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In Brief

Mutations in FUS are causative of ALS

and frontotemporal dementia (FTD).

López-Erauskin et al. show that disease-

causing mutant FUS inhibits intra-axonal

protein synthesis and provokes

hippocampal synaptic loss and

dysfunction without loss of nuclear FUS

function or FUS aggregation.
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SUMMARY

Through the generation of humanized FUS mice
expressing full-length human FUS, we identify that
when expressed at near endogenous murine FUS
levels, both wild-type and ALS-causing and fronto-
temporal dementia (FTD)-causing mutations com-
plement the essential function(s) of murine FUS.
Replacement of murine FUS with mutant, but not
wild-type, human FUS causes stress-mediated in-
duction of chaperones, decreased expression of
ion channels and transporters essential for synaptic
function, and reduced synaptic activity without loss
of nuclear FUS or its cytoplasmic aggregation.
Most strikingly, accumulation of mutant human FUS
is shown to activate an integrated stress response
and to inhibit local, intra-axonal protein synthesis in
hippocampal neurons and sciatic nerves. Collec-
tively, our evidence demonstrates that human ALS/
FTD-linked mutations in FUS induce a gain of
toxicity that includes stress-mediated suppression
in intra-axonal translation, synaptic dysfunction,
and progressive age-dependent motor and cognitive
disease without cytoplasmic aggregation, altered
nuclear localization, or aberrant splicing of FUS-
bound pre-mRNAs.
816 Neuron 100, 816–830, November 21, 2018 ª 2018 The Author(s)
This is an open access article under the CC BY license (http://creative
INTRODUCTION
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative dis-

order leading to paralysis from death of motor neurons. Muta-

tions in the gene encoding the RNA binding protein FUS (fused

in sarcoma) are causative of cases of familial ALS (Kwiatkowski

et al., 2009; Vance et al., 2009) as well as instances of frontotem-

poral dementia (FTD) (Broustal et al., 2010; Van Langenhove

et al., 2010; Yan et al., 2010). FUS is present in the pathological

inclusions of patients with FUS-mediated ALS and most of FTD

instances without TDP-43 or Tau-containing aggregates, ac-

counting for about 10%of the frontotemporal lobar degeneration

(FTLD) cases, known as FTLD-FUS (Mackenzie et al., 2010).

FUS-containing aggregates have been reported in both the nu-

cleus and the cytoplasm of neurons and glial cells in the central

nervous system (CNS) of patientswithFUSmutationsor sporadic

disease (Belzil et al., 2011; Chio et al., 2011; DeJesus-Hernandez

et al., 2010; Kim et al., 2014b; Rademakers et al., 2010; Vance

et al., 2009) as well as neurodegenerative conditions including

Huntington’s disease (Doi et al., 2008). The relocalization of

FUS from thenucleus to thecytoplasm is incomplete,with at least

some nuclear retention in neurons with FUS inclusions (Munoz

et al., 2009; Neumann et al., 2009; Rademakers et al., 2010).

The 526-amino-acid FUS protein includes a glycine-rich, low-

complexity, prion-like domain and a C-terminal, non-classical

PY nuclear localization signal (PY-NLS) in which most of the

ALS/FTLD-linked mutations are clustered (Da Cruz and Cleve-

land, 2011). Like TDP-43, inmost cell types FUS ismainly nuclear
. Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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(Andersson et al., 2008). Beyond nuclei, FUShasbeen reported in

neurons to be enriched in dendrites (Belly et al., 2005; Yasuda

et al., 2013), spines (Fujii et al., 2005), in close proximity of presyn-

aptic vesicles (Schoen et al., 2016), and at the neuromuscular

junctions (So et al., 2018). Reduction (Udagawa et al., 2015) or

deletion (Hicks et al., 2000) of Fus inmouse hippocampal neurons

causes abnormal spine morphology and density, consistent with

a role for FUS in modulation of neuronal plasticity or synaptic ac-

tivity—potentially through the alteration of mRNA stability (Uda-

gawaet al., 2015) or transport and local translation in neurons (Fu-

jii et al., 2005).While some studies have reported that a proportion

of wild-type FUS is recruited to cytoplasmic stress granules,

others have found that only FUS mutants localize to stress gran-

ules (Aulas and Vande Velde, 2015).

FUShasbeen proposed to participate in a range of cellular pro-

cesses including transcription, splicing, RNA localization and

degradation, and DNA damage (Lagier-Tourenne et al., 2010).

Genome-wide analyses have reported that FUS binds between

5,000 and 8,000 mammalian RNA targets (reviewed in Nuss-

bacher et al., 2015) and that deletion of the gene is associated

with alterations in levels and splicing of �1,000 mRNAs (Honda

etal., 2013; Ichiyanagiet al., 2016;Kapeli et al., 2016; Lagier-Tour-

enneet al., 2012).Nevertheless, deletionofFus fromoutbredmice

(Kuroda et al., 2000) or from inbredmaturemousemotor neurons

does not cause their degeneration (Sharma et al., 2016). Efforts to

model FUS-mediated disease in rodents have used heterologous

promoters (that do not fully recapitulate the pattern of expression

of endogenous FUS) to drive, inmost cases, elevated levels of hu-

manwild-type (Mitchell et al., 2013; So et al., 2018) ormutant FUS

(Huang et al., 2011; Qiu et al., 2014; Sephton et al., 2014; Sharma

et al., 2016; Shelkovnikova et al., 2013; Shiihashi et al., 2016;

Verbeeck et al., 2012). Others have used heterozygous or homo-

zygous removal of the nuclear localization domain of mouse Fus

(Devoy et al., 2017; Scekic-Zahirovic et al., 2017; Scekic-Zahir-

ovic et al., 2016). Both sets of efforts have suggested that gain

of toxicity is a component of pathogenesis. However, the identi-

ty(ies) of possible acquired toxicities remains unknown, and

whether loss of function contributes to disease is not established.

We have now generated humanized FUSmice in which the full-

length human FUS gene, encoding wild-type or ALS-linked muta-

tions, replaces murine Fus. With expression levels close to the

normal levels of endogenous FUS, wild-type or mutant FUS

mimics the predominantly nuclear localization of endogenous

FUS and complements its essential function(s). Mutant FUS is

shown tocauseprogressivemotor andcognitive deficits—without

detectablecytoplasmicaggregation—accompaniedbyRNAalter-

ations inexpression that are drivenbyagain-of-toxicity rather than

a loss of FUS function. Most strikingly, mutant FUS is shown to

inhibit local intra-axonal protein translation, drive synaptic loss,

elevate stress-induced chaperones, and suppress RNAs encod-

ing ion channels and transporters essential for synaptic function.

RESULTS

Mice with Human FUS Expression Mimicking
Murine FUS
Transgenic mice were generated in a C57BL/6 congenic back-

ground to express wild-type (WT) FUS or either of two
ALS-linked mutations (R521C and R521H), each transcribed

from the endogenous human FUS promoter (Figure 1A).

Twenty-six founder mice were obtained expressing human FUS

WT (hgFUSWT), R521C (hgFUSR521C), or R521H (hgFUSR521H)

(Figure S1A). Eight lines were established (Figure S1B).

Accumulated human FUS levels were comparable in most

lines using an antibody recognizing both human and mouse

FUS proteins with equivalent affinity (Figures 1B, S1D, and

S1E). Endogenous FUS was reduced by more than 50% at

mRNA (Figures 1C and S1C) and protein (Figures 1B and 1D)

levels, resulting in overall FUS protein levels similar to endoge-

nous mouse FUS levels in non-transgenic (Non-Tg) animals (Fig-

ure 1B). Lines with matching levels (line 88 for WT, line 10 for

R521C, and line 9 for R521H; Figures 1C and 1D) and expression

pattern of human FUS (determined in spinal cord sections

stained with an antibody specifically recognizing human, but

not mouse, FUS) mimicking that of the endogenous mouse

FUS (Figure 1E) were further characterized.

Age-Dependent Motor Deficits Without Nuclear FUS
Mislocalization or Cytoplasmic Aggregation in ALS/
FTD-Linked Mutant FUS Mice
Motor performance of all three FUS (hgFUSWT, hgFUSR521C, and

hgFUSR521H) mouse lines at 2 months of age was undistinguish-

able from that of Non-Tg littermates. By 8 months, both mutant

FUS lines had developed significant reduction in hindlimb grip

strength compared to age-matched Non-Tg and hgFUSWT litter-

mates (Figure 2A). Motor dysfunction in both mutant lines was

further exacerbated during aging, reaching a loss of grip strength

of over 50% by 18 months. Loss of motor performance was

accompanied by age-dependent loss of muscle innervation (Fig-

ures 2B and 2C), a-motor axons (Figures 2D–2F), and spinal cord

motor neurons (Figures 2G and 2H). There was also a modest

decline in the number of innervated neuromuscular junctions

(NMJs) (Figure 2C) and a-motor axons in age-matched hgFUSWT

mice relative to Non-Tg animals (Figures 2E and 2F).

Loss of motor neurons in mutant animals was accompanied

by increased activation of astrocytes (Figures S2A and S2C)

and microglia (Figures S2B and S2C) in spinal cord ventral

horns of hgFUSR521C and hgFUSR521H mice (scored by GFAP

and Iba1 immunoreactivity, respectively). FUS protein levels

remained unchanged up to 24 months of age across all geno-

types (Figures 2I and 2J). Similarly, although elevated expres-

sion of mutant FUSR521C driven by a prion promoter has been

proposed to cause accumulation of DNA damage in mouse spi-

nal cords (Qiu et al., 2014), no such damage (measured by

gH2A.X and 53BP1 co-localization) was observable in aged,

diseased hgFUSR521C and hgFUSR521H mice (Figure S2D),

although it was obvious in the spinal cords of g-irradiated

animals.

Age-dependent motor deficits in ALS-causing mutant

FUS lines were not accompanied by cytoplasmic redistribution

of either human (Figures 2K and S2E) or mouse (Figures 2L

and S2E) FUS or FUS aggregates (Figures 2K–2L and S2F)

in 24-month-old spinal cords. Taken together, neither FUS

aggregates nor redistribution to the cytoplasm are necessary

for age-dependent motor deficits in the hgFUSR521C and

hgFUSR521H lines.
Neuron 100, 816–830, November 21, 2018 817
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Figure 1. Expression Levels and Cellular Pattern

of the Human FUS Transgene Mimics That of

Endogenous Protein with an Auto-regulation

Mechanism

(A) Schematic of the human BAC containing human FUS

gene wild-type (WT) or either ALS-linked mutation

R521C or R521H.

(B) Protein levels of the 54 and 53kDa human andmouse

FUS using an antibody recognizing both species with

equal affinity. Calnexin was used as a loading control.

Each lane represents an independent mouse spinal

cord.

(C) Expression levels of total (mouse, blue bars and

human, red bars) FUS RNAs in Non-Tg, hgFUSWT,

hgFUSR521C, and hgFUSR521H spinal cords. Data are

represented as mean ± SEM (n = 3 per group). See also

Figure S1.

(D) Protein levels of the human FUS transgene using an

antibody specific to the human protein and mouse FUS

using an antibody specifically recognizing the mouse

protein in 2-month-old animals (* non-specific band).

Each lane represents an independent mouse spinal

cord per transgenic line. Calnexin was used as a loading

control.

(E) Lumbar spinal cord sections from 2-month-old Non-

Tg, hgFUSWT, hgFUSR521C, and hgFUSR521H mice

immunostained for human FUS transgene (green) and

total FUS (red). Scale bars, 200 and 50 mm.
ALS/FTD-LinkedMutations in FUSDriveAge-Dependent
Cognitive Deficits and Synaptic Loss
Age-dependent deficits in cognition and memory were devel-

oped in hgFUSR521C and hgFUSR521H mice, including novel

object recognition (Figure 3A), spatial memory (Figure S3A), so-

ciability (Figures S3B and S3C) and anxiety (Figure S3D). These

alterations were accompanied by modest increases in astroglio-

sis (Figures 3B and 3C) and microgliosis (Figures 3B and 3D), as

well as a significant loss of synapses (marked by loss of synap-

sin; Figures 3E and 3F) in the hippocampus of aged, 24-month-

old mice, without loss of NeuN positive neurons. Mutant-

FUS-dependent loss of synapsin was recapitulated in cultured

primary hippocampal neurons (Figure 3G). Neuronal activity
818 Neuron 100, 816–830, November 21, 2018
measurements (using multi-electrode arrays

[MEA]; Chailangkarn et al., 2016) revealed

age- and mutant-dependent synaptic

dysfunction, with a 50% decrease in spike

rate developing by 28 days of culture (Figures

3H and 3I).
Progressive Neurodegeneration in
Humanized Mutant FUS Mice
We next generated humanized FUS mice

(mFus�/�/hgFUS mice) in which the sole

source of FUS was human FUS. This was

achieved by mating to produce mice that ex-

pressed our wild-type or mutant human

FUS-encoding transgenes but in which both

endogenous Fus alleles were inactivated (Fig-

ure 4A). While homozygous disruption of
murine Fus is lethal in C57BL/6 mice, as previously reported

(Hicks et al., 2000), lethality was completely rescued by expres-

sion of human wild-type or mutant FUS, and humanized FUS

mice (eitherWT ormutants) were bornwith the expectedMende-

lian ratios (Figures 4B and 4C). Nevertheless, despite compara-

ble humanFUSmRNA (FigureS4A) andprotein levels (Figure 4C),

beginning at 6 months of age, hgFUSR521C or hgFUSR521H mice

developed progressive motor deficits including age-dependent

loss of hindlimb grip strength (Figure 4D) and loss of spinal

cord ChAT-positive motor neurons (Figure S4B). Remarkably,

reduction or elimination of endogenous Fus did not exacerbate

mutant FUS-dependentmotor deficits and neurotoxicity (Figures

2 and 4).
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(A) Hindlimb grip strength measured up to 24 months. Data are represented as mean ± SEM (n R 12 per group). *p < 0.05, **p < 0.01, ***p < 0.001, ns: non-

significant using one-way ANOVA.

(B) Gastrocnemius muscle sections from 24-month-old Non-Tg, hgFUSWT, hgFUSR521C, and hgFUSR521Hmice with axons immunostained using a synaptophysin
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(C) NMJ innervation of the gastrocnemius from 8- and 24-month-old Non-Tg, hgFUSWT, hgFUSR521C, and hgFUSR521H mice. Data are represented as mean ±
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(D) Lumbar motor axons from 24-month-old Non-Tg, hgFUSWT, hgFUSR521C, and hgFUSR521H mice. Scale bar, 50 mm.
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(legend continued on next page)
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ALS/FTD-Mediated DiseaseWithout Loss of Normal FUS
Function
To determine whether age-dependent loss of FUS nuclear func-

tion contributes to FUS-mediated disease in aged, humanized

FUSmice, levels (Figure 4E) and splicing (Figure 4F) of the genes

most affected by FUS depletion in mice (Lagier-Tourenne et al.,

2012) were assessed. Expression levels of Kcnip4, Park2,

Smyd3, Mal, Nrxn3, Nlgn1, and Csmd1 were significantly

decreased in the CNS of mice treated with reduced FUS

following antisense oligonucleotide-mediated degradation of

Fus mRNAs (Figure 4E; Lagier-Tourenne et al., 2012). However,

a modest increase, rather than a reduction, was seen in the

expression of these genes in spinal cords of humanized

hgFUSR521C and hgFUSR521H mice compared to Non-Tg and

hgFUSWT mice depleted of endogenous FUS (Figure 4E).

Genome-wide expression analysis (RNA-seq; Figure S4C) of

aged, humanized mutant FUS spinal cords did not significantly

overlap with the changes identified upon FUS depletion in adult

mouse spinal cords (Kapeli et al., 2016) (Figure S4E). Similarly,

the most common splicing changes identified upon depletion

of FUS (Lagier-Tourenne et al., 2012) were not observed in the

humanized FUS mouse spinal cords (Figure 4F). Global splicing

analysis using the RNA-mediated oligonucleotide annealing, se-

lection, and ligation with next-generation sequencing (RASL-

seq) method (which permitted quantitative profiling of 3,859

alternative splicing events that correspond to exon inclusion or

skipping events conserved between mouse and human;

Scekic-Zahirovic et al., 2016; Sun et al., 2015; Zhou et al.,

2012) did not reveal significant splicing alterations in aged, hu-

manized mutant FUS spinal cords (Figure S4D). Altogether,

these results demonstrate that the age-dependentmotor deficits

associated with expression of ALS-linked FUSmutant in human-

ized FUS mice cannot be caused by a loss of function of FUS in

regulating gene expression and/or splicing.

A Mutant FUS-Dependent Gain of Toxicity RNA
Signature Affecting Protein Synthesis
RNA expression profiles from spinal cords of humanized mutant

FUS mice were used to test whether ALS-linked mutations pro-

duced expression changes that reflected gain of aberrant func-

tion (Figures 5 and S4E). RNA profiles from normal (Non-Tg)

and humanized hgFUSWT mice were almost indistinguishable.

However, both humanized mutant FUS lines had highly distinct

RNA profiles determined with unsupervised hierarchical clus-

tering (Figure 5A) and principal component analysis (PCA) (Fig-

ure 5B), with 1,057 significant expression changes (defined by
(F) Total number of a-motor axons (caliber size > 4.5 mm) in the L5motor root of 8- a

are represented as mean ± SEM (n R 3 per group).

(G) Lumbar spinal cord sections from 24-month-old Non-Tg, hgFUSWT, hgFUSR

cholinergic motor neurons. Scale bar, 100 mm.

(H) Total number of ChAT-positive motor neurons in lumbar spinal cords of 8- and

represented as mean ± SEM (n R 3 per group). *p < 0.05, **p < 0.01, two-sided

(I) Total human and/or mouse FUS protein levels in spinal cords of 2-, 12-, and 24-

used as a loading control. Asterisk illustrates a non-specific band recognized by

(J) Quantification of immunoblots shown in (I). Data are represented as mean ± S

(K and L) Lumbar spinal cord sections from 24-month-old Non-Tg, hgFUSWT, hgF

specifically (K) human or (L) mouse FUS. DNA is stained with DAPI. Scale bars, 1
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p < 0.05 adjusted for multiple testing; Table S1) and with 709

down and 348 upregulated genes (Figure 5C) relative to age-

matched Non-Tg or humanized hgFUSWT littermates. These

changes (Figures 5D and 5E) included altered signaling path-

ways for protein translation mediated by eIF2a, a crucial transla-

tion initiation factor which forms a complex with components

including eIF2B, GTP, and the initiating methionine tRNA (Kapur

et al., 2017). mTOR and glutamate receptor signaling pathways

(Figure 5E) were also affected.

mRNAs encoding multiple ion channels and transporters

essential for synaptic function were decreased in spinal cord ex-

tracts of both humanized mutant FUS lines (Figure S5A), consis-

tent with mutant FUS-dependent synaptic dysfunction (Figures

3E and 3F). Further tests using RT-qPCR confirmed reductions

in ion channel and transporter components tested (reductions

in nine are shown in Figure 5F). These changes were accompa-

nied by the upregulation of ten genes encoding chaperones (Fig-

ure S5B), five of which were further validated by qRT-PCR (Fig-

ure 5G). Genes encoding ribosomal proteins represented some

of themost downregulated genes, including sixteen components

of the translation machinery (Figures 5H and S5C).

Stress-Mediated Inhibition of Intra-axonal Protein
Synthesis from ALS/FTD-Linked Mutations in FUS
FUS mutant-dependent effects on protein translation mediated

through eIF2a were tested in the nervous system of the human-

ized FUS mice. Phosphorylation of eIF2a on serine 51 inhibits

overall initiation by blocking the activity of its eIF2B guanine ex-

change factor (Donnelly et al., 2013). Consistent with inhibited

translation initiation, elevated levels of phosphorylated eIF2a

(P-eIF2a), together with increased levels of HSF1 (heat shock

transcription factor 1), were identified in spinal cord protein

extracts from FUS adult mutant mice at early symptom onset

(Figure 6A, S6A, and S6B).

ATF4 is a key effector of the integrated stress response that

drives phosphorylation of eIF2a (Pakos-Zebrucka et al., 2016).

Consistent with P-eIF2a dependent protein synthesis inhibition,

there was a mutant FUS-dependent increase of Atf4 mRNA

levels in primary mouse hippocampal neurons (Figure 6B).

Correspondingly, mRNA translation was reduced (compared

with neurons of wild-type mice) by 25% in metabolically labeled

(with 35S-Met/Cys) cultured hippocampal neurons from mutant

FUS mice (Figure 6C).

Recognizing that puromycin incorporation into nascent poly-

peptides enables direct visualization of actively translating ribo-

somes (using an anti-puromycin antibody; tom Dieck et al.,
nd 24-month-old Non-Tg, hgFUSWT, hgFUSR521C, and hgFUSR521Hmice. Data

521C, and hgFUSR521H mice immunostained using a ChAT antibody to reveal

24-month-old Non-Tg, hgFUSWT, hgFUSR521C, and hgFUSR521Hmice. Data are

unpaired Student’s t test.

month-old hgFUSWT, hgFUSR521C, hgFUSR521H, and Non-Tg mice. Tubulin was

the antibody against mouse FUS.

EM from two independent experiments.

USR521C, and hgFUSR521H mice immunostained using an antibody recognizing

00 mm and 50 mm (inset). See also Figure S2.
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Figure 3. Age-Dependent Progressive Cognitive Impairments, Astrogliosis, and Microgliosis in Hippocampus of Mice Expressing ALS-

Linked FUS Mutants

(A) Novel object recognitionwasmeasured in 12- and 24-month old Non-Tg, hgFUSWT, hgFUSR521C, and hgFUSR521Hmice. Data are represented asmean ± SEM

(n = 15 per group). *p < 0.05 using one-way ANOVA. See also Figure S3.

(B) Quantification of the GFAP and Iba1 relative fluorescence intensities in hippocampal sections of 24-month-old Non-Tg, hgFUSWT, hgFUSR521C, and

hgFUSR521H mice. The bar graph represents mean ± SEM (n = 3 per group). *p < 0.05, **p < 0.01, two-sided unpaired Student’s t test.

(CandD)Hippocampal sections from24-month-oldNon-Tg, hgFUSWT, hgFUSR521C, andhgFUSR521Hmice immunostainedusinganantibodydetectingactivated (C)

astrocytes (GFAP) or (D) microglia (Iba1). DNA is stained with DAPI. Scale bar, 50 mm.

(E) Hippocampus from 24-month-old Non-Tg, hgFUSWT, hgFUSR521C, and hgFUSR521H mice immunostained to reveal synapses (green) using a synapsin

antibody and DAPI for nuclei. Scale bar, 25 mm.

(F) Quantification of the synapsin relative fluorescence intensity shown in (E). The bar graph represents mean ± SEM (n = 3 per group). *p < 0.05, two-sided

unpaired Student’s t test.

(G) Synapsin and FUS protein levels in hippocampal neuronal extracts frommutant hgFUSR521H or Non-Tgmice (at 15 days of culture). Tubulin antibody was used

as loading control.

(legend continued on next page)
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2015), we cultured hippocampal neurons in compartmented mi-

crofluidic chambers that allow unambiguously distinguishing cell

bodies from processes, prior puromycin pulse-labeling (Figures

6D and 6E). Surprisingly, translation was found to be predomi-

nantly reduced in processes (Figures 6E, 6G, 6I, and 6K) relative

to cell bodies (Figures 6F, 6H, 6J, S6C, and S6D). This reduction

was accompanied by increased phosphorylation of eIF2a in

axons (Figures 6G and 6M), with no differences observed in

cell bodies (Figures 6F and 6L). No cell death was detected at

any time point (Figures S6E and S6F).

While a majority of FUS localized intranuclearly (Figure 6H,

red), both wild-type and mutant human FUS were present in

axons of hippocampal neurons cultured in compartmented

microfluidic chambers (Figure 6I). FUS was not elevated in the

cytoplasm of mutant neuronal cell bodies (Figures 6H and 6N).

However, relative to wild-type FUS, significantly more mutant

FUS accumulated within axons (Figures 6I and 6O). Since mea-

surement of the volume covered by the axonal network in our

hippocampal neuronal cultures revealed that it was at least

6 times that of their cell bodies and dendrites, this strong reduc-

tion in intra-axonal protein translation is likely to be sufficient to

account for the 25% decreased protein synthesis measured in

the total protein extract (Figure 6C).

To test mutant FUS effects on local translation in motor

axons in mice, puromycin pulse labeling of sciatic nerve axons

was achieved by its systemic administration into the mice, as

previously reported (Goodman et al., 2011; Khoutorsky et al.,

2015; Figure 7A). Increased phosphorylation of eIF2a (green

signal by immunofluorescence) was observed in sciatic nerve

axons (neurofilament positive; red) in both hgFUSR521C and

hgFUSR521H mice at early symptom onset, but not in age-

matched Non-Tg or hgFUSWT animals (Figures 7B and 7E).

Consistent with our findings in the hippocampal neurons (Figures

6E–6O and S6C–S6D), intra-axonal protein synthesis (revealed

by decreased puromycin signal) was almost eliminated (Figures

7C–7D and 7F), along with increased accumulation of ALS-

linked mutants of FUS (Figures 7D and 7G) within sciatic nerve

axons of the two mutant FUS lines, but not their Non-Tg and

hgFUSWT littermates. Taken together, our in vitro and in vivo

evidence demonstrates that ALS-linked mutations of FUS impair

local protein synthesis within axons.

DISCUSSION

A key question regarding pathogenic mechanisms in FUS-medi-

ated disease has been whether ALS-linked mutations in FUS

cause neurodegeneration through a loss and/or gain of toxicity.

By producing and analyzing humanized FUS mice in which wild-

type or ALS-causing mutations in human FUS replace endoge-

nous murine Fus, we demonstrate that both human wild-type

and ALS/FTD-linked FUS mutants complement the essential

functions of murine FUS. When expressed at a level and subcel-
(H) Spontaneous neuronal spike rate (spikes per s) measured by multi-electrode

Non-Tg mice cultured under basal conditions. Data are represented as mean ±

periments). ***p < 0.001, two-sided unpaired Student’s t test.

(I) Raster plots fromMEA recordings showing neuronal spikes and burst of spikes

represents spikes per s recorded per electrode.
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lular distribution that mimic endogenous FUS, mutant human

FUS provokes progressive motor and cognitive deficits in mice

that are accompanied by RNA alterations driven by a gain of

toxicity rather than a loss of function of FUS, but without detect-

able cytoplasmic aggregation.

While high levels of wild-type FUS cause early lethality in mice

(Mitchell et al., 2013; Sephton et al., 2014), our mice expressing

wild-type FUS at levels close to the normal level of murine FUS

also developed motor deficits during aging. When taken with a

report that ALS patients with mutations in the 30 UTR region of

FUS accumulate those variants at increased levels in patient fi-

broblasts (Sabatelli et al., 2013), it is therefore likely that even a

modest increase in FUS (humanmutant or wild-type) is sufficient

to trigger age-dependent motor deficits.

To an earlier report that FUS depletion from iPSC-derived

motor neurons produces a different RNA signature than a dis-

ease-linked FUS mutation (Kapeli et al., 2016), our analyses

have identified that the overwhelming majority of gene expres-

sion alterations associated with age-dependent motor and

cognitive deficits in humanized mutant FUS mice do not over-

lap with those altered upon depletion of FUS (Kapeli et al.,

2016; Lagier-Tourenne et al., 2012). Depletion of FUS in the

adult mouse CNS leads to more than 300 splicing changes

(Kapeli et al., 2016; Lagier-Tourenne et al., 2012) and disrupts

non-canonical, U12-dependent splicing of RNAs (Reber et al.,

2016) in a neuronal cell line. While cytoplasmic aggregates of

an ALS-linked FUS mutant were reported to inhibit U12-medi-

ated splicing of a subset of introns by trapping of snRNAs in

aggregates (Reber et al., 2016), and ALS-linked mutant-

dependent splicing changes have previously been reported

in patient fibroblasts (Sun et al., 2015) as well as in motor

neuron precursor cells derived from iPSCs (Ichiyanagi et al.,

2016), no significant splicing changes in the nervous system

of humanized mutant FUS mice were identified despite initia-

tion of adult-onset disease. The major splicing alterations

identified upon in vivo FUS depletion (Lagier-Tourenne et al.,

2012) were not recapitulated in diseased, mutant humanized

FUS mice. Thus, FUS-mediated neurodegeneration in mice

cannot be caused primarily by reduced FUS activity, a

conclusion fully consistent with the finding that deletion of

FUS from mature motor neurons does not provoke disease

(Sharma et al., 2016).

Several mechanisms underlying FUS-mediated toxicity have

now been proposed, including aggregation and redistribution

of mutant FUS into the cytoplasm (Dormann et al., 2012; Mack-

enzie et al., 2011; March et al., 2016). Morphology and distribu-

tion of FUS inclusions vary among the CNS of different neuro-

degenerative conditions, with FUS inclusions reportedly being

nuclear in Huntington’s disease (Doi et al., 2008) but primarily

cytoplasmic in ALS and FTLD (King et al., 2015; Mackenzie

et al., 2011), with some nuclear retention in even the most

affected neurons with FUS inclusions (Munoz et al., 2009;
arrays (MEA) in hippocampal neurons from mutant hgFUSR521H compared to

SEM (n = 4–8 numbers of wells per experiment from three independent ex-

in wild-type andmutant hgFUSR521H hippocampal neurons for 300 s. Each lane
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(A) Schematic of the two-round mating of hgFUSmice with FUSmice heterozygous for mouse FUS (mFus+/�) to produce animals in which all FUS is human wild-

type or mutant (mFus�/�/hgFUS).
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(C) Human and mouse FUS protein accumulation in 2-month old mouse spinal cords using FUS antibodies specific for human and mouse proteins. GAPDH was

used as a loading control. Asterisk illustrates a non-specific band detected with the mouse-specific FUS antibody.

(D) Hindlimb grip strength measured bi-weekly from 2 to 18 months of age. Data are represented as mean ± SEM (n R 15 per group). *p < 0.05, **p < 0.01 and

***p < 0.001 using one-way ANOVA.

(legend continued on next page)

Neuron 100, 816–830, November 21, 2018 823



0-3 3

1000

2000

C
ou

ntmFUS-/-/hgFUS
R521C+R521H

mFUS-/-/hgFUS WT
+ Non-Tg  

G
en

es
 d

ow
n-

re
gu

la
te

d
 (7

09
)

G
en

es
 u

p-
re

gu
la

te
d

 (3
48

)

A mFUS-/-/hgFUSR521C

mFUS-/-/hgFUSR521H
Non-Tg 
mFUS-/-/hgFUSWT

0.9
82

0.9
86

0.9
90

0.9
94

E

15 5 01501

ChaperonePhosphoprotein
Cytoplasm RNA-binding

emosoecilpSemosobiR
Membrane mRNA

Regulation of actin skeleton Stress
Transcription regulation activity Proteasome

-log10(Benjamini)-DAVID analysis

Genes down-regulated Genes up-regulated

C

D

H

0.0

0.5

1.0

1.5

2.0

R
el

at
iv

e 
m

R
N

A 
le

ve
ls

Dna
jc7

Hsp
a5

Hsp
90

b1
Hsp

a4

Hsp
a4

l

Chaperones

*
ns

ns ns
ns*

ns*
*

ns
ns*

ns
***

**

-4 0 4

PC1

PC2

-140

-135

B

2 6 10

eIF2 SignalingPTEN Signaling
mTOR SignalingTelomerase Signaling

-log10(p-value)-IPA analysis

4 824

Glutamate Receptor Signaling Integrin Signaling
PI3K Signaling in B LymphocytesApoptosis Signaling

Cyclins & Cell Cycle Regulation
PI3K/AKT SignalingSynaptic Long Term Depression
IL-8 SignalingAntioxidant Action Vitamin C

Regulation of eIF4/p70S6K SignalingNitric Oxide Signaling 

Predicted to be inhibited Predicted to be activated

F

R
el

at
iv

e 
m

R
N

A 
le

ve
ls

Slc2
5a

15

Slc2
a1

Slc1
9a

3

Slc1
7a

7

Slc3
9a

2

Slc4
1a

1

Slc2
2a

17

Slc4
4a

2

Slc1
0a

4

Ion channels/transporters
***

ns ns ns ns ns ns ns ns
* ns ns ns ns ns ** * * * * ** **

ns
***

R
el

at
iv

e 
m

R
N

A 
le

ve
ls

Rps
26

Rps
15

Rpl4
1a

Rpl1
8

**

Rps
6k

2b

Rpl1
9a

Ribosomes

**ns
* ns

ns
* ns

ns
* *ns

* **ns
* **ns

*

G

hgFUSWT

Non-Tg

hgFUSR521C

hgFUSR521H

0.0

0.5

1.0

1.5

0.0

0.5

1.0

1.5

Figure 5. ALS-Linked Mutations in FUS Cause aMutant-Dependent Signature of RNAs that Includes a Reduction in mRNAs for Ion Channels

and Transporters and Ribosomal Proteins and an Increase in mRNAs Encoding Chaperones

(A) Unsupervised hierarchical clustering of all expressed genes in spinal cords of 18-month-old Non-Tg, mFus�/�/hgFUSWT, mFus�/�/hgFUSR521C, and

mFus�/�/hgFUSR521H mice identified by RNA-seq analysis.

(B) Principal component analysis (PCA) of differentially expressed genes in 18-month-old Non-Tg, mFus�/�/hgFUSWT, mFus�/�/hgFUSR521C, and

mFus�/�/hgFUSR521H spinal cords.

(C) Heatmap with hierarchical clustering of 1,057 genes differentially expressed in 18-month-old hgFUSR521C and hgFUSR521H mice compared to age-matched

Non-Tg and mFus�/�/hgFUSWT spinal cords.

(D) Functional analysis using DAVID software of the differentially expressed genes revealing the most enriched gene group changes in mFus�/�/hgFUSR521C and

mFus�/�/hgFUSR521H mice compared to age-matched Non-Tg and mFus�/�/hgFUSWT animals.

(E) Functional analysis using the Ingenuity Pathway Analysis (IPA) software of the differentially expressed genes revealing the most enriched gene group changes

in mFus�/�/hgFUSR521C and mFus�/�/hgFUSR521H mice compared to age-matched Non-Tg and mFus�/�/hgFUSWT animals.

(F) Reduced expression of ion channels and transporters essential for synaptic function in 18-month-old mFus�/�/hgFUSR521C and mFus�/�/hgFUSR521H spinal

cords compared to age-matched Non-Tg and mFus�/�/hgFUSWT, validated by qRT-PCR. Data are represented as mean ± SEM (n R 3 per group). *p < 0.05,

**p < 0.01, two-sided unpaired Student’s t test. See also Figure S5A.

(G) Increased expression of chaperones in 18-month-old mFus�/�/hgFUSR521C and mFus�/�/hgFUSR521H spinal cords compared to age-matched Non-Tg and

mFus�/�/hgFUSWT, validated by qRT-PCR. Data are represented as mean ± SEM (n R 3 per group). *p < 0.05, **p < 0.01 and **p < 0.001, two-sided unpaired

Student’s t test. See also Figure S5B.

(H) Reduced expression of genes encoding ribosomes or other components of the translation machinery in 18-month-old mFus�/�/hgFUSR521C and

mFus�/�/hgFUSR521H spinal cords compared to age-matched Non-Tg and mFus�/�/hgFUSWT, validated by qRT-PCR. Data are represented as mean ± SEM

(n R 3 per group). *p < 0.05 and **p < 0.01, two-sided unpaired Student’s t test. See also Figure S5C.
Neumann et al., 2009; Rademakers et al., 2010). To these pre-

ceding efforts, we report that age-dependent motor and cogni-

tive deficits develop in humanized mutant FUS mice without
(E) Expression levels of candidate genes (known to be reduced in the CNS ofmice

figure 3I) in 18-month-old Non-Tg, mFus�/�/hgFUSWT, mFus�/�/hgFUSR521C, an

SEM (n R 3 per group). *p < 0.05, **p < 0.01, two-sided unpaired Student’s t tes

(F) Splicing profile of candidate genes (known to be altered in the CNS of mice de

18-month-old Non-Tg, mFus�/�/hgFUSWT, mFus�/�/hgFUSR521C, and mFus�/�/h
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detectable human FUS cytoplasmic aggregation. Thus, while

we cannot rule out FUS aggregates in the cytoplasm in forms

undetectable by our analyses, large aggregates similar to
depleted of FUS [light gray], previously reported in Lagier-Tourenne et al., 2012;

d mFus�/�/hgFUSR521H mouse spinal cords. Data are represented as mean ±

t.

pleted of FUS, previously reported in Lagier-Tourenne et al., 2012; figure 4C) in

gFUSR521H mouse spinal cords. See also Figure S4.
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Figure 6. ALS-Linked Mutations in FUS Cause Stress-Mediated Reduction in Axonal Protein Synthesis

(A) Immunoblot demonstrating increased stress mediated bymutant FUS at early symptom onset using the phosphorylated form of eIF2a antibody (P-eIF2a) and

HSF1 antibody in 12-month-old hgFUSR521C and hgFUSR521H spinal cords compared to age-matched Non-Tg and hgFUSWT. eIF2a and tubulin antibodies were

used as loading controls. See also quantification in Figures S6A and S6B.

(B) Expression of Atf4 in primary hippocampal neuronal cultures from hgFUSR521H compared to Non-Tg mice. Data are represented as mean ± SEM (n R 3

biological replicates per group). *p < 0.05, two-sided unpaired Student’s t test.

(C) Quantification of the amount of 35S incorporated into newly translated proteins in hippocampal neurons cultured for 15 days. Cycloheximide (25 mg/mL)

addition was used as a positive control for complete protein translation inhibition. Data are represented as mean ± SEM (n = 4 biological repeats). **p < 0.01,

two-sided unpaired Student’s t test.

(D) Schematic of the experimental design using microfluidic compartmented chambers to distinguish neuronal cell bodies from axons.

(E–G) Hippocampal neurons isolated from hgFUSR521H or Non-Tg mice (from four independent experiments with 3 or 4 mouse embryos per genotype per

experiment) cultured in compartmented chambers and treated with a 10-min pulse of puromycin to label protein translation sites using puromycin antibody

(green) with a neurofilament NF-H (white) antibody to stain axons (E) or with an antibody recognizing the phosphorylated form of eIF2a (P-eIF2a) (red) in (F) cell

bodies and (G) neuronal processes. Scale bars, 10 mm and 50 mm, respectively.

(H and I) Hippocampal neurons isolated from hgFUSR521H and hgFUSWTmice cultured in compartmented chambers immunostained for FUS (using FUS antibody

in red) and protein translation (using puromycin antibody in green) in (H) cell bodies and (I) axonal processes (using NF-H antibody, white). Scale bar, 50 mm.

(J–M) Quantification of the puromycin relative fluorescence intensity (protein translation) in (J) cell bodies (green signal in Figure 6F) and (K) axons (green signal in

Figure 6G); quantification of P-eiF2a fluorescence intensity (stress) in (L) cell bodies (red signal in Figure 6F) and (M) axons (red signal in Figure 6G) of Non-Tg and

hgFUSR521H hippocampal neurons cultured in microfluidic chambers. The bar graph represents mean ± SEM (n R 30 axons or cell bodies per group from four

independent experiments). ***p < 0.001, two-sided unpaired Student’s t test.

(N and O) Quantification of FUS relative fluorescence intensity in (N) cell bodies (red signal in Figure 6H) and (O) axons (red signal in Figure 6I). The bar graph

represents mean ± SEM (n R 50 axons or cell bodies per group). ***p < 0.001, two-sided unpaired Student’s t test.
those seen at end-stage disease in patients are not required

for disease initiation, consistent with several other neurode-

generative diseases in which large inclusions correlate poorly

with either onset or severity of neurodegeneration (Arnold
et al., 2013; Arrasate et al., 2004; Kirkitadze et al., 2002;

Parone et al., 2013).

Increasing evidence suggests that RNA-binding proteins

including TDP-43, FMRP, SMN, and ataxin-2 are involved in
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Figure 7. ALS-Linked Mutations in FUS Cause Stress-Mediated Reduction in Local Axonal Protein Synthesis within Sciatic Nerve Axons of

Mutant FUS Mice

(A) Experimental design to assess stress and local axonal translation in the sciatic nerve of 12-month-old Non-Tg, hgFUSWT, hgFUSR521C, and hgFUSR521H mice.

(B) Transversal sections of mouse sciatic nerves immunostained using P-eIF2a (green) and NF-H (red) antibodies and (C) puromycin (green) antibody.

(D) Longitudinal sections of mouse sciatic nerves immunostained using puromycin (green), NF-H (red), and FUS (blue) antibodies. Scale bars, 10 mm.

(E–G) Quantification of the relative fluorescence intensity of the (E) P-eIF2a, (F) puromycin, and (G) FUS immunostainings within sciatic nerve axons of 12-month-

old Non-Tg, hgFUSWT, hgFUSR521C, and hgFUSR521H mice. The bar graph represents mean ± SEM (n = 3 animals per group). ***p < 0.001, two-sided unpaired

Student’s t test.
the regulation of local protein translation and that local transla-

tion is critical for synaptic function (Donlin-Asp et al., 2017).

FUS is present not only in soma but also along neuronal den-

drites in RNA granules (Belly et al., 2005; Yasuda et al., 2013),

spines (Fujii et al., 2005) in close proximity to presynaptic vesi-

cles (Schoen et al., 2016), and at the neuromuscular junctions

(So et al., 2018). To this, we now demonstrate that FUS protein

is present along axons, including at sites of intra-axonal protein

synthesis, and that the accumulation of ALS-linked mutants

of FUS is significantly increased along axons and dendrites of

hippocampal and sciatic nerve neurons.

FUS has been proposed to play a role at the synapse in spine

formation (Fujii et al., 2005) and maturation (Udagawa et al.,

2015) of hippocampal neurons, possibly by regulating local

mRNA translation of synaptic components such as GluA1 (Uda-

gawa et al., 2015) or RNAs enriched in cell protrusions (Yasuda

et al., 2017; Yasuda et al., 2013). A role as a RNA chaperone

suppressing RNA folding and repeat-associated translation of

UGGAA expanded repeats has also been described in a fly
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model for ataxia (Ishiguro et al., 2017). While expression of

high levels of FUS mutants was reported to provoke a reduc-

tion in protein synthesis in neuronal cultures (Murakami et al.,

2015) and alter dendritic branching and spines in mice (Seph-

ton et al., 2014), it is not established whether—and, if so,

how—mutations in FUS may alter such critical functions. In

flies, synaptic transmission at the neuromuscular junctions of

Drosophila larvae expressing FUS mutants was significantly

decreased (Shahidullah et al., 2013). Our efforts provide in vivo

evidence in the mammalian nervous system that expression of

FUS mutants at levels approximating the normal level of endog-

enous FUS is sufficient to cause stress-mediated reduction in

intra-axonal protein synthesis prior to synaptic dysfunction

and loss and is therefore likely to contribute to synaptic

dysfunction associated with age-dependent motor and cogni-

tive deficits.

Indeed, we have demonstrated FUS mutant-dependent sup-

pression of expression of a wide range of components of the

protein translation machinery, including mRNAs from the large



and small ribosomal subunits. Correspondingly, FUS may play

a role in the translation of a wide range of genes. This contrasts

with other RNA-binding proteins whose actions have recently

been proposed to exert translational control on a specific sub-

set of genes (examples include ataxin 2 on RGS8 [Dansithong

et al., 2015], FMRP on diacylglycerol kinase kappa [Tabet

et al., 2016], or FMRP together with TDP-43 on Rac1,

Map1b, and GluR1 [Majumder et al., 2016]). Future efforts are

now needed to identify the spectrum of axonal RNAs affected

by FUS mutations. Added to this, mutations in FUS impair

axonal transport, including transport of mitochondria and endo-

plasmic reticulum vesicles in patient-derived (Guo et al., 2017)

and Drosophila (Baldwin et al., 2016) motor neurons. It is there-

fore possible that alterations in axonal transport of RNAs

contribute to the reduction in local intra-axonal protein

synthesis.

Finally, we find an early activation of the integrated stress

response (ISR) pathway with increased phosphorylation of

eIF2a (Pakos-Zebrucka et al., 2016; Zhao and Ackerman,

2006). Thus, we propose that ALS-linked mutations in FUS

lead to increased accumulation of mutant FUS along axons,

including at local intra-axonal translation sites; this in turn pro-

vokes local ISR that inhibits local protein synthesis, ultimately

impairing neuronal synaptic function. Chemical ISR inhibitors

have been reported to increase long-term memory (Sidrauski

et al., 2013), reverse cognitive deficits associated with trau-

matic brain injury (Chou et al., 2017) in rodents and reduce

TDP-43 mediated toxicity in flies and neuronal cultures (Kim

et al., 2014a). It will now be of high interest to test whether

modulating ISR pathways using similar compounds reduces

the age-dependent motor and cognitive deficits associated

with mutant FUS.
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Rabbit anti-phosphorylated eIF2a (Ser51) Cell Signaling Technology Cat#9721;
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RRID: AB_2230924

Mouse anti-FUS (4H11) Santa Cruz Biotechnology Cat# sc-47711; RRID: AB_2105208

Rabbit anti-FUS Bethyl Cat# A300-302A; RRID: AB_309445

Goat anti-FUS Bethyl Cat# A303-839A; RRID: AB_2620190

Rabbit anti-FUS Proteintech Group Cat#11570-1-AP; RRID: AB_2247082

Mouse anti-GAPDH (6C5) Abcam Cat# ab8245;

RRID: AB_2107448

Mouse anti-Glial Fibrillary Acidic Protein (GFAP) Millipore Cat# MAB360; RRID: AB_11212597

Rabbit anti-HSF1 Cell Signaling Technology Cat#4356S;

RRID: AB_10695463

Rabbit anti-Hsp90 (C45G5) Cell Signaling Technology Cat#4877S;

RRID: AB_2233307

Rabbit anti-Iba1 Wako Cat#019-19741; RRID: AB_839504

Chicken anti-Map2 Novus Cat# NB300-213; RRID: AB_2138178

Mouse anti-Neurofilament Clone RT97 Millipore Cat# MAB5262; RRID: AB_95186

Rabbit anti-neurofilament H Millipore Cat# ab1989;

RRID: AB_91202

Mouse anti-Neurofilament H non-phosphorylated

SMI-32

Covance Cat# SMI-32R-100; RRID: AB_509997

Mouse anti-Nucleophosmin Zymed-Thermo Fisher Scientific Cat#32-5200;

RRID: AB_2533084

Chicken Neurofilament H Millipore Cat# AB5539;

RRID: AB_11212161

Chicken anti-NeuN Millipore Cat# ABN91;

RRID: AB_11205760

Anti-puromycin, clone 12D10 Millipore Cat# MABE343; RRID: AB_2566826

Anti-puromycin, Alexa Fluor � 488 Conjugated

Antibody

Millipore Cat# MABE343-AF488;

RRID: AB_2736875

Rabbit anti-synapsin-1 Synaptic Systems Cat#106103

Mouse anti-gH2A.X Millipore Cat# 05-636;

RRID: AB_309864

Rabbit anti-53BP1 Novus Cat# NB100-304; RRID: AB_10003037

Rabbit anti-calnexin Enzo Life Sciences Cat# SPA-860

Mouse anti-tubulin (clone DM1A) This paper N/A

Rabbit anti-human FUS #14080 This paper N/A

Rabbit anti-mouse FUS #14082 This paper N/A

Chemicals, Peptides, and Recombinant Proteins

Sylgard 182 Elastomer Fisher Scientific Cat#NC9897184

Puromycin Thermo Fisher Scientific Cat# A1113803

Critical Commercial Assays

LIVE/DEAD Cell viability assay Thermo Fisher Scientific Cat#L3224

(Continued on next page)
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REAGENT OR RESOURCE SOURCE IDENTIFIER

Deposited Data

RNaseq data This paper GEO: GSE120247

Experimental Models: Organisms/Strains

Mouse: C57BL/6 hgFUSWT This paper N/A

Mouse: C57BL/6 hgFUSR521C This paper N/A

Mouse: C57BL/6 hgFUSR521H This paper N/A

Mouse: C57BL/6 mFus�/� Hicks et al., 2000 N/A

Oligonucleotides

See Table S2 for primer sequences used in

this paper

IDT N/A

Software and Algorithms

Fiji NIH https://fiji.sc/download; Fiji, RRID: SCR_002285

GraphPad Prism GraphPad software https://www.graphpad.com; GraphPad Prism,

RRID: SCR_002798

AxIS (Biosystems Neural Metrics/Offline data

analysis tool)

Axion Biosystems https://www.axionbiosystems.com/products/axis-

software; AxIS, RRID:SCR_016308

Bioquant Software BIOQUANT Life Science, https://lifescience.bioquant.com/;

Bioquant Software

RRID:SCR_016423

Other

Compartmentalized microfluidic chambers This paper N/A
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Don W.

Cleveland (dcleveland@uscd.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
Generation of hgFUS BAC transgenic mice

The human BAC construct expressing the full length FUS gene (18.2Kb) was obtained using DNA recombineering from the RP11-

157F22 BAC clone. The sequences of the 50 and 30 homology arms used to retrieve the human FUS gene were: CCCCATAGCTGGG

CAAATTTAGGCCAACACTC and CTAAGCGTGGTGGCGGGCGCCTGTAG. The ALS-linked mutations (R521C and R521H) were

introduced using site-specific mutagenesis. Each construct was flanked by LoxP sites to further allow Cre-mediated excision of

the human FUS gene in cell of interest. No other gene is on the BAC. The modified constructs (FUS wild-type or harboring either

the R521H or R521Cmutation) was injected into the pronuclei of fertilized C57BL/6 eggs and implanted into pseudo-pregnant female

mice. All themice used in this report weremaintained on a pure C57BL/6 background. All experimental procedures were approved by

the Institutional Animal Care and Use Committee of the University of California, San Diego.

Primary cultures
Primary hippocampal neuron cultures

Primary hippocampal neurons were prepared from embryonic day 16-17 (E16-E17). Hippocampal tissues were treated with 0.25%of

Trysin+EDTA for 15 min at 37�C. Trypsin activity was inhibited using DMEM:F12 media supplemented with 10% of FBS and 1% of

Penicillin/Streptomycin and tissues were then mechanically disaggregated using 1000 mL tips. A 4% BSA (in PBS1x) solution was

further added to the cell suspension and centrifuged for 10 min at 1000rpm. The cell pellet was resuspended in Neurobasal media

supplemented with 2% of B27, 200mM of L-glutamine and 100U/mL of penicillin-streptomycin. Cells were seeded in culture plates

previously coated with poly-D-lysine at the concentration of 600,000 cells/mL.
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METHOD DETAILS

Immunofluorescence
Mice were perfused intracardially and fixed with 4% paraformaldehyde in 0.1 M Sorenson’s phosphate buffer, pH 7.2, the entire

spinal cord was dissected, post-fixed for 2 hours in the same fixative and transferred in a 30% sucrose phosphate buffer for at least

2 days. The lumbar spinal cord or brain was embedded in OCT compound (Sakura) and snap frozen in isopentane (2-methylbutane)

cooled at �40�C on dry ice. Floating lumbar spinal cord or brain cryosections (30mm or 35mm, respectively) were incubated in a

blocking solution containing PBS1x, 0.5% Tween-20, 1.5% BSA for 1.5 hours at room temperature and then in PBS1x, 0.3% Triton

X-100 overnight at room temperature with the primary antibodies (listed in antibodies section). Primary antibodies were washed with

PBS1x and then detected using donkey anti-rabbit or anti-mouse FITC or Cy3 (1:500) coupled secondary antibodies (Jackson

ImmunoResearch). The sections were washed with PBS1x and mounted. Analysis was performed on a Nikon Eclipse laser scanning

confocal microscope. Fluorescence intensity from unsaturated images captured with identical confocal settings (minimum of four

spinal sections were imaged per animal) was quantified using NIS elements software (Nikon).

Morphometric Analysis of Axons
Mice were perfused intracardially and fixed with 4% paraformaldehyde in 0.1 M Sorenson’s phosphate buffer, pH 7.2, and the L5

lumbar roots were dissected and conserved in the same fixative at 4�C. L5 roots were embedded in Epon-Araldite as described

in the electron microscopy section, thick sections (0.75mm) were prepared and stained for light microscopy with toluidine blue. Cross

sections of L5motor axons were analyzed at each age group. Axonal diameters weremeasured using the Bioquant Software and the

number of large caliber axons with diameters over 4.5mm (a motor axons) was determined.

Motor neuron counting
ChAT positive ventral horn motor neurons were counted from 25-35 lumbar spinal cord cryosections (per animal) spaced 360mm

apart and expressed as the average of total motor neurons counted divided by the number of sections.

Neuromuscular junction innervation
Gastrocnemius muscle was dissected from perfused mice and prepared as described in the immunofluorescence section. Floating

40 mm thick longitudinal sections of gastrocnemius were incubated in a blocking solution containing PBS1x, 0.5% Tween-20, 1.5%

BSA for 4 hours at room temperature and then in PBS1x, 0.3% Triton X-100 overnight at room temperature with the polyclonal rabbit

anti-synaptophysin antibody at 1:50 (Invitrogen). The sections were washed with PBS1x and then incubated first with donkey anti-

rabbit Cy3 (Jackson ImmunoResearch) and a-bungarotoxin-Alexa488 (Invitrogen) at 1:500 for 1 hour at room temperature and then

with Fluoromyelin red (Invitrogen) at 1:300 for 30 min. The sections were further washed with PBS1x and mounted. Analysis was

performed on a Nikon Eclipse laser scanning confocal microscope. A total of approximately 1,000 neuromuscular junctions were

counted from at least 10 sections of gastrocnemius. Individual NMJs were considered as innervated when synaptophysin staining

covered at least 50% of the area of a-bungarotoxin staining.

In vivo protein synthesis labeling
Intraperitoneal injection of puromycin (10mg/kg) was performed in 12-month-old mice. Exactly 30 min post-injection (Goodman

et al., 2011; Khoutorsky et al., 2015), mice were deeply anesthetized and perfused and fixed with 4% paraformaldehyde in 0.1 M

Sorenson’s phosphate buffer, pH 7.2. Sciatic nerves were dissected and post-fixed for 3 hours at 4�C, transferred in a 30% sucrose

phosphate buffer and crypreserved. 30 mm thick longitudinal and transversal sections of sciatic nerves were processed for immuno-

fluorescence, as described above.

Immunoblotting
Spinal cords fromNon-Tg or hgFUSmice were homogenized in cold PBS1x supplemented with protease inhibitors. The lysates were

centrifuged for 10 min at 1,000 x g and the resulting supernatants (clarified tissue extract) were analyzed by immunoblotting. Equal

protein amounts were separated on SDS-PAGE, transferred to nitrocellulose membranes and probed with the indicated antibodies

followed by horseradish peroxidase-conjugated secondary antibodies (Jackson ImmunoResearch). Pico or Femto ECL (Pierce) was

used to detect immunoreactive bands.

Antibodies
Rabbit anti-phosphorylated eIF2a (Ser51) (1:100; Cell Signaling; #9721S); Rabbit anti-eiF2a (1:1000; Cell Signaling; #9722S); Mouse

anti-FUS (4H11) (1:1000; Santa Cruz, sc-47711); Rabbit anti-FUS (1:500; Bethyl, A300-302A); Goat anti-FUS (1:500; Bethyl, A303-

839A); Rabbit anti-FUS (1:500; Proteintech 11570-1-AP); Mouse anti-GAPDH (6C5) (1:10,000; Abcam, ab8245); Mouse anti-GFAP

(clone G-A-5) (1:500; Millipore, MAB360); Rabbit anti-HSF1 (1:100; Cell Signaling, 4356S); Rabbit anti-Hsp90 (C45G5) (1:1000;

Cell Signaling, 4877S); Rabbit anti-Iba1 (1:500; Wako, 019-19741); Chicken anti-Map2 (1:500; Novus Biological; NB300-213); Mouse

anti-Neurofilament Clone RT97 (1:500; Millipore, MAB5262); Rabbit anti-neurofilament H (1:500; Millipore, ab1989); Mouse anti-

Neurofilament H non-phosphorylated SMI-32 (1:500; Covance, SMI32R); Mouse anti-Nucleophosmin (1:1000; Zymed, 32-5200);
Neuron 100, 816–830.e1–e7, November 21, 2018 e3



Chicken Neurofilament H (1:1000, Millipore, AB5539); Chicken anti-NeuN (1:1,000, Millipore, ABN91); Mouse anti-puromycin (1:100;

Millipore, MABE343); Conjugated Alexa 488 anti-puromycin (1:100; Millipore, MABE343-AF488); Rabbit anti-synapsin-1 (1:500 IF;

1:1000WB; SYSY synaptic systems, 106103); Mouse anti-gH2A.X (1:5000; Millipore 05-636); Rabbit anti-53BP1 (1:5000; Novus Bio-

logical NB100-304); Rabbit anti-calnexin (1:1,000; Enzo, SPA-860); Mouse anti-tubulin (DM1A clone) (1:10,000, home-made); Rabbit

anti-human FUS #14080 (1:25000; home-made) and anti-mouse FUS #14082 (1:4000, home-made).

Nuclear-Cytosolic Fractionation
Spinal cords were dissected, weighed, and fresh tissue was gently lysed in 10x (vol/wt) hypotonic buffer A (10 mM HEPES-KOH

pH 7.4, 10 mM KCl, 1.5 mM MgCl, 0.5 mM EDTA, 0.5 mM EGTA), 1x protease inhibitors (Roche) using a pre-chilled glass dounce

homogenizer (tight fit). After 15 min on ice, 2.5 M sucrose [0.5x (vol/wt)] was added and samples were centrifuged at 800 x g for

5 min. The supernatant was collected as the cytosolic fraction, and the nuclear pellet was washed with buffer A. Following centrifu-

gation, the nuclear pellet was resuspended in 5x (vol/wt) buffer B [10 mM HEPES-KOH pH 7.4, 0.42 M NaCl, 2.5% (vol/vol) glycerol,

1.5 mM MgCl, 0.5 mM EDTA, 0.5 mM EGTA, 1 mM DTT, 1x protease inhibitors], and incubated at 4�C while rotating at 60 rpm for

1 hour. Both the nuclear and cytosolic fractions were then centrifuged at 16,100 x g for 10 min at 4� C.

Sequential Biochemical Fractionation
Spinal cords from mice were dissected, weighed, and homogenized in 4 mL/g of high-salt buffer (HS buffer: 50 mM Tris pH 7.5,

750 mM NaCl, 5 mM EDTA, and protease inhibitor mixture), and then centrifuged at 45,000 x g for 30 min at 4� C. The pellets

were extracted with HS containing 1% (wt/vol) Triton X-100 (TX fractions). Pellets were homogenized in 500 mL of HS buffer contain-

ing 1% (wt/vol) Triton X-100 and 1M sucrose, and upon centrifugation, floatingmyelin was removed. Pellets were then extracted with

2 mL/g of urea buffer (7 M urea, 2 M thiourea, 4% (wt/vol) CHAPS, 30 mM Tris pH 8.5), followed by 2 mL/g of SDS loading buffer.

Equivalent volumes of samples were separated on 10% Bis-Tris gels for immunoblotting with the indicated antibodies.

Total-body mouse g-irradiation
To obtain a positive control for DNA damage accumulation in mouse spinal cords, Non-Tg mice (n = 3) were irradiated for 10 min

at 10Gy of g-rays. Animals were perfused within 2 hours after irradiation and processed for immunofluorescence staining using

anti-gH2A.X and �53BP1 antibodies as previously described (Ahmed et al., 2017; Koch et al., 2016).

Cell viability assay
The viability of the neurons was tested using LIVE/DEAD Reduced Biohazard Viability/Cytotoxicity Kit (Molecular Probes). Neurons

grown in 96 well plates were incubated with the kit solution mix for 15 min in complete darkness at room temperature. The cells were

then rinsed with HBSS and fixed with freshly prepared 4% of glutaraldehyde for 15 min at room temperature before imaging by

confocal microscopy.

Multi-electrode array (MEA)
Each well of a 12-well MEA plate from Axion Biosystems was coated with poly-D-lysine prior to cell seeding. Hippocampal neurons

from Non-Tg and hgFUSR521H mice embryos were plated at the same density (40,000 neurons per well), with duplicate wells for each

embryo. Cells were fed every 3-4 days andmeasurements were taken before themediumwas changed. Recordings were performed

using aMaestroMEA system and AxIS software (Axion Biosystems), using a band-pass filter with 0.1 Hz and 5 kHz frequency cutoffs.

Spike detection was performed using the neural Spikes analog setting (1200XGain, 200-5000Hz) and an adaptive threshold set to

5.5 times the standard deviation of the estimated noise on each electrode. Each plate first rested for 5 min in the Maestro, and

then 5min of data were recorded to calculate the spike rate per well. MEA analysis was performed using the Axion BiosystemsNeural

Metrics Tool, wherein electrodes that detected at least 5 spikes/minute were classified as active electrodes. Bursts were identified in

the data recorded from each individual electrode using an adaptive threshold algorithm. Network bursts were identified for each well

requiring a minimum of ten spikes with a maximum inter-spike of 100 ms. Only channels that exhibited bursting activity (more than

10 spikes in 5-min interval) were included in the analysis.

Compartmentalized microfluidic devices
Themicrofluidic devices were prepared as previously described (Niederst et al., 2015). Master molds were fabricated by photolithog-

raphy, by the Bioengineer Department of the University of California, San Diego, Nano3 Cleanroom Facility. Devices were molded by

soft lithography using Sylgard 182 (Ellsworth Adhesives, Germantown, WI) as previously described (Taylor et al., 2005). After cured,

the cut devices where bath-sonicated in water, washed in 70% ethanol and dried under the hood before mounted onto glass cov-

erslips. The devices were coated with 1X poly-D-lysine 2 hours at 37�C and washed sequentially in water and PBS1x before plating

the cells.

Puromycin incorporation assay
Primary hippocampal neurons after 5 or 15 days of culture were incubated for 10 min with puromycin at 1mg/mL. After the incubation

cells were washed with PBS1x and fixed with 4% of paraformaldehyde, permeabilized and stained with the anti-puromycin antibody
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(1:100) for 1 hour at room temperature. Fluorescence was visualized using an Olympus confocal microscope and images were

acquired using a 60X objective.

[35S]-Methionine Labeling/Radioactivity assay
Primary hippocampal neurons were cultivated for 15 days. Medium in each well was exchanged to Met-/Cys- medium for 25 min

before being supplemented with 1mCi/mL [35S]-Met media (for a final dosage of 0.1mCi/mL). [S35]-Met media containing

25mg/mL cycloheximide was used as negative control for radioactivity incorporation. After 2 hours of incubation with [35S]-Met at

0.1mCi/mL, incorporation was stopped with cycloheximide (25mg/mL) and cells collected immediately in ice-cold PBS1X. Cells

were lysed with RIPA buffer (50mM Tris pH8.0, 50mM NaCl, 5mM EDTA, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS)

containing proteinase inhibitors and total cellular protein was co-precipitated with 100mg of BSA carrier protein using trichloroacetic

acid. Samples were acetone washed, resuspended in 2% SDS-PBS1X, and transferred into scintillation fluid. Counts per minute

(Cpms) averaged over 5-min windows were measured with a Beckman LS6000 SC scintillation counter (normalized to scintillation

fluid only). Cpms were then normalized to total well protein concentration determined by densitometry from a silver-stained gel.

RNA extraction and qPCR
To isolate total RNA from cells or tissues, TRIzol (Invitrogen) and treatment with RQ1DNase I (Promega) was used. Reverse transcrip-

tionwas performed using the SuperScript First Strand Kit (Invitrogen) according tomanufacturer’s instructions. qPCRwas performed

on 40ng of cDNA using the iQSYBR Green Supermix (Bio-Rad) with the iCycler iQ detection system according to manufacturer’s

instructions. Analysis was performed using the iQ5 optical system software (Bio-Rad; version 2.1). Expression values were ex-

pressed as a percentage of the average expression of control samples. All reactions were carried out in duplicate in three indepen-

dentmice (per genotype) and actin B or cyclophilin and/or rsp9 genes were alsomeasured as standard genes across all experimental

conditions. To enable determining human FUS RNA levels compared to mouse Fus, primer sequences common to both human and

mouse were used to measure total FUS RNAs. In parallel, primer sequences specific to mouse Fus were designed to measure

uniquely mouse Fus RNAs. Human FUS (compared to endogenous) is then obtained by subtracting mouse Fus from total FUS levels.

Real-time quantitative RT-PCR (RT/qPCR) was performed to determine mRNA levels in spinal cord or hippocampal neurons from

transgenic mice (see primer sequence in Table S2).

RNA-seq
Total RNA from spinal cords of 18-month-old mFus�/�/hgFUS (WT, R521C or R521H) and their Non-Tg control littermates were ex-

tracted with TRIzol (Invitrogen). RNA quality was measured using the Agilent Bioanalyzer system according to the manufacturer’s

recommendations and processed using the Illumina TruSeq Stranded mRNA Sample Preparation Kit according to manufacturer’s

protocol. A total of 14 cDNA libraries were simultaneously generated and sequenced using an Illumina HiSeq 2000 sequence, as pre-

viously described (Scekic-Zahirovic et al., 2016), before fastq files were obtained from Illumina demultiplexing ‘‘bcl2fastq’’. Then

fastq files were aligned to a mouse reference genome (mm9, UCSC Genome Browser) using TopHat (Trapnell et al., 2009) and

the transcript abundance for each annotated protein-coding gene as fragments per kilobase of transcript per million mapped reads

(FPKM) were estimated by Cufflinks (Trapnell et al., 2010). Sequencing yielded, on average, 15million non-redundant reads per sam-

ple. 13,468 genes, which expressed FPKM > = 1 were kept for downstream analyses. The spearman correlation among samples as

well as Principle Component Analysis (PCA) was applied to those 12,922 genes (expressing consistently within the same category).

The proportion of variance for dimension 1 (PC1) and dimension 2 (PC2) shown in Figure 5B was of 0.9 and 0.1, respectively. Cuffdiff

(Trapnell et al., 2013), a part of the Cufflinks package, was used to detect the differentially expressed genes (DEGs). Unsupervised

hierarchical clustering with complete method was applied on the heatmap showing DEGs between wild-type and mutant samples.

Gene ontology of those DEGswas estimated by David and Ingenuity Pathway Analysis (IPA). All sequencing raw data were submitted

to Gene Expression Omnibus (GEO) with accession number GSE120247.

RASL-seq
RASL-seq analysis of splicing switches was carried out as detailed (Scekic-Zahirovic et al., 2016; Sun et al., 2015; Zhou et al., 2012).

A pool of oligonucleotides was designed to detect 5,859 alternative splicing events. One hundred fmol of RASL-seq oligos were

annealed to 1 mg of total RNA isolated from mouse spinal cords. After ligation, 5 ml eluted ligated oligos was used for 16�20 cycles

of PCR amplification, and the bar-coded PCR products were sequenced on HiSeq2000 with 24-30 samples in one lane. Sequencing

data were decoded allowing no mismatch with each barcode, and target sequences were mapped with RASL-seq oligo pool

sequences. Ratios of the counts of shorter to longer isoforms were calculated.

Splicing gels
Semiquantitative qRT-PCR (25-30 cycles) was used to assess splicing changes most affected upon FUS depletion identified by

(Lagier-Tourenne et al., 2012). Isoform productswere separated on 10%polyacrylamide gels and stainedwith SYBRgold (Invitrogen)

and quantified with ImageJ software to record the intensity of the bands corresponding to different splicing isoforms.
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Mouse behavioral tests
Grip strength

Grip strength was measured using a Grip Strength Meter (Columbus Instruments, Columbus, OH) on cohorts (n R 15) made up of

approximately the same number of males and females. Mice were allowed to grip a triangular bar only with hind limbs, followed by

pulling the mice until they released; five force measurements were recorded in each separate trial.

Y maze test

Spontaneous alternation behavior, a measure of spatial working memory, exploratory behavior, and responsiveness to novelty (La-

londe, 2002), was tested using a Y maze with 34 3 8 3 14-cm arms. Each mouse was tested in a single 5-min trial in which arm

choices and total numbers of arm entries were recorded. Spontaneous alternation, expressed as a percent, refers to the ratio of

sets of three unique arm choices (i.e., visiting arm 3 then 1 then 2 in sequence) to the total number of arm entries. Because mice

have the opportunity to do repeated entries into a single arm, there is a chance performance level of 22% (2/9) for spontaneous

alternations (Holcomb et al., 1999; Pennanen et al., 2006). In our hands, healthy young C57BL6/J mice typically make 50%–70%

spontaneous alternations in this test. A cohort of n = 15 animals (per genotype) was assessed.

Social interaction test

This test was originally developed to model in mice aspects of autism spectrum disorders in humans (Moy et al., 2004; Moy et al.,

2007) and has been usedwidely by behavioral neuroscientists (Silverman et al., 2010). Individuals on the autism spectrum show aber-

rant reciprocal social interaction, including low levels of social approach and unusual modes of interaction. The social interaction

apparatus is a rectangular, three chambered Plexiglas box, with each chamber measuring 20 cm x 40.5 cm x 22 cm (L x W x H).

Dividing walls are clear with small semicircular openings (3.5 cm radius) allowing access into each chamber. The middle

chamber is empty, and the two outer chambers contain small, round wire cages (Galaxy Cup, Spectrum Diversified Designs, Inc.,

Streetsboro, OH) during testing. The mice were habituated to the entire apparatus with the round wire cages removed for 5 min.

To assess sociability, mice were returned to the middle chamber, this time with a stranger mouse (B6 of the same sex being tested,

habituated to the wire cage) in one of the wire cages in an outer compartment and another identical wire cage in the opposite

compartment. Time spent in the chamber with the stranger mouse and time spent in the chamber with the novel object was recorded

for 5 min. For the social novelty preference test, mice were returned to the middle chamber, this time with the original mouse (familiar

mouse) in its chamber and a new unfamiliar mouse (novel mouse) in the previously empty wire cage. Again, time spent in each cham-

ber was recorded for 5 min. Youngmale B6mice spendmore time with the novel mouse in the sociability test (Moy et al., 2004), how-

ever we have found less preference for the novel mouse as compared to the now familiar mouse in the social novelty preference test

(Jackson et al., 2015). A cohort of n = 15 animals (per genotype) was assessed.

Novel object recognition test

This test assays recognition memory while leaving the spatial location of the objects intact and is believed to involve the hippocam-

pus, perirhinal cortex, and raphe nuclei (Lieben et al., 2006; Mumby et al., 2005; Winters et al., 2004). The basic principal is that an-

imals explore novel environments and that with repeated exposure decreased exploration ensues (i.e., habituation). A subsequent

object substitution (replacing a familiar object with a novel object) results in dishabituation of the previously habituated exploratory

behavior (Ennaceur and Delacour, 1988). The resulting dishabituation is expressed as a preferential exploration of the novel object

relative to familiar features in the environment. This dishabituation has generally been interpreted as an expression of the animal’s

recognition memory: the novel object is explored preferentially because it differs from what the animal remembers (Heyser and

Chemero, 2012) and requires attention by the animals. Mice were individually habituated to a 51cm x 51cm x 39cm open field for

5 min and then tested with two identical objects placed in the field (either two 250 mL amber bottles or two clear plastic cylinders

6x6x16cm half filled with glass marbles). Eachmouse was allowed to explore the objects for 5 min. After three such trials (each sepa-

rated by 1 min in a holding cage), the mouse was tested in the object novelty recognition test in which a novel object replaced one of

the familiar objects (for example, an amber bottle if the cylinders were initially used). All objects and the arena were thoroughly

cleaned with 70% ethanol between trials to remove odors. Behavior was video recorded and then scored for contacts (touching

with nose or nose pointing at object andwithin 0.5 cmof object). Habituation to the objects across the familiarization trials (decreased

contacts) is an initial measure of learning and then renewed interest (increased contacts) in the new object indicated successful ob-

ject memory. Recognition indexes were calculated using the following formula: # contacts during test/(# contacts in last familiariza-

tion trial + # contacts during test). Values greater than 0.5 indicate increased interest, whereas values less than 0.5 indicate

decreased interest in the object during the test relative to the final familiarization trial. A cohort of n = 15 animals (per genotype)

was assessed.

Cued and contextual fear conditioning

In this procedure, mice learn to associate a novel environment (context) and previously neutral stimuli (conditioned stimuli, a tone and

light) with an aversive foot shock stimulus (Maren, 2001). It allows for the assessment of both hippocampus-dependent and amyg-

dala-dependent learning processes in the same mouse (Kenney and Gould, 2008; Rudy et al., 2004). Testing then occurs in the

absence of the aversive stimulus. Conditioned animals, when exposed to the conditioned stimuli, tend to refrain from all but respi-

ratory movements by freezing. Freezing responses can be triggered by exposure to either the context in which the shock was

received (context test) or the conditioned stimulus (CS+ test). Conditioning took place in Freeze Monitor chambers (Med Associates,

Inc.) housed in sound proofed boxes. The conditioning chambers (263 263 17 cm) were made of Plexiglas with speakers and lights

mounted on two opposite walls and shockable grid floors.
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On day 1, mice were placed in the conditioning chamber for five minutes in order to habituate them to the apparatus. On day 2, the

mice were exposed to the context and conditioned stimulus (30 s, 3000 Hz, 80 dB sound + white light) in association with foot shock

(0.60 mA, 2 s, scrambled current). Specifically, the mice received 3 shock exposures in their 6 min test, each in the last 2 s of a 30 s

tone/light exposure. On day 3, contextual conditioning (as determined by freezing behavior) was measured in a 5-min test in the

chamber where the mice were trained (context test). On the following day, the mice were tested for cued conditioning (CS+ test).

The mice were placed in a novel context for 3 min, after which they were exposed to the conditioned stimuli (light + tone) for

3 min. For this test, the chamber was disguised with new walls (white opaque plastic creating a circular compartment in contrast

to a clear plastic square compartment) and a new floor (white opaque plastic in contrast to metal grid). Freezing behavior (i.e., the

absence of all voluntary movements except breathing) was measured in all of the sessions by real-time digital video recordings cali-

brated to distinguish between subtle movements, such as whisker twitches, tail flicks, and freezing behavior. Freezing behavior in the

context and cued tests (relative to the same context prior to shock and an altered context prior to tone, respectively) is indicative of

the formation of an association between the particular stimulus (either the environment or the tone) and the shock; i.e., that learning

had occurred. A cohort of n = 15 animals (per genotype) was assessed.

QUANTIFICATION AND STATISTICAL ANALYSIS

The number of independent repeats (n), the statistical test used for comparison and the statistical significance (p values) are specified

for each figure panel in the representative figure legend. Data are presented as mean ± SEM. Data were analyzed and graphs were

generated using GraphPad Analysis software.

DATA AND SOFTWARE AVAILABILITY

RNA sequencing data is submitted to Gene Expression Omnibus (GEO) with accession number GSE120247.
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