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Analysis of collective neutrino flavor transformation in supernovae
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Yong-Zhong Qian®
School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
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We study the flavor evolution of a dense gas initially consisting of pure monoenergetic v, and 7,. Using
adiabatic invariants and the special symmetry in such a system we are able to calculate the flavor evolution
of the neutrino gas for the cases with slowly decreasing neutrino number densities. These calculations give
new insights into the results of recent large-scale numerical simulations of neutrino flavor transformation
in supernovae. For example, our calculations reveal the existence of what we term the ‘“‘collective
precession mode.” Our analyses suggest that neutrinos which travel on intersecting trajectories subject to
destructive quantum interference nevertheless can be in this mode. This mode can result in sharp
transitions in the final energy-dependent neutrino survival probabilities across all trajectories, a feature
seen in the numerical simulations. Moreover, this transition is qualitatively different for the normal and
inverted neutrino mass hierarchies. Exploiting this difference, the neutrino signals from a future galactic

supernova can potentially be used to determine the actual neutrino mass hierarchy.

DOI: 10.1103/PhysRevD.75.125005

I. INTRODUCTION

In this paper we employ physical, analytic insights along
with the results of large-scale numerical calculations to
study the nature of collective neutrino and antineutrino
flavor transformation in supernovae. Although neutrino
flavor transformation is an experimental fact, modeling
this process in astrophysical settings can be problematic.
In part, this is because nature produces environments
where the number densities of neutrinos and/or antineutri-
nos can be very large. Examples of these include the early
universe and environments associated with compact-object
mergers and gravitational collapse. In particular, core-
collapse supernovae result in hot proto-neutron stars that
emit neutrinos and antineutrinos copiously from the neu-
trino sphere. This implies inhomogeneous, anisotropic dis-
tributions for these particles. As their trajectories intersect
above the proto-neutron star, their flavor evolution histor-
ies are quantum mechanically coupled [1]. The flavor
content of the neutrino and antineutrino fields in and above
a proto-neutron star will be a necessary ingredient for the
interpretation of neutrino signals from a future supernova.
It can also be an important, even crucial determinant of the
composition of supernova ejecta [2] and possibly even the
supernova explosion mechanism [3]. Consequently, if we
are to understand core-collapse supernovae, it follows that
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we must understand neutrino and antineutrino flavor evo-
lution in them.

Large neutrino number densities imply that neutrino-
neutrino in addition to neutrino-electron forward scattering
sets the potential which governs neutrino flavor conver-
sion. Because of the neutrino-neutrino forward scattering
potential [4—6], neutrino flavor transformation in the early
universe and near the supernova core can be very different
from that in the vacuum or in an ordinary matter back-
ground only [7-17]. Recent analytical and numerical stud-
ies have revealed a new paradigm for neutrino flavor
transformation in supernovae [18—26], one which is com-
pletely different from vacuum oscillations or the conven-
tional Mikheyev-Smirnov-Wolfenstein (MSW) mech-
anism [27-29].

A particular aspect of this new paradigm is best dis-
cussed in the following framework: The 2 X 2 neutrino
flavor transformation problem can be described as the
motion of isospins in flavor space, wherein v,/ v, and
?,/v,, correspond to the “up” and “down” states of
these isospins [21]. Both analytical and numerical studies
have suggested that a dense neutrino gas originally in a
“bipolar configuration™ (i.e., with the corresponding neu-
trino flavor isospins or NFIS’s forming two oppositely
oriented groups) tends to stay in such a configuration
even though each isospin group is composed of neutrinos
and/or antineutrinos with finite energy spread. In other
words, neutrinos and antineutrinos with different energies
can experience collective flavor transformation at high
neutrino number densities. This is very different from the
conventional MSW paradigm in which neutrinos and anti-
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neutrinos with different energies undergo flavor transfor-
mation independently.

A neutrino system with a bipolar configuration is also
referred to as a “bipolar system’. Because supernova
neutrinos are essentially in their flavor eigenstates when
they leave the neutrino sphere, they naturally form a bipo-
lar system. The neutrino sphere is in the very high density,
electron degenerate environment near the neutron star
surface.

For a simple bipolar system consisting of monoenergetic
v, and 7, initially, it has been shown that the evolution of
the system is equivalent to the motion of a (gyroscopic)
pendulum [24]. Therefore, a bipolar system generally can
evolve simultaneously in two different kinds of modes, i.e.
the precession mode and the nutation mode, in analogy to
the mechanical motion of a gyroscopic pendulum. In the
extreme limit of large neutrino number density, a bipolar
system is reduced to a synchronized system, which is in a
pure precession mode characterized by a common synchro-
nization frequency [14]. The evolution of bipolar systems
in the presence of an ordinary matter background has been
studied in Refs. [21,24] using corotating frames.

Refs. [22,23] have presented by far the most sophisti-
cated, large-scale numerical simulations of neutrino flavor
transformation in the coherent regime near the supernova
core. For example, these simulations for the first time self-
consistently treated the evolution of neutrinos propagating
along various intersecting trajectories. These simulations
clearly show that the conventional MSW paradigm is in-
valid near the supernova core where neutrino fluxes are
large. However, analytical models so far have only corro-
borated some of the features demonstrated by the simula-
tions, and there are some obvious gaps between the
analytical and numerical studies.

One of the gaps is that current analytical models of
bipolar systems assume constant neutrino number den-
sities, which is not true in supernovae. Using some simple
numerical examples, Ref. [24] has shown that some inter-
esting phenomena observed in the simulations [22,23] are
related to varying neutrino number densities. For example,
the energy averaged neutrino survival probabilities change
as neutrino number densities decrease with the radius. In
this paper we will show that if the neutrino number density
decreases slowly as the system evolves out of the synchro-
nized limit at high neutrino densities, the bipolar system
will be dominantly in a precession mode. The neutrino
flavor evolution seen in the numerical simulations is the
combined effect of this precession mode and the nutation
modes that are generated as a result of the finite rate of
change in neutrino number densities.

Another important gap between analytical and numeri-
cal studies is that most of the current analytical models
assume homogeneity and isotropy of the neutrino gas,
which is not true of the supernova environment. A recent
analytical study which assumes an initial state of v, and 7,

PHYSICAL REVIEW D 75, 125005 (2007)

with equal densities shows that the collectivity (referred to
as ““‘coherence” or ‘“kinematic coherence’’ in Ref. [24]) of
the nutation modes tends to break down quickly among
different neutrino trajectories in an inhomogeneous and
anisotropic environment [26]. However, the numerical
simulations presented in Refs. [22,23] employed more
realistic supernova conditions where the initial v, and 7,
as well as v, . and 7, . do not have the same number
densities. These simulations do show some clear signs of
collective flavor transformation. One important example is
the hallmark pattern in the final energy-dependent neutrino
survival probability which has a sharp transition energy
across all neutrino trajectories (Fig. 3 of Ref. [23]). We
have further analyzed the numerical results obtained in the
large-scale simulations mentioned above and found that,
apart from the noncollective nutation modes, neutrinos
propagating along different trajectories were in a single,
collective precession mode. It is this precession mode that
facilitates the mechanism suggested in Ref. [22] for pro-
ducing the fore-mentioned hallmark pattern in the final
neutrino survival probability.

This paper is organized as follows. In Sec. II we will
study the properties of a symmetric bipolar system initially
consisting of an equal number of v, and 7,. We will use an
adiabatic invariant of the system to obtain some analytical
understanding of the evolution of such a system as neutrino
number densities change. In Sec. III we will compare a
simple asymmetric bipolar system with a gyroscopic pen-
dulum. We will revisit the criteria determining whether a
bipolar system is in the synchronized or bipolar regime and
clarify the description of bipolar oscillations. In Sec. IV we
will show that an asymmetric bipolar system can stay
roughly in a pure precession mode if neutrino number
densities decrease slowly. We will also demonstrate some
interesting properties of such a precession mode which can
explain the results from the simple numerical examples of
Ref. [24]. In Sec. V we will apply our simple analytical
models to understand the numerical simulations presented
in Refs. [22,23] and offer some new analyses of these
simulations. In Sec. VI we give our conclusions.

II. SYMMETRIC BIPOLAR SYSTEM

A. Flavor pendulum

We start with a simple bipolar system initially consisting
of monoenergetic v, and », with energy E, and an equal
number density n,. Throughout this paper we will assume
2 X 2 flavor mixing through the active-active channel.
According to Ref. [21], the flavor evolution of a neutrino
or antineutrino is equivalent to the motion of the corre-
sponding neutrino flavor isospin, or NFIS, in flavor space.
For a neutrino, the NFIS in the flavor basis is defined as

2Re(a}, a, )
*

2Im(aj, a,,)

la, |* = la, |

, ey

S, =<
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where a,, and a,_are the amplitudes for the neutrino to be
in v, and another flavor state, say v, respectively. For an
antineutrino, the corresponding NFIS in the flavor basis is

2Re(ay, a3 )
s;=—=| 2Im(a;,a;)
2 — 2

, 2

|a;7 |ai/

where a;_ and a;_are the amplitudes for the antineutrino to
be 7, and ., respectively.

To obtain a simple analytical understanding of collective
neutrino flavor transformation, we will assume, unless
otherwise stated, that the neutrino gas is homogeneous
and isotropic and that there is no ordinary matter medium.
Using the NFIS notation, the equations of motion (e.0.m.)
for the NFIS’s s; (neutrino) and s, (antineutrino) of this
simple bipolar system are [21]

d
FrAt ) X (py, Hy + p,n,58)), (3a)
d
5= X (v Hy + pyn,8y), (3b)
and the initial condition is
éf
$1(0) = =5,(0) = 5, @
where
nl/,l = nV,2 =n, (5)

are the number densities of neutrinos and antineutrinos,
and &f is the unit vector in the z direction in the flavor basis.
Equation (3) clearly shows that the motion of the NFIS’s is
similar to that of magnetic spins. In this “magnetic spin”
picture, the “magnetic spins” s; and s, precess around a
common ‘‘magnetic field”

Hy = —élsin20, + & cos26, (6)
with “gyro magnetic ratios”

om?
= - = =— 7
M1 Mvp = My oE, (7
At the same time, s; and s, are also coupled to each other
with a coefficient

My, = _2\/§GF, (8)

where G is the Fermi constant.

In this paper we always take the squared difference of
the two neutrino vacuum mass eigenvalues to be positive
(8m?> = m3 — m? > 0). Accordingly, the vacuum mixing
angle 6, varies within (0, 77/2). A normal mass hierarchy
corresponds to a mixing angle 8, with 0 < 6, < 7/4 and
an inverted mass hierarchy corresponds to 7/4 <6, <
7r/2. For an inverted mass hierarchy scenario, we follow
Ref. [24] to define

PHYSICAL REVIEW D 75, 125005 (2007)
év =--10, 9

which has 0 < 8, < 7r/4. We will loosely refer to both 6,
and @, as vacuum mixing angles.’

We first look at the scenario with n, being constant.
With the definition of

S + = i’l,},]Sl + nV’252, (10)

Egs. (3) and (4) become [21]

d
35+ = #vS- X Hy, (I1a)
d
ES‘ = uySs XHy + u,S_ XS,, (11b)
and
S, (0) =0, (12a)
S_(0) = n,ef. (12b)

It is more convenient to work in the vacuum mass basis
where the unit vectors &) are related to those in the flavor
basis éf by

&y = éf cos26, + éfsin26,, (13a)
&y =&, (13b)
&) = Hy = —é sin20, + &f cos26,. (13c)

Using Eqgs. (11) and (12) one can check explicitly that
vector S_ rotates in the €}-€} plane while S varies only
along the €} axis [21].

In reality neutrinos can experience collective oscilla-
tions only if n, is large. The largeness of the neutrino
number density in this simple bipolar system is naturally
measured by the ratio n,,/n%, where

0o_ MV _ ém?
"o u,l 4V2GRE,”

In the limit n,/n% > 1, the last term in Eq. (11b) domi-
nates and

(14)

n

d

ES, ~pu,S_ XS,
Therefore, S_ roughly maintains a constant magnitude if
the neutrino number density is large. As a result, s; and s,
are always roughly antialigned although their directions
can be completely overturned in some scenarios. It is after

(11b/)

'Refs. [21-23] have adopted a different convention for the
inverted mass hierarchy scenario where 6, defined here is the
vacuum mixing angle and §m? is taken to be negative. We note
that these two conventions are equivalent by the simultaneous
transformations |v;) < |v,) and |v.) — —|v,). Correspond-
ingly, one has Hy — —Hy and &) — —&  in flavor space.
The x and y components of a NFIS in the flavor basis under these
two conventions are different by a sign for the inverted mass
hierarchy case.

125005-3
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this special property that “bipolar” flavor transformation
was initially named [21].2

We define ¢ as the angle between vectors S_ and Hy,
which varies within (0, 77) if S_-&Y>0 and within
(=, 0)if S_ - &Y < 0. We also define

S+'e;

Dy (15)

n,

With the initial condition in Eq. (12), we find that
Egs. (11a) and (11b’) are equivalent to

Py = — ey sind, (162)

o nV
Y = Mv(—())Pﬁ-
n

14

(16b)

Equation (16) can be further reduced to a differential
equation of 1 of the second order:

=~ —w?sind, (17)
where
nV
® = py |, (18a)
nl/
2Gpdém?n \1/2
_ (%ﬂ) (18b)

is an intrinsic frequency of the system. Because Eq. (17)
also describes the motion of a pendulum, we can view the
flavor transformation in this simple bipolar system as the
motion of a pendulum in the flavor space (Fig. 1). We note
that the mass M of the “flavor pendulum” is irrelevant in
this case. The only relevant parameter is the ratio between
the magnitude of the acceleration field g and the length of
the pendulum r, which is related to the intrinsic frequency

by
w = \/g (19)
r

The period of the flavor pendulum is (see, e.g., Ref. [30])

1 AKCsin(B,/2)

(20

where

7/2 d¢

0 JT—Wsin’{

is the complete elliptic integral of the first kind [31].
The period of the simple symmetric bipolar system in

Eq. (20) takes a simpler form if the vacuum mixing angle
@, or 6, is small. For the normal mass hierarchy scenario

K (k) = 21

ZRef. [24] appears to have misunderstood the origin of the
word bipolar by stating that the notation ‘‘bipolar oscillation’ is
a “misnomer.”
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S,
r
Si
Mg e S
(a) (b)

FIG. 1. The equivalence of a pendulum and a symmetric
(n,; = n,, = n,) bipolar system initially consisting of pure
v, and 7,. In the limit n,/n% > 1 two NFIS blocks S; =
n,,s; (for neutrino) and S, = n,,s, (for antineutrino) are al-
ways roughly antialigned and S; points roughly in the same
direction as the pendulum in flavor space.

with 6, < 1, the pendulum motion is the same as that of a

harmonic oscillator and
E 1/2
2 ———X——) . 22
<\/§GF Bmzn,,> @2)

21
T~—=
w

For the inverted mass hierarchy scenario with 8, < 1, we
expand Eq. (20) in terms of 8, [31] and find that

7~ 41n(4/6,)
w

=41n(4/§v)< E, )1/2. (23)

V2Gpdm?n,

The period of the bipolar oscillation in this limit has a
logarithmic dependence on 6, as pointed out in Ref. [24].
The periods of bipolar oscillations calculated using
Egs. (22) and (23) are in excellent agreement with the
simple numerical examples in Ref. [21].

Ref. [24] has shown that the evolution of this simple
bipolar system is equivalent to a pendulum motion for any
n, (also see Sec. III B). In the limit n,/n% > 1 the flavor
pendulum described here is the same as that in Ref. [24].
This limit is of interest to analyses of the flavor evolution of
supernova neutrinos and antineutrinos which have finite
spread in their energy distributions, and therefore, may
experience the collective flavor transformation only when
n, is large [21].

B. Slowly varying neutrino number density

If the neutrino number density n, varies with time,
Eq. (3) is still valid but Eq. (11) is not. In this case,
Eq. (16) is also valid as long as n,/n% > 1. We note that
¥ and p g comprise a canonically conjugate coordinate and
momentum pair. In these variables the flavor pendulum has
Hamiltonian

H = ,U,V[l <n—g>p?9 - cosﬁ}. (24)

125005-4
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Ref. [24] first noticed that the amplitude of flavor mixing
in this bipolar system (or equivalently, the maximal angu-
lar position 9J,,,, of the flavor pendulum) decreases with
the neutrino number density n,. Drawing an analogy to the
relation between the kinetic energy and the angular mo-
mentum of a pirouette performer, Ref. [24] suggested an
intuitive explanation for this phenomenon: As n, becomes
smaller, the effective mass mq; = puy'(n9/n,) in Eq. (24)
increases. As a result, the kinetic energy of the flavor
pendulum E, = p3%/(2me) is reduced with smaller n,
and the flavor pendulum cannot swing as high as before.

We can arrive at the same conclusion for the scenarios
n,/nY > 1 using Eq. (16). Let us compare the evolution of
two flavor pendulums (a) and (b). We assume that the two
pendulums have the same values of (&, pg, O, pg, n,) at
instant t = t,. We also assume that pendulum (a) has
constant n, and that (b) has n, decreasing with time.
After an infinitesimal interval A¢, both pendulums will
have the same values of (9, pg, ps) but pendulum (b)
has smaller (9, n,) than (a) does [see Eq. (16)]. This is
equivalent to saying that both pendulums have the same
angular position and potential well but pendulum (b) pos-
sesses less kinetic energy Ey;, = Ipg/2 than (a) does. As
a result, pendulum (b) will not swing as high as (a) even if
n, is constant for r > f, + At.

We note that neither Eq. (16) in this paper or Eq. (7) in
Ref. [24] is equivalent to the original e.o.m. of the NFIS’s
[Eq. (3)] if n,, is small and varies with time. Therefore, this
explanation fails for n,/n% < 1.

To quantify the relation between the maximal angular
position ¥,,,, of the flavor pendulum and the neutrino
number density 7,, we note that in the limit n,/n% > 1

A = f D yd (25)

is an adiabatic invariant of the pendulum motion (see, e.g.,
Ref. [30]). The integration in Eq. (25) is performed over
one pendulum cycle with — 3, = ¥ = .. The neu-
trino number density 7, is taken to be constant during this
cycle.

If n,, is constant, the Hamiltonian of the flavor pendulum
is also a constant and is — py cosU,,. Using Eq. (24) we
obtain

D 0
lpsl = 1/ n”\/cosﬁ — cosTuy - (26)
nV

Combining Eqgs. (25) and (26) we have

2nY (o
A= -4 . f JeosT — cosTnmdd,  (27a)
14 ﬂmax

0
16,2 W (9,..).

14

Function W(¢) in Eq. (27b) is defined as

(27b)
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W(§) = % fj\/cosg — coséd/, (28a)
= E(sin(£/2)) — cos*(£/2)K(sin(¢/2)),  (28b)

where

/2
E (k) = 1 — k2sin%sd 2
(k) fo JI = sin?gdg 29)

is the complete elliptic integral of the second kind [31]. If
n,/nY > 1 and n, varies slowly (adiabatic process), then
Umax as a function of time satisfies the following relation:

W (Ia) = W(26,), /Z”—((f))). (30)

An interesting scenario is that §, = 7/2 — 6, < 1. In
this case, . ~ —Hy and the probability for a neutrino to
be v, is

1 . 1 — cosd 1 — cos,

PV€V€=§+s,’e£: > L < > max - (31)
where 1 is the angle between the directions of s; and Hy,.
Noting that W(26,) =~ W(7r) = 1, we find that

0= Pueve(t) = (Pueve)maxr (32)

where

(Py0 max = %[1 - cos(W”( Z:—(((t)))»} (33)

is the maximal value that P, , may take for a given n,,. In
the above equation W~!(£) is the corresponding inverse
function of W(§).

For a concrete example, we assume that n,(7) has a
linear dependence on time t:

nl/(t) = nu(o)(l - y_IMVt)r (34)

where 7 is the adiabatic parameter. The larger the value of
v, the more adiabatic the process is. Taking 8, = 0.01, we
calculate the value of — cosd, as a function of n, for y =
10 and 7,,(0)/7% = 100 by solving Eq. (3) with the initial
conditions in Eq. (4). The results are plotted as the dashed
line in Fig. 2. We have also computed ,,,, from Eq. (30)
and plot — cosd,,,, as the solid line in Fig. 2. It is clear that
— cost, outlines the upper envelope of — cosd; for
n,/nY > 1.

Using the analogy of harmonic oscillators, Ref. [24] has
argued that, for the scenario with 6, < 1, (Py, 5, )max
should depend linearly on ,/n,, at least when ¥, < 1.
However, it is clear that this conjecture is not true if ,,, is
significant. In this case, (P, )max can be understood using
the general form of W(¢) and Eq. (33). On the other hand,
we note that

W () = 7 (ﬁ“;"f (35)

125005-5
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If

0.5F

FIG. 2 (color online).

Flavor oscillations of the simple sym-
metric bipolar system in a nearly adiabatic process [Eq. (34) with
v = 10 and n,(0)/n% = 100] for §, = 0.01. The dashed line is
the value of — cosd; as a function n, computed from Eq. (3)
with the initial conditions in Eq. (4). The solid line is — cosd;.x
computed from Eq. (30).

for ¥« << 1 [31]. Using Eqgs. (30) and (35) we obtain
R _ [m0
0r2r1ax(t0) nv(t())’

where 1, is an instant at which 9,,,,(f)) << 1. Because
P, , =(1— cos¥)/2=9}/4, we have

(36)

ﬁrznax(to) ny
P ~
( VeV, )max 4 nV(tO)

(37)

for P, , < 1. Therefore, (P, , )max does depend linearly
on ,/n, in the limit ¥9,,,, << 1. Note that this result only
applies for n,/n% > 1. As mentioned above, our argument
about the adiabatic invariant fails for n,/n% < 1.

III. ASYMMETRIC BIPOLAR SYSTEM

A. Gyroscopic flavor pendulum

We now consider a simple asymmetric bipolar system
initially consisting of monoenergetic v, and v, with differ-
ent but constant number densities. We note that Eq. (3) is
still valid except that we now take n,; = n, and n,, =
an, with a # 1 being a positive constant. Ref. [24] has
shown that this asymmetric bipolar system is equivalent to
a gyroscopic pendulum or a spinning top in flavor space for
which

l—«a

S.(0) = —n, &, (382)

2
|+ .
S_(0) = —Zn,e. (38b)

To see this we define

PHYSICAL REVIEW D 75, 125005 (2007)

Q=s_-2u,

14

(39)

(Although we follow Ref. [24] in demonstrating the
equivalence of an asymmetric bipolar system and a gyro-
scopic pendulum, we have adopted somewhat different
notations for our convenience.) Using Egs. (11b) and
(39) one sees that Q obeys the e.o.m.

d
—Q=pun,QXS, (40)
dr
and maintains a constant magnitude
l1+a 4 n
= 1+ — ) cos2
0= e (e oo
2 \2/n%\271/2
+ — . 41
(e ()] )
With the definition of
S
J==" (42a)
nV
Q
r=—, (42b)
0
Equations (11a), (39), and (40) lead to
=" <, (43a)
nV
. n,
nV
Using Eq. (43) one can easily show that
o=]Jr (44)
is a constant of motion. From Eq. (43b) one obtains
nV
We note that Egs. (43a) and (45) are equivalent to
J=rXxXMg, (46a)
J = Mr Xrt + or, (46b)
where
1 0
-—(%) (47)
My \71y
w2
g = n(Y OHy. (48)

Therefore, this asymmetric bipolar system is indeed
equivalent to a gyroscopic flavor pendulum. Specifically,
r is the position vector of the bob, J is the total angular
momentum, o is the internal angular momentum of the
bob, M is the mass of the bob, and g is the acceleration
field. The only difference between this pendulum and that

125005-6



ANALYSIS OF COLLECTIVE NEUTRINO FLAVOR ...

shown in Fig. 1(a) is the spin of the bob. Hereafter we will
loosely refer to both the symmetric and asymmetric bipolar
systems as flavor pendulums.

The motion of the gyroscopic flavor pendulum is the
combination of a precession around Hy, and a nutation with
Upin = U = U Here ¥ is the polar angle of r with
respect to €} = Hy, and 3, and ¥,,,, are the minimal
and maximal values of ¥ during nutation. For the simple
asymmetric bipolar system that we have discussed, one has
Fax = PH,—o. The value of 9,,;, can be determined as
follows. Following Ref. [24] we define the total energy
of the pendulum as

E = Epot + Eiin, (49a)
JZ
=Mg(l—Hy-r) +—, 49b
a( V) i (49b)
Mi?  o?
= Mg(l — + — "+ —. 4
g(1 — cos?d) 5 3 (49¢)

We note that E,, differs from the conserved total effective
energy of the NFIS’s [21] by only a constant multiplicative
factor and an additive constant, and therefore, is also
conserved. Because the motion of the pendulum is a pure
precession around Hy when ¥ = §,,,, one has

Mg(COSﬁmin - COSﬁmax) = %MSinzﬁmin ¢2|1?:19min’ (50)

where ¢ is the azimuthal angle of r with respect to Hy.
Using the conservation of the total angular momentum in
the direction of the acceleration field g, one obtains

0(cosD,iy, — €08V ay) = —Msin? i, @l 9—

min

61Y)

Combining Egs. (50) and (51) we have

cosUyi, = —1n + \/(77 + cosDy)* + (1 — cos? ),
(52)
where
2

o
4M2g'

n (33)

B. Precession/nutation modes and synchronized/
bipolar regimes

We shall refer to neutrino flavor transformation as being
in the precession (nutation) mode when the corresponding
analogous flavor pendulum is undergoing precession (nu-
tation). The symmetric bipolar system discussed in Sec. Il
corresponds to the limit & = 1 and is always in a pure
nutation mode. In this limit o = 0 and ¥, = 0, so the
pendulum does not spin at all and simply swings in a fixed
plane. Taking py = J - €} and 9 as the angle between r
and Hy, one can obtain from Eq. (43) that [24]
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Dy = — ;LV(g) sind, (54a)

. n,

v = MV(T))Pﬁ-
n

14

(54b)

Equation (54) is the exact version of Eq. (16). In the limit
n,/n%>1, Q=S_ and S_ approximately follows a
plane pendulum motion as we have discussed in
Sec. ITA. If the neutrino number density n, is constant
and the vacuum mixing angle 6, or 6, is small, the bipolar
systems in the pure nutation mode can experience almost
complete flavor conversion during a nutation period. This
is true for various initial configurations (see Table I in
Ref. [21]).

A bipolar system generally evolves simultaneously in
both precession and nutation modes. However, if the neu-
trino number density is large enough, it has been shown
that a neutrino gas is in the synchronized mode with a
characteristic frequency (). independent of its initial
configuration [14]. The criterion for synchronization can
be written as [21]

|, S>> Kuy)l, (55)
where
S =Dn,s (56)
is the total NFIS, and
iny,iSi * S
<lu'V> = ZMVT = stnc (57)

1

is the average vacuum oscillation frequency. The index i in
Egs. (56) and (57) denotes neutrinos or antineutrinos with a
specific momentum.

For the initial condition in Eq. (38) we note that, if n,, is
large, the total angular momentum of the flavor pendulum
is dominated by its spin

J =or (58)
and
1 —
o ~— a (59)
In the limit
1+«
n, > n’,ﬁ = San, (60)

the parameter 7 [see Eq. (53)] satisfies » >> 1 and

3Ref. [24] first noticed that the flavor pendulum with 6, < 1
possesses little nutation for n,, > n’ and is in the synchronized
regime. We note that a flavor pendulum will have little nutation
so long as Eq. (60) is satisfied. This result is independent of the
value of 6,.
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cost
cosD, = —n + 77(1 + ﬂ) ~ CosUae.  (61)
n

As a result, the flavor pendulum roughly maintains a
constant latitude and is essentially in the precession
mode. One can explicitly show that in this case the flavor
pendulum precesses around —Hy, with a constant angular
frequency [24]

1+
Q= stnc = —a/'LV' (62)
l -«

Therefore, a bipolar system is synchronized if n, > n¥
and the synchronized mode corresponds to a pure preces-
sion mode with the synchronization frequency gy, as its
precession frequency. We refer to the limit in Eq. (60) as
the ““synchronized regime.” We say that a bipolar system is
in the “bipolar regime” if Eq. (60) is not satisfied. In this
case it can be in both the precession and nutation modes.

For the simple asymmetric bipolar system discussed
here, Eq. (55) lead to

1+ a ny

Egs. (60) and (63) differ by a constant multiplicative factor.
This reflects the fact that there is no sharp boundary
between the synchronized and bipolar regimes. The simple
prescription for the synchronization frequency (. in
Eq. (57) allows a ready and practical application of the
synchronization condition in Eq. (55) for neutrino and/or
antineutrino gases with finite spreads in their energy
spectra.

The ways in which the word bipolar has been used in the
literature [21-24,26] can be very confusing. There is a
tendency to mistakenly identify the synchronized (bipolar)
regime with the precession (nutation) mode. This is proba-
bly because a flavor pendulum can only precess in the
synchronized regime and a symmetric bipolar system
was once viewed as a typical bipolar system which is
always in a nutation mode. However, the criterion deter-
mining whether a bipolar system is mostly in the preces-
sion or nutation mode is not the same as that for
determining whether it is in the synchronized or bipolar
regime. A good example is that an asymmetric bipolar
system can simultaneously be in both the precession and
nutation modes in the bipolar regime. We also note that,
while the precession frequency () of the precession mode
in the synchronized regime is determined from Eq. (57)
and is independent of the neutrino number density n,, the
precession frequency of a precession mode in the bipolar
regime depends on n, (see Sec. IV C).

The evolution of a bipolar system in the bipolar regime
is also referred to as bimodal oscillations. Ref. [12] has
shown that, in an asymmetric bipolar system initially con-
sisting of monoenergetic v, and 7,, the x- and y compo-
nents of the polarization vectors of the neutrino and
antineutrino (2s; and —2s, in the NFIS notation) are
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bimodal as they are functions of two intrinsic periods. It
is clear that these two periods are related to the precession
and nutation of the flavor pendulum. If v, and », have
different energies or the system starts with different neu-
trino/antineutrino species, one can demonstrate that such a
system is equivalent to a flavor pendulum in some properly
chosen corotating frame [21]. In this case the precession
frequency () is shifted by the rotation frequency of the
corotating frame.

IV. PURE PRECESSION MODE OF ASYMMETRIC
BIPOLAR SYSTEMS

A. Pure precession mode

Although a bipolar system tends to develop some nuta-
tion in addition to the precession mode in the bipolar
regime, the actual mix of these modes depends on the
initial conditions as well as the system configuration. For
example, a flavor pendulum precesses around —Hy with
constant angular frequency () without any nutation if

Mgsind = QJ |,
= Q(MQ sin?d cos + o sind)

(64a)
(64b)

is satisfied, and the corresponding bipolar system is in the
pure precession mode. For a gyroscope this is known as the
“regular precession.”

With varying neutrino number densities the problem is
generally complicated. This is because almost all the pa-
rameters of the flavor pendulum (Q, M, g, o, etc.) depend
on n, and the e.o.m. of a pendulum, Eq. (46), is not
equivalent to that of the NFIS’s if 7n,(¢) is not constant.
In this case, one has to use Eq. (3) to follow the evolution of
the bipolar system. Simple numerical examples presented
in Ref. [24] seem to suggest that the evolution of a bipolar
system with 6, = 77/2 can be dominantly in a precession
mode after the system transitions from the synchronized
regime into the bipolar regime. Here we try to gain some
analytical understanding of this precession mode by using
the same simple bipolar system studied in Sec. III but with
time-varying n,,.

We note that, in the synchronized regime (i.e., the limit
of large n,), both s; and s, precess uniformly around Hy,
and the motion of the NFIS’s has a cylindrical symmetry
around the axis along Hy.. This symmetry is inherited from
the e.o.m. of the NFIS’s [Eq. (3)]. We consider an infinitely
long process during which n,, is decreased without prefer-
ence to any azimuthal angle with respect to Hy. The
cylindrical symmetry in the motion of the NFIS’s around
Hy is expected to be preserved in such a process, and s,
and s, keep on precessing uniformly around Hy without
any wobbling.

If this is true, vectors sy, S,, and Hy must always be in
the same plane, and s; and s, rotates around —Hy, with the
same angular frequency
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a n
= —— [P gq +
Q ,uv[l Tsind, (n?,) sin(, 192)} (65a)
1 n
= -1 — 2 +
MV[ 1 2sind, (n?,) sin( 192)} (65b)

where () is the angle between s;(;) and Hy,. On the other
hand, from Eq. (3) it can be shown that Hy - (s; + as,) is
time invariant even if n, changes with time. Consequently,
we obtain the following two equations for 9, and 3,:

4sind,; sin, = — n—(’;(sinﬁl — asind,) sin(; + W),
nV

(66a)

(1 — @)cos26, = cost + acosdh. (66b)

We have solved Eq. (66) numerically for simple asym-
metric bipolar systems with different choices of 6, and
asymmetry parameter «. The results are plotted in Fig. 3.
For comparison, we have also solved numerically the
original e.o.m. of the NFIS’s, Eq. (3), for the same bipolar
systems assuming that n, changes in the way described by
Eq. (34). These results are also shown in Fig. 3. Clearly, the
polar angles %, and U, of the NFIS’s s; and s, oscillate
around those values determined from Eq. (66) as n, de-
creases. This is true not only for the bipolar systems with
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0, = /2 but also for those with other vacuum mixing
angles.

The results shown in Fig. 3 can be understood as follows.
Although Egs. (3) and (46) are not equivalent over a long
period for a time-varying n,, we may still view a bipolar
system as a flavor pendulum over a short time interval
during which n, does not change much. Suppose that at
instant ¢; the flavor pendulum precesses uniformly around
Hy, at latitude 9(¢,). In the adiabatic limit this precession
continues as n, slowly changes, but the value of
changes with n, [, is a function of ¢ and ¢, which
vary with n, according to Eq. (66)]. Of course, in realistic
conditions, n, can only decrease with a finite rate, and the
actual polar angle ¢ of the pendulum always “wobbles”
(as a result of excitation of nutation modes) around %, with
some nutation period T,,. However, if n, changes so

slowly that

T dl’lV -1 > dl90 81?

l(@)] > ) Gon)
¥ can be expected to closely follow ¥, and Eq. (66)
becomes an excellent approximation. This expectation
can be verified by comparing panels (b) and (d) of Fig. 3
where the evolution of two otherwise identical bipolar
systems is calculated using different adiabatic parameters

[v = 40 in (b) and 200 in (d)]. With a much slower change
in n,, for panel (d), the result obtained by solving Eq. (66)

(67)
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FIG. 3 (color online).

Values of cos®; (solid lines) and cos®, (dashed lines), where ¢, and ¥, are the polar angles of the NFIS’s s,

and s, with respect to Hy, as functions of neutrino number density 7, for simple asymmetric bipolar systems. Panels (a), (b), and (d)
have mixing angle f, = 0.01 and panel (c) has 6, = 0.6. The asymmetry parameter is @ = 0.8 for (a) and (c), and & = 0.2 for (b) and
(d). The thin lines are computed from the original e.o.m. of NFIS’s s; and s, [Eq. (3) with the initial conditions in Eq. (4)] assuming a
nearly adiabatic process [Eq. (34) with n,,(0)/n% = 2]. The adiabatic parameter is y = 40 for panels (a—c) and is 200 for panel (d).
The thick lines are computed from Eq. (66) assuming that bipolar systems stay in the pure precession mode. The vertical dashed-dotted

lines in panels (a), (b), and (d) correspond to n, = nS,.
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becomes very close to that derived from the exact numeri-
cal calculations.

The final values of 9|, —o and 9|, —¢ of the bipolar
system in the pure precession mode can be obtained as
follows. The precession frequency () of the flavor pendu-
lum cannot be 0, and therefore, cannot change sign as n,,
decreases. Because () = (), > 0 in the limit of large n,
for @ <1 [Eq. (62)], we have () > 0. Equation (65b)
would give ) > 0 for n,, = 0 only if

Hly,—0 = . (68)
This and Eq. (65) then give
Ql,,—0 = pv. (69)
Combining Eqgs. (66b) and (68) we obtain
costhl, o = (1 — a)cos26, + a. (70)

This agrees with the numerical results shown in Fig. 3. For
the inverted mass hierarchy scenario with 6, =~ 77/2, we
have éf ~ —Hy and

1—- O
Pryy -0 = ——— =l-a
1 + cosd
P176175|n,=0 = fz 0= 0. (71b)
n,=

However, we note that these results for n,, = 0 do not apply
to realistic bipolar systems with finite spreads in the neu-
trino and antineutrino energy spectra as collective oscilla-
tions of these systems always break down before n,
reaches O.

B. Critical neutrino number density for the inverted
mass hierarchy scenario with 0, =~ 77/2

In Fig. 3 one can see that, for the inverted mass hierarchy
scenario with 6, = 77/2, s; and s, begin to misalign with
Hy when n, is smaller than some critical value xS, and
there seems to be discontinuity in dd(,)/dn, at n, = ns.
To understand these results, we consider the limit where
0, = /2. We define

xl(z) = Sin’l&l(z). (72)

For ¥, = 7r and ¥, =~ 0 we have

2

X
costh = —1 + -1

> (73a)

2

cosdy =1 — % (73b)

Combining Egs. (66) and (73) we obtain

2 2
~ _ n, _ X _ _ )
4x,x, = (x; axz)n—g [x2<1 3> x1<1 5) } (74a)

2 2
l—a=(1 -2 = qf1-22)
2 2

(74b)
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Equation (74) has the solution
C
2= and = 2&(2 - 1) ifn,<nS, (75
nV

where
_ 4n°
(=)

Therefore, for the limiting case with 6, = 7/2, s; and s,
only start to misalign with Hy when n, becomes smaller
than nS.

One can also obtain the same value for nS from the
gyroscopic flavor pendulum analogy using Eq. (52). For
Oax = 7, One always has 9, = 7 if*

ns,

(76)

2

—>1 (i)
4M2g

n =
Such a gyroscopic pendulum is known as a ““sleeping top”
because the pendulum ‘‘sleeps’ in the upright position
defying the effect of the gravity (see, e.g., Ref. [32] for
more discussions).

We note that the period of nutation 7, of the flavor
pendulum is infinite if §, = 7/2. For a symmetric bipolar
system Ty, | Ind,| if 6, =~ /2 (see Sec. II A and also
Ref. [24]). One expects similarly long nutation periods for
asymmetric bipolar systems in the region where n, = nS,.
In the same region, 9, and 4, change very quickly in the
pure precession limit. As a result, the condition in Eq. (67)
is usually violated in realistic environments and significant
nutation can appear for n, < nS [see, e.g., Fig. 3(b)].

C. Precession frequency

Using Eq. (65) we have calculated the precession fre-
quency ) of the flavor pendulum for several scenarios
assuming the pendulum is always in the pure precession
mode. The results are plotted in Fig. 4. The precession
frequency () asymptotically approaches the synchroniza-
tion frequency (), in the synchronized regime (n, /n% >
1) as n, becomes larger and larger. On the other hand, ()
changes steeply with n,, in the bipolar regime (n,/n% < 1).
As n, reaches 0, ) = uy and the flavor pendulum pre-
cesses with the vacuum oscillation frequency of the domi-
nant neutrino species (v, in this case).

We also note that, for the inverted mass hierarchy sce-
nario with 6, = 7/2, the precession frequency () reaches
its maximum at n, =~ nS. Using Eqgs. (65) and (75), we
obtain

2
VO e =T )

1 - Ja 2
which is 17.9 for @« = 0.8 and 2.6 for @ = 0.2. These

anV=nf, =1+

‘Ref. [24] pointed out the existence of the critical neutrino
number density n$ using this argument but gives nS = n’.
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ny/ny

FIG. 4 (color online). Scaled precession frequency Q/uy of
the flavor pendulum as a function of neutrino number density #,,.
The pendulum is assumed to be in the pure precession mode. The
vacuum mixing angle is 8, = 0.01 for the solid and dashed lines,
and 6, = 0.6 for the dotted line. The asymmetry parameter is
a = 0.8 for the solid and dotted lines and is 0.2 for the dashed
line. The vertical dashed-dotted line and dashed-dot-dotted line
correspond to n, = nS, for « = 0.8 and 0.2, respectively.

values agree well with the solid and dashed lines in Fig. 4
which assume 6, = 0.01.

D. Equipartition of energies?

Ref. [24] observed that, for 6, = 7/2, the total energy of
a flavor pendulum begins to be approximately equiparti-
tioned between its potential and kinetic energies when n,
reaches n§. Using Eq. (75) one can show that (see
Appendix), for the extreme case 6, = 7/2, the ratio of
energies is E,o/Eyin = 1 to O(n§,/n, — 1) at n,, = n, if the
flavor pendulum stays in the pure precession mode.

Ref. [24] also mentioned ‘“‘an important detail’” that
energy equipartition cannot hold all the way down to
very small n, because E,, has a finite positive minimum
and Ey;, ultimately reaches 0. This is illustrated in Fig. 8 of
the same reference. However, we can show that (see
Appendix)

Epo _ (1 — a)cos?26, n,

=] - for [ 5| <1 (79
Eyin 1+ a — 2acos28, or <n9,> (7)

if the flavor pendulum stays in the pure precession mode.
In Fig. 5 we plot the ratio E /Ey, as a function of n,
for three different bipolar systems in the pure precession
mode with various choices of a and 6,. Indeed, for the
bipolar systems with 6, = 7/2, E,y/E;, reaches 1 at
n, = nS, and does not change much for a significant range
of n,,. This is especially true for & = 1. In the limit n, = 0,
E ot/ Exin = 0.94 and 0.5 for 6, ~ /2 but « = 0.8 and 0.2,
respectively. In the same limit, Epot/ Ey, = 0.98 for 6, =
0.6 and o = 0.8. These results agree well with Eq. (79).
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FIG. 5 (color online). Ratio of the potential energy E, of the
flavor pendulum to its kinetic energy Ey;, [Eq. (49)] as functions
of neutrino number density n,. The parameters and the meaning
of the lines are the same as those in Fig. 4.

V. NEUTRINO OSCILLATIONS IN SUPERNOVAE

Refs. [22,23] have presented two sets of simulations
using the ‘“‘single-angle” and “‘multiangle” approxima-
tions, respectively. These simulations together with the
simple analytical and numerical models discussed in the
preceding sections represent approximations to the real
supernova neutrino oscillation problem at three different
levels of complexity.

The analytical and numerical calculations performed in
this paper assume that the neutrino gas is homogeneous
and isotropic and is represented by two monoenergetic
neutrino and/or antineutrino species.

The single-angle simulations increase the complexity by
allowing each neutrino species (4 in the 2 X 2 case) to have
continuous energy distributions. It assumes that the flavor
evolution histories of neutrinos propagating along different
trajectories are the same as those of neutrinos emitted
radially from the neutrino sphere. Although the single-
angle approximation incorporates the angle dependence
of neutrino-neutrino forward scattering into the “‘effective
neutrino density” [22], it still assumes that neutrinos on all
trajectories evolve similarly.

The multiangle simulations are by far the most sophis-
ticated treatment of the problem. In these calculations
neutrinos and antineutrinos have not only continuous en-
ergy distributions but also continuous angular distribu-
tions. The most important improvement implemented in
the multiangle simulations is that the flavor evolution of
neutrinos and antineutrinos (with a wide range of energies)
propagating along different trajectories is followed
independently.

In this section we will first apply our simple models to
the single-angle calculations. We will discuss the onset of
neutrino flavor conversion in both the inverted and normal
mass hierarchy scenarios (Secs. VA and V B). We will also
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investigate the precession mode of the neutrino gas in
supernovae and its effects (Sec. V C). Finally, we will offer
some new analyses of the multiangle simulations and com-
ment on the collectivity of neutrino flavor transformation
in supernovae (Sec. VD).

A. Onset of neutrino flavor conversion in the inverted
mass hierarchy scenario

The simulations presented in Refs. [22,23] for the in-
verted neutrino mass hierarchy scenario all have 8, = 0.1.
According to the discussions in Sec. IV B, bipolar neutrino
systems with vacuum mixing angle 6, =~ 77/2 can start
flavor conversion after the neutrino number density n,
drops below some critical value n. Although the conclu-
sion was made in the absence of an ordinary matter back-
ground, it has been shown that the evolution of bipolar
systems is not changed qualitatively even in a dominant
matter background as long as 6, =~ 7r/2 [21,24].

For a rough estimate of the radius where n, = n$,, we
assume that the neutrino gas behaves in a way similar to the
simple bipolar system initially consisting of v, and v, with
energies £, = 11 MeV and E; = 16 MeV, respectively.
(These values are the same as the average energies of v,
and 7, in the simulations.) In a properly chosen corotating
frame, the evolution of this simplified bipolar system is the
same as that of a gas initially consisting of monoenergetic
v, and ¥, with energy [21]

s [l L, 1\
V_|:2<Eve Eve>i| '

~ 13 MeV.

(80a)

(80b)

With the luminosities of all neutrino species being the
same and L, = 10°' erg/s, the ratio of the number den-
sities of the two neutrino species is

_ LV/EI_/(,
L,/E,,

=~ (.69. (81)

a

Therefore, the critical neutrino number density is [see
Eq. (76)]

dm?
nS, = ———(1-a)? (82a)
V2GiE, Va
~ 6.24 X 108 cm ™3 (82b)

for a mass-squared difference Sm?> =3 X 1073 eV2.
Using the single-angle approximation we estimate the
effective neutrino number density to be °

5 Equation (83) is similar to Eq. (40) in Ref. [22] except that we
here are not computing the net effective neutrino density and,
therefore, ignore the contribution of antineutrinos.
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LV RV 272
——— | 1= 1 —[— ,
477R%E,,g r

R

=~ (1.25 X 10* cm_3)[1 —./1- <7”>2T (83b)

nft(r) = (83a)

where R, = 11 km is the radius of the neutrino sphere
adopted in the simulation. Therefore, n¢" ~ n¢ at radius
r. =52 km.

From panels (c) and (d) of Fig. 8 in Ref. [22] one sees
that, in the single-angle simulation, the flavor conversion
starts at the radius ry = 63 km. At r = ry the z compo-
nents of NFIS’s s, experience rapid oscillations which
correspond to the nutation mode of the flavor pendulum.
The estimated value of r, = 52 km and the observed value
of ry =63 km differ by ~10 km. This difference most
likely arises because at r = r, the nutation frequency Tl
of the flavor pendulum is very small. Consequently, there is
a delay before significant nutation amplitude can develop.
On the other hand, smaller nutation frequency implies less
adiabatic evolution [see Eq. (67)]. So once developed, the
nutation amplitude will be large. The oscillation ampli-
tudes of (s, .) and (s; ,) are indeed large as shown in Fig. 8
of Ref. [22].

We note that the region (r, = r =< rx) where the nuta-
tion modes are to be excited is roughly the same region
where the chaoslike phenomenon shown in Fig. 12 of
Ref. [22] occurs. In this region the differences of two
almost identical systems can grow exponentially as they
evolve.

B. Onset of neutrino flavor conversion in the normal
mass hierarchy scenario

The simulations presented in Refs. [22,23] for the nor-
mal neutrino mass hierarchy scenario all have 6, = 0.1.
According to the discussions in Sec. III, a bipolar neutrino
system with vacuum mixing angle 8, << 1 corresponds to a
flavor pendulum that oscillates in a very limited region
near the bottom of the potential well, and therefore, does
not experience much flavor transformation. However, this
conclusion only applies in the absence of an ordinary
matter background.

In the presence of a matter background, it has been
shown that, in the synchronized regime, neutrinos and
antineutrinos of all the species and energies go through
an MSW-like resonance simultaneously in the same way as
does a neutrino with the characteristic energy Ey, in the
conventional MSW picture [18]. A similar phenomenon
may also occur in bipolar systems in the bipolar regime
(i.e., outside the synchronized regime) as suggested in
Ref. [21]. If this is true, the dominant neutrino species
are changed from v, and 7, to v, . and 7, ;. Using the
corotating frame, one can show that the evolution of a

VyrVy,r gas with the normal mass hierarchy is similar

M7
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to that of a v,-7, gas with the inverted mass hierarchy [21],
and the flavor pendulum is raised from the bottom position
to the top position because of the change in the dominant
neutrino species. Bipolar systems can subsequently de-
velop nutation modes after the collective MSW-like
resonance.

From panels (a) and (b) of Fig. 8 in Ref. [22] one sees
that, in the single-angle simulation, the z components of
NFIS’s s, suddenly change at radius rx =~ 88 km and
oscillate rapidly afterwards. This corresponds to the initial
collective MSW-like resonance followed by the nutation
modes. We note that the observed value of rx in the
simulation is larger than the value of 74 km estimated for
the fully synchronized limit [22]. The difference arises
partly because the MSW-like resonance actually occurs
in the bipolar regime in this case.

C. Precession mode and final neutrino survival
probabilities

As shown in Sec. III bipolar systems generally are in
both precession and nutation modes. This is indeed seen in
the single-angle simulations for both the normal and in-
verted mass hierarchies. In Fig. 8 of Ref. [22], the x and y
components of NFIS’s s, oscillate with an approximate
phase difference of 7/2, signifying precession in the x-y
plane.

In Sec. IVA we have argued that, in the absence of an
ordinary matter background, the intrinsic precession angu-
lar velocity 2 of the bipolar system as a whole should be in
the same direction as that of a single neutrino of the
dominant species. Therefore, we expect bipolar systems
dominated by neutrinos to tend to precess around —Hy. In
the presence of a matter background, bipolar systems will
also tend to precess around the direction opposite to

H, = —&\/2Gn,, (84)

where n, is the net electron number density. For the
inverted mass hierarchy with 6, ~ 7/2 and Hy =~ —é&f,
the intrinsic £ of the flavor pendulum is roughly in the
same direction as the precession stemming from the matter
background. In this case, the combined precession does not
change direction. As a result, the precession of NFIS’s is
always roughly around —Hy = & for the inverted mass
hierarchy.

For the normal mass hierarchy with 6, << 1 and Hy =
éf, the intrinsic Q of the flavor pendulum is roughly in the
opposite direction to that of the precession due to the
matter background, and the combined precession may
change its direction. However, it is expected that the matter
background becomes negligible after the collective MSW-
like resonance. Therefore, the NFIS’s precess roughly in
the direction of —Hy =~ —&f in the region r = ry for the
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normal mass hierarchy. According to Fig. 8 of Ref. [22]
NFIS’s indeed precess around & for the inverted mass
hierarchy scenario and — &’ for the normal mass hierarchy
scenario.

Reference [22] has shown that (see Fig. 9 of that refer-
ence), for the inverted mass hierarchy scenario and at large
radius, neutrinos with energies below Ec =9 MeV are
mostly in their initial flavors while neutrinos with larger
energies and most antineutrinos can be completely con-
verted to other flavors in the limit of large neutrino lumi-
nosity L,. For the normal mass hierarchy scenario,
neutrinos with energies below Ec =9 MeV are almost
completely converted to other flavors while neutrinos
with larger energies and nearly all antineutrinos are mostly
in their initial flavors in the limit of large L,. Ref. [22]
suggested that this phenomenon is related to the precession
of NFIS’s when neutrino number densities decrease and the
bipolar configuration starts to break down (see Fig. 10 of
that reference).

We note that the precession of NFIS’s due to the matter
background H, is the same for all neutrinos, and we can
essentially ignore it in a reference frame F rotating with
angular velocity —H,. In this corotating frame F, the
e.o.m. of NFIS s; is

(85a)
(85b)

s; X <Mv,iHV + Mvva,jS,‘) (85¢)
J

=«
|

i s; X Hy,

s; X (uy,Hy + H,),

where H, is the effective ““magnetic field” generated by all
other NFIS’s. We assume that all NFIS’s and H, rotate
with a constant angular velocity —(Hy. The problem
becomes very simple in a reference frame F, which
rotates relative to F; with angular velocity —QHy. In F,

d -
Esi =s; X Hy, (86a)

=s; X [(uy; — QHy + H,], (86b)

where both H,,, and H, are not rotating.®

We first look at a NFIS s; corresponding to a neutrino
which is initially pure v, at the neutrino sphere. Because
w, = —2/2Gg is negative and the neutrino gas is initially
dominated by v,, the NFIS s; must be roughly antialigned
with H,,, = H, when neutrino number densities are large.

“We have ignored the rotation of Hy in the corotating frames
F, and F, because Hy is roughly in the same or opposite
direction as the rotation axis for 0, < 1 or 0, =~ /2.
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As neutrino number densities decrease to 0, H,, —
(mvy,; — Q)Hy. If neutrino number densities decrease so
slowly that the process is adiabatic, s; will stay antialigned
with H,,. At n,, = 0 the NFIS s, can be either aligned or
antialigned with Hy depending on whether uv ; is smaller
or larger than (). For the inverted mass hierarchy scenario
with 6, = 7/2 and Hy ~ —&!, s; is roughly aligned with
él ~ —Hy if uy = 6m?/(2E,) > Q and antialigned with
&l otherwise. Accordingly, at large radii neutrinos starting
as v, are still mostly in the v, flavor if their energies are
below

Sm?

E_
€70

(87)

and are almost completely converted to other flavors oth-
erwise. In other words, one has

1 if E, <Eq,

P (E,) = {0 S (88)

One can estimate the final neutrino survival probabilities
for other cases in a similar fashion. We have summarized
the results for the relevant scenarios in Table 1.

In this analysis we have assumed () to be constant. This
analysis is expected to hold as long as the process is more
or less adiabatic and neutrino number densities decrease
slowly. The predictions from this simple analysis generally
agree with the results of single-angle numerical simula-
tions presented in Fig. 9 of Ref. [22]. The agreement is
especially good for large neutrino luminosities and in the
neutrino sector for which P,,(E,) has a relatively sharp
transition or jump at £, = E. This pattern can be taken as
a hallmark of collective neutrino flavor transformation
because it results from a neutrino background that is in a
collective precession mode.

D. Collectivity and noncollectivity of neutrino
oscillations in supernovae

Single-angle simulations assumed that neutrinos of the
same species and energy all evolve in the same way even if

TABLE I. Final neutrino survival probabilities in the adiabatic
limit for large L, in both the normal and inverted neutrino mass
hierarchy scenarios.

0, < 1 (normal) 0, =~ /2 (inverted)

PVI/(EV < EC) 0 1
PVI/(EI/ > EC) 1
Py5(E;) 1 0
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they are emitted in different angles from the neutrino
sphere. This is not necessarily always a good approxima-
tion as neutrino-neutrino forward scattering is angle de-
pendent and the neutrino density distributions in the
supernova environment are inhomogeneous and aniso-
tropic. Even if neutrinos moving along various trajectories
all have the same flavor content at a given radius, they
produce different refractive indices for neutrinos propagat-
ing in different directions. Therefore, neutrinos propagat-
ing in different directions are expected to have different
flavor evolution histories. On the other hand, neutrinos
propagating along different trajectories are coupled to
each other through neutrino-neutrino forward scattering.
The correlations among different neutrino trajectories
are especially strong when neutrino fluxes are large.
The inhomogeneity/anisotropy of the environment and
the correlation among different neutrino trajectories
act as two opposite “forces” which try to break and
uphold, respectively, the collective aspect of neutrino os-
cillations in supernovae. At the moment it is difficult to
perform an analytical study that can clearly predict which
force wins. Our limited goal here is to gain insight into the
issue of collectivity of neutrino flavor transformation by
analyzing the multiangle simulations presented in
Refs. [22,23].

As shown in Fig. 2 of Ref. [23], the flavor evolution of
neutrinos on each trajectory in multiangle simulations
looks qualitatively similar to that in the corresponding
single-angle simulations. However, the oscillations in neu-
trino survival probabilities P,, and P;; have different
frequencies for different trajectories. For vacuum angle
0, <1 or 0, =a/2, the oscillations in P,, and P;;
represent the nutation of the flavor pendulum. Therefore,
the nutation modes of neutrinos propagating along differ-
ent trajectories cannot be viewed as collective. Indeed, it
has recently been shown that the nutation modes for sym-
metric bipolar systems can quickly develop large phase
differences and ““decohere” for neutrinos propagating in
different directions [26].

On the other hand, Fig. 3 of Ref. [23] shows that P,,,(E,)
obtained by multiangle simulations has a sharp transition at
E, = E¢ as in single-angle simulations. In addition, the
value of E- is approximately independent of neutrino
trajectory direction. If this transition is related to the pre-
cession mode of neutrinos as suggested by Ref. [22] and
further explained here, NFIS’s corresponding to neutrinos
propagating in different directions must precess with the
same frequency. In Fig. 6 we have plotted (si,), the x
component of the average NFIS’s in the flavor basis, as
functions of radius r for three representative trajectories
obtained from the multiangle simulations of Refs. [22,23].
One indeed observes that the NFIS’s along various trajec-
tories are approximately in a single collective precession
mode and precess around *é&' with approximately the
same frequency.
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FIG. 6 (color online).

The evolution of x components of the average NFIS’s of supernova neutrinos in the flavor basis obtained from

the multiangle simulations as presented in Fig. 4 of Ref. [22]. The left panels are for neutrinos emitted as v,, and the right panels are
for antineutrinos emitted as 7,. The top panels employ the normal mass hierarchy with #, = 0.1, and the bottom panels employ the
inverted mass hierarchy with 6, = 0.1. The solid, dotted and dashed lines give (s¥,) along the trajectories with cos®, = 1, 0.5 and 0,
respectively, where @ is the emission angle defined in Ref. [22]. The neutrino mass-squared difference is taken to be §m? =

3 X 1073 eV2,

VI. CONCLUSIONS

We have investigated the simple symmetric bipolar sys-
tem using the flavor pendulum analogy. We have shown
that an adiabatic invariant of the pendulum motion can be
used to study the evolution of such a bipolar system when
neutrino number densities change slowly with time. We
have also studied an asymmetric bipolar system using the
gyroscopic pendulum analogy. As a gyroscopic pendulum,
a bipolar system generally can be in both the precession
and nutation modes simultaneously except in the synchro-
nized regime where only precession is possible.

We have shown that an asymmetric bipolar system can
stay mostly in a pure precession mode as it transitions from
the synchronized regime into the bipolar regime if neutrino
number densities decrease slowly. The precession fre-
quency of the system generally varies with the neutrino
number density and approaches the synchronization fre-
quency in the synchronized regime. For the inverted mass
hierarchy case with mixing angle 6, =~ 7r/2, we have cal-
culated a more accurate value of the critical neutrino
number density below which bipolar systems can start
flavor transformation. Because supernova neutrinos natu-
rally form asymmetric bipolar systems, these analyses
could be useful for understanding the qualitative features
of neutrino oscillations in supernovae.

We have further analyzed the recent numerical simula-
tions of neutrino oscillations in supernovae. These large-
scale simulations suggest that neutrinos traveling on inter-
secting trajectories and experiencing destructive quantum
interference nevertheless can be in the collective preces-
sion mode. This mode can result in sharp transitions in the
final energy-dependent neutrino survival probabilities
P,,(E,) across all trajectories. This sharp transition in
P,,(E,) can be taken as a hallmark of collective neutrino
flavor transformation. Moreover, this transition occurs dif-
ferently for the normal and inverted neutrino mass hierar-
chies. Based on this difference, the neutrino signals from a
future galactic supernova potentially can be used to deter-
mine the actual neutrino mass hierarchy.
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APPENDIX: POTENTIAL AND KINETIC
ENERGIES OF AN ASYMMETRIC FLAVOR
PENDULUM

Let us compare the kinetic energy E,;, of the flavor
pendulum with its potential energy E, [see Eq. (49)] in
the pure precession mode. The potential energy is defined
as

PHYSICAL REVIEW D 75, 125005 (2007)

Its kinetic energy is defined as
(A3)

where
J =s; + as,. (A4)

According to Eq. (75), we have sin’¢, = asin’®, and

sin?d, = 268/ /a if
Epo = Mg(1 —Hy -r) = uy(g —q-Hy), (AD) 2 /Va
where s="r 1«1 (A5)
0 v
=25 —as, + H,. (A2)
ny, ny, It is straightforward to show that
|
n0 n0\2
q = (Sl - CYSZ)Z + 2<—V>(S1 . HV - a8 Hv) + <—V> , (A6a)
nV nV
1+a%-2 hHh + O 9\2
=\/ o @ cos(, 2) < )(cosﬁl — acosth) + <&> , (A6b)
4 n, n,
1+ 0
=— 2 Dy 06, (A6c)
2 n,
In addition, we have 0 P 1+ a2+ 2054003(191 + 192), (A%)
n
q-Hy=s,-Hy —as, Hy + =, (A7a) 1 — a2 1 — 2
n, ~ ( “) pVallZVar s o
_1ta + + Jaé. ATb ? ?
n. (A70)  ond
py [(1+ Ja)?
Ey, = + Jad A10
Combining Egs. (A6c) and (A7b), we obtain kin =148 [ 2 Va } ( 2)
1+ Ja)} [1+
i :MV[( 2*/5) —( 2“)5} (A10b)
n
E o= l+a—-2(—%)—Vab| A8 ) . .
pot MV[ « <n,,> Ve } (ASa) Therefore, we obtain E,y/Ey, = 1 to O(5) in the limit
1+ Ja)? /[1+a oK 1.
= :U*V[ 2 - < ) >5} (A8b) One can also estimate the potential and kinetic energies

Similarly, we have

of the flavor pendulum in the limit ,,/n% << 1. In this limit

n° n
q= \/(Sl — asy)? + 2<—V>(51 “Hy —as, - Hy) + <—
nV

(A

0 1
z&'i_sl'Hv_asz'Hv‘i‘—(n—g
n, 2\n;
sin®
~ H ,
4t (0> 3

we have s; - Hy =cosd,/2, s, -Hy =~ —1/2, and s, -
s, = — cos®; /4. Therefore,
0\2
V) , (Alla)
~ s, - Hy) + ( ) (s; — asy)?, (Al1b)
Y51 — asaP = 1+ Hy = sy B (Allc)
(Al1d)
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which gives

Epy =2 (%)sinzﬁl. (A12)

Similary, we have
Eyin = %(Z—é)(sl + as,)?, (A13a)
~ %(%)(1 + a? — 2a cosd). (A13b)

(1]
(2]

(3]

(5]
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Combining Eqgs. (A12) and (A13b), we obtain

E oo sin?%,
Ekin 1+ a2 -2« COS’I&I )

(A14)

In the limit n,/n% < 1, cos®; = (1 — a) cos26, + a, and
the above equation reduces to

E pot
Eyin

(1 — @)cos™26,
1+ a—2acos26,’

(A15)
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