., T.M.K., R.B.J.); Department of Neurological Surgery, University of California San Francisco, San 
Francisco, California, USA (A.M.M., J.F.C.); Department of Physics, Concordia University, Montreal, Québec, Canada 
(V.Z.); Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA (Y.Z.*); 
Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA (J.E-P)

*Current affiliation: Department of Data Sciences, Dana-Farber Cancer Institute, Boston, Massachusetts, USA (Y.Z.)

†Mohith Manjunath and Jialu Yan contributed equally to this work.

Corresponding Author: Prof. Jun S. Song, Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA 
(songj@illinois.edu).

Abstract
Background.  Large-scale genome-wide association studies (GWAS) have implicated thousands of germline ge-
netic variants in modulating individuals’ risk to various diseases, including cancer. At least 25 risk loci have been 
identified for low-grade gliomas (LGGs), but their molecular functions remain largely unknown.
Methods. We hypothesized that GWAS loci contain causal single nucleotide polymorphisms (SNPs) that reside in 
accessible open chromatin regions and modulate the expression of target genes by perturbing the binding affinity 
of transcription factors (TFs). We performed an integrative analysis of genomic and epigenomic data from The 
Cancer Genome Atlas and other public repositories to identify candidate causal SNPs within linkage disequilib-
rium blocks of LGG GWAS loci. We assessed their potential regulatory role via in silico TF binding sequence per-
turbations, convolutional neural network trained on TF binding data, and simulated annealing–based interpretation 
methods.
Results. We built an interactive website (http://education.knoweng.org/alg3/) summarizing the functional 
footprinting of 280 variants in 25 LGG GWAS regions, providing rich information for further computational and ex-
perimental scrutiny. We identified as case studies PHLDB1 and SLC25A26 as candidate target genes of rs12803321 
and rs11706832, respectively, and predicted the GWAS variant rs648044 to be the causal SNP modulating ZBTB16, 
a known tumor suppressor in multiple cancers. We showed that rs648044 likely perturbed the binding affinity of 
the TF MAFF, as supported by RNA interference and in vitro MAFF binding experiments.
Conclusions. The identified candidate (causal SNP, target gene, TF) triplets and the accompanying resource will 
help accelerate our understanding of the molecular mechanisms underlying genetic risk factors for gliomas.
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Key Points

1. � Analysis of 25 low-grade glioma-associated genetic loci reveals candidate 
functional mechanisms.

2. �The variant rs648044 likely modulates ZBTB16 expression through perturbation of 
MAFF binding.

3. � PHLDB1 and SLC25A26 are candidate target genes of rs12803321 and rs11706832, 
respectively.

Gliomas are tumors originating in the glial cells of the brain. 
According to the 2016 World Health Organization (WHO) 
classification of tumors of the central nervous system, low-
grade glioma (LGG) mainly includes diffuse astrocytic and 
oligodendroglial tumors.1 The 2016 WHO classification fur-
ther incorporated molecular features such as the mutations 
in either isocitrate dehydrogenase 1 (IDH1) or IDH2 (collec-
tively referred to as IDHmut) and codeletion of the chromo-
some arms 1p and 19q (1p/19q codeletion). By including the 
status of telomerase reverse transcriptase (TERT) promoter 
mutations, gliomas can be further classified into 5 main mo-
lecular groups based on the presence or absence of the 3 
molecular alterations.2 The 5 molecular groups are: 

1.  “TERT promoter mutation only,” 
2.  “IDHmut only,”
3.  “TERT promoter and IDHmut ,” 
4.  triple-positive (IDHmut, TERT promoter mutant, 1p/19q 

codeleted), and 
5.  triple-negative (IDH wild-type, TERT wild-type, 1p/19q 

non-codeleted). 

The triple-positive and “IDHmut only” groups compose the 
majority of LGGs, while “TERT promoter mutation only”  
is prevalent in glioblastoma multiforme2 (GBM). This study 
considers LGGs only, excluding GBM, with a focus on the 
triple-positive and “IDHmut only” groups, which are usually 
oligodendrogliomas and astrocytomas, respectively, in 
terms of the 2016 WHO classification.

Genome-wide association studies (GWAS) have identi-
fied several single nucleotide polymorphisms (SNPs) as-
sociated with LGG susceptibility,3–6 but only a few studies 

have hitherto discovered the corresponding genes directly 
regulated by these SNPs.7,8 Most of the LGG GWAS SNPs 
reside in noncoding regions of the human genome, posing 
severe challenges to studying their molecular function and 
identifying susceptibility genes that may inform preventive 
and therapeutic measures. An integrative and systematic 
analysis of the LGG GWAS loci is thus needed to identify 
molecular mechanisms of tumorigenesis and help accel-
erate neuro-oncology research.

Our main hypothesis is that the GWAS loci contain 
causal SNPs that reside in functional regulatory regions 
of the human genome and modulate the expression of 
target genes by directly perturbing the binding affinity of 
transcription factors (TFs). In this study, we utilized large-
scale heterogeneous datasets from The Cancer Genome 
Atlas (TCGA), Encyclopedia of DNA Elements9 (ENCODE), 
and Roadmap Epigenomics Mapping Consortium10 
(REMC) databases for a comprehensive analysis of LGG 
germline GWAS variants. To provide easy access to all 
our findings, we integrated the results into an interac-
tive web database, Analysis of Low-Grade Glioma GWAS 
(ALG3), accessible at http://education.knoweng.org/alg3/.

Materials and Methods

LGG GWAS SNPs and SNPs in High Linkage 
Disequilibrium

We obtained a list of GWAS SNPs from Melin et  al,6 
passing the combined meta-analysis (8 studies) P-value 

Importance of the Study

Recent large-scale GWAS have implicated at least 25 ge-
netic loci in modulating LGG susceptibility, but their mo-
lecular pathways remain elusive. To better understand 
the molecular functions of germline variants in modulating 
LGG risk, we developed an integrative framework utilizing 
genomic, epigenomic, and transcriptomic data to identify 
candidate (causal SNP, target gene, transcription factor) 
triplets. For the GWAS locus harboring the SNP rs648044, 
our framework revealed that this SNP likely modulates the 
expression of the target gene ZBTB16  through perturbing 

the binding affinity of MAFF. We provide evidence that 
ZBTB16 directly regulates CIC (capicua transcriptional 
repressor), a tumor suppressor frequently mutated in 
isocitrate dehydrogenase-mutant oligodendrogliomas. 
We also developed an interactive web resource to sum-
marize the functional annotation of 280 germline variants 
in 25 LGG GWAS regions. The results of our study will 
help accelerate the discovery of molecular mechanisms 
underlying genetic risk factors for gliomas and guide the 
design of new therapeutic preventions and interventions.

http://education.knoweng.org/alg3/
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cutoff of 5 × 10−8 for non-glioblastoma gliomas, yielding 
25 GWAS SNPs significantly associated with LGG 
(Supplementary Table 1). Out of these 25, eight SNPs 
were also found to be significant (P < 5 × 10−8) in glio-
blastoma. The median odds ratio for the 25 GWAS SNPs 
was 1.2, where 23 of the 25 SNPs had odds ratio less 
than 1.5, typical of low-penetrance genetic variants.6 We 
then used LDlink11 to obtain all SNPs in high linkage dis-
equilibrium (LD; r2 ≥ 0.8, 1000 Genomes Phase 3, EUR 
population) with the 25 GWAS SNPs and analyzed the 
functional footprinting of 280 SNPs in total. We obtained 
the glioma molecular subgroup information of the 
GWAS SNPs from Eckel-Passow et al.12

TCGA LGG Data

We utilized 5 types of TCGA LGG datasets13: germline gen-
otype data of 513 patients, primary tumor copy number 
segmentation data of 513 patients, tumor RNA-seq aligned 
bam files of 516 patients, processed gene-level RSEM 
(RNA-Seq by Expectation Maximization) expression data 
of 516 patients, and clinical data of 515 patients. Out of 
508 patients with all 5 data types, 427 patients’ molecular 
subtype information was available.14,15 Assigning these 
427 patients to the 5 molecular subgroups yielded 204 pa-
tients in the “IDHmut only” subgroup and 137 patients in the 
triple-positive subgroup.

Phased Allele-Specific Expression Analysis

From the expression quantitative trait loci (eQTL) analysis, 
genes with false discovery rate16 (FDR) adjusted pi ≤ 0.2,  
where pi  is the P-value of the genotype linear regres-
sion coefficient, were selected as candidate target genes. 
For each candidate gene, we performed a phased allele-
specific expression (ASE) analysis to test the differential 
transcription between the 2 chromosomes harboring dif-
ferent alleles of a given GWAS SNP.17 We first obtained a 
subset of patients having heterozygous genotypes both at 
the GWAS SNP and at exonic SNPs of the candidate gene. 
We then extracted the imputed haplotype (Supplementary 
Methods) to determine the phase between the GWAS SNP 
and the exonic SNPs. Allele-specific coverage of the exonic 
SNPs by RNA-seq reads (MAPQ ≥ 20) was obtained, and 
Wilcoxon signed-rank sum test (for sample size n ≥ 5) was 
used to examine the transcription imbalance between the 
2 copies of chromosomes at a P-value threshold of 0.05.

Convolutional Neural Network and Simulated 
Annealing Methods

We trained a convolutional neural network (CNN) model 
on TF chromatin immunoprecipitation followed by 
sequencing (ChIP-seq) and DNase I  hypersensitive sites 
sequencing (DNase-seq) data in available cell types from 
ENCODE and used the model to predict the allele-specific 
binding pattern of the same TF in the human fetal brain 
tissue (Supplementary Methods). We then used a Markov 
Chain Monte Carlo sampling18,19 method to perform prob-
abilistic optimization of the CNN-learned motif over the set 
of input sequences (Supplementary Methods).

Results

Integrative Analysis Identifies Candidate (Causal 
SNP, Target Gene, TF) Triplets

We developed an integrative analysis framework 
incorporating heterogeneous genomic, epigenomic, and 
transcriptomic datasets to understand the functional im-
pact of GWAS variants (Figure 1). In the genomic context, 
we started with a list of 25 GWAS loci associated with in-
creased risk for LGG (Methods); each locus contained a 
GWAS SNP showing the best association with LGG in the 
population, but the reported SNP might not necessarily be 
the functionally causal SNP, and nearby SNPs in high LD 
could act as true molecular effectors. We therefore exam-
ined all 280 SNPs in high LD with the GWAS SNPs (r2 ≥ 0.8,  
1000 Genomes Phase 3, EUR population) (Methods). 
Genotypes for TCGA LGG cohort were imputed to obtain 
high-confidence genotypes for the high LD SNPs (Methods, 
Supplementary Methods). Epigenomic information con-
tained histone modification and open chromatin signals 
from ChIP-seq, assay for transposase-accessible chromatin 
sequencing (ATAC-seq) and DNase-seq, as well as chro-
matin interactions from proximity ligation-assisted ChIP-
seq (PLAC-seq) (Supplementary Methods). Using these 
datasets, we identified candidate causal SNPs residing 
within accessible regulatory DNA elements in the human 
brain and performed motif perturbation analyses to ob-
tain TFs whose binding affinity might be modulated by the 
SNPs (Supplementary Methods). To further assess the im-
pact of SNPs, we trained a CNN model on TF ChIP-seq data 
to predict allele-specific TF binding and deployed a simu-
lated annealing method18 to extract the optimal TF motif 
learned by the CNN (Methods, Supplementary Methods). 
In the transcriptomic context, we performed eQTL and 
phased ASE analyses using TCGA gene expression pro-
files to obtain a set of credible target genes (Methods, 
Supplementary Methods). We further filtered candidate TFs 
based on TF-target gene expression correlation analysis 
(Supplementary Methods). Our framework thus revealed 
candidate (causal SNP, target gene, TF) triplets, which could 
be prioritized for experimental validation. As case studies 
of detailed analysis and interpretation, we focused on 3 
loci that had (1) one of the lowest GWAS P-values (PHLDB1 
locus), (2) a target gene with known tumor suppressor func-
tions in other cancers (ZBTB16 locus), and (3) no convincing 
eQTL candidate gene in a previous study6 (LRIG1 locus), 
respectively.

ZBTB16 Locus: 11q23.2 GWAS SNP rs648044

The lead SNP rs648044 modulates the expression of 
ZBTB16 through chromatin looping

The lead GWAS SNP rs648044 (Methods) contained no 
other SNP in high LD within its haplotype block (Methods) 
and was thus our candidate causal variant. As functional 
variants often interact with their target genes through ac-
tive regulatory elements, we examined the epigenetic 
landscape surrounding the SNP in brain-related tissues 
and cell lines. Independent ATAC-seq20,21 and DNase-seq 

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa248#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa248#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa248#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa248#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa248#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa248#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa248#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa248#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa248#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa248#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa248#supplementary-data
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datasets confirmed the SNP to be located within an open 
chromatin region in TCGA LGG samples, oligodendrocytes, 
and fetal brain tissue samples (Figure 2A) (Supplementary 
Methods). Histone H3 lysine 4 monomethylation 
(H3K4me1) and H3K27 acetylation (H3K27ac) ChIP-seq 
in fetal brain and dorsolateral prefrontal cortex tis-
sues showed an active enhancer activity at the location 
(Figure 2A), as also annotated by REMC (Supplementary 
Figure 1A).

The eQTL analysis using the TCGA LGG genotype and 
gene expression data suggested NCAM1 and ZBTB16 to 
be the top candidate target genes (Supplementary Figure 
1B, Figure 2B, NCAM1 P = 0.0054 in the combined IDHmut 
only and triple-positive group, Supplementary Methods). 
NCAM1 is located ~1.1 Mb away from ZBTB16. H3K4me3 
PLAC-seq confirmed a physical looping interaction only 
between the active ZBTB16 promoter and the enhancer 
harboring rs648044 in oligodendrocytes21 (Figure  3A; 
Supplementary Methods). We thus prioritized ZBTB16 for 
further analysis. Correlation analysis between ZBTB16 
normalized expression values and genotype status at 
rs648044 in different molecular groups found a signifi-
cant association in the combined group of “IDHmut only” 
and triple-positive (P = 0.0118, FDR = 0.124; Supplementary 

Figure 1B). The expression level of ZBTB16 was suppressed 
by the rs648044-A risk allele, indicating that ZBTB16 might 
act as a tumor suppressor. Consistent with this hypothesis, 
ZBTB16 encodes a zinc-finger TF22 implicated in inhibiting 
proliferation, metastasis, or epithelial-mesenchymal tran-
sition in multiple cancers and is genetically lost in meta-
static castration-resistant prostate cancer,23 supporting its 
tumor suppressor role.24–26

rs648044 likely perturbs the binding affinity of MAFF

We next sought to identify the TF whose binding affinity 
might be perturbed by rs648044. We first utilized known 
TF binding motifs to perform in silico TF binding affinity 
perturbation analysis based on a sequence permutation 
test (Supplementary Methods). For each candidate TF, 
we then computed molecular group-wise Pearson cor-
relation coefficient between the TF and ZBTB16 expres-
sion levels stratified into 3 genotype groups of rs648044 
(Supplementary Methods). Based on the eQTL finding 
that ZBTB16 expression was lower in the risk group (AA 
genotype), we expected a candidate repressor TF to have 
higher binding affinity toward the risk allele A and show a 
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Fig. 1  Integrated framework for functional analysis of LGG GWAS SNPs. Green: epigenomic data; pink: genomic information; blue: transcriptomic 
data and analysis; purple: motif and TF-gene expression correlation analyses; ocean blue: deep learning approaches for TF binding prediction; 
yellow: experimental validation; red: candidate triplets.
  

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa248#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa248#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa248#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa248#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa248#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa248#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa248#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa248#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa248#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa248#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa248#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa248#supplementary-data
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greater negative correlation with ZBTB16 in the risk group 
compared with the GG genotype group; conversely, we 
expected a candidate activator TF to have lower binding 
affinity towards the risk allele and show a weaker positive 
correlation with ZBTB16 in the risk group. ATAC-seq data 
in TCGA LGG samples showed a significant skew toward 
the rs648044-A risk allele, indicating that the TF might 
act as a repressor (P = 0.010, Fisher’s method for com-
bining binomial test P values; Supplementary Table 2;  

Supplementary Methods). These criteria together iden-
tified MAFF as the top candidate TF for further experi-
mental validation. MAFF is a member of the small Maf 
basic leucine zipper TFs that can homodimerize and 
repress target genes. Its motif27 clearly preferred the 
risk allele A  (Figure  3B; permutation test P = 0.0029, 
Supplementary Methods), and the structure of expres-
sion correlation showed attenuation of the negative cor-
relation between MAFF and ZBTB16 in the AG and GG 
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http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa248#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa248#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa248#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa248#supplementary-data
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Fig. 3  The GWAS SNP rs648044 likely perturbs the binding affinity of MAFF that represses ZBTB16. (A) Oligodendrocyte PLAC-seq track21 
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(“PC”) sequence, 81 bp sequence flanking rs648044-A, 81 bp sequence flanking rs648044-G and negative control (“NC”) sequence. The lower mo-
lecular weight bands in black box correspond to free DNA. Orange box highlights the bands of MafF-bound DNA, corresponding to the results of 
“positive control DNA + MafF” and “rs648044-A flanking sequence + MafF.” (E) MAFF RNA interference knockdown experiment results, showing 
a significant increase in ZBTB16 mRNA expression after MAFF knockdown. One-sided t-test P-value between the control group and the com-
bined group of 3 independent short hairpin RNA clones is shown.
  

http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa248#supplementary-data
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genotypes that were predicted to weaken the affinity of 
MAFF to DNA (Figure 3C).

To confirm that MAFF preferentially binds the 
rs648044-A allele, we performed an electrophoretic mo-
bility shift assay (EMSA) (Figure  3D; Supplementary 
Methods). We detected binding of MAFF on positive con-
trol DNA (from a top consensus ChIP-seq peak region in 
HepG2, K562, and HelaS3, Supplementary Methods; lane 
2) and the sequence containing the risk A allele (lane 4), 
but not on the sequence containing the alternative G al-
lele (lane 6)  and negative control DNA (a permuted se-
quence with no MAFF core binding motif, Supplementary 
Methods; lane 8). Knockdown of MAFF using short hairpin 
RNA in a cell line—derived from an IDH1R132H mutant, 
TERT promoter-mutant, 1p/19q-codeleted (triple positive) 
oligodendroglioma patient and heterozygous at rs648044 
(Supplementary Methods) – led to a significant increase in 
ZBTB16 mRNA expression compared with non-target con-
trols (Figure  3E; P = 0.0294, two-group one-sided t-test), 
but not in NCAM1 mRNA expression (Supplementary 
Figure 2; P = 0.37, two-group one-sided t-test). These re-
sults support our prediction that MAFF preferentially binds 
the risk allele rs648044-A and represses the putative tumor 
suppressor ZBTB16. We further analyzed the prevalence 
of capicua transcriptional repressor (CIC) mutations in 
the context of rs648044 genotypes, as CIC is an important 
tumor suppressor frequently mutated in IDHmut gliomas. 
CIC inactivating mutations tended to occur more fre-
quently in the homozygous non-risk GG genotype than the 
combined AA and AG genotypes in TCGA triple-positive 
gliomas (odds ratio 2.0, Fisher’s exact test P = 0.076; 
Supplementary Table 3), although statistical significance 
could not be reached, potentially due to small sample size. 
This finding suggested that the predicted suppression of 
ZBTB16 by the risk rs648044-A allele could be an alter-
nate mechanism for LGG tumorigenesis in CIC wild-type 
gliomas.

PHLDB1 Locus: 11q23.3 GWAS SNP rs12803321

eQTL and ASE analyses implicate PHLDB1 as a candi-
date target gene

We next applied our computational framework to the locus 
containing rs12803321 (reference allele: G (risk), alterna-
tive allele: C), one of the most significant LGG GWAS SNPs. 
The SNP rs12803321, located in the first intron of Pleckstrin 
Homology Like Domain Family B Member 1 (PHLDB1) 
(Supplementary Figure 3), was reported to be signifi-
cantly associated with the “IDHmut only” subgroup.12,28 An 
eQTL analysis of 71 genes within 4 Mb of rs12803321 in 
IDHmut only subgroup (Supplementary Methods) identified 
PHLDB1 and Trehalase (TREH) as the top candidate target 
genes (PHLDB1 P = 2.5 × 10–9, FDR = 1.82 × 10–7; TREH 
P = 8 × 10–5, FDR = 2.84 × 10–3; Figure  4A, Supplementary 
Figure 4A, B). The number of risk alleles was anticorrelated 
with the expression level of PHLDB1 and TREH adjusted for 
covariates (Supplementary Methods). Since TREH expres-
sion was low (zero RSEM in 68 patients out of total 193), 
we prioritized PHLDB1 for further analysis. We analyzed the 

allele-specific transcription pattern of PHLDB1 using TCGA 
RNA-seq raw reads and the exonic SNPs’ phased haplo-
type information (Methods). There were 20 exonic SNPs 
with more than 5 cases in the “IDHmut only” group having a 
heterozygous genotype at both rs12803321 and the exonic 
SNP. Wilcoxon signed-rank sum test on the RNA-seq read 
counts from the 2 chromosomes17 detected a statistically 
significant skew at 9 exonic SNPs out of 20 (P < 0.05). All 
these 9 SNPs showed higher transcription emanating from 
the rs12803321-C haplotype (Supplementary Figure 5).  
These results together demonstrated that the risk allele 
rs12803321-G was associated with decreased expression 
of PHLDB1 in “IDHmut only” group.

Candidate causal SNP rs12225399 perturbs the binding 
affinity of SP1/SP2

We next prioritized candidate functional SNPs using 
epigenomic data. There were 3 SNPs in high LD with 
rs12803321 (Methods): rs67307131 (r2 = 0.98), rs12225399 
(r2 = 0.97) and rs7125115 (r2 = 0.90). The GWAS SNP 
and all 3 high LD SNPs were located in open chromatin 
and active enhancer regions, as assessed by the fetal 
brain DNase-seq, TCGA LGG ATAC-seq,20 oligodendro-
cyte ATAC-seq,21 and prefrontal cortex histone modifica-
tion (H3K4me1, H3K27ac) ChIP-seq data (Supplementary 
Figure 3). Motif analysis using FIMO29 yielded candidate 
TFs whose binding affinity might be perturbed by any of 
the above four SNPs (Supplementary Table 4). Further fil-
tering the TF list through TF-target gene expression corre-
lation analysis (Supplementary Methods), we determined 
rs12225399 to be the best candidate causal SNP, and SP1/
SP2 the top candidate TFs: first, rs12225399 was located 
near a local peak center in TCGA LGG and oligodendro-
cyte ATAC-seq (Supplementary Figure 3, Supplementary 
Figure 4C); second, sequence perturbation analyses dem-
onstrated that the rs12225399-C allele, in phase with the 
rs12803321-C allele, created a high-scoring SP1/SP2 
binding motif, whereas the rs12225399-G allele signif-
icantly perturbed the motif (FIMO SP1 P = 4.25 × 10–5, 
Figure  4B; FIMO SP2 P = 5.53 × 10–5, Supplementary 
Figure 6A; permutation test SP1 P = 0.015, SP2 P = 0.0023; 
Supplementary Methods); third, Pearson correlation coef-
ficient between SP2 and PHLDB1 in “IDHmut only” group 
was highest in the rs12225399-CC genotype (r = 0.40) and 
decreased in rs12225399-GC (r = 0.26) and rs12225399-GG 
genotypes (r = 0.23) (Supplementary Figure 6B). The corre-
lation between SP1 and PHLDB1 did not show the same 
trend as SP2 and PHLDB1 (Supplementary Figure 6C); 
however, since SP1 and SP2 recognize similar sequences 
(Figure 4B, Supplementary Figure 6A), we could not rule 
out SP1 as not being functional at the SNP. The high LD 
SNP rs7125115 was not selected as a candidate causal 
SNP, because our analysis did not yield a good candidate 
TF (Supplementary Table 4). These results together implied 
that the rs12225399-C allele likely increased the binding af-
finity of SP1/SP2, functioning as transcription activators to 
enhance the expression of PHLDB1.

Because of the lack of SP1/SP2 ChIP-seq data in 
brain cell types, we could not verify directly whether 
SP1/SP2 actually bound the predicted causal SNP. 
We thus applied a deep learning method to predict TF 
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Fig. 4  The high LD SNP rs12225399 likely modulates PHLDB1 expression by perturbing the binding affinity of SP1/SP2. (A) eQTL result for 
rs12803321 and PHLDB1 in the TCGA-LGG “IDHmut only” subgroup. (B) SP1 motif logo MA0079.3 (JASPAR27) and two variants of the flanking 
sequence harboring rs12225399-C and rs12225399-G alleles. (C) CNN for predicting the binding pattern of SP1 based on DNA sequence and open 
chromatin information. From left to right: 1001 bp × 9 input matrix incorporating sequence information and quantile-normalized DNase-seq signal 
at each base; convolutional layer using filters of length 12 bp; maximum layer, extracting the maximum of the convolutional layer output from the 
positive and negative strands; maximum pooling layer; flatten and concatenate layer; fully connected layer with 80 neurons; fully connected layer 
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binding affinity in fetal brain samples (Supplementary 
Methods). Although SP2 was a better candidate, SP2 
ChIP-seq data were available in only one ENCODE cell 
line (Supplementary Methods), while SP1 ChIP-seq data 
were available in seven cell lines (H1-hESC, HEK293T, 
HepG2, Liver, K562, MCF-7, and A549; Supplementary 
Table 5). We thus trained a CNN for SP1 only, using 
sequence information and cell type-matched DNase-
seq to predict the SP1 ChIP-seq signals (Figure  4C). 
A549 dataset was used as a test set, and the CNN was 
trained on the remaining six datasets (Supplementary 
Methods). The receiver operating characteristic area 
under the curve was 0.95 for the test set (Supplementary 
Figure 7A, Supplementary Methods). Moreover, we con-
firmed that the optimal CNN-learned motif, extracted 
via a simulated annealing method, closely resembled 
the known SP1 motif27 (Figure  4B, Supplementary 
Figure 7B). The trained CNN was then used to evaluate 
the impact of rs12225399 on SP1 binding in the brain, 
taking the allele information and DNase-seq profiles in 
13 REMC fetal brain samples as input. Our model pre-
dicted differential binding of SP1 at the two alleles of 
rs12225399, showing higher predicted probability of 
binding at the C allele than the G allele across all 13 
REMC samples (Figure 4D).

LRIG1 Locus: 3p14.1 GWAS SNP rs11706832

Functional analysis of rs11706832 locus identifies the 
(rs11706832, SLC25A26, LEF1) triplet

The LGG GWAS SNP rs11706832 (reference allele: 
A, alternative allele: C (risk)), located in an intron of 
Leucine rich repeats and immunoglobulin like domains 
1 (LRIG1) (Supplementary Figure 8), was reported to 
be associated with “IDHmut only” and triple-positive 
glioma subgroups.12 Although highly expressed in 
the brain, LRIG1 did not show a significant eQTL 

association with rs11706832 in TCGA LGG data (P = 0.52 
and 0.34 for “IDHmut only” and triple-positive, respec-
tively), in agreement with a previous report.6 By con-
trast, we found that Solute carrier family 25 member 
26 (SLC25A26), a gene 432  kb away from LRIG1, was 
significantly associated with rs11706832 in eQTL 
and phased ASE analyses: the number of rs11706832 
risk allele C was positively correlated with the ex-
pression level of SLC25A26 (Figure  5A-C; genotype 
P = 2.9 × 10–3, “IDHmut only”; 4.11 × 10–2, triple-positive; 
2.11 × 10–4, “IDHmut only” and triple-positive combined; 
FDR = 1.48 × 10–3, “IDHmut only” and triple-positive com-
bined). Phased ASE analysis identified seven exonic 
SNPs with a Wilcoxon signed-rank sum test P < 0.05 
(“IDHmut only” and triple-positive combined group, case 
number > 5). 5 of these 7 exonic SNPs showed a sig-
nificant transcriptional skew toward the rs11706832:C 
allele (Supplementary Figure 9), in agreement with the 
eQTL result, while the other two showed an opposite 
trend. These results suggested that a functional con-
sequence of the GWAS risk allele rs11706832:C was to 
increase the expression of SLC25A26.

Of all 3 SNPs in high LD with rs11706832 (Methods), 
rs4402869 (r2 = 0.87) and the GWAS SNP rs11706832 res-
ided in open chromatin and active enhancer regions 
(Supplementary Figure 8). Motif analysis and gene-TF ex-
pression correlation analysis for rs11706832 and rs4402869 
identified rs11706832-LEF1 to be the best candidate SNP-TF 
pair (Supplementary Table 6), with the rs11706832-A al-
lele potentially creating a LEF1 binding motif (FIMO 
P = 9.4 × 10−4, Supplementary Figure 10A) and the A-to-C 
conversion significantly perturbing the binding motif (per-
mutation test P = 0.012). The correlation structure between 
LEF1 and SLC25A26 expression was inconclusive in the 
combined “IDHmut only” and triple-positive group, but 
the anticorrelation was clearly strongest in the AA geno-
type when all LGG samples were used (Supplementary 
Figure 10B, C). These results together suggested that the 
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rs11706832-A allele might create a binding site of LEF1, a 
known transcriptional repressor,30 thereby suppressing the 
expression of SLC25A26.

Analysis of Low-Grade Glioma GWAS (ALG3): An 
Interactive Web Resource

We have developed the web portal ALG3 (http://education.
knoweng.org/alg3/) to provide an interactive visual sum-
mary of the functional footprinting of LGG GWAS loci, 
facilitating additional analysis or experimental validation. 
ALG3 includes an embedded genome browser,31 copy 
number information, eQTL results, relevant ENCODE ChIP-
seq information, motif analysis and expression correlation 
analysis (Supplementary Methods). The processed ATAC-
seq and PLAC-seq data in oligodendrocytes21 are also 
linked to the University of California Santa Cruz genome 
browser.

Discussion

We have shown that the 11q23.2 GWAS SNP rs648044 
may modulate the expression of ZBTB16 by perturbing 
the binding affinity of MAFF. Although ENCODE ChIP-seq 
data show a MAFF peak (q-value = 3.1 × 10–4) covering 
the SNP rs648044 in K562 cells, as well as a similar MAFK 
peak (q-value = 1.6 × 10–4) in HepG2 cells, further studies 
are needed to confirm the allele-specific binding of MAFF 
at rs648044 in glioma cells, as predicted by our computa-
tional analysis and in vitro data. ZBTB16 has been shown 
to regulate self-renewal and differentiation of hemato-
poietic stem cells, mainly acting as a transcriptional acti-
vator and antagonized by a noncanonical function of the 
histone methyltransferase EZH232. It also acts as a tumor 
suppressor in prostate cancer, melanoma, gallbladder 
cancer, and leukemia.25,26,33,34 Although no ZBTB16 ChIP-
seq data are currently available in oligodendrocytes, 
ChIP-seq data in human mesenchymal stem cells,35 endo-
metrial stromal cells,36 and acute myelogenous leukemia 
cells32 show ZBTB16 binding the CIC promoter in these 
cell types (Supplementary Figure 11). The mRNA expres-
sion level of ZBTB16 is also highly correlated with that of 
CIC in prefrontal cortex (Spearman’s ρ = 0.65, GTEx v8), 
supporting that CIC is likely a direct transcriptional target 
of ZBTB16. Importantly, CIC is one of the most commonly 
mutated genes in IDHmut oligodendrogliomas and lo-
cated on chromosome 19q, which is often codeleted with 
chromosome 1p in oligodendrogliomas. These observa-
tions thus suggest a potentially important interaction 
network involving the regulation of CIC by ZBTB16 and 
disruption of this interaction by rs648044 in the tumori-
genesis of LGG. The fact that CIC mutation shows a trend 
of being more frequent in the homozygous non-risk GG 
genotype of rs648044, where the expression level of 
ZBTB16 is elevated, is consistent with this potential in-
teraction between the two tumor suppressors. However, 
the sample size of patients in our study may be too 
small to understand the genetic interactions accurately; 

furthermore, some patients having the non-risk GG gen-
otype of rs648044 may have mutations in other genes or 
harbor other risk SNPs, leading to alternate mechanisms 
of LGG pathogenesis.6,14

We have proposed PHLDB1 to be a candidate target gene 
repressed in the risk genotype of rs12803321. Our identi-
fied causal SNP rs12225399 also appears as one of top can-
didate causal SNPs in a previous study implicating PHLDB1 
for a different GWAS SNP.8 Knockdown of PHLDB1 has 
been shown to increase cell death and reduce neurosphere 
formation in the U87MG glioma cell line,8 but its molecular 
function remains poorly understood. We have developed 
a deep learning approach for predicting the binding pat-
tern of TFs when their ChIP-seq data are not available in the 
human brain. Most previous machine learning approaches 
have been using only sequence information for predicting 
protein binding patterns,37 and some recent studies have 
begun to utilize other genomic and epigenomic informa-
tion.38 Our deep learning model integrates DNase-seq 
signal with sequence information into one convolutional 
filter. Using the CNN trained on non-brain cell data to eval-
uate sequence and open chromatin information in brain 
tissues has allowed us to predict allelic preference of SP1 
binding. A similar approach may benefit future functional 
genomics studies in the brain, where TF ChIP-seq data are 
not readily available.

At the rs11706832 locus, we have shown SLC25A26 ex-
pression to be elevated in the risk group. This gene belongs 
to the mitochondrial carrier family and encodes a protein 
involved in transporting S-adenosylmethionine into the 
mitochondria.39 It has been shown that overexpression of 
SLC25A26 in CaSki cells contributes to mitochondrial DNA 
(mtDNA) hypermethylation40 and that mtDNA methylation 
level tends to decrease during glioblastoma progression.41 
Future studies may reveal how potential mtDNA methyl-
ation changes attributable to SLC25A26 modulation by 
rs11706832 contribute to LGG tumorigenesis.

Analysis of pan-cancer TCGA ATAC-seq data shows that 
rs648044, rs12225399 and rs11706832 also reside in open 
chromatin regions of several cancer types. We cannot thus 
conclude at this point that the proposed regulatory func-
tions of these SNPs are specific to LGG; however, the ef-
fects of their regulatory functions on modulating cancer 
risk seem specific to LGG, as the GWAS SNPs were as-
sociated only with non-glioblastoma gliomas.42 Even 
though our eQTL analysis modeled copy number alter-
ations in TCGA LGG expression data, it is possible that 
other uncharacterized somatic mutations that could alter 
transcription levels or mRNA stability might have strongly 
perturbed the mRNA abundance in tumor samples and 
complicated the target gene identification. This study has 
focused on assessing the molecular function of genetic 
variants in altering the binding affinity of TFs. Other molec-
ular functions might include DNA methylation changes and 
protein modifications, although the effects of differential 
methylation themselves could be mediated through differ-
ential binding of TFs or other chromatin binding proteins.43 
To facilitate the rapid identification of candidate (causal 
SNP, target gene, TF) triplets, we have summarized our re-
sults into an interactive user-friendly web database, ALG3.

http://education.knoweng.org/alg3/
http://education.knoweng.org/alg3/
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa248#supplementary-data
http://academic.oup.com/neuro-oncology/article-lookup/doi/10.1093/neuonc/noaa248#supplementary-data
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