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Abstract
Introduction: Longitudinal imaging of neurodegenerative disorders is a potentially 
powerful biomarker for use in clinical trials. In Alzheimer’s disease, studies have dem-
onstrated that empirically derived regions of interest (ROIs) can provide more reliable 
measurement of disease progression compared with anatomically defined ROIs.
Methods: We set out to derive ROIs with optimal effect size for quantifying longitudi-
nal change in a hypothetical clinical trial by comparing atrophy rates in 44 patients 
with behavioral variant of frontotemporal dementia (bvFTD), 30 with the semantic 
variant primary progressive aphasia (svPPA), and 26 with the nonfluent variant PPA 
(nfvPPA) to atrophy in 97 cognitively healthy controls.
Results: The regions identified for each variant were generally what would be ex-
pected from prior studies of frontotemporal lobar degeneration (FTLD). Sample size 
estimates for detecting a 40% reduction in annual rate of ROI atrophy varied sub-
stantially across groups, being 103 per arm in bvFTD, 31 in nfvPPA, and 10 in 
svPPA, but in all groups were less than those estimated for a priori ROIs and clinical 
measures. The variability in location of peak regions of atrophy across individuals 
was highest in bvFTD and lowest in svPPA, likely relating to the differences in ef-
fect size.
Conclusions: These findings suggest that, while cross-validated maps of change can 
improve sensitivity to change in FTLD compared with a priori regions, the reliability 
of these maps differs considerably across syndromes. Future studies can utilize 
these maps to design clinical trials, and should try to identify factors accounting for 
the variability in patterns of atrophy across individuals, particularly those with 
bvFTD.
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1  | INTRODUCTION

Frontotemporal lobar degeneration (FTLD) is a neurodegenerative 
disorder that has a profound effect on the lives of patients and their 
families; one that can be considered more detrimental than the effects 
of more typical degenerative disease such as Alzheimer’s disease (AD) 
because it is associated with an earlier age of onset (Papageorgiou, 
Kontaxis, Bonakis, Kalfakis, & Vassilopoulos, 2009) and more rapid 
rate of decline (Roberson et al., 2005). Neuroanatomically, it manifests 
distinctly from AD in that it primarily involves the frontal and ante-
rior temporal cortex rather than medial temporal and temporoparietal 
regions. There are no approved treatments for FTLD but efforts to 
develop them are underway (Boxer & Boeve, 2007; Boxer, Gold, et al., 
2013; Boxer, Knopman, et al., 2013).

Brain imaging is a powerful tool in neurodegenerative disease. 
MRI and PET, the most commonly used techniques, can be used to 
support diagnosis, and measures derived from brain images correlate 
with the type and severity of symptoms in each patient (Tartaglia, 
Rosen, & Miller, 2011). These observations have led to studies exam-
ining the utility of longitudinal brain imaging as an outcome measure 
for clinical drug trials, which have demonstrated that MRI can track 
change in neurodegenerative disorders more reliably than clinical 
measures such as cognitive testing (Knopman et al., 2009; Weiner 
et al., 2013).

One limitation of brain imaging is that each image produces hun-
dreds or thousands of data points per patient corresponding to spatial 
locations in the brain, posing a significant hurdle for defining imaging-
based biomarkers (Friston, Holmes, Poline, Price, & Frith, 1996). One 
of the most common approaches to reduce the large-scale data in im-
aging studies is to limit measures of change to aggregated estimates 
over regions of interest (ROIs), which tend to be chosen based on 
prior knowledge about the regions that are most severely affected in 
each disease. In AD, ROIs chosen often include the hippocampus, en-
torhinal cortex, and temporoparietal regions (Dickerson et al., 2011). 
In FTLD, the frontal and/or temporal lobes have been used (Gordon 
et al., 2010; Krueger et al., 2010). However, the regions most severely 
affected in each disease tend to be those affected earliest (Jack et al., 
1997; Seeley et al., 2008). When a disorder moves beyond the earliest 
stages, it is possible that regions affected early begin to slow their rate 
of change while other regions, previously only mildly affected, begin 
to accelerate their decline (Brambati et al., 2009; Rohrer et al., 2012; 
Schuff et al., 2012). Thus, ROIs chosen based on regions that are most 
strongly associated with the disease may not be optimal for deter-
mining treatment effects. Recent studies have shown that empirically 
derived ROIs representing the most reliable voxels associated with 
an effect of interest can be used to improve diagnosis of dementia 
(Avants, Cook, Ungar, Gee, & Grossman, 2010; McMillan et al., 2014) 
and to improve statistical power for longitudinal analysis (Chen et al., 
2010; Hua et al., 2009) compared with ROIs chosen based on their 
general association with the disease. We recently created an empiri-
cally based ROI of annualized atrophy in a group of FTLD patients and 
demonstrated the potential for larger effect sizes than a priori ROIs 
(Pankov et al., 2016).

Frontotemporal lobar degeneration includes a spectrum of disor-
ders with varying molecular, clinical and imaging characteristics (Bang, 
Spina, & Miller, 2015; Tartaglia et al., 2011). The three canonical clin-
ical presentations include: (1) the behavioral variant of frontotem-
poral dementia (bvFTD), characterized by progressive impairment in 
socioemotional function; (2) the semantic variant of primary progres-
sive aphasia (svPPA; also known as semantic dementia), character-
ized by progressive loss of knowledge about words and objects, and  
(3) the nonfluent variant of PPA (nfvPPA), characterized by progres-
sive impairment of articulation and speech (Gorno-Tempini et al., 
2011; Rascovsky et al., 2011). Each variant is associated with distinct 
distributions of cortical atrophy varying particularly in the degree of 
temporal and frontal lobe involvement. BvFTD alone can show highly 
variable patterns of atrophy (Whitwell et al., 2011). Therefore, it is 
likely that the most sensitive ROIs for FTLD will be derived empiri-
cally from and specific to each variant. In our previous analysis (Pankov 
et al., 2016), we examined annual volume loss in a mixed group of 
bvFTD and svPPA cases. The number of subjects in that study was too 
small to examine syndrome-specific patterns of change. In this study, 
we set out to identify the most reliable regions of change separately in 
bvFTD, svPPA, and nfvPPA and estimate sample sizes for theoretical 
clinical trials that might involve each of these groups individually.

2  | METHODS

2.1 | Subjects

Subjects in this retrospective study included any subject studied at 
the UCSF Memory and Aging Center (MAC) who had undergone 
MRI twice over a period ranging between 6 months and 2 years with 
a diagnosis of behavioral variant of bvFTD (n = 44), svPPA (n = 30), 
or nfvPPA (n = 26). All data were annualized prior to analysis. In ad-
dition, we assembled a group of healthy comparison subjects (HC) 
with longitudinal imaging with the same age range and sex distribu-
tion of the FTLD group (HC, n = 97, mean age 64.77 ± 6/95, mean 
education level 17.65 ± 6.95). Patients included in this study were re-
cruited between 2008 and 2015 through ongoing studies (AG019724, 
AG032306, AG023501) at the MAC. Diagnosis for these studies was 
based on a multidisciplinary evaluation incorporating neurological, 
neuropsychological, and nursing assessment (Rosen et al., 2002). 
Structural brain imaging was not used to make syndromic diagnosis, 
but only to exclude other causes of brain damage, such as strokes or 
tumors. Disease duration was estimated based on the year of initial 
symptoms provided by the patient or their informant. HC data were 
obtained from a cohort of subjects recruited at the MAC via advertise-
ments and community events. HCs underwent the same evaluation as 
patients and were required to have no clinically significant cognitive 
or behavioral complaints, performance within one standard deviation 
of normal on all cognitive tasks, and to have brought a knowledge-
able informant to verify the absence of clinically significant cognitive 
or behavioral problems. HCs were excluded if they had a history of 
significant mood disorders, clinically significant alcohol or drug use, 
significant vascular disease, visual problems that would impair test 
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performance, other neurologic conditions, and self-reported deficits 
in cognition.

All subjects were required to have had two T1-weighted MRI scans 
acquired with the same scanner and pulse sequence and with a quality 
suitable for processing. Images were inspected for quality, including 
ensuring whole-brain coverage and looking for excessive motion arti-
fact. Assessment of CNS amyloid burden, usually with PET amyloid im-
aging using Pittsburgh B compound was available in 63 of the patients. 
Because the goal of the analysis was to examine the change maps in 
groups with specific clinical diagnoses, all patients with available MRI 
data were included, regardless of amyloid status. A sensitivity analysis 
was conducted on the subset of bvFTD patients who were known to 
be amyloid negative to examine whether maps of change differed sub-
stantially from the maps created from the group as a whole. Amyloid 
status was generally not available in the controls. All research was per-
formed in accordance with the Code of Ethics of the World Medical 
Association. All subjects provided informed consent, and the clinical 
and imaging protocols were approved by the UCSF Committee on 
Human Research.

2.2 | Clinical assessment

Patients were diagnosed using published criteria (McKhann et al., 
1984; Neary et al., 1998) after a comprehensive evaluation at the 
UCSF MAC including neurological history and examination, nursing 
assessment, laboratory evaluation, and a previously described neu-
ropsychological assessment (Kramer et al., 2003). The neuropsycho-
logical assessment battery includes the Mini Mental State Examination 
(MMSE) (Folstein, Folstein, & McHugh, 1975), and tests tapping into 
functions relevant to FTLD including memory, language and frontal/
executive functions. These include list-learning (California Verbal 
Learning Task [CVLT]; Delis, Kramer, Kaplan, & Ober, 2000), con-
frontational naming (15 items from the Boston Naming Test [BNT]; 
Kaplan, Goodglass, & Wintraub, 1983), set-shifting (modified version 
of the Trails B task; Kramer et al., 2003), and tests of lexical fluency 
(words beginning with the letter “D”; Birn et al., 2010), and semantic 
fluency (animals; Delis, Kaplan, & Kramer, 2001). Functional state was 
quantified using the Clinical Dementia Rating (CDR; Morris, 1997), 
which was used here to generate a continuous variable based on the 
sum of the individual ratings for functional domains, typically referred 
to as the sum-of-boxes (CDR-SB). Although an FTLD-specific version 
of the CDR has been developed (Knopman et al., 2008), many of these 
patients were assessed before our center began using it, so this analy-
sis was done using only the traditional CDR domains.

2.3 | Image acquisition

A 3.0T MRI was acquired on a Siemens Tim Trio system (Siemens, 
Iselin, NJ, USA) equipped with a 12-channel receiver head coil. A volu-
metric MPRAGE sequence was used to acquire T1-weighted images of 
the entire brain (coronal slice orientation; slice thickness = 1.0 mm; in-
plane resolution = 1.0 × 1.0 mm; matrix = 240 × 256; TR = 2,300 ms; 
TE = 3 ms; TI = 900 ms; flip angle = 9°).

2.4 | Image processing

Longitudinal changes in regional brain volume were estimated using 
the Pairwise Longitudinal Registration Toolbox implemented in 
SPM12 (Ashburner & Ridgway, 2012), which addresses concerns 
regarding asymmetric bias in pair-wise longitudinal registration 
(Thomas, 2010; Yushkevich et al., 2010). The process begins with in-
trasubject registration using iterative and interleaved rigid-body align-
ment, diffeomorphic warping, and correction for differential intensity 
inhomogeneity to generate a within-subject template representing an 
average of the subject’s two scans with respect to position, shape, 
and intensity nonuniformity. Two Jacobian determinant maps are 
then computed; one that encodes the relative difference in volume 
between the first scan and the within-subject average, and another 
that describes the relative volume between the second scan and the 
average. Computing the difference between these two Jacobian de-
terminants provides a map of relative change in volume between scan 
one and scan two at each spatial location. The change maps were di-
vided by the interscan interval (in units of years) to become maps of 
annual rate of relative volume change. Each subject’s average image 
was bias-corrected and the brain was partitioned into gray matter, 
white matter, and cerebrospinal fluid (CSF), using SPM12’s unified 
segmentation procedure. The contraction/expansion maps were then 
multiplied with the gray matter probabilistic tissue segmented maps 
on a voxel-by-voxel basis, in within-subject average space, to restrict 
analyses to cortical and subcortical gray matter.

Image segmentation can be affected by several factors that may 
relate to disease, including histological abnormalities that could cause 
changes in tissue contrast, as well as subject movement, which would 
decrease signal-to-noise ratios. To ensure that the analysis would not 
be excessively influenced by differences in the quality of gray matter 
segmentations across groups, we reviewed the distributions of values 
for the whole-brain gray matter probability maps across groups. The 
shapes of these distributions were similar across groups.

To allow statistical analysis across subjects, all images were trans-
formed to a standardized space. Mappings from the gray matter and 
white matter segments of the within-subject averages (all patients and 
control subjects) to an iteratively evolving study-specific population 
mean of these tissues were estimated using the DARTEL (diffeomor-
phic anatomical registration through an exponentiated lie algebra) 
toolbox (Ashburner, 2007). DARTEL minimizes the geodesic distance 
from each patient to the population mean. Thus, between-population 
asymmetries in registration, which could also lead to erroneous pop-
ulation effects, were addressed. An affine mapping between the 
population mean and MNI space (defined by SPM12’s Prior Tissue 
Probability Map) was also estimated and combined with each subject-
to-population mean mapping for warping average images and volume 
expansion/contraction rate maps to MNI space. The rate change maps 
were then warped to population-in-MNI space using the abovemen-
tioned mapping composition, and resampled to 1.5 mm3 without 
“volume-preserving” modulation. No spatial smoothing was applied. 
Subsequent analysis was done using only the gray matter maps of each 
patient.
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2.5 | Generation and evaluation of a data-driven ROI

2.5.1 | Overview

Our data-driven ROI generation procedure follows (in spirit) from prior 
approaches where optimal effect sizes were estimated from a training 
set and tested on an independent test set (Chen et al., 2010; Hua et al., 
2009). However, we use a cross-validation-type scheme rather than a 
simple training-test approach in order to maximally use the data avail-
able in generating a “best” consensus ROI; we thereby avoid overfit-
ting for our estimates of effect size and sample size. For each randomly 
partitioned cross-validation training set, we first generated a Student’s 
t statistic (allowing unequal group variances) at each voxel in stand-
ardized space. The map of t statistics quantifies the difference in the 
effect size of contraction between each FTLD patient group and HCs 
across the brain. A 3D ROI is extracted by thresholding the map of t 
statistics such that the threshold used maximizes the effect size in the 
same training set. The effect size for tissue contraction over 1 year is 
then estimated on the independent test set partition of the data. After 
repeating the process multiple times, the effect size is estimated as the 
mean of the estimates across the independent test sets. A consensus-
weighted ROI was then generated from the cross-validation procedure 
by weighting each voxel based on its reliability in distinguishing con-
traction between patient and HC groups across the random partitions.

We specifically chose to examine only contracting voxels because 
expanding voxels would often represent residual CSF spaces that 
were not completely removed by segmentation and masking. If we 
included expanding voxels, we would be making the assumption that 
future studies would encounter similar patterns of expansion in resid-
ual/unmasked CSF voxels. Thus, the generalizability of the resultant 
map would be dependent on similarity between our segmentation and 
masking procedures and the segmentation outcomes of future studies. 
Given that this segmentation accuracy would depend on many factors, 
we felt that limiting the ROI to only voxels that would be expected to 
contract would be more conservative and generalizable.

2.5.2 | Procedure

Data-driven ROIs were generated separately for each clinical variant 
of FTLD by comparing change maps in each patient group to change 

in the entire control group. The cross-validation algorithm proceeded 
as follows:

1.	 For each patient group, the combined set of control and patient 
data were randomly divided into training and test sets, with 
16% of the data being assigned to the test set. Each split was 
stratified such that the proportion of FTLD to normal samples 
was required to be more than 1/3, but less than 2/3 of the 
total test set. For example, in the case of bvFTD where we 
have the N of 97 for controls and 44 for bvFTD, the size of 
the test set would be (97 + 44) × 0.16 = 23 images, of which 
1/3 (8) to 2/3 (15) would have to be bvFTD.

2.	 A series of ROIs was then generated in each training set by thresh-
olding the t-maps over a set of levels ranging from 3.5 to the maxi-
mum observed t statistic in increments of 0.01 units.

3.	 The effect size for the mean difference in rate of change between 
each FTLD variant and controls was then calculated for each ROI of 
the training set using Cohen’s d. A plot is then generated of effect 
size versus each t statistic cutoff. The plot represents the relation-
ship between the t statistic cutoff and the corresponding effect size 
for each resulting ROI (see below, Figure 1).

4.	 The ROI associated with the t statistic cutoff corresponding to the 
maximum effect size is selected.

5.	 The ROI from step 4 is then used to calculate the effect size in the 
test set to obtain an unbiased effect size estimate for the particular 
partition.

Steps 1–5 were then repeated 1,024 times, reassigning patients 
into the training and test sets each time. At the end of the process, 
we have a set of “optimal” ROIs (across training/test set partitions). 
The effect size is then estimated as the mean effect size over all 
partitions. To then estimate a consensus ROI from the ensemble of 
cross-validated measurements, we weighted the contribution of each 
voxel to the data-driven ROI as the proportion of cross-validation 
partitions (weighted by the effect size for that cross-validation sam-
ple) in which the voxel contributes to the consensus ROI. Thus, the 
resulting map has a stronger representation from voxels consistently 
contributing to the overall effect size across cross-validation samples 
and weaker representation from voxels whose contribution was more 
variable.

F IGURE  1 Plots of effect size versus t score threshold cutoff for each clinical variant, used to identify t score threshold giving map with 
maximum effect size
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It should be noted that at high t-thresholds the maximal empirical 
effect size estimate becomes highly variable over neighboring thresh-
olds because only a small number of voxels form a ROI at high thresh-
olds. To mitigate this effect and generate a stable estimate of maximum 
effect size, we smoothed the effect size curve plotted against thresh-
old. However, even lowess regression did not sufficiently downweight 
the influence of high thresholds. We therefore implemented a heuristic 
method to identify the maximum effect size. Specifically, a lowess re-
gression was performed after iteratively excluding a top set of voxels 
(from 0% to 10% of the highest voxels in increments corresponding to 
those associated with the t-thresholds). At each iteration, the lowess-
smoothed maximum was calculated, and the overall maximum was taken 
as the median of all the smoothed maximums. This approach was able 
to identify the location of the maximum in reasonable agreement with 
the choice that one would make visually as being the maximum of the 
relatively smooth (and therefore reliable) part of the curve (see Figure 1).

In order to estimate the potential impact of using an optimized 
data-driven ROI of change for future clinical trials, we calculated the 
necessary sample size in a hypothetical clinical trial seeking to detect 
a 20% and 40% reduction in the change over 1 year in volume loss in 
each FTLD group (α = 0.05, power = 0.8). We compared the sample 
size from the effect size estimated using the data-driven ROIs (i.e., via 
the mean effect size over the test set estimates) to the sample sizes 
obtained by measuring change within a priori ROIs based on cerebral 
anatomy. For this purpose, we used frontal, temporal, combined fron-
tal and temporal, and whole gray matter masks as regions of interest 
(ROIs) relevant to FTLD. These ROIs were obtained from the AAL brain 
atlas supplied with the WFU-PickAtlas software package (Maldjian, 
Laurienti, Kraft, & Burdette, 2003).

2.6 | Change in clinical variables and sample 
size estimates

Changes in clinical variables were analyzed using linear mixed effects 
models with cognitive score as the dependent variable and elapsed 
time in years as the predictor. In order to compare the sample size 
estimates generated for imaging-based measures of change to those 
generated using clinical measures, we calculated sample size estimates 
using annualized changes in score for the MMSE, selected measures 
of language and executive functioning, and for the CDR, which has 
been identified as an attractive measure for tracking change in FTLD 
(Knopman et al., 2008). We calculated the necessary sample size in a 
hypothetical clinical trial seeking to detect a 20% and 40% reduction 
in the change over 1 year in clinical measures in each FTLD group 
(α = 0.05, β = 0.8). These analyses were carried out using Stata (ver-
sion 14, www.stata.com).

3  | RESULTS

3.1 | Group demographics and clinical assessments

Demographic characteristics and cognitive testing performance in the 
patient groups are presented in Table 1. The mean age for the control 
group was 64.4 (±7). The bvFTD group was slightly younger than the 
controls (−3.69 years, 95% CI [−6.23, −1.14], p = .005) and the nfvPPA 
group was slightly older (+3.73 years, 95% CI [0.66, 6.8], p = .018). 
The differences in mean interscan interval across groups were not 
statistically significant (p = .11), nor were differences in education 
level (p = .43) or disease duration (p = .45). In terms of cognitive and 

TABLE  1 Baseline and 1-year clinical data in patient groups

bvFTD (n = 44) nfvPPA (n = 26) svPPA (n = 30)

Demographics

Age at year 1 (SD) 61.14 (7.36) 71.6 (7.73) 66.7 (6.69)

Sex (M/F) 25/19 12/14 16/14

Education 15.88 (2.95) 16.58 (2.76) 16.76 (3.21)

Disease duration 5.66 (3.85) 4.81 (2.87) 6.05 (4.2)

Mean interscan interval 1.09 (0.31) 1.14 (0.38) 1.07 (0.38)

Measure Baseline Follow-up Baseline Follow-up Baseline Follow-up

Cognitive testing

MMSE 24.57 (4.19) 21.94 (7.09)* 25.32 (4.66) 23.05 (6.85) 25.03 (3.89) 19.96 (7.33)*

CDR-SB 6.67 (2.9) 8.59 (3.22)* 2.38 (2.14) 4.02 (3.7)* 4.11 (2.28) 5.72 (3.15)*

CVLT-LDa (max = 9) 4.02 (2.8) 3.55 (3.05)* 5.48 (2.92) 5.19 (2.91) 1.38 (2.0) 1.21 (2.25)

BNT (max = 15) 12.11 (3.43) 11.64 (4.49) 12.08 (2.84) 10.48 (4.32)* 4.54 (3.36) 3.11 (3.36)*

Semantic fluency 10.45 (6.26) 9.66 (7.0)* 10.33 (7.25) 9 (7.05) 6.85 (4.57) 5.5 (5.56)*

Lexical fluency 7 (4.48) 6.56 (5.56) 6.16 (4.7) 5.27 (5.13)* 7.77 (4.06) 6.73 (4.97)

Trails set-shifting 70.9 (40.43) 76.53 (42.55) 71.88 (35.3) 64.38 (33.93) 49.08 (29.13) 50.01 (29.76)

bvFTD, behavioral variant of frontotemporal dementia; nfvPPA, nonfluent variant of primary progressive aphasia; svPPA, semantic variant of primary pro-
gressive aphasia; BNT, Boston Naming Test; CVLT, California Verbal Learning Task; CDR, Clinical Dementia Rating.
aLD = long delay (10 min).
*p < .05 for change between baseline and follow-up.

http://www.stata.com
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functional data, scores were generally what would be expected. SvPPA 
patients tended to score more poorly on measures of verbal episodic 
memory and language compared with the other groups. BvFTD and 
nfvPPA patients performed more poorly on measures of executive 
function than svPPA. BvFTD showed the most functional impairment, 
as measured by the CDR-SB. Annualized changes over time were sig-
nificant in bvFTD for MMSE (−3.25, 95% CI [−5.26, −1.24], p = .001), 
CDR (1.73, 95% CI 0.95, 2.5], p < .001), CVLT-long delay (−0.82, 
95% CI −1.35, −0.3], p = .002), and semantic fluency (−1.61, 95% CI 
−2.13, −0.08], p = .039). In svPPA, changes were significant for MMSE 
(−4.40, 95% CI [−5.85, −2.95], p < .001), CDR (1.32, 95% CI [−0.45, 
2.19, p = .003), BNT (−1.36, 95% CI [−2.05, −0.67], p < .001), and se-
mantic fluency (−1.62, 95% CI [−2.31, −0.94], p < .001). In nfvPPA, 
changes were significant for CDR (1.61, 95% CI [0.7, 2.52], p = .001), 
BNT (−1.66, 95% CI [−3.17, −0.16], p = .03), semantic fluency (−1.83, 
95% CI [−3.35, −0.33], p = .017), and lexical fluency (−1.05, 95% CI 
[−1.19, −0.19], p = .17).

3.2 | Change maps and effect sizes

As expected, there was a clear relationship between the t statistic 
threshold and the effect size for the associated ROI in each FTLD vari-
ant. For illustrative purposes, Figure 1 depicts this relationship in each 
variant developed from the complete dataset (step 2 of the algorithm; 
no training/test partitioning has been performed in generating the 
plot. Rather, the full dataset was used in order to maximally extract 
information from the data).

Figure 2 depicts the range of effect sizes obtained by applying 
the ROIs obtained from training sets to test sets (step 5 of the algo-
rithm) over 1,024 iterations. The mean effect sizes were −0.98 (95% 
CI [−0.96, −0.98]) for bvFTD, −1.84 (95% CI [−1.78, −1.9]) for nfvPPA, 
and −3.45 (95% CI [−3.35, −3.55]) for svPPA.

Figure 3 depicts the consensus ROIs created for each variant. The 
ROI maps are displayed on a scale representing the weighing for each 
voxel. In bvFTD, the regions in the optimal ROI included medial and 
lateral portions of the frontal cortex, the perisylvian regions including 
the insula, and the striatum, in particular the caudate heads, with no 
inclusion of the orbitofrontal surface. In addition, the map included 
portions of the temporoparietal junctions, medial parietal cortex, and 

mid-inferolateral temporal region. In nfvPPA, the most reliable regions 
of change were identified in the dorsal portions of the medial wall 
of the frontal lobes, and on the lateral frontal lobes primarily in the 
precentral regions with extension into the perisylvian region, and also 
caudate head involvement. In svPPA, the optimal ROI included supe-
rior and ventral anterior temporal cortex (but only partially included 
the temporal polar cortex) and mid-to-posterior inferolateral portions 
of the temporal lobes. The ROI in svPPA was bilateral but more ex-
tensive on the left. It also extended into the ventromedial frontal and 
caudate regions.

Table 2 compares the sample size estimates for a hypothetical 1-
year 1:1 parallel group trial designed to detect a 20% or 40% reduction 
in rate of decline obtained using the statistical ROIs (taken as the mean 
of the test effect sizes from the cross-validation procedure) with those 
obtained using anatomically based ROIs and clinical data. In every vari-
ant, the sample size estimated with the statistically derived ROI was 
lower than sample sizes from frontal and/or temporal, or whole gray 
matter ROIs. The improvements were larger for nfvPPA and svPPA 
compared with bvFTD. For instance, in nfvPPA, the data-driven ROI 
resulted in a 31% reduction in the sample size required to see a 20% 
reduction in atrophy in a theoretical clinical trial when compared with 
the best a priori ROI (118 patients per arm vs. 170 using temporal 
gray matter). In svPPA, the sample size needed was reduced by 53% 
(34 patients per arm vs. 73 using temporal gray matter). In bvFTD, the 
data-driven ROI improved the sample size estimate by 21% (409 pa-
tients per arm vs. 521 using whole gray matter). These results can be 
compared with the sample size estimates required to achieve a 20% 
or 40% reduction in rate of decline for MMSE, CDR-SB, and other 
cognitive tasks (Table 2). The sample sizes are substantially larger than 
those required for imaging.

3.3 | Change maps in amyloid-negative and nongene 
carrier bvFTD subjects

The prominence of longitudinal atrophy in the parietal regions in 
bvFTD raised concerns that the change maps might be influenced 
by individuals diagnosed with bvFTD who were amyloid positive. Of 
the 44 bvFTD patients, 20 had amyloid imaging and one of them was 
amyloid positive. We performed a sensitivity analysis examining rates 

F IGURE  2 Histograms of effect size calculations across cross-validation runs in each diagnostic group
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of change in the 19 known amyloid-negative bvFTD patients versus 
controls. Although the resulting change map included fewer voxels, 
likely due to a relatively small number of subjects being used for the 

cross-validation, the resulting change map (Figure 4, top row) included 
a similar set of regions as the overall bvFTD map, including temporal 
regions and lateral and medial parietal regions.

F IGURE  3 Maps of consensus regions of interest for the three main variants

TABLE  2 Sample size calculationsa (per arm) for rate of atrophy in a priori and data-driven regions of interest, and for selected clinical 
measuresb

bvFTD nfvPPA svPPA

Sample size 20% 
reduction

Sample size 40% 
reduction

Sample size 
20% reduction

Sample size 40% 
reduction

Sample size 
20% reduction

Sample size 
40% reduction

Imaging measures

Frontal lobe 593 149 191 49 346 88

Temporal lobe 564 142 170 44 73 19

Frontal/temporal 755 190 507 128 94 25

Whole gray 521 131 172 44 111 29

Data-driven 409 103 118 31 34 10

Clinical measures

MMSE 2,090 523 3,457 893 546 137

CDR-SB 592 152 1,522 367 776 194

BNT 3,340 835 4,728 1,182 841 211

Category fluency 1,795 449 1,572 393 426 107

Phonemic fluency 3,650 913 3,290 823 2,256 564

Modified trails time 2,132 533 863,592 215,898 1,169 293

bvFTD, behavioral variant of frontotemporal dementia; nfvPPA, nonfluent variant of primary progressive aphasia; svPPA, semantic variant of primary pro-
gressive aphasia; BNT, Boston Naming Test; CDR, Clinical Dementia Rating.
aSample size for placebo-controlled trial with 1:1 treated/placebo ratio, standard deviation based on patient group only (see Section 2).
bThe imaging measure with the highest effect size for each diagnostic group is highlighted (bold) to facilitate comparison.
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Similarly, previous reports have demonstrated that patterns of at-
rophy in autosomal dominant forms are different than in sporadic FTD, 
with more widespread cortical involvement, including the parietal 
lobes. All of the bvFTD cases had genetic testing performed through 
research using previously described methods (Naasan et al., 2016). 
Fourteen of the 44 bvFTD patients were gene carriers. To examine 
whether mutation carriers were having a strong effect of increasing 
the likelihood of parietal changes, we performed another sensitivity 
analysis of the group of 30 bvFTD subjects after removing individu-
als with mutations. Again, the resulting change map (Figure 4, bottom 
row) was similar to the map for the bvFTD group as a whole.

3.4 | Variability in locations of peak change across 
individuals

The variability in effect size across clinical syndromes was striking. 
One possible explanation is that mean rates of change were slower 
for bvFTD than for other groups; however, this would be inconsist-
ent with prior studies indicating that rates of decline in clinical meas-
ures and brain volume in bvFTD are similar to rates of decline in other 
variants (Krueger et al., 2010; Rascovsky et al., 2001; Roberson et al., 
2005). Given that the algorithm is designed to quantify the reliabil-
ity of change in each voxel across individuals, another possibility is 
that the patterns of change might vary across individuals differently in 
each of the groups. To examine this, we plotted the locations of peak 
voxels (i.e., those with the highest rate of change) for all individuals, 

and displayed these locations in MNI space for each diagnostic group 
(Figure 5). As would be predicted from the effect size estimates, peak 
regions of change were highly clustered across individuals in the 
svPPA group, but with greater spatial variation in the locations of 
peaks in nfvPPA, and perhaps the most heterogeneous spatial distri-
bution was seen in bvFTD.

4  | DISCUSSION

The aim of this analysis was to create ROIs that would generate maxi-
mal effect sizes for measuring change in cortical volume in three major 
variants of FTLD. As would be expected, the maps varied considerably 
across the three major variants. In bvFTD, they included the medial 
and lateral portions of the frontal lobes, the insula, the striatum, and 
the temporoparietal regions bilaterally. In svPPA, the most reliable 
change occurred primarily in ventral and lateral temporal, and medial 
frontal regions, and in nfvPPA, the changes occurred in the medial and 
lateral portions of the frontal lobes with predominant involvement of 
the precentral and perisylvian regions. Estimated effect sizes within 
these optimal ROIs varied considerably, being highest in svPPA and 
lowest in bvFTD. The main factor likely contributing to the differ-
ences in effect size appeared to be the level of spatial variability in 
atrophy locations across individuals, with bvFTD and nfvPPA showing 
the most widely distributed patterns of change. In all analyses, the 
sample size estimates for a theoretical clinical trial obtained using the 

F IGURE  4 Maps of consensus 
regions of interest for behavioral variant 
of frontotemporal dementia sensitivity 
analysis using amyloid-negative and gene-
negative subgroups

F IGURE  5 Maps of peak regions of 
longitudinal atrophy across patients in each 
of the three major variants
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statistical ROI approach were smaller than the estimates obtained 
with a priori lobar ROIs.

The specific regions identified in the change maps were generally 
what would be expected from prior cross-sectional and longitudi-
nal studies of FTLD, with some notable exceptions. In bvFTD, there 
was surprisingly little involvement of the orbitofrontal regions, while 
there was change detectable in the posterior temporoparietal regions. 
Current models propose that the pattern of change in structural MRI 
in neurodegenerative diseases follows a nonlinear pattern, with accel-
eration of change somewhere near the point of symptom onset, and 
deceleration of change in the later phases of illness (Jack et al., 2013). 
Given that atrophy in bvFTD occurs earliest in the insula and ven-
tromedial frontal regions (Kril & Halliday, 2004; Seeley et al., 2008), 
these regions may reach a point where additional volume loss does 
not occur, while at the same time regions that are not involved early 
in bvFTD, such as the parietal lobes, may just be entering the phase of 
rapid decline when patients typically present for evaluation. The same 
phenomenon may explain the relative sparing of the temporal poles in 
the change maps for svPPA, which has been observed in prior stud-
ies and attributed to floor effects (Brambati et al., 2009; Rohrer et al., 
2008). These findings highlight the value of empirically defined ROIs 
in tracking change as opposed to using ROIs defined according to prior 
knowledge about the regions that are most severely affected in each 
disease. These ROIs are affected by regional patterns of acceleration 
and deceleration that are likely stage specific, and thus would need to 
be recreated for use in patient groups substantially earlier or later in 
the disease course than those studied here.

Perhaps, more striking than the regions identified were the differ-
ences in sample size estimates across syndromes. Our data indicate 
that the sample sizes that would be required to detect changes in the 
rate of atrophy in bvFTD are larger than in nfvPPA and even more so 
when compared with svPPA. The fact that estimates obtained using 
the statistically driven approach were only slightly better than those 
obtained with whole gray matter supports the idea that the variability 
in regions of change in bvFTD makes it difficult to find focal, reliable 
regions for bvFTD as a whole. In contrast, in nfvPPA and particularly 
svPPA, the stronger overlap in regions of peak atrophy between indi-
viduals means that very reliable change can be measured in a relatively 
circumscribed region, such that techniques designed to find these re-
gions, like the one used in this analysis, yield significant benefits for 
clinical trials.

The reason for the low level of predictability in regions of change 
across individuals with bvFTD is not readily apparent. Based on our 
analysis, the presence of amyloid-positive cases or mutation carriers 
were not likely explanations because the maps generated using only 
known amyloid-negative and known gene-negative cases were similar 
to those obtained in bvFTD as a whole, including the presence of at-
rophy in the parietal lobes. Of course, we may still have included some 
cases due to mutations not yet discovered. Variability in the caus-
ative proteinopathy across individuals may be another explanation. 
Although svPPA is almost uniformly associated with Tar-DNA-binding 
protein type C (TDP-C) protein pathology, bvFTD can be associated 
with a variety of proteinopathies including various forms of TDP as 

well as various forms of tau pathology including progressive supra-
nuclear palsy, corticobasal degeneration, Pick’s disease, and other 
variants (Bang et al., 2015). Differences between proteinopathies 
in patterns of imaging abnormalities have been established cross-
sectionally (Whitwell et al., 2011). Patterns of decline across different 
proteinopathies can also be examined as cohorts of autopsied cases 
with longitudinal imaging data grow, and techniques for identifying 
specific proteinopathies in vivo improve. In addition, current theo-
ries suggest that proteins causing neurodegenerative disease spread 
within neuroanatomically defined networks (Seeley, Crawford, Zhou, 
Miller, & Greicius, 2009). It is possible that the particular network 
involved in a disorder, and/or variability in strengths of connectivity 
within and between networks across individuals may also mediate 
patterns of spread. Verification that any of these, or other factors, can 
predict individual patterns of change would have obvious benefit for 
future clinical trials. It is also possible that other imaging methods, 
such as diffusion tensor imaging, may provide more reliable methods 
of tracking change over time (Mahoney et al., 2015).

One potential benefit from the use of imaging as a marker of lon-
gitudinal decline is that increased precision could result in improved 
effect sizes when compared with clinical measures of change (Weiner 
et al., 2013). This was generally confirmed in our analysis. For instance, 
we found that a placebo-controlled trial would require 592 subjects 
per arm using the CDR-SB to detect a 20% reduction in rate of change 
in bvFTD (Table 2). This estimate is roughly consistent with a prior 
study that estimated a sample size of 582 (Gordon et al., 2010) to de-
tect a 25% effect of a drug. In contrast, our analysis indicates that 
a study measuring rates of atrophy using a statistically derived ROI 
in T1-weighted images would require 409 people to detect the same 
effect. That said, other groups have published methods for identifying 
optimal clinical measures for tracking change using methods that are 
similar in principle to the approach used here for brain voxels (Ard, 
Raghavan, & Edland, 2015). These have yet to be examined in FTLD. 
While it is currently unlikely that volumetric change would be accept-
able as a primary endpoint in clinical trials, this might become possible 
if reliable links between volumetric changes and clinical changes can 
be established. In addition, imaging could be used as evidence for a 
disease modifying effect of a proposed treatment, or in early clinical 
development (e.g., phase 2 studies) to establish proof of concept to 
support advancement of a potential treatment to a phase 3 trial.

Our results confirm that data-driven ROIs of change identify ex-
pected patterns of atrophy, based on the known patterns of disease 
in FTLD and the limited prior data on longitudinal change, and im-
prove the reliability of change measurements compared with a priori 
ROIs and compared with clinical measures. The method is most bene-
ficial in situations where regions of maximal change are least variable 
across individuals. Future studies can try to improve the reliability of 
tracking change in bvFTD by attempting to identify factors that pre-
dict the regions most likely to change. The approach used here is one 
of many data-driven methods used to optimize voxel-wise analyses 
in both cross-sectional and longitudinal studies (Avants et al., 2010; 
Chen et al., 2010; Hua et al., 2009; McMillan et al., 2014; Reddan, 
Lindquist, & Wager, 2017; Vounou et al., 2012). Our method is similar 



10 of 11  |     BINNEY et al.

to prior studies that used training and test sets (Chen et al., 2010; 
Hua et al., 2009) but instead of a single training-test partition, we 
use cross-validation through repeated resampling of the data. The 
estimate of the effect size we generated from this procedure should 
be a conservative estimate of the effect size achievable with the op-
timized ROI we created because it was generated based on multi-
ple partitions of the data that always used a smaller sample than the 
total (the training partition) to generate a ROI that was then tested 
in the test partition for each cross-validation run. It will be import-
ant to test the effect size of the final consensus ROI in independent 
datasets from different cohorts, ideally collected at other centers. In 
addition, our analysis compared the rates of change in cerebral cor-
tex to change in a limited number of cognitive and functional vari-
ables. Future studies should compare rates of change in imaging with 
a larger number of clinical variables to better evaluate the relative 
utility of imaging. Lastly, while all the cases analyzed were recruited 
for longitudinal follow-up, the studies did not employ true clinical trial 
methodology with systematic follow-up of every case. Thus, clinical 
features that influence enrollment criteria or dropout might differ in 
clinical trials and thus be associated with different effect sizes for 
longitudinal change.
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