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ABSTRACT OF THE DISSERTATION

Accurate and Efficient Multi-Material Simulations

for Physics-Integrated Digital Twins

by

Xuan Li

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2025

Professor Chenfanfu Jiang, Chair

This thesis explores research advancements in building accurate physics-integrated digital

twins. First, as the core computational engine, accurate and efficient simulations are essential

for achieving realistic dynamics. To this end, we develop improved inelasticity simulation

frameworks for both the Material Point Method (MPM) and the Finite Element Method

(FEM). Additionally, we introduce FEM-MPM coupled simulation frameworks that leverage

the strengths of both methods to enable multi-material simulations. Furthermore, we

propose efficiency enhancements for cloth and inelasticity simulations. Second, digital twins

must be grounded in real-world data. Leveraging recent advancements in neural rendering

and differentiable rendering, we propose methods for estimating physical parameters from

multiview videos, directly simulating reconstructed environments, immersively interacting

with reconstructed worlds, and faithfully reconstructing simulation-ready garments from

single-view images. Finally, we demonstrate the critical role of digital twins in mechanical

design. Using our simulation-driven approach, we successfully fabricate an aerial vehicle with

dual operational modes.
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CHAPTER 1

Introduction

A digital twin is a virtual replica of a physical system that can evolve dynamically according to

physical laws and interactions. One of the core foundations of building accurate digital twins is

ensuring their physical accuracy. This requires advancements in physics simulation techniques

to capture increasingly fine-grained characteristics of real-world dynamic phenomena. With

the development of precise physics-based digital twins, industries unlock diverse applications:

in VFX, they enhance realism in visual effects; in environmental science, they simulate weather

patterns and geological activities to predict natural disasters; in engineering and product

design, they accelerate hardware iteration and optimize performance before production; and

in robotics, they provide a safe, efficient environment for AI training, refining skills in virtual

simulations before real-world deployment.

On the other hand, visual representation is also crucial for creating truly accurate digital

twins. This requires them to be grounded in real-world data. Recent advances in neural scene

reconstruction have significantly reduced the manual effort needed to generate virtual assets

that visually replicate physical objects. While these methods excel at capturing geometric

structures and textures, they often require extensive refinement to be effectively simulated

in virtual environments. Bridging this gap requires integrating physics into reconstructions,

making digital twins not only look realistic but also simulation-ready.

This dissertation explores innovative research directions that address both physical

accuracy and real-world data grounding, aiming to develop highly precise, physics-integrated

digital twins.

1



1.1 Thesis Contributions and Overview

Accurate Inelasticity Modeling.

Inelasticity is widely observed in everyday objects. However, a loss of accuracy occurs in

almost all existing work on inelasticity modeling. In Section 3.1, we present Energetically

Consistent Inelasticity (ECI), a novel inelastic material modeling approach that augments

hyperelastic energy density functions to enable robust, fully implicit elastoplasticity and

viscoelasticity simulations. We derive a new fully implicit inelastic force formulation and

discover analytical variational energy forms for von-Mises plasticity and viscoelasticity. The

force model can be extended to J2 plasticity with some modifications to the integrator. These

models can be incorporated into both the Finite Element Method (FEM) and the Material

Point Method (MPM). However, the analytical variational formulations are currently derived

for only a limited number of inelasticity models. To address this limitation, in Section 3.2, we

propose PlasticityNet, a neural network-based elastoplastic modeling framework for arbitrary

inelasticity models. PlasticityNet represents elastoplastic forces as the positional gradients of

learned potential energies, eliminating the need for tedious analytical derivations or expensive

nonlinear root-finding methods without significantly sacrificing accuracy.

FEM-MPM Coupled Simulation.

The Finite Element Method (FEM) has achieved notable success in animating elastic

objects, including solids, shells, and rods. However, it encounters challenges when dealing

with severe deformations, such as topology changes induced by plasticity, where the Material

Point Method (MPM) excels. This contrast between FEM and MPM highlights the need for

their coupling in complex multi-material simulations to leverage their respective strengths. In

Section 4.1, we propose BFEMP, which establishes the foundation for coupled simulations by

treating MPM particles as physical entities and employing contact forces induced by sphere-

triangle collisions to achieve two-way interactions between the two domains. This framework

is evaluated under FEM-MPM elasticity coupling with an optimized time integrator. However,

while FEM benefits from implicit integration, MPM is more efficient under explicit schemes,

where plasticity handling is inherently ”plug-and-play.” To enable an implicit-explicit coupled

2



system, in Section 4.2, we propose Dynamic Duo, a novel framework designed to seamlessly

integrate implicit FEM with explicit MPM. This is achieved through an asynchronous time-

splitting scheme, where FEM elasticity and FEM-MPM contact are coupled implicitly, while

the contact force is applied explicitly to MPM particles. Dynamic Duo achieves up to a 200×

difference in respective time step sizes.

Towards Efficient Simulation.

The efficiency of simulations has long been a significant challenge. While increasing

computing power has gradually reduced running times over the years, advancements in

algorithmic efficiency can lead to even more dramatic improvements in performance. In

Section 5.1, we propose SPPD, an efficient cloth simulation method based on the Projective

Dynamics (PD) framework on modern GPUs. Our approach combines subspace integration

with parallelizable iterative relaxation techniques to effectively reduce both high-frequency

and low-frequency residuals, leading to significantly improved convergence. In Section 5.2, we

introduce XPBI, a method that combines continuum inelasticity constitutive modeling with

eXtended Position-Based Dynamics (XPBD), a widely used real-time simulation technique.

Unlike ECI, XPBI requires only the force gradient to reach equilibrium, which significantly

improves the efficiency of inelasticity simulations while maintaining similar accuracy.

Real-to-Sim Tasks.

To fully reconstruct physics-integrated digital twins, both accurate physical parameters and

realistic asset appearances are essential. Recent advancements in neural scene reconstruction

have bridged the gap between the real and virtual worlds using only RGB observations.

However, these reconstructions generally lack physics-based interactivity. One crucial missing

piece is the estimation of physical parameters. In Section 6.1, we present PAC-NeRF, a

framework that estimates physical material parameters from multi-view videos, leveraging the

differentiability provided by neural radiance fields (NeRFs). Our continuum reformulation of

NeRFs enables the use of differentiable simulation to evolve radiance fields, thereby creating

a differentiable pipeline from material parameters to 2D visual renderings. However, this
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evolution of implicit volumes results in some loss of appearance fidelity. With the emergence

of 3D Gaussian Splatting (3DGS), we discovered that its explicit representation is extremely

well-suited for simulations, inspiring PhysGaussian, introduced in Section 6.2. By applying

physical deformations induced by the Material Point Method (MPM) directly to 3DGS

representations, we achieve both realistic dynamics and high-fidelity rendering in an unified

framework. A key method for immersive interaction with digital twins is virtual reality

(VR). In Section 6.3, we deploy VR-GS, a PhysGaussian-like system in VR, by innovatively

incorporating real-time mesh-based XPBD simulations with 3DGS for real-time, physics-

integrated immersive interactions. Despite significant breakthroughs in neural reconstruction,

a major challenge remains: dense multi-view observations are required, limiting applicability to

casually captured shots. In Section 6.4, we tackle this challenge within the domain of garment

reconstruction from a single image. Following the paradigm of PAC-NeRF, our approach

reconstructs both physics parameters and geometry via streaming differentiable simulation

and differentiable rendering. Instead of relying on multi-view observations, we introduce a

novel approach that leverages multi-view diffusion models, trained on internet-scale datasets,

to generate novel views from a single input image.

Sim-to-Real Applications.

One important application of digital twins is predicting future outcomes in virtual envi-

ronments. This capability allows us to develop optimal strategies before deploying them in

real-world scenarios. In mechanical engineering, simulation plays a crucial role. In Section 7.1,

we introduce a novel approach that incorporates differentiable MPM into nonlinear topology

optimization, which aims to determine the optimal shape with maximum resistance to a

given external load. This framework enables the development of a novel hybrid aerial vehicle

(HAV), presented in Section 7.2. Through topology optimization, we successfully fabricate

a bistable arm structure that allows the HAV to transition between fixed-wing mode and

quadrotor mode without requiring additional actuators to maintain each respective mode.
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CHAPTER 2

Background

2.1 Continuum Motion and Governing Laws

In continuum mechanics, the motion of a deformable body is described by a deformation

map x = Φ(X, t), which tracks the position x of a material point initially located at X

in the reference configuration Ω0 as the body evolves over time. The deformation gradient

F = ∂Φ
∂X

(X, t) measures the local distortions of infinitesimal material elements. It provides a

complete description of how small regions of the continuum body stretch, rotate, and shear

during motion. When such local distortions occur, elastic forces arise to resist deformation.

These internal resistive forces are characterized by the stress tensor, which encapsulates the

response of the material to deformation. The motion of a continuum body is governed by

two fundamental conservation laws.

R(X, t)J(X, t) = R(X, 0), (Mass Conservation), (2.1a)

R(X, 0)
∂V

∂t
(X, t) = ∇X · P +R(X, 0)g, (Momentum Conservation), (2.1b)

where R(X, t) is the mass density tracked on material particles in the deformed state,

J(X, t) := detF (X, t) is the Jacobian determinant of the deformation gradient, representing

the local volume change due to deformation, V (X, t) := ∂Φ(X,t)
∂t

is the tracked velocity field

defined on material points, P (F ) is the first-Piola Kirchoff stress,representing the internal

forces exerted per unit reference area, and g is the gravity acceleration vector. Elastic

materials are defined using constitutive models, specifically through different expressions of

stress P (F ).
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2.2 Discretization

2.2.1 Temporal Discretization and Time Integration

To numerically solve Equation (2.1b), we discretize time by introducing evenly spaced discrete

time steps:

t0, t1, t2, ..., tn, tn+1, ...

where the time step size is denoted as ∆t. Since the momentum equation involves a time

derivative of velocity, we approximate the velocity derivative using finite difference:

∂V (X, t)

∂t
≈ 1

∆t
(V (X, tn+1)− V (X, tn)) (2.2)

The process of advancing the solution from V (X, tn) to V (X, tn+1) is known as time

integration. Depending on how we approximate the time-dependent stress term, there are

two primary approaches: explicit methods evaluate stress at time tn, while implicit methods

evaluate stress at time tn+1. Explicit methods are computationally efficient but require small

time steps, which may lead to long overall running times. In contrast, implicit methods

typically require solving a nonlinear equation system but offer long-term stability and allow

for larger time steps.

2.2.2 Spatial Discretization

2.2.2.1 Finite Element Method

Finite Element Method (FEM) discretize the material domain Ω0 using meshes. We solve

the momentum equation using the integral form:

1

∆t

∫
Ω0

R(X, 0)(V n+1 − V n)wαdX = −
∫
Ω0

P∇XwαdX +

∫
Ω0

R(X, 0)gwαdX (2.3)

where wα is an arbitrary test function defined on discrete meshes. When using linear test

functions defined on mesh nodes, the above integral equation can be converted to the following
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discrete momentum equation:

Mi(V
n+1
i − V n

i − g∆t) = −∆t
∑
e

P (F ∗
e )∇wieV

0
e . (2.4)

Here ∗ ∈ {n, n + 1} depends on the time integrator, Mi represents the lumped mass at

vertex i, Vi denotes the discretized velocity field at vertex i, ∇wie is the gradient of the test

function at vertex i evaluated on mesh element e, and V 0
e is the initial volume of element e.

For linear-basis FEM, the deformation gradient Fe is the local affine transformation on mesh

element e from the initial configuration to the current deformed configuration. Note that

mass conservation is trivial if we assume the vertex mass remains constant over time.

We usually use implicit integrators in FEM due to their stability, where the stress term is

evaluated at tn+1. And the deformation gradient is evaluated via the following approximations

V n+1
i =

1

∆t
(Xn+1

i −Xn+1
i ) =⇒Xn+1

i = Xn
i +∆tV n+1

i (2.5)

F n+1
e =

∑
i

Xn+1
i ∇wT

ie (2.6)

Consequently, we need to solve a large nonlinear equation system with the number of degrees

of freedom (DoFs) corresponding to the vertices. When the velocity updated, we update

vertex positions according to Equation (2.5).

Optimization Time Integrators Among implicit integrators, the optimization-based

time integrator is particularly favored due to its robustness. For hyperelastic materials,

such as the fixed corotated and Neo-Hookean models, the first Piola-Kirchhoff stress can be

expressed as the gradient of a corresponding energy density function:

P (F ) =
∂Ψ

∂F
(F ). (2.7)

7



The discrete implicit momentum equation, Equation (2.4), can be reformulated as the

following optimization problem:

V n+1 = argmin
V

1

2
∥V − V n − g∆t∥M +

∑
e

Ψ(Fe)V
0
e (2.8)

This optimization problem can be robustly solved using Newton’s method with line search to

ensure convergence.

Projective Dynamics Projective Dynamics (PD) (Bouaziz et al., 2014) introduces an

efficient approach to solving the above optimization for specific elastic energy functions. For

example, consider the fixed-corotated elastic energy:

Ψ(F ) = µ∥F −R∥2 + 1

2
λ(J − 1)2, (2.9)

where R is the closest rotation matrix to F . The optimization is solved using a sequence of

global-local iterations. At each local step i, we project the current deformation gradient Fe

for each element onto its closest rotation matrix Ri
e and its closest matrix with determinant

1, Ki
e. At each global step i, we solve the following quadratic optimization problem:

V n+1,i = argmin
V

1

2
∥V − V n − g∆t∥M + µ

∑
e

∥Fe −Ri∥2V 0
e +

1

2

∑
e

∥Fe −Ki
e∥2. (2.10)

This alternating procedure is iterated until convergence. The efficiency of PD arises from

two key aspects: the local step can be executed in parallel for each element, significantly

improving computational efficiency; the global step solves a quadratic system with a constant

coefficient matrix across the entire simulation, allowing for efficient prefactorization.

2.2.2.2 Material Point Method

The Material Point Method (MPM) discretizes the continuum body using a set of Lagrangian

particles. Instead of solving the momentum equation with Ω0 as the reference configuration,
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it pushes forward Equation (2.3) to the current configuration Ωn = Φ(Ω0):

1

∆t

∫
Ωn

ρ(x, tn)(v̂n+1 − vn)wn
αdx = −

∫
Ωn

1

Jn
PF nT∇xwn

αdx. (2.11)

Here, wn
α is an arbitrary B-spline test function defined on a regular Eulerian grid, where

the grid spacing ∆x is user-defined. Note that v̂n+1(x, t), x ∈ Ωn is not the velocity field

defined on Ωn+1; instead, it represents the tracked velocity on material points in Ωn. Integrals

are evaluated by treating Lagrangian particles as quadrature points. The corresponding

discretized momentum equation is:

mn
i (v̂

n+1
i − vn

i − g∆t) = −∆t
∑
p

P (F ∗
p )F

nT
p ∇wn

ipV
0
p , (2.12)

where mi is the lumped mass at grid node, v, v̂ are the velocity fields discretized on the

grid, and ∇wip is the gradient of the test function defined on grid i, evaluated at particle p.

Note that V 0
p = V n

p /J
n with Vp being the current volume of particle p. The grid is implicitly

constructed at each time step, and mn
i ,v

n are transferred from Lagrangian particles to the

grid.

Both explicit and implicit MPM methods are commonly used. In explicit MPM, the stress

tensor is evaluated using F n
p . In implicit MPM, we assume a velocity-position relationship

similar to Equation (2.5):

x̂n+1 = xn +∆tv̂n+1, (2.13)

which leads to the following trial deformation gradient for stress tensor evaluation:

F tr,n = F n +∆t∇xv̂n+1 = F n +∆t
∑
i

v̂∇wT
ip. (2.14)

After solving for the new grid velocity field v̂n+1, the velocity field is transferred from the

grid back to the particles, and the particles are advected accordingly.

We summarize the MPM time integration as follows:
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1. Transfer Particles to Grid. Transfer mass and momentum from particles to grids as

mn
i =

∑
p

wn
ipmp,

mn
i v

n
i =

∑
p

wn
ipmp

(
vn
p +Cn

p

(
xi − xn

p

))
.

(2.15)

Here C is introduced in APIC (Jiang et al., 2015a) for angular momentum compensation.

2. Grid Update. Solve v̂n+1 using Equation (2.12), where ∗ = n for explicit MPM and

∗ = n+ 1 for implicit MPM.

3. Transfer Grid to Particles. Transfer velocities back to particles and update particle

states.

vn+1
p =

∑
i

v̂n+1
i wn

ip,

Xn+1
p = Xn

p +∆tv̂n+1
p ,

Cn+1
p =

4

∆x2

∑
i

wn
ipv

n+1
i

(
xn
i − xn

p

)T
,

F n+1
p = F n

p +∆t
∑
i

v̂∇wT
ip.

(2.16)

Plasticity with MPM In multiplicative finite strain plasticity, the deformation gradient

is decomposed as F = F EF P , where F E is the elastic deformation and F P is the plastic

deformation. This multiplicative decomposition can be interpreted as two sequential steps

in the overall deformation: Φ = ΦE ◦ΦP . First, the body undergoes plastic deformation,

modifying its rest shape. Then, treating this new state as the updated rest configuration,

elastic deformation generates stress that pulls the body back toward the new rest configuration.

The decomposition is governed by the restriction that F E always fall within a given elastic

region defined by y(τ ) ≤ 0, where τ = PF⊤ is the Kirchoff stress. Plasticity is particularly

convenient in explicit MPM because deformation gradients are tracked directly on particles.

If the deformation gradient exceeds the elastic region, it can be projected back onto the

yield surface (y(τ ) = 0) through a projection map known as plastic return mapping. The

specific return mapping varies depending on the plasticity model, such as those for snow,
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sand, or foam. In explicit MPM, the only modification needed to incorporate plasticity is a

modification to the deformation gradient update step at the end of each time step:

F tr,n
p = F n

p +∆t
∑
i

v̂∇wT
ip, F n+1

p = Z(F tr,n
p ), (2.17)

where Z is a plastic return mapping. From this perspective, the deformation gradients tracked

on particles actually correspond to the elastic deformation gradients rather than the total

deformation.

2.2.2.3 Extended Position Based Dynamics

For hyperelastic materials, the momentum equation can generally be expressed as follows:

Mẍ = −∇U(x), (2.18)

where, x = [x1, x2, ..., xp]
T is the unknown position states, M is the mass matrix and U(x)

is the elastic potential energy. eXtended Position-based Dynamics (XPBD) (Macklin et al.,

2016) assumes U(x) can be further expressed as

U(x) =
1

2
C(x)Ta−1C(x), (2.19)

where C = [C1(x), C2(x), ..., Cm(x)]
T consists of m constraints, and a is a diagonal compli-

ance matrix related to the material stiffness. For example, each µ-term and λ-term associated

with each mesh element can be treated as a separate constraint. The time stepping balances

the equations Mẍ = 0 and C(x) = 0, leading to the following discrete constrained equations

of motion:

M(x− x̃)−∇C(x)λ = 0, (2.20)

C(x) + α̃λ = 0, (2.21)
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where x̃ = xn + v∆t+ g∆t2 represents the predicted position under inertia, λ = −ã−1C(x)

is the Lagrange multiplier and ã = a
∆t2

. With certain approximations, the system is solved

iteratively using the following incremental equation:

 M −∇C

−∇C α̃

∆x

∆λ

 = −

 0

C(x) + α̃λ

 , (2.22)

where the coefficient matrix and the right-hand side are evaluated using the previous values

of x,λ and subsequently updated using the computed increments. Although XPBD falls

within the umbrella of implicit methods, it does not require expensive Hessian evaluations.

Due to its efficiency, it is widely used in real-time game engines.

2.3 Contact Modeling

MPM supports automatic grid-based collision handling; however, it assumes sticky contact

between MPM bodies, which may lead to artifacts. In contrast, FEM provides well-defined

object boundaries that can be leveraged to define accurate contact mechanics. Incremental

Potential Contact (IPC) (Li et al., 2020, 2021a) is a mesh-based collision model that formulates

collision forces using smooth log barriers on unsigned distances to ensure separation between

objects. It uses smooth log barriers on unsigned distances to ensure separations between

objects. It naturally integrates into optimization-based time integrators with an additional

energy term, functioning as a “plug-and-play” component. Specifically, collisions between

mesh surfaces are classified into point-triangle and edge-edge collisions. The contact potential

is defined as:

B(x) =
∑
P,T

b(dist(P, T )) +
∑
E1,E2

b(dist(E1, E2)), (2.23)

where b is a smooth log barrier function of the unsigned distance:

b(d) =


−(d− d̂)2 log(d/d̂), 0 < d < d̂,

0, d ≥ d̂.

(2.24)
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Here, (P, T ) represents an arbitrary point-triangle pair, and (E1, E2) represents an arbitrary

edge-edge pair. A bounding volume hierarchy (BVH) technique is used to identify all

candidate contact pairs efficiently. The parameter d̂ controls the size of the contact zone,

within which the potential energy increases from zero to infinity as the contact pair approaches

each other. During each line search step in optimization-based time integration, continuous

collision detection (CCD) is employed to determine an upper bound on the step size. The

combination of the log barrier and CCD ensures that penetrations do not occur. Furthermore,

the smoothness of the barrier function allows for robust handling of arbitrarily large time

step sizes.

This framework also enables precise control over frictional forces by incorporating a locally

smoothed semi-implicit Coulomb friction model into the potential energy formulation. For

each contact point xk with sliding basis Tk and normal contact force λk, the local friction

force is defined as:

fk(xk) = −µλkf1(∥uk∥)
uk

∥uk∥
, (2.25)

where µ is the frictional coefficient, uk is the relative tangential displacement along Tk, f1 is

a function smoothly increase from 0 to 1 in the region [0, ϵvh] with ϵv controling the region of

static friction. By temporarily treating Tk and λk as constants, the above friction force can

be spatially integrated into a frictional potential for incorporation into optimization-based

time integration:

bfk(xk) = −µλkf0(∥uk∥). (2.26)

2.4 Neural Scene Representations

2.4.1 Neural Radiance Fields

Neural Radiance Fields (NeRFs) represent a 3D scene using a view-independent volume

density field σ(x) and a view-dependent appearance (color) field c(x, ω) for each point x ∈ R3,

and view direction ω = (θ, ϕ) ∈ S2 (spherical coordinates). Color images are rendered

from these fields by sampling points along a ray for each pixel in the output image. The
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appearance C(r) of a pixel specified by ray direction r(s) (s ∈ [smin, smax]) is given by the

volume rendering integral (Mildenhall et al., 2020)

C(r) =

∫ sf

sn

T (s) σ(r(s)) c(r(s), ω) ds, T (s) = exp

(
−
∫ s

sn

σ(r(s̄)) ds̄

)
, (2.27)

where T (s) is the accumulated transmittance, representing the probability that light travels

unoccluded up to depth.

Given a set of ground-truth multiview images, the NeRF model is trained by enforcing the

rendered pixel colors to match those in the multiview images. This is achieved by minimizing

the rendering loss:

Lrender =
1

|R|
∑
r∈R

∥C(r)− Ĉ(r)∥, (2.28)

where R is the set of sampled rays, Ĉ(r) is the ground truth color observation.

2.4.2 3D Gaussian Splatting

3D Gaussian Splatting (Kerbl et al., 2023) reparameterizes the above NeRF representation

using a set of 3D Gaussian kernels {xp, σp,Ap, Cp}p∈P , where xp, σp, Ap, and Cp represent the

centers, opacities, covariance matrices, and spherical harmonic coefficients of the Gaussians,

respectively. The color of each pixel is computed using α-blending:

C =
∑
k∈P

αkSH(dk; Ck)
k−1∏
j=1

(1− αj), (2.29)

where the Gaussian kernels are sorted by z-depth along the camera direction, αk represents the

effective opacity, dk denotes the view direction from the camera to xk. In practice, rendering

is performed by rasterizing Gaussian kernels onto the screen, rather than computing volume

integration as in NeRFs. This makes 3DGS significantly faster and more memory-efficient.

The 3DGS representation of a scene is trained using a set of multiview images with a rendering

loss similar to that used in NeRFs. Additionally, its explicit scene representation makes

3DGS particularly well-suited for scene editing tasks.
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CHAPTER 3

Accurate Inelasticity Modeling

3.1 ECI: Energetically Consistent Inelasticity for Optimization

Time Integration

3.1.1 Introduction

Since the pioneering work of Terzopoulos and Fleischer (1988), the computer graphics

community has observed increasing interests in modeling inelastic deformations governed

by elastoplasticity, viscoelasticity, and viscoplasticity. These inelastic mechanical properties

govern the behaviors of a wide range of everyday objects. Drawing inspirations from continuum

mechanics, computer graphics researchers have successfully modeled and simulated many

inelastic materials, ranging from metal, sand, snow and mud to foam, paint and organic

tissues.

Inelasticity (mainly elastoplasticity and viscoplasticity) has been widely explored using

mesh-based Finite Elements. During inelastic deformation, extreme element distortion and

fracture commonly co-exist. Thus, remeshing (O’Brien et al., 2002) and virtual node (Molino

et al., 2004; Hegemann et al., 2013) techniques are often applied. More recently, the Material

Point Method (MPM) has emerged as a popular alternative for inelastic materials (Jiang

et al., 2016) due to its natural support of topologically changing continuum materials.

Despite a large amount of work in modeling inelasticity, a loss of accuracy occurs in

almost all existing work. In particular, when implicit time integration schemes are performed,

the plastic strain is often treated as a constant, and the real plastic deformation is imagined

to happen instantaneously at the beginning or the end of a time step. Such a semi-implicit
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Figure 3.1: Our energetically consistent inelasticity model can not only be applied to the
Material Point Method (top row), but also easily extend to the Finite Element Method
(bottom row with decreasing hardening coefficients from left to right). The stability under
large time steps is guaranteed by the optimization time integration.

lagged treatment of inelasticity results in unnoticeable visual artifacts for certain material

models such as the heuristic snow plasticity in Stomakhin et al. (2013) but significant errors

such as excessive artificial cohesion for others (Tampubolon et al., 2017; Gao et al., 2018b).

The choice of semi-implicity is largely due to the prominent challenge in modeling implicit

inelasticity. Klár et al. (2016) was the first to explore differentiating the plastic flow for

Drucker-Prager soil plasticity and incorporating it into the implicit momentum balance. The

authors proposed an implicit force formulation that resembles a similar format to semi-implicit

formulations (Stomakhin et al., 2013). Unfortunately, their formulation cannot be expressed

as the negative gradient of analytical energy. Resultingly, the stiffness matrix is asymmetric,

and GMRES became necessary for the associated nonlinear root-finding problem – a problem

that by itself has no stability or convergence guarantees when solved with Newton’s method.

Fang et al. (2019) used alternating direction method of multipliers (ADMM) to shift the

asymmetry to local small linear systems, however without an energy, they could not perform

global convergence techniques such as line search.

This paper tackles the challenge by revisiting the derivation of implicit plasticity. Our

objective is to construct an analytical, augmented potential energy function whose deriva-

tive exactly reproduces the implicit force. Related work in classic engineering literature
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(Radovitzky and Ortiz, 1999; Ortiz and Stainier, 1999) formulated variational constitutive

model updates based on the principle of maximum plastic dissipation and minimizing over

the so-called dual inelastic potential. Taking a different path, we derive our method based on

constructing a smooth energy that is consistent with existing return mapping-based plasticity

treatments (Simo and Hughes, 1998) in explicitly integrated inelasticity simulation systems.

As a result, our implicit inelasticity formulation can be directly incorporated into recently

advanced optimization time integrators (Gast et al., 2015; Wang et al., 2020a; Li et al., 2020)

to enable large time step integration with guaranteed stability, theoretical consistency with

return mapping, and a symmetric energy Hessian. Our contributions include:

• An implicit internal force formulation for fully implicit finite strain elastoplasticity;

• A strain energy augmentation method that yields analytically integrable elastoplastic

forces and symmetric force derivatives for von Mises J2 plasticity;

• An extension of our model to support strain hardening, pressure-dependent soil plasticity,

and rate-dependent viscoelasticity;

• Algorithms for incorporating our model in optimization-based time integrators with

the Material Point Method and the Finite Element Method.

We demonstrate our results by simulating a wide range of inelastic materials, including

metal, sand, snow, and foam. Our method allows the simulations of inelasticity to enjoy the

advantages of guaranteed stability, global convergence, and large time step sizes brought by

optimization-based time integrators without suffering from inaccuracy and numerical artifacts

from prior work.

3.1.2 Related Work

Inelasticity with FEM Elastoplastic simulation with FEM has been extensively explored

by the computer graphics community. O’Brien et al. (2002) used the additive decomposition

of strain to separate elastic deformations and plastic deformations and used the von-Mises
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yield criterion. However, as Irving et al. (2004) pointed out, this decomposition does not

support incompressibility for finite strain. Instead, Irving et al. (2004) used the multiplicative

decomposition of deformation gradient with the volume-preserving return mapping algorithm.

Our model is based on this decomposition as well. Under this framework, large plastic

deformations may make the dynamic system ill-conditioned. To solve this problem, Molino

et al. (2004) proposed the virtual node algorithm to allow topology changes when the simulated

mesh is severely distorted, and Bargteil et al. (2007) used remeshing technique to maintain a

high-quality mesh throughout the simulation. For high-performance simulation, Wojtan and

Turk (2008) used frequently remeshed high-resolution surfaces combined with low-resolution

interior tetrahedral mesh to resolve thin features near the boundaries. Wojtan et al. (2009)

further improved the framework to allow topology changes in inelasticity simulations. These

methods introduced extra computational costs or complexities. Instead, we use optimization

time integrators to maintain long-time stability and global convergence. Furthermore, Bargteil

et al. (2007) proposed a volume-preserving plasticity model incorporating creep and work

hardening/softening, which is also followed by Wojtan and Turk (2008). These are important

requirements for obtaining physical accuracy, which are all supported by our model as well.

Jones et al. (2016b) proposed an examples-based approach for the mesh-based discretization,

which search rest shapes on a predefined example manifold. This method is efficient for

animation purposes but are less physically accurate.

Inelasticity with MPM Extending the work of Harlow (1964) and Brackbill and Ruppel

(1986) on PIC/FLIP, MPM was proposed as a hybrid Lagrangian/Eulerian method for

solid mechanics by Sulsky et al. (1994). Since its appearance in the graphics community

(Stomakhin et al., 2013; Hegemann et al., 2013), it has attracted a lot of attentions. The most

prominent advantage of MPM on modeling inelastic materials is its flexibility in handling

extreme deformation and topological changes, which pose significant challenges to Lagrangian

mesh-based approaches. Snow plasticity was first simulated by Stomakhin et al. (2013) in

a semi-implicit fashion, enforcing thresholds on principal stretches with post-projections.

Yue et al. (2015) used the Herschel-Bulkley model of non-Newtonian viscoplastic flow to
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approximate foam behaviors. Fei et al. (2019) derived an analytic plastic flow approach

for Herschel-Bulkley fluid to simulate compressible, shear-dependent liquids. Daviet and

Bertails-Descoubes (2016) modeled the granular materials as compressible viscoplastic fluids

combined with the Drucker-Prager yield criterion. Their method suits the granular material

simulations well, but follows a different perspective from ours. From the perspective of large

strain solid mechanics, Klár et al. (2016) simulated granular continuum using the return

mapping algorithm for the Drucker-Prager plasticity. Following Klár et al. (2016), Yue et al.

(2018) proposed a hybrid method combining both discrete and continuum treatments to

achieve a high level of details with less computational costs. Fang et al. (2019) applied

the return mapping approach to handle elastoplasticity and viscoelasticity in an ADMM

framework. Except for Klár et al. (2016), these methods all temporally discretize inelasticity

in an explicit or semi-implicit way, where the plastic correction was performed as an extra

step at the end of each time step, fully decoupled from elasticity. Decoupled treatment in

an explicit integration can be justified via operator splitting; however, it will cause artifacts

for a (semi-)implicit integration. We use the return mapping framework as well for our fully

implicit elastoplasticity and viscoelasticity, and we will show that ours is more temporally

consistent compared to Klár et al. (2016).

Inelasticity with Other Discretizations Inelasticity simulations are also explored with

other types of spatial discretizations, e.g., Smoothed Particle Hydrodynamics (SPH), Position

Based Dynamics (PBD), peridynamics, etc.

SPH is a mesh-free Lagrangian method originally invented for fluid simulations. Inspired

by SPH, Müller et al. (2004); Jones et al. (2014) applied the plasticity model in O’Brien et al.

(2002) to moving least square particles for elastoplastic objects. Clavet et al. (2005) used

springs between particles to mimic elasticity and achieved plasticity by modifying rest lengths

during the simulation. These two plasticity models are not derived from the finite strain

framework. Alduán and Otaduy (2011) simulated granular materials using an incompressible

SPH framework combined with the Drucker-Prager yield criterion. Their plastic correction

was performed in a Jacobi-like manner until convergence, while ours is performed with
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fixed-point iterations. Yang et al. (2017a) proposed an elastoplastic model based on the

Drucker-Prager yield criterion as well within an SPH framework. Gerszewski et al. (2009)

introduced deformation gradients to the SPH framework so that plasticity models based

on the multiplicative decomposition of deformation gradient can be applied. They used

explicit time integrators combined with the plasticity model in (Irving et al., 2004). Gissler

et al. (2020) used an implicit compressible SPH solver to simulate the compression of snow.

The plasticity is handled by an extra correction step on the deformation gradient following

Stomakhin et al. (2013), which is still a semi-implicit method.

PBD was proposed by (Müller et al., 2007) for real-time simulations. This method replaced

internal forces in force-based methods with constraints on positions. Plastic deformations

can be introduced by the shape matching framework (Müller et al., 2005; Jones et al., 2016a;

Falkenstein et al., 2017; Bender et al., 2017). However, this simulation framework sacrifices

physical accuracy for better efficiency.

The peridynamic theory is an emerging field in simulations, which was proposed by

Silling (2000) to handle discontinuities caused by deformations, such as cracks. It defines

pairwise force functions between particles and uses the integration over the interactions

from neighboring particles to describe dynamics. He et al. (2017) used the peridynamics

framework to simulate elastoplastic materials in a projective dynamics way. They adopted

the Drucker-Prager criterion for plasticity. Their solver can also be extended to simulate

viscoelasiticity. Chen et al. (2018b) derived a form of force functions based on the isotropic

linear elasticity model to simulate elastoplastic materials. They used explicit time integrators

and an additive plasticity model.

Optimization Time Integration Large-scale implicit simulation methods usually require

solving large systems of nonlinear equations. To solve these systems, the Newton method

for root-finding problems is usually adopted, which needs careful tuning of the time step

size to ensure convergence. In fact, many of these implicit equations can be integrated to

get variational forms, where the equivalent minimization problem can be solved by applying

robust optimization techniques. The optimization time integrators have advantages in terms
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of long-time stability even when simulating severe deformation with large time step sizes.

Bouaziz et al. (2014) proposed Projective Dynamics (PD), which reformulated the back-

ward Euler time integration for a specific type of material into a local-global alternating

solver. Both the local and global steps have simple variational forms that can be solved

in a robust and efficient way. This framework was later extended to simulate hyperelastic

materials (Liu et al., 2017b), support Laplacian damping (Li et al., 2018), and utilize other

time integration schemes (Dinev et al., 2018). Narain et al. (2016) then extended PD to

a more general form within the ADMM framework. Brown and Narain (2021) improved

the ADMM framework to resolve large rotations. Gast et al. (2015) recast the backward

Euler time integration with hyperelastic materials, Rayleigh dampings, and collision penalties

as a minimization problem. Li et al. (2019a) and Wang et al. (2020a) explored domain

decomposed and hierarchical preconditioning strategies respectively within a quasi-Newton

optimization framework for robust and efficient time integration. Wang and Yang (2016)

proposed a gradient descent solver for GPUs to accelerate optimization time integrations. Li

et al. (2020) proposed Incremental Potential Contact (IPC), a variational form for frictional

contacts. Their friction bases are iterated in a similar manner to our iterative yield stresses.

IPC is later proven effective for simulating codimensional objects (Li et al., 2021a), rigid

bodies (Ferguson et al., 2021a), reduced elastic solids (Lan et al., 2021a), and FEM-MPM

coupled domains (Li et al., 2021c), all within the optimization time integration framework.

In this paper, we follow Gast et al. (2015) and Li et al. (2020) for the optimization time

integration of MPM and FEM respectively. The hessian matrices are enforced to be positive

definite following the per-stencil projection technique in Teran et al. (2005).

In addition to hyperelastic solids, Batty et al. (2007) reformulated the classical pressure

projection step in solid-fluid coupling as a kinetic energy minimization. Narain et al. (2010)

used a hybrid method for sand simulation, where the pressure and friction are solved on the

Eulerian grid with a staggered projection method, alternating between two coupled quadratic

programs. Narain et al. (2012) posed the strain limiting in cloth simulation as a nonlinear

optimization problem. Karamouzas et al. (2017) proposed an energy-based crowd model

for crowd simulation. Inglis et al. (2017) formulated fluid simulation under a primal-dual
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Figure 3.2: The elastoplastic decomposition of the deformation gradient.

optimization framework. Brown et al. (2018) proposed an energy for dissipative forces.

3.1.3 Foundations

In this section we start with reviewing finite strain elastoplasticity (Section 3.1.3.1), MPM

spatial discretization (Section 3.1.3.2), optimization-based time integration (Section 3.1.3.3),

and discretized plastic flow rule (Section 3.1.3.4). Our review is by no means complete, and

they are provided as necessary background knowledge for our new model.

In Section 3.1.3.5, we present a new implicit force formulation that is consistent with the

variational weak form. It has a remarkable advantage – integrability, and thus lays important

theoretical foundations for our method.

3.1.3.1 Finite Strain Elastoplasticity

Our variational inelasticity model is derived under the finite strain elastoplasticity framework.

Here we review some basic concepts and refer to (Simo, 1992; Simo and Hughes, 1998) for

more details.

Let Ω0 ⊂ R3 be the reference configuration of the continuum body and denote x := Φ(X, t)

the deformation map from Ω0 (with coordinate X) to the world space Ωt (with coordinate x).

The deformation gradient F = ∂Φ
∂X

(X, t) measures the local deformation of the infinitesimal

region around X. With finite strain elastoplasticity, F is multiplicatively decomposed into

F = F EF P , where F P denotes the permanent plastic deformation, and F E denotes the

elastic deformation which results in elastic forces (Figure 3.2). Plasticity requires that the

Kirchhoff stress τ associated with F E is inside the admissible area defined by a yield condition
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y(τ ) ≤ 0. The surface characterized by y(τ ) = 0 is often referred to as the yield surface.

When F changes, F E will follow some plastic flow to evolve so that it lies within the yield

surface. In this paper, we follow the volume preserving plastic flow from (Klár et al., 2016).

From the Lagrangian view point, the state of dynamics of an elastoplastic continuum can

be described by a Lagrangian density field R(X, t) on Ω0 and a Lagrangian velocity field

V (X, t) := ∂Φ(X,t)
∂t

on Ω0. The two fields are governed by the conservation of mass

R(X, t)J(X, t) = R(X, 0), (3.1)

where J = detF , and the conservation of momentum,

R(X, 0)
∂V

∂t
(X, t) = ∇X · P +R(X, 0)g, (3.2)

where P is the first Piola-Kirchhoff stress and g is the gravity.

3.1.3.2 MPM Discretization

The Material Point Method (MPM) discretizes a continuum by a set of disconnected La-

grangian material particles. The continuous time variable t is discretized by consecutive

time steps t0, t1, ..., tn. Without loss of generality, we assume a fixed time step size ∆t. The

advection is carried on material particles, so the conservation of mass across time steps is

trivially satisfied. Assuming backward difference on ∂V
∂t
, the weak form of the momentum

equation is (Jiang et al., 2016)

1

∆t

∫
Ω0

R(X, 0)(V n+1 − V n)QαdX = −
∫
Ω0

P∇XQαdX (3.3)

for an arbitrary test function Qα(X, tn).

Here for simplicity, we drop the gravity term and admit the free surface assumption.

MPM uses the previous time step tn as the reference configuration, so the integration on
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Ω0 is pushed forward onto Ωn:

1

∆t

∫
Ωn

ρ(x, tn)(v̂n+1 − vn)qαdx = −
∫
Ωn

1

Jn
PF nT∇xqαdx, (3.4)

where ρ,vn, v̂n+1, and qα are Eulerian counterpart of R,Vn,Vn+1, and Qα, obtained by

pushing forward from Ω0 onto Ωn.

In MPM, B-Spline-based interpolations are often applied to define fields on Ωn, and

material particles serve as quadratures to approximate the volume integration. Let xnp ,Xp

be the coordinate of particle p in Ωn and Ω0 respectively, and wn
ip and ∇wn

ip be the weight

and weight gradient between particle p and grid i. With the mass lumping technique, the

force equilibrium of grid i can be discretized as

1

∆t
mn

i (v̂
n+1
i − vn

i ) = −
∑
p

PpF
nT
p ∇wn

ipV
0
p , (3.5)

where V 0
p is the initial volume of particle p, mn

i =
∑

pmpw
n
ip is the lumped mass on grid i

and mp is approximated by R(Xp, 0)V
0
p . The right hand side of Equation Equation (3.5) is

the internal elastic force on grid i.

At each time step, the velocity field vn is transferred from material particles to grid

nodes, and the new velocity field v̂n+1 is solved and transferred back to material particles for

advection. In this paper, we use the quadratic MLS kernel (Hu et al., 2018a) as the weight

function, and APIC (Jiang et al., 2015b) as the particle-grid transfer scheme.

3.1.3.3 Optimization Time Integration

Assuming implicit integration with BDF1 (backward Euler), the first Piola-Kirchhoff stress

P in Equation Equation (3.5) is associated with the deformation gradient F n+1 at time step

tn+1. The deformation gradients F n and F n+1 are related by

F n+1 = (I+∆t∇v̂n+1
p )F n, (3.6)
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Figure 3.3: Return mapping for a discrete plastic flow.

where ∇v̂n+1
p =

∑
i v̂

n+1
i ∇wn

ip
⊤.

Existing optimization-based time integrators in computer graphics often assume hyperelas-

tic materials. Without plasticity, the first Piola-Kirchhoff stress is simply the derivative of the

corresponding elastic strain energy density function: P (F ) = ∂Ψ
∂F

. Equation Equation (3.5) is

then equivalent to the following optimization problem:

∆v̂ = argmin∆vE(∆v) =
∑
i

mi∥∆vi∥2 +
∑
p

Ψ(F tr
p (vn +∆v))V 0

p ,

v̂n+1 = vn +∆v̂,

(3.7)

where F tr
p (v) = (I+∆t∇vp)F

n
p is the elastic predictor. The optimization problem can be

robustly solved by projected Newton’s method with backtracking line search (Wang et al.,

2020a).

Gravity. For the effect of gravity, we add the term mig on the right-hand side in Equa-

tion (3.5), which corresponds to the extra term −
∑

imig
⊤v in Equation (3.7).

3.1.3.4 Discretization of Plastic Flow

In the discrete setting, plasticity is most commonly achieved by the return mapping algorithm

(Simo and Hughes, 1998; Klár et al., 2016), which is equivalent to solving for a strain that

satisfies the plastic flow rule. Geometrically, the return mapping defines how elastic predictors
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outside the yield surface should be corrected so that the effective stresses lie inside the yield

surface. We follow the notations in Klár et al. (2016) to describe discrete plastic flows in

this paper. For elasticity, we adopt the St. Venant-Kirchhoff (StVK) model with Hencky

strains. The elastoplasticity of isotropic materials can be characterized in the principal

stretch space using the singular value decomposition (SVD) (Stomakhin et al., 2012). Let

F tr = UΣtrV ⊤ be the SVD of an elastic predictor F tr. The Hencky strain is defined as

ϵ = logΣtr, and the Kirchhoff stress for the StVK model is τ = 2µϵ+λ tr(ϵ)I, where µ, λ are

Lamé parameters. For a discrete plastic flow, if the stress associated with an elastic predictor

is outside the yield surface, then the stress is projected back onto the yield surface. The

projection procedure in the principal stress space is illustrated in Figure 3.3. Note that along

the perpendicular direction to the diagonal, we would have detF P = 1, which corresponds

to a volume-preserving plastic deformation. We denote the endpoint of the return mapping

(also known as the corrector or the effective stress) as F E = Z(F tr) where Z(·) is the return

mapping.

3.1.3.5 Force Balance with Implicit Plasticity

For elastoplastic materials, the first Piola-Kirchhoff stress P in Equation (3.5) should be

rewritten as (Bonet and Wood, 1997)

P =
∂ΨE

∂F E
F P−⊤

. (3.8)

Here ΨE is the elastic strain energy density function. We add a superscript to emphasize the

elastic energy is only associated with the elastic deformation gradient F E.

Through a weak form derivation of the updated Lagrangian dynamics (see the supplemental

document for details), we show that the implicit internal force on grid node i is:

fn+1
i = −

∑
p

V 0
p

∂ΨE

∂F E
(F E,n+1

p )F P,n+1
p

−⊤
F n

p
⊤∇wn

ip, (3.9)

In practice one does not need to track the plastic deformation gradients F P on the particles.
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The nodal force can be expressed in terms of F E,tr (defined as F E,tr(v) = (I+∆t∇vp)F
E,n
p ):

fn+1
i = −

∑
p

V 0
p

∂ΨE

∂F E
(Z(F E,tr))Z(F E,tr)

⊤
F E,tr−⊤

F E,n⊤∇wn
ip. (3.10)

Note that when doing explicit time integration, we can directly replace F E,n+1
p ,F E,tr

p both

with F E,n
p , which gives the common force expression for explicit MPM:

fn
i = −

∑
p

V 0
p

∂ΨE

∂F E
(F E,n

p )F E,n⊤∇wn
ip. (3.11)

For implicit plasticity, Klár et al. (2016) directly replace ∂ΨE

∂FE (F
E,n
p ) in Equation (3.11) with

∂ΨE

∂FE (Z(F E,tr
p )) and define the resulting expression as the implicit force. We can clearly

observe that

fn+1
i ̸= −

∑
p

V 0
p

∂ΨE

∂F E
(Z(F E,tr

p ))F E,n⊤∇wn
ip, (3.12)

i.e., the implicit force in (Klár et al., 2016) is not equivalent to our formulation (Equa-

tion (3.10)). As we discuss in the supplemental document, the choice of Klár et al. (2016)

is only semi-implicit. Furthermore, their formulation is not integrable because their force

derivative is not symmetric. Therefore in (Klár et al., 2016) it is necessary to adopt Newton-

Ralphson root finding with GMRES for the asymmetric linear system solve. In the next

section, we elaborate on our new model which enables the existence of an analytical energy.

3.1.4 Energetically Consistent Inelasticity (ECI)

3.1.4.1 One-Dimensional Investigation

To motivate ECI, let’s start with applying a discrete plasticity model to a one-dimensional

spring with a constant yield stress.

Consider a one-dimensional elastoplastic spring with rest length V0 = 1. We fix its one

end at x = 0, and place the other end at 1 initially. With the initial state being the reference

configuration, we model the spring with finite strain elastoplasticity, where the deformation
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gradient can be conveniently calculated as F (x) = x with x being the coordinate of its free

end.

Discretizing time into steps t0, t1, ..., tn with equal time step size ∆t, for time step n, the

elastic predictor FE,tr by assuming a purely elastic deformation is given by

FE,tr(x) =
1

F P,n
x. (3.13)

We assign the following strain energy density function:

ΨE(FE) =
k

2
(logFE)2, (3.14)

where k is the stiffness. Viewing the spring as a single-element FEM discretization, since

V0 = 1, ΨE equals the total elastic potential. Assume k = 1 for brevity, the Kirchhoff stress

is then given by

τ(FE) :=
∂ΨE

∂FE
FE = log(FE). (3.15)

Let the constant yield stress be τY = log(FY ), where FY ∈ [1,∞) is a critical strain, and

define the yield function to be τ − τY ≤ 0, we can then follow standard plasticity treatment

(Simo and Hughes, 1998) to define a simple return mapping procedure with the form

FE,n+1 = Z(FE,tr) =


FE,tr FE,tr ≤ FY

FY otherwise

. (3.16)

In terms of the Hencky strain ϵE = log(FE), the yield condition is equivalent to

ϵE,tr − ϵE,n+1 = δγ > 0. (3.17)

Geometrically, the quantity δγ measures how far away the elastic strain predictor is from

the yield surface in the principal strain space. This quantity plays an important role in
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Figure 3.4: The strain-energy (left) and the strain-stress (right) plot of an elastoplastic spring.
Here ϵ = log(F ) and τ = ∂Ψ

∂F
F .

our variational modeling of plasticity. Specifically, we have the following theorem for the

elastoplastic springs:

Theorem 3.1.1 (Augmented energy density for springs). In the problem setting described

above (V 0 = 1, k = 1), using the following energy density function

Ψ(x) =


ΨE(Z(FE,tr(x))) + τY δγ(F

E,tr(x)) FE,tr > FY

ΨE(FE,tr(x)) otherwise

(3.18)

reveals a force that is equivalent to what one would get if one performed the force-based

implicit plasticity.

We include in Appendix A the proof for this theorem as well as details showing that Ψ(x)

is piecewise C∞ and everywhere C1.

A comparison between the augmented energy and the pure-elastic energy is shown in

Figure 3.4.

Taking the inertia into consideration, we test the model on a small dynamic mass-spring

system. At the end of each time step, Fp is updated from the following relation:

F n+1 = xn+1 = Z(FE,tr)F P,n+1 = FE,trF P,n. (3.19)

The ECI simulation results quantitatively match the results using explicit integration (see
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Figure 3.5: Spring simulation with ECI. We simulate under the same initial velocity but
different critical strains. The results from our large-time-step ECI all match with the results
from explicit small-time-step time integration.

Figure 3.5).

3.1.4.2 Extending to Von-Mises Plasticity

A natural analogy of elastoplastic spring with constant yield stress for the plasticity of

isotropic hyperelastic materials is the von-Mises plasticity model, which also associates all

stress predictors with a constant yield stress τY (the norm of the deviatoric Kirchhoff stress on

the yield surface). We study von-Mises plasticity under the St. Venant-Kirchhoff constitutive

model with Hencky strains. Following the notations from Section 3.1.3.4, the yield surface is

defined as

y(τ ) = ∥τ̂∥F − τY = 0, (3.20)

where τ̂ = τ − 1
d
tr(τ )I is the deviatoric part of the Kirchhoff stress.

The equivalent yield condition is

δγ = ∥ϵ̂∥ − τY
2µ

> 0, (3.21)

where ϵ = log(Σtr) is the trial Hencky strain and ϵ̂ = ϵ− 1
d
tr(ϵ)I is the deviatoric part of
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Figure 3.6: Yield surface of the von-Mises plasticity model.

the Hencky strain. The corresponding return mapping (Figure 3.6) is

Z(FE,tr) =


FE,tr δγ ≤ 0

U exp (ϵ− δγ ϵ̂
∥ϵ̂∥)V

⊤ otherwise

. (3.22)

We have the following key lemma for the von-Mises plasticity:

Lemma 3.1.2. Define the augmented elastoplastic energy density function as:

Ψ(F ) =


ΨE(F ), δγ(F ) ≤ 0

ΨE(Z(F )) + τY δγ(F ), otherwise

. (3.23)

This energy density function satisfies the following identity for any F :

∂Ψ(F )

∂F
≡ ∂ΨE

∂F E
(Z(F ))Z(F )⊤F−⊤. (3.24)

The proof of this lemma is provided in the supplementary document. With this lemma, it

is easy to prove the following theorem:

Theorem 3.1.3 (Augmented energy theorem for von-Mises plasticity). The augmented elasto-

plastic energy density function (Equation (3.23)) viewed as a hyperelastic strain energy

density function reveals a force that is equivalent to what one would get if one performed the
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Figure 3.7: Yield surface of the Drucker-Prager plasticity model.

force-based implicit plasticity, i.e.

fi = −
∑
p

V 0
p

[
∂Ψ

∂F
(F E,tr

p )

]
F E,n

p

⊤∇wn
ip

= −
∑
p

V 0
p

[
∂ΨE

∂F E
p

(Z(F E,tr
p ))Z(F E,tr

p )
⊤
F E,tr

p

−⊤
]
F E,n

p

⊤∇wn
ip.

(3.25)

When performing optimization time integration, we can simply view the elastoplastic free

energy density as a new strain energy density function. At the end of each time step, we

update F E with Z(F E,tr). The detailed pipeline is elaborated in Section 3.1.5.

3.1.4.3 Extending to Pressure Dependent Soil Plasticity

Drucker-Prager plasticity is widely applicable to the simulations of granular materials such

as sand. The yield surface under the St. Venant-Kirchhoff constitutive model with Hencky

strains is defined as

y(τ ) = ∥τ̂∥F + α tr(τ ) = 0, (3.26)

where α =
√

2
3

2 sinϕf

3−sinϕf
and ϕf is the friction angle.

The equivalent yield condition is then

tr(ϵ) > 0, or δγ = ∥ϵ̂∥F + α
(dλ+ 2µ) tr(ϵ)

2µ
> 0. (3.27)
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Figure 3.8: Yield surface of the Drucker-Prager plasticity model in the principal strain
space under our extrapolated St. Venant-Kirchhoff model.

The corresponding return mapping (Figure 3.7) is

Z(F E,tr) =


UV ⊤ tr(ϵ) > 0

F E,tr δγ ≤ 0, tr(ϵ) ≤ 0

U exp (ϵ− δγ ϵ̂
∥ϵ̂∥)V

⊤ otherwise

. (3.28)

The augmented elastoplastic energy introduced above for our 1D spring and von-Mises

model essentially comes from the integrability of the following vector field over Rd×d:

∂ΨE

∂F E
(Z(F ))Z(F )⊤F−⊤. (3.29)

Unfortunately, this integrability does not hold anymore for the Drucker-Prager return mapping.

It can be checked that the Jacobian field of the above vector field is not symmetric. Even

worse, δγ is undefined in the region with tr(ϵ) > 0, because the projection there is not

volume-preserving.
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3.1.4.4 Extrapolating St. Venant-Kirchhoff

To solve the issue of δγ for the area defined by tr(ϵ) > 0, we extrapolate the St. Venant-

Kirchhoff constitutive model in this area as:

Ψ̂E(Σ) =


µ∥ϵ̂∥2 tr(ϵ) ≥ 0

µ∥ϵ̂∥2 + (λ
2
+ µ

d
)(tr(ϵ))2 tr(ϵ) < 0

. (3.30)

When tr(ϵ) < 0, Ψ̂E is just equivalent to the St. Venant-Kirchhoff strain energy density, which

separates the deviatoric term and the pressure term. When tr(ϵ) ≥ 0, we extrapolate the

energy only with the deviatoric term and define the yield stress to be zero. This extrapolation

does not change the yield surface in the principal stress space. Instead, the yield surface in

the principal strain space is extended to include the diagonal line of the first quadrant, and

all the points on this ray correspond to the tip of the yield surface in the principal stress

space (see Figure 3.8). With this extrapolated model, the volume-preserving projection can

be done as well in the area of tr(ϵ) ≥ 0, and δγ is well-defined.

In summary, with our extrapolation, the return mapping is simplified as

Z(F E,tr) =


F E,tr, δγ ≤ 0

U exp (ϵ− δγ ϵ̂
∥ϵ̂∥)V

⊤, otherwise

, (3.31)

where

δγ =


∥ϵ̂∥, tr(ϵ) > 0

∥ϵ̂∥+ αdλ+2µ
2µ

tr(ϵ), otherwise

. (3.32)

3.1.4.5 Recover Integrability

To resolve the non-integrability, we update the yield stress iteratively during integration

(Figure 3.9). At each time step, we solve a series of optimization problems with constant

yield stresses. The yield stress τ trY,p for each particle p is computed from its elastic predictor
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Figure 3.9: Illustration of our iterative stress method for the Drucker-Prager plasticity. i
stands for the fixed-point iteration index. The strains here are strain predictors at the
beginning of each stress iteration. The trial yield surfaces remain constant within each
iteration.

F E,tr
p at the beginning of the optimization:

τ trY =


0, tr(ϵ) > 0

−α(dλ+ 2µ) tr(ϵ), otherwise

, (3.33)

and the corresponding δγ is defined with a fixed yield stress:

δγ =


∥ϵ̂∥, tr(ϵ) > 0

∥ϵ̂∥ − τ trY
2µ
, otherwise

. (3.34)

In this way, each particle experiences a local cylinder-like yield surface with a different yield

stress. The stress iteration can be viewed as a fixed-point iteration on the yield stresses; see

Section 3.1.5.1 for more details. Under convergence, the trial yield stress is consistent with

the yield stress defined by the Drucker-Prager yield surface.

3.1.4.6 Drucker-Prager Plasticity with Cohesion.

To simulate materials with both granular and chunky behaviours such as wet sand and snow,

we shift the yield surface of Druger-Prager model along the diagonal in the principal stress
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space to model cohesion. This effectively updates Equation (3.33) and Equation (3.30) as

τ trY =


0, tr(ϵ) > cd

−α(dλ+ 2µ)(tr(ϵ)− cd), otherwise

, (3.35)

Ψ̂E(Σ) =


µ∥ϵ̂∥2 + (λ

2
+ µ

d
)(cd)2 tr(ϵ) ≥ cd

µ∥ϵ̂∥2 + (λ
2
+ µ

d
)(tr(ϵ))2 otherwise

, (3.36)

where c > 0 is the cohesion parameter.

3.1.4.7 Hardening

The hardening mechanism plays an important role in simulations of materials like metal

(Chakrabarty and Drugan, 1988) and snow (Stomakhin et al., 2013; Gaume et al., 2018). In

general, the hardening mechanism is associated with some hardening state set qn and some

hardening parameter set ξ. Theoretically, hardening controls how the yield surface evolves

according to the hardening state.

A linear hardening rule for the von-Mises plasticity can be defined as

qn+1 = qn + 2µξδγ(F E,tr),

τn+1
Y = qn+1,

q0 = τY,init.

(3.37)

This effectively makes the yield stress τn+1
Y in the equilibrium state at time step tn depend on

F E,tr, which is not a constant anymore for different F E,tr. Similarly to the iterative stress

update for Drucker-Prager, we can also iterate on the hardening state. At the beginning of

each optimization, the trial hardening state and the trial yield stress are updated as

τ trY = qtr = qn + ξδγ(F E,tr). (3.38)

At the end of the time step, the hardening state qn+1 is updated to be the last trial hardening
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Figure 3.10: The viscoelastic decomposition of the deformation gradient and its relationship
to the elastoplastic decomposition.

state qtr.

3.1.4.8 Viscoelasticity

In addition to rate-independent elastoplasticity, ECI can also be applied to rate-dependent

viscoelasticity. Here we model viscoelasticity based on a decomposition of the deformation

gradient, which is independent of the elastoplastic decompostion. At each time step, the

deformation gradient F can be decomposed into two different ways (Figure 3.10)

F = F EF P = FNF V , (3.39)

where FN is the non-equilibrated elastic deformation gradient, and F V is the viscous

deformation gradient. FN and F E provide elastic responses additively. The evolution of FN

follows a similar principle as F E, which is characterized by a return mapping-like projection

in the discrete setting. We follow the formulation of Fang et al. (2019):

Z(FN,tr) = U(A(ϵ−B tr(ϵ)I))V ⊤, (3.40)
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where A = 1
1+∆tα

, B = ∆tβ
1+∆t(α+dβ)

, α = 2µN

vd
, β = 2(2µN+λNd)

9vv
− 2µN

vdd
, and FN,tr is the elastic

predictor assuming no viscosity:

FN,tr
p = (I+∆tn∇v̂n+1

p )FN,n
p . (3.41)

Here vv and vd are viscosity parameters , and µN and λN are independent Lamé parameters

for viscoelasticity to the ones for elastoplasticity. For simplicity, we use vv = vd = 2µNv for

some v.

Although the return mapping for viscoelasticity is totally different from the one for

elastoplasticity, the vector field

∂ΨN

∂FN
(Z(F ))Z(F )⊤F−⊤

turns out to be integrable if ΨN is from the St. Venant-Kirchhoff constitutive model, and the

augmented ECI energy for this vector field is

ΨVisco(Σ) = µ̂ tr((logΣ)2) +
λ̂

2
(tr(logΣ))2, (3.42)

where µ̂ = AµN and λ̂ = AλN − AB(2µN + dλN).

Without plasticity, F P ≡ I, and then the strain energy density for a viscoelastic material

is simply

Ψ(F ) = ΨE(F ) + ΨVisco(F ). (3.43)

With MPM discretization, each particle p independently tracks the evolutions of FN
p and F E

p

and independently updates them accordingly at the end of each time step.

3.1.5 Spatial-Temporal Integration

In this section, we present the detailed pipeline of ECI applied to MPM. The algorithm stages

from tn to tn+1 are listed as follows:
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1. Particles-to-grid transfer. Grid mass mn
i and velocity vn

i are transferred from

particle mass mp, velocity vn
p , and angular velocity information Cn

p with APIC (Jiang

et al., 2015b).

2. Optimize new grid velocity. A series of optimization problems in the form of

Equation (3.7) using ECI augmented energies are solved until the fixed-point iteration

converges or the maximal number of iterations is reached. See Section 3.1.5.1.

3. Grid-to-particles transfer. The grid velocity v̂n+1
i from the time integration are

transferred back to particles to update particle velocity vn+1
p and angular velocity

information Cn+1
p .

4. Particle strain update. The elastic strain F E or FN are updated according to return

mappings.

5. Particle advection. Particles are advected via particle velocity: xn+1
p = xn

p + vn+1
p ∆t.

We only elaborate on the second stage in the following section. The other stages are the

same as the standard explicit MPM simulation pipeline (Jiang et al., 2016).

3.1.5.1 Iterative Stress Optimization Time Integration

To make the internal force of implicit plasticity integrable, the yield stress is viewed as

constant in the force formulation, i.e., each particle sees a local cylinder-like yield surface

with a different yield stress. Multiple optimizations with updated yield stresses are needed to

make the final computed stresses consistent with the true yield surface. Each optimization

problem is solved robustly using the projected Newton method with backtracking line search

(Wang et al., 2020a), where the Hessian matrix is projected to a nearby positive definite form

(Teran et al., 2005). See Algorithm 1 for the pseudo-code.

The update procedure of τ tr
Y can be viewed as a fixed point iteration:

τ tr,j+1
Y = Γtr

Y (F
E,tr(∆v(τ tr,j

Y ))). (3.44)
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Algorithm 1 Iterative Stress Optimization Time Integration

1: procedure MPMTimeIntegration(∆vinit,Mn,vn,∆t, ϵ) ▷ Mn, vn are stacked grid
mass and velocity, ∆vinit is the initial guess

2: ∆v = ∆vinit

3: do ▷ Iterative Stress Iteration
4: for each particle p
5: Evaluate trial hardening state qtrp ▷ Equation (3.38)
6: Evaluate trial yield stress (τ trY )p ▷ Equation (3.35) Equation (3.38)
7: end
8: do ▷ Solve Equation (3.7)
9: r← −∇E(∆v) ▷ E as in Equation (3.7)
10: δ∆v← InexctMINRES(ProjectPD(∇2E(∆v)), r) ▷ Section 3.1.5.3
11: α← InversionFreeFilter(δ∆v) ▷ Section 3.1.5.4
12: Einit ← E(∆v)
13: while E(∆v+ αδ∆v) > Einit ▷ Line search
14: α← α

2

15: end
16: ∆v← ∆v+ αδ∆v
17: r̂ = Residual(r) ▷ Section 3.1.5.5
18: while ∥r̂∥∞ > ϵ
19: while yield stress not converged
20: for each particle p ▷ Advance hardening state
21: qn+1 = qtrp
22: end
23: end procedure

Here j is the index of stress iteration, ∆v(τ tr,j
Y ) is the equilibrated grid velocity field returned

by a single optimization based on the yield stress vector τ tr,j
Y , and the bold symbol represents

the stacked stress vector from all particles or all grid nodes. Since the Jacobian of this

iteration has a scalar ∆t2 (see the supplemental document for details), the convergence of

this fixed-point iteration is guaranteed if ∆t and the residual for the equilibrium are both

small enough. In practice, we find that even with large time steps, only several fixed-point

iterations are required to produce visually high-quality results.

3.1.5.2 Boundary Conditions

The boundary conditions in our simulations are all from rigid collision objects. At the

beginning of each time step, we detect the set of grid nodes colliding with the collision objects
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and directly enforce the velocity continuity condition across the collision interface. In each

Newton iteration, the linear solver is projected so that the solved search direction remains

tangent to the constraint manifold.

3.1.5.3 Inexact Newton-Krylov Methods

Following Wang et al. (2020a), we use an inexact Newton-Krylov method. The tolerance

for the linear systems is set relatively large in an adaptive way. Although more Newton

iterations are needed, the reduced linear solve cost can still improve the world-clock timing of

Newton convergence. Specifically, we use matrix-free Minimal Residual Method (MINRES)

to solve the linear systems and the relative tolerance of each MINRES solve is set to

min(0.5,max(0.1,
√
r⊤P r)), where r is the right-hand side vector and P is the preconditioning

matrix.

3.1.5.4 Inversion-free Line Search

The Hencky strain requires that the deformation gradient is not inverted, i.e., det(F E,tr) > 0.

Following (Smith and Schaefer, 2015; Li et al., 2020, 2021e), before the line search, we

first compute a large admissible step size α for the search direction such that the energy is

well-defined for any step size t ∈ [0, α], and then the backtracking procedure starts with the

filtered step size α.

3.1.5.5 Stopping Criteria

To terminate the Newton iterations early while ensuring visually high-quality simulation

results, we normalize the grid residual vector r, the gradient of the system energy, by the

grid mass vector. This gives a residual in the unit of velocity (m/s), which is associated with

a physical meaning. However, due to numerical rounding errors, small-mass nodes sometimes

can have large residuals but contribute little to the particle advection. Therefore, we use

grid-to-particle transfer to transfer the grid residual vector onto the particles to get the final

residual vector. All our examples are running with tolerance 10−2m/s based on the infinity
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norm of the velocity-unit residual vector on particles.

3.1.5.6 Timestep Size Restriction

The time step size of MPM is bounded by the advection CFL condition (Gast et al., 2015).

For those without stress-iterations, no further restrictions are required for our optimization

integrator. For those with stress-iterations, theoretically, there is indeed a timestep size

restriction for the stress iteration to fully converge, but we have not observed non-converging

cases.

3.1.6 Discretization with FEM

ECI is independent of spatial discretization choices. Hence it can also be conveniently applied

in Finite Element Methods (FEM).

In FEM, the conservation-of-momentum equation (Equation (3.3)) is directly discretized

and solved in the material space. For FEM with linear tetrahedral elements, the discretized

nodal internal force is

fi = −
∑
e

V 0
e Pe∇Nie, (3.45)

where e indices all tetrahedral elements, V 0
e is the rest volume of element e, and ∇Nie is the

gradient of the shape function on node i evaluated at the barycenter of element e (Irving

et al., 2006).

Considering implicit plasticity, the internal force can be written as (see the supplemental

document for details)

fn+1
i = −

∑
e

V 0
e

∂ΨE

∂F E
(Z(F E,tr

e ))Z(F E,tr
e )⊤F E,tr

e

−⊤
F P,n

e

−⊤∇Nie. (3.46)

The integrability of the vector field ∂ΨE

∂FE (Z(F E,tr))Z(F E,tr)⊤F E,tr−⊤
leads us to the integrable
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Table 3.1: Simulation Statistics.

Scene Figure Model ∆t (s) ∆x (m) Geometry Elasticity Plasticity/Viscosity s/Step
Sand castle Figure 3.15 Drucker-Prager 0.0004 0.007 2.26M particles E = 5× 106 ϕf = 30◦, c = 0.0025 18
Snow ball Figure 3.17, Figure 3.18 Drucker-Prager 0.001 0.01 1.00M particles E = 106 ϕf = 30◦, c = 0.0025 10
Noddle Figure 3.1 Von-Mises 0.001 0.01 2.07M particles E = 106 τY = 7.7× 102, ξ = 0 31
Hydraulic test (Can) Figure 3.1, Figure 3.19a, Figure 3.19b Von-Mises 0.01 / 156K elements E = 7× 109 τY = 3× 107, ξ = 0.5 5.6
Hydraulic test (Cylinder) Figure 3.20a Von-Mises 0.01 / 299K elements E = 7× 109 τY = 3× 107, ξ = 0.1 15
Hydraulic test (Square) Figure 3.20b Von-Mises 0.01 / 230K elements E = 7× 109 τY = 3× 107, ξ = 0.1 8.1
Armadillo Figure 3.22 Von-Mises 0.01 / 121K elements E = 106 τY = 105, ξ = 0.5 99
Car crash Figure 3.21 Von-Mises 0.005 / 152K elements E = 2× 109 τY = 2.5× 106, ξ = 0.1 51
Memory foam Figure 3.24 Viscoelasticity 0.01 / 212K elements E = 103 EN = 2× 105, v = 0.01 17

internal force from the augmented elastoplastic energy density Ψ:

fn+1
i = − ∂

∂xi

(
∑
e

Ψ(F E,tr
e )V 0

e ), (3.47)

where xi is the world space coordinate of node i.

At the end of each time step, we need to track and update F P on each element with

Z(F E,tr)F P,n+1 = F E,trF P,n. (3.48)

ECI combined with Incremental Potential Contact (IPC) (Li et al., 2020) allows us to

simulate various scenarios where both accurate frictional contacts and inelastic responses are

essential.

Timestep Size Restriction Similar to MPM, there is also a timestep size restriction for

the stress iterations to fully converge in FEM. Other than that, no further restrictions are

needed. However, there is certainly a tradeoff between the number of timesteps and the

accuracy and overall efficiency of the simulation (Li et al., 2020), which holds for all time

discretized numerical schemes.

3.1.7 Evaluation

We demonstrate the versatility of ECI with both MPM and FEM simulations. Among these

examples, the ones that do not contain topological changes are simulated with FEM, and the

frictional contact is modeled with IPC (Li et al., 2020). For our MPM simulations, we use a
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Figure 3.11: 2D sand column collapse experiment with consecutively halved time steps.

∆t
# Stress Iter.
(Avg. / Max)

# Newton Iter.
(Avg. / Max)

# Line search
(Avg. / Max)

0.01 8.8 / 13 112.3 / 186 202.0 / 476
0.005 6.8 / 9 45.2 / 75 48.8 / 201
0.0025 5.1 / 7 18.4 / 34 9.6 / 60
0.00125 3.7 / 6 9.2 / 14 1.3 / 9
0.000625 2.6 / 4 4.7 / 8 0.0 / 0

Table 3.2: Simulation statistics of 2D sand column collapse experiment

CFL number of 0.6 (Gast et al., 2015). The world-clock timing and the simulation setup are

reported in Table Table 3.1. The statistics are based on Intel Core i9-10920X 3.5-GHz CPU

with 12 cores.

3.1.7.1 Unit Tests

Convergence of Stress Iteration. We test the convergence of the stress iteration on a

2D sand column collapse experiment. We use a direct solver to solve linear systems in the

optimization time integrator, to avoid complicating the experiments with possibly inexact

Krylov solves. The convergence criteria of the stress iteration is ∥(τ j+1
Y −τ jY )∥2 < 10−9(2µ

√
N)

, where N is the number of particles, and the Newton tolerance is 10−5. Note that these

tolerances are much tighter than needed so that we can verify that our method can converge

with high accuracy. We consecutively halve the time step size from ∆t = 0.01s. All these

tests successfully converge with the given convergence criteria and have consistent results

44



➀
➁

➁

➂

➂

➃

➃

➄

➄

➅

➅

➆

➆

➇

➇

➈

➈

➉

➉

➀

Figure 3.12: With lower and upper bounds, the stored elastic energy in the soda can changes
periodically over time during the compressing–stretching cycles, which demonstrates the
long-time stability of our simulation.

(see Figure 3.11). The iteration statistics are listed in Table 3.2, which shows that as the

time step size decreases, the required number of stress iterations, Newton iterations, and line

searches all decrease as expected.

Long-Time Stability. To test the long-time stability of our method, we simulate a soda

can being periodically compressed and stretched 10 cycles with ∆t = 10−2s (Figure 3.12).

The Young’s modulus of the soda can is 7 GPa. The stored elastic energy over time is always

bounded and it oscillates along with the compressing–stretching cycles, demonstrating the

strong long-time stability property of our method.

3.1.7.2 Comparisons to Explicit and (Semi-)Implicit Plasticity

We compare our variational method with both explicit and implicit methods proposed in

Klár et al. (2016) on a 3D sand column collapse experiment. The time step size ∆t for these

two methods both need fine-tuning to avoid numerical explosion. For explicit integration, the
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Figure 3.13: Sand Column Collapse. (a) The explicit method explodes with ∆t = 10−4s.
The implicit method (Klár et al., 2016) with vanilla Newton fails at a time step where the
scene almost becomes static ∆t = 10−4s (the frame right before the failure is rendered here).
Our method works with all three time step sizes ∆t = 10−5s, 10−4s, 10−3s, and produces
consistent results. The semi-implicit method produces artificial elastic behaviors even with a
small time step size. (b) With the explicit method as the ground truth, our method has a
smaller error (larger IoU score) than the semi-implicit method.

time step is bounded by the sound-speed CFL (Sun et al., 2020b), which is small in general,

especially for stiff materials and at high resolution. With Klár et al. (2016)’s implicit method

based on the non-integrable implicit force (Equation (3.12), with asymmetric force Jacobian),

the convergence of time integration can only be reached if the initial guess is sufficiently

close to the local optimum. Furthermore, the search performed by the Newton-Raphson

iterations (we refer it as the vanilla Newton method) can result in deformation gradients

with non-positive determinants that cause simulation failure.

We experiment under three different time step sizes ∆t = 10−3s, 10−4s and 10−5s. Explicit

MPM can run with ∆t = 10−5s, but it explodes with ∆t = 10−4s (Figure 3.13a top left).

The vanilla Newton method can run with ∆t = 10−5s, but fails at a step when the simulation

almost becomes static with ∆t = 10−4s and at the first step with ∆t = 10−3 (Figure 3.13a

top middle). Our method, on the other hand, works well with all these three time step sizes

and produces consistent results (Figure 3.13a right).

A common heuristic treatment is to directly replace the grid update step in the explicit

MPM simulation with implicit time integration without plasticity and only conduct return

mappings at the end of the time steps. We refer to this elasticity-plasticity-decoupled scheme

as the semi-implicit method in this paper. Although its stability and convergence can be
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Figure 3.14: ECI achieves 2× speedup compared to the explicit method in a sand column
collapse experiment and is with comparable speed to the implicit method in Klár et al. (2016).

guaranteed by the optimization time integration, the semi-implicit method can lead to severe

artifacts as shown in Figure 3.13a bottom left, where the forces provided by the stresses

outside the yield surface make the continuum behave more like a purely elastic body. This is

due to the ignorance of the plasticity by the implicit solve, which in turn overestimates the

material’s resistance to tensile deformation. Our method, on the other hand, fully resolves

plasticity in the implicit solve and does not suffer from any such artifacts. We use the explicit

method as the ground truth to quantitatively measure errors. Figure 3.13b shows that our

method has a smaller error than the semi-implicit method, where we compute the Intersection

over Union (IoU) metrics between MPM grid mass distributions (computed as the ratio of

the number of common grid nodes to the number of union grid nodes).

In practice, we can limit the number of Newton iterations and Krylov iterations. On

a sand column collapse experiment with the same physical parameters and initial setup as

above, our method with ∆t = 2×10−5s achieves 2× speedup compared to the explicit method

with ∆t = 10−5s, as shown in Figure 3.14. With 2 stress iterations per time step, 1 Newton

iteration per stress iteration, and 5 MINRES iterations per Newton iteration, our method

can still generate physically plausible results. To make it a fair comparison, the maximal

numbers of Newton iterations and GMRES iterations are set to 2 and 10 respectively for

Klár’s implicit method with the same ∆t = 2× 10−5s as ours. The simulation using Klár’s

method does not go unstable in this setting, and its computational cost is similar to ours, as

expected.
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Figure 3.15: Snow castle. With our variational inelasticity model, the castle can be smashed
into pieces after hitting by the fish, while with the semi-implicit method the castle behaves
like an elastic body, holding the fish in an unrealistic way.

Explicit Ours Semi-implicit
(Extrapolated StVK)

Semi-implicit
(StVK)(Groundtruth)

Figure 3.16: Our method is more accurate visually and quantitatively than the semi-implicit
methods with/without the extrapolated StVK constitutive model.

3.1.7.3 Druker-Prager Plasticity with Cohesion

Snow Castle To further demonstrate the artifacts caused by fully decoupling elasticity and

plasticity, we simulate a snow castle hit by a high-speed elastic fish. The snow is modeled

with wet soil by Druker-Prager plasticity with cohesion. With our variational model, the fish

smashes the snow castle into pieces completely. However, with the semi-implicit method, the

castle behaves like an elastic body and ends up holding the fish in an unrealistic way.

Our extrapolated StVK constitutive model combined with the volume-preserving return

mapping plays a vital role in generating fractures in this example. Intuitively, our scheme

mimics the cohesion behavior better because it allows particles to be compressed a little

before exerting resisting force. Under the same time step size (∆t = 5× 10−5), we use the

result from the explicit method with the extrapolated StVK model as the ground truth to

compare the accuracy between our method and semi-implicit methods (with/without the

extrapolated StVK model). The visual and quantitative comparisons in Figure 3.16 both

show that our method is more accurate.
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Figure 3.17: Snow Ball. A free-falling snow ball hits on a static dragon and smashes into
pieces.

Increasing cohesion

Figure 3.18: Larger cohesion strength increases the chunkiness of the snow. From left to
right, c = 0.00125, 0.0025, 0.005.

Snow Ball We use the Druker-Prager plasticity model with cohesion to simulate a snow ball

hitting a static dragon (Figure 3.17). We also simulate with different cohesion strengths to

show the controllability of our method on simulating different levels of chunkiness (Figure 3.18).

3.1.7.4 Von-Mises Plasticity (with Hardening)

Play-Doh Noodle. MPM can automatically handle topology changes. By leveraging this

feature, we simulate a Play-Doh modeled by the von-Mises plasticity pressed through a

cylindrical noodle mold (Figure 3.1 (top row)).

Hydraulic Tests on Metals. Hardening is widely observed in metals. We simulate

hydraulic tests on soda cans with different hardening coefficients and compare with the

simulation without hardening (Figure 3.1 bottom row). The hardening mechanism makes

plastic deformations harder to happen as the yield surface expands. This lets the object

restore its original rest shape partially when all boundary conditions are released. As shown
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Decreasing Hardening

(a) (b)

Figure 3.19: (a) Different hardening coefficients lead to varying restorations towards the rest
shape and generate different crushing patterns. From left to right, the hardening coefficient
ξ = 0.5, 0.3, 0. (b) One of our hydraulic test simulations on metal cans generate a crushing
pattern well matching that in a real video footage (Youtube, 2021).

(a) (b)

Figure 3.20: Hydraulic Tests on Metal Pipes. The crushing pattern matches the results
of real-world experiments. (Youtube, 2018, 2021).

in the last frame when the upper press withdraws (Figure 3.19a), the red can with the largest

hardening coefficient restores the most, and the orange can with no hardening almost does

not restore at all. Furthermore, different hardening coefficients generate different crushing

patterns. As shown in Figure 3.19b, the deformation patterns in one of our compressed

can match that from a real experiment. Modeling hardening also allows us to successfully

capture the snap-through instability of metal, which can be observed in real experiments (see

our video demonstration). When we swap in long steel pipes for the hydraulic tests (one

cylindrical, one square), the crushing patterns also match real experiments well (Figure 3.20).
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Figure 3.21: Car collision. The red car hits the yellow car against the wall by 56 mph,
creating a big dent on the right side of the yellow car.

Figure 3.22: Squeeze armadillo. Rolling a plastic armadillo through a gear left the gear
teeth permanently distorts the armadillo body.

Car Crash and Crushed Armadillo. To further demonstrate the hardening behaviors of

metals, we simulate a high-speed car crashing into another stationary car (Figure 3.21) and

an armadillo rolling through a metal crusher driven by frictions (Figure 3.22). Both examples

show realistic denting effects with sufficient restoration towards the rest shape enabled by

hardening.

Comparison to Semi-Implicit Plasticity. We simulate a stiff elastic ball hitting a wall

modeled by the von-Mises plasticity to compare our method with the semi-implicit method.

As shown in Figure 3.23, the permanent deformations of the wall clearly show that the

semi-implicit plasticity overestimates the material’s resistance. We use the explicit method as

the ground truth to compare the position error of the wall (computed as the average squared

norm of vertex position differences), which shows that our method is more accurate than the

semi-implicit method.
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Figure 3.23: The semi-implicit von-Mises plasticity (right) overestimates the resistance
response and results in a large error compared to the ground truth (left). Ours (middle) is
much more accurate.

Figure 3.24: Memory Foam. A hand presses down a memory foam pillow for a while to
leave a hand print, and then disappears suddenly. From left to right, the hand print slowly
disappears as the deformed memory foam gradually restores its initial rest shape.

3.1.7.5 Viscoelasticity

Memory foam is a typical material demonstrating the viscoelastic behaviors in the real world.

We simulate a pillow made by memory foam pressed down by a hand for a while, and then

we lift the hand suddenly. We successfully capture the intricate process where the pillow

slowly recovers its rest shape, completely removing the imprint of the hand (Figure 3.24).

3.1.8 Discussion

In summary, we developed ECI, a new formulation that augments hyperelastic energy

density functions to enable variational forms for a wide range of elastoplastic and viscoelastic

materials. Our algorithm enables the fully implicit simulation of inelasticity in recently

advanced optimization-based time integrators, embracing advantages of long-time stability,
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global convergence, large time step sizes, and high accuracy.

Our method is most naturally “plug and play” when applied to J2 von Mises materials and

finite strain viscoelastic materials. However, when extended to pressure-dependent plasticity

or strain hardening mechanisms, additional iterations on the stress are necessary to achieve

final convergence. In our examples, usually 1-2 stress iterations are sufficient to generate

convergent or visually high-quality results. It is promising future work to devise theoretical

and algorithmic improvements to guarantee and accelerate the convergence, particularly for

accuracy-demanding applications.

The integrability of the implicit elastoplastic force depends on both the elastic model and

the plastic model. For instance, although the combination of St. Venant-Kirchhoff elasticity

with von-Mises plasticity adopted by ECI leads to a symmetric force Jacobian, neo-Hookean

elasticity with von-Mises plasticity does not. It is an interesting future work to explore

integrable approximations to other combinations.

ECI assumes the full-dimensional volumetric deformation gradient. Accordingly, our

metal cans and pipes are all simulated with thin single-layer linear tetrahedral elements,

which could potentially suffer from shear locking. It would be interesting to extend ECI to

codimensional geometries like shells and rods (Narain et al., 2013).

Finally, our augmentation to the strain energy density function changes the conditioning

of the global stiffness matrix. It is interesting future work to study its effect on the linear

solve, and strategies to precondition the ECI-augmented system.

3.2 PlasticityNet: Learning to Simulate Metal, Sand, and Snow

for Optimization Time Integration

3.2.1 Introduction

Combining machine learning with physical simulations has recently attracted a lot of attention.

A vast amount of existing research adopts an end-to-end approach, where the specific

underlying computational physics system is treated as a black box (Sanchez-Gonzalez et al.,
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2020; Pfaff et al., 2020). Harnessing the power of neural networks, this research has been

successfully applied in computer animation (Eckert et al., 2019), multibody systems (Battaglia

et al., 2016; Chang et al., 2016; Yang et al., 2020; Gan et al., 2020), human musculature

simulation (Jin et al., 2022), computational fluid dynamics (Belbute-Peres et al., 2020; Garnier

et al., 2021), and non-linear continuum mechanics (Bock et al., 2019). An alternative direction

is represented by physics-informed neural networks (PINN) (Raissi et al., 2019; Karniadakis

et al., 2021), where in its original form, the residual of a partial differential equation is

directly used as the loss function so that the network training is a physics-aware learning

process. PINN becomes powerful when the design space of the input to the network can be

parameterized, which accelerates both the roll-out and the inverse optimization process (Sun

et al., 2020a). Another noteworthy category is learning the physical modeling where the

machine can either help increase the model resolution in a coarser grid (Kochkov et al., 2021),

inject nonlinearity to a linear model (Luo et al., 2018), or apply a learnable model reduction

to reduce the system degrees-of-freedom (DOF) for acceleration (Shen et al., 2022, 2021).

Despite its great success, training a neural network to replace a traditional simulator is

not always the preferred choice. This is partially due to the challenges in the trained model’s

generality and portability. For example, a trained model on a particle-based deformable body

solver (such as the Material Point Method (MPM (Jiang et al., 2016)) cannot be directly

applied to the mesh-based Finite Element Method (FEM) (Sifakis and Barbic, 2012), while

in traditional continuum mechanics, the constitutive model that describes the relationship

between force and deformation is an independent module from the underlying geometric

description or simulation scheme. Indeed, by simply switching the constitutive model and

applying minor changes to the existing and general simulation pipeline, a wide range of

materials can be simulated in the same framework, ranging from sand (Prager, 1955; Drucker,

1950; Klár et al., 2016; Tampubolon et al., 2017) and metal (Mises, 1913a), to snow (Gaume

et al., 2018; Wolper et al., 2019; Li et al., 2021d) and glacier (Wolper et al., 2021).

Many elastic materials, including those represented by mass-spring systems (Bargteil

et al., 2020) and common hyperelastic solids (Stomakhin et al., 2012), are usually governed by

analytical elastic potential energy functions in terms of the deformation. These models are
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well fitted to experiments and proven to be simple, accurate, and predictive. Although most

of these energy functions are highly nonlinear and non-convex, reformulating the dynamic

simulation process as a numerical optimization problem and solving it using projected

Newton and line search can guarantee global convergence to a solution (Li, 2020). Beyond

hyperelasticity, plasticity is much more challenging. The mechanical response of plastic

materials imposes extra difficulties in the implementation as it is path-dependant and non-

smooth. One common handling of plasticity is the return mapping algorithm, which applies

the effects of plastic deformation to the elastic forces. However, this leads to asymmetrical

force derivatives, which eliminate the possibility of integrating the plasticity into the energy

function in a single optimization and complicates the pipeline. In the recent work of Energetic

Consistent Inelasticity (ECI) (Li et al., 2022f), the plasticity is analytically modeled as an

energy functional, and the simulation can be formulated as an optimization problem just

like simulating pure elastic materials. However, their analytical derivation only works for

St.Venant-Kirchhoff (StVK) elasticity with the von-Mises plasticity.

In this work, we propose PlasticityNet, a neural network-based approach for learning

an energy-based force that locally approximates elastic forces with plasticity models and

is compatible with optimization time integrators. PlasticityNet framework supports any

combinations of elastic models and plastic models and works with both MPM and FEM

discretizations. With optimization time integrators, we demonstrate that our framework can

simulate vast types of plasticities, such as metal, sand, and snow, with large time step sizes.

3.2.2 Related work

Classic Plasticity Models The classic plastic models utilized the geometry information of

the plasticity and are available for many applications. In the computer graphics community,

researchers have followed mechanical literature on the Drucker-Prager elastoplasticity model

(Prager, 1955; Drucker, 1950), and developed particle-based simulations of dry (Klár et al.,

2016) and wet (Tampubolon et al., 2017) sand. Extending a similar Cam-Clay plasticity

model, snow avalanches (Gaume et al., 2018; Li et al., 2021d), glacier calving (Wolper et al.,
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2021) and food fracturing (Wolper et al., 2019) are also captured with high visual plausibility

as well as physical accuracy. For metals and dough-like materials, the von-Mises plasticity

model (Mises, 1913a) is usually adopted, while (Wolper et al., 2020; Jiang et al., 2017a)

presented its anisotropic extensions. Still, the implementation of these models in modern,

optimization-based simulators is cumbersome due to the non-integrable forces. Recently, (Li

et al., 2022f) proposed an elastoplastic energy of von-Mises plasticity under StVK elasticity

for optimization time integrator, which can be viewed as a special-case analytical solution to

our framework under the same combination of elasticity and plasticity. But our framework

works for arbitrary combinations.

Data-Driven Plasticity Models The machine learning approach has been used to find

new plastic models using large sets of measurements and parameters, outperforming many

long-standing hand-crafted models. The macro-level constitutive relationship is learned from

the results of the micro-level simulations (Mozaffar et al., 2019; Reimann et al., 2019). A

similar approach is applied in (Vlassis et al., 2020) to learn anisotropic hyperelasticity, where

additional geometrical information is included in the input. PINN can also be applied in

plastic model finding from experimental measurements (As’ ad et al., 2022; Vlassis and Sun,

2021; Koeppe et al., 2022), where the loss includes the stress and Hessian, to infer stress with

more accuracy in the implicit simulators. However, there does not exist any prior work, to

the best of the author’s knowledge, that tried to find variational form for arbitrary plasticity

model.

Optimization Time Integration The optimization time integrators have advantages in

terms of stability under large deformations and large time step sizes. Many of the nonlinear

systems of equations that arise from implicit simulation can be integrated to get equivalent

optimization problems, which allow robust optimization techniques to be applied. The

MPM simulator in this work is based on (Gast et al., 2015), which formulated the backward

Euler time integration with hyperelastic materials as a minimization problem. (Li et al.,

2019a) and (Wang et al., 2020a) also explored domain decompositions and hiearachical
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preconditioners to improve robustness and efficiency. The FEM simulator in this work is

based on Incremental Potential Contact (IPC) (Li et al., 2020), which proposed a variational

form for frictional contacts. Their optimization-based frictional contact framework was also

extended to codimensional objects (Li et al., 2021a), rigid bodies (Ferguson et al., 2021a; Lan

et al., 2022b), articulated multibodies (Chen et al., 2022b), reduced elastic solids (Lan et al.,

2021a), embedded interfaces (Zhao et al., 2022), and FEM-MPM coupled domains (Li et al.,

2021c).

3.2.3 Background

3.2.3.1 Optimization Time Integration

In this section, we briefly introduce the optimization time integration for elastodynamics

simulations with the Material Point Method (MPM) and the Finite Element Method (FEM).

We refer the readers to (Li, 2020) and (Gast et al., 2015) for more details.

FEM discretizes the simulation domain as unstructured meshes (e.g., triangle meshes

in 2D), while in MPM, a point cloud composed of material particles is used to discretize

the domain. While FEM directly uses the mesh nodes as the simulation degrees-of-freedom

(DOF), MPM transfers its particle state to a uniform background grid, whose nodes are

used as the DOFs for the integration of forces (Jiang et al., 2016). Robust simulation

of elastodynamics can be achieved via implicit time integration, which updates the nodal

positions (x) or velocities (v) step by step based on the previous physical states. To step

from tn to tn+1 = tn +∆t with time step size ∆t, with implicit Euler time integration rule,

one needs to solve a nonlinear system of equations

M(vn+1 − (vn + g∆t)) = ∆tfn+1. (3.49)

Here v is the velocity DOF formed by concatenating all nodal velocity vectors, similarly

concatenated, M is the mass matrix, g is the gravitational acceleration vector, and f is the
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internal force vector. Without plasticity, the internal force on a node i can be calculated as

fn+1
i = −

∑
q

V 0
q P(Fn+1

q )∇wiq, (3.50)

where q iterates the surrounding elements/particles of node i in FEM/MPM, V 0
q is the initial

volume of the element/particle, F = (I+∆t∇v)Fn (MPM) or F = ∇xn +∆t∇v (FEM) is

the deformation gradient, which measures deformation from the undeformed state to the

deformed state, and P is the first-Piola Kirchhoff stress, which describes the internal force per

unit area within a material. ∇wiq is the gradient of the weight function on node i evaluated

on an element/particle center. The weight function is for transferring physical quantities

between the elements/particles and the mesh/grid nodes. Unlike FEM, the last time step is

used in MPM as the reference configuration, and so ∇wiq is calculated as Fn⊤
q ∇wn

iq.

When there exists an energy density function Ψ such that P(F) = ∂Ψ
∂F

, solving Equa-

tion (3.49) is equivalent to solving the following optimization problem

vn+1 = argminv

1

2
∥v− (vn + g∆t)∥2M +

∑
q

V 0
q Ψ(Fq). (3.51)

This formulation is more favored because with line search methods, convergence to a local

minimum of Equation (3.51) can be guaranteed even when simulating challenging cases with

stiff materials or large time step sizes. After solving for the velocity vn+1, FEM directly

updates mesh nodal positions as xn+1 = xn +∆tvn+1, while for MPM, the velocity on the

grid node is interpolated to particle locations for particle advection. The background grid is

reset at the beginning of each time step, which allows MPM to benefit from the conveniences

of a regular grid and a mesh-free formulation at the cost of some accuracy loss due to the

transfers between the grid and particles.
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Elastic Region

Plastic Region

Figure 3.25: An illustration of a return mapping.

3.2.3.2 Return Mapping for Plasticity

With plasticity, objects can undergo both plastic and elastic deformations, and the deformation

gradient at the current time step can be decomposed as

Fn+1 = FE,n+1FP,n+1 (3.52)

based on the finite strain theory. Here FP,n+1 encodes the permanent plastic deformation of

the rest shape, and FE,n+1 is the elastic deformation that results in effective elastic forces.

In theory, FE,n+1 is constrained within certain elastic regions. Computation-wise, an elastic

predictor FE,tr = Fn+1(FP,n)−1 can be computed first by assuming FP,n+1 = FP,n. If FE,tr is

outside the elastic region, it will be projected back onto the boundary of the region to obtain

FE,n+1 = Z(FE,tr) (Figure 3.25). This projection Z is called a return mapping. Within this

framework, the implicit elastoplastic nodal force can be computed as (Li et al., 2022f)

fn+1
i = −

∑
q

V 0
q τ (Z(FE,tr

q ))FE,tr
q

−⊤
FP,n−⊤∇wiq (3.53)

where τ (F) = P(F)F⊤ is the Kirchoff stress. The above forces are integrable only if

τ (Z(F))F−⊤ can be represented as the gradient of some energy function:

∂Ψ

∂F
= τ (Z(F))F−⊤. (3.54)
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Most combinations of elastic constitutive models and plastic return mappings do not satisfy

this integrability condition because the Jacobian field of the right-hand side is asymmetrical.

Note that directly feeding Z(F) into an elastic potential does not form a potential energy for

the elastoplastic forces defined in Equation (3.53). (Li et al., 2022f) only found one specific

combination such that an elastoplastic potential energy exists. Thus, it remains challenging

to simulate versatile plastic behaviors with optimization time integrators and achieve robust

performance.

3.2.4 PlasticityNet

We propose PlasticityNet, a neural network-based elastoplastic model that finds a family of

local potential energies whose negative gradients can approximate the elastoplastic forces

within a small neighborhood so that plasticity can be conveniently simulated using optimiza-

tion time integrators. The model architecture is illustrate in Figure 3.26. Specifically, instead

of finding a global energy function Ψ(F), we search for an energy Ψ(F,F0), parameterized by

F0, such that

∂Ψ

∂F
(F,F0)|F=F0 = τ (Z(F0))F

−⊤
0 , and

∂Ψ

∂F
(F,F0) ≈ τ (Z(F))F−⊤. (3.55)

To exactly enforce the first equality, we propose the following linear correction:

Ψθ(F,F0) = NN θ(F,F0)− (∇FNN θ(F0,F0)− τ (Z(F0))F
−⊤
0 )⊙ F. (3.56)

Here A ⊙ B = AijBij = tr(A⊤B) is the matrix inner product. It can be verified that

∂Ψθ

∂F
(F,F0)|F=F0 = τ (Z(F0))F

−⊤
0 .

Then we only need to focus on the approximation part in Equation (3.55). We design the

training loss function for our neural network as

L(θ) = EF0EF

∥∥∥∥∂Ψθ

∂F
(F,F0)− τ (Z(F))F−⊤

∥∥∥∥2
F

. (3.57)
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Figure 3.26: An overview of PlasticityNet. It is a map from R2d2+1 to R.

During training, F is only sampled near F0. Please refer to Section 3.2.5.1 for details.

3.2.4.1 Hardening of Plasticity

Hardening effects are widely observed in metals and snow. With hardening, the elastic region

will expand by a certain amount whenever FE,tr falls in the plastic region. To account for

hardening, the return mapping Z(F, h) and the energy Ψθ(F,F0, h) will depend on an extra

hardening state h, which controls the shape of the elastic region. This hardening state is

a function of F. However, to maintain integrability with respect to F, we approximately

update h based on F0, which is assumed to be close to F.

3.2.4.2 Optimization Time Integration with PlasticityNet

Fixed-Point Iteration The gradient of our learned elastoplastic potential energy Ψθ(F,F0)

only approximates the effective stresses locally near F0. To approach the accurate solution

of Equation (3.49) with elastoplastic forces, we apply a fixed-point iteration on F0 to let it

converge to Fn+1. Specifically, we solve a sequence of optimization problems

vn+1,j+1 = argminv

1

2
∥v− (vn+g∆t)∥M+

∑
q

V 0
q Ψθ(Fq,F

j
0,q, h

j
q), for j = 0, 1, 2, ..., (3.58)

treating the concatenated deformation gradients Fj
0 and hardening states h as constants,

which are only updated before each optimization as Fj
0 = F(vn+1,j) and h = h(F0). At

convergence, we will obtain the true solution of Equation (3.49). In practice, a few number

of fixed-point iterations can already generate high-quality results.
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Elastic Region

Figure 3.27: Volume-preserving projection.

Stability Regularizer We augment our learned potential with an extra quadratic regular-

izer to stabilize the simulation especially when the material is stiff or the time step size is

large:

Ψθ(F,F0) = NN θ(F,F0)− (∇FNN θ(F0,F0)− τ (Z(F0))F
−⊤
0 )⊙F+

1

2
µ∥F−F0∥2F . (3.59)

Here µ is the shear modulus of the material that Ψθ is learning. Note that this extra term is

added after the model is trained instead of during the training. This extra term does not

change the gradient at F0, so it will not change the fixed point of Procedure 3.58. Please see

Section 3.2.5.3 for a comparison between simulations with and without this regularizer.

3.2.4.3 Learning Volume-Preserving Return Mapping

The return mapping Z required by PlasticityNet can be either given analytically or learned.

Note that with different combinations of many practical elasticity and plasticity models,

the return mapping may not have a closed-form solution, and the projection can only be

performed by solving a nonlinear system of equations.

Here we provide a simple approach to learn a volume-preserving return mapping, which

ensures that det(Z(F)) = det(F). For isotropic materials, the projection can be performed

in the diagonal space, i.e., with F = UDiag(Σ)V⊤ being the singular value decomposition of

F; the projection is only needed for Σ. In the diagonal space, a volume-preserving path is

a straight line in the Hencky strain (defined as ϵ = log(Σ)) space, which is perpendicular
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to the diagonal line. The direction of the projection path is ϵ̂ = ϵ− sum(ϵ)1. The volume-

preserving projection in the Hencky strain can be unified by H = ϵ− δγ ϵ̂
∥ϵ̂∥ for some δγ, with

ZΣ(Σ) = exp(H) and Z(F) = UDiag(ZΣ)V⊤. An illustration is shown in Figure 3.27.

The elastic region is usually represented by an implicit function y(Σ) ≤ 0. We can use a

neural network to predict δγ, where the training leverages the differentiability of the implicit

representation for the elastic region boundary. The volume-preserving path usually has two

intersections with the elastic region boundary. To eliminate this ambiguity, we clamp the

output of the neural network with a maximum ∥ϵ̂∥. We define our neural-network-based

return mapping on the diagonal space as:

δγθ(Σ) = min{NN θ(Σ), ∥ϵ̂∥}, ZΣ
θ (Σ) =


exp(ϵ− δγθ ϵ̂

∥ϵ̂∥), y(Σ) > 0,

Σ, y(Σ) ≤ 0.

(3.60)

The training loss function for a single Σ is defined as

L(Σ; θ) =


y(ZΣ

θ (Σ))2 +max{δγθ(Σ)− ∥ϵ̂∥, 0}, y(Σ) > 0

0, y(Σ) ≤ 0

(3.61)

Here, the first term is to pull the points outside the elastic region back onto the boundary.

The second term is to avoid these points to be always projected onto the diagonal due to

the clamping in δγθ. To account for hardening, we only need to let the δγ network accept

an extra hardening state variable h: δγθ(Σ, h) = min{NN θ(Σ, h), ∥ϵ̂∥}. The learned return

mapping is then ready to be used by our PlasticityNet.

3.2.5 Experiments

We show examples to demonstrate the capability of our PlasticityNet in learning versatile

plasticity models. Our physical simulators are implemented using C++, and we applied

PyTorch to learn the potential energies, which are then loaded into our simulators with

TorchScript. All our potential energies are multilayer perceptrons (MLPs) with Swiss
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Table 3.3: Network Architectures and Training Details

Model MLP layers
Sand (StVK+Drucker-Prager) [8,32,32,32,1]
Snow (Neohooken+NACC) [9,32,32,32,1]
Metal (StVK+von-Mises) [9,32,32,32,1]
Sand 3D [18,64,64,64,1]
Metal 3D (StVK+von-Mises) [19,64,64,64,1]
Snow 3D [19,64,64,64,1]

activation functions (x sigmoid(x)) except the output layer. They are all trained using the

Adam optimizer (Kingma and Ba, 2014) on a single Nvidia RTX 3090 GPU with the same

parameters: initial learning rate α = 0.01, decay rate γ = 0.95, decay step 1000. The training

data is generated during the training process with random sampling, and the batch size is 216

for all cases. The models are all trained with 20000 epochs. The detailed architectures for

each model is listed in Table 3.3. All ground-truth data are generated using standard explicit

time integration with analytical plasticity returning mapping under small time step sizes

for stability and accuracy. With our PlasticityNet, we can robustly simulate elastoplastic

behaviors with much larger time step sizes using optimization time integrators.

3.2.5.1 Training

The training of PlasticityNet only requires the return mapping (either given analytically or

pre-trained) for the plasticity model and the Kirchhoff stress for the underlying elasticity

model. There is no need for extra labeled data. At each epoch, we will sample a new

batch of (F,F0,h). The sampling of deformation gradients is based on its singular value

decomposition F = UDiag(Σ)V⊤, with U,V being two rotation matrices. To sample F

and F0 so that their singular values are close to each other, we set F0 = R1Diag(e
ϵ)R2 and

F = R3Diag(e
ϵ+δϵ)R4, where ϵ is a randomly sampled vector, δϵ is a random perturbation,

and Ri’s are randomly sampled rotation matrices. The hardening state is sampled uniformly

from an appropriate range depending on the plasticity model. In this work, we uniformly

sample ϵ from [−1, 1]d, δϵ from [−0.1, 0.1]d for sand plasticity and metal plasticity, and

[−0.2, 0.2]d for the snow plasticity. The training loss curves of our 2D models are shown in
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Figure 3.28: Training losses of our 2D models.
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Figure 3.29: (a) (b) The intersection-over-union (IOU) (Huang et al., 2021) measure between
the ground truth and our results. The IOUs are computed using the mass distributions on
the MPM grid. (c) The average FEM nodal position difference. Note that the bounding box
of the 2D metal frame is 0.1m× 0.18m.

Table 3.4: Computational costs of 2D experiments.

Experiment
Ours Explicit

Time step (s) s/frame Time step (s) s/frame
Sand 1e-3 12.58 1e-5 6.20
Snow 1e-3 35.56 1e-5 6.78
Von-Mises Metal 1e-2 1.08 1e-5 5.39
Neohookean Metal 1e-2 1.03 1e-5 7.88
MPM-FEM Coupling 1e-3 38.90 1e-6 184.58

Figure 3.28.

3.2.5.2 Testing on 2D Simulations

In this section, explicit time integrators are used to generate the ground-truth data for the

validation of the optimization time integrators with PlasticityNet on multiple 2D experiments.

The quantitative comparisons are plotted in Figure 3.29. We additionally include the

computational costs in Table 3.4. We remark that the main objective of our work is not
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Ours (dt = 1e-5s) 

Ground truth (dt = 1e-5s) 

Ours (dt = 1e-3s) 

Figure 3.30: Sand plasticity.

Ours (dt = 1e-5s) 

Ground truth (dt = 1e-5s) 

Ours (dt = 1e-3s) 

Figure 3.31: Snow plasticity with hardening.

to surpass the performance of the existing simulation of every constitutive model, but to

provide a methodology that enables the usage of implicit plasticity in an optimization time

integration framework.

Sand Plasticity We start by learning the elastoplastic model of dry sand (Figure 3.30).

The model combination is St. Venant-Kirchhoff (StVK) elasticity, and the closed-form

Drucker Prager plasticity return mapping (Klár et al., 2016) (See Appendix B.2.1). In this

example, we simulate a column of sand falling onto the ground under gravity with MPM.

Our method generates visually identical results compared to the ground truth, both with the

same time step size and a 100× larger time step size. The quantitative comparison between

our results and the ground truth is shown in Figure 3.29a. Note that there is no hardening

mechanism in this plasticity model, so our PlasticityNet does not need the hardening state in

its input.
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Ours (E = 1e7 Pa, dt = 1e-5s) 

Ground truth (E = 1e7 Pa, dt = 1e-5s) 

Ours (E = 1e10 Pa, dt = 1e-2s) 

Figure 3.32: Metal plasticity with hardening.

Snow Plasticity with Hardening Snow is an elastoplastic material that can become

stiffer under compression. Essentially, this is the effect of hardening where its elastic region get

expanded. The variation in the stiffness across the snow body makes it easily fracture. Here

we simulate a snowball hitting the ground in the MPM simulator (Figure 3.31). We use Neo-

Hookean elasticity with the closed-form non-associative Cam-Clay plasticity return mapping

(Gaume et al., 2018) (See Appendix B.2.2). Our method generates similar results compared

to the ground truth when using the same time step size. The quantitative comparison of our

results and the ground truth is shown in Figure 3.29b. Our framework remains stable even

under much larger time step sizes. However, more numerical damping artifacts are introduced

as the time step size increases, which results in slightly different behaviors compared to the

ground truth.

Metal Plasticity with Hardening Metal is another common plastic material with

hardening. In this example, we train PlasticityNet to learn metal plasticity with the StVK

elasticity and the closed-form von-Mises plasticity return mapping (Mises, 1913a). (See

Appendix B.2.3) We simulate a metal frame compressed by a rigid plate in the FEM simulator

(Figure 3.32), where the Incremental Potential Contact (IPC) (Li et al., 2020) is used to
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Figure 3.33: Learned metal plasticity return mapping with neo-Hookean elasticity.

Ours (dt = 1e-3s) 

Explicit (dt = 1e-6s) 

Figure 3.34: Two-way coupling between FEM elasticity and MPM sand plasticity.

handle the frictional contact between the solids. When we run the explicit time integration

to generate ground truth, we have to decrease Young’s modulus to enable using large enough

time step sizes so that the simulation can be finished in practical time. Our method with the

original setting generates visually identical results using a much large time step size. The

quantitative comparison of our result and the ground truth is shown in Figure 3.29c.

Metal Plasticity Return Mapping Here we show an example simulated using Plas-

ticityNet with a learned von-Mises plasticity return mapping. The underlying elasticity is

neo-Hookean, instead of the StVK model in the last example (See Appendix B.2.4). Note that

for Neo-Hookean material, there is no closed-form solution available for the von-Mises return

mapping. In this case, a nonlinear optimization problem will need to be solved to perform the

return mapping for every element/particle in every time step, which could severely slow down

the standard explicit time integration. Using the same parameters as the metal compression

experiments above, we show that PlasticityNet with learned plasticity return mapping under

neo-Hookean elasticity can generate qualitatively similar results (Figure 3.33) to those from

PlasticityNet with closed-form return mapping under the StVK elasticity.
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MPM-FEM Coupling PlasticityNet enables the simulation of plastic materials in the

MPM-FEM coupling framework BFEMP (Li et al., 2021c), where only pure elasticity was

supported. When simulating with explicit BFEMP, the time step size required by stability is

the minimum between MPM step size upperbound and FEM step size upperbound. Here we

show an example where a stiff FEM elastic body falls onto MPM sand (Figure 3.34), where

the implicit BFEMP can use a time step size 1000x larger than the explicit BFEMP and

achieves an approximately 5x speedup in wall-clock time. We also remark that when the

time step size is small (as is required to keep the explicit time integration stable in this case),

MPM suffers from excessive numerical damping due to the significant amount of particle-grid

transfers. This is a known issue of explicit MPM simulations.

Different Energy Representations Here we include some different energy representations

we investigated (Figure 3.35), whose inaccurate results motivated us to develop our final

representation Equation (3.56). These experiments are all conducted on the 2D sand

column collapse example. The first straightforward idea is to find a globally defined neural

energy function Ψ(F) = Ψθ(F) that solves Equation (3.54), where θ is the parameter of

the neural network. Note that it is theoretically unachievable to train a global potential

energy function because the right hand side of Equation (3.54) is not integrable in the

plastic region. But it is still worth trying to explore an approximation by minimizing

L(θ) = EF

∥∥∂Ψθ

∂F
(F)− τ (Z(F))F−⊤∥∥2

F
. However, the experiment shows that this formulation

makes the sand column behave like an elastic body. It is also noteworthy that the sand

column cannot even maintain the rest shape at the first frame: it erroneously shrinks suddenly

and jumps off the ground. Additional insight is provided by realizing that a linear correction

is necessary to exactly vanish stress when the deformation gradient is the identity; so we

experiment with Ψ(F) = Ψθ(F)−∇FΨθ(I). This formulation unfortunately also leads to an

insufficient capture of plasticity, giving an elastic and visually distinct incorrect result. These

observations motivate us to investigate a family of potential energies to solve Equation (3.54)

locally. We first use Ψ(F,F0) = Ψθ(F,F0)−∇FΨθ(I,F0) and train with the loss function in

Equation (3.57). The simulation captures certain plastic behaviors when the deformation is
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Figure 3.35: Ablation studies on different energy representations.

Non-regularizedNon-regularized Regularized Regularized

Figure 3.36: The regularizer significantly improves the stability of the simulation.

small, but the result quickly deviates from the ground truth when the deformation becomes

larger. Finally, we come up with Equation (3.56) to achieve the nice results in Figure 3.30.

3.2.5.3 Ablation Studies

Stability Regularizer As an ablation study for the stability regularizer in Equation (3.59),

we compare the simulations with and without the regularizer on two 2D examples (Figure 3.36).

Without the regularizer, the metal frame can not even stay in its original rest configuration

after the first time step. In the sand example, particles in the highlighted regions tend

to separate from the sand column in a non-physical manner. These demonstrate that our

regularizer significantly improves the stability of the simulation.

3.2.5.4 Testing on 3D Simulations

Extending PlasticityNet to support 3D simulation is straightforward. We only need to

increase the dimension of the inputs to the PlasticityNet. To improve the expressiveness

of the network, we also increase the dimension of hidden variables. Here we demonstrate

the 3D versions of our 2D examples with similar physical parameters in Figure 3.37: 3D

sand plasticity, 3D snow plasticity, and 3D metal plasticity. The 3D metal is simulated with

∆t = 10−2, and for sand and snow, we use ∆t = 10−3s to satisfy the CFL condition (Courant
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3D Sand

3D Snow

3D Metal

Figure 3.37: 3D simulations with sand plasticity, snow palsticity and metal plasticity.

et al., 1967) in MPM, preventing the particles from traveling farther than the grid cell spacing

in a single time step.

3.2.6 Conclusion

We proposed PlasticityNet, a neural network-based elastoplastic model learning framework

that is agnostic to spatial discretizations. PlasticityNet represents the elastoplastic forces as

the positional gradients of learned potential energies, so that optimization time integration

could be applied to achieve robust and efficient simulation at large time step sizes. We

demonstrated that low-level components in traditional physical simulation frameworks can

be substituted with neural networks to obtain desired numerical properties that benefit the

computation. Notably, this also avoids tedious analytical derivations or expensive nonlinear

root-findings without significantly sacrificing the accuracy. We believe our work can inspire

more research that applies machine learning to physical simulation in the bottom-up style,

maintaining fundamental physical properties and applicability to general scenarios.

Limitations and Future Work There are several limitations of our framework. (1) We

cannot guarantee our fixed-point iteration will converge for arbitrary scenes. It is theoretically
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valuable to explore under what conditions the fixed-point can converge and what loss functions

can accelerate the convergence. (2) Although the regularizer added during the simulation

improves the stability of the simulation without changing the solution at convergence, it may

introduce some artificial viscosity because the regularized energy penalizes deformations away

from F0. Running more fixed-point iterations can alleviate this issue. It will also be interesting

to explore adaptive weighting mechanisms for the regularizer, or convert this soft regularizer

into a hard constraint. (3) We do not consider the Hessian of the learned plastic energy in our

training. Since we use second-order methods to perform optimization time integration, the

properties of the Hessian matrices may have an impact on the convergence of the optimization

method. Although the Jacobian matrices of the target gradients are asymmetric, it may

be helpful if the Hessian of our learned elastoplastic energy can approximate them so that

the stiffness of the material can be more accurately resolved. (4) Principled physical

assumptions of the learned potential energies by PlasticityNet, such as lower-boundedness

and convexity, are not enforced. It is interesting to explore whether enforcing these energy

properties would positively influence the convergence of the optimizations and fixed-point

iterations. (5) A trained PlasticityNet can be directly re-scaled to accommodate a different

Young’s modulus, but it needs to be re-trained for materials with different Poisson’s ratio or

plasticity parameters. It is an important future work to let our model more easily generalize

to different parameters. For example, these parameters can become extra inputs to the neural

network. The generalized energy can also be integrated into differentiable simulators (Hu

et al., 2020; Qiao et al., 2021a) to solve many inverse problems (Ma et al., 2021; Lin et al.,

2022a; Li et al., 2022c).
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CHAPTER 4

FEM-MPM Coupled Simulation

4.1 BFEMP: Interpenetration-Free MPM-FEM Coupling with

Barrier Contact

4.1.1 Introduction

The Material Point Method (MPM) (Sulsky et al., 1995; de Vaucorbeil et al., 2019) extends the

Particle-In-Cell (PIC) (Harlow, 1962) and the Fluid Implicit Particle (FLIP) (Brackbill et al.,

1988) methods from fluid dynamics to computational solids. In contrast to the commonly used

Total Lagrangian Finite Element Method for elastodynamics (Hughes, 2012), MPM utilizes

Lagrangian particles to represent continuum materials and an Eulerian background grid to

discretizes the governing equations. Except for recent advancements in Total Lagrangian MPM

(de Vaucorbeil et al., 2020; de Vaucorbeil and Nguyen, 2021), MPM is usually considered to

be following an Updated Lagrangian kinematic assumption with particles tracking historical

deformation, strain, stress, and other constitutive variables through evolving them with

velocity fields. The hybrid Lagrangian-Eulerian perspective combined with the Updated

Lagrangian kinematics puts MPM in a very advantageous position in modeling and simulating

high-speed, large-deformation, and topologically changing events (Zhang et al., 2016c). Having

gained a lot of attention in the last two decades, MPM and its variants (Bardenhagen and

Kober, 2004; Zhang et al., 2011; Sadeghirad et al., 2011; Gan et al., 2018; Hu et al., 2018a)

have been successfully applied in challenging problems including multiphase flows, fracture,

contact, adaptivity, free-surface flows, soil-fluid mixture, explosives, and granular media

(Zhang et al., 2008; Homel and Herbold, 2017; Nairn, 2003; Homel and Herbold, 2018; Tan

and Nairn, 2002; Zhang et al., 2017a; Abe et al., 2014; Guilkey et al., 2007; Gaume et al.,
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2018).

Although MPM has been demonstrated effective on a wide range of materials, many

application scenarios favor other discretization schemes due to considerations in efficiency,

accuracy, and suitability. Correspondingly, a large number of engineering applications

necessitate hybrid or coupled solvers combining MPM with other discretization choices. For

example, MPM has been coupled or hybridized with the Discrete Element Method (DEM) for

solid-fluid interaction (Yang et al., 2017b) and granular media (Liu et al., 2017a; Jiang et al.,

2020b; Chen et al., 2021b), the Finite Difference Method (FDM) for multiphase saturated

soils (Higo et al., 2010), and the Smoothed Particle Hydrodynamics (SPH) for solid mechanics

(Raymond et al., 2018).

Even though MPM itself can be derived as a Galerkin Finite Element Method, it is still

more common in computational solid mechanics to use the term “FEM” to refer to the

standard Total Lagrangian mesh-based FEM discretization. In this sense, MPM is much

less developed than FEM and still suffers from unique challenges in aspects such as stability,

accuracy, boundary condition enforcement, and numerical fracture (Cummins and Brackbill,

2002; Guilkey and Weiss, 2003; Homel et al., 2016). Therefore, FEM is often more suitable

for analyzing hyperelastic structures under small or moderate deformations. Resultingly,

MPM-FEM coupling becomes highly desirable in many multi-material simulation tasks or

those involving strongly heterogeneous deformations, for example, the blast event simulations

involving vehicles (Swensen et al., 2006). The coupling between MPM and FEM has been

extensively studied over the last decade. A natural way to hybridize the two schemes is to

treat FEM vertices as MPM particles and embed them into the MPM grid (Lian et al., 2011b;

Jiang et al., 2015a). The FEM shell formulation can also be embedded into the MPM grid

(Banerjee, 2005). In a similar fashion, EMPFE (Zhang et al., 2006) discretizes the entire

domain according to the severity of deformation – small deformation regions with FEM, while

large deformation regions with MPM, and then it embeds the displacement of interface FEM

vertices to the MPM grid. Despite its simplicity, additional treatment for eliminating the

hourglass mode is necessary due to simple trilinear MPM kernels for the interface computation.

Later on, AFEMP (Lian et al., 2012) extends this idea to support the dynamical conversion
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from severely distorted FEM elements to MPM particles. These methods handle material

interactions through the grid-based MPM contact and inherit common MPM-based contact

characteristics such as the strict nonslip condition between contacting interfaces.

To circumvent these issues, CFEMP (Lian et al., 2011a) was proposed to only use the

interface MPM grid for contact detection while computing frictional contact forces directly

based on the contact conditions. CFEMP has been successfully applied to coupling FEM

membranes with MPM solids (Lian et al., 2014), and also to modeling needle-tissue interactions

(Li et al., 2021b). However, these grid-based MPM-FEM coupling strategies require the

FEM boundary element size to be similar to the MPM grid spacing. If it is too large,

interpenetration can happen, while if it is too small, intrinsic damping will appear (Lian et al.,

2011b), and the time step size for explicit time integration would also be more restricted.

Accordingly, Cheon and Kim (Cheon and Kim, 2018) proposed to add extra distributed

interaction (DI) nodes on the FEM boundary elements to improve contact detection for

large-sized elements.

An improvement to CFEMP that also applies to AFEMP was later proposed to couple

FEM with MPM by handling contact primitive pairs between FEM boundary elements

and nearby MPM particles (Chen et al., 2015; Wu et al., 2018). A penalty method is

applied for computing the frictional contact forces. Later, Song et al . (Song et al., 2020)

extended this idea with an iterative contact force computation approach for the simultaneous

satisfaction of all contact conditions, together with an improved local search method to

prevent interpenetration issues at the contact crack. Bewick (Bewick, 2004) proposed to insert

intermediate nodes at the interface for 1D impact-resistant design problems, and the coupling

forces are calculated by FEM displacements which are determined by MPM particles.

So far, all the discussed MPM-FEM coupling works are designed for explicit time integra-

tion. Imposing frictional contact between FEM and MPM within implicit time integration

is challenging because the associated inequality constraints that need to be simultaneously

enforced while solving the nonlinear system of equations are also nonlinear and non-smooth.

Aulisa et al . (Aulisa and Capodaglio, 2019) proposed a monolithic coupling method for

implicit MPM and FEM through a conforming interface mesh, while extra care is needed to
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avoid the sticky artifact in receding contact cases. Larese et al . (Larese et al., 2019) discussed

implicit MPM-FEM coupling researches in geomechanics. In a soil-structure interaction

problem, the impact forces on the interface are transferred between the soil and the structure

solver and iterated until convergence. A similar method for enforcing nonconforming boundary

conditions for MPM (Chandra et al., 2021) was also applied. However, as pointed out in their

work, the method requires smaller time increments for problems with high relative velocity

towards the boundary, as otherwise, the boundary enforcement will be too late, and the

incoming material points may penetrate the nonconforming boundary surfaces.

This paper explores MPM-FEM coupling under the assumption of implicit integration in

both domains. Compared to explicit time integration, implicit schemes permit substantially

larger time steps with superior stability for stiff nonlinear problems. Implicit MPM/GIMP

has been explored by many researchers (Cummins and Brackbill, 2002; Guilkey and Weiss,

2001, 2003; Nair and Roy, 2012; Charlton et al., 2017; Love and Sulsky, 2006). We refer to

these literature for more discussions about the advantages of implicit time integration. Our

work follows the variational formulation of a wide family of implicit time integrators (Ortiz

and Stainier, 1999; Kane et al., 2000), where the displacement evolvement in each time step

is formulated as the stationarity point of a time discretized energy functional. The resulting

optimization-based time integrator has been applied in MPM with Newton-Krylov (Gast

et al., 2015), and more recently, quasi-Newton L-BFGS (Wang et al., 2020a) solvers.

In this work, integrating both MPM and FEM domains implicitly, we study MPM-FEM

coupling based on contact mechanics (thus we do not consider objects with partially mixed

discretization choices). A barrier-augmented variational frictional contact formulation is

known as the Incremental Potential Contact (IPC) (Li et al., 2020; Li, 2020; Li et al., ND)

was recently proposed for nonlinear elastodynamics with linear kernel FEM, which has also

shown to be effective for codimensional models (Li et al., 2021a), reduced space dynamics

(Ferguson et al., 2021b; Lan et al., 2021b), and embedded interfaces (Zhao et al., 2022). It

formulates the contact problem during time stepping as minimizing a potential energy inside

the manifold of interpenetration-free displacement trajectories characterized by boundary

geometric primitives of elastic structures. Extending this approach, we model MPM-FEM
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coupling as jointly finding optimal FEM mesh nodal displacements and MPM grid nodal

displacements under the constraint that MPM particles, with their trajectories embedded in

grid nodal displacements, maintain strict positive distances to the FEM mesh throughout the

implicit integration. The resulting method is named barrier FEMP (BFEMP) because these

constraints are enforced using barrier energies. Even though contact conditions are defined

between MPM particles and the FEM mesh, the real displacement unknown variables for

the MPM domain which the implicit time integration solves for are still defined on MPM

grids. The MPM particles remain embedded quadrature points in the MPM grid degrees of

freedom. Compared to soft penalty-based methods such as the particle-to-surface contact

algorithm recently proposed by Nakamura et al . (Nakamura et al., 2021), BFEMP requires

no stiffness parameter tuning and guarantees strict, hard non-penetration conditions under

convergence. Another useful feature of the proposed coupling scheme is that it enables a new

way of imposing irregular, separable, and frictional kinematic boundaries for MPM. Irregular

boundaries for MPM is a recently advanced topic (Tjung et al., 2020). BFEMP inherently

enables it by assigning all nodes in the FEM domain with prescribed Dirichlet displacements

and letting MPM interacts with them.

4.1.2 Governing Equations

In this study we focus on elastodynamics based on continuum mechanics. The corresponding

governing equations for a deformed continuum domain Ωt with x ∈ Ωt and time t ∈ [0,∞)

are given by (Bonet and Wood, 2008)

Dρ

Dt
+ ρ∇x · v = 0, (4.1)

ρ
Dv

dt
= ∇x · σ + ρg, (4.2)

where ρ(x, t) is the density, v(x, t) is the velocity, σ(x, t) is the Cauchy stress, and g is the

gravitational acceleration which is assumed to be the only body force. Under the finite strain

assumption (as we shall assume throughout this paper), deformation ϕ(X, t) maps X ∈ Ω0

from the material space to x ∈ Ωt in the world space: x = ϕ(X, t). The deformation gradient
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is defined as

F =
∂ϕ

∂X
(X, t) (4.3)

to describe the local deformation.

In Lagrangian Finite Element analysis for nonlinear dynamics, it is often preferred to

derive the weak form for X ∈ Ω0. Here we can pull back the momentum equation to

the material space. Denoting the first Piola-Kirchhoff stress P = P(X, t), the Lagrangian

momentum equation is then

R0A(X, t) = ∇X ·P(X, t) +R0g, (4.4)

where R0 = R(X, 0) is the material density at time 0, and A(X, t) = ∂2Φ
∂t2

(X, t) is the

Lagrangian acceleration, V(X, t) = ∂Φ
∂t
(X, t) is the Lagrangian velocity. The Cauchy stress

is related to the first Piola Kirchhoff stress as

σ = det(F )−1PF T . (4.5)

In this paper we are concerned with hyperelasticity. Thus there exists an elastic energy

density function ψ(F ) such that

P (F ) =
∂ψ

∂F
(F ). (4.6)

Without loss of generality, we focus on isotropic materials and adopt a compressible Neo-

Hookean constitutive model with

ψ(F ) =
µ

2
tr(F TF − I)− µ log(J) + λ

2
log(J)2, (4.7)

where J = detF , µ and λ are the Lamé parameters.

Remark 4.1.1. Many hyperelasticity models such as the Neo-Hookean model are only well

defined for J > 0. Discretely this will impose a nonlinear strict inequality constraint on
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the displacements for each quadrature point with a discrete sample of F . Ignoring these

constraints in a nonlinear optimization-based Newton solver will cause floating-point number

failures when a search step tries to evaluate energy or stress quantities at an intermediate

configuration with J ≤ 0. Instead of requiring a reduction of the time step, we directly

enforce this constraint through a line search filtering strategy (see Section 4.1.5).

4.1.2.1 Weak Form

Given trial function Q(·, t) : Ω0 → R3, the corresponding Lagrangian weak form of Equation

(4.4) is

∫
Ω0

Qα(X, t)R0Aα(X, t)dX =

∫
∂Ω0

QαTαdS(X)−
∫
Ω0

Qα,βPαβdX +

∫
Ω0

Qα(X, t)R0gαdX,

(4.8)

where Tα = PαβNβ (with N (X) being the material space normal) is the traction field at the

domain boundary ∂Ω0, on which one could presribe traction boundary conditions as needed.

While Total Langrangian FEM typically discretizes Equation (4.8), MPM usually adopts

the Updated Lagrangian view and consequently discretizes an Eulerian weak form instead

(Zhang et al., 2016c). Correspondingly the stress derivatives are discretized at the current

configuration Ωt. We can either push forward Equation (4.8) or directly integrate Equation

(4.2) to reach

∫
Ωt

qα(x, t)ρ(x, t)ai(x, t)dx =

∫
∂Ωt

qαtαds(x)−
∫
Ωt

qα,βσαβdx+

∫
Ωt

qα(x, t)ρ(x, t)gαdx,

(4.9)

where q(x, t) = Q(Φ−1(x, t), t) is the push forward of Q, i.e., an Eulerian trial function,

a(x, t) = A(Φ−1(x, t), t) = Dv
Dt

(x, t) = ∂v
∂t

+ v · ∇v, and t = σn is the traction at ∂Ωt with

n(x) being the outward pointing normal.
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4.1.2.2 Incremental Variational Form

To enable the development of efficient optimization-based time integrators, we follow the

variational treatment of the time-discretized incremental problem (Ortiz and Stainier, 1999;

Radovitzky and Ortiz, 1999). Concretely, for a broad family of time discretization schemes

(we will focus on backward Euler and the Newmark-β family in this paper), the solution of

Equation (4.8) during an incremental time step, i.e., the advancement from ϕn = ϕ(X, tn)

to ϕn+1 = ϕ(X, tn+1)), for an hyperelastic material is given by minimizing the following

functional:

I(ϕn+1) =
∫
Ω0

(
1
2

R0

β∆t2
∥ϕn+1∥2 + 2αΨ(F n+1)

)
dX −

∫
Ω0
R0B̄n+1 · ϕn+1dX − 2α

∫
∂Ω0

T · ϕn+1dS(X),

(4.10)

where

B̄n+1 = 2αg +
1

β∆t2

(
ϕn +∆t

∂ϕ

∂t
(X, tn) + α (1− 2β)∆t2

∂2ϕ

∂t2
(X, tn)

)
(4.11)

encodes the inertia term and is a constant field in the minimization problem. The velocity

update rule is

∂ϕ

∂t
(X, tn+1) =

∂ϕ

∂t
(X, tn) + ∆t

(
(1− γ) ∂

2ϕ

∂t2
(X, tn) + γ

∂2ϕ

∂t2
(X, tn+1)

)
. (4.12)

Here we have slightly modified the energy proposed by Radovitzky and Ortiz (Radovitzky

and Ortiz, 1999) to let it be compatible with backward Euler since their version was explicitly

built for Newmark’s algorithm.

Note that in the case of backward Euler (α = 1, β = 1
2
, γ = 1), it can be easily shown that

the Euler-Lagrangian equation of functional (4.10) gives back the time-discretized momentum

balance

R0

∆t2
ϕn+1 −∇X · P n+1 = R0g +

R0

∆t2
(ϕn +∆tV n). (4.13)
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Similarly, for Middle-point Newmark (α = 1
2
, β = 1

4
, γ = 1

2
), we would get

R0

∆t2
ϕn+1 − 1

4
∇X · P n+1 =

1

4
R0g +

R0

∆t2
(ϕn +∆tV n +

1

4
∆t2An). (4.14)

Both of them match the results from temporally discretizing the Lagrangian form of Equation

(4.2).

4.1.2.3 Coupling

In the proposed framework, the Lagrangian form is discretized on the FEM domain ΩF (Sec-

tion 4.1.3.1), while the Eulerian form is discretized on the MPM domain ΩM (Section 4.1.3.2).

We assume

Ω0
F ∩ Ω0

M = ∅ (4.15)

and their corresponding deformation map xM = ϕM(XM , t) and xF = ϕF (XF , t) are fully

governed by their own variational forms in the absence of any coupling mechanism. In

other words, without coupling, evolving the two domains independently (with two solvers) is

equivalent to minimizing

Π(ϕM , ϕF ) = I(ϕM) + I(ϕF ) (4.16)

by directly letting Ω = ΩF ∪ ΩM .

The coupling between FEM and MPM domains are then modeled via imposing the

non-interpenetration constraints:

Ωt
F ∩ Ωt

M = ∅, ∀t ∈ [0,∞) (4.17)

between the two domains. Note that the time is discretized with t = t0, t1, t2, . . . , tn. We use

Ωn to denote Ωtn for notational simplicity. See Figure 4.1 for an illustration. Thus the final

variational MPM-FEM coupling problem can be described as minimizing Equation (4.16)
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Figure 4.1: Deformation map. The material space of FEM and MPM domains (Ω0
F and

Ω0
M) on the left are mapped via ϕF and ϕM to the world space (Ωn+1

F and Ωn+1
M ) on the right,

with Ωt
F ∩Ωt

M = ∅ for all t ∈ [0,∞). With Updated Lagrangian kinematics, MPM treats Ωn
M

as the “intermediate” material space and focuses on studying the deformation from Ωn
M to

Ωn+1
M . Here Γ represents Dirichlet boundary or nonzero Neumann boundary.

under the equality constraint described by Equation (4.17).

The feasible region described by Equation (4.17) can be equivalently expressed as

ϕM(XM , t) ̸= ϕF (XF , t), ∀XM ∈ Ω0
M ,XF ∈ Ω0

F , t ∈ [0,∞). (4.18)

Moreover, if we define

d(ϕM , ϕF , t) = min
XF ,XM

∥ϕF (XF , t)− ϕM(XM , t)∥ (4.19)

to describe the Euclidean proximity between Ωt
M and Ωt

F , Equation (4.18) can be further

converted to a strict inequality constraint

d(ϕM , ϕF , t) > 0, ∀t ∈ [0,∞). (4.20)

Note that in Equation (4.15), we have assumed that the undeformed domains are non-

overlapping. Thus the minimization problem starts with a strictly feasible solution at t = 0.

In Section 4.1.4.1 we describe a barrier method that results in a contact pressure for en-

forcing Equation (4.15). See Section 4.1.4.3 for extra components on incorporating tangential
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frictional effects.

4.1.3 Discretization

The finite element domain is discretized with linear simplex elements (triangles in 2D and

tetrahedra in 3D), and the material point domain is discretized using a collection of material

points and an Eulerian background grid with quadratic B-spline kernels. Both schemes

adopt mass lumping and assume zero traction at boundaries unless otherwise specified in

an example. Stacking all nodal positions, velocities, and accelerations from both the FEM

mesh and the MPM grid at time step n as xn = [(xnF)
T , (xnM)

T ]T , vn = [(vnF)
T , (vnM)

T ]T , and

an = [(anF)
T , (anM)

T ]T where subscripts F stands for FEM while M for MPM, the unified time

integration update rule can be written as

ṽn+1 = vn +∆t((1− γ)an + γan+1),

x̃n+1 = xn +∆tvn + α∆t2((1− 2β)an + 2βan+1)),
(4.21)

and it is equivalent to first solving the optimization problem

min
x

:

(
1

2
∥x− x̂n∥2M + 2αβ∆t2Ψ(x)

)
(4.22)

to get x̃n+1, and then explicitly calculating ṽn+1. Here x̂n = xn + vn∆t+ α(1− 2β)∆t2an,

and Ψ(x) =
∑

q V
0
q ψ(Fq(x)) with q belonging to FEM elements or MPM particles and V 0

q

the rest volume of a FEM element or a MPM particle.

For FEM, the time integration is solely performed on the Lagrangian nodal degrees of

freedom throughout the simulation and so x̃n+1
F = xn+1

F and ṽn+1
F = vn+1

F . But for MPM,

Equations (4.21) are only part of the Eulerian time integration performed on the Eulerian

grid before and after particle-grid transfers for xM and vM, so x̃
n+1
M ≠ xn+1

M and ṽn+1
M ≠ vn+1

M

(see Section 4.1.3.2 for details). Note that the minimization problem (4.22) is equivalent to

the discrete form of the variational time integration in (Ortiz and Stainier, 1999; Li et al.,

2019a; Wang et al., 2020a) for hyperelastic problems. xF and xM are coupled through contact
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modeling between the two domains (Section 4.1.4).

4.1.3.1 The Finite Element Domain

For the FEM domain, nodal positions and velocities are stored on mesh vertices and updated

directly. The nodal masses are kept constant, i.e., mn
i = mi.

Inside any simplex element, the material and world space coordinate of an arbitrary

location X are expressed using linear interpolation kernels Ni(X) of node Xi as

X =
∑
i

Ni(X)Xi and ϕ(X, t) =
∑
i

Ni(X)ϕ(Xi, t). (4.23)

Then according to the definition of F (Equation (4.3)), with Ni being the linear hat function,

the deformation gradient is piecewise constant. Inside a linear simplex element e it is directly

evaluated as a function of x:

Fe(x) = Te(x)B
−1
e , (4.24)

where Te(x) is the current triangle basis of element e and Be is the triangle basis of element

e in material space.

4.1.3.2 The Material Point Domain

For the MPM domain, the nodal positions xnM are the uniform Cartesian grid coordinates at

each time step. The grid velocity vn
i and mass mn

i are transferred from particles. The nodal

movements are conceptual. x̃n+1
M and ṽn+1

M will be transferred back to particles for advection.

Similar to FEM, each MPM grid node i is associated with a kernel function Ni(x) for

the grid to represent the continuous field. Note that the kernel is defined in terms of x

rather than X because the grid is essentially a discretization of Ωn
M – a direct consequence

of adopting Updated Lagrangian kinematics. When Ni is evaluated at a particle location

xn
q , a shorter notation Ni(x

n
q ) = wn

iq is from now on used instead. Here Ni directly takes the

current particle location xn
q as input as opposed to FEM because there is no globally defined

reference configuration in MPM and the deformation is evolved over time steps rather than
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recomputed using a rest shape. More specifically, the deformation gradient of a particle q is

defined as

Fq(x) =
∑
i

xi(∇wn
ip)

TF n
q . (4.25)

In this paper, without loss of generality, we adopt the quadratic B-spline kernel for Ni(x) to

avoid MPM’s cell-crossing instability (Steffen et al., 2008). Other kernels based on the NURBS

(Long et al., 2019), Generalized Interpolation Material Point Method (GIMP) (Bardenhagen

and Kober, 2004), Convective Particle Domain Interpolation (CPDI) (Homel et al., 2016;

Sadeghirad et al., 2013; Nguyen et al., 2017), or the Dual Domain Material Point (DDMP)

(Long et al., 2016; Zhang, 2013) can also be directly used in our framework.

To transfer information between the particles and the grid, we implemented options

including the Affine Particle-In-Cell (APIC) method (Jiang et al., 2017b, 2015a) (Table 4.1),

Particle-In-Cell (PIC) method (Harlow, 1962) (Table 4.2), and the Fluid-Implicit Particle

(FLIP) method (Brackbill et al., 1988) (Table 4.3). Note that other transfer schemes

such as XPIC (Hammerquist and Nairn, 2017) can also be applied in our framework in a

straightforward manner.

Table 4.1: APIC Particle-Grid Transfer

Particles to grid (APIC) Grid to particles (APIC)

mn
i =

∑
p

mpw
n
ip

Dn
p =

∑
i

wn
ip(x

n
i − xn

p )(x
n
i − xn

p )
T

mn
i v

n
i =

∑
p

wipm
n
p (v

n
p +Bp(Dp)

−1(xn
i − xn

p ))

vn+1
p =

∑
i

ṽn+1
i wn

ip

xn+1
p =

∑
i

x̃n+1
i wn

ip

Bn
p =

1

2

∑
i

wn
ip

(
ṽn+1
i (xn

i − xn
p + x̃n+1

i − xn+1
p )T

+ (xn
i − xn

p − x̃n+1
i + xn+1

p )(ṽn+1
i )T

)
F n+1
p =

∑
i

x̃n+1
i (∇wn

ip)
TF n

p
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Table 4.2: PIC Particle-Grid Transfer

Particles to grid (PIC) Grid to particles (PIC)

mn
i =

∑
p

mpw
n
ip

mn
i v

n
i =

∑
p

wn
ipm

n
pv

n
p

xn+1
p =

∑
i

x̃n+1
i wn

ip

vn+1
p =

∑
i

ṽn+1
i wn

ip

F n+1
p =

∑
i

x̃n+1
i (∇wn

ip)
TF n

p

Table 4.3: FLIP Particle-Grid Transfer

Particles to grid (FLIP) Grid to particles (FLIP)

mn
i =

∑
p

mpw
n
ip

mn
i v

n
i =

∑
p

wn
ipm

n
pv

n
p

xn+1
p =

∑
i

x̃n+1
i wn

ip

vn+1
p =vn

p +
∑
i

wn
ip(ṽ

n+1
i − vn

i )

F n+1
p =

∑
i

x̃n+1
i (∇wn

ip)
TF n

p

4.1.4 The Contact between Domains

4.1.4.1 Contact Potential

Recently for Lagrangian FEM, Li et al . (Li et al., 2020, ND) proposed a consistent variational

contact model that smoothly approximates the nonsmooth contact phenomena with bounded

error, and demonstrated its convergence under refinement for piecewise linear boundary

discretization. Here we customize the FEM contact potential (Li et al., ND) to the FEM-

MPM coupling setting by defining the inter-surface contact potential between surfaces ∂ΩM

and ∂ΩF to be ∫
∂Ω0

M

b( min
xf∈∂Ωt

F

dPP (xm,xf ), d̂)dXm, (4.26)
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Figure 4.2: The barrier energy density function Equation (4.27) plotted with
different d̂. Decreasing d̂ asymptotically matches the discontinuous definition of the contact
condition.

where dPP (xm,xf ) = ∥xm − xf∥ is the point-point distance function, and

b(d, d̂) =


−κ(d

d̂
− 1)2 ln (d

d̂
) 0 < d < d̂

0 d ≥ d̂

(4.27)

is a smoothly clamped barrier function that serves as the contact energy density with d the

input distance, d̂ a small distance threshold below which contact activates, and κ in Pa

the barrier stiffness (Li et al., 2020, ND), which scales the magnitude of contact forces at a

certain distance.

Intuitively, minxf∈∂Ωt
F
dPP (xm,xf) is the distance between a material point xm ∈ ∂Ωt

M

and surface ∂Ωt
F, and Equation (4.26) can be viewed as an integration of the point(xm)-

surface(∂Ωt
F) contact energy density over surface ∂Ω0

M. The barrier function b smoothly

increases from 0 to infinity as the input distance decreases from d̂ to 0, providing arbitrarily

large repulsion to ensure no interpenetration and at the same time bound the contact gap

error within d̂ (Figure 4.2). As d̂→ 0, the approximation error between the contact energy

density function b and the real contact phenomenon described in Equation (4.20) decreases,

which also makes ∂ΩM and ∂ΩF interchangeable in the limit. Note that the integration is

performed in the material space while the distance is evaluated in the world space.
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MPM Grid

MPM Particles

FEM Mesh

Contact Pair

MPM Node

P2G Transfer

Figure 4.3: Contact constraint pairs. Left: Contact activates on all pairs of MPM particles
and FEM boundary elements with distance below d̂. Right: Contact force is transferred from
MPM particles to MPM grids via chain rule.

4.1.4.2 Discretization

After applying FEM and MPM discretization schemes, assuming 2D, the contact potential

Equation (4.26) is discretized to be

B(x) =
∑
q∈Q

ωqb(min
e∈B

dPE(xq, e), d̂), (4.28)

where Q is the set of all MPM particles, ωq is the integration weight (equivalently, the

boundary area) of MPM particle q, B is the set of FEM boundary edges, and dPE(xq, e) is

the point-edge distance between particle xq and edge e. Note that the MPM grid nodal

positions x̃M to be solved and the particle positions xq after advection using x̃M are linearly

related through the particle-grid transfer kernel (Figure 4.3 right), and so the contact force

on the MPM nodal degrees of freedom can be calculated by applying the chain rule:

∂B

∂xM
=
∑
q∈Q

(
∂xq

∂xM

)T
∂B

∂xq

, (4.29)

where (
∂xq

∂xM

)
α,id+β

= δαβw
n
iq
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Figure 4.4: A visual demonstration in 2D of (left) the unsigned distance function to a
segmented mesh, and (right) the corresponding barrier function (4.27) visualized with an
exaggerated d̂ parameter.

with α, β = 1, 2, ..., d and d = 2 or 3 the spatial dimension since xq =
∑

iw
n
iqxi.

Ideally, ωq should be zero for interior particles. It should reveal the proportional surface

area of boundary particles. Since FEM boundary elements are always outside the MPM

domain and the barrier function b is only activated at a small distance, the activation of b can

be applied to conveniently decide whether an MPM particle is at the boundary or the interior

without explicitly identifying the MPM domain boundary in each time step (Figure 4.3 left).

Then assuming a close to uniform particle distribution to be maintained throughout the

simulation, ωq can be set to 2
√
V 0
q /π in 2D and π

(
3V 0

q / (4π)
) 2

3 in 3D for all particles, which

is the area of the largest cross section of a spherical particle q.

The minimization operator in the potential (Equation (4.28)) helps to compute the

point-polyline distance from point-edge distances. As the barrier function b is monotonically

decreasing, the potential can be rewritten as

B(x) =
∑
q∈Q

ωq max
e∈B

b(dPE(xq, e), d̂). (4.30)

Due to the existence of a max operator, it is only C0 continuous, making the incremental

potential challenging to be efficiently minimized by gradient-based optimization methods like

Newton’s method. Since the barrier function b is with local support around each boundary
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element, and that it maps a majority of the activate distances to tiny potential values

(Figure 4.4), the maximization of the potential field can be well approximated by summation,

with the duplicate potential around FEM boundary nodes compensated by subtraction as

proposed by Li et al . (Li et al., ND):

B(x) =
∑
q∈Q

ωq

∑
e∈B

b(dPE(xq, e), d̂)−
∑
k∈B̂

(ηk − 1) b(dPP (xq,xk), d̂)

 , (4.31)

where B̂ is the set of all FEM boundary nodes and ηk is the number of FEM boundary edges

incident to node k. For closed manifold domains in 2D, ηk = 2 for all k.

Similarly, in 3D, the discretized contact potential becomes

B(x) =
∑
q∈Q

ωq

∑
t∈B

b(dPT (xq, t), d̂)−
∑
e∈B̂

(ηe − 1) b(dPE(xq, e), d̂) +
∑
xp∈B̃

b(dPP (xq,xp), d̂)

 ,

(4.32)

where B is now the set of all FEM boundary triangles, B̂ is the set of all edges on the FEM

boundary with ηe the number of FEM boundary triangles incident to edge e, B̃ the set of

all nodes that are in the interior of the FEM boundary surface mesh, and dPT (xq, t) the

point-triangle distance between particle xq and triangle t. For closed manifold domains in

3D, ηe = 2 for all e.

Adding the contact potential into the incremental potential, the minimization problem

for time integration is now fully unconstrained:

min
x

:
1

2
∥x− x̂n∥2M + 2αβ∆t2 (Ψ(x) +B(x)) . (4.33)

Since the distance values measured for contacting MPM particle - FEM simplex pairs are all

unsigned, Problem (4.33) may contain a local optimum at configurations with intersections.

To be consistent with the continuous constraint Equation (4.20), it is also constrained that

the iterates always stay in the feasible region on one side of the barrier without crossing. This

is achieved by applying the interior-point filter line-search algorithm (Wächter and Biegler,
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2006) with continuous collision detection (CCD) (Brochu et al., 2012; Li et al., 2021a).

4.1.4.3 Friction

To model frictional contact, local frictional forces Fk can be added for every active contact

pair k. For each such pair k, at the current state x, a consistently oriented sliding basis

Tk(x) ∈ Rdm×(d−1) can be constructed, where m is the total number of colliding nodes and d

is the dimension of space, such that uk = Tk(x)
T (∆tvn +∆t2((1 − γ)an + γan+1)) ∈ Rd−1

provides the local relative sliding displacement in the frame orthogonal to the distance

gradient. The corresponding sliding velocity is then vk = uk/∆t ∈ Rd−1.

Maximizing dissipation rate subject to the Coulomb constraint defines friction forces

variationally (Moreau, 2011; Goyal et al., 1991)

Fk(x) = Tk(x) argmin
β∈Rd−1

βTvk s.t. ∥β∥ ≤ µλk, (4.34)

where λk is the contact force magnitude and µ is the local friction coefficient. This is

equivalent to

Fk(x) = −µλkTk(x)f(∥uk∥) s(uk), (4.35)

with s(uk) =
uk

∥uk∥
when ∥uk∥ > 0, while s(uk) takes any unit vector when ∥uk∥ = 0. The

friction magnitude function, f , is nonsmooth with respect to uk since f(∥uk∥) = 1 when

∥uk∥ > 0, and f(∥uk∥) ∈ [0, 1] when ∥uk∥ = 0. This nonsmoothness would severely slow and

even break convergence of gradient-based optimization.

To enable efficient and stable optimization, the friction-velocity relation in the transition

to static friction can be mollified by replacing f with a smoothly approximated function.

Following Li et al . (Li et al., 2020), we use

f1(y) =


− y2

ϵ2v∆t2
+ 2y

ϵv∆t
, y ∈ [0,∆tϵv)

1, y ≥ ∆tϵv,

(4.36)

where f ′
1(∆tϵv) = 0 and a velocity magnitude bound ϵv (in units of m/s) below which sliding
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Figure 4.5: Friction mollifier plotted with different ϵv. Decreasing ϵv asymptotically
matches the discontinuous Coulomb friction model.

velocities vk are treated as static is defined for bounded approximation error (Figure 4.5).

Note that the velocity used in our friction model on the MPM side is the interpolated grid

velocity at particle quadrature locations, rather than the particle velocity after grid-to-particle

transfer. This makes the velocity seen by frictional forces independent from the choice of the

particle-grid transfer scheme. This is important because for example in FLIP, the particle

velocity does not reflect its displacement (vn+1
q ≠ (xn+1

p − xn
p)/∆t) and thus should not be

used to define friction in an implicit solve.

However, challenges remain on incorporating friction into the optimization time integration.

A major problem is that friction is not a conservative force and there is no well-defined

potential such that taking the opposite of its gradient produces the frictional force. Therefore,

following Li et al . (Li et al., 2020), we fix the friction constraint set F along with the normal

force magnitude λ and the tangent operator T during the nonlinear optimization to the last

updated value F j = F(xj), λj = λ(xj), and T j = T (xj), which then makes the lagged friction

force integrable with the pseudo-potential

D(x) =
∑
k∈Fj

µλjkf0(∥ūk∥), (4.37)

where F j is the set of all contact pairs with nonzero λjk, f
′
0(y) = f1(y), ūk = (T j

k )
T (∆tvn +

∆t2((1− γ)an + γan+1)) and so we have −∇D(x) = −
∑

k∈Fj µλ
j
kT

j
kf1(∥ūk∥) s(ūk), which is

a semi-implicit discretization of the frictional force with lagged variables λjk and T j
k . Then we

92



can iteratively alternate between the nonlinear optimization with fixed F , λ, and T given as

min
x

: E(x) =
1

2
∥x− x̂n∥2M + 2αβ∆t2 (Ψ(x) +B(x) +D(x)) , (4.38)

and friction update until convergence (Algorithm 2). Although the friction convergence is

not guaranteed for arbitrarily large time step sizes due to the nonlinearity and asymmetry of

the problem, we have confirmed that all our experiments converge with the practical time

step sizes applied (Section 4.1.6).

4.1.4.4 Irregular Boundaries for MPM

In the BFEMP framework, an experimental setup with a subset or all of the FEM nodes

prescribed with Dirichlet boundary conditions on their displacements can be applied to model

irregular boundaries for MPM. This can not only resolve detailed boundary geometries even

when the MPM grid is relatively coarse (Section 4.1.6.2), but also provide accurate and

controllable friction on the boundary (Section 4.1.6.4).

4.1.5 Nonlinear Optimization

The time integration framework of BFEMP for one time step is outlined in Algorithm 2.

MPM particle-grid transfers are performed in the beginning (line 2) and the end (line 12).

On the MPM grid and the FEM mesh, the minimization of incremental potential with lagged

friction (line 7) is alternated with the friction update (line 9) until convergence to the fully

implicit friction solution.

Applying the projected Newton’s method (Teran et al., 2005) for incremental potential

minimization (Algorithm 3), we compute the proxy matrix H by projecting the local Hessian

of every elasticity, barrier, and friction stencil to its closest positive semi-definite form by

zeroing out the negative eigenvalues, and then summing them up together with the mass

matrix Mn (line 5). The search direction p is computed by factorizing H and back-solving it

on −∇E(x) using CHOLMOD (Chen et al., 2008) (line 6). To obtain global convergence,

93



Algorithm 2 BFEMP Time Integration

1: procedure TimeIntegration(xnF, v
n
F, MF, x

n
P, v

n
P, MP, ∆t) ▷ subscript P is for

stacked particle variables
2: xnM, v

n
M, M

n
M ← particleToGrid(xnP, v

n
P, MP) ▷ Table 4.1, 4.2, and 4.3

3: x̃n+1
F ← xnF, x̃

n+1
M ← xnM ▷ for initial guess

4: j ← 0
5: F j, λj, T j ← computeFrictionOperator(x̃n+1

F , x̃n+1
M ) ▷ Section 4.1.4.3

6: do

7:

[
x̃n+1
F

x̃n+1
M

]
,

[
ṽn+1
F

ṽn+1
M

]
← MinimizeIP(

[
xnF
xnM

]
,

[
vnF
vnM

]
,

[
MF

Mn
M

]
, ∆t, F j , λj , T j ,

[
x̃n+1
F

x̃n+1
M

]
)

▷ Algorithm 3
8: j ← j + 1
9: F j, λj, T j ← computeFrictionOperator(x̃n+1

F , x̃n+1
M ) ▷ Section 4.1.4.3

10: while friction not converged ▷ Section 4.1.5
11: xn+1

F ← x̃n+1
F , vn+1

F ← ṽn+1
F

12: xn+1
P , vn+1

P ← gridToParticle(x̃n+1
M , ṽn+1

M ) ▷ Table 4.1, 4.2, and 4.3
13: return xn+1

F , vn+1
F , xn+1

P , vn+1
P

14: end procedure

Algorithm 3 Line Search Method for Incremental Potential Minimization

1: procedure MinimizeIP(xn, vn, Mn, ∆t, F j, λj, T j, x̄)
2: x← x̄ ▷ initial guess
3: Eprev ← E(x), xprev ← x ▷ E(x) defined in (4.38) also depends on xn, vn, Mn, ∆t,
F j, λj, T j

4: do
5: H ← computeProxyMatrix(x) ▷ applying projected Newton (Teran et al., 2005)
6: p← −H−1∇E(x) ▷ solved using CHOLMOD (Chen et al., 2008)
7: τ ← initStepSize(x) ▷ line search filtering (Wächter and Biegler, 2006)
8: do ▷ Armijo line search (Nocedal and Wright, 1999)
9: x← xprev + τp
10: τ ← τ/2
11: while E(x) > Eprev

12: Eprev ← E(x), xprev ← x
13: while ∥p∥∞/∆t > ϵd ▷ Section 4.1.5
14: x̃n+1 ← x, ṽn+1 ← vn + 1

∆t
(Mn)−1((γ − 1)∇E(xn)− γ∇E(x)) ▷ Section 4.1.3

15: return x̃n+1, ṽn+1

16: end procedure

the backtracking line search that ensures the decrease of energy is applied (line 8 to 11),

starting from a large feasible step size that avoids interpenetration and deformation gradient

degeneracy (line 7). After converging to a local optimum, velocity is updated with the newly

obtained position (line 14) and returned together (line 15). Here we use the infinity norm
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of the Newton increment (search direction p) in the unit of velocity (m/s) for the stopping

criteria, which provides a 2nd-order approximation on the distance to the true solution.

Similarly, friction convergence in Algorithm 2 is also determined this way, but with F , λ,

and T computed using the current x.

Along Newton’s search direction p, we compute the largest step size that will first result

in a 0 distance on any contact pair or a 0 determinant on any deformation gradient. We then

set the initial line search step size to be 0.9× of this critical value. The critical value for

0 distance is computed via continuous collision detection (CCD) (Li et al., 2021a), and for

0 determinant it is just the smallest positive real root of a polynomial equation (Li et al.,

2021e). This ensures that interpenetration or deformation gradient degeneracy could never

happen throughout the simulation since the following backtracks always result in step sizes

smaller than the critical value.

The numerical parameters in BFEMP all have physical meanings and directly control

the extent of approximation to the continuous problem. To summarize, we have d̂ (contact

activation distance in m), ϵv (stick-slip velocity threshold in m/s), ϵd (Newton tolerance in

m/s), and physical parameter κ (barrier stiffness in Pa). Here κ also affects the convergence

speed of the projected Newton method (Algorithm 3), but the convergence is always guaranteed

eventually. In our experiments, we observed that setting κ several orders of magnitude smaller

than the average elasticity stiffness of the objects in the simulation can provide efficient

convergence.

4.1.6 Numerical Simulations

In this section, we provide 6 examples in 2D and 1 example in 3D to verify the contact model

and the friction model in the proposed BFEMP approach. The numerical parameters d̂,

ϵv , ϵd, and physical parameter κ are all reported respectively in each experiment. If not

mentioned otherwise, all elasticities are with the neo-Hookean model, and all particle-grid

transfer schemes are with APIC. The visualized stresses are all the von Mises stress.

95



t = 0.03 s t = 0.05 s t = 0.08 s 

t = 0.31 s t = 0.27 s t = 0.23 s t = 0.17 s 

S
tr
e
s
s

0

2E7

t = 0.13 s 

Setup MPM FEM

Figure 4.6: Colliding rings. The experiment setup and stress wave propagation over time.

4.1.6.1 Momentum and Energy Study

The collision between two elastic rings is simulated to verify the momentum and energy

behavior of BFEMP and to demonstrate the robustness of our framework in handling large

deformation. This example is modified from the MPM-MPM contact version in (Huang et al.,

2010).

The experiment setup is shown in the left-middle subfigure of Figure 4.6. The two rings

are identical except that the left ring is discretized with MPM, and the right one is discretized

with FEM. The inner radius of the ring shape is 3m, and the outer radius of the ring shape

is 4m. The Young’s modulus is E = 108Pa, the Poisson’s ratio is ν = 0.2, and the density is

ρ = 1000kg/m2. The MPM ring is discretized by 20098 particles, where the grid spacing is

0.1m. The FEM ring is discretized by 1830 vertices and 3310 triangles. The gravitational

force and the frictional forces are not included. The two rings are placed 2m apart and then

move towards each other with an initial speed of 40m/s. The contact active distance and the

contact stiffness are set to d̂ = 10−2m and κ = 107Pa respectively. To minimize numerical

dissipation, we use the Newmark time integrator with time step size ∆t = 2× 10−4s. The

Newton tolerance is ϵd = 10−6m/s. We also compare the APIC and FLIP transfer schemes.

Their differences in displacement and stress are small, so only the stress wave propagation

with APIC is shown in Figure 4.6. The energies and momenta over time are plotted for both
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Figure 4.7: Momentum and Energy Behavior. The energy and momentum plot for
APIC and FLIP transfer schemes.

APIC and FLIP in Figure 4.7.

The collision happens between 0.025s and 0.293s. The symmetry of stress patterns is

preserved during the collision. The system’s total momentum is perfectly preserved with

both transfer schemes. Part of the energy is lost during the collision: 8.57% energy is lost

with APIC, and 9.67% with FLIP. After the rings are separated, the FEM ring preserves its
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Figure 4.8: FEM as Boundary Condition. The friction-free interaction between a sine
wave shape boundary and an MPM cube are simulated to compare BFEMP based slip
boundary condition and traditional level set based slip boundary condition. (ux, uy) is the
displacement of the sine wave w.r.t. its initial position. BFEMP based slip boundary condition
can guarantee non-penetration and doesn’t have adhesive forces when it is separating from
the object.

energy over time, while the MPM ring gradually loses energy, primarily due to numerical

dissipation in the particle-grid transfers.

4.1.6.2 FEM as Contact Boundary for MPM

The guaranteed impenetrability between MPM particles and FEM boundaries makes BFEMP

a natural strategy for enforcing kinematic separable boundary conditions in MPM simulations.

Here we test the friction-free interaction between a sine wave shape boundary and an MPM

cube. The BFEMP-based boundary condition is compared with a level-set based slip boundary

condition, which enforces a zero normal relative velocity condition at each grid node inside the

sine wave’s level set, i.e., at each time step, for those nodes that are within the level set, their

normal velocities along the level set interface are prescribed, so that the original unconstrained

optimization 4.22 for the time integration are solved with these equality constraints.
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Figure 4.9: Brazilian Disk Test. The experiment setup and the compression procedure are
shown here. The contact force and contact radius are illustrated in the middle figure.

The experiment setup is shown in the left-top subfigure of Figure 4.8. A 1m× 1m elastic

box with Young’s modulus E = 106Pa, Poisson’s ratio ν = 0.2 and ρ = 1000kg/m2 is placed

on a no-slip ground. It is discretized by 21026 particles, with grid spacing 0.02m. A sine

wave boundary is placed 0.2m above the box, whose contour is determined by y = 1
40
cos 2π

0.1
x.

For BFEMP, the sine wave boundary condition is discretized by a FEM mesh with prescribed

displacements at each time step. While for MPM, it is described by an analytical level set.

The sine wave boundary first moves 0.6m downwards, then 0.5m to the left, and finally

upwards until separation. The moving speed is 1m/s all the way. The contact active distance

and the contact stiffness is set to d̂ = 10−3m and κ = 104Pa respectively. The implicit

Euler time integration with time step h = 10−3s is used. The Newton tolerance is set to

ϵd = 10−4m/s.

As shown in Figure 4.8, the BFEMP-based boundary condition more accurately resolves

the complex boundary geometry without exhibiting any numerical adhesive forces when the

boundary is separating from the cube. With the level-set based slip condition, particles will

penetrate the boundary because the boundary condition is only defined on the MPM grid in

a “smeared out” manner. The numerical adhesive force comes from that at each time step,

the grid with slip condition is locked within some plane. On the contrary, with BFEMP,

MPM particles can freely move around outside the FEM mesh.
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Figure 4.10: Brazilian Disk Test. Within the small deformation range, our contact model
fits well with Hertzian contact theory. The non-smoothness of the measured radius from the
simulation results can be alleviated as the resolution increases.

4.1.6.3 Brazilian Disk Test

To verify the accuracy of the contact model, BFEMP is studied on the Brazilian disk test,

which is a special case of the plane Hertzian contact problem (Barber, 2009; Liu and Sun,

2020). The Brazilian disk test can be used for tensile strength testing, which involves a 2D

elastic disk squeezed between two rigid objects. We use a fixed rigid plate and a moving rigid

plate to simulate the compression procedure. According to the Hertzian contact model, the

contact force F and the contact radius a have the following relation:

F =
π

4

E

1− ν2
a2

R
. (4.39)

The contact force and the contact radius are illustrated in Figure 4.10.

In this experiment, the radius of the MPM disk is 1m. It is composed of 42920 particles

with MPM grid spacing ∆x = 0.025m. The Young’s modulus is E = 1010Pa, and the

Poisson’s ratio is ν = 0.3. To reduce the inertial effect, we artificially decrease the density

of the material, which is set to ρ = 100kg/m2. The contact active distance is d̂ = 10−4m

and the contact stiffness is κ = 104Pa. The two plates are discretized with FEM. Each of

them is composed of four vertices and two triangles. The fixed plate is placed d̂ below the

disk, and the moving plate is placed d̂ above the disk. The constant velocity 0.1m/s of the
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Figure 4.11: Critical Value of Friction Coefficient. (a,d) initial configuration with the
extra support; (b,c,e) results at t = 3s of µ = 0, 0.1, and 0.1999, sliding distances all matching
analytical solutions; (f) the result at t = 3s of µ = 0.2, static solution with sliding error
bounded by ϵv.

moving plate is enforced by prescribing its displacements at each time step. The simulation is

performed with implicit Euler time integration with time step size h = 10−2s and the Newton

tolerance is ϵd = 10−8m/s. Friction coefficient µ = 1 is used to prevent the disk from slipping.

The Hertzian model requires to measure the contact radius a. Following (Liu and Sun,

2020), we use half of the horizontal range of the particles within the contact distance around

the bottom FEM plate to approximate it. Here we test both linear elasticity and neo-Hookean

elasticity. The compression procedure in Figure 4.9 is visualized for the linear elasticity case.

The (a, F ) data points within the small deformation range from the two simulations and the

analytical F − a relation from the Hertzian contact model are plotted in Figure 4.10. The

non-smoothness of the measured radius from the simulation results is due to the inaccurate

approximation of the radius a through a finite number of particles. This non-smoothness

can be alleviated as the resolution increases. Despite that, we observe a qualitative match

between the simulated data and the Hertzian contact theory.

4.1.6.4 Critical Value of Friction Coefficient

To verify the accuracy of BFEMP’s friction model, an experiment with a stiff MPM box

resting or sliding on a fixed FEM slope (or BFEMP’s friction-controllable boundary condition)
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Figure 4.12: Critical Value of Friction Coefficient. At all friction coefficients, including
µ = 0 (no friction), µ = 0.1, µ = 0.1999 (99.95% of the critical value), and µ = 0.2 (the
critical value), the velocities and accelerations over the releasing period (2s to 3s) are all
accurately matching the analytical solutions.

with a certain friction coefficient is created. When a rigid box is placed on a slope with zero

initial velocity, its acceleration has the following analytical form:

ax =


g(sin θ − µ cos θ), θ ≥ tan θ,

0, θ < tan θ,

(4.40)

where µ is the friction coefficient between the box and the slope, g is the gravity acceleration,

θ ∈ [0, π/4) is the inclined angle of the slope. Experiments show that BFEMP’s friction

model matches analytical solutions on sliding dynamics and critical value of friction coefficient

both with bounded and small approximation error.
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The initial configuration of this example is obtained by placing the MPM box d̂ away

from the slope, placing another fixed plane perpendicular to the slope on the side of the box

where it may slide (also d̂ away), and then simulate under gravity (g = 5.10m/s2) without

friction until the box becomes static (Figure 4.11a). After obtaining the initial configuration,

the slope test simulation is performed without the extra plane and with multiple different

friction coefficients for each test (Figure 4.11b,c,d).

Here the MPM box is 0.1m× 0.02m, composed of 369 particles (grid dx = 0.005) with

density ρ = 100kg/m2, Young’s modulus E = 4.0 × 1012Pa and Poisson’s ratio ν = 0.2.

Slopes with friction coefficient µ = 0, 0.1, 0.1999, and 0.2 have been tested, all with

contact active distance d̂ = 0.001m, contact stiffness κ = 106Pa, static friction velocity

threshold ϵv = 10−5m/s, and with the lagged normal forces in friction iteratively updated

until converging to a solution with fully-implicit friction. All simulations are using implicit

Euler time integration with time step size h = 0.001s, and the Newton tolerance is set to

ϵd = 10−8m/s.

With sliding velocity and acceleration of the box’s center of mass plotted over time

(Figure 4.12), they have all been shown to well match analytical solutions within 0.01%

relative errors. Even for µ = 0.1999 (99.95% that of the critical coefficient), the sliding

behavior can still be accurately captured. For µ = 0.2, it is also confirmed that the

acceleration vanishes, and the velocity throughout the simulation is around ϵv, the static

friction velocity threshold in BFEMP’s approximation to provide the static friction force in

the same magnitude as dynamic friction.

4.1.6.5 Convergence under Refinement

To verify the convergence under refinement property of BFEMP, an example with a soft

MPM box stacking on a soft FEM box is created. A series of experiments with increasing

resolutions and decreasing contact active distances are simulated to study the convergence

rate under refinement. Results show that BFEMP can achieve a second-order convergence

rate.
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Figure 4.13: Convergence under Refinement. (a) Experiment setup. (b) The final
equilibrium under low resolution. (c) The final equilibrium under high resolution. Stress
pattern is visualized.

The initial configuration is illustrated in Figure 4.13 (a). The MPM box is with size

2m×1m, Young’s modulus E = 4×104Pa, Poisson’s ratio ν = 0.4 and density ρ = 103kg/m3.

The particles are sampled regularly within each cell by placing each particle on the center

of a sub-cell. The FEM box below is with size 4m× 1m, Young’s modulus E = 4× 104Pa,

Poisson’s ratio ν = 0.4 and density ρ = 102kg/m2. The minimal edge length of the FEM

mesh and the grid spacing of MPM are with the same value (∆x) in each experiment. The

MPM box initially is placed ∆x above the FEM box and then simulated under gravity

(g = 10m/s2) until no oscillation is observed. To accelerate simulation to reach its final static

state, PIC transfer scheme and implicit Euler time integration with large time step sizes (up

to CFL limit for MPM) are used. The Newton tolerance is set to ϵd = 10−9m/s. The contact

stiffness is set to κ = 106Pa for all experiments. Figure 4.13 (b) and Figure 4.13 (c) show

the final equilibria under low resolution and high resolution respectively.

To examine the convergence rate of displacement to high-resolution results, the example
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Figure 4.14: Convergence under Refinement. Higher PPC can reduce the noise in the
convergence curve at higher resolutions. BFEMP with PPC = 16 achieves a convergence
order of 2.75 to high-resolution result. Convergence curves with order 1 and order 2 are also
plotted for reference.

is refined with ∆x = 1
N

and d̂ = 1
N2 , where N iterates all positive even numbers smaller than

or equal to 20. The reference high-resolution result is choose as with N = 30. The error

is defined as the difference in height of the center of mass of the whole domain (with both

FEM and MPM domains) between each testing resolution and the high-resolution reference.

Due to quadrature error in MPM (de Vaucorbeil et al., 2019), we also experiment with three

different particle per cell (PPC) values: 4, 9, and 16. The three error sequences are plotted

in Figure 4.14. As observed from the plot, a higher PPC value can reduce the noise in the

convergence curve. The error sequence with PPC 16 almost falls into line. Under this setting,

BFEMP achieves a convergence order of 2.75.

4.1.6.6 Buckling Behaviours under Different Friction Coefficients

This example tests frictions between two semi-circular rings with large deformation. The

two semi-circular rings are stacked together. As the outer semi-circular ring is compressed,

different buckling patterns of the inner semi-circular ring under different friction coefficients are

observed. This example is modified from the version with FEM-FEM contact in (Zimmerman

and Ateshian, 2018).
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The experiment setup is shown in Figure 4.15. The outer semi-circular ring with outer

radius 14m and inner radius 12m is discretized by FEM with 2714 vertices and 5067 triangles.

The inner semi-circular ring with outer radius 11.99m and inner radius 10m is discretized by

MPM with 10261 particles with grid spacing 0.25m. The two semi-circular rings are both

with Young’s modulus E = 106Pa, Poisson’s ratio ν = 0.3 and density ρ = 100kg/m2. One

FEM plate is placed 10−3m above the outer semi-circular ring. The displacement of this

plate is prescribed to follow a rigid linear motion with a constant downward velocity 1m/s.

Large friction (µ = 10) between the plate and the outer semi-circular ring is activated so

that the plate can be viewed as a BFEMP based no-slip boundary condition. The feet of two

semi-circular rings are fixed using the level set-based no-slip boundary condition. Another

level set-based slip boundary condition is added at the bottom middle below the semi-circular

rings to prevent the inner semi-circular rings from colliding into the ground. The contact

active distance and the contact stiffness are set to d̂ = 10−3m and κ = 105Pa. The static

friction velocity threshold is set to ϵv = 10−5m/s. Implicit Euler time integrator with time

step size h = 10−2s and Newton tolerance ϵd = 10−4m/s are used.

We vary the friction coefficient between the two semi-circular rings from µ = 0, µ = 0.2

and µ = 0.5. The compression procedure is visualized in Figure 4.15. In the beginning, there

is little difference between the three settings. As the FEM plate moves further down, the

inner MPM semi ring under the friction-free setting is buckled first as expected. Friction

with µ = 0.2 lags the appearance of the buckling. For the large friction case with µ = 0.5, no

buckling happens at all.

4.1.6.7 3D Twist with Friction

To test BFEMP’s contact and friction model in 3D, a twist test between a FEM spherical

shell and an MPM cube is conducted. The FEM shell is controlled to exert a constant twist

speed. Under different friction coefficients, it is expected to observe different maximal twist

angles on the MPM cube. This example is modified from the version with FEM-FEM contact

in (Zimmerman and Ateshian, 2018) as well.
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Figure 4.15: Buckling Behaviours under Different Friction Coefficients. The experi-
ment setup is illustrated on the left. Under different friction coefficients, the buckling appears
at different vertical displacements (uy).

The initial setup is illustrated in Figure 4.16 (a). The MPM cube with an edge length

of 1m is placed 10−2m below the FEM shell. It is discretized by 90929 particles, where the

grid spacing is 0.0625m. The Young’s modulus is 108Pa. The Poisson’s ratio is 0.4. And

the density is 100kg/m3. The FEM shell with inner radius 0.45m and outer radius 0.5m

is discretized by 1364 points and 3920 tetrahedra. The Young’s modulus is 1010Pa. The

Poisson’s ratio is 0.4. The density is 104kg/m3. The displacements of the top part of the shell

are prescribed to follow a rigid motion to exert downward compression and constant-speed

twist: it first compresses down with a constant speed 0.5m/s for 1s (Figure 4.16 (b)) and

then rotates around the z-axis with a constant angular velocity π
5
for 4.5s. The contact active

distance and the contact stiffness are set to d̂ = 10−2m and κ = 107Pa. For settings with

frictions, the static friction velocity threshold is set to ϵv = 10−3m/s. The simulation uses

the implicit Euler time integrator with the time step size h = 10−2s. The Newton tolerance

is set to ϵd = 10−3m/s.

With different friction coefficients, the slipping between the shell bottom and the top

center of the cube happens after different twist angles Rz. The final equilibria when the

shell stops twisting are visualized in Figure 4.16 (c) (d) (e) (f). The twist angles of the top

center part of the cube are plotted in Figure 4.17. Since the pressure forces are between

triangles and particles, the interface between the shell and the cube is not perfectly smooth.

This roughness results in that the slipping happens when Rz = 0.1π in the friction-free
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Figure 4.16: 3D Twist with Friction. (a) Initial setup: The FEM spherical shell is placed
d̂ above the MPM cube; (b) Before twist procedure, the spherical shell is controlled to press
down 0.5m; (c, d, e, f) Equilibria under different friction coefficients when the shell stops
rotating. The nonzero rotation angle with µ = 0 is caused by the non-smoothness of the
contacting interfaces, which will decrease as the resolution increases (top views).

settings. The final rotation angle should decrease as the resolution increases. To verify this,

we increase the resolution of the FEM mesh and compare the final equilibria in the original

setting and the higher-resolution setting. The top views are attached in Figure 4.16, which

shows that, with higher resolution, the final state of the cube is close to the initial state

before the twisting. For µ = 0.2 and µ = 0.5, the slipping happens when the twists angles are

around Rz = 0.3π and Rz = 0.7π respectively. With µ = 1.0, there is no slipping between
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Figure 4.17: 3D Twist with Friction. The average twist angle around the z-axis of the top
center of the cube. The twist procedure happens between 0.5s and 5s. The slipping between
the cube and the shell appears at different time points under different friction coefficients.

the shell and the cube.

4.1.7 Conclusion

In this paper, we proposed a new method for monolithically coupling an MPM domain

and a FEM domain for elastodynamics through frictional contact. By approximating the

non-interpenetration constraint with a barrier energy term and performing time integration

using a variational formulation, our method guarantees that no particles will penetrate into

the FEM mesh throughout the simulation. Furthermore, when the displacement of the FEM

domain is fully prescribed, BFEMP reduces to an explicit mesh-based boundary treatment for

MPM. Through numerical experiments validating the energy behavior, robustness, stability,

and accuracy, we demonstrated the advantages of the proposed method.

Limitations and Future Works For our current formulation, when MPM particles get

very close to the FEM boundary, there is in fact a small portion of overlap between FEM

and MPM domains even when there is no interpenetration. This is because MPM particles

represent a region of the domain. Although the overlapping area vanishes under spatial
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refinement, it would still be interesting to also consider the size and deformation of the

regions when defining the distance constraints. In addition, it would be meaningful to extend

our framework to support cutting of MPM solids by FEM meshes, where the MPM particles

on different sides of the FEM mesh should not communicate with each other even when the

FEM mesh is much thinner than the MPM kernel.

4.2 A Dynamic Duo of Finite Elements and Material Points

4.2.1 Introduction

The Finite Element Method (FEM) has achieved notable success in animating elastic objects,

such as solids, shells, and rods (Teran et al., 2005; Grinspun et al., 2003; Bergou et al.,

2008). Despite its advantages, FEM encounters challenges with severe deformations, often

resulting in an ill-conditioned system due to its total Lagrangian nature where the reference

configuration is always at the initial time step. Furthermore, handling topology changes,

particularly those induced by plasticity, remains a significant hurdle. To overcome these

issues, researchers have proposed sophisticated re-meshing techniques (O’Brien et al., 2002;

Bargteil et al., 2007). In contrast, the Material Point Method (MPM) employs a particle-based

spatial discretization, simplifying the handling of topology changes. The auto-remeshing effect

provided by the updated Lagrangian nature of MPM helps maintain a well-conditioned system

even under severe deformations, where the reference configuration is at the previous time

step. Additionally, MPM’s ‘plug-and-play’ plasticity handling revolutionizes the animation

of materials that undergo plastic deformations, such as snow, sand, foam, and fractures

(Stomakhin et al., 2013; Ram et al., 2015; Klár et al., 2016; Wolper et al., 2019). However,

MPM requires a super-high resolution of particles to represent fine-detailed geometry, making

it less efficient for simulating purely elastic objects than FEM, where adaptive meshing can

be more effective.

This contrast between FEM and MPM underscores the need for their coupling in complex

simulations, combining FEM’s precision in geometry and elastic behavior with MPM’s
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Figure 4.18: Multi-Material Simulations using Dynamic Duo. From left to right:
a metal boat propelling through water; multicolored sand passing through holes in fabric;
honey interacting with a textile surface; and a disaster caused by a debris flow. Each scene
highlights the intricate interaction between different materials and structures, emphasizing
the fidelity and adaptability of our coupled FEM-MPM simulator.

robustness in handling topological changes and plastic deformations. However, this coupling

is not without challenges. FEM typically employs implicit time integration for stability,

while explicit integration is favored in MPM, particularly for its ease in implementing

plasticity models and because the computational cost of each matrix-vector multiplication

in matrix-free implicit MPM is comparable to that of each explicit integration step. The

time step sizes in these two integration methods can vary significantly, often by several

orders of magnitude. Consequently, asynchronous coupling becomes essential to maintain

their respective efficiencies. Another critical challenge is contact handling between the two

domains. Contact force modeling is pivotal for two-way coupling, as it is the primary means

of communication between the FEM and MPM domains.

To address these challenges, we propose a novel method to couple FEM and MPM. Our

approach incorporates an asynchronous time splitting of FEM elasticity, MPM elastoplasticity,

and inter-domain frictional contact forces, leveraging the state-of-the-art Incremental Potential

Contact (IPC) model (Li et al., 2020) to resolve contact forces between FEM surface triangles

and MPM particles. Due to the high stiffness of the contact barrier in IPC, we couple FEM

elasticity and inter-domain contact together by implicit integration under a large time step

size. Observing the independent interaction of each particle with FEM bodies in this stage,

we filter out non-colliding particles and apply a two-stage Newton’s method, where elements

are frozen once its solution accuracy is achieved, followed by the resolution of per-particle

subproblems. After the implicit coupling, MPM elasticity is then explicitly integrated with
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a smaller time step size and can be combined with various plasticity models. In this stage,

contact forces are treated as constant external forces, and friction integration is stabilized

using Coulomb’s friction law applied in each substep of MPM based on the current relative

tangential velocity. We provide techniques to control penetrations due to time splitting and

leverage a closest penetration-free state that is guaranteed to exist for visualization.

In summary, our technical contributions include:

• A novel framework for two-way coupling between meshed finite elements in arbitrary

codimensions and meshless material points with arbitrary elastoplastic models.

• An asynchronous time-splitting scheme that effectively integrates implicit FEM and

explicit MPM under significantly different time step sizes.

• Numerical treatments to accelerate particle-triangle contact resolutions within the

implicit coupling step.

• An IPC-based MPM grid friction model that adheres to Coulomb’s friction law.

• Techniques to reduce penetrations from splitting and guarantee penetration-free visual-

izations.

We demonstrate the effectiveness of our framework by simulating the coupling between FEM

soft bodies, rigid bodies, and cloth with a wide range of MPM elastoplastic materials including

water, sand, snow, and mud.

4.2.2 Related Work

Finite Element Method Pioneered by Terzopoulos et al. (1987), FEM has established

itself as a fundamental technique for modeling elastic bodies in computer graphics. In

recent physics-based animation research, robustness and efficiency have been critical. On

the local level, robust constitutive models have been explored (Irving et al., 2004, 2006;

Smith et al., 2018; Kim et al., 2019). These models accommodate extreme deformations by

allowing inverted or degenerated elements. On the global level, advancements have focused
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on developing new solvers for the governing nonlinear systems. Teran et al. (2005) introduced

a method to project local Hessians to positive definite, thus greatly enhancing the stability of

Newton’s method. Gast et al. (2015) reformulated the nonlinear system into an optimization

problem, enabling the use of line search for guaranteed convergence and allowing frame-rate

time step sizes. Bouaziz et al. (2014); Overby et al. (2017) solved the time integration through

a local-global alternating minimization while maintaining a fixed global system Hessian.

Trusty et al. (2022) employed a mixed variational finite-element formulation and proposed an

efficient solver. The domain decomposition technique has also been explored (Li et al., 2019a;

Wu et al., 2022). On the other hand, FEM discretization has been successfully applied to

co-dimensional objects, such as cloth (Baraff and Witkin, 1998), shells (Grinspun et al., 2003;

Chen et al., 2023d), and rods (Bergou et al., 2008), and has been utilized to simulate rigid

body dynamics through high-stiffness elasticity (Lan et al., 2022a). Flow-like and brittle

materials can also be modeled (O’brien and Hodgins, 1999; Bargteil et al., 2007; Wojtan and

Turk, 2008), though frequent remeshing is required to prevent locking artifacts and support

topology changes. A fundamental problem in modeling FEM object interactions is contact

handling. The state-of-the-art method, Incremental Potential Contact (IPC) (Li et al., 2020),

uses a contact barrier to ensure interpenetration-free simulations. This method has been

extended to simulate co-dimensional objects (Li et al., 2021a). IPC plays a vital role in our

method to resolve FEM self-collisions and FEM-MPM inter-domain collisions.

Material Point Method MPM is a hybrid simulation method that combines Lagragian

particles and Eulerian grids. Since its introduction to computer graphics (Hegemann et al.,

2013; Stomakhin et al., 2013), it has revolutionized simulations involving large deformations

and frequent topology changes. Researchers have focused on designing diverse plasticity

models to simulate a variety of dynamic behaviors, including snow (Stomakhin et al., 2013),

sand (Klár et al., 2016; Daviet and Bertails-Descoubes, 2016), foam (Yue et al., 2015; Ram

et al., 2015), viscoelastic rubber (Fang et al., 2019), phase changes (Stomakhin et al., 2014;

Su et al., 2021), and damage (Wolper et al., 2019, 2020; Fan et al., 2022). To overcome the

limitations of Eulerian grids to represent detailed geometries, MPM can also be combined
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with meshes along with specially designed constitutive models (Fei et al., 2017; Jiang et al.,

2017a; Fei et al., 2018; Han et al., 2019; Fei et al., 2019). In parallel, significant efforts

have been made to enhance the efficiency of MPM. Fang et al. (2018) explored time-step

adaptivity and optimized particle-grid transfers on sparse grids. Gao et al. (2017) introduced

adaptive grids. Further optimizations of MPM on GPUs and distributed systems have

been achieved by Gao et al. (2018b); Wang et al. (2020b); Qiu et al. (2023); Fei et al.

(2021b). While implicit MPM offers guaranteed stability for frame-rate time integration,

it requires sophisticated acceleration algorithms, such as multi-grid methods, to tackle the

challenges posed by large-scale implicit nonlinear systems with large stencils (Wang et al.,

2020a). Additionally, the return mapping generally results in an asymmetric force Jacobian.

This asymmetry necessitates intensive, model-by-model mathematical derivations to develop

integrable equivalent force formulations (Li et al., 2022g) for robust implicit time integration.

FEM-MPM Coupling The coupling between FEM and MPM has been extensively studied

within the mechanical engineering community, driven by a shared motivation with this paper:

to combine FEM’s efficiency in modeling small deformations due to its use of adaptive meshing

and MPM’s suitability for simulating large deformations, including fractures. A common

approach involved embedding FEM nodes into the MPM grid (Lian et al., 2011b). However,

this technique often leads to sticky contact at the FEM-MPM interface, a limitation inherited

from MPM. To address this issue, Lian et al. (2011a) developed a separate grid contact model

specifically for the interface. Another challenge arises from the requirement for consistent

resolutions between the FEM discretization and the MPM grid. The particle-to-surface

contact model emerged as an effective solution for this issue (Chen et al., 2015). Despite these

advancements, most of these coupling techniques rely on explicit time integration, requiring

tiny step sizes for stability and thus overlooking the inherent efficiency of implicit FEM. This

limitation has curtailed applications in computer graphics. Alternatively, Li et al. (2022e)

explored particle-to-surface IPC to couple implicit FEM with implicit MPM in a monolithic

manner. However, this method is confined to elastic objects, diminishing the necessity for

coupling, and its computational efficiency is constrained by the implicit MPM bottleneck.
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Extending it to support general plasticity encounters similar challenges as those faced by

implicit MPM. In contrast, our proposed mixed implicit-explicit time integration not only

harnesses the optimal efficiencies of both FEM and MPM but also maintains the flexibility

to apply a diverse range of plasticity models.

4.2.3 Governing Equations and Asynchronous Time Splitting

The dynamics of a continuum Ω can be characterized by a time-dependent deformation field

Φ(X, t) from the material space X ∈ Ω to its current world space x ∈ Ωt at time t. This map

is governed by conservation laws, including mass conservation and momentum conservation:

R(X, t)J(X, t) = R(X, 0), R(X, 0)
∂V

∂t
(X, t) = f(X, t), (4.41)

where R(X, t) is the mass density field, J(X, t) = det∇XΦ(X, t) is the Jacobian determinant

field, V (X, t) = ∂Φ(X,t)
∂t

is the velocity field, and f(X, t) is the force density field. Here,

we focus on two kinds of internal forces: elastic force, which is defined on the in-domain

deformation gradient F = ∇XΦ(X, t) and frictional self-contact, which is defined on the

domain boundary ∂Ω, and omit external force for simplicity.

To illustrate the asynchronous time splitting techniques for multiple domains, we assume

the continuum consists of two disjoint connected components: Ω = ΩA ∪ ΩB. Each domain

has its own internal force field fA and fB (including elasticity and self-contact). We denote

the inter-domain frictional contact force field as fAB. We note that the time splitting is

actually used to serialize the action of different forces on the whole domain Ω, so we extend

the definition of these forces to the entire domain with zero values.

From tn to tn+1, we would like to use different time integration schemes (and different

spatial discretizations, which will be discussed later) for two elastic force fields: backward

Euler for fA and forward Euler for fB. For stability consideration, the time integration of the

frictional contact fAB is bundled with fA. This leads to the following semi-discrete scheme
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for momentum conservation:

R0(V̂ n+1 − V n) = h(f̂n+1
A + f̂n+1

AB ) (backward Euler), (4.42a)

R0(V n+1 − V̂ n+1) = hfn
B (forward Euler), (4.42b)

where the superscript stands for the discrete time step, R0 = R(X, 0), h = tn+1 − tn is the

time step size and V̂ n+1 is an intermediate state. Note that Equation (4.42b) has no impact

on ΩA, so we have V n+1
A = V̂ n+1

A , meaning that there is no extra time integration process on

ΩA. And the equation is simplified to:

R0
B(V

n+1
B − V̂ n+1

B ) = hfn
B . (4.43)

On the other hand, there is only contact force fAB acting on ΩB in Equation (4.42a), which

leads to

R0
BV̂

n+1
B = hf̂n+1

AB +R0
BV

n
B . (4.44)

Then Equation (4.42b) can be rewritten as

R0
B(V

n+1
B − V n

B ) = h(f̂n+1
AB + fn

B ). (4.45)

Intuitively, the above equation can be understood that f̂n+1
AB from Equation (4.42a) is treated

as a constant external force in Equation (4.42b).

However, forward Euler usually requires much smaller time step sizes compared with

backward Euler for stability considerations. This motivates us to use asynchronous time

splitting. Assume h̃ = h/N is the time step size required by stability. The one-step forward

Euler time integration Equation (4.45) on ΩB can be further decomposed into N substeps,
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Figure 4.19: Illustration of the Dynamic Duo. We couple FEM-MPM inter-domain
contact with FEM elasticity by implicit integration. This contact force is then applied as
a constant external Lagrangian force on MPM particles throughout N substeps of explicit
MPM integration.

leading to the following asynchronous time-splitting scheme:

R0(V̂ n+1 − V n) = h(f̂n+1
A + f̂n+1

AB ), (4.46a)

V n+1
A = V̂ n+1

A , (4.46b)

R0(V n,j+1
B − V n,j

B ) =
h

N
(f̂n+1

AB + fn,j
B ), j = 0, 1, 2, ..., N − 1, (4.46c)

V n+1
B = V n,N

B , V n,0
B = V n

B . (4.46d)

4.2.4 Dynamic Duo

In this section, we illustrate how two different spatial discretizations, the Finite Element

Method (FEM) and the Material Point Method (MPM), work together seamlessly. We show

the time-stepping pipeline in Algorithm 4 and in Figure 4.19. Following the convention

above, we discretize ΩA with FEM meshes and ΩB with MPM particles. The inter-domain

frictional contact forces are defined between the FEM mesh surface and MPM particles using

the Incremental Potential Contact (IPC) method (Li et al., 2020). The significant advantage

of explicit MPM, and the primary motivation behind this work, is that explicit MPM can be

highly optimized for efficiency and can incorporate different plasticity models without the

need for tediously deriving integrable plastic forces (Li et al., 2022g).
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Algorithm 4 Dynamic Duo Time Stepping

Scale MPM particle masses by 2N
N+1

; // Section 4.2.4.4
Implicit coupling; // Section 4.2.4.2
Update FEM states;
Restore MPM particle masses;
// Explicit MPM step (Section 4.2.4.3):
Evaluate particle contact forces (fCN , fCT ) and basis velocity vB;
for j = 1, 2, ..., N do

Particle-to-grid transfer of mass, velocity, elasticity, contact, friction, and basis velocity;
Update grid velocity by explicit integration of elasticity and contact;
Apply Coulumb’s friction law to grid velocity;
Grid-to-particle transfer to update MPM states;

end for

4.2.4.1 Notations

Let x⋆,v⋆ with ⋆ ∈ {F,M} be the nodal positions and velocities of FEM/MPM bodies.

Here, {xF ,vF} are defined on FEM mesh vertices, and {xM ,vM} are defined on MPM

particles. x = [xF ,xM ],v = [vF ,vM ] are their concatenations. A superscript n can be

appended to distinguish different time steps. Viewing the initial positions X = x0 as

the material space, xn is the approximation of Φ(X, tn), and vn is the approximation

of ∂
∂t
Φ(X, tn). Let M = Diag(MF ,MM) be the global diagonal lumped mass matrix

formed by integrating R(X, t) over individual FEM elements or MPM particles, {x̂, v̂} be

the intermediate penetration-free state from the coupling step guaranteed by IPC, and

hM , h = NhM be the time step sizes for MPM and FEM, respectively. We distinguish x̂

and x because, after the MPM integration, xM may penetrate into xF , as discussed in

Section 4.2.4.4. In addition, x̂ serves as a feasible initial guess for the coupling step and the

state at which to evaluate friction basis in the IPC model.

4.2.4.2 Implicit Coupling Step

In this step, we conceptualize MPM particles as discrete rigid spheres with radius r excluding

self-contact. The contact acts in a thin layer enveloping the sphere (Li et al., 2021a). We

take r = ∆x/ 3
√
PPC where ∆x is the spacing of the MPM background grid, and PPC stands

for particle number per cell. This allows overlaps between particles to prevent unrealistic
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penetrations of sharp FEM parts into MPM bodies. After spatial discretization, the elastic

and contact forces in the momentum equation (Equation (4.46a)) are defined w.r.t. the

positions of vertices and particles, necessitating a time discretization of ∂
∂t
Φ(X, t) = V (X, t).

Employing the backward-Euler method, the spatially integrated governing equations are

discretized as follows:

M (v̂n+1 − vn) = h(fE(x̂n+1
F ) + fSC(x̂n+1

F ) + fC(x̂n+1) +Mg),

x̂n+1 = xn + hv̂n+1.
(4.47)

Here, the elasticity force fE is represented by the negative gradient of elastic strain energies.

This includes various forms of energy: volumetric elasticity energy on tetrahedra for modeling

soft bodies; membrane and bending energies on triangles for thin shells; and rigidity energy

defined per body to model nearly rigid objects (Lan et al., 2022a). The self-contact fSC and

the inter-domain contact fC , defined among MPM particles and FEM surfaces, are derived

from the negative gradients of frictional contact potentials (Li et al., 2020).

Following (Li et al., 2020), the governing nonlinear equation system can be integrated

into an optimization problem w.r.t. nodal positions:

x̂n+1 = argminx

1

2
∥x− x̃n+1∥2M + h2(Ψ(xF ) +B(x)− x⊤Mg). (4.48)

Here, x̃n+1 = xn + vnh represents the predictive position under inertia, Ψ denotes the

elastic potential of FEM bodies, and B is the frictional contact potential. Notably, after

the MPM step in the previous time step, there might be slight penetrations in xn. So

we use x̂n instead of xn as the starting configuration for the optimization. After solving

this optimization, the positions and velocities of FEM vertices are updated accordingly to

xn+1
F = x̂n+1

F , vn+1
F = v̂n+1

F . It is important to note that MPM particles are not advected in

this step to avoid inconsistencies between tracked deformation gradients and particle positions.

This optimization problem is solved using Newton’s method with a backtracking line search,

where the initial step size is determined by continuous collision detection (CCD) to prevent

penetration during the optimization process (Li et al., 2020). When assembling the global
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Hessian matrix, local Hessians are projected to be semi-positive definite to guarantee an

energy-decreasing direction. The linear system is solved by the Conjugate Gradient (CG)

method preconditioned by the 3× 3 diagonal blocks.

Non-colliding Particle Filtering Due to the inherent nature of MPM, the number of

MPM particles significantly exceeds the number of FEM vertices. However, a large proportion

of particles do not even collide with FEM bodies during a time step. For these non-colliding

particles, their next state of non-penetration, x̂n+1, can be analytically determined as x̃n+1,

and they do not interfere with other particles or FEM bodies. To optimize computational

resources, we can safely exclude these non-interacting degrees of freedom in Equation (4.48).

To do the filtering, we only keep particles that have potential collisions as the scene moves

from xn to xn + 2h(vn + gh). The collisions are detected by checking overlaps between

trajectories’ bounding boxes.

Two-stage Newton’s Method To further accelerate convergence, we employ a two-stage

Newton’s method. In the first stage, we solve the full nonlinear optimization until the residual

on FEM DOFs reaches the desired tolerance. We then freeze FEM bodies and continue to

optimize the particle DOFs. A key observation is that once the FEM domain is fixed, the

entire optimization problem can be effectively divided into independent sub-problems for

each particle. However, direct per-particle optimization is not trivial to implement on a GPU

since the contact pairs may vary over time. Instead, we still simultaneously search for all

particles, but with several acceleration techniques:

• The system matrix is now 3× 3 block-diagonal, consisting only of the diagonal mass

matrix and the diagonal blocks of the barrier Hessian. The inverse of the Hessian can

then be efficiently evaluated per diagonal block.

• For the backtracking line search, we perform CCD to clamp the search directions per

particle and then only halve per-particle step sizes on energy-increasing particles.

• We continue to freeze particles that reach the desired accuracy because of the indepen-
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dence of particles.

4.2.4.3 Explicit MPM Step

Due to the asynchronous time splitting, each time step comprises N sub-steps of explicit MPM

integration. At the end of the coupling step, the IPC force fC is evaluated on particles, which

is decomposed as the sum of a normal contact force fCN and a tangential friction force fCT .

fCN is then treated as a constant Lagrangian external force applied to the particles. fCT ,

requiring special consideration, will be discussed in a separate section. We follow MLS-MPM

(Hu et al., 2018a) for our explicit MPM sub-stepping. Each particle’s state is described by a

four-tuple (xp,vp,Cp,F
E
p ): xp denotes the particle position, vp the particle velocity, F E

p the

elastic deformation gradient tracked on the particle, and Cp the angular momentum matrix

(Jiang et al., 2015a). Time integration within MPM occurs on a background grid. At each

substep j, from tn to tn+1, particle mass and velocity are transferred to the grid:

mj
i =

∑
p

mpw
j
ip, vj

i =
1

mj
i

∑
p

wj
ipmp(v

j
p +Cj

p(xi − xj
p)), (4.49)

where xi is the position of grid node i, wj
ip represents a quadratic MLS basis defined at grid

node i evaluated at xj
p, m

j
i is the transferred grid node mass, and vji is the transferred grid

velocity. For simplicity, we have omitted the superscript n in Equation (4.46c). The discretized

momentum equation on the grid, Equation (4.46c), is expressed as vj+1
i = vj

i + hMf j
i /m

j
i ,

where the grid f j
i is the sum of the transferred normal contact force fCN,j

i =
∑

pw
j
ipf

CN
p ,

gravity force mj
ig and elasticity force fE,j

i =
∑

p V
0
p τ (F

E,j
p )∇wj

ip, where τ is the Kirchhoff

stress. In MLS-MPM, the gradient of the weight function is calculated as ∇wj
ip =

4
∆x2w

j
ip(xi−

xj
p). The updated grid velocities are then transferred back to the particles, updating their

states:

vj+1
p =

∑
i

vj+1
i wj

ip, xj+1
p = xj

p + hMvj+1
p ,

Cj+1
p =

∑
i

vj+1
i ∇w

j,⊤
ip , F E,j+1

p = (I + hMCj+1
p )F E,j

p .
(4.50)
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Incorporating plasticity, at the end of each MPM substep, we further pull F E,j+1
p back into a

predefined elastic region using the associated return mapping F E,j+1
p ← Z(F E,j+1

p ) (Jiang

et al., 2016).

MPM Friction In accordance with physical principles, the friction force should always

oppose the relative tangential velocity without altering its direction. Naively applying the

evaluated tangential friction force fCT on particles can easily violate this law, causing high-

frequency vibration of MPM objects that should remain stationary. To stabilize friction

integration, we transfer the basis velocity (defined as the nearby FEM surface velocity) onto

the grid. This basis velocity is estimated at the coupling solve’s convergence by interpolating

the velocities of the friction basis onto MPM particles and then transferred onto grid to serve

as the basis velocity for grid nodes:

vB
p =

∑
k∈T λk,pvk∑
k∈T λk,p

, vB,j
i =

∑
pw

j
ipv

B
p∑

p,fCT
p ̸=0w

j
ip

. (4.51)

Here T is the set of contact pairs contributing to friction, λk,p denotes the magnitude of the

normal contact force, and vk is the velocity at the closest point to particle p on the contacting

triangle. The need for interpolation arises from the presence of multiple contact pairs that

collectively contribute to the total friction force fCT on particle p. Note that this averaging

process only includes particles experiencing nonzero friction force, and we skip node i if the

denominator is zero. We define the tangential relative velocity on the grid as:

vrel,j+1
i = (I − nn⊤)(vj+1

i − vB,j
i ), (4.52)

where n is the normalized fCN,j
i and vj+1

i is the velocity after applying elasticity and normal

contact. The final grid velocity, as adjusted by Coulomb’s friction model, is given by:

vj+1
i ← vj+1

i −min{∥∆vCT,j
i ∥, ∥vrel,j+1

i ∥}vrel,j+1
i /∥vrel,j+1

i ∥, (4.53)
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where ∆vCT,j
i = fCT,j

i hM/mi is the velocity increment resulting from fCN
i if treated as

an external force. Note that the friction coefficients are already utilized to evaluate fCT ,

which may be assembled from interfaces with different friction coefficients. The projection

can be understood that the application of fCT,j
i , clamped by ∥vrel,j+1

i ∥. This approach

effectively ensures that the friction force opposes the relative velocity direction and does not

change it. Our handling of friction represents a balance between conserving momentum and

maintaining stability, with the latter being more crucial for visual effects. Note that the

above friction-related quantities on particles are evaluated at x̂.

4.2.4.4 Reducing Penetrations from Splitting

Using a first-order scheme, such as symplectic Euler and backward Euler, the integration

of D
Dt
V (X, t) = a with a constant acceleration a will yield the same velocity despite

varying time step sizes. However, this consistency does not extend to the integration of

D
Dt
Φ(X, t) = V (X, t). It is a common observation that, under constant gravity acceleration

and using a first-order scheme, objects fall faster with larger time step sizes. This mismatch

contributes to the penetrations of MPM particles into FEM bodies. Higher-order schemes

may be employed to reduce this mismatch, but they complicate the implementation. Instead,

we stick to backward Euler and symplectic Euler coupling for implementation simplicity but

propose methods to reduce penetrations due to splitting.

Let the evaluated contact acceleration on a particle be a at coupling step convergence.

Ignoring elasticity, from tn to tn+1, the trial velocity and the final velocity are the same:

v̂n+1 = vn+1 = vn + ha. However, this does not apply to positions. After implicit time

integration, the penetration-free position is x̂ = xn+hvn+h2a. In contrast, using symplectic

Euler (ignoring elasticity) with a time step of h
N
, the final position is xn+1 = xn+ h

N

∑N
j=1(v

n+

jh
N
a) = xn + hvn + N+1

2N
h2a.

One effective way to reduce the mismatch is to decrease h, as the error is O(h2). The

error order might be slightly lower in practice due to the splitting of MPM elasticity and

smoothing from particle-grid transfers. Additionally, we employ a plug-and-play mass scaling
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mechanism and visualize the closest non-penetration states to eliminate penetration artifacts.

Mass Scaling The principle behind this mechanism is to slightly increase the contact force,

repelling MPM solids further away from FEM solids. To reduce penetrations in xn+1, we can

scale the contact force f by 2N
N+1

in the MPM step, to align new xn+1 with before-scaling

x̂. However, scaling f during the implicit coupling is also necessary to ensure FEM receives

an equivalent momentum correction. This is challenging since f is an implicit force in

the coupling step. A solution comes from our discovery that a particle’s contact force at

equilibrium is approximately proportional to its mass. We scale the particle masses by

2N
N+1

when solving the implicit coupling, and then restore the original masses during MPM

integration. Note that the contact force is still an internal force, not interfering with the

total momentum. With this scaling, there will be a greater gap between two domains in x̂,

leading to fewer penetrations in xn+1.

Non-penetration External State To visually address penetrations, we use a separate

external state of particles xo,n+1
M solely for rendering purposes. x̂n+1

M lags one time step behind

the current state, while the current state xn+1
M may have penetrations. So we visualize xo,n+1

M

by freezing FEM solids and performing a per-particle CCD from x̂n+1
M to xn+1

M to find a

closest non-penetration state. We only compute an external state per frame for visualization

because this state is not used in time stepping.

4.2.5 Evaluation

We implemented our framework on a workstation with an NVIDIA RTX 6000 Ada GPU and

an Intel Core i9-10920X CPU. The relative error of CG is set to 10−3. We stop Newton’s

method if the L∞ norm of the search direction reaches below 10−2h m.
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Figure 4.20: Momentum conservation test.

①

②

②①

Figure 4.21: Ablation on our mass scaling mechanism.

4.2.5.1 Ablation Studies and Unit Tests

Momentum Conservation. The system’s linear momentum is conserved in the absence

of friction and external forces. To demonstrate this, we conduct an experiment involving

two cubes with identical properties but different discretizations. These cubes collide under

the same velocity magnitudes. As shown in Figure 4.20, the total linear momentum remains

consistently zero. However, we note that the linear momentum under friction will not

be conserved due to our friction clamping mechanism, and the angular momentum is not

conserved due to the choice of backward Euler.

Reducing Penetrations. Our mass scaling mechanism can effectively reduce the pene-

tration of the MPM internal state into FEM bodies. In a 2D experiment, an elastic cube is

allowed to free fall from a height of 1 meter onto the ground with a relatively large time step

size, h = 10−2s. As depicted in Figure 4.21, we compare scenarios with and without mass

scaling. The results reveal the mechanism’s efficacy in reducing penetration. Additionally, a
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Figure 4.22: Convergence under time step size refinement.

Figure 4.23: MPM Friction. MPM Play-Dohs with different friction coefficients on an
incline conveyor.

notable side effect of mass scaling is its contribution to stabilizing objects on the ground.

Furthermore, reducing the time step size is another effective way to mitigate penetrations.

Under the same experimental setup above, we progressively refined the time step size by a

factor of 2. Figure 4.22 demonstrates that penetration can effectively converge to zero with

this continuous refinement of the time step size.

MPM Friction. We conduct a 2D experiment to validate our friction projection on the

MPM grid. A rectangular elastic object is placed on a horizontal plane under downward

gravity. Despite utilizing a small time step size (h = 10−3s), the object vibrates on the plane

w/ grid projection w/o grid projection

Figure 4.24: Ablation on the MPM friction projection.
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Analytical

Figure 4.25: Our MPM friction model can resolve static and dynamic friction accurately.

if we directly apply friction as a constant external force, as shown on the right of Figure 4.24.

However, by applying our projection on the MPM grid, we effectively address this issue,

shown on the left of Figure 4.24.

To further assess the accuracy of our friction model, we conduct an experiment where a

conveyor with an inclined angle θ = arctan(0.6) tries to move 4 MPM Play-Dohs upward, as

shown in Figure 4.23. Each body, with von Mises plasticity, is assigned a distinct friction

coefficient (µ = 0.4, 0.5, 0.6, 0.7). The experiment confirms that our model can resolve

both static and dynamic friction even on moving interfaces. Figure 4.25 reveals that the

accelerations from the dynamic friction align with the analytical solution g(sin θ∗ − µ cos θ∗)

(downward positive direction, θ∗ = arctanµ). We successfully capture the transition from

dynamic to static friction when µ = 0.7 as the relative velocity vanishes.

FEM Boundary in MPM In traditional MPM, boundary conditions are typically enforced

via fuzzy, grid-based collision detection, which may overlook fine geometrical details close

to the grid resolution. In contrast, CCD in our method can resolve collisions with objects

of any thickness, independent of the MPM grid resolution. Illustrated in Figure 4.26, we

compare our approach with traditional MPM in a scenario where a mass of viscous fluid falls

onto a thin wire mesh. With our method, the fluid successfully adheres to the wires due to

friction, whereas traditional MPM fails to capture the interaction between the fluid and the

wire mesh.
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Figure 4.26: Our method can resolve thin collision objects represented by FEM meshes in
MPM simulations.

Table 4.4: Simulation statistics of our multi-material simulation demos.

h (s) hM (s) s/step #P (×106) #V (×103)

Boat 2e-3 5e-5 3.81 3.12 10.2
Ruts 2e-3 2e-5 3.70 2.80 38.0
Dough 2e-5 2e-5 0.67 0.727 10.7
Snowball 5e-3 5e-5 2.22 2.14 2.66
Honey 2e-3 1e-5 1.72 1.19 29.2
Colored Sand 2e-3 2e-5 11.7 5.57 38.4
Debris Flow 5e-3 5e-5 6.71 1.47 236

4.2.5.2 Multi-Material Simulation

In this section, we conduct a comprehensive evaluation of the Dynamic Duo on its performance

in two-way coupled simulations involving a diverse set of FEM elastic solids, such as soft

bodies, rigid bodies, cloth, and various MPM elastoplastic materials, including fluid, sand,

snow, and debris flow. Detailed simulation statistics can be found in Table 4.4. The average

timing per step is reported. The last two columns are the particle count and the vertex count.

Boat In Figure 4.27, we demonstrate the use of affine body dynamics (Lan et al., 2022a) to

simulate the movement of a rigid boat through a tank filled with J-based MPM fluid (Jiang

et al., 2015a). The propeller is attached to the shaft through contact. Buoyancy keeps the

boat afloat. The interaction between the propeller and the water generates forward thrust by

pushing the water backward. The propeller is not controlled by Dirichlet boundary conditions.
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Figure 4.27: Boat. An FEM boat’s progression through MPM water.

Instead, the effect of motor power on the propeller is mimicked by a balanced rotational

external force field to generate a naturalistic interaction between the propeller and the boat.

Ruts In Figure 4.28, we present an experiment, inspired by Zhao et al. (2023a), to demon-

strate our Dynamic Duo’s potential applications in geotechnical engineering, particularly in

analyzing soil interactions. We simulate a scenario of a NASA Mars rover’s wheel traversing

granular soil modeled using MPM with Drucker-Prager plasticity, thus leaving deep ruts.

Similar to the previous example, the wheel’s movement is driven by a balanced rotational

external force field. Notably, we haven’t introduced additional friction between the soil and

the wheel; instead, the thrust is generated solely through the friction amongst the soil grains

themselves.
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Figure 4.28: Ruts. The wheel of a Mars rover navigates through the soil and leaves deep
ruts in its path. We also visualize the contact force on soil particles, indicated by a color
gradient ranging from blue (low) to red (high).

Dough In Figure 4.29, we simulate a common kitchen task to demonstrate the application

of rigid bodies in soft body manipulation, inspired by (Huang et al., 2021). A rolling pin

flattens MPM dough with von Mises plasticity. The rolling pin’s handle follows a predefined

path, while the roller is attached around it by contact, free to rotate. The two-way interaction

is indicated by the rotation driven by friction between the dough and the roller.
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Figure 4.29: Dough. A rolling pin rolls out an MPM dough. Contact force is visualized on
particles by a color gradient ranging from blue (low) to red (high).

Figure 4.30: Snow. Soft FEM mushrooms undergoing elastic deformations by the impact of
a falling MPM snowball.

Snowball In Figure 4.30, we drop an MPM snow ball modeled with Cam-Clay plasticity

(Gaume et al., 2018) onto soft FEM mushrooms. The two-way impact smashes the snowball

and also deforms the elastic mushrooms. Additionally, due to friction, portions of the snow

adhere to the tops of the mushrooms. Notably, as detailed in Figure 4.31, the computational

cost of contact handling (red) in this scenario is relatively moderate compared to MPM time
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Figure 4.31: The timing pie chart of the snowball example.
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Figure 4.32: Honey. Different buckling patterns of honey on a piece of cloth with different
friction coefficients.

integration (blue).

Honey In Figure 4.32, we present a simulation where honey is poured over pieces of cloth,

each having different friction coefficients. The dynamics of the cloth are captured using

ARAP membrane energy and dihedral bending energy (Grinspun et al., 2003), and the honey

is modeled as MPM J-based fluids with viscosity. The varying magnitudes of friction result

in distinct buckling patterns on the cloth.
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Figure 4.33: Colored Sand. A pile of MPM sand grains is scooped up by a piece of FEM
cloth with holes.

Colored Sand In Figure 4.33, we showcase a simulation where a pile of colored sand,

modeled using Drucker-Prager plasticity, is scooped up by a cloth. The sand grains slowly

trickle out through small, pre-opened holes. Subsequently, the sand is released, burying a

corner of the cloth. The rich collisions between the cloth and sand grains demonstrate the

robustness of our coupling framework.

Debris Flow In our final example, depicted in Figure 4.34, we simulate a large-scale natural

disaster involving a debris flow. The flow, modeled using von Mises plasticity with softening

(Zhao et al., 2023b), cascades down a terrain of complex geometry. The tremendous kinetic

energy of the debris flow not only causes significant deformation of trees but also washes

rocks down the valley.
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Figure 4.34: Debris Flow. A large-scale natural disaster caused by debris flow cascading
down the valley.
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4.2.6 Conclusion

We introduced the Dynamic Duo, a novel framework designed to integrate finite elements

and material points seamlessly. The IMEX framework combines the optimal performance

of implicit FEM and the flexibility of explicit MPM in applying various plasticity models.

We achieve this through an asynchronous time-splitting scheme, where IPC is applied to

model inter-domain frictional contact between FEM and MPM. The Dynamic Duo is not

only pivotal for creating complex multi-material animations but also holds potential in

inverse applications such as shape optimization, robot learning, and disaster prediction and

prevention. However, our framework also presents certain limitations that warrant further

research. For instance, friction clamping can underestimate the friction forces on MPM

bodies. Tracking momentum loss and applying correction impulses to FEM could be explored.

Moreover, completely eliminating the penetration issue in an efficient way is yet to be achieved.

Future developments could explore alternating FEM and MPM integrations to incrementally

resolve residual penetrations. Additionally, optimizing the coupling step is another avenue

for improvement, possibly through more efficient Hessian assemblies and linear solvers.

135



CHAPTER 5

Towards Efficient Simulation

5.1 SPPD: Subspace-Preconditioned GPU Projective Dynamics

with Contact for Cloth Simulation

5.1.1 Introduction

In cloth simulation, a fine and high-resolution discretization is often needed for rich and

vivid effects like detailed wrinkles, folds, and creases, which coarser models cannot produce.

The complexity, however, increases disproportionally w.r.t to the degrees of freedom (DOFs)

of the system, making high-resolution simulation prohibitive for time-critical applications,

whereas animating virtual garments at an interactive rate is always desired.

It is well understood that the primary obstacle for high-resolution cloth animation lies in

the computational cost associated with the system solve for numerical integration at each

time step. The cloth dynamics is nonlinear, and commonly used solvers rely on incremental

linearization of the equation of motion e.g., see (Baraff and Witkin, 1998). Collisions and

self-collisions, which are ubiquitous in cloth simulation, impose extra difficulties. Traditional

methods often leverage soft repulsion to handle collisions (Tang et al., 2018; Wu et al., 2020).

These approaches require careful parameter tuning to prevent undesirable artifacts like cloth

interpenetration. The state-of-the-art solution to contact modeling is incremental potential

contact (IPC) (Li et al., 2020), which utilizes log barriers and continuous collision detection

(CCD) to strictly maintain objects’ separation. The joint optimization with cloth elasticity

is numerically challenging as the collision component is considerably stiffer and of higher

frequency. The increased resolution also vastly complicates the spectrum of the system.

136



Figure 5.1: Kick (High-Res). Our method can efficiently simulate a high-resolution version
(more than 120K nodes) of the Kick animation in CIPC (Li et al., 2021a) at 23s per frame,
which is 6.5× faster than a heavily optimized and GPU accelerated CIPC solver. All collisions
are robustly handled with intricate wrinkles captured on the cloth, highlighting the efficacy of
our approach in handling fine-detailed garment simulations in complex animation scenarios.

While a wide range of numerical algorithms are available, they are proven only effective in

limited or specific situations. For instance, gradient-based strategies (Wang and Yang, 2016)

are quite parallelizable and efficient, but the performance declines quickly for stiffer instances.

On the other hand, direct solvers are robust against numerical stiffness when paired with

line search (Wolfe, 1969, 1971), but they are highly sequential and expensive for large-scale

problems.

The pros and cons of existing algorithms endorse their strong complementarity, which

forms our key rationale, illustrated in Figure 5.2. Specifically, we seek algorithmic synergy

between direct and iterative numerical procedures for efficient high-resolution cloth animations.

We argue that parallel local relaxation schemes e.g., Jacobi or Guass-Seidel are most effective

if low-frequency residuals can be pre-eliminated. The latter happens to be the task in which

subspace methods excel. The coordination of those two simulation modalities collectively

delivers combined efficiency and convergence that existing methods can hardly match. Model

reduction suppresses the system into a low-rank subspace, wherein the low-frequency residual

can be solved efficiently. At the other end of the spectrum, the remaining high-frequency

components become localized, making them an ideal target for parallel GPU solvers.

In this paper, we propose a novel subspace-preconditioned projective dynamics (PD)

framework (Bouaziz et al., 2014) for cloth simulation. At each global step of PD, we solve

for the displacement field within the subspace to capture low-frequency motion modes, with
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Chebyshev-JacobiNewton-PCGSubspace BFGS

High frequencyLow frequency

Figure 5.2: Subspace simulation, Newton method and Chebyshev-Jacobi excel at reducing
residuals in different frequency ranges. Our method combines the advantages of Subspace
BFGS and Chebyshev-Jacobi to achieve similar outcomes as Newton-PCG, but with improved
performance.

a pre-factorized subspace global matrix. The high-frequency details are dealt with using

parallel Chebyshev-Jacobi relaxation (Wang, 2015; Wathen, 2008) on the original full-order

system. We adopt a time-splitting scheme along with a quadratic contact proxy (Xie et al.,

2023a) to handle complex contacts. A novel modified Broyden-Fletcher-Goldfarb-Shanno

(BFGS) method is incorporated to progressively integrate the quadratic contact proxy into

the pre-factorized subspace global matrix, which circumvents the need for re-factorization.

Our comparative evaluation demonstrates remarkable performance gain, enabling another

10× acceleration over the state-of-the-art simulation techniques – like IPC, the resulting

animation is guaranteed to be free of any interpenetrations.

5.1.2 Related Work

Cloth Simulation Cloth and thin shell simulation, ubiquitous in daily life, continue to

be central in the realm of computer graphics and animation (Grinspun et al., 2003; Gingold

et al., 2004; Choi and Ko, 2005a). Modern cloth animation workflows largely incorporate an

implicit time integration scheme, a practice pioneered by Baraff and Witkin (1998). Given

the reduced stretchability of many fabrics, strain limiting is extensively used to prevent

over-constraint (Provot et al., 1995; Goldenthal et al., 2007; Wang et al., 2010; Thomaszewski

et al., 2009).
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Considerable research has focused on refining material modeling to accurately emulate

cloth’s mechanical behaviors. For example, Volino et al. (2009) introduced a nonlinear and

anisotropic tensile model based on continuum mechanics. Cloth bending is closely tied to

the parameterization of the dihedral angle (Volino et al., 1995), with Breen et al. (1994)

leveraging linear beam theory to link bending moment and curvature. Bridson et al. (2005)

developed the bending mode of a hinge-based element orthogonal to in-plane deformations.

In the context of inextensible fabrics, discrete mean curvature approximates bending, yielding

a quadratic energy with a constant Hessian (Bergou et al., 2006; Wardetzky et al., 2007).

The bending model introduced by Choi and Ko (2005b) effectively encapsulates compression

and buckling. Furthermore, Kim (2020) unveiled the interconnections between the model

proposed by Baraff and Witkin (1998) and classical Finite Element Method (FEM). Greater

realism in cloth models can be achieved by incorporating captured real-world data (Wang

et al., 2011; Feng et al., 2022; Miguel et al., 2012, 2013). Simulating garments at the yarn

level, although computationally intensive, is feasible (Kaldor et al., 2008; Cirio et al., 2014),

by condensing dynamics of individual yarn strands. Transitioning this approach onto triangle

meshes results in much more tractable computations (Sperl et al., 2020).

Collision Handling Developing accurate contact models is crucial in mechanics, robotics,

and computer graphics (Andrews et al., 2022; Johnson and Johnson, 1987). Traditional

methods often handle contacts as constraint-based linear complementarity problems (LCP)

(Kaufman et al., 2008; Baraff, 1994), resolved using projected Gauss-Seidel (PGS) method.

An alternate approach uses quadratic programming (QP) (Redon et al., 2002; Macklin

et al., 2020), compatible with more flexible solving techniques like projected gradient descent

(Mazhar et al., 2015), mass splitting (Tonge et al., 2012), and the augmented Lagrangian

method (Takahashi and Batty, 2021). Penalty methods (Bridson et al., 2002; Tang et al.,

2012; Xu et al., 2014) are also employed to handle complex self-contacts. In the context of

PD, Ly et al. (2020) introduced iterative refinement of contact forces during local steps.

While traditional methods mainly model contact through approximated constraints

utilizing signed distances or volumes, recent approaches like the incremental potential contact
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(IPC) model (Li et al., 2020) use precisely calculated unsigned distances for better robustness

and accuracy. IPC approximates contact as a conservative force with a barrier potential,

providing a controllable efficiency-accuracy tradeoff and ensuring penetration-free, convergent

results for general contacts of codimensional solids (Li et al., 2021a), rigid bodies (Ferguson

et al., 2021a; Lan et al., 2022a), hybrid multibody systems (Chen et al., 2022c), and FEM-SPH

coupled domains (Xie et al., 2023a), etc. Despite its effectiveness, IPC’s computational burden

stems from the barrier function and the continuous collision detection in each nonlinear solver

iteration. Recent endeavors have also concentrated on accelerating IPC through reduced-order

models (Lan et al., 2021a), projective dynamics (Lan et al., 2022c), block coordinate descent

(Lan et al., 2023), and time splitting (Wang et al., 2023b; Xie et al., 2023a), the majority of

which also employ GPU acceleration.

Subspace Simulation Reduced-Order Modeling (ROM) offers a way to speedup the

simulation of deformable bodies by using linear subspaces (Barbič and James, 2005; Sifakis

and Barbic, 2012). These subspaces, usually built using modal analysis (Pentland and

Williams, 1989; Hauser et al., 2003; Choi and Ko, 2005c) and its first-order derivatives (Barbič

and James, 2005; Yang et al., 2015), simplify the model by removing less critical degrees

of freedom (DOFs). This approach finds application in solids (An et al., 2008; Barbič and

Zhao, 2011; Yang et al., 2015), fluids (Treuille et al., 2006; Kim and Delaney, 2013), and

computational design problems (Xu et al., 2015). Alternative approaches include geometric

shape coarsening, akin to skin rigging to prescribe the dynamics of a fine model. For instance,

Capell et al. (2002) deformed an elastic body using an embedded skeleton, Gilles et al. (2011)

employed 6-DOF rigid frames, Faure et al. (2011); Brandt et al. (2018) employed scattered

handles, and Martin et al. (2010) used sparsely-distributed integrators for rods, shells, and

solids.

Recent work has started to investigate nonlinear low-dimensional manifolds for ROM,

with neural networks being used to construct these spaces (Lee and Carlberg, 2020). This

approach can require smaller latent space dimensions compared to linear methods (Fulton

et al., 2019; Shen et al., 2021). There has also been significant progress in data-driven latent
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space dynamics (Lusch et al., 2018), with neural networks being used to learn the evolution

of the entire latent space (Wiewel et al., 2019). To construct a subspace with sparse basis for

general cloth dynamics, we stick with linear subspaces and use 2D B-spline functions as the

building block.

5.1.3 Background

In this section, we provide a brief overview of the Projective Dynamics (PD) and Incremental

Potential Contact (IPC) techniques, with a specific focus on cloth simulation, to ensure

self-containment.

5.1.3.1 Projective Dynamics for Cloth Simulation

In the absence of collision, the PD solver employs the following optimization time integration

for time stepping:

min
x

1

2h2
∥x− x̃∥2M +

Emem

2

∑
t

∥Ft −R(Ft)∥2 +
Ebend

2

∑
e

∥x∥2Qe
. (5.1)

Here, h is the time step size, x̃ = x∗ + ẋ∗h + gh2 is the predictive position with x∗ being

the current position, Ft denotes the deformation gradient of triangle t, R(F ) represents the

closest rotation matrix to F , Emem and Ebend correspond to the membrane stiffness and

bending stiffness, respectively, and Qe is the local quadratic bending stiffness matrix for inner

edge e, as outlined by Bergou et al. (2006).

Rather than directly optimizing the energy equation (5.1), PD decouples it by introduc-

ing auxiliary rotations Rk
e for each triangle, enabling optimization through a global-local

alternating approach:

min
xk

1

2h2
∥xk − x̃∥2M +

Emem

2

∑
t

∥F k
t −Rk

t ∥2 +
Ebend

2

∑
e

∥xk∥2Qe
,

Rk+1
t = R(F k

t ).

(5.2)
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The global step involves solving a linear system with a fixed system matrix H = 1
h2M +

Kmem+Kbend, where Kmem, Kbend are membrane energy Hessian and bending energy Hessian

at the rest shape. The local step can be executed efficiently in parallel. This alternating

procedure continues until convergence is achieved. A precomputed Cholesky factorization can

be applied to solve the global step. However, as the resolution increases, the computational

time grows significantly. Moreover, multiple updates are required for the rotation matrices to

ensure accuracy. To mitigate this, it is common to solve the global step inexactly using a

few or even just one Jacobi iteration, while updating the rotation matrices as frequently as

possible. To accelerate convergence, Chebyshev acceleration techniques can be applied, as

suggested by Wang (2015). However, a substantial number of iterations are typically still

required for high-resolution scenes.

5.1.3.2 Incremental Potential Contact

IPC (Li et al., 2020, 2021a) is an approach that handles contact constraints using smooth log

barriers on unsigned distances to ensure separations between objects. It provides a robust

method for processing collisions, where the log barrier potential is included as an additional

energy term in the optimization-based time integration. By combining continuous contact

detection (CCD), IPC can guarantee that there are no penetrations as long as the initial

placement of objects is non-overlapping.

In the context of collisions between discrete meshes, collisions are classified into point-

triangle and edge-edge collisions. The contact potential is defined as follows:

B(x) =
∑
P,T

b(dist(P, T )) +
∑
E1,E2

b(dist(E1, E2)), (5.3)

where b is a smooth log barrier function of unsigned distance:

b(d) =


−(d− d̂)2 log(d/d̂), 0 < d < d̂,

0, d ≥ d̂.

(5.4)

142



Algorithm 5 Timestepping of subspace-preconditioned PD

if it is the first time step then
Construct subspace basis sparse matrix P . ▷ Section 5.1.4.2
Factorize the reduced-order global matrix P⊤HP . ▷ Section 5.1.4.3

end if
Update predictive position x̃.
Run a reduced-order global step w.o. contact for an initial guess.
Construct quadratic barrier proxy at current state x∗.
Initialize subspace BFGS history.
while not converged do ▷ Section 5.1.4.5

Run 2 iterations of subspace BFGS and update the history.
Run 5 fullspace Jacobi iterations.
Run PD local projections in parallel.

end while
Run penetration correction step. ▷ Section 5.1.4.6

Here, (P, T ) represents an arbitrary point-triangle pair, and (E1, E2) represents an arbitrary

edge-edge pair. The candidate pairs can be efficiently identified and filtered using bounding

boxes. The parameter d̂ controls the size of the contact zone. Inside this zone, the energy

tends to infinity as the contact pair gets closer to each other, indicating the presence of

contact forces. Outside the zone, there are no contact forces, and objects are considered

separated. During the search for a energy-decreasing positional increment, CCD is employed

to find an upper bound on the step size, such that when the step size is smaller, penetrations

can always be avoided.

To incorporate frictional forces into the optimization, the IPC method integrates a locally

smoothed semi-implicit Coulomb friction into a potential energy. For each contact point xk

with sliding basis Tk and normal contact force λk, the local friction is defined as

fk(xk) = −µλkTkf1(∥uk∥)
uk

∥uk∥
, (5.5)

where µ is the frictional coefficient, uk is the relative tangential velocity, f1 is a function

smoothly increase from 0 to 1 in the region [0, ϵvh] with ϵv controling the region of static

friction.
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Figure 5.3: Basis functions defined in R2.

5.1.4 Method

5.1.4.1 Algorithm Overview

Our subspace preconditioned PD pipeline is summarized in Algorithm 5. We elaborate further

details in the following subsections.

5.1.4.2 Construction of Subspace

Clothing items are typically composed of several flat fabric pieces, connected by stitches.

Taking this into account, it is sufficient to utilize basis functions defined in R2. Suppose the

cloth domain Ω is divided into multiple patches interconnected by stitches: Ω = ∪ki=1Ωk. For

each cloth patch Ωk, we employ the As-Rigid-As-Possible (ARAP) parameterization technique

(Liu et al., 2008) to obtain a bijective parameterization Ω̄k. In certain cases, additional

patch decompositions might be required to ensure bijectivity. Next, we embed each Ω̄k into

a regular 2D Cartesian grid and employ Material Point Method (MPM) quadratic spline

shape functions on the grid points (Jiang et al., 2016) as the basis for one spatial dimension

of R3. Specifically, each basis is a product of two one-dimensional quadratic B-splines and is

discretized on mesh nodes (see Figure 5.3):

Bij(X) = N(u/∆x− i)N(v/∆x− j). (5.6)
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Here, (i, j) denotes a grid index, u and v represent the parameterization of X, ∆x corresponds

to the spline’s kernel size and the spacing of the 2D grid, and N(x) is defined as:

N(x) =


3
4
− x2, |x| < 1

2
,

1
2
(3
2
− |x|)2, 1

2
≤ |x| < 3

2
,

0, 3
2
≤ |x|.

(5.7)

We decouple the three dimensions of the ambient space of Ω, meaning that the complete

sparse basis matrix P = B ⊗ I3 ∈ R3M×3N is represented by the Kronecker product between

the spline basis matrix B ∈ RN×M for scalar functions and the 3D identity matrix, where M

is the number of bases and N is the number of vertices.

Given a reference state of mesh position x0, we express the states in the subspace as

{x : x = x0 + Py, y ∈ R3M}. The displacement w.r.t. the reference state is constrained

within the linear space expanded by the bases in P . This basis satisfies the partition of unity

property and is C1-continuity w.r.t. the parameterization space.

Bending on Stitch If decompositions are necessary to achieve non-overlapping parame-

terization, such as for a tube-shaped cloth, we propose an approach to incorporate bending

energy on the artificially generated stitches. As depicted in Figure 5.4, assume an artificial

stitch passing through the shared edge of two triangles, namely (v1, v2, v3) and (v4, v5, v6).

We introduce two bending energies, each with half of the original bending stiffness, on the

4-stencils (v1, v2, v3, v4) and (v4, v5, v6, v1). By doing so, the original energy is now split

into two parts. As the stitch penalty pulls the vertices v2 and v5, as well as v3 and v6,

closer together, the combined energy of these two parts will recover the energy prior to the

decomposition.

5.1.4.3 Subspace Projective Dynamics

In each global step, as described in Equation 5.2, we need to solve a linear system Hu = b,

where u is the displacement increment w.r.t. the previous global step xk. To optimize the
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Without Stitch Bending
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With Stitch Bending

Figure 5.4: Stitch bending energies can recover bendings before domain decompositions.

quadratic energy within the subspace, we can restrict the displacement to the form u = Py.

This leads to solving a reduced-order global system

P⊤HPy = P⊤b. (5.8)

Here, the reduced-order global system matrix Ĥ = P⊤HP has a dimension that corresponds

to the number of bases in P. This dimension can be much smaller than the total number

of degrees of freedom. The advantage of this smaller matrix is that it can be prefactorized

using the Cholesky decomposition, enabling efficient reuse for backsolving of Equation 5.8.

By exclusively solving the global step increment within the subspace, we effectively address

the low-frequency modes that primarily govern the overall motion of the cloth. However,

this approach tends to overlook the high-frequency details that showcase the benefits of

high-resolution meshes. To reintroduce the high-frequency modes, we employ several Jacobi

iterations on the original global system Hu = b, starting from the displacement obtained

through the subspace solution. This two-level scheme bears a resemblance to a two-level

multigrid method, wherein P and P⊤ can be perceived as the restriction and prolongation

matrices, respectively. Nevertheless, due to the necessity of a local projection step to update

the membrane rotation reference, the right-hand side of the global linear system undergoes

changes.
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5.1.4.4 Subspace-Preconditioned Projective Dynamics with Contact

We follow the same strategy of Xie et al. (2023a) and incorporate contact in a specifically

designed time-splitting manner. At the beginning of each time step, we introduce a quadratic

proxy of the contact potential into the PD solver, allowing for penetration. Subsequently, an

additional correction step is incorporated to fix all penetrations while minimizing changes as

much as possible.

5.1.4.5 PD with Quadratic Contact Proxy

The quadratic proxy is defined as the second-order expansion of the barrier potential at the

initial state x∗ of the current time step:

B̂(x;x∗) = B(x) +∇B(x∗)⊤(x− x∗) +
1

2
∥x− x∗∥2∇2B(x∗). (5.9)

By combining this quadratic proxy, the global system of the PD solver is still linear:

(H +∇2B(x∗))u = b−∇B(x∗)−∇2B(x∗)(u+ xk − x∗), (5.10)

where Hu = b represents the global step system without contact.

However, the global system matrix is subject to change over time. To reuse the prefactor-

ized matrix obtained without contact, we employ subspace BFGS iterations to minimize the

quadratic energy of the global step within the subspace, i.e., we solve the quadratic problem

with the increment constrained to the subspace. It is important to note that the subspace

global matrix is now:

P⊤(H +∇2B(x∗))P = P⊤HP⊤ + P⊤∇2B(x∗)P⊤. (5.11)

The prefactorized matrix P⊤HP can serve as the initial approximation of the Hessian for

the subspace BFGS iterations at the beginning of each time step. Importantly, the global

system matrix remains unchanged within a single time step, allowing for the reuse of BFGS

147



history across different global steps within the time step. To ensure efficiency, we limit the

number of BFGS iterations to 2 in each global step, effectively providing only one additional

2-rank update to the initial reduced-order Hessian matrix based on previous updates. For

quadratic problems, the optimal step size for line search can be computed analytically,

requiring only one matrix-vector multiplication. It is worth mentioning that at the begining

of the global-local alternations, we solve one reduced-order global step, where one backsolve

using the prefactorized subspace global system can give us the exact solution. This initial

guess significantly decreases the number of PD iterations.

Following the subspace BFGS iterations, we perform 5 block-diagonal Jacobi iterations

on the original full-order linear system (Equation (5.10)) to enrich high-frequency details in

the solution. This choice aligns with the common practice of multigrid, which incorporates

3–5 smoothing iterations per cycle. The block size is 3 because all matrices are assembled

with 3×3 blocks, during which the diagonal blocks are tracked. However, with contact proxy

stiffness matrix, the eigenvalue of the iteration matrix can easily exceed 1. Here we use

a modified Jacobi with automatically tuned weight. We observe that each naive Jacobi

iteration is essentially a block-diagonal preconditioned gradient descent for the corresponding

quadratic problem. The steepest descent step size can be analytically computed as discussed

above. We use that step size as the weight for each Jacobi iterations. This can make sure

that the energy for the global step in Equation 5.2 is always decreasing.

In summary, each global step of our solver consists of 2 L-BFGS iterations and 5 Jacobi

iterations. The PD phase is terminated if the L-infinity distance between states from two

consecutive global steps falls below a given tolerance (5× 10−3h in our expriments with time

step size h), or if the maximum number of iterations is reached (200 in our experiments).

Additionally, we apply Chebyshev acceleration to the global steps, following Wang (2015);

Liu et al. (2017b), to accelerate convergence. Empirically, we found that Chebyshev weight

0.99 worked well across all our examples.
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5.1.4.6 Penetration Correction

The above PD solver may provide a trial solution xtr with penetrations. To resolve these

penetrations, we solve the following energy minimization using projected Newton method

combined with a non-penetration line search, following the approach used in the IPC

framework:
1

2h2
∥x− xtr∥2M +B(x). (5.12)

This objective function aims to find a balance between the trial state from PD and the

collision constraints. Unlike the original IPC, which solves the linear system in the Newton

method with Cholesky factorization, we employ a block-diagonal preconditioned conjugate

gradient (PCG) method to solve the system. On GPUs, iterative solvers are generally much

faster than direct solvers. Furthermore, we use a smaller contact stiffness than the quadratic

proxy. The stiffness for the proxy is slightly lower than the elasticity stiffness, while in

penetration correction, the value is adjusted to 0.01×. This adjustment can reduce the

condition number of the nonlinear optimization problem, facilitating faster convergence.

We also propose an early-stop strategy to reduce the number of Newton iterations required

in this step. The objective of this phase is to resolve collisions while preserving momentum

as much as possible. By observing this, we can increase the tolerance for DOFs that are

involved in contacts, while focusing on preserving momentum primarily for DOFs that are not

in contact. By prioritizing momentum preservation for non-contact DOFs and allowing for a

slightly larger tolerance for contact DOFs, we can reduce the number of Newton iterations

required in the penetration resolution step while still achieving satisfactory results. In our

experiments, the tolerances on non-contact DOFs and contact DOFs are 10−2h and 10−1h

respectively.

5.1.4.7 Friction

We also introduce an approach designed specifically for our time-splitting contact model

incorporating frictional effects. This model utilizes the Hessian of the frictional energy as a

damping matrix. We note that the friction coefficient µ no longer holds a physical meaning
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but still controls the magnitude of the frictional forces. In this friction proxy, we expand

the frictional contact potential at xk = x∗k + 10hϵvẋ
∗
k/∥ẋ∗k∥, and remove the contributions

of tangential velocities smaller than ϵv. That is, we only adopt dynamic friction Hessians

for damping along the tangential directions. Our fuzzy friction proxy can be seamlessly

integrated into the contact proxy and incorporated into the PD solve loops using the BFGS

algorithm.

5.1.5 GPU Implementation

Our algorithm has been implemented to run efficiently on a single GPU using CUDA 12.1.

To avoid write-write conflicts during the assembly of global gradients and Hessian matrices,

we did not utilize coloring algorithms like the one proposed in Fratarcangeli et al. (2016).

Instead, we found that using atomic add operations on our GPU was already efficient enough

and simpler to implement. For matrix-vector products in the Jacobi solver, CG method,

and subspace restriction/prolongation, we employed cuSPARSE, a library for efficiently

performing operations on compressed sparse row (CSR) matrices in CUDA. In addition, the

dense Cholesky factorization of P⊤HP was implemented using cuSOLVER, which enabled

efficient factorization of the reduced-order global matrix. At each Newton iteration during the

penetration correction, CCD is required on each search direction to guarantee non-penetration.

We use the patch-based GPU collision culling from Lan et al. (2022c) to efficiently reduce

the number of candidates.

5.1.6 Experiment

We implemented our algorithm on a desktop workstation with an NVIDIA RTX 3090 GPU

and an Intel Core i9-10920X 3.5-GHz CPU with 12 cores. We also follow (Macklin et al.,

2019) using simulation substeps for optimized performance.
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Newton Ours  Jacobi (3000)  Jacobi (2000)  Jacobi (1000)
15.3s/frame 3.0s/frame 39.3s/frame 26.2s/frame 13.6s/frame

Figure 5.5: The comparison between our method and Wang (2015) on a cloth hanging
experiment. The cloth used in the experiment consists of 250K vertices and 500K triangles.
Our method demonstrates closer agreement with the results obtained using Newton’s method,
but is much faster.

5.1.6.1 Compare with Chebyshev-Accelerated Jacobi-PD

We compare our method with (Wang, 2015), a classic GPU-accelerated PD algorithm using

Jacobi method to solve the global system inexactly. In this test, we simulate a piece of table

cloth (250K vertices, 500K triangles) with two upper corners fixed. Here, we exclude collision

and self-collision processing in both methods to only showcase the performance-wise difference.

For the method described in Wang (2015), we performed three separate experiments with

1,000, 2,000, and 3,000 Jacobi iterations, respectively. We also simulate the scene using

Newton’s method as the reference. The results of the comparison are illustrated in Figure 5.5.

Even with 3,000 iterations, Wang (2015) exhibits more discrepancies with Newton’s results

compared to our method. Furthermore, our method demonstrates faster computation times

compared to Wang (2015) when utilizing only 1000 iterations, despite the presence of artifacts

in their results.

5.1.6.2 Compare with Hyper-Reduced Projective Dynamics

Our work differs from hyper-reduced PD (HRPD) (Brandt et al., 2018) in several key aspects.

The subspace design in our method is tailored for cloth and shell structures, whereas HRPD

targets volumetric solids. Additionally, we solve the full-order system, while HRPD directly
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Figure 5.6: Our B-spline bases on regular grids naturally satisfy the property of partition of
unity, while hyper-reduced bases (Brandt et al., 2018) do not, leading to severe locking under
large deformations.
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Figure 5.7: Convergence under refinement.

simulates within the reduced subspace. Furthermore, the B-spline bases in our approach

inherently satisfy partition of unity on regular grids. This is advantageous for simulating

cloth, as HRPD bases lack this property. To demonstrate, we compare HRPD to our method

by directly simulating the subspace dynamics without Jacobi relaxation (ours used 1200

bases, while HRPD used 1497 bases). As shown in Figure 5.6, the hyper-reduced subspace

exhibits severe locking under large deformations, while our method does not.

5.1.6.3 Ablation Study

Convergence Under Refinement To evaluate the accuracy of our cloth solver, we perform

a convergence under refinement test w.r.t. the time step size h. We begin by capturing a
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Figure 5.8: Ablation study on the number of spline bases.

contact-rich snapshot of the ”cloth on sphere” experiment and using it as the initial state.

We then simulate with CIPC using h=1e-4 for a duration of 0.1 seconds. The final state

obtained from the CIPC simulation serves as the reference. We then use our cloth solver to

simulate with consecutively halved time steps, starting from h = 0.01s, in order to estimate

the convergence order of the L2-error to the reference. Shown in Figure 5.7, the estimated

convergence order is 1.11.

Number of Spline Bases The rate of convergence in the PD phase depends on the number

of spline bases. In our analysis, we take a contact-rich snapshot and focus on a single substep.

The outcome from the CIPC solver serves as the reference state, against which we evaluate

the convergence of our BFGS-based PD solver across varying numbers of spline bases. In our

framework, the number of spline bases is controlled by the spacing between spline centers.

As depicted in Figure 5.8, a smaller spline spacing ∆x typically leads to less iterations for

convergence. However, extremely small ∆x values can result in too much computational time

of the backsolve step on GPU. We estimated that this component’s timing is approximately

O( 1
∆x

1.9
). Despite efforts, we haven’t identified an optimal empirical compromise between

timing and PD convergence speed. Nevertheless, maintaining the number of bases slightly

below 10K for a 100K-vertex cloth tends to yield favorable overall speedups.
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Table 5.1: Average computational cost per frame (s) in the comparisons.

Experiment #V d̂ (m) #Basis
#Sub-
step

Ours
PD Step
Percentage

GPU
CIPC

CIPC PD-IPC

Ribbons 285K 2e-4 7119 16 46 43.3% 1033 1579 134
Cloth on sphere 252K 1e-4 8427 8 27 37.2% 241 2040 49

Funnel 232K 5e-4 9432 10 23 63.3% 362 2740 253
Reef knot 104K 3e-4 7665 8 10 81.9% 90 144 18

5.1.6.4 Benchmarks

We further compare our method with two known IPC-based cloth simulation methods, namely

CIPC (Li et al., 2021a) and PD-IPC (Lan et al., 2023), in multiple high-resolution cloth

simulation setups. The original CIPC implementation was on the CPU, which is quite

expensive. To avoid misleading benchmarks from different platforms, we re-implemented

CIPC on the GPU, and we refer to our own implementation as GPU CIPC. GPU CIPC port

most costly computations to CUDA including collision detection, culling, CCD, and Newton

solve, and it already exhibits notable performance gains compared to its CPU counterpart.

Nevertheless, our method (proposed in this paper) offers further speedups. PD-IPC is our

closest competitor as it is also based on the PD. However, they utilize simplified formulations

for the membrane and bending energies compared to our method. We made best efforts to

visually match their results with ours under the same numerical settings.

In the comparative analysis, we used a frame duration of 0.04s. We try our best to tune

the time step size to ensure a fair comparison of performance among different methods. In

the case of CPU IPC, the most efficient time step size is typically the frame duration. This

is because the direct solver used in CPU IPC is not sensitive to the condition numbers of

the Hessian matrix. However, for most iterative methods, including ours, substepping is

beneficial they are more dependent on the condition numbers of the problem. The per-frame

computational costs of different approaches are listed in Table 5.1.

Ribbons (Figure 5.9) We simulate the behavior of 21 long ribbons dropped into a bowl.

The ribbons interact with each other, resulting in multiple collisions and self-collisions. In this

example, we achieve 22× acceleration compared to GPU CIPC, 34× acceleration compared
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Figure 5.9: Ribbons. Twenty-one long ribbons are dropped into a round bowl, leading to
numerous collisions and self-collisions among the ribbons.

Figure 5.10: Cloth on sphere. A square cloth is dropped onto a sphere and form numerous
intricate wrinkles. PD-IPC utilizes simplified strain and bending models, resulting in inability
to capture fine-detailed wrinkles.

to CPU CIPC, and 2.9× acceleration compared to PD-IPC. We note that PD-IPC utilizes

simplified strain and bending models. In this example, it is not able to capture fine-detailed

wrinkles, resulting in fewer contact interactions compared to our method.

Cloth on sphere (Figure 5.10) A square cloth is dropped onto a sphere, with a ground

surface located beneath the sphere. There are persistent contact between the center of cloth

with the top of shpere, and persistent contact between the cloth and the ground. The contact

results in numerous intricate wrinkles. We achieve 8.9× acceleration compared to GPU CIPC,

75× acceleration compared to CPU CIPC and 1.8× acceleration with PD-IPC.

Funnel (Figure 5.11) To evaluate the robustness of our contact handling, we conduct a

test involving three pieces of cloth dropped onto a shallow funnel. As a scripted sphere passed

through the hole of the funnel at a constant speed, multiple collisions occurred between the

layers of cloth and between the cloth and the funnel. This scenario presented a significant

challenge due to the substantial compression experienced by the cloth while passing through
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Figure 5.11: Funnel. Three pieces of cloth are dropped onto a shallow funnel. A sphere
pushes the layers of cloth completely through the hole of the funnel.

Figure 5.12: Reef knot. Two curved ribbons are initially intertwined and then pulled in
opposite directions to form a tiny and tight knot.

the hole. In this example, our method exhibited remarkable performance gains compared

to other approaches. Specifically, we achieved a 15× acceleration compared to GPU IPC, a

119× acceleration compared to CPU IPC, and an 11× acceleration compared to PD-IPC.

These results highlight the robustness and efficiency of our contact handling technique in

challenging cloth simulations.

Reef knot (Figure 5.12) Two curved ribbons are initially intertwined and then pulled

in opposite directions to form a knot. It is worth mentioning that, to apply our method,

each ribbon is decomposed into three pieces combined with stitch bendings, as depicted in

Figure 5.4. Our method manages to generate a tiny and tight knot. And we achieve 9×

accelerateion comapred to GPU-IPC, 14× acceleration compared to CPU IPC, and 1.8×

acceleration compared to PD-IPC.
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Figure 5.13: Stitch bending is critical for preserving the correct bending stiffness along the
artificially generated seam, which does not exist on the original cloth surface.

Figure 5.14: Controllable friction. Three pieces of 120K-node long rectangle cloth fall
onto the slope under gravity. With larger friction coefficients (closer to the camera), the cloth
slides down the slope at a slower rate until it gets stuck and then undergoes turning motions.

5.1.6.5 Example with Stitch Bending

Some shapes needs artificial decompositions to obtain 2D ARAP parameterizations, such as

a cylinder. Here we simulated a cylindrical cloth mesh, which is decomposed into two pieces.

Stitch bending is critical for preserving the correct bending stiffness along the artificially

generated seam, which does not exist on the original cloth surface. Without stitch bending,

the cloth exhibits an unrealistically large fold along the seam, as shown in Figure 5.13.
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5.1.6.6 Controllable Friction

In Figure 5.14, we present an experiment where we vary the friction coefficients between the

cloth and the slope. The cloth used in the experiment is a long rectangle with 120K vertices,

and it falls onto the slope under gravity. By increasing the friction coefficient, we observe

that the cloth slides down the slope at a slower speed until it gets stuck and then undergoes

turning motions.

5.1.6.7 Garment Animation

Fine-detailed garment simulations play a crucial role in the animation industry. In the

animation pipeline, artist-designed character animation sequences serve as moving boundary

conditions for the cloth simulations. However, simulating garments on animated characters

presents significant challenges due to the dramatic motions involved, such as running, jumping,

or dancing. Here we use a challenging test case from Li et al. (2021a), where a character

turns and kicks wearing a multi-layer dress (Figure 5.1). We subdivided the original testing

garments to 120K vertices. The leg causes the dress moving in a high speed and there

are intricate interactions between layers of the dress. Our method can robustly handle

these collisions and resolve complex wrinkles on the cloth, with an average running time

of 23 seconds per frame. This is a 6.5× acceleration compared to the GPU IPC method,

highlighting the effectiveness and efficiency of our approach in handling fine-detailed garment

simulations in complex animation scenarios.

5.1.7 Conclusion

In this paper, we propose an efficient cloth simulation method based on the projective dynamics

(PD) framework. Our method combines subspace integration and parallelizable iterative

relaxation techniques to effectively reduce both high-frequency and low-frequency residuals,

leading to significantly improved convergence. We seamlessly integrate our method with

the state-of-the-art contact handling framework, IPC, to ensure interpenetration-free results

in a time-splitting manner. We have shown that our method has significant performance

158



improvements over existing GPU solvers for high-resolution cloth simulation.

Indeed, when dealing with objects exhibiting high speeds, the time splitting error can

become significant, leading to amplified damping effects. To address this issue, it would be

valuable to explore adaptive substepping techniques that can enhance the accuracy of the

time splitting process and alleviate the undesired damping artifacts.

Furthermore, the use of Newton’s method in the penetration correction step may give

rise to overshooting problems, resulting in excessive optimization iterations. Notably, the

penetration correction step typically consumes a substantial portion of the computation

time. To further improve the overall performance of our algorithm, it is crucial to investigate

dedicated solvers specifically tailored for the penetration correction step.

5.2 XPBI: Position-Based Dynamics with Smoothing Kernels Han-

dles Continuum Inelasticity

5.2.1 Introduction

Position-based Dynamics (PBD) (Müller et al., 2007) and its extension eXtended Position-

based Dynamics (XPBD) (Macklin et al., 2016) are widely adopted in compliant constrained

dynamics, particularly favored for their performance and simplicity for graphics applications

such as rigid bodies (Müller et al., 2020), soft bodies (Bender et al., 2014), cloth (Müller et al.,

2007), rods (Umetani et al., 2015) and hair (Müller et al., 2012). When simulating mesh-based

elasticity, it is straightforward to model XPBD constraints with FEM hyperelastic energies

defined over explicit mesh topology. This allows for effective simulations of elasticity while

maintaining the stability and speed of XPBD. For example, quadratic energy potentials

(Chen et al., 2023c) can be formulated using XPBD-style constraints. Macklin and Müller

(2021) and Ton-That et al. (2023) reformulated stable Neo-Hookean (Smith et al., 2018) to

demonstrate XPBD’s capability in handling nonlinear elasticity.

For inelasticity, on the other hand, two significant challenges emerge. Firstly, topology

changes during material splitting and merging introduce great complexity in maintaining a
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Figure 5.15: XPBI supports simulating a wide range of classical continuum elastoplastic
material models such as Von-Mises plasticine, Drucker-Prager sand, and Cam Clay snow, as
well as their interactions with traditional PBD materials such as Position-based Fluid.

high quality mesh, often necessitating remeshing. Secondly, while there have been explorations

that enhances Position-based Fluids (PBF) (Macklin and Müller, 2013) with the conformation

tensor (Barreiro et al., 2017) for viscoelastic fluids, it remains underexplored for XPBD to

model physically-grounded finite strain (visco-) elastoplastic constitutive laws from classical

continuum mechanics, such as von-Mises (Mises, 1913b), Drucker-Prager (Drucker and Prager,

1952) and Herschel-Bulkley (Herschel and Bulkley, 1926) flow rules. Being able to simulate

them would greatly improve XPBD’s versatility and intuitive controllability of material

parameters.

In comparison with XPBD’s success in mesh-based materials, Material Point Method

(MPM)’s development in graphics over the past decade has majorly focused on inelastic

phenomena with topology change. MPM is based on the weak form of governing PDEs

and employs a hybrid Lagrangian-Eulerian approach for spatial discretization. It handles

topology changes, self collision, and finite strain deformation without overhead, and thus

has been used for many continuum inelastic phenomena such as snow (Stomakhin et al.,

2013), lava (Stomakhin et al., 2014), sand (Klár et al., 2016), mud (Tampubolon et al., 2017),

metal (Wang et al., 2020a), foam (Ram et al., 2015), and fracture (Wolper et al., 2019).

While substantial progress has been made in these areas, MPM exhibits several notable

drawbacks, including excessive numerical dissipation due to particle-grid transfers (Jiang

et al., 2015a), artificial stickiness that hampers material separation (Fei et al., 2021a), and

resolution-dependent gaps between colliding materials (Jiang et al., 2017a). None of these
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Table 5.2: XPBI keeps PBD’s pure particle nature of the Degrees of Freedom while allowing
MPM-style plasticity and granular material modeling through an updated Lagrangian treat-
ment of the deformation and classical continuum mechanics-based elastoplastic flow rules.

Lagrangian DOF Plasticity Granular

MPM Updated Grid Flow Rule Continuum

PBD Total Particle N/A Sphere Approx.

Ours Total & Updated Particle Flow Rule Continuum

issues are present in XPBD. This raises a natural question: Can we simulate MPM-style

phenomena using XPBD instead?

Towards addressing this question, we make an important observation: the primary factor

that facilitates the modeling of inelasticity lies not in the hybrid Lagrangian-Eulerian nature

of MPM, but rather in its use of an updated Lagrangian formulation for the deformation

gradient tensor. In particular, one considers the time n+ 1 velocity vn+1 to be defined over

the previous time n domain Ωn through the Lagrangian velocity V of a particle traced back

using the inverse deformation map ϕ−1(x, t): vn+1(x) = V (ϕ−1(x, tn), tn+1) (Jiang et al.,

2016), where t represents the continuous time variable. This enables the derivation of the rate

form of the deformation gradient F given by Ḟ = (∇v)F , which can be further discretized

into F n+1 = (I + ∆t∇vn+1)F n, where ∆t is the time step size, allowing one to track the

deformation gradient without referring to a material space configuration.

Inspired by this observation, if we can track the deformation gradient tensor F using an

updated Lagrangian view in XPBD, then by treating F as a function of XPBD degrees of

freedom, we can modify XPBD to resemble a “material point” approach. As detailed in later

sections, this task reduces to robustly computing and differentiating the velocity gradient

tensor. We present developments surrounding these ideas by introducing eXtended Position-

based Inelasticity (XPBI), where the X represents not only the incorporation of XPBD

augmentation but also the use of velocity as the primal variable. This approach computes

the updated Lagrangian deformation gradient using a velocity-based formulation, allowing

us to handle various inelastic effects. Using velocities as primary variables allows for direct

evaluation of the velocity gradient and particle-wise constraints using interpolation kernels

defined at tn, aligning with standard MPM practices, while using positions could introduce
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uncertainties in updating kernels during implicit iterations. By further incorporating an

implicit plasticity treatment and additional stability-enhancing components, our method

leverages the efficiency and simplicity of PBD while capturing the complex inelastic material

responses typically associated with MPM; see Table 5.2. In summary, our contributions

include:

• An updated Lagrangian augmentation for XPBD that tracks meshless deformation

gradients and per-particle constraints;

• XPBI, a fully implicit plasticity-aware algorithm capable of handling continuum

mechanics-based elastoplastic/viscoplastic laws;

• An investigation for practical stability enhancements, such as XSPH and position

correction, and validations of our method with various practical examples.

5.2.2 Related Work

Inelasticity with PBD Müller et al. (2007) introduced PBD, which replaces internal

forces with positional constraints and produces appealing, stable and real-time simulations.

Its first-order convergence was studied by Plunder and Merino-Aceituno (2023). XPBD

(Macklin et al., 2016), an extension of PBD, utilizes the compliant-constraint framework

(Tournier et al., 2015) to uniformly handle soft and hard constraints to simulate elasticity.

Our work follows the latest XPBD paradigm (Macklin et al., 2019) with substeps. Other

PBD materials include rigid body (Müller et al., 2020), soft body (Bender et al., 2014),

cloth (Müller et al., 2007), hair (Müller et al., 2012), elastic rod (Umetani et al., 2015),

sand (Macklin et al., 2014), fluid (Macklin and Müller, 2013) with surface tension (Xing

et al., 2022) and their unified couplings (Macklin et al., 2014; Frâncu and Moldoveanu, 2017;

Abu Rumman et al., 2020). We refer to Bender et al. (2017) for a comprehensive survey.

For continuum materials, Bender et al. (2014) defined a constraint for the elastic strain

energy. Müller et al. (2015) constrained the strain tensor directly instead. Macklin and Müller

(2021) reformulated stable Neo-Hookean using XPBD. Plastic deformation and fracture can
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be modeled by shape matching (Chentanez et al., 2016; Jones et al., 2016a; Falkenstein et al.,

2017), prioritizing efficiency over accuracy. Macklin et al. (2014) simulated sand as colliding

spheres with friction. SideFX Houdini’s Vellum PBD solver further added spring-like cohesion

for snow. Without further utilizing continuum mechanics-based inelastic models, these

approaches have limited mechanical intuition and physical parameter controllability. A step

forward was proposed by Barreiro et al. (2017), which enhances PBF with the conformation

tensor for viscoelastic fluids. Nevertheless, it does not incorporate finite strain continuum

mechanics, limiting its suitability in modeling general elastoplastic and viscoplastic laws.

Inelasticity with MPM MPM was introduced by Sulsky et al. (1994) as a hybrid

Lagrangian/Eulerian approach for solids. Since its adoption in graphics (Hegemann et al.,

2013; Stomakhin et al., 2013), MPM has gained significant attentions for its automatic

topology change and material versatility. Snow plasticity was first done by projecting

principal stretches (Stomakhin et al., 2013). Phase change was modeled by Stomakhin et al.

(2014) through a dilational/deviatoric splitting of the constitutive model. Yue et al. (2015)

adopted Herschel-Bulkley viscoplasticity for foam. Ram et al. (2015) used the Oldroyd-B

model for viscoelastic fluids. Fei et al. (2019) developed an analytical plastic flow approach

for shear-dependent liquids. Following Drucker-Prager yield criterion, Klár et al. (2016);

Daviet and Bertails-Descoubes (2016) modeled sand as continuum granular materials and

Tampubolon et al. (2017) further added wetting. Wolper et al. (2019, 2020) captured

dynamic fracture using Non-Associated Cam-Clay (NACC) plasticity and damage mechanics.

Advocating implicit integrators, stiff plastic materials like metal was simulated with Newton-

Krylov MPM (Wang et al., 2020a), while Fang et al. (2019) used Alternating Direction

Methods of Multipliers (ADMM) for viscoelasticity and elastoplasticity and Li et al. (2022g)

proposed a variational implicit inelasticity formulation.

Inelasticity with Other Discretizations Smoothed Particle Hydrodynamics (SPH) was

originally developed for simulating incompressible flow. Clavet et al. (2005) added dynamic-

length springs for viscoelasticity. Jones et al. (2014) and Müller et al. (2004) solved Moving

163



Least Squares (MLS) for elastoplasticity. Gerszewski et al. (2009) first used deformation

gradient tensor with multiplicative elastoplastic decomposition in SPH. Alduán and Otaduy

(2011) and Yang et al. (2017a) modeled granular materials based on Drucker Prager yielding.

Takahashi et al. (2015) used an implicit SPH formulation to simulate viscous fluids. Gissler

et al. (2020) developed an implicit SPH snow solver similarly to Stomakhin et al. (2013)’s

MPM treatment. Using power diagram-based particle-in-cell (Qu et al., 2022) and MLS-

MPM (Hu et al., 2018a), power plastics (Qu et al., 2023) simulated inelastic flow with an

XPBD-style Gauss-Seidel solver. Peridynamics (Silling, 2000) defines pairwise forces and

integrates particle interactions. He et al. (2017) combined peridynamics with projective

dynamics (Bouaziz et al., 2014) and modeled Drucker-Prager plasticity. Chen et al. (2018b)

used isotropic linear elasticity with plasticity and simulated fracture.

5.2.3 Method

We start with briefly reviewing XPBD (Macklin et al., 2016), which lets hyperelasticity be

governed by Newton’s equations of motion through a potential U(x): Mẍ = −∇UT (x),

where M is the mass matrix and x = [x1, x2, ..., xp]
T is the unknown position states.

XPBD assumes U(x) can be further expressed as U(x) = 1
2
C(x)Ta−1C(x), where C =

[C1(x), C2(x), ..., Cm(x)]
T contains m constraints, and a is a diagonal compliance matrix.

The elastic internal force f and Lagrange multiplier λ are then shown to be

f = −∇C(x)Ta−1C(x), (5.13)

λ = −ã−1C(x). (5.14)

where ã = a
∆t2

and ∆t is the time step size.

5.2.3.1 Rewriting StVK Elasticity as Constraints

For modeling elasticity, we adopt the St. Venant-Kirchhoff (StVK) model with Hencky strains.

As in Klár et al. (2016), Gao et al. (2017), the advantage of this choice is for math/code

164



simplicity and runtime efficiency – it allows return mapping to have analytical solutions for

certain plastic flows, eliminating the need for numerical solutions. The elastoplastic behavior

of isotropic materials is characterized in the principal stretch space Σ via singular value

decomposition (SVD) (Stomakhin et al., 2012) of the deformation gradient F . The element’s

total potential energy Φ can be expressed as Φ = V 0Ψ, where V 0 is an element’s rest volume

and Ψ is the energy density, assuming piecewise constant element deformations, i.e., one

particle has one deformation gradient. For StVK we have energy density Ψ

Ψ = µtr
(
log (Σ)2

)
+
λ

2
(tr (log (Σ)))2 , (5.15)

where µ and λ are the Lamé parameters.

To convert Φ into constraints, our first option is to separately handle each term. As done

by Macklin and Müller (2021) for Neo-Hookean, by utilizing Φ = 1
2
1
α
C2, we could define two

constraints for the µ and λ term respectively as

αµ = 1/(2µV 0), and Cµ =
√

tr
(
log (Σ)2

)
; (5.16)

αλ = 1/(λV 0), and Cλ = tr (log (Σ)) . (5.17)

Alternatively, as done by Qu et al. (2023) on power diagrams, we can absorb Lamé parameters

from α to C and define a single F -dependent constraint through Φ = V 0Ψ(F ) = 1
2α
C(F )2

to achieve

α = 1/V 0, and C(F ) =
√
2Ψ(F ), (5.18)

which clearly halves the number of constraints by allowing more nonlinearity in each C(F (x)).

In practice we find both options effective, and adopt the single-constraint version for efficiency.
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5.2.3.2 Gradient is All You Need

Unlike mesh-based representations (Macklin and Müller, 2021) which use linear FEM to model

the deformation map x = ϕ(X, t) and compute deformation gradient F = ∂ϕ(X, t)/∂X

using an undeformed reference state X ∈ Ω0, meshless inelastic materials cannot utilize

simplex elements due to extreme deformation. We follow Jiang et al. (2016) and Gissler et al.

(2020) to derive the time rate of the deformation gradient:

∂

∂t
F (X, t) =

∂

∂t

∂ϕ

∂X
(X, t) =

∂v

∂x
(ϕ(X, t), t)

∂ϕ

∂X
(X, t), (5.19)

with V (X, t) = ∂ϕ(X, t)/∂t being the Lagrangian velocity whose Eulerian counterpart is

v(x, t) = V (ϕ−1(x, t), t). With time discretization from tn to tn+1 and the assumption that

the velocity v at time tn+1 being vn+1(x) for x ∈ Ωn, we have

∂

∂t
F (X, tn+1) =

∂vn+1

∂x
(ϕ(X, tn))F (X, tn). (5.20)

Taking ∂
∂t
Fp(Xp, t

n+1) ≈ (F n+1
p − F n

p )/∆t for a particle Xp we get

F n+1
p = F n

p +∆t
∂vn+1

∂x
(xn

p )F
n
p =

(
I +∆t

∂vn+1

∂x
(xn

p )

)
F n

p (5.21)

as the evolution of F n+1
p given vn+1 and F n

p . With updated Lagrangian (De Vaucorbeil

et al., 2020), the reference space is thus always Ωn and there is no need to store Ω0; see

Figure 5.16. Therefore, to express constraints as functions of positions C(F (vn+1(xn+1))),

robustly estimating ∂v/∂x (∀x ∈ Ωn) and its derivative is all one needs.

Accurately estimating meshless velocity gradients is generally challenging. Most meshless

shape functions require a dense neighborhood to fulfill the kernel’s normalization condition.

Known as neighborhood deficiency, significant accuracy degradation would occur especially

for first-order derivatives (such as velocity gradient) in sparse regions. Kernel gradient

correction (Bonet and Lok, 1999) and the reproducing kernel particle method (Liu et al.,

1995) are examples of strategies for mitigating this problem. Here, we adopt Wendland
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Figure 5.16: Deformation Gradient Evolution. The dotted line (bottom) illustrates the
evolution of the deformation gradient in the updated Lagrangian view, transitioning from
F 0

p (initial configuration) to F n+1
p (updated configuration), with F n

p (current configuration)
serving as the reference state. This facilitates tracking large deformations. The solid line
loop (top) depicts iterations of our XPBI algorithm to simulate tn → tn+1, alternating
between an XPBD iteration and a fixed point iteration. During iteration k, F E,tr

p is first

estimated based on the current gradient of v(k) (Section 5.2.3.2). Then, plasticity is applied

through projection to obtain F
(k+1)
p (Section 5.2.3.3), and finally, v(k+1) is updated by solving

constraints (Section 5.2.4.1).

kernels (Wendland, 1995) for the standard SPH kernel W and ∇W and the reweighting-based

kernel gradient correction (Bonet and Lok, 1999). The correction matrix Lp is defined as

Lp =

(∑
b

V n
b ∇Wb(xp)⊗ (xb − xp)

)−1

, (5.22)

with SVD based pseudo inverse A−1 = V Σ−1UT to avoid singularities when calculating

ill-conditioned matrix inverses for numerical stability, where V n
b = V 0

b det(F
n
b ) is the time

n volume of the neighborhood particle b. As in many SPH methods, the correction is
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indispensable for maintaining simulation stability. See Westhofen et al. (2023) for discussions

of similarly viable gradient estimation choices. Our discrete velocity gradient at particle p in

Ωn is then

∂v

∂x
(xn

p ) =
∑
b̸=p

V n
b (vb − vp)

(
Lp∇Wb(x

n
p )
)T
, (5.23)

which is also adopted in Gissler et al. (2020). Combining the gradient estimation with

Equation (5.21) and differentiating per-particle constraint Cp(Fp) (Equation (5.18)) reveals

∇xb
Cp|b ̸=p = V n

b

∂Cp

∂Fp

F n
p
T (Lp∇Wb(x

n
p )), (5.24)

∇xpCp = −
∑
b ̸=p

∇xb
Cp, (5.25)

which provides us all necessary constraint derivatives in XPBD.

5.2.3.3 Implicit Plasticity

Plasticity in continuum mechanics is typically solved with return mapping, denoted as Z(·),

which adjusts strains according to a plastic flow rule. It projects an elastic predictor F E,tr

onto the yield surface to ensure an inequality constraint on the stress.

To make plasticity implicit, we propose to alternate between (1) an XPBD iteration with a

projected stress and (2) a stress projection. This is essentially a fixed point iteration similarly

to Li et al. (2022g):

F (k+1)
p ← Z

(
F E,tr

p

(
v(k)

(
F (k)

p

)))
, (5.26)

where F E,tr
p is the trial elastic deformation gradient and v(k)(F

(k)
p ) is the updated velocity

by previous k XPBD iterations based on F
(k)
p in the previous iteration. In contrast to Li

et al. (2022g)’s fixed point iteration on Z which functions as an independent outer loop of

a full Newton optimization, our design establishes a fixed point on F , updating variables
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Algorithm 6 Simulating tn → tn+1 with XPBI

Neighbor search using xn ▷ Section 5.2.4.2
Evaluate kernel gradient correction Lp ▷ Section 5.2.3.2
v ← vn +∆tM−1fext

λ = 0
for number of XPBD iterations

for all p ∈ {Cp} looping with colored Gauss-Seidel ▷ Section 5.2.4.3
(∇v)p ← evaluateVelocityGradient(xn

p ,vp) ▷ Section 5.2.3.2
Fp ← (I +∆t(∇v)p)F n

p

Fp ← Z(Fp) ▷ Section 5.2.3.3
if Cp(Fp) ̸= 0 then

∆λp =
−Cp−α̃λ∑N

i=1
1

mi
|∇xiCp(x)|2+α̃

▷ Section 5.2.3.1

λp ← λp +∆λp
∆v = 1

∆t
M−1∇Cp(x)

T∆λp
v ← v +∆v

end if
end
for all i ∈ {Ci} looping with colored Gauss-Seidel

∆v = 1
∆t
M−1∇Ci(x

n +∆tv)T∆λi (e.g., collision) ▷ Section 5.2.4.4
v ← v +∆v

end
end
vn+1 ← v
Perform XSPH smoothing of vn+1(xn) ▷ Section 5.2.4.4
Update F n+1 and apply constitutive models ▷ Section 5.2.4.5
xn+1 ← xn +∆tvn+1

Note: α = 1/V 0
p and α̃ = α/∆t2 for each constraint.

directly impacted by the fixed point iteration within XPBD iterations; see Figure 5.16 top

and Algorithm 6. Resultingly, our implicit plasticity treatment introduces negligible extra

cost on top of what implicit elasticity already necessitated.

Nonetheless, convergence in fixed-point iterations depends on an initial guess sufficiently

close to the solution, among other conditions of the implicit function. In this paper, we do

not monitor quantitative plasticity convergence since few XPBD iterations are needed for

visually plausible results. We do emphasize the importance of implicit plasticity and compare

it with a semi-implicit treatment which only applies plasticity at the end of a time step; see

Section 5.2.5.1.
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5.2.4 Algorithm

Here we detail the XPBI pipeline and its seamlessly integration into existing XPBD. Our

pseudocode for advancing a time step using velocity-based XPBD is summarized in Algo-

rithm 6.

5.2.4.1 Algorithm Overview

Similarly to MPM, we use material particles to discretize the continuum. Each particle p

is governed by a constitutive model-induced constraint Cp (Equation (5.18)) and a plastic

return mapping operator Z. We use Cp to denote particle-wise inelasticity constraints

(|{p}| = N = # particles) and Ci to denote traditional PBD constraints (|{i}| = M =

# number of all other constraints).

Due to our dependency on velocity gradients, it is more natural to reparametrize XPBD

with velocities rather than positions as primary unknown variables. Closely resembling

position-based XPBD, we solve for velocities vn+1 and Lagrange multipliers λn+1 that

satisfies

M (vn+1 − ṽn)−∇C(vn+1)Tλn+1 = 0, (5.27)

C(vn+1) + ãλn+1 = 0, (5.28)

by updating per-particle inelastic constraint Cp’s corresponding Lagrangian multiplier λp

with

∆λp =
−Cp − α̃pλp∑N

b=1
1
mb
|∇xb

Cp(x)|2 + α̃p

, (5.29)

where αp = 1/V 0
p and α̃p = αp/∆t

2. The velocity update is given by:

∆v =
(
M−1∇C(x)T∆λ

)
/∆t. (5.30)

The velocities and multipliers are jointly updated by a colored Gauss-Seidel iteration (see
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Section 5.2.4.3 and Algorithm 6):

λ(k+1)
p ← λ(k)p +∆λp, v(k+1) ← v(k) +∆v. (5.31)

Note that by selecting velocities as our primary unknown variables, our deformation

gradient update (as derived in Equation (5.20) and Equation (5.21)) within the Gauss-Seidel

iteration allows us to directly evaluate the velocity gradient and particle-wise constraints in

Ωn using interpolation kernels defined at tn, aligning with a typical MPM approach (Jiang

et al., 2016). Conversely, using positions as primary variables could introduce uncertainties

regarding whether to update the kernels during implicit iterations, which is an intriguing

area for future exploration. For collisions with standard PBD materials, as illustrated in the

loop over Ci in Algorithm 6, we follow the standard PBD approach, where constraints are

directly evaluated using collision kernels defined by the latest candidate positions during the

iterations, ensuring accurate prediction of potential collisions.

5.2.4.2 Particle Neighbor Search

We reconstruct the neighbor information for each particle at the beginning of each timestep,

similarly to Macklin and Müller (2013). A comprehensive overview of CPU- and GPU-based

neighborhood search methods is surveyed by Ihmsen et al. (2014). Each material particle is

assigned the same kernel radius in our discretization scheme. We adopt a uniform spatial-grid-

based method for neighborhood searches following Hoetzlein (2014). Particles are spatially

stored in cells while neighbor lists Np = {b | ∥xp − xb∥2 ≤ k} are determined by querying

adjacent grid cells using the Wendland kernel’s support radius k = 2r, and r is the SPH

particle kernel radius. In addition to the total number of particles N = |{p}|, the total

number of particle neighbors
∑
|Np| is also critical for performance, as it determines the

complexity of calculating inelastic constraints. We summarize the statistics for
∑
|Np| in

Table 5.3.
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5.2.4.3 Colored Gauss-Seidel

Original PBD and XPBD frameworks solve constraints iteratively using nonlinear Gauss-

Seidel (Müller et al., 2007; Macklin et al., 2014, 2016). In contrast, Macklin and Müller

(2013) adopted a Jacobi-style iteration for fluids, solving each constraint independently to

enhance parallelism. We found that for high resolution and often high stiffness simulations

considered in this paper, Jacobi iterations too slowly propagate information and often suffer

from non-convergence (also noted by Macklin et al. (2014)). Thus we implement colored

Gauss-Seidel to maximize convergence, parallelism, and GPU throughput. We assign particles

into cells with ∆x = 2r (Section 5.2.4.2). 2d colors are specified for eliminating dependencies

between constraints in a d-dimensional simulation. We process all cells of the same color

in parallel while constraints Cp ∈ ci corresponding to all particles in the same cell ci are

computed serially.

The efficiency of this implementation heavily depends on the average Particle Per Cell

(PPC), as particles within the same cell are traversed sequentially. To optimize PPC and

ensure an even particle distribution, we utilize Poisson disk sampling (Bridson, 2007) during

the initial particle placement.

5.2.4.4 XSPH and Position Correction

The goal of eXtended Smoothed Particle Hydrodynamics (XSPH) is to incorporate artificial

viscosity for mitigating nonphysical oscillations in dynamics observed in SPH-based simula-

tions, which is more observable when the material is stiff and the constraints become hard

to solve. We follow Schechter and Bridson (2012)’s simpler XSPH-style noise damping after

velocity update by blending in surrounding particle velocities in Ωn:

vn+1
p ← vn+1

p + c
∑
b

V n
b (v

n+1
b − vn+1

p )Wb(x
n
p ). (5.32)

XSPH encourages smooth and coherent motion for inelastic materials in this paper. We use

dimensionless c = 0.01 in all examples.
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In particle-based simulations, including but not limited to FLIP (Brackbill and Ruppel,

1986; Zhu and Bridson, 2005) and APIC (Jiang et al., 2015a), non-physical particle clumping

and uneven particle distributions are common issues due to accumulation of advection errors.

While MPM is insensitive to the problem due to its structural grid nature, it is crucial for

pure particle-based methods like SPH and our approach to maintain reasonably even particle

distributions. Without doing so can strongly impair simulation quality and convergence,

particularly when material stiffness is high.

Various techniques in graphics have been proposed to address this by shifting particle

positions (Ando et al., 2012; Ando and Tsuruno, 2011; Kugelstadt et al., 2019). However, we

point out that while these methods work well for fluids, they are problematic for updated

Lagrangian simulations because such positional shifting is transparent to the evolution of

deformation gradients, leading to discrepancy between the positions of points and their

perceived deformations. Fortunately within XPBD we can directly adopt a point-point

distance constraint (Macklin et al., 2014)

C(xp,xb) = ∥xp − xb∥2 − r + ϵ ≥ 0 (5.33)

inside nonlinear iterations for all the neighborhood particle pairs. Here r represents the

particle kernel radius and ϵ is a small gap threshold used to determine when corrective action

is needed for nearby particle pairs. We set ϵ to 0.25r.

5.2.4.5 Deformation Gradient Update

Strain variables within XPBD iterations are temporary. After arriving at the post-XSPH

velocity vn+1, we update both the deformation gradient state and position state using the

same velocity – an essential subtlety to maintain their consistency:

F n+1
p = Z

((
I +∆t

∂vn+1

∂x
(xn

p )

)
F n

p

)
, (5.34)
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Figure 5.17: We simulate sand collapsing with varying friction angles ϕf .

ℎ = 0.3 ℎ = 1.0 ℎ = 3.0

Figure 5.18: XPBI simulates Hershel-Bulkley shear thinning (h = 0.3), viscoplastic (h = 1.0),
and shear thickening materials (h = 3.0), where h controls a power law flow rate detailed in
(Yue et al., 2015).

where inelastic return mapping is also applied to ensure the stored elastic deformation gradient

is within the yield region.

5.2.5 Results

Here we evaluate and benchmark our eXtended Position-based Inelasticity (XPBI) framework

in terms of visual results against traditional XPBD and MPM methods, as detailed in

Section 5.2.5.1. Additionally, we present various demonstrations in Section 5.2.5.2 that

illustrate XPBI’s effective handling of diverse phenomena. We use Intel Core i9-14900KF

CPU with 32GB memory and NVIDIA GeForce RTX 4090. We model common inelastic

materials including Cam-Clay (NACC) (Wolper et al., 2019) snow and fracture, Drucker-

Prager (Klár et al., 2016; Tampubolon et al., 2017) sand, Von Mises (Li et al., 2022g) plasticine

and metal, and Herschel-Bulkley (Yue et al., 2015) foam.

5.2.5.1 Evaluation

Intuitive Parameters We simulate sand collapsing with varying friction angles ϕf in

Figure 5.17. Our method reproduces characteristic piling shapes. In Figure 5.18, we compare
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Figure 5.19: XPBI effectively captures viscoplastic coiling; as the shear modulus µ increases
from left to right, coils become more elastic.

vanilla XPBD

vanilla XPBD

MPM

MPM

XPBI (ours)

XPBI (ours)

Figure 5.20: Vanilla XPBD v.s. MPM v.s. XPBI. We simulate two sand blocks collide
(top) and sand column collapse (bottom) with vanilla XPBD (Macklin et al., 2014, 2016)
(left), MPM (Klár et al., 2016) (middle), and XPBI (right).

viscoplastic, shear thinning, and shear thickening materials by only altering the Herschel-

Bulkley power parameter h. Upon impact with a ground plane, the shear thickening material

exhibits low flow rates under high stress, behaving elastically and bouncing off. Conversely,

the shear thinning material flows immediately due to its higher flow rate. Similarly we can

easily control the fluidity of viscoplastic goo (Figure 5.19). A smaller µ gives a more fluid-like

appearance, while a larger µ leads to more elastic behavior.

Comparisons to Vanilla XPBD and MPM We compare XPBI sand with both vanilla

XPBD (Macklin et al., 2014, 2016), which employs a point-wise friction model, and explicit

MPM with Drucker-Prager plasticity (Klár et al., 2016); see Figure 5.20. This comparison

includes simulations of two sand blocks collide (top) and sand column collapse (bottom). All

methods apply a timestep of ∆t = 0.1 ms, with identical initial sampling positions for all

particles across the methods. The vanilla XPBD (left) approach fails to accurately replicate

the correct friction angle upon sand settling. While both MPM (middle) and XPBI (right)

successfully model the continuum behavior of sand, our method achieves a more uniform

175



Figure 5.21: Comparison on notched sand block fall. Inital (left), our fully implicit treatment
(middle), and semi-implicit plasticity (right).

particle distribution, avoiding the sparsity, clumping, and artificial grid ∆x-gap phenomena

typically caused by MPM solvers. For a quantitative analysis, we also plotted the average

distance between each particle and its nearest neighbor per frame, displayed on the far right

of Figure 5.20. Each particle was initially positioned at intervals equal to the particle radius.

The average distance relative to the initial state in the MPM decreases rapidly post-collision,

accompanied by an increase in the variance of the distance, whereas our method maintains

both the relative distance and variance stably throughout the simulation, indicating a more

consistent particle distribution. It is also noteworthy that our method aligns more closely

with the approach of Yue et al. (2018) compared to MPM, opting for Discrete Element

Method (DEM) to capture more discrete behaviors near the free surface.

Implicit Plasticity We evaluate our fully implicit plasticity treatment by replacing it

with a semi-implicit method, which only performs return mappings at the end of the time

steps as in Stomakhin et al. (2013) Section 5.2.4.5), while XPBD iterations only address

elasticity. As shown in Figure 5.21, the semi-implicit approach (right) can lead to severe

artifacts. This occurs because the forces generated by stresses outside the yield surface cause

the continuum to behave more like a purely elastic body. This artifact results from the

semi-implicit method’s failure to account for plasticity during the XPBD solve, leading to an

overestimation of the material’s resistance to tensile deformation. In contrast, our method

(middle) fully incorporates plasticity in the XPBD iterations and avoids such artifacts.
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Figure 5.22: Cantilever beams modeled with StVK constitutive model using both our method
and FEM ground truth with varying stiffness (top). Relative residual errors h(v,λ) =
C(v) + ãλ with respect to iteration (bottom left) and runtime (bottom right) for a single
frame from the above examples.

Convergence We study the convergence of our method using cantilever beams of varying

stiffness, E = 104 Pa, 105 Pa, 106 Pa, respectively (Figure 5.22). We set the density at

100 kg/m3 and the timestep at ∆t = 5ms. We also compare the relative residual errors of

the Gauss-Seidel and Jacobi solvers in our method, as well as an implicit FEM ground truth,

with respect to both iteration and time. XPBI with Gauss-Seidel can converge stably with

a large timestep. In contrast, the Jacobi solver only converges with softer materials and

struggles with high stiffness. This is consistent with observations about XPBD in prior work.

Given that the materials discussed in our paper are predominantly very stiff, we opted for

grid-colored Gauss-Seidel as our solver. Although using a large timestep is feasible with

sufficient iterations, it becomes cost-inefficient if too many iterations are required. Thus,

following Macklin et al. (2019), we employ a small timestep.

Position Correction To validate the importance of position correction, we conducted a

hydraulic test on a highly stiff aluminum wheel, as shown in Figure 5.23. Without position

correction, areas with significant deformation and stress suffer from gradient estimation errors
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Figure 5.23: Hydraulic test on a stiff aluminum wheel: initial (left), w/ (middle) and w/o
(right) position correction. The simulation suffers from artificial fracture and instability
without our correction.

due to uneven particle distribution, resulting in artificial fractures and eventually simulation

instability. With position correction, however, we can reliably simulate high-stiffness materials

under extensive deformation. This example also shows our capability in animating metal

ductility using Von Mises plasticity.

In addition to the distance constraint, other position correction strategies can also be

employed. For instance, Takahashi and Lin (2019a) demonstrated that the density constraint

is effective in addressing particle clustering while preserving volume. In Figure 5.24, we

quantitatively compare the distance and density constraints using the same setup as in

Figure 5.20. Although both constraints are effective in maintaining maximum density during

simulation, the distance constraint better resolves the distance between neighboring particles,

improving both mean and variance, crucial for integration stability. We prefer the distance

constraint for its simplicity.

Scalability To demonstrate the scalability of our method, we simulate viscoplastic monsters

hitting the ground using 8K, 56K, 400K, and 3M particles, respectively. We maintain a

constant simulation time step of ∆t = 0.1 ms, perform 10 iterations of XPBD per substep,

and apply consistent material parameters across all simulations. Our method consistently

replicates material behavior at varying resolutions, as depicted in Figure 5.25. We measure and

178



Figure 5.24: Comparison of distance and density constraint. We plot the maximum density
(top), the average distance to the nearest neighbor and respective standard deviations
(bottom) for the settings described in Figure 5.20.

Figure 5.25: We simulate viscoplastic monsters falling to the ground using varying numbers
of particles. We plot the computation time for each frame for 8K, 56K, 400K, and 3M (left)
particles, demonstrating consistent behaviors across different particle counts. We also plot
the average cost per particle (right). The running overhead of our algorithm decreases
significantly as the number of particles increases, showing strong superlinear scalability.

plot the computation time for each individual frame (left) alongside the average computation

time per particle (right). The average computation times per particle for 8K, 56K, 400K, and

3M are 0.30 ms, 0.098 ms, 0.058 ms, and 0.037 ms, respectively. These results highlight strong

scalability; as the number of particles increases, the colored Gauss-Seidel solver can more

effectively exploit GPU resources, significantly reducing the overall computational overhead

per particle.

Timing Breakdown Figure 5.26 illustrates the GPU computational cost breakdown for

the Hourglass simulation example. In the breakdown, Collision Detection refers to the

time spent on constructing the LBVH (Karras, 2012) and querying for collision between
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Figure 5.26: A typical breakdown of the total computational cost of our framework. We take
the Hourglass example (Figure 5.33) for demonstration.

Figure 5.27: Ablation on varying time step sizes. Total XPBD iterations (left) and runtime
(right) required for all steps to converge to a fixed residual error for 1s simulation time with
varying time step sizes.

point-triangle pairs. Neighbor Search covers the time taken to build the background grid

and neighborhood list by querying adjacent cells (see Section 5.2.4.2 for details). Solve

Inelasticity Constraints involves our colored Gauss-Seidel solver for inelasticity constraints,

including fixed-point implicit plasticity treatment. Solve Other Constraints accounts for

the time spent on resolving all other constraints, such as point-triangle distance constraints

for boundary conditions, position correction, as well as stretching, bending, and density

constraints in other examples. XSPH and Update Particle State are detailed in Section 5.2.4.4

and Section 5.2.4.5, respectively. The majority of our framework’s computational time is

spent on solving inelasticity constraints, while additional stability enhancements like XSPH

and position correction contribute a relatively small overhead.

Choice of Time Step While our method with colored GS solver can converge with a

time step 5× larger, as noted by Macklin et al. (2019), smaller time steps are generally
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Figure 5.28: Comparison with Gissler et al. (2020). The semi-implicit plasticity approach
in Gissler et al. (2020) (top) exhibits timestep-dependent behavior, whereas our method
(bottom) demonstrates consistent behavior across different timestep sizes.

preferable due to the nonlinear increase in GS iterations needed for convergence. However,

we emphasize that reducing to just one iteration per time step is sub-optimal in our scenario,

as shown in Figure 5.26, where collision detection, neighbor search, XSPH, and particle state

updates occur once per time step, accounting for about 1/3 of the total computation time. A

timestep that is too small increases the overhead of these operations, with minimal benefit to

GS convergence. We study the efficiency of different time step sizes by applying the same

setting as in Figure 5.22, this time fixing the residual error threshold ϵE and ensuring that

each timestep converges under the given threshold, ∥h(v, λ)∥2 ≤ ϵE, with adaptive XPBD

iterations. The ϵE values are chosen based on the residual errors observed when the cantilever

beams exhibit visually identical behaviors to the FEM ground truth for each stiffness E,

respectively. We measure the total XPBD iterations and runtime required relative to the

timestep size for a 1-second simulation. As shown in Figure 5.27, when stiffness is high,

the total number of iterations required for convergence increases with the timestep size.

Interestingly, when the timestep is sufficiently small, the total XPBD iterations required

actually increases, as each timestep necessitates at least one iteration, and the runtime’s

growth rate rises further due to the additional overhead per timestep. In practice, we select a

∆t between 5× 10−5 s and 2× 10−4 s.
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Table 5.3: Parameters and Statistics. We summarize the parameters and timing statistics,
including maximum particle numbers, the Wendland kernel radius, the average total number
of particle neighbors per substep, the average time per frame, the XPBD iterations per
substep, and the time step size ∆t for various demos described in Section 5.2.5.2. Material-
related parameters are detailed in the last two columns. In addition to the basic settings of
the material (density ρ, Youngs Modulus E, and Poisson Ratio ν), we include model-specific
parameters arranged as follows: 1) NACC: (ρ, E, ν, α0, β, ξ,M); 2) DP: (ρ, E, ν, ϕf , c0); 3)
VM: (ρ, E, ν, σγ); and 4) HB: (ρ, E, ν, σγ, h, η). See references for detailed explanations of
these parameters.

demo particle # radius ave
∑
|Np| ave sec/frame iter # ∆tframe ∆tstep material material parameters

(Figure 5.29) Noodles 1.18M 1/256 28.7M 46.3 10 1/40 1× 10−4 VM (1, 2× 104, 0.3, 76.9)
(Figure 5.31) Cloth 1.10M 1/512 19.9M 24.3 10 1/100 5× 10−5 HB (100, 14754, 0.475, 50, 1, 10)
(Figure 5.32) Camponotus 1.12M 1/1024 32.9M 37.3 10 1/100 4× 10−5 NACC (2, 2× 104, 0.35,−0.02, 0.5, 1, 2.36)
(Figure 3.15) Dam Breach 4.00M 1/384 156.2M 138.8 7 1/24 2.5× 10−4 DP (1, 400, 0.4, 30, 0.0007)
(Figure 5.33) Hourglass 1.01M 1/1024 17.0M 30.9 5 1/24 1× 10−4 DP (1, 3.537× 105, 0.3, 35, 0)
(Figure 4.30) Hitman 1.05M 1/512 32.5M 38.9 10 1/100 4× 10−5 NACC (4, 2× 104, 0.3,−0.005, 0.05, 30, 1.85)
(Figure 4.30) Snow Dive 2.48M 1/512 64.1M 78.2 5 1/100 4× 10−5 NACC (4, 1× 104, 0.3,−0.0005, 0.05, 30, 1.85)
(Figure 5.35) Wrist 20K 1/256 433.2K 0.015 5 1/100 2× 10−4 HB (100, 2250, 0.125, 10, 1, 10)

Comparison with Gissler et al. (2020) Our method shares similarities with Gissler

et al. (2020) in computing the velocity gradient and advecting the deformation gradient

using SPH-based spatial discretization. However, Gissler et al. (2020) utilizes a Jacobi

solver for the primal system, whereas we solve the dual formulation with a Lagrangian

multiplier, enabling coupling with traditional PBD materials. A comprehensive discussion

of the advantages/disadvantages of dual vs. primal formulations can be found at Macklin

et al. (2020). Most notably, as shown in Figure 5.28, our approach to plasticity is distinct.

We adopt the same snow constitutive model (Stomakhin et al., 2013) for both methods, with

parameters: ρ = 400 kg/m3, E = 5×105 Pa, hardening coefficient ξ = 10, critical compression

θc = 0.025, and critical stretch θs = 0.0075. We conducted simulations using timesteps of

∆t = 10−4 s and 10−3 s. Gissler et al. (2020) employs a semi-implicit plasticity model with a

single post-return-mapping projection per time step, akin to Stomakhin et al. (2013), making

snow behavior timestep dependent due to this explicit plastic deformation update. In contrast,

our method uses a fully implicit plasticity treatment, alternating between XPBD iteration

and fixed-point iteration and producing consistent behaviors across different timestep sizes.
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Figure 5.29: Noodles. We simulate noodles modeled using Von Mises plasticity as it is
pressed through a cylindrical mold.

particle view

Figure 5.30: Dam Breach. Our method can be seamlessly coupled with PBF (Macklin and
Müller, 2013) to simulate sand and water mixture.

Figure 5.31: Cloth. XPBI fits into traditional XPBD pipeline and naturally couples updated
Lagrangian materials (viscoplastic paint) and mesh-based geometry (cloth).

5.2.5.2 Demos

Complex materials with up to millions of particles, such as mud (Figure 5.29, Figure 5.30),

viscoplastic paint (and its coupling with traditional XPBD cloth) (Figure 5.31), brittle
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Figure 5.32: Candy Camponotus. We simulate the brittle fracture of a candy shaped like
a camponotus falling onto the ground.

particle view

Figure 5.33: Hourglass. Sand in hourglass accumulates at the bottom. The material is
modeled with Drucker-Prager plasticity (Klár et al., 2016).

Figure 5.34: Hitman and Snow Dive. We successfully reproduce realistic and complex
snow behaviors, such as a snowball hitting a person (top) and a person falling into a snow
ground (bottom), using NACC (Wolper et al., 2019) constitutive model.

fracture (Figure 5.32), sand (Figure 5.33), and snow (Figure 5.34) can be simulated with

XPBI. The timing and parameters are summarized in Table 5.3.

Real-time Interaction The position-based method family is widely adopted in game and

VR applications due to its real-time interactive capabilities (Barreiro et al., 2017; Jiang
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Figure 5.35: Real-time Vision ProTM Interaction. Interactive manipulation of a vis-
coelastic fluid, consisting of up to 20K particles, is simulated at 30fps.

et al., 2024). We further showcase our method in interactive applications where very small

time steps are impractical. The convergence and stability of our approach enable interactive

performance in moderately complex scenarios involving 20K particles. For this application, we

employ the Jacobi solver due to its significant parallelism capabilities on GPUs for small-scale

simulation. We use an Apple Vision Pro VR device and VisionProTeleop (Park and Agrawal,

2024) to track hand motions and enable a virtual hand to interact with viscous fluids.

5.2.6 Discussion

In summary, XPBI is a novel updated Lagrangian enhancement for XPBD, enhancing its

capability for simulating complex inelastic behaviors governed by continuum mechanics-

based constitutive laws. Further incorporating an implicit plasticity treatment and stability

enhancements, XPBI can be easily integrated into standard XPBD to open up its new

simulation possibilities.

Given the high stiffness and detailed resolution of most scenes, the timestep is constrained

by the relative low GS convergence and SPH CFL condition, which is related to the kernel’s

support radius. We note that although our method falls under the category of implicit

methods capable of handling highly stiff materials, additional damping models, such as XSPH

or XPBD constraint damping, are still necessary to avoid jittering effects or stability issues.

While XPBI supports a broad range of material behaviors, Maxwell viscoelastic materials

(Fang et al., 2019) necessitate more specialized treatment. Also, interactions between sand

and water mixtures occur primarily at the material boundary. Simulating actual porous

media (Tampubolon et al., 2017) and fluid sediment mixture (Gao et al., 2018a) with proper
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momentum transfer are interesting future work. Another direction is to optimize parallelism

for solving inelastic per-particle constraints. Although grid-colored Gauss-Seidel significantly

improves performance over sequential iterations in large-scale simulations, it underperforms

in small-scale cases on modern GPUs due to low utilization, obstructing many interactive

rate experiments. A tailored real-time solver would be interesting.
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CHAPTER 6

Real-to-Sim Tasks

6.1 PAC-NeRF: Physics Augmented Continuum Neural Radiance

Fields for Geometry-Agnostic System Identification

6.1.1 Introduction

Inferring the geometric and physical properties of an object directly from visual observations

is a long-standing challenge in computer vision and artificial intelligence. Current machine

vision systems are unable to disentangle the geometric structure of the scene, the dynamics

of moving objects, and the mechanisms underlying the imaging process – an innate cognitive

process in human perception. For example, by merely watching someone kneading and rolling

dough, we are able to disentangle the dough from background clutter, form a predictive

model of its dynamics, and estimate physical properties, such as its consistency to be

able to replicate the recipe. There exists a large body of work on inferring the geometric

(extrinsic) structure of the world from multiple images (e.g., structure-from-motion (Hartley

and Zisserman, 2003)). This has been bolstered by recent approaches leveraging differentiable

rendering pipelines (Tewari et al., 2022) and neural scene representations (Xie et al., 2022a),

unlocking a new level of performance and visual realism. On the other hand, approaches to

extract the physical (intrinsic) properties (e.g., mass, friction, viscosity) from images are yet

nascent (Jatavallabhula et al., 2020; Ma et al., 2021; Jaques et al., 2022, 2020) – all assume

full knowledge of the geometric structure of the scene, thereby limiting their applicability.

The key question we ask in this work is “can we recover both the geometric structure and

the physical properties of a wide range of objects from multi-view video sequences”? This
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dispenses with all of the assumptions made by state-of-the-art approaches to video-based

system identification (known geometries in (Ma et al., 2021) and additionally rendering

configurations in (Jatavallabhula et al., 2020)). Additionally, the best performing approaches

to recover geometries (but not physical properties) of dynamic objects in videos include

variants of neural radiance fields (NeRF) (Mildenhall et al., 2020), such as (Pumarola et al.,

2021a; Tretschk et al., 2021; Park et al., 2021). However, all such neural representations of

dynamic scenes need to learn object dynamics from scratch, requiring a significant amount of

data to do so, while also being uninterpretable. We instead employ a differentiable physics

simulator as a more prescriptive, data-efficient, and generalizable dynamics model; enabling

parameter estimation solely from videos.

Our approach—Physics Augmented Continuum Neural Radiance Fields (PAC-NeRF)—is

a novel system identification technique that assumes nothing about the geometric structure of

a system. PAC-NeRF is extremely general – operating on deformable solids, granular media,

plastics, and Newtonian/non-Newtonian fluids. PAC-NeRF brings together the best of both

worlds; differentiable physics and neural radiance fields for dynamic scenes. By augmenting

a NeRF with a differentiable continuum dynamics model, we obtain a unified model that

estimates object geometries and their physical properties in a single framework.

Specifically, a PAC-NeRF F is a NeRF, comprising a volume density field and a color field,

coupled with a velocity field v that admits the continuum conservation law: DF
Dt

= 0 (Spencer,

2004). In conjunction with a hybrid Eulerian-Lagrangian formulation, this allows us to

advect geometry and appearance attributes to all frames in a video sequence, enabling the

specification of a reconstruction error in the image space. This error term is minimized

by gradient-based optimization, leveraging the differentiability of the entire computation

graph, and enables system identification over a wide range of physical systems, where

neither the geometry nor the rendering configurations are known. Our hybrid representation

considerably speeds up the original MLP-based NeRF by efficient voxel discretization (Sun

et al., 2022), and also conveniently handles collisions in continuum simulations, following the

MPM pipeline (Jiang et al., 2015a). The joint differentiable rendering-simulation pipeline with

a unified Eulerian-Lagrangian conversion is highly optimized for high-performance computing
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on GPU.

In summary, we make the following contributions.

• We propose PAC-NeRF – a dynamic neural radiance field that satisfies the continuum

conservation law (Section 6.1.3.1).

• We introduce a hybrid Eulerian-Lagrangian representation, seamlessly blending the

Eulerian nature of NeRF with MPM’s Lagrangian particle dynamics. (Section 6.1.3.3).

• Our framework estimates both the geometric structure and physical parameters of

a wide variety of complex systems, including elastic materials, plasticine, sand, and

Newtonian/non-Newtonian fluids, outperforming state-of-the-art approaches by up to

two orders of magnitude. (Section 6.1.5).

6.1.2 Related Work

Neural radiance fields (NeRF), introduced in Mildenhall et al. (2020), are a widely

adopted technique to encode scene geometry in a compact neural network; enabling photo-

realistic rendering and depth estimation from novel views. A comprehensive survey of neural

fields is available in (Xie et al., 2022a). In this work, we adopt the voxel representation

proposed by Sun et al. (2022) as these do not require positional information and naturally fit

the Eulerian stage of the Material Point Method (MPM) used in our physics prior.

For perception of dynamic scenes, Li et al. (2021g) introduce forward and backward

motion fields to enforce consistency in the representation space of neighboring frames. D-

NeRF (Pumarola et al., 2021a) introduces a canonical frame with a unique neural field for

densities and colors, and a time-dependent backward deformation map to query the canonical

frame. This representation has since been adopted in (Tretschk et al., 2021) and Park et al.

(2021). Chu et al. (2022) targets smoke scenes and advects the density field by the velocity

field of smoke. This method does not deal with boundary conditions, so it cannot model

solids and contact. Guan et al. (2022) present a combination of NeRF with intuitive fluid

dynamics leveraging neural simulators; whereas we provided a principled, and interpretible
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simulation-and-rendering framework.

System identification of soft bodies is an extremely challenging task, owing to

its high dimensionality and the presence of large deformations. Neural (Sanchez-Gonzalez

et al., 2020; Li et al., 2019b; Xu et al., 2019b) or gradient-free methods (Wang et al., 2015;

Takahashi and Lin, 2019b) struggle to achieve high accuracy on these problems, owing to

their black-box nature. Recent progress in differentiable physics simulation has demonstrated

great promise (Qiao et al., 2021a; Du et al., 2021; Rojas et al., 2021; Geilinger et al., 2020;

Heiden et al., 2021; Jatavallabhula et al., 2020; Ma et al., 2021), but assumes that watertight

mesh of objects are available. Recently, (Chen et al., 2022a; Qiao et al., 2022) estimate elastic

object properties from videos. Our hybrid representation and simulation-rendering is general,

and speeds up neural rendering by two orders of magnitude.

We use the Material Point Method (MPM) due to its ability to handle topology

changes and frictional contacts; allowing the simulation of a wide range of materials, including

elastic objects, sand (Klár et al., 2016), to fluids (Jiang et al., 2015a) and foam (Yue et al.,

2015). While MPM has previously been used for differentiable physics simulation (Hu et al.,

2020; Huang et al., 2021; Fang et al., 2022), a watertight, non-degenerate mesh model

was assumed to be available. Our method solves the long-standing challenge of perceiving

geometric and physical properties solely from videos.

6.1.3 Method

Problem specification: Given a set of (posed) multi-view videos of a dynamic scene, we

aim to recover (1) an explicit geometric representation, and (2) physical properties (such as

Young’s modulus, fluid viscosity, friction angles, etc.) of the dynamic object of interest.

Unlike existing system identification methods that operate on images, we do not require

known object geometries. Our approach is general and works on a wide range of material

types (fluids, sand, plasticine, etc.). Our proposed approach, Physics Augmented Continuum

Neural Radiance Fields PAC-NeRF, seamlessly blends neural scene representations and

explicit differentiable physics engines for continuum materials. The core components of
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Figure 6.1: PAC-NeRF uses both Lagrangian (particle; material-space) and Eulerian (grid;
world-space) representations for an accurate yet tractable computational model of continuum
materials. P2G and G2P denote particle-to-grid and grid-to-particle transforms, respectively.
Renderable quantities (volume densities, colors) are represented in the world space (first
frame) using a voxel NeRF (Sun et al., 2022). These quantities are bound to particles
(by a sampling scheme) whose dynamics are simulated by using a differentiable material
point method (MPM) (Jiang et al., 2015a). The (Eulerian) voxel representation enables
efficient collision handling and rendering. Since the entire simulation and rendering pipeline
are differentiable, rendered (color) images are able to optimize both the geometric and
physical properties of objects. PAC-NeRF (1) accelerates NeRF rendering with Eulerian
representation, (2) lends physical plausibility, interpretability, and data efficiency in dynamic
scenes, and (3) enables physical parameter estimation for continuum materials.

PAC-NeRF include a continuum NeRF, a particle-grid interconverter, and a Lagrangian field.

We detail these in this section (see Figure 6.1).

6.1.3.1 Continuum Neural Radiance Fields

Recall that a (static) NeRF comprises a view-independent volume density field σ(x) and

a view-dependent appearance (color) field c(x, ω) for each point x ∈ R3, and directions

ω = (θ, ϕ) ∈ S2 (spherical coordinates). A dynamic (time-dependent) NeRF extends the fields

above with an additional time variable t ∈ R+, denoted σ(x, t) and c(x, ω, t) respectively.

We use the efficient voxel discretization from (Sun et al., 2022) to specify a dynamic Eulerian

(world-frame) NeRF. Color images are rendered from the above time-dependent fields by

sampling points along a ray, for each pixel in the resultant image. The appearance C(r, t)

of a pixel specified by ray direction r(s) (s ∈ [smin, smax]) is given by the volume rendering

integral (Mildenhall et al., 2020)
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C(r, t) =

∫ sf

sn

T (s, t) σ(r(s), t) c(r(s), ω, t) ds+ cbg T (sf , t), T (s, t) = exp

(
−
∫ s

sn

σ(r(s̄), t) ds̄

)
(6.1)

The dynamic NeRF can be trained by enforcing the rendered pixel colors to match those in

the video.

Lrender =
1

N

N−1∑
i=0

1

|R|
∑
r∈R

∥C(r, ti)− Ĉ(r, ti)∥2, (6.2)

where N is the number of frames of videos, Ĉ(r, t) is the ground truth color observation.

Additionally, we enforce that the appearance and volume density fields admit conservation

laws characterized by the velocity field of the underlying physical system:

Dσ

Dt
= 0,

Dc

Dt
= 0, (6.3)

with Dϕ
Dt

= ∂ϕ
∂t

+ v · ∇ϕ being the material derivative of an arbitrary time-dependent field

ϕ(x, t). Here, v is a velocity field, which in turn must obey momentum conservation for

continuum materials

ρ
Dv

Dt
= ∇ · T + ρg, (6.4)

where ρ is the physical density field, T is the internal Cauchy stress tensor, and g is the

acceleration due to gravity. We use the differentiable Material Point Method (Hu et al., 2020)

to evolve Equation (6.4).

6.1.3.2 Particle-Grid Interconverters

While a Lagrangian representation is ideal for advection by the material point method (MPM),

an Eulerian frame is required for rendering the advected particle states to image space. We

therefore employ a hybrid representation to blend the best of both worlds. A key requirement

is to be able to seamlessly traverse the Eulerian (grid) view to the Lagrangian (particle) view

(and vice versa).

Denoting the Eulerian and Lagrangian views G and P respectively, a field FG
∗ (t) =
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{σ(x, t), c(x, t)} at time t may be interconverted as follows:

FP
p ≈

∑
i

wipFG
i , FG

i ≈
∑

pwipFP
p∑

pwip

, (6.5)

where i indices grid nodes and p indices particles, and wip is the weight of the trilinear shape

function defined on node i and evaluated at the location of particle p. We use P2G and G2P

to denote the particle-to-grid and grid-to-particle conversion processes respectively.

6.1.3.3 Lagrangian field

An Eulerian voxel field FG(t0) is initialized over the first frame of the sequence. From

this field, we use the G2P process to obtain a Lagrangian particle field FP (t0). We advect

this field using an initial guess physical parameter set Θ and the material point method

(Equation (6.3)) to obtain FP (t1) at t1 = t0 + δt (where δt is the duration of each simulation

timestep). The advected field is then mapped to the Eulerian view using the P2G process,

resulting in FG(t1), which is employed for collision handling and neural rendering. The

Eulerian voxel grid representation used here is at least two orders of magnitude (100×) faster

in terms of image rendering time (Sun et al., 2022).

Following (Sun et al., 2022), the rendering density field σ and color field c at time t are:

σ(x, t) = softplus(Interp(x, σ̂)), c(x,d, t) = MLP(Interp(x, ĉ),d), (6.6)

where σ̂ is a scalar field and ĉ is a vector field, both are discretized on a fixed voxel grid.

Interp(·) denotes trilinear interpolation. Advection is performed by first advecting the grids

σ̂ and ĉ, followed by computing the interpolation functions and evaluating the MLP (or the

softplus).

The initialization of forward simulation requires generating Lagrangian representations of

σ̂ and ĉ. We randomly sample 8 particles within each voxel grid and use Equation (6.5) to

bind the density and color values onto particles. Additionally, we associate with each particle

a scalar value αp = 1− e− softplus(σ̂p) in (0, 1). A lower α value denotes a smaller contribution
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Figure 6.2: Our surface regularizer improves reconstruction quality, by producing a tight-fit
shape to the segmentation mask.

to the radiance fields. We make particles with lower values of α softer by scaling the physical

density field ρ (Equation (6.4)) and the physical stress field T by a factor α3. We remove a

particle p if αp < ϵ maxp αp, where we set ϵ = 10−3 as a constant threshold.

6.1.3.4 PAC-NeRF for geometry-agnostic system identification

Our pipeline for geometry-agnostic system identification comprises three distinct phases

for computational tractability. We first preprocess data using video matting techniques to

extract foreground objects of interest. This is followed by a geometry seeding phase, where

we employ a coarse-to-fine approach to recover object geometry. The extracted geometry is

then used to perform system identification by rendering out future video frames based on a

guessed set of physical properties, computing an error term with respect to the true videos,

and updating the physical properties by gradient-based optimization.

Data Preprocessing: We assume a set of static cameras with known intrinsics and

extrinsics. To focus rendering computation on the object of interest, we run the video matting

framework in Lin et al. (2021) to remove static background objects. This also provides us

with a segmentation mask of the foreground object of interest.

Geometry Seeding: We first obtain a coarse geometry of the foreground object(s) of

interest by employing the static voxel fields. The contents of the foreground segmentation

mask are rendered to produce an appearance loss term optimized using gradient descent. We
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employ a coarse-to-fine strategy to enable easier optimization. We noticed that, as opposed

to directly rendering the initial voxel radiance field, running the G2P converter followed by

a P2G converter ensures that rendering for all the frames (including the initial frame) is

consistently based on the same group of particles (implicitly providing a set of consistent

correspondences across time). In addition to the rendering loss Equation (6.2), we employ a

surface regularizer to regularize the geometric density field:

Lsurf =
∑
p

clamp(αp, 10
−4, 10−1)(

∆x

2
)2. (6.7)

This regularizer minimizes the total surface area, and as shown in Figure 6.2, this tends to

improve the quality of reconstructed geometries by making the reconstructed point cloud

more compact and fit the ground truth boundary more closely.

System Identification: Upon convergence of the geometry seeding phase, we freeze the

parameters of the field (for the initial time step t0). To minimize scenarios where one or more

variables of interest become unobservable under unknown initial conditions, we use the first

2-3 frames to estimate the initial velocity of observed particles. We then optimize for physical

parameters with each subsequent frame. To mitigate convergence issues in parameter spaces

with larger degrees of freedom, we found it helpful to warm start the optimizer after initial

collision events, followed by an optimization over the entire sequence.

6.1.4 Implementation Details

The architecture of voxel discretization of NeRF follows Sun et al. (2022), which stores density

value and color feature within 1603 voxels, only contraining an extra 2-layer MLP with a

hidden dimension 128 for view-dependent color fields. The dimension of color feature on each

voxel is 12. Positional embedding is applied to the inputs (query position, view direction and

color feature) to the shallow MLP, leading to a input dimension 39. Our differentiable MPM is

using DiffTaichi (Hu et al., 2020). Both the rendering and simulation are optimized for GPU.

The entire training takes ∼ 1.5 hours on a single Nvidia 3090 GPU. Simulation+rendering of

one frame takes ∼ 1s (vs. ∼ 10min for (Chen et al., 2022a)).
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Figure 6.3: The photorealistic dataset used to evaluate system identification and geometry
estimation. The dataset includes a variety of continuum materials, including Newtonian
fluids (Droplet, Letter), non-Newtonian fluids (Cream, Toothpaste), granular media (Trophy),
deformable solids (Torus, Bird), and plasticine (Cat, Playdoh). All objects freely fall under the
influence of gravity, undergoing collisions. Objects are rendered under complex environmental
lighting conditions for photorealism.

6.1.5 Experiments

We conduct various experiments to study the efficacy of PAC-NeRF on system identification

tasks and find that:

• PAC-NeRF can recover high-quality object geometries solely from videos.

• PAC-NeRF performs significantly better on system identification tasks compared to

fully learned approaches.

• PAC-NeRF alleviates the assumptions that other techniques require (i.e., known object

geometry), while outperforming them.

• Purely pixel-based loss functions provide rich gradients that enable physical parameter

estimation.
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6.1.5.1 Experiment setup

Dataset: To evaluate different system identification methods, we simulate and render a

wide range of objects using a photo-realstic simulation engine with varying environment

lighting conditions and ground textures. Our dataset includes deformable objects, plastics,

granular media, Newtonian and non-Newtonian fluids. Figure 6.3 demonstrates a few example

scenarios. In each scene, objects freely fall under the influence of gravity, undergoing (self and

external) collisions. For convenience, we assume that the collision objects such as the ground

plane are known (however, this can also be easily estimated from observed images). Each

scene is captured from 11 uniformly sampled viewpoints, with the cameras evenly spaced on

the upper hemisphere containing the object. All ground truth simulation data are generated

by MLS-MPM framework (Hu et al., 2018a).

Physical Parameters: Our differentiable MPM implementation supports five kinds of

common materials, including elasticity, plasticine, granular media (e.g., sand), Newtonian

fluids and non-Newtonian fluids.

• Elasticity : Young’s modulus (E) (material stiffness), Poisson’s ration (ν) (ability to

preserve volume under deformation).

• Plasticine: Young’s modulus (E), Poisson’s ration (ν), and yield stress (τY ) (stress

required to cause permanent deformation/yielding).

• Newtonian fluid : fluid viscosity (µ) (opposition to velocity change), bulk modulus (κ)

(ability to preserve volume).

• Non-Newtonian fluid : shear modulus (µ), bulk modulus (κ), yield stress (τY ), and

plasticity viscosity (η) (decayed temporary resistance to yielding).

• Sand : friction angle (θfric) (proportionality constant determining slope of a sand pile).

System Identification Pipeline: We first train a static voxel NeRF using data from

the first frame (following Sun et al. (2022)) with the Adam optimizer. The initial velocity

estimator uses L-BFGS, which we experimentally find to be better than Adam for this

sub-task. For all other physical parameters of interest, we use the Adam optimizer.
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Figure 6.4: Qualitative results: Our experiments cover a wide range of continuums, from
Newtonian fluids and non-Newtonian fluids, to elastic/plastic solids and granular media
(sand). Existing approaches (including dynamic NeRF and variants) are unable to reconstruct
these highly dynamic objects. PAC-NeRF not only reconstructs them with high accuracy
but also precisely determines the underlying physical properties.

6.1.5.2 System Identification Evaluation

Synthetic Data: We report system identification results using PAC-NeRF over 9 synthetic

problem instances. The qualitative results are shown in Figure 6.4. And the quantitative

results are listed in Table 6.1. Each row lists the initial guess, the values obtained after

optimization, and the ground truth. We see that, in each case, the optimized physical

parameters closely agree with the ground truth.

Real Data: We also evaluate PAC-NeRF on real-world data (Figure 6.5). We built

a capture system comprising four synchronized Intel RealSense D455 cameras capable of

streaming RGB images at a resolution of 640×480 and at a rate of 60 frames per second. Note

that we DO NOT use any depth data recorded from these cameras in our experiments, for

fair evaluation. We captured a deformable ball falling onto a table and manually segmented
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Table 6.1: PAC-NeRF estimates physical parameters very accurately.

Initial Guess Optimized Ground Truth

Droplet µ = 1, κ = 103 µ = 2.09× 102, κ = 1.08× 105 µ = 200, κ = 105

Letter µ = 1, κ = 106 µ = 83.85, κ = 1.35× 105 µ = 100, κ = 105

Cream µ = 102, κ = 104 , τY = 10, η = 1 µ = 1.21× 105, κ = 1.57× 106 , τY = 3.16× 103, η = 5.6 µ = 104, κ = 106 , τY = 3× 103, η = 10
Toothpaste µ = 102, κ = 104 , τY = 10, η = 1 µ = 6.51× 103, κ = 2.22× 105 , τY = 228, η = 9.77 µ = 5× 103, κ = 105 , τY = 200, η = 10
Torus E = 105, ν = 0.1 E = 1.04× 106, ν = 0.322 E = 106, ν = 0.3
Bird E = 103, ν = 0.1 E = 2.78× 105, ν = 0.273 E = 3× 105, ν = 0.3
Playdoh E = 105, ν = 0.4, τY = 103 E = 3.84× 106, ν = 0.272, τY = 1.69× 104 E = 2× 106, ν = 0.3, τY = 1.54× 104

Cat E = 103, ν = 0.2, τY = 102 E = 1.61× 105, ν = 0.293, τY = 3.57× 103 E = 106, ν = 0.3, τY = 3.85× 103

Trophy θ0fric = 10◦ θ0fric = 36.1◦ θ0fric = 40◦

Figure 6.5: We test PAC-NeRF on a set of real-world multiview videos. Our reconstructed
scene qualitatively matches the target videos, which validates that the rendering loss is
effectively minimized.

the data. Our reconstructed scene qualitatively matches the target videos. We note that, due

to the limited number of views (here, 4) we could acquire, there are slight errors in surface

geometry estimation. These issues may be mitigated by increasing the number of views from

which data is captured.

6.1.5.3 Comparisons

Since there are no existing approaches that estimate both geometry and material properties

from videos, we make a best-effort comparison by blending combinations of state-of-the-art

approaches for each sub-task. For each material type discussed above, we generate 10 problem

instances by varying object orientations, initial velocities, and physical parameters. The

comparisons are conducted on this dataset. Note that our approach (and most of the baselines

herein) does not require a separate training phase – they perform inference-time optimization

on each test sequence.

Approaches Evaluated

• Multi-view LSTM: To evaluate amortized physical parameter inference schemes, we

use a pre-trained ResNet feature extractor to extract features from all views and feed

199



them into a 2-layer LSTM. This baseline uses privileged information in the form of

training video sequences (while all other baselines begin with a random initialization

on each test sequence).

• D-NeRF + DiffSim: To assess the impact of conservation law enforcement in

PAC-NeRF, we compare with VEO (Chen et al., 2022a) (a best-effort comparison)

by implementing D-NeRF (dynamic NeRF) and integrating it with our differentiable

simulator. A dynamic voxel NeRF learns both the forward and backward deformation

field for each frame. The learned forward deformation field is then used to provide the

differentiable simulator with 3D supervision.

• NeRF + ∇Sim: We also compare with ∇Sim – a state-of-the-art approach for

estimating physical properties with both the geometry and rendering configuration

known. (By contrast, we assume neither.) We implement a best-effort comparison where

we use a static voxel NeRF to recover the geometry and directly provide the rendering

color configuration. Note that ∇Sim only supports FEM simulation for continuum

materials. Therefore, this baseline only runs on a small subset of our scenarios. Moreover,

to run this baseline, we extract a surface mesh from our reconstructed point cloud

from voxel NeRF and then use TetWild (Hu et al., 2018b) to generate a tetrahedral

mesh. Further, we manually choose an optimal camera viewing direction to facilitate

optimization.

• Random: We also evaluate the performance of these approaches against random

chance, by employing a baseline that predicts a uniformly randomly chosen value over

the parameter ranges used.

• Oracle: We implement an oracle that uses privileged 3D geometric information. The

oracle knows the ground truth point clouds, and employs 3D supervision (Chamfer

distance) to infer physical properties. Of the 10 problem instances for each material

type, we run the oracle on 4.
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Ours Multi-view LSTM
D-NeRF
+ DiffSim

NeRF
+ ∇Sim Random Oracle (×10−2)

Newtonian
log10(µ)
log10(κ)

v

11.6± 6.60
16.7± 5.37
0.86± 1.45

14.1± 9.26
28.2± 19.8
23.1± 17.8

> 291.3
> 85.2
25.5

Not supported
64.1± 31.3
72.8± 42.5
55.5± 22.6

19.4± 6.95
258.9± 25.2
2.82± 1.72

Non-
Newtonian

log10(µ)
log10(κ)
log10(τY )
log10(η)

v

24.1± 21.9
44.0± 26.3
5.09± 7.41
28.7± 23.3
0.29± 0.13

39.4± 26.9
25.1± 22.6
7.19± 7.88
39.9± 21.1
24.4± 14.2

> 276.7
> 262.5
> 359.6
> 86.1
25.9

Not supported

34.2± 19.9
67.6± 49.4
30.0± 15.0
64.3± 43.7
52.2± 21.6

24.0± 17.1
82.90± 21.0
9.75± 11.3
90.6± 37.2
2.60± 0.39

Elasticity
log10(E)
ν
v

3.02± 3.72
4.35± 5.08
0.50± 0.23

17.7± 9.25
81.8± 58.4
6.10± 3.27

> 437.5
7.67
30.7

151.6± 42.6
16.4± 6.58
182.4± 74.1

96.2± 46.9
10.9± 6.37
43.6± 25.4

4.39± 4.54
3.65± 2.88
2.69± 0.97

Plasticine

log10(E)
log10(τY )

ν
v

83.8± 68.4
11.2± 14.5
18.9± 15.7
0.56± 0.17

41.1± 31.4
28.6± 17.3
5.40± 3.49
22.0± 14.8

23.2
> 268.9
10.36
> 384.6

Not supported

42.9± 38.0
82.7± 43.1
10.6± 6.15
47.7± 17.53

56.2± 30.7
8.13± 3.61
4.44± 3.61
4.06± 1.87

Sand
θfric
v

4.89± 1.10
0.21± 0.08

20.1± 2.06
14.6± 6.25

64.5
40.6

Not supported
22.5± 14.7
38.7± 21.1

0.44± 0.42
1.17± 0.42

Table 6.2: System identification performance: Means and the standard derivations of
absolute errors are reported for each metric. We compare with five baselines, including a pure
vision-based method (ResNet+LSTM regression), D-NeRF+DIffSim (similar to VEO (Chen
et al., 2022a)), NeRF+∇Sim (Jatavallabhula et al., 2020), random sampling from parameter
distribution, and oracle point cloud plus Chamfer distance minimization. Our method obtains
the best results (highlighted in boldface font) in 14/17 entries, excluding the Oracle.

Analysis of Results The performances of all approaches on the system identification

tasks are listed in Table 6.2. For each material, we report the mean absolute error and its

standard deviation over the evaluated instances. We see that compared to all other methods,

PAC-NeRF achieves the best results in 14 of the 17 categories of physical properties estimated.

The multi-view LSTM method is adapted from DensePhysNet (Xu et al., 2019b) and

learns the mapping from videos to physical parameters implicitly. Notably, this baseline

requires privileged information in the form of training sequences – not available to the other

approaches.

The D-NeRF+Diffsim is adapted from VEO (Chen et al., 2022a), where the forward

deformation field is used to optimize a differentiable simulation. The accuracy of this approach

therefore relies on the quality of the learned forward deformation field. However, this learned

deformation field (Tretschk et al., 2021) cannot guarantee physical correctness, unlike PAC-

NeRF which is constrained by the conservation laws (Equation (6.3) and Equation (6.4)). In
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Table 6.3: Quantitative results of elastic rope example.

Initial Guess Optimized Ground Truth

Rope (Short) E = 103, ν = 0.4 E = 1.12× 105, ν = 0.22 E = 105, ν = 0.3
Rope (Long) E = 104, ν = 0.4 E = 1.09× 106, ν = 0.31 E = 106, ν = 0.3

our experiments, we observed that this leads to very noisy deformation, and impedes system

identification performance. Due to these instabilities of this approach, we only run this on

one scenario per material type and report its performance.

The NeRF+∇Sim (Jatavallabhula et al., 2020) baseline only supports FEM simulations for

elastic materials and is sensitive to time integration step size. To stabilize the symplectic FEM

and the contact model used in ∇Sim, tens of thousands of substeps are required to simulate

the entire sequence. Notwithstanding the errors induced due to geometric inaccuracies and

unknown rendering configurations, errors accumulated from long timestepping sequences also

contribute to the failure of ∇Sim on our scenarios. PAC-NeRF, with its Eulerian-Lagrangian

representation, is more robust under larger deformations (e.g., fluids and sand) and permits

larger time step sizes than a FEM simulation with a symplectic integrator (used in ∇Sim).

The Oracle baseline assumes known 3D (point cloud) geometry and computes a Chamfer

distance error term per-timestep. We note, surprisingly, that in several scenarios, a pixel-wise

color loss outperforms this 3D supervision signal. The results show the effectiveness of

the differentiable rendering-simulation pipeline, where a 2D pixel-level supervision better

optimizes the physical parameters, opposed to a 3D Chamfer distance metric.

6.1.5.4 Additional Evaluations

Complex Boundary Conditions Pre-known boundary conditions are trivially to be

added in MPM simulations, just like the ground. Here we shown examples of elastic rope

falling onto two rigid cylinders in Figure 6.6. The initial guess, optimized values and the

ground truth values of physical parameters are listed in Table 6.3.
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Figure 6.6: Examples of elastic ropes falling onto cylinders. The top row is the ground truth
video. PAC-NeRF is trained on the segmented data, whose rendering outputs are visualized
in the middle row. The bottom row is the reconstructed MPM particles.

PAC-NeRFD-NeRF

Figure 6.7: D-NeRF suffers from major artifacts as the object undergoes sudden large
deformations. Notice how the object becomes partially absent in the middle two frames.

Reconstruction Quality Comparison with D-NeRF When evaluating the D-NeRF+Diffsim

baseline, we observe that D-NeRF is sensitive to sudden, large deformations (see Figure 6.7).

As the simulation progresses, D-NeRF suffers from artificial extreme deformation, resulting

in the object breaking apart. This degrades the simulation to the extent that parts of the

object even partially disappear (violating physical plausibility). This artifact is due to the

learned backward deformation map points to an empty area in the canonical space, resulting

in zero volume density. By contrast, our PAC-NeRF constrains forward deformations to

follow the physical conservation law and does not experience this kind of unphysical result.

Qualitative Comparison with ∇Sim on Real-World Data We also tried ∇Sim on

our real-world data. The qualitative comparison between PAC-NeRF and ∇Sim is shown

in Figure 6.8. As we do in the baseline comparisons, we extract a surface mesh from our

reconstructed point cloud from voxel NeRF and then generate a tetrahedral mesh, manually

pick an optimal camera and set an approximate rendering configuration. As we discussed in

our baseline comparison, explicit FEM used in ∇Sim suffers from tiny time steps, leading to

significant numerical errors in backpropagations. Combined with errors from the geometry
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Figure 6.8: Qualitative comparison with ∇Sim on real-world data.

reconstructions and the approximate rendering configurations, all these factors contribute to

the failure of ∇Sim.

6.1.6 Conclusion

We presented Physics Augmented Continuum Neural Radiance Fields (PAC-NeRF), a novel

representation for system identification without geometry priors. The continuum reformulation

of dynamic NeRF naturally unifies physical simulation and rendering, enabling differentiable

simulators to estimate both geometry and physical properties from image space signals

(such as multi-view videos). A hybrid representation is used to discretize our PAC-NeRF

implementation, which leverages the high efficiency of an Eulerian voxel-based NeRF and the

flexibility of MPM.

Despite the promising results, this work has some limitations. It assumes the availability

of synchronized and accurately calibrated cameras to ensure good-quality reconstruction

using NeRF. The scenes used in this work should also be easily amenable to video matting

(background removal). Moreover, this work assumes the underlying physical phenomenon

204



follows continuum mechanics and cannot automatically distinguish between different materials.

Future work could focus on extending the MPM framework beyond volumetric continuum

materials, such as cloth, using neural constitutive models (Li et al., 2022d), implicit MPM for

stiff materials, and integrating other differentiable simulators like articulated body simulators.

Additionally, incorporating interactions with rigid bodies could enable manipulation tasks

(Huang et al., 2021) on NeRF-represented soft-bodies.

6.2 PhysGaussian: Physics-Integrated 3D Gaussians for Genera-

tive Dynamics

6.2.1 Introduction

Recent strides in Neural Radiance Fields (NeRFs) have showcased significant advancements

in 3D graphics and vision (Mildenhall et al., 2021). Such gains have been further augmented

by the cutting-edge 3D Gaussian Splatting (GS) framework (Kerbl et al., 2023). Despite

many achievements, a noticeable gap remains in the application towards generating novel

dynamics. While there exist endeavors that generate new poses for NeRFs, they typically

cater to quasi-static geometry shape editing tasks and often require meshing or embedding

visual geometry in coarse proxy meshes such as tetrahedra (Yuan et al., 2022; Xu and Harada,

2022; Peng et al., 2022; Jambon et al., 2023).

Meanwhile, the traditional physics-based visual content generation pipeline has been a

tedious multi-stage process: constructing the geometry, making it simulation-ready (often

through techniques like tetrahedralization), simulating it with physics, and finally rendering

the scene. This sequence, while effective, introduces intermediary stages that can lead to

discrepancies between simulation and final visualization. Even within the NeRF paradigm, a

similar trend is observed, as the rendering geometry is embedded into a simulation geometry.

This division, in essence, contrasts with the natural world, where the physical behavior and

visual appearance of materials are intrinsically intertwined. Our overarching philosophy seeks

to align these two facets by advocating for a unified representation of a material substance,
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Figure 6.9: PhysGaussian is a unified simulation-rendering pipeline based on 3D Gaussians
and continuum mechanics.

employed for both simulation and rendering. In essence, our approach champions the principle

of “what you see is what you simulate” (WS2) (Müller et al., 2016), aiming for a more coherent

integration of simulation, capturing, and rendering.

Building towards this goal, we introduce PhysGaussian: physics-integrated 3D Gaussians

for generative dynamics. This novel approach empowers 3D Gaussians to encapsulate

physically sound Newtonian dynamics, including realistic behaviors and inertia effects inherent

in solid materials. More specifically, we impart physics to 3D Gaussian kernels, endowing

them with kinematic attributes such as velocity and strain, along with mechanical properties

like elastic energy, stress, and plasticity. Notably, through continuum mechanics principles

and a custom Material Point Method (MPM), PhysGaussian ensures that both physical

simulation and visual rendering are driven by 3D Gaussians. This eradicates the necessity for

any embedding mechanisms, thus eliminating any disparity or resolution mismatch between

the simulated and the rendered.

We present PhysGaussian’s versatile adeptness in synthesizing generative dynamics across

various materials, such as elastic objects, metals, non-Newtonian viscoplastic substances (e.g.

foam or gel), and granular mediums (e.g. sand or soil). To summarize, our contributions

include

• Continuum Mechanics for 3D Gaussian Kinematics: We introduce a continuum

mechanics-based strategy tailored for evolving 3D Gaussian kernels and their associated

spherical harmonics in physical Partial Differential Equation (PDE)-driven displacement
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fields.

• Unified Simulation-Rendering Pipeline: We present an efficient simulation and

rendering pipeline with a unified 3D Gaussian representation. Eliminating the ex-

tra effort for explicit object meshing, the motion generation process is significantly

simplified.

• Versatile Benchmarking and Experiments: We conduct a comprehensive suite

of benchmarks and experiments across various materials. Enhanced by real-time GS

rendering and efficient MPM simulations, we achieve real-time performance for scenes

with simple dynamics.

6.2.2 Related Work

Radiance Fields Rendering for View Synthesis. Radiance field methods have gained

considerable interest in recent years due to their extraordinary ability to generate novel-

view scenes and their great potential in 3D reconstruction. The adoption of deep learning

techniques has led to the prominence of neural rendering and point-based rendering methods,

both of which have inspired a multitude of subsequent works. On the one hand, the NeRF

framework employs a fully-connected network to model one scene (Mildenhall et al., 2021).

The network takes spatial position and viewing direction as inputs and produces the volume

density and radiance color. These outputs are subsequently utilized in image generation

through volume rendering techniques. Building upon the achievements of NeRF, further

studies have focused on enhancing reconstruction quality and improving training speeds

(Fridovich-Keil et al., 2022; Müller et al., 2022; Sun et al., 2022; Barron et al., 2022; Xu et al.,

2022; Lin et al., 2022b). On the other hand, researchers have also investigated differentiable

point-based methods for real-time rendering of unbounded scenes. Among the current

investigations, the state-of-the-art results are achieved by the recently published 3D Gaussian

Splatting framework (Kerbl et al., 2023). Contrary to prior implicit neural representations,

GS employs an explicit and unstructured representation of one scene, offering the advantage of

straightforward extension to post-manipulation. Moreover, its fast visibility-aware rendering
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algorithm also enables real-world dynamics generations.

Dynamic Neural Radiance Field. An inherent evolution of the NeRF framework entails

the integration of a temporal dimension to facilitate the representation of dynamic scenes.

For example, both Pumarola et al. (2021b) and Park et al. (2021) decompose time-dependent

neural fields into an inverse displacement field and canonical time-invariant neural fields. In

this context, the trajectory of query rays is altered by the inverse displacement field and then

positioned within the canonical space. Subsequent studies have adhered to the aforementioned

design when exploring applications related to NeRF deformations, such as static scene editing

and dynamic scene reconstruction (Li et al., 2023f; Peng et al., 2022; Yuan et al., 2022; Chen

et al., 2022a; Qiao et al., 2022, 2023; Liu et al., 2023c). Additionally, Yuan et al. (2022);

Qiao et al. (2022); Liu et al. (2023c) have contributed to the incorporation of physics-based

deformations into the NeRF framework. However, the effectiveness of these methodologies

relies on the usage of exported meshes derived from NeRFs. To circumvent this restriction,

explicit geometric representations have been explored for forward displacement modeling

(Xu et al., 2022; Kerbl et al., 2023). In particular, Chen et al. (2023a); Luiten et al. (2023);

Yang et al. (2023a); Wu et al. (2023a); Yang et al. (2023b) directly manipulate NeRF fields.

Li et al. (2023d) extends this approach by including physical simulators to achieve more

dynamic behaviors. In this study, we leverage the explicit 3D Gaussian Splatting ellipsoids

as a unified representation for both physics and graphics. In contrast to previous dynamic

GS frameworks, which either maintain the shapes of Gaussian kernels or learn to modify

them, our approach uniquely leverages the first-order information from the displacement map

(deformation gradient) to assist dynamic simulations. In this way, we are able to deform the

Gaussian kernels and seamlessly integrate the simulation within the GS framework.

Material Point Method. The Material Point Method (MPM) is a widely used simulation

framework for a broad range of multi-physics phenomena (Hu et al., 2018a). The inherent

capability of the MPM system allows for topology changes and frictional interactions, making

it suitable for simulating various materials, including but not limited to elastic objects, fluids,
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Figure 6.10: Method Overview. PhysGaussian is a unified simulation-rendering pipeline
that incorporates 3D Gaussian splatting representation and continuum mechanics to generate
physics-based dynamics and photo-realistic renderings simultaneously and seamlessly.

sand, and snow (Stomakhin et al., 2013; Jiang et al., 2015a; Klár et al., 2016). MPM can

also be expanded to simulate objects that possess codimensional characteristics (Jiang et al.,

2017a). In addition, the efficacy of utilizing GPU(s) to accelerate MPM implementations

has also been demonstrated in (Gao et al., 2018b; Hu et al., 2019a; Wang et al., 2020b; Qiu

et al., 2023). Owing to its well-documented advantages, we employ the MPM to support the

latent physical dynamics. This choice allows us to efficiently import dynamics into various

scenarios with a shared particle representation alongside the Gaussian Splatting framework.

6.2.3 Method Overview

We propose PhysGaussian (Figure 6.10), a unified simulation-rendering framework for gener-

ative dynamics based on continuum mechanics and 3D GS. Adopted from Kerbl et al. (2023),

we first reconstruct a GS representation of a static scene, with an optional anisotropic loss

term to regularize over-skinny kernels. These Gaussians are viewed as the discretization

of the scene to be simulated. Under our novel kinematics, we directly splat the deformed

Gaussians for photo-realistic renderings. For better physics compliance, we also optionally

fill the internal regions of objects. We detail these in this section.
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6.2.3.1 3D Gaussian Splatting

3D Gaussian Splatting method (Kerbl et al., 2023) reparameterizes NeRF (Mildenhall et al.,

2021) using a set of unstructured 3D Gaussian kernels {xp, σp,Ap, Cp}p∈P , where xp, σp,

Ap, and Cp represent the centers, opacities, covariance matrices, and spherical harmonic

coefficients of the Gaussians, respectively. To render a view, GS projects these 3D Gaussians

onto the image plane as 2D Gaussians, differing from traditional NeRF techniques that emit

rays from the camera. The final color of each pixel is computed as

C =
∑
k∈P

αkSH(dk; Ck)
k−1∏
j=1

(1− αj). (6.8)

Here αk represents the z-depth ordered effective opacities, i.e., products of the 2D Gaussian

weights and their overall opacities σk; dk stands for the view direction from the camera

to xk. Per-view optimizations are performed using L1 loss and SSIM loss. This explicit

representation of the scene not only significantly accelerates training and rendering speeds,

but also enables direct manipulation of the NeRF scene. The data-driven dynamics are

supported by making xp, Ap time-dependent (Wu et al., 2023a) and minimizing rendering

losses over videos. In Section 6.2.3.1, we show that this time-dependent evolution can be

given by the continuum deformation map.

6.2.3.2 Continuum Mechanics

Continuum mechanics describes motions by a time-dependent continuous deformation map

x = ϕ(X, t) between the undeformed material space Ω0 and the deformed world space Ωt

at time t. The deformation gradient F (X, t) = ∇Xϕ(X, t) encodes local transformations

including stretch, rotation, and shear (Bonet and Wood, 1997). The evolution of the

deformation ϕ is governed by the conservation of mass and momentum. Conservation of mass

ensures that the mass within any infinitesimal region B0
ϵ ∈ Ω0 remains constant over time:

∫
Bt

ϵ

ρ(x, t) ≡
∫
B0

ϵ

ρ(ϕ−1(x, t), 0), (6.9)
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where Bt
ϵ = ϕ(B0

ϵ , t) and ρ(x, t) is the density field characterizing material distribution.

Denoting the velocity field with v(x, t), the conservation of momentum is given by

ρ(x, t)v̇(x, t) = ∇ · σ(x, t) + f ext, (6.10)

where σ = 1
det(F )

∂Ψ
∂F

(F E)F ET
is the Cauchy stress tensor associated with a hyperelastic

energy density Ψ(F ), and f ext is the external force per unit volume (Bonet and Wood,

1997; Jiang et al., 2016). Here the total deformation gradient can be decomposed into an

elastic part and a plastic part F = F EF P to support permanent rest shape changes caused

by plasticity. The evolution of F E follows some specific plastic flow such that it is always

constrained within a predefined elastic region (Bonet and Wood, 1997).

6.2.3.3 Material Point Method

Material Point Method (MPM) solves the above governing equations by combining the

strengths of both Lagrangian particles and Eulerian grids (Stomakhin et al., 2013; Jiang et al.,

2016). The continuum is discretized by a collection of particles, each representing a small

material region. These particles track several time-varying Lagrangian quantities such as

position xp, velocity vp, and deformation gradient Fp. The mass conservation in Lagrangian

particles ensures the constancy of total mass during movement. Conversely, momentum

conservation is more natural in Eulerian representation, which avoids mesh construction.

We follow Stomakhin et al. (2013) to integrate these representations using C1 continuous

B-spline kernels for two-way transfer. From time step tn to tn+1, the momentum conservation,

discretized by the forward Euler scheme, is represented as

mi

∆t
(vn+1

i − vn
i ) = −

∑
p

V 0
p

∂Ψ

∂F
(F E,n

p )F E,n
p

T∇wn
ip + f ext

i . (6.11)

Here i and p represent the fields on the Eulerian grid and the Lagrangian particles respectively;

wn
ip is the B-spline kernel defined on i-th grid evaluated at xn

p ; V
0
p is the initial representing

volume, and ∆t is the time step size. The updated grid velocity field vn+1
i is transferred
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Figure 6.11: Illustration of kernel deformation.

back onto particle to vn+1
p , updating the particles’ positions to xn+1

p = xn
p + ∆tvn+1

p . We

track F E rather than both F and F P (Simo and Hughes, 1998), which is updated by

F E,n+1
p = (I +∆t∇vp)F

E,n
p = (I +∆t

∑
i v

n+1
i ∇wn

ip
T )F E,n

p and regularized by an additional

return mapping to support plasticity evolution: F E,n+1
p ← Z(F E,n+1

p ). Different plasticity

models define different return mappings. We refer to the supplemental document for details

of the simulation algorithm and different return mappings.

6.2.3.4 Physics-Integrated 3D Gaussians

We treat Gaussian kernels as discrete particle clouds for spatially discretizing the simulated

continuum. As the continuum deforms, we let the Gaussian kernels deform as well. However,

for a Gaussian kernel defined at Xp in the material space, Gp(X) = e−
1
2
(X−Xp)TA−1

p (X−Xp),

the deformed kernel under the deformation map ϕ(X, t),

Gp(x, t) = e−
1
2
(ϕ−1(x,t)−Xp)TA−1

p (ϕ−1(x,t)−Xp) (6.12)

is not necessarily Gaussian in the world space, which violates the requirements of the splatting

process. Fortunately, if we assume particles undergo local affine transformations characterized

by the first-order approximation

ϕ̃p(X, t) = xp + Fp(X −Xp), (6.13)
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the deformed kernel becomes Gaussian as desired:

Gp(x, t) = e−
1
2
(x−xp)T (FpApF T

p )−1(x−xp). (6.14)

This transformation naturally provides a time-dependent version of xp and Ap for the 3D

GS framework (Figure 6.11):

xp(t) = ϕ(Xp, t),

ap(t) = Fp(t)ApFp(t)
T .

(6.15)

In summary, given the 3D GS of a static scene {Xp,Ap, σp, Cp}, we use simulation to dynamize

the scene by evolving these Gaussians to produce dynamic Gaussians {xp(t),ap(t), σp, Cp}.

Here we assume that the opacity and the coefficients of spherical harmonics are invariant over

time, but the harmonics will be rotated as discussed in the next section. We also initialize

other physical quantities in Equation (6.11): the representing volume of each particle V 0
p is

initialized as background cell volume divided by the number of contained particles; the mass

mp is then inferred from user-specified density ρp as mp = ρpV
0
p . To render these deformed

Gaussian kernels, we use the splatting from the original GS framework (Kerbl et al., 2023). It

should be highlighted that the integration of physics into 3D Gaussians is seamless: on the

one hand, the Gaussians themselves are viewed as the discretization of the continuum, which

can be simulated directly; on the other hand, the deformed Gaussians can be directly rendered

by the splatting procedure, avoiding the need for commercial rendering software in traditional

animation pipelines. Most importantly, we can directly simulate scenes reconstructed from

real data, achieving WS2.

6.2.3.5 Evolving Orientations of Spherical Harmonics

Rendering the world-space 3D Gaussians can already obtain high-quality results. However,

when the object undergoes rotations, the spherical harmonic bases are still represented in the

material space, resulting in varying appearances even if the view direction is fixed relatively

to the object. The solution is simple: when an ellipsoid is rotated over time, we rotate the
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Surface View Rotated View

Figure 6.12: Rotations of spherical harmonics.

orientations of its spherical harmonics as well. However, the bases are hard-coded inside

the GS framework. We equivalently achieve this evolution by applying inverse rotation on

view directions. This effect is illustrated in Figure 6.12. We remark that the rotation of view

directions is not considered in Wu et al. (2023a). Chen et al. (2023a) tackles this issue in the

Point-NeRF framework, but requires tracking of surface orientation. In our framework, the

local rotation is readily obtained in the deformation gradient Fp. Denote f
0(d) as a spherical

harmonic basis in material space, with d being a point on the unit sphere (indicating view

direction). The polar decomposition, Fp = RpSp, leads us to the rotated harmonic basis:

f t(d) = f 0(RTd). (6.16)

6.2.3.6 Incremental Evolution of Gaussians

We also propose an alternative way for Gaussian kinematics that better fits the updated

Lagrangian framework, which avoids the dependency on the total deformation gradient F .

This approach also paves the way for physical material models that do not rely on employing F

as the strain measure. Following conventions from computational fluid dynamics (McKIVER

and Dritschel, 2003; Chandrasekhar, 1967), the update rule for the world-space covariance

matrix a can also be derived by discretizing the rate form of kinematics ȧ = (∇v)a+a(∇v)T :

an+1
p = an

i +∆t(∇vpa
n
p + an

p∇vT
p ). (6.17)

This formulation facilitates the incremental update of the Gaussian kernel shapes from time

step tn to tn+1 without the need to obtain Fp. The rotation matrix Rp of each spherical
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Condition 1 Condition 2

Internal Grid RayExternal Grid

Figure 6.13: Conditions for internal filling.

harmonics basis can be incrementally updated in a similar manner. Starting from R0
p = I,

we extract the rotation matrix Rn+1
p from (I +∆tvp)R

n
p using the polar decomposition.

6.2.3.7 Internal Filling

The internal structure is occluded by the object’s surface, as the reconstructed Gaussians

tend to distribute near the surface, resulting in inaccurate behaviors of volumetric objects.

To fill particles into the void internal region, inspired by Tang et al. (2023), we borrow the

3D opacity field from 3D Gaussians

d(x) =
∑
p

σp exp

(
−1

2
(x− xp)

TA−1
p (x− xp)

)
. (6.18)

This continuous field is discretized onto a 3D grid. To achieve robust internal filling, we

first define the concept of “intersection” within the opacity field, guided by a user-defined

threshold σth. Specifically, we consider it an intersection when a ray passes from a lower

opacity grid (σi < σth) to a higher opacity one (σj > σth). Based on this definition, we

identify candidate grids by casting rays along 6 axes and checking intersections (condition

1). Rays originating from internal cells will always intersect with the surface. To further

refine our selection of candidate grids, we employ an additional ray to assess the intersection

number (condition 2), thus ensuring greater accuracy. These two conditions are illustrated in

Figure 6.13.

215



Visualization of these internal particles is also crucial as they may get exposed due to

large deformation. Those filled particles inherit σp, Cp from their closet Gaussian kernels.

Each particle’s covariance matrix is initialized as diag(r2p, r
2
p, r

2
p), where r is the particle radius

calculated from its volume: rp = (3V 0
p /4π)

1
3 . Alternatively, one may also consider employing

generative models for internal filling, potentially leading to more realistic results.

6.2.3.8 Anisotropy Regularizer

The anisotropy of Gaussian kernels increases the efficiency of 3D representation while over-

skinny kernels may point outward from the object surface under large deformations, leading

to unexpected plush artifacts. We propose the following training loss during 3D Gaussian

reconstruction:

Laniso =
1

|P|
∑
p∈P

max{max(Sp)/min(Sp), r} − r, (6.19)

where Sp are the scalings of 3D Gaussians (Kerbl et al., 2023). This loss essentially constrains

that the ratio between the major axis length and minor axis length does not exceed r. If

desired, this term can be added to the training loss.

6.2.4 Experiments

In this section, we show the versatility of our approach across a wide range of materials. We

also evaluate the effectiveness of our method across a comprehensive suite of benchmarks.

6.2.4.1 Evaluation of Generative Dynamics

Datasets We evaluate our method for generating diverse dynamics using several sources

of input. In addition to the synthetic data (sofa suite) generated by BlenderNeRF (Raafat,

2023), we utilize fox, plane, and ruins from the datasets of Instant-NGP (Müller et al., 2022),

Nerfstudio (Tancik et al., 2023) and the DroneDeploy NeRF (Pilkington, 2022), respectively.

Furthermore, we collect two real-world datasets (referred to as toast and jam) with an iPhone.

Each scene contains 150 photos. The initial point clouds and camera parameters are obtained
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Figure 6.14: Material Versatility. We demonstrate exceptional versatility of our approach
across a wide variety of examples: fox (elastic entity), plane (plastic metal), toast (fracture),
ruins (granular material), jam (viscoplastic material), and sofa suite (collision).

using COLMAP (Schönberger et al., 2016; Schönberger and Frahm, 2016).

Simulation Setups We build upon the MPM from Zong et al. (2023). To generate novel

physics-based dynamics of a 3D Gaussian scene, we manually select a simulation region and

normalize it to a cube with edge length 2. The internal particle filling can be performed
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before simulation. The cuboid simulation domain is discretized by a 3D dense grid. We

selectively modify the velocities of specific particles to induce controlled movement. The

remaining particles follow natural motion patterns governed by the established physical laws.

All our experiments are performed on a 24-core 3.50GHz Intel i9-10920X machine with a

Nvidia RTX 3090 GPU.

Results We simulate a wide range of physics-based dynamics. For each type of dynamics,

we visualize one example with its initial scene and deformation sequence, as shown in

Figure 6.14. Additional experiments are included in the supplemental document. The

dynamics include: Elasticity refers to the property where the rest shape of the object

remains invariant during deformation, representing the simplest form of daily-life dynamics.

Metal can undergo permanent rest shape changes, which follows von-Mises plasticity model.

Fracture is naturally supported by MPM simulation, where large deformations can cause

particles to separate into multiple groups. Sand follows Druker-Prager plasticity model (Klár

et al., 2016), which can capture granular-level frictional effects among particles. Paste is

modeled as viscoplastic non-Newtonian fluid, adhering to Herschel-Bulkley plasticity model

(Yue et al., 2015). Collision is another key feature of MPM simulation, which is automatically

handled by grid time integration. Explicit MPM can be highly optimized to run on GPUs.

We highlight that some of the cases can achieve real-time based on the 1/24-s frame duration:

plane (30 FPS), toast (25 FPS) and jam (36 FPS). While utilizing FEM may further accelerate

the elasticity simulation, it will involve an additional step of mesh extraction and lose the

generalizability of MPM in inelasticity simulation.

6.2.4.2 Lattice Deformation Benchmarks

Dataset Due to the absence of ground truth for post-deformation, we utilize BlenderNeRF

(Raafat, 2023) to synthesize several scenes, applying bending and twisting with the lattice

deformation tool. For each scene, we create 100 multi-view renderings of the undeformed

state for training, and 100 multi-view renderings of each deformed state to serve as ground

truth for the deformed NeRFs. The lattice deformations are set as input to all methods for
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Figure 6.15: Comparisons. For each benchmark case, we select one test viewpoint and
visualize all comparisons. We zoom in on some regions to highlight the ability of our method
to maintain high-fidelity rendering quality after deformations. We use a black background to
avoid the interference of the background.

fair comparisons.

Comparisons We compare our method with several state-of-the-art NeRF frameworks

that support manual deformations: 1) NeRF-Editing (Yuan et al., 2022) deforms NeRF

using an extracted surface mesh, 2) Deforming-NeRF (Xu and Harada, 2022) utilizes a
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Ground Truth Ours Fixed Cov. Rigid Cov. Fixed Harmonics

Figure 6.16: Ablation Studies. Non-extensible Gaussians can lead to severe visual artifacts
during deformations. Although direct rendering the deformed Gaussian kernels can already
obtain good results, additional rotations on spherical harmonics can improve the rendering
quality.

cage mesh for deformation, and 3) PAC-NeRF (Li et al., 2023d) manipulates individual

initial particles.

We show qualitative results in Figure 6.15 and quantitative results in Table 6.4. NeRF-

Editing uses NeuS (Wang et al., 2021) as the scene representation, which is more suited

for surface reconstructions rather than high-fidelity renderings. Consequently, its rendering

quality is inherently lower than that of 3DGS. Furthermore, the deformation highly depends

on the precision of the extracted surface mesh and the dilated cage mesh – an overly tight

mesh might not encompass the entire radiance field, while an excessively large one could result

in a void border, as observed in the twisting stool and plant examples. Deforming-NeRF, on

the other hand, provides clear renderings and potentially leads to enhanced results if higher-

resolution deformation cages are provided. However, it employs a smooth interpolation from

all cage vertices, thus filtering out fine local details and failing to match lattice deformations.

PAC-NeRF is designed for simpler objects and textures in system identification tasks. While

offering flexibility through its particle representation, it does not achieve high rendering

fidelity. Our method utilizes both zero-order information (the deformation map) and first-

order information (the deformation gradient) from each lattice cell. It outperforms the other

methods across all cases, as high rendering qualities are well preserved after deformations.

Although not primarily designed for editing tasks, this comparison showcases our method’s

significant potential for realistic editing of static NeRF scenes.

Ablation Studies We further conduct several ablation studies on these benchmark scenes

to validate the necessity of the kinematics of Gaussian kernels and spherical harmonics:
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Table 6.4: We synthesize a lattice deformation benchmark dataset to compare with baselines
and conduct ablation studies to validate our design choices. PSNR scores are reported (higher
is better). Our method outperforms the others across all cases.

Test Case Wolf Stool Plant
Deformation Operator Bend Twist Bend Twist Bend Twist

NeRF-Editing (Yuan et al., 2022) 26.74 24.37 25.00 21.10 19.85 19.08
Deforming-NeRF (Xu and Harada, 2022) 21.65 21.72 22.32 21.16 17.90 18.63
PAC-NeRF (Li et al., 2023d) 26.91 25.27 21.83 21.26 18.50 17.78

Fixed Covariance 26.77 26.02 29.94 25.31 23.95 23.09
Rigid Covariance 26.84 26.16 30.28 25.70 24.09 23.53
Fixed Harmonics 26.83 26.02 30.87 25.75 25.09 23.69
Ours 26.96 26.46 31.15 26.15 25.81 23.87

1) Fixed Covariance only translates the Gaussian kernels. 2) Rigid Covariance only

applies rigid transformations on the Gaussians, as assumed in Luiten et al. (2023). 3) Fixed

Harmonics does not rotate the orientations of spherical harmonics, as assumed in Wu et al.

(2023a).

Here we visualize one example in Figure 6.16. We can observe that Gaussians will not

properly cover the surface after deformation if they are non-extensible, leading to severe visual

artifacts. Enabling the rotation of spherical harmonics can slightly improve the consistency

with the ground truth. We include quantitative results on all test cases in Table 6.4, which

shows that all these enhancements are needed to achieve the best performance of our method.

6.2.4.3 Additional Qualitative Studies

Internal Filling Typically, the 3D Gaussian splatting framework focuses on the surface

appearance of objects and often fails to capture their internal structure. Consequently, the

interior of the modeled object remains hollow, resembling a mere shell. This is usually not

true in the real world, leading to unrealistic simulation results. To address this challenge,

we introduce an internal filling method leveraging a reconstructed density field, which is

derived from the opacity of Gaussian kernels. Figure 6.17 showcases our simulation results

with varying physical parameters. Objects devoid of internal particles tend to collapse

when subjected to gravity forces, irrespective of the material parameters used. In contrast,
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E ↑ E ↑

ν ↑

Figure 6.17: Internal filling enables more realistic simulation results. Our method also
supports flexible control of dynamics via material parameters. A larger Young’s modulus E
indicates higher stiffness while a larger poission ratio ν leads to better volume preservation.

Ours

Stretch

NeRF-Editing

Stretch

Figure 6.18: Volume Conservation. Compared to the geometry-based editing method
(Yuan et al., 2022), our physics-based method is able to capture volumetric behaviors, leading
to more realistic dynamics.

our approach assisted by internal filling allows for nuanced control over object dynamics,

effectively adjusting to different material characteristics.

Volume Conservation Existing approaches to NeRF manipulation focus primarily on

geometric adjustments without incorporating physical properties. A key attribute of real-

world objects is their inherent ability to conserve volume during deformation. In Figure 6.18,

we conduct a comparison study between our method and NeRF-Editing (Yuan et al., 2022),

which utilizes surface As-Rigid-As-Possible (ARAP) deformation (Sorkine and Alexa, 2007).

Unlike NeRF-Editing, our approach accurately captures and maintains the volume of the

deformed objects.

Anisotropy Regularizer 3D Gaussian models inherently represent anisotropic ellipsoids.

However, excessively slender Gaussian kernels can lead to burr-like visual artifacts, especially
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w/ Regularizer w/o Regularizer

Figure 6.19: Anisotropy Regularizer. We introduce an anisotropy constraint for Gaussian
kernels, effectively enhancing the fidelity of the Gaussian-based representation under dynamic
conditions.

pronounced during large deformations To tackle this issue, we introduce an additional

regularization loss Equation (6.19) to constrain anisotropy. As demonstrated in Figure 6.19,

this additional loss function effectively mitigates the artifacts induced by extreme anisotropy.

Additional Evaluations We present additional evaluations of our method in Figure 6.20.

The vasedeck data is from the Nerf dataset (Mildenhall et al., 2021) and the others are

synthetic data, generated using BlenderNeRF (Raafat, 2023).

6.2.5 Discussion

Conclusion This paper introduces PhysGaussian, a unified simulation-rendering pipeline

that generates physics-based dynamics and photo-realistic renderings simultaneously and

seamlessly.

Limitation In our framework, the evolution of shadows is not considered, and material

parameters are manually set. Automatic parameter assignment could be derived from videos

by combining GS segmentation (Cen et al., 2023; Ye et al., 2023) with a differentiable

MPM simulator. Additionally, incorporating geometry-aware 3DGS reconstruction methods

(Guédon and Lepetit, 2023) could enhance generative dynamics. Future work will also explore

handling more versatile materials like liquids and integrating more intuitive user controls,

possibly leveraging advancements in Large Language Models (LLMs).
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Static Physics-based Dynamics

Figure 6.20: Additional Evaluation. Examples from top to bottom are: vasedeck (elastic
entity), bread (fracture), cake (viscoplastic material), can (plastic metal) and wolf (granular
material).

6.3 VR-GS: A Physical Dynamics-Aware Interactive Gaussian

Splatting System in Virtual Reality

6.3.1 Introduction

As digital technology advances, the importance of 3D content is becoming increasingly

prominent across various industries, from entertainment to education. This growth is driving

the demand for high-fidelity 3D content within the Computer Graphics (CG) and Computer

Vision (CV) communities. Despite their capabilities of being rendered efficiently, traditional
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3D/4D content creation, reliant on 3D modeling tools and game engines, is time-intensive

and complex, often beyond the reach of non-expert users. This accessibility barrier limits

broader user engagement in high-quality content creation.

Recognizing the advantages and limitations of the traditional graphics pipeline, our

goal is to find a modern variant. To enhance the visual quality and ease of creation for

non-expert users, we move away from traditional 3D models in graphics pipelines and

instead, adopt state-of-the-art radiance field techniques for rendering. In this context, Neural

Radiance Fields (NeRF) emerge as a natural choice. Despite its versatility, NeRF’s volume

rendering falls short in efficiency for interactive applications, which demand high frame rates.

Additionally, NeRF’s approach to handling deformations—requiring bending of query rays

via an inverse deformation map—is slow (Pumarola et al., 2021b). Fortunately, 3D Gaussian

Splatting (GS) (Kerbl et al., 2023) has been recently introduced as an efficient and explicit

alternative to NeRF. This method not only excels in rendering efficiency but also provides

an explicit geometric representation that can be directly deformed or edited. The explicit

nature of 3D GS can simplify the direct manipulation of geometry by solving a Partial

Differentiable Equation (PDE) that governs the motions of Gaussian kernels. Furthermore,

GS eliminates the need for high-fidelity meshes, UV maps, and textures, offering the potential

for naturally photorealistic appearances. It is worth noting that many studies have already

demonstrated the use of 3D GS for 4D dynamics (Park et al., 2021; Pumarola et al., 2021b;

Yang et al., 2023b) and the integration of physics-based simulations for more realistic 4D

content generation (Xie et al., 2023b; Feng et al., 2023), as well as for creating animatable

avatars (Zielonka et al., 2023; Xu et al., 2023c).

In this paper, we introduce a physics-aware interactive system for immersive manipulation

of 3D content represented with GS. To ensure an interactive experience, we utilize Position-

based Dynamics (PBD) (Macklin et al., 2016), a highly adaptable and unified physical

simulator, for real-time deformation simulation. Direct incorporation of a simulator onto GS

kernels presents challenges, as the simulation and rendering processes have distinct geometrical

representations. To address this, we construct a tetrahedral cage for each segmented GS

kernel group and embed these kernel groups into corresponding meshes. The deformed
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Figure 6.21: Animal Crossing. Utilizing our system, individuals can engage in intu-
itive and interactive physics-based game-play with deformable virtual animals and realistic
environments represented with 3D Gaussian Splatting.

mesh, driven by PBD, subsequently guides the deformation of the GS kernels. Noticing that

simplistic embedding techniques can lead to undesirable, spiky deformations in GS kernels,

we propose a novel two-level embedding approach. This method allows each Gaussian kernel

to adapt to a smoothed average deformation of the surrounding tetrahedra. The intricate

combination of GS and PBD through our two-level embedding not only achieves real-time

physics-based dynamics but also upholds high-quality, realistic rendering. In summary, our

contributions include:

• A Physics-Aware Interactive System: Development of a system that enables interactive,

physics-aware manipulation of 3D content represented with GS.

• Two-Level Deformation Embedding: Introduction of a novel two-level embedding ap-

proach that allows Gaussians to adapt smoothly to the mesh, enhancing the deformation

realism and preventing undesirable spiky artifacts.

We deploy our system on VR devices, enriched by segmentation, inpainting, and shadow map,

offering users a rich platform for 3D content manipulation.

6.3.2 Related Work

Radiance Fields Rendering A variety of 3D representations, such as mesh (Sorkine and

Cohen-Or, 2004), point clouds (Qi et al., 2017), signed distance fields (Wang et al., 2021),

and grids (Zhu and Bridson, 2005) are exploited in early work for visual computing tasks,
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including synthesis, estimation, manipulation, animation, reconstruction, and transmission

of data about objects and scenes (Kerbl et al., 2023; Xie et al., 2022b; Gao et al., 2023).

Since neural radiance fields (NeRF) (Mildenhall et al., 2021) was proposed for novel view

synthesis with differentiable volume rendering, it has been applied to versatile computer

graphics and computer vision tasks, such as scene reconstruction (Oechsle et al., 2021; Meng

et al., 2023; Yariv et al., 2021), synthesis (Sun et al., 2023; Huang et al., 2023a), rendering

(Lombardi et al., 2021; Wu et al., 2023b), interactive games (Xia et al.) and animation (Chen

et al., 2021a; Peng et al., 2021), simulation (Li et al., 2023e), etc. While Neural Radiance

Fields (NeRF) have achieved remarkable image quality, they suffer from significant time and

memory inefficiencies (Lindell et al., 2021). To mitigate these issues, various methods have

been introduced. Sparse representations (Liu et al., 2020), decomposed strategies (Niemeyer

and Geiger, 2021; Rebain et al., 2021), and multi-resolution encoding (Müller et al., 2022)

have all been proposed to enhance volume rendering efficiency while maintaining high quality.

However, NeRFs are implicit representations, making it challenging to detect and resolve

collisions (Qiao et al., 2023). Recently, 3D Gaussian splatting (GS) proposed by (Kerbl et al.,

2023) utilizes an array of 3D Gaussian kernels to represent scenes explicitly, facilitating faster

optimization and achieving state-of-the-art results.

Editing in Radiance-based Scene A natural extension of NeRF is to support user-guided

editing. Li and Pan (2023) made use of two proxy cages to offer interactive control of the

shape deformation of NeRF. Besides geometry editing, text prompts (Wang et al., 2023a)

or a user-edited image (Bao et al., 2023) can also be adopted to conduct style transfer of

NeRF. Besides, Lin et al. (2023a) put forward exploiting 2D sketches to edit high-quality

facial NeRF. Concerning NeRF texture editing, Huang et al. (2023a) utilized a coarse-fine

disentanglement representation and a patch-matching algorithm to synthesize textures of

different shapes from multi-view images. De-Nerf (Wu et al., 2023b) exploited a hybrid light

representation that enables users to relight NeRF. In contrast, Gaussian Splatting is more

appropriate for post-editing tasks thanks to its explicit nature and has inspired a series of

follow-up works (Chen et al., 2023b; Fang et al., 2023; Ye et al., 2023; Duisterhof et al., 2023;
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Huang et al., 2023b).

Another significant direction in NeRF research is the incorporation of dynamic components

into static scenes. To achieve this, a popular strategy (Pumarola et al., 2021b; Park et al.,

2021) is to consider time as an additional input to the system, This method typically splits a

dynamic NeRF into a canonical static field and a deformation field, with the latter mapping

this canonical representation to a deformed one. More recently, Yang et al. (2023b) drew

inspiration from 3D GS to reconstruct a dynamic scene using 4D Gaussian primitives that

change over time. However, the dynamics in these methods are generally confined to motions

captured from input data, limiting their ability to synthesize unseen dynamics. To generate

novel dynamics, Xie et al. (2023b) and Feng et al. (2023) have integrated physics-based

simulations into 3D static representations, paving the way for generating physically plausible

and novel dynamic scenes.

Real-time Neural Radiance Fields Rendering NeRF is computationally expensive for

real-time applications, such as VR, which causes high latency and low quality (Song et al.,

2023; Li et al., 2022b). To address these challenges and enable high-fidelity rendering with

minimal latency on a single GPU, various techniques have been proposed. These include gaze-

contingent 3D neural representations (Deng et al., 2022), variable rate shading (Rolff et al.,

2023), and hybrid surface-volume representations (Turki et al., 2023), all aimed at accelerating

NeRF. In contrast to single-GPU solutions, VR-NeRF (Xu et al., 2023b) leveraged multiple

GPUs to achieve high-quality volumetric rendering of NeRF. Beyond software acceleration

techniques, RT-NeRF (Li et al., 2022a) utilized an algorithm-hardware co-design framework

to provide real-time NeRF solutions for immersive VR rendering. While these methods

primarily focus on enhancing NeRF rendering, our work is dedicated to facilitating interactive

editing.

Li et al. (2023b) integrated affine transformation with NeRF to enable interactive features,

such as exocentric manipulation, editing, and VR tunneling effects. However, their approach

is limited to filter-based edits such as edge blurring and fails to support the deformation

of virtual objects’ geometry. RealityGit (Li et al., 2023a) and Magic NeRF Lens (Li et al.,
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Figure 6.22: VR-GS is an interactive system designed to integrate 3D Gaussian Splatting (GS)
and Position-based Dynamics (PBD) for generating a real-time interactive experience. Begin-
ning with multi-view images, the pipeline combines scene reconstruction, segmentation, and
inpainting using Gaussian kernels. These kernels form the foundation for VR-GS’s utilization
of the sparse volumetric data structure VDB, facilitating bounding mesh reconstruction
and subsequent tetrahedralization. VR-GS further harnesses a novel two-level Gaussian
embedding, PBD, collision detection, and shadow casting techniques, all converging to deliver
a captivating and immersive user experience.

2023c) modified a NeRF model by erasing or revealing a portion of NeRF. Nevertheless,

neither system permits deforming the geometrical structure of the model. In contrast to

these works which concentrate on interactive editing of NeRF, our system enables users to

interact with 3D GS in a physically realistic way in real time.

6.3.3 System Design

We propose a unified physics dynamics-aware interactive Virtual Reality (VR) system for

real-time interactions with Gaussian Splatting (GS).

Immersive and Realistic Generative Dynamics Our targeted system aims to offer

users an immersive and realistic experience, characterized by dynamic motions, 3D virtual

shapes, and illuminations that closely mirror the real world (Kalawsky, 1999). This goal sets

our system apart, especially in how it handles physics-based 3D deformations and dynamics,

as opposed to those that rely solely on geometric deformation. The proposed system leverages

physics-based simulation techniques to produce realistic dynamics and facilitate 3D shape

editing. Unlike methods that reconstruct motion from time-dependent datasets or utilize
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generative AI to drive Gaussian models, our system adheres to physical principles. To create

an immersive experience, we choose VR as the interaction platform.

Real-Time Interaction For an interactive system, low latency is crucial to prevent disori-

entation or motion sickness (Sutcliffe et al., 2019; Deng et al., 2022). To offer instantaneous

output and feedback, most interactive systems support basic transformations including rota-

tion, scaling, and translation. Our system additionally offers users real-time physics-based

interaction. To our knowledge, VR-GS represents the first interactive physics-based GS

editor. To achieve both real-time performance and physically realistic editing, we implement

a reduced representation model and parallel-friendly algorithms within our frame budget.

While the per-Gaussian-based discretization as done in PhysGaussian (Xie et al., 2023b) offers

detailed dynamics, its time cost is impractical for our system’s needs. Instead, we utilize a

tetrahedral mesh embedding reconstructed from Gaussian kernels to drive GS motion. We

adopt PBD with finite-element constraints to achieve real-time simulations.

Unified Framework VR-GS is a framework that integrates rendering and simulation

within a unified pipeline. Our design principles adhere to the goal of “what you see is what

you simulate” (Müller et al., 2016). Unlike Xie et al. (2023b), our system employs a hybrid

approach, combining cage mesh and Gaussian kernels, to achieve real-time performance. The

deformation gradient field of Gaussian kernels is embedded in the cage mesh through piecewise

constant interpolation. With each Gaussian kernel resembling a rotated ellipsoid, this simple

embedding strategy leads to spiky artifacts during large deformation, a challenge highlighted

in (Xie et al., 2023b). To mitigate this, we employ a two-level interpolation scheme: initially

embedding each Gaussian within an individual bounding tetrahedron, followed by embedding

these tetrahedra within the simulated cage mesh to elevate the smoothness of the deformation

field.

Additional Components Our framework is designed to construct VR-compatible inter-

active settings derived from real-world captures. Consequently, it introduces complexities
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associated with facilitating intuitive user interactions and delivering real-time feedback that

meets user expectations and common sense perceptions (Stanney et al., 2003; Hale and

Stanney, 2014; Gabbard et al., 1999). In particular, when users engage with objects within a

scene, they anticipate natural movements and realistic appearances from both the selected

objects and the surrounding environment. Moreover, it is necessary to address voids when

an object is removed from its supporting base. To manage these challenges, our system

additionally integrates functionalities for object segmentation and scene inpainting.

6.3.4 Method

6.3.4.1 Gaussian Splatting

Gaussian splatting, proposed by Kerbl et al. (2023), is an explicit 3D representation to

encapsulate 3D scene information using a set of 3D anisotropic Gaussian kernels, each with

learnable mean µ, opacity σ, covariance matrix Σ, and spherical harmonic coefficients C.

Spherical harmonics (SH) are expansions of the view-dependent color function defined on the

unit sphere. To render a view, the 3D splats are projected to 2D screen space ordered by

their z-depth. The color C of a pixel is computed by α-blending of these 2D Gaussians from

near to far:

C =
∑
i∈N

ciαi

i−1∏
j=1

(1− αj), (6.20)

where ci is the evaluated color by SHs viewed from the camera to the kernel’s mean. αi is

the product of the kernel’s opacity and 2D Gaussian weight evaluated at the pixel coordinate.

Leveraging a differentiable implementation, the rendering loss towards the ground truth

image can be backpropagated to Gaussians’ parameters for optimization.

In contrast to traditional NeRFs based on implicit scene representations, GS provides an

explicit representation that can be seamlessly integrated with post-processing manipulations,

such as animating and editing. Moreover, the efficient rasterization and superior rendering

quality of 3D Gaussians facilitate their integration with VR.
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6.3.4.2 VR-GS Assets Preparation

Each 3D asset in our VR system consists of a high-fidelity 3D GS reconstruction and an

envoloping simulatable tetrahedral mesh in a moderate resolution to enable real-time physics-

aware dynamics. These preparations are conducted offline before immersive and interactive

editings within our VR environment, which includes:

• Segmented GS Generation: we support interactions with individual objects in a large

scene, achieved by segmented GS reconstructions.

• Inpainting : The occluded parts between the objects and their supporting planes usually

have no texture. We inpaint 3D GS representations leveraging a 2D inpainting technique.

• Mesh Generation: A simulation-ready tetrahedral mesh is generated for each object.

Segmentation The segmented GS is constructed during GS training. We first generate

2D masks on the multi-view RGB images by utilizing a 2D segmentation model (Cheng

et al., 2024). Each segmented part is assigned a different color that is consistent across

different views. Subsequently, we enhance the scene representation by integrating three

additional learnable RGB attributes into the 3D Gaussian kernels. During the reconstruction

process, each 3D Gaussian kernel will automatically learn what object it belongs to utilizing

a segmentation loss function Lseg:

Lseg = L1(M2d, I), (6.21)

where M2d represents colored 2D segmentation results and I denotes the rendering of 3D

Gaussian kernels with colors replaced by the extended RGB attributes instead of evaluated

from SHs. Thus, the total loss becomes

Ltotal = (1− λ)L1 + λLSSIM + λsegLseg, (6.22)
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Figure 6.23: Our two-level embedding effectively resolves spiky artifacts. Each Gaussian
kernel is embedded into a local tetrahedron. The vertices of the local tetrahedron are
independently embedded into the global mesh.

where L1 and LSSIM are computed between the normally rendered images and the multi-view

ground truths. We use λ = 0.2 and λseg = 0.1 in all our experiments.

Inpainting After 3D GS segmentation, we extract all objects separately from the scene.

This process of object removal, however, results in the emergence of holes within the regions

that are previously occluded. To alleviate the issue, we utilize a 2D inpainting tool LaMa

(Suvorov et al., 2022) to guide the 3D inpainting of Gaussian kernels. We freeze the Gaussian

kernels located outside of the holes and then use an inpainting loss Linpaint = L1(Iinpainted, I)

to optimize a Gaussian kernel patch under the guidance of the 2D inpainted images Iinpainted

for the current 3D GS rendering I. The result of our inpainting is validated in Section 6.3.5.

Mesh Generation Due to our design choice to use mesh-based simulation, we generate a

tetrahedral mesh for each group of the segmented 3D GS kernels. These meshes will not be

rendered during the interaction but only serve as the media of dynamics. Hence we can use a

moderate mesh resolution which does not hinder performance. To construct a simulation

mesh, we first use internal filling proposed by (Xie et al., 2023b) to fill particles into the void

internal region that is not reconstructed by GS. Then we treat centers of Gaussians as a point

cloud and convert it to a voxelized VDB representation (Museth, 2013). A water-tight surface

mesh is then extracted using marching cubes (Lorensen and Cline, 1987) and tetrahedralized

into a finite element mesh using TetGen (Si, 2015).
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6.3.4.3 Unified Framework for Simulation and Rendering

As shown in Xie et al. (2023b), Gaussian kernels can be deformed by the simulated deformation

field. We follow the Gaussian kinematics of this work but replace the simulator with XPBD

(Macklin et al., 2016) to achieve real-time interactions. We employ the strain energy constraint

as the elastic model and adopt the velocity-based damping model in the XPBD framework.

Physical Parameters The physical parameters, such as densities and material stiffness,

are tunable hyperparameters. Following PhysGaussian (Xie et al., 2023b), we manually set

physical parameters for all interactable objects, including Young’s modules (E), Poisson ratio

(ν), and density (ρ). We start from an initial configuration E = 1000 Pa, ν = 0.3, ρ = 1000 kg

for each object, then tune them to produce visually plausible dynamics. The Young’s modulus

governs the overall stiffness of an object and is manually adjusted by analyzing the severity

of deformation of its free fall collision with the ground. Additionally, we adjust the relative

density between two objects based on their deformations under collision. In practice we

usually arrive at a finalized parameter setting that gives visually plausible results within 10

iterations of this manual process.

Embedding In our mesh-based simulation, the deformation map is piece-wise linear, with

the resulting deformation gradient piece-wise constant within each tetrahedron. Given a

tetrahedron with the rest-shape configuration {x0
0,x

0
1,x

0
2,x

0
3} and the current configuration

{x0,x1,x2,x3}, the deformation gradient is defined as

F =
[
x1 − x0,x2 − x0,x3 − x0

] [
x0
1 − x0

0,x
0
2 − x0

0,x
0
3 − x0

0

]−1

, (6.23)

where the inverse of the rest-shape basis can be computed pre-simulation. The mean and the

covariance matrix of the deformed Gaussian kernel inside this tetrahedron is given by

µ =
∑
i

wixi, Σ = FΣ0F
T , (6.24)
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where wi is the barycentric coordinates of the initial center µ0 in the rest-shape configuration,

and Σ0 is the initial covariance matrix (Xie et al., 2023b). The deformed Gaussian kernels

can be directly rendered by the point splatting procedure. However, the direct embedding

of Gaussian centers cannot guarantee that every ellipse shape is completely enveloped by

some tetrahedron inside the simulation mesh. As shown in Figure 6.23, this can lead to spiky

artifacts. Observe that kernels that are completely inside the tetrahedron will always be

inside. This motivates us to propose a two-level embedding procedure:

1. Local embedding: we independently envelope every Gaussian kernel by an as-tight-as-

possible tetrahedron. There is no connectivity between these local tetrahedra.

2. Global embedding: we embed the vertices of local tetrahedra into the global simulation

mesh.

As the global mesh is deformed by the simulation, the vertices of local tetrahedra are kept

inside the boundary, driving the kinetic evolution of Gaussian kernels. A local tetrahedron

could overlap with multiple global tetrahedra. The deformation map on it can be understood

as the average of the surrounding global tetrahedra, hence eliminating sharp, spiky artifacts,

as validated in Section 6.3.5.

Shadow Map While the original global illumination of the scene can be accurately learned

and baked by the spherical harmonics on each Gaussian, the shadow will no longer be aligned

with the object when it is moving or deforming. Bringing shadow map (Wanger et al., 1992)

into the GS framework can enhance the immersive experience in VR. More importantly, it

can guide human perception of the spatial relationships between objects: during manipulation,

users will rely on the shadow to determine the distance between objects. The shadow map is

a fast real-time algorithm and is well-aligned with the GS rasterization pipeline. We follow

Equation (6.20) to estimate the depth map from the light source and test the visibility for

each Gaussian using this depth map. The influence of shadow maps is studied in Section 6.3.5.
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Figure 6.24: Two-level Embedding Evaluation. Our two-level embedding alleviates the
commonly seen spiky artifacts for deformed GS kernels.

Original Removed Inpainted

Figure 6.25: Inpainting Evaluation. GS struggles to reconstruct occluded surfaces. By
leveraging LAMA (Suvorov et al., 2022), we produce 2D inpainted results that guide the 3D
scene inpainting, enhancing the realism of the 3D representation.

6.3.5 Evaluation

In this section, we assess the essential components of our proposed system, including two-level

GS embedding and shadow map.

Two-level Embedding The two-level embedding is a crucial component in our physical

dynamics-aware system, integrating the tetrahedra cage mesh with the embedded Gaussian.

In Figure 6.24, we conduct an ablation study to validate the effectiveness of our two-level

embedding approach. Under conditions of extreme stretching or twisting, the naive embedding

method, which simply embeds the Gaussian kernel within the closest tetrahedron, leads to
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w/o Shadow Map w/ Shadow Map

Figure 6.26: Shadow Map Evaluation. GS traditionally models shadows as static surface
textures. Our approach, employing a shadow map, generates dynamic shadows for a more
immersive experience.

severe spiky artifacts. Our two-level embedding strategy addresses this by initially embedding

each Gaussian into a localized, independent tetrahedron, followed by embedding the vertices

of this tetrahedron into the cage mesh. The deformation of each Gaussian kernel is determined

by averaging the deformations at these vertices, resulting in a smoother deformation gradient

field than the naive approach and significantly reducing spiky artifacts.

Inpainting With the guidance of 2D image segmentation results, our system achieves

object-level 3D scene reconstruction, facilitating convenient post-physics-based manipulation.

However, GS is limited to reconstructing surfaces visible in the provided multi-view training

images. Consequently, some object and background areas, unseen in these images, remain

unreconstructed by GS, leading to “black hole” like artifacts when foreground objects are

moved. To address this, our system integrates the object segmentation mask with LAMA

(Suvorov et al., 2022), a 2D inpainting model, to generate inpainted multi-view images.

These images then guide the fine-tuning and inpainting of our 3D GS scene, yielding a more

complete and realistic user experience, as evidenced in Figure 6.25.

237



FPS: 
135

FPS: 
72

FPS: 
62

FPS: 
58

FPS: 
45

FPS: 
23

#Verts: 2K
#Tets:   7K

#Verts: 5K
#Tets:   14K

#Verts: 7K
#Tets:   21K

#Verts: 11K
#Tets:   41K

#Verts: 20K
#Tets:   74K

#Verts: 55K
#Tets:   242K

FPS: 135 FPS: 72 FPS: 62 FPS: 58 FPS: 45 FPS: 23

Figure 6.27: Trade-offs between Quality and Performance. The top row displays cage
meshes at varying resolutions, and the bottom row illustrates the corresponding simulation
dynamics. Low-resolution meshes fail to capture fine dynamic details, whereas high-resolution
meshes compromise real-time performance and can result in overly soft artifacts in the
simulated object due to non-converging simulations. We employ mid-resolution meshes
in practice to achieve an optimal balance between high frame rates and realistic physical
dynamics.

Shadow Map Furthermore, we take advantage of the shadow map to add extra time-

dependent shadows into the GS scene, as shown in Figure 6.26. Original GS represents

shadows as textures and thus fails to provide dynamic shadows when objects move. VR-GS

allows users to choose the parameters, e.g. position and direction, of the light source to

reproduce the lighting setting of the original scene, leading to a more realistic VR environment.

6.3.6 Experiment

In this section, we benchmark our VR-GS system’s simulation performance against other

methods in GS and NeRF manipulation. Additionally, we showcase interactive demonstrations

on VR devices. Our prototype, developed in Unity with a CUDA-implemented plugin, is

tested using a Quest Pro Head-Mounted Display (HMD) and corresponding controllers, on an

Intel Core i9-14900KF CPU with 32GB memory and an NVIDIA GeForce RTX 4090 GPU.

6.3.6.1 Performance

VR-GS is designed for real-time, physics-aware interactions by integrating Gaussian kernels

within a cage mesh for simulation. This cage mesh is derived from the VDB representation of

238



PA
C
-N
eR
F

Ph
ys
G
au
ss
ia
n

V
R
-G
S(
O
ur
s)

Chair Stool Materials

Figure 6.28: Visual Quality Comparison. Our method synthesizes competitive visual
results compared to PhysGuassian (Xie et al., 2023b) and significantly outperforms PAC-NeRF
(Li et al., 2023e).

Table 6.5: Quantitative comparisons.

Example PAC-NeRF Phys-Gaussian VR-GS (Ours)
Stool 0.750 0.112 0.017
Chair 0.813 0.219 0.022
Materials 0.625 0.39 0.021

Gaussians, with adjustable mesh resolution to influence quality. We first conduct experiments

to explore the trade-offs between mesh quality and system performance. As shown in

Figure 6.27, using a coarse cage mesh facilitates higher frame rates but may lead to the loss of

fine details. Conversely, a higher-resolution mesh inevitably increases the computational cost.

Moreover, PBD also requires much more iterations to achieve convergence for finer meshes.

Without sufficient iterations, the simulated object may appear to be overly soft, yielding

unrealistic dynamics. In practice, we constrain the number of mesh vertices to between 10K

and 30K to maintain a balance between high frame rates and accurate physical dynamics.

We then compare VR-GS against two state-of-the-art NeRF/GS physics-based manipula-

tion methods: PAC-NeRF (Li et al., 2023e) and PhysGaussian (Xie et al., 2023b). PAC-NeRF

primarily concentrates on estimating material parameters from multi-view videos in recon-
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Table 6.6: Parameters and Timings of Demos in Section 6.3.6.2.

Example #Gaussians #Verts. #Iter* CD* FPS
(Figure 6.30) Fox 304,875 28,205 1 / 161.2
(Figure 6.30) Bear 2,525,891 19,472 5 / 76.9
(Figure 6.30) Horse 1,295,223 10,611 5 / 115.4
(Figure 6.31) Ring Toss 1,456,209 9,002 10 10 37.7
(Figure 6.31) Table Brick Game 1,866,835 33,279 10 10 41.4
(Figure 6.32) Toy Collection 1,665,128 46,428 20 20 24.3
(Figure 6.25) Box Moving 1,769,412 1,434 10 / 73.8
(Figure 6.21) Animal Crossing 1,312,670 36,386 10 5 34.7
(Figure 6.33) Just Dance 1,059,054 13,936 50 / 33.9
* #Iter: XPBD iterations per substep; CD: collision detections per step.

0% 20% 40% 60% 80% 100%

Just Dance

Animal Crossing

Box Moving

Toy Collection

Table Brick Game

Ring Toss

Horse

Bear

Fox

Collision Detection
FEM Constraint

Collision Constraint
XPBD Update

GS Embedding Interpolation
Shadow Map Rendering

Left Eye Rendering
Right Eye Rendering

Simulation Phase
Rendering Phase

Figure 6.29: Timing Breakdown of Demos in Section 6.3.6.2.

structed NeRF scenes. Although it offers novel dynamic generation capabilities, the resulting

visuals often fall short in rendering quality. In contrast, PhysGaussian, leveraging GS, pro-

duces superior photorealistic dynamics. However, the Material Point Method (MPM) used by

both systems can limit real-time performance in complex scenes. For a fair comparison, we

standardize the frame time (∆tframe = 1/25 sec) and the simulation step time (∆tstep = 0.0001

sec) across all methods. For VR-GS, we set the XPBD iteration per substep to 1, as the small

∆tstep sufficiently resolves the dynamics. As depicted in Figure 6.28 and Table 6.5, VR-GS

not only matches the visual quality of PhysGaussian but also outperforms PAC-NeRF in

clarity and realism. Crucially, our PBD-based simulation framework allows for significantly

faster simulations, making VR-GS ideal for real-time physics-aware interactions.

6.3.6.2 VR Demos

We then showcase VR-GS’s capability to replicate real-world scenarios through several

representative demos in VR. Detailed simulation setups and a timing breakdown for these
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Figure 6.30: Fox, Bear, and Horse. VR-GS allows users to manipulate 3D GS at a
real-time rate with physically plausible responses.

demos are provided in Table 6.6 and Figure 6.29.

Fox, Bear, and Horse Manipulation VR-GS empowers users to edit 3D Gaussian

kernels intuitively and efficiently, utilizing our XPBD-based physics engine for dynamic

manipulation. We demonstrate this through three examples as depicted in Figure 6.30: a fox,

a bear, and a horse, reconstructed from the Instant-NGP dataset (Müller et al., 2022), the

Instruct-NeRF2NeRF (Haque et al., 2023), and the Tanks and Temples dataset (Knapitsch

et al., 2017), respectively.

Ring Toss and Table Brick Game In this example, we demonstrate the system’s

ability to seamlessly integrate new virtual objects into existing scenes. We use a room

scene reconstructed from real-world footage and virtual objects (rings and bricks modeled in

Blender) to create ring tossing and table brick game (Figure 6.31). The dining table and

objects on it serve as collision boundaries for the elastic ring and rigid bricks (Deul et al.,
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Figure 6.31: Ring Toss and Table Brick Game. Participants can engage in interactive
ring toss and table brick breakout games simulated within authentic environments.

Figure 6.32: Toy Collection. We place all the toys on the ground first, and then move them
into the basket.

2016).

Toy Collection and Animal Crossing We reconstructed a living room scene and a set of

plush toys (Figure 6.32) for users to interact with. The yellow spherical toy is generated using

a text-to-3D generator LucidDreamer (Liang et al., 2023), while the others are reconstructed.

Additionally, four animal plush toys were placed on chairs, allowing users to manipulate and

deform them freely (Figure 6.21).

Just Dance VR-GS also supports animation of reconstructed GS humans (Figure 6.33).

Utilizing a reconstructed human character, we leverage Mixamo1’s auto-rig to generate motion

sequences of its surface mesh. These sequences then serve as the boundary condition for the

simulation, finally producing the GS human animation that can be viewed in our immersive

system.

1https://www.mixamo.com/
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Figure 6.33: Just Dance. VR-GS generates high-fidelity dance given a reconstructed human
body.

6.3.6.3 Modeling Details

We employ the Toy Collection (Figure 6.32) as a case study to demonstrate the time and

labor required to create a fully interactive VR environment from scratch. The setup process

is as follows:

1. The initial stage involves setting up the real-world scene. For the Toy Collection, the

indoor scene was captured directly as one scene, with all toys separately hung with

strings as another scene. We completed it within 20 minutes.

2. Next, we capture multi-view images for Gaussian Splatting by recording videos of the

two scenes with a consumer-level camera and converting them into image sequences.

Camera intrinsic and extrinsic parameters are collected using COLMAP, with the

entire process taking around 60 minutes, of which COLMAP occupies approximately

40 minutes.

3. We then proceed to image processing for segmentation and inpainting. Object classes

are manually designated in the first video frame. Subsequent frames are automatically

segmented using the method from Cheng et al. (2024), taking about 2 minutes. The

inpainting of what’s below the basket is fully automated (Suvorov et al., 2022) and

requires 5 minutes.

4. GS reconstruction is performed on the processed images, undergoing 30,000 training

steps as specified by Kerbl et al. (2023) without additional treatment for the number of

Gaussians, which takes about 30 minutes on a single RTX 4090.

5. After generating 3DGS, we execute internal filling, VDB reconstruction, and TetGen,
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all within 10 minutes.

6. Lastly, object world positions and physical parameters are specified and estimated in

Unity, as detailed in Section 6.3.4.3, taking 20 minutes.

In summary, the total preparation time for the Toy Collection is approximately 2 hours and

30 minutes. Manual tasks include scene staging, video recording, object class specification,

and physical parameter selection. All other processes are automated. Once modeled, the

scene is ready for a physics-aware interactive VR experience.

6.3.7 User Study

We conducted a user study including two tasks with 10 participants: 2 professionals (P1–P2)

with 5 and 7 years of experience in 3D VFX software (including Houdini and Blender), and

8 novices (P3–P10), with P2 also having 2 years of VR experience. Our study used the

hardware specified in the experimental section and included the Fox, Bear, House, Ring Toss,

and Toy Collection demos. Participants received a 10-minute video tutorial on our system

before completing two tasks. After task 2, they answered a questionnaire covering usability

(System Usability Scale (Bangor et al., 2009)) and subjective feedback on individual and

overall system features, as shown in Section 6.3.7.2. Additionally, we conducted a 20-minute

semi-structured interview for more in-depth feedback.

6.3.7.1 Tasks

Task 1: Goal-directed (30 minutes). The participants were required to play two VR

games developed by our system: ring toss and toy collection (Figure 6.32) in two different

settings (S1: physics-based and S2: transform-based interaction). Each game had a 5-minute

duration under each configuration. A 5-minute break was allowed between sessions. The

arrangement of sessions and tasks used a Latin square design to counter potential learning

effects. We requested users to rate the immersive and realistic experience in VR using a

7-point Likert scale.
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Physics-based Interaction Transform-based Interaction

Figure 6.34: User Study Results. The left chart summarizes individual (M1-M5: object
manipulation, scene inpainting, illumination, dynamics, physics placement) and system
feedback (M6-M9: ease of use, latency, functionality, satisfaction). The right two figures show
that physics-based interaction enhances immersion and realism in editing, whereas transform-
based interaction yields less authentic outcomes, e.g. an undeformed and penetrated toys.

Task 2: Open-ended (30 minutes). The participants are asked to edit the scene and

generate dynamics freely in aforementioned scenes (shown in Figure 6.30), Figure 6.31 and

Figure 6.32) with our prototype system, which includes geometry-based editing, physics-based

editing, transform, rotation, duplicating, undoing, rescaling, etc. Task 2 is designed to

evaluate the detailed potential factors impacting VR immersive experience.

6.3.7.2 Results and Discussion

According to a paired t-test conducted on the score collected from task 1, it could be noticed

that physics-based interaction significantly enhanced user immersion and realism compared

to transform-based interaction (physics-based: 6.1 vs transform-based: 4.8 on average, p =

.0227 ). As shown in Figure 6.34, our system has received overall positive opinions. Users

spoke highly of the placement of virtual content. Transforming objects without physics rules

resulted in floating objects, while in our system, all virtual content placements, such as

putting toys onto a sofa, are followed by physics rules and are consistent with the user’s

understanding. P7 commented, “I love this a lot. I have a dog. Petting the fox is really

like what I did to my dog at home. I felt so real. Moreover, the placement of the toy is

awesome. After they all fell to the basket, the basket even shook for a while.” The VR-GS

system’s realistic lighting and physics-based dynamics create an immersive experience. As

a professional user, P2 spoke highly of high-fidelity generative dynamics and illumination.

“Those motions of virtual content are just like what I see in the physical world. I can’t wait
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to take photos of my own house and then put them in VR with my video game character.”

Users rated the system highly on ease of use (4.6/5) and overall satisfaction (4.8/5). With a

System Usability Scale (SUS) score of 83.5, VR-GS is classified as “excellent” according to

(Bangor et al., 2009).

6.3.8 Conclusion and Future Work

We presented a physical dynamics-aware interactive Gaussian Splatting system for addressing

challenges in editing real-time high-fidelity virtual content. By leveraging the advancements in

Gaussian Splatting, VR-GS bridges the quality gap traditionally observed between machine-

generated and manually created 3D content. Our system not only enhances the realism

and immersion via physically-based dynamics, but also provides fine-grained interaction and

manipulation controllability.

Although all the study participants appreciated the efficiency and effectiveness of our

system, it still remains to be improved. Firstly, rendering high-fidelity Gaussian kernels in

VR is computationally demanding. As a result, rendering generative dynamics in a large

scene with 2K resolution might lead to potential latency issues in our system. Secondly, the

physical parameters in our system are manually defined. Estimating parameters from videos

like PAC-NeRF (Li et al., 2023e), or leveraging large-vision models, would be interesting

directions to automate this process. In future work, we aim to incorporate a broader range of

materials, such as fluid (Feng et al., 2024) and cloth, to enhance the system’s capabilities.

Furthermore, it is also interesting to explore how to utilize large multimodal models to assess

the fidelity of the generated dynamics.
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6.4 Dress-1-to-3: Single Image to Simulation-Ready 3D Outfit

with Diffusion Prior and Differentiable Physics

6.4.1 Introduction

Creating digital assets of clothed humans is crucial for a wide range of applications, including

virtual reality (VR), the film industry, fashion design, and gaming. However, the traditional

pipeline for digital human and garment creation involves multiple intricate steps, such as

concept design, material selection, garment modeling, human pose generation, garment fitting,

and animation. These processes are often labor-intensive and time-consuming.

In recent years, significant advancements in image-to-3D asset reconstruction have been

driven by the development of powerful image and video generation models. Among these,

multiview diffusion models (Chen et al., 2024d; Liu et al., 2023b; Gao et al., 2024) have

emerged as a promising approach, effectively leveraging multiview images as intermediate

representations to capture 3D information. When fine-tuned on human datasets, these models

generalize well to avatar reconstructions from in-the-wild images (Li et al., 2024b; He et al.,

2024b). However, the generated results are often fused into a single piece, making them

unsuitable for downstream tasks such as garment animation and interaction.

In the meantime, sewing patterns, a foundational representation in the garment design

industry, have been adopted as intermediate reconstruction outputs to recover garment geome-

tries (Liu et al., 2023a; Li et al., 2024c). This representation is particularly advantageous due

to its seamless integration with downstream applications such as physics simulation and gar-

ment editing. Despite their promise, these feed-forward approaches face significant limitations

stemming from the scarcity of high-quality 3D data. As a result, the reconstructed garments

are often constrained by the distribution of the training dataset, leading to inaccuracies in

aligning with input images. This limitation hinders their ability to produce detailed and

diverse reconstructions reflective of real-world garment variations. The question then arises:

can we keep the advantages of the simulation-ready representation of sewing patterns while

leveraging the powerful priors in large multi-view diffusion models to reconstruct garments

247



Figure 6.35: Dress-1-to-3 can reconstruct simulation-ready textured clothed humans from
casually posed single view images.

from solely an in-the-wild image?

To address this problem, we introduce Dress-1-to-3, a novel garment reconstruction

pipeline that accurately transforms an in-the-wild image into a simulation-ready representation

of separated human and garment by leveraging the strengths of both 2D multi-view diffusion

and 3D sewing pattern reconstruction. To bridge those two parts, we propose a generalized and

unified IPC differentiable framework for garment optimization, which enables the optimization

of 3D sewing patterns using 2D generative multi-view RGB images and normal maps as

guidance. By refining imperfect generative outputs to align with the geometry encoded in

multiview images, our approach allows the reconstruction of out-of-distribution garment

shapes with high fidelity. Our contributions include:

• We propose a holistic garment reconstruction pipeline that takes a single image as input

and generates garments fitted onto a posed human, ensuring both the human pose and

garments align with the input image.

• We derive a generalized and unified IPC differentiable framework that is agonistic to

constitutive models. We apply this framework for co-dimensional garment optimization.
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• We conduct extensive experiments to demonstrate the effectiveness and versatility of our

garment optimization framework, successfully reconstructing garments across diverse

categories, including those not present in the training dataset.

6.4.2 Related Work

Multi-view Diffusion Owing to their powerful predictive ability, Diffusion Probabilistic

Models (Ho et al., 2020) have been applied to image (Nichol et al., 2021; Zhang et al.,

2023; Dhariwal and Nichol, 2021; Ruiz et al., 2023; Saharia et al., 2022), video (Chen et al.,

2024c; Ho et al., 2022), and 3D shape synthesis tasks (Long et al., 2024; Yu et al., 2023;

Tang et al., 2023), etc. However, applying image diffusion models to generate multi-view

images separately poses significant challenges in maintaining consistency across different views.

To address multi-view inconsistency, multi-view attentions and camera pose controls are

adopted to fine-tune pre-trained image diffusion models, enabling the simultaneous synthesis

of multi-view images (Shi et al.; Wang and Shi, 2023; Xu et al., 2023d; Yang et al., 2024; Shi

et al., 2023; Long et al., 2024), though these methods might result in compromised geometric

consistency due to the lack of inherent 3D biases. To ensure both global semantic consistency

and detailed local alignment in multi-view diffusion models, 3D-adapters (Chen et al., 2024b)

propose a plug-in module designed to infuse 3D geometry awareness. Nevertheless, the

generated images by these models are sparse views. To address this issue, CAT3D (Gao et al.,

2024) introduces an efficient parallel sampling strategy to generate a large set of camera

poses, and MVDiffusion++ (Tang et al., 2025) adopts a pose-free architecture and a view

dropout strategy to reduce computational costs, generating dense, high-resolution images.

Generating consistent images from multi-view diffusions offers guidance for further 3D

shape reconstruction (Gao et al., 2024). PSHuman (Li et al., 2024b) integrates a body-face

cross-scale diffusion with an SMPL-X conditioned multi-view diffusion for clothed human

reconstruction with high-quality face details. Recent work, MagicMan (He et al., 2024b),

utilizes a hybrid human-specific multi-view diffusion model with 3D SMPL-X-based body

priors and 2D diffusion priors to consistently generate dense multi-view RGB images and
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normal maps, supporting high-quality human mesh reconstruction. Different from these

works, we exploited multi-view diffusions to generate multi-view normals and RGB images as

guidance to optimize sewing patterns and stitches instead of human meshes.

Garment Reconstruction Previous work focusing on clothed human reconstruction (Xiu

et al., 2022, 2023) typically generates garments fused with digital human models, limiting them

to basic skinning-based animations and requires extra segmentation and editing to separate

the garments from the human body. In contrast, our approach focuses on reconstructing

separately wearable, simulation-ready garments and human models. Other closely related

works include Li et al. (2024d), which also generates simulation-ready clothes, but at the cost

of creating clothing templates by artists and precise point clouds by scanners. NeuralTailor

(Korosteleva and Lee, 2022) exploits point-level attention for pattern shape and stitching

information regression, enabling the reconstruction of garment meshes from point clouds. In

contrast, our paper focuses on reconstructing non-watertight garments and humans separately

from a single image without additional inputs.

To reconstruct separated non-watertight garments from a single image, GarVerseLOD (Luo

et al., 2024) recovers garment details hierarchically in a coarse-to-fine framework. However,

it fails to reconstruct complex skirts or dresses with slits or with complex human poses due

to the limited representation of such features in the training data. ClothWild (Moon et al.,

2022) exploits a weakly supervised pipeline with DensePose-based loss to further increase

robustness on in-the-wild images. BCNet (Jiang et al., 2020a) introduces a layered garment

representation and a generic skinning weight generation network to model garments with

different topologies. Deep Fashion3D (Zhu et al., 2020) refines adaptable templates with

rich annotations to fit garment shapes. While they are limited to garment categories in

their training datasets, these works fail to reconstruct complex categories such as jumpsuits.

Additionally, they require nearly frontal images as input, limiting reconstruction from different

views. AnchorUDF (Zhao et al., 2021) explores a learnable unsigned distance function to

query both 3D position features and pixel-aligned image features via anchor points, which

reconstructs the coarse garment shape but lacks the generation of high-quality geometric
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details.

Instead of directly reconstructing garment meshes, some works (Liu et al., 2023a; He

et al., 2024a; Korosteleva and Sorkine-Hornung, 2023) treat sewing patterns as intermediate

representations to generate garments by stitching them together. Recent work, GarmentRe-

covery (Li et al., 2024c), introduces implicit sewing patterns (ISP) to provide shape priors

integrated with deformation priors for further garment recovery, though it builds specialized

models for each individual garment or garment type. Both SewFormer (Liu et al., 2023a)

and PanelFormer (Chen et al., 2024a) utilize Transformers to predict sewing patterns and

stitches. However, their garment results lack physical material parameters. Therefore, they

fail to reconstruct diverse shapes for garments with different physical materials. In addition,

these feed-forward methods require large amounts of garment data for training, failing to

synthesize garments that fall outside the distribution of the training data. Our work aims to

generate diverse, image-aligned, simulation-ready garments with high-quality details from

in-the-wild images by optimizing sewing patterns and stitches with physical parameters via

differentiable simulations.

Differentiable Simulation Differentiable simulation has seen widespread application in

recent research, particularly for system identification and the inference of material parameters

from both synthetic (Li et al., 2023e, 2024e) and real-world (Huang et al., 2024; Si et al., 2024)

observations. The scope of exploration spans various domains, including fluid dynamics and

control (McNamara et al., 2004; Schenck and Fox, 2018; Li et al., 2023g, 2024e), rigid-body

dynamics (Freeman et al., 2021; Strecke and Stueckler, 2021; Xu et al., 2023a), articulated

systems (Geilinger et al., 2020; Qiao et al., 2021b; Xu et al., 2021), soft-body dynamics (Hahn

et al., 2019; Hu et al., 2019b; Du et al., 2021; Jatavallabhula et al., 2021; Huang et al., 2024),

cloth (Li et al., 2022h; Stuyck and Chen, 2023; Li et al., 2024d), inelasticity (Huang et al., 2021;

Li et al., 2023e), inflatable structures (Panetta et al., 2021), and Voronoi diagrams (Numerow

et al., 2024).

Cloth-based applications, whether for static optimization or dynamic simulation, frequently

involve extensive frictional contact. Consequently, many works focus on robust methods for
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handling dry frictional contact in differentiable simulations. Bartle et al. (2016) proposes a

physics-driven pattern adjustment for garment editing using fixed-point optimization, which

does not account for gradients. Liang et al. (2019) is the first to introduce a fully functional

differentiable cloth simulator with frictional contact and self-collision, formulating a quadratic

programming problem. Jatavallabhula et al. (2021) employs a penalty-based frictional contact

model, while Du et al. (2021) and Li et al. (2022h) leverage the adjoint method for Projective

Dynamics (Bouaziz et al., 2014) with friction. Building on Position-Based Dynamics (Müller

et al., 2007; Macklin et al., 2016), Stuyck and Chen (2023) and Li et al. (2024d) introduce

differentiable formulations for compliant constraint dynamics, and Huang et al. (2024) presents

an adjoint-based framework for differentiable Incremental Potential Contact (IPC) (Li et al.,

2020, 2021a).

The finite difference (FD) method (Renardy and Rogers, 2006) is a standard approach

to numerical differentiation. The complex-step finite difference technique (Luo et al., 2019;

Shen et al., 2021) offers an alternative that mitigates issues such as subtractive cancellation

and accumulated numerical errors by leveraging complex Taylor expansions (Brezillon et al.,

1981). They can be used to optimize low-DoF system (Zheng et al., 2025). Automatic

differentiation (AD) (Naumann, 2011; Margossian, 2019) and code transformation libraries

like NVIDIA Warp (Macklin, 2022), DiffTaichi (Hu et al., 2019b, 2020), and others (Herholz

et al., 2024) automatically compute gradients based on forward simulation, allowing for

greater reuse of existing code. However, they can introduce code constraints, incur a high

memory footprint, and may cause gradient explosion if applied naively. Our framework

combines NVIDIA Warp’s AD with an adjoint method to achieve both development efficiency

and high performance.

6.4.3 Differentiable Garment Simulation

6.4.3.1 Forward Simulation

We use Codimensional Incremental Potential Contact (CIPC) (Li et al., 2021a) as our

underlying garment simulation method, which is the state-of-the-art in cloth simulation
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regarding accuracy and robustness. It ensures non-penetration through distance-based log

barrier energy and continuous collision detection (CCD). Below, we summarize the simulation

pipeline, with further details available in Li et al. (2021a).

The simulated codimensional surface is discretized into triangles defined by vertices V

and faces F . Let X denote the vertex positions in the undeformed state, and let xn and vn

represent the vertex positions and velocities, respectively, at time step tn. CIPC employs

an optimization-based time integrator to achieve the state transition from time step tn to

tn+1 = tn + h, minimizing the following energy:

xn+1 = argmin
x

E(x) =
1

2
∥x− x̃∥2M +Ψ(x;X) +B(x). (6.25)

Here, x̃ = xn+vnh+gh2 represents the predictive position under backward Euler integration.

∥ · ∥M denotes the L2-norm weighted by the vertex mass Mii. Ψ(x;X) is the elastic energy,

encompassing both stretching and bending energies, depending on the user’s choice. B(x) is

the log barrier energy introduced by IPC, defined over all contacting vertex-triangle and edge-

edge pairs. The barrier energy for each pair of primitives increases from zero to infinity as the

gap decreases from a threshold d̂ to 0, providing sufficient repulsion to prevent penetrations.

Newton’s method with line search is employed to solve the optimization problem, requiring

the analytical computation of the gradient and Hessian matrix of the energy at each iteration.

The step size upper bound in each line search is clamped by CCD to ensure that all

intermediate states remain intersection-free, provided that xn is initially intersection-free.

Finally, the new velocity is updated as vn+1 = (xn+1 − xn)/h.

6.4.3.2 Differentiable CIPC

Huang et al. (2024) provided an analytical derivation of differentiable IPC using the adjoint

method. However, their derivation is closely tied to specific choices of constitutive models.

To extend their framework to support cloth simulation, tedious derivations of analytical

derivatives are required. In this work, we present a simple and unified framework that

leverages both automatic differentiation and the adjoint method.
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The governing equation of CIPC simulation can be expressed as an implicit nonlinear

system of equations derived from the first-order optimality condition of the minimizer for

Equation (6.25):

G(x∗;xn,vn, ςn) = ∇E(x∗;xn,vn, ςn) = 0, (6.26)

xn+1 = x∗, vn+1 =
1

h
(x∗ − xn), (6.27)

Here, x∗ is the minimizer of the system energy E, xn,vn represents the last system state,

and ςn denotes the set of all continuous parameters of the implicit equation, including shape

parameters X, mass matrix M , elastic moduli, and others. We assume ςn are independent,

although they may share the same values. This abstraction allows the simulator to function

as a differentiable layer with xn,vn, ςn as input and xn+1,vn+1 as output. The computational

graph can be handled by any auto-differentiable framework such as PyTorch. The backward

operator computes dL
dxn ,

dL
dvn , and

dL
dςn

given dL
dxn+1 and dL

dvn+1 for a given training loss function

L.

Taking the full derivatives of Equation (6.26) with respect to xn,vn, ςn on both sides, we

obtain:
∂G

∂x∗

[
dx∗

dxn
,
dx∗

dvn
,
dx∗

dςn

]
+

[
∂G

∂xn
,
∂G

∂vn
,
∂G

∂ςn

]
= 0, (6.28)

which leads to [
dx∗

dxn
,
dx∗

dvn
,
dx∗

dςn

]
= −

[
∂G

∂x∗

]−1 [
∂G

∂xn
,
∂G

∂vn
,
∂G

∂ςn

]
. (6.29)

By the chain rule, we have:

[
dL
dxn

,
dL
dvn

,
dL
dςn

]
=

dL
dxn+1

[
dxn+1

dxn
,
dxn+1

dvn
,
dxn+1

dςn

]
+

dL
dvn+1

[
dvn+1

dxn
,
dvn+1

dvn
,
dvn+1

dςn

]
.

(6.30)

Here, we assume dL
dxn ,

dL
dvn , and

dL
dςn

are all row vectors to ensure dimension consistency. From
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Equation (6.27), we have:

dxn+1 = dx∗, dvn+1 =
1

h
(dx∗ − dxn). (6.31)

Plugging Equation (6.31) into Equation (6.30), we obtain:

[
dL
dxn

,
dL
dvn

,
dL
dςn

]
=

dL
dxn+1

[
dx∗

dxn
,
dx∗

dvn
,
dx∗

dςn

]
+
1

h

dL
dvn+1

[
dx∗

dxn
− I,

dx∗

dvn
,
dx∗

dςn

]
.

(6.32)

With some rearrangements, we arrive at:

dL
dxn

=

[
dL

dxn+1
+

1

h

dL
dvn+1

]
dx∗

dxn
− 1

h

dL
dvn+1[

dL
dvn

,
dL
dςn

]
=

[
dL

dxn+1
+

1

h

dL
dvn+1

] [
dx∗

dvn
,
dx∗

dςn

]
.

(6.33)

Denote A =
[

dL
dxn+1 +

1
h

dL
dvn+1

] [
∂G
∂x∗

]−1
. By Equation (6.29), we have:

dL
dxn

= −A ∂G
∂xn

− 1

h

dL
dvn+1

, (6.34)

[
dL
dvn

,
dL
dςn

]
= −A

[
∂G

∂vn
,
∂G

∂ςn

]
. (6.35)

Observe that A is obtained by solving a linear system, where the coefficient matrix ∂G
∂x∗ is

the Hessian matrix of the system energy E. The term A
[
∂G
∂xn ,

∂G
∂vn ,

∂G
∂ςn

]
back-propagates the

differentials in A to xn, vn, and ςn through G, respectively. This process can be implemented

by treating G as a differentiable layer that supports auto-differentiation. Using AutoDiff, we

eliminate the need to manually derive the analytical expressions for ∂G
∂vn and ∂G

∂ςn
. All other

components required for forward simulations have already been derived.

6.4.4 Method Overview

We start our pipeline by estimating an initial garment sewing pattern from a single-view

image. Next, we generate consistent multi-view RGB images and their corresponding normal
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Figure 6.36: Dress-1-to-3 Pipeline. Starting with a single-view input image of a clothed
human, we first derive an initial estimation of the sewing pattern. Additionally, we employ
multi-view diffusion to generate orbital camera views, which serve as ground-truth 3D
information for both human pose and garment shape. Next, we utilize differentiable simulation
to sew and drape the pattern onto the posed human model, optimizing its shape and physical
parameters in conjunction with geometric regularizers. Finally, the optimized garment shape
provides a physically plausible rest shape in its static state and is readily animatable using a
physical simulator.

maps, based on which we predict the human body pose. The 3D garment is initialized by

stitching and draping the 2D patterns onto the predicted human model. The garment’s

interaction with the human body is simulated using a differentiable CIPC simulator, allowing

us to optimize the physical parameters and the shapes of the sewing patterns guided by the

previously generated multi-view RGB images, normal maps, and segmentation results. The

optimized state produces a simulation-ready scene with a human model wearing well-fitted

3D outfits that align with the input. Garment textures are automatically generated using a

visual-language model and image diffusion. Finally, by applying our CIPC simulator, we can

simulate dynamic scenes where the predicted human body wears the optimized garments while

performing various motion sequences. An illustration of the pipeline is shown in Figure 6.36.

We elaborate on each component of the pipeline in the following sections.
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Curve Vertex Symmetry Constraint

Figure 6.37: Illustration of symmetrization constraints.

6.4.5 Pre-Optimization Steps

6.4.5.1 Simulatable Sewing Pattern Generation

From a single-view image, our pipeline starts by generating an initial sewing pattern de-

composition along with stitch information using SewFormer (Liu et al., 2023a). Following

SewFormer’s convention, the sewing pattern is represented as a set of quadratic Bézier curves

on a 2D plane, forming a collection of disconnected patches. The curves for each patch are

connected to form a loop. Let E denote the set of all curves, with its control parameters

comprising the set of curve vertices P = {Pi} and the set of control points K = {Ke}

for each edge curve e ∈ E . To enable garment simulation, the patches are discretized into

triangle meshes. First, we apply arc-length parameterization to achieve uniform sampling

along the patch boundaries. For stitched patch edges, we ensure they share the same number

of sampled points. This consistency allows us to apply vertex-to-vertex stitch constraints in

garment simulations, simplifying the sewing process. Using the sampled boundary points, we

then perform Delaunay triangulation (Shewchuk, 2008) independently for the interior of each

patch.

Patch Symmetrization The sewing patterns generated by SewFormer often display certain

symmetries, which we aim to preserve during garment optimization. SewFormer generates

a fixed number of patches with a predefined order for patch names, though some patches

may remain inactive. Symmetry information, including self-symmetry and inter-symmetry, is
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embedded in these patch names. Symmetric edge pairs can be automatically identified by

overlapping a patch with its mirrored symmetric counterpart or, in the case of self-symmetry,

with the mirrored version of itself. Given the set of symmetric edge pairs ES = {(i, j) ∼ (k, l)},

we define the validated curve vertices {P̂i} of the patches prior to triangulation by solving

the following quadratic optimization problem:

min
{P̂i}

∑
(i,j)∼(k,l)

∥(P̂i − P̂j) +RS(P̂k − P̂l)∥22 + ϵ
∑
i

∥P̂i − Pi∥22. (6.36)

Here, RS =

−1 0

0 1

 represents the flip matrix, assuming the symmetry axis is vertical.

This optimization involves solving a fixed-coefficient, positive definite linear system, which

ensures differentiability. The validated edge control points {K̂e} are computed analytically

by symmetrizing their relative coordinates. The symmetrization constraints are illustrated

in Figure 6.37. Throughout this paper, we omit the hat notation for validated vertices and

control points, as all computations are based on the symmetrized patches. However, it is

important to note that the underlying garment optimization variables remain the original,

non-symmetry-enforced geometry parameters.

Sewing Pattern Discretization To enable direct optimization of Bézier curves, we make

the sampling from boundary curve parameters to mesh vertices differentiable. Both boundary

sampling and interior sampling are conceptualized as fixed-coordinate sampling based on

their control points. Each boundary edge curve e ∈ E is defined by the starting vertex P e
0 ,

the control point Ke, and the endpoint P e
1 (which is also the starting point of the next edge).

The curve can be differentiably parameterized as P e(t) = (1− t)2P e
0 + 2(1− t)tKe + t2P e

1 .

Uniform sampling along the curve in terms of arc length is represented as a set of parameters

{te1, . . . , tene
}, with V e

i = P e(tei ) being the sampled points. The number of sampled points ne

may vary for different edges. After independent triangulation for each patch, we compute the

harmonic coordinate matrix H ∈ RnI×nB (Joshi et al., 2007) for all the interior points, where

nI is the number of interior vertices and nB is the total number of boundary vertices. With
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a slight abuse of notation, we reparameterize the j-th interior vertex as V I
j =

∑
i HjiV

B
i ,

with Hji denoting its harmonic weight relative to the i-th boundary point V B
i . Here Hji is

zero if V I
j and V B

i do not belong to the same patch. During backpropagation, we fix the

boundary sampling coordinates
⋃

e∈E,i≤ne
{tei} and the interior harmonic coordinate matrix

H, so that the triangulation is analytically determined by the original parameters of the

Bézier curves. These coordinates are updated only after remeshing is performed, which will

be discussed in the garment optimization section.

6.4.5.2 Multi-view Image Generation

Given a single-view image of a full-body clothed human, we generate a set of multi-view

RGB images and normal maps under orbital camera views using a pre-trained multi-view

diffusion model, MagicMan (He et al., 2024b). These multi-view images of the clothed human

are treated as ground truth data for human pose and garment shape in the subsequent

reconstruction steps.

6.4.5.3 Human Body Reconstruction

The generated garment is statically draped on a fixed human mesh. To reduce the gap

between the reconstructed garment and the image, an accurate human body is required to

correctly support the garment. We use SMPL-X (Pavlakos et al., 2019) as our parameterized

human model. First, we apply OSX (Lin et al., 2023b) to the input single-view image to

obtain an initial pose estimation θ and shape estimation β. This initial estimation typically

does not perfectly align with other views, and the scaling and rotation are inconsistent across

the multi-view images. Subsequently, we fine-tune the pose based on multi-view images using

a coarse-to-fine strategy.

In the coarse stage, we estimate joint landmarks on the images using DWPose (Yang

et al., 2023c). Here, we optimize only the global scaling S and rotation R of the SMPL-X
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model based on the following landmark loss:

LP
Land =

1

|Ω|
∑
i

∥wi ·
(
Proj(J(S,R,θ,β); Ωi)− J̄i

)
∥22, (6.37)

where Ω = {Ωi} represents the set of camera parameters, J is the 3D joint location map

provided by the SMPL-X model, Proj is the projection operator from world space to screen

space, J̄i is the 2D joint location estimated by DWPose, andwi is the per-landmark confidence

score of the estimation. We use ∥·∥22 to denote the mean square error (MSE). This optimization

essentially estimates the model-to-world matrix of the SMPL-X model. To further refine pose

and shape parameters, in the fine stage, we additionally incorporate the following RGB loss

and mask loss:

LP
RGB =

1

|Ω|
∑
i

∥(M o
i )

c · (I(S,R,θ,β,CH ; Ωi)− Īi)∥1, (6.38)

LP
Mask =

1

|Ω|
∑
i

∥(M o
i )

c · (M(S,R,θ,β; Ωi)− M̄i)∥1. (6.39)

Here, CH represents the optimizable human body vertex color, while I(·) and M (·) denote
the posed human body RGB rendering process and contour rendering process under camera

view Ωi, implemented using Nvdiffrast (Laine et al., 2020). Īi and M̄i are the generated

multi-view RGB images and masks, respectively. M o
i represents the occluded region of the

human body, which includes the garment region Mβ
i and other non-garment occlusions Mα

i

(such as footwear, accessories, and hair). These regions are generated using SegFormer (Xie

et al., 2021). The notation (·)c denotes the complement of the specified region. We use ∥ · ∥1
to denote the mean absolute error (MAE). By excluding the loss computation in the occluded

region, we can accommodate loosely fitted garments. In summary, we optimize using the

following loss in the fine stage:

LP(S,R,θ,β,CH) = LP
RGB + LP

Mask + λ1LP
Land + λ2∥θ − θ0∥1 + λ3∥β − β0∥1. (6.40)

Here, we also regularize the pose and shape parameters where θ0 and β0 are their initial

estimates provided by OSX.
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6.4.5.4 Garment Initialization

The generated sewing patterns are positioned near the human body and sewn together to be

dressed. SewFormer provides an initial placement around the T-posed SMPL-X model. To

ensure proper layering, we adopt a bottom-to-top strategy for fitting the entire set of garments

onto the human body, allowing the top garments to overlay the bottom ones. Connected

components are identified by treating stitched vertices as connected. These components

are sorted vertically and sequentially fitted from bottom to top through simulations using

CIPC. After completing the T-pose fitting, the human body is interpolated from the T-pose

to the reconstructed pose, and the entire cloth-human interaction is simulated by treating

the human in motion as a moving boundary condition. To secure the bottom garments

and prevent them from slipping during pose interpolation, we shrink the rest shape of the

triangles near the waist to generate sufficient friction.

6.4.6 Garment Optimization

6.4.6.1 Optimization Overview

In garment optimization phase, we iteratively fine tune parameters of sewing pattern so that

the statically draped garments on a posed human body match generated multi-view images

in all views. We optimize the curve vertex set P and the control point set K of Bézier curves

using differentiable CIPC simulation based on the generated multi-view images. To further

leverage RGB information for assisting the optimization, we also optimize the vertex colors

CG of the discretized garment mesh for RGB renderings. Additionally, we optimize the global

stretching stiffness κs and the global bending stiffness κb to automatically discover a set of

physical parameters that align with the 2D observations.

For each optimization iteration, we use CIPC simulation to statically drape the garment

onto the fixed-posed human body mesh. Leveraging the robustness of CIPC, we simulate one

step of 1 second to directly reach near-static equilibrium. Since the static equilibrium does

not locally depend on the initial state, meaning that the Jacobian matrix of the simulated
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state with respect to the initial state is zero, we update the initial state of iteration n, xn
0 , to

the previously simulated state:

xn
0 = Sim(xn−1

0 ; ς(κs, κb,P ,K)). (6.41)

Here, Sim represents the simulation process described in Section 6.4.3. The initial state, x0
0,

is obtained from the initial garment fitting described in Section 6.4.5.4. ς(P ,K) denotes the

simulation rest shape data, including nodal mass, per-stencil elastic stiffness, undistorted

material space, and similar properties. To make the simulation as path-independent as

possible, we avoid adding friction during the process. To prevent the bottom garments from

slipping down, the boundary loop of the bottom component near the waist area is fixed.

In summary, we solve the following optimization problem:

minL(P ,K, κs, κb;x,x0), (6.42)

where x represents the simulated state starting from initial state x0, which is iteratively

updated to the previously simulated state. We elaborate on the training losses in L that we

use in the following sections. We observe that edge curvatures K are more sensitive than

vertex positions P. Therefore, we employ a two-stage training approach, where in the first

stage, the update of K is frozen.

6.4.6.2 Rendering Losses

Garment Mask Loss The dominant rendering loss we employ is the garment mask loss.

Given the multi-view ground-truth images, we use SegFormer (Xie et al., 2021) to segment

top, bottom, and dress garment masks, assigning each component with a distinct color. The

mask loss is defined as follows:

LMask =
1

|Ω|
∑
i

∥(Mα
i )

c · (M (x;CC ,Ωi)− M̄i)∥1. (6.43)
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Here, x represents the simulated state of garments draped over the human body. CC denotes

the component color, which is discussed in the following section. The rendered colored mask

M (x;CC ,Ωi) is obtained by assigning CC to the corresponding garment vertices and setting

the human body to black, ensuring that only the non-occluded parts of the garments are

rendered. M̄i is the set of colored garment masks generated from multi-view RGB images. We

also exclude the loss computation in the occluded regions Mα
i caused by hair and accessories

to avoid incorrect mask guidance.

Remark 6.4.1. Initialization of Component Colors. The component color CC is auto-

matically assigned prior to garment optimization. SewFormer typically predicts garments

with one or two connected components. We vertically sort the sewn garment components and

the 2D mask regions from the first camera view. The component colors are then assigned

accordingly. If only one component is predicted but multiple garment masks are present, we

adjust the multi-view garment masks to use a single color.

RGB and Normal Rendering Loss We also utilize RGB and normal rendering losses to

improve garment optimization. These losses are introduced to stabilize the training process,

as the gradient of the mask rendering loss within the interior regions of the garment is zero.

They are formulated similarly to the mask rendering loss:

LRGB =
1

|Ω|
∑
i

∥Mβ
i · (I(x;CG,Ωi)− Īi)∥1, (6.44)

LNormal =
1

|Ω|
∑
i

∥Mβ
i · (N (x; Ωi)− N̄i)∥1. (6.45)

Here, I(x;CG,Ωi) represents the garment RGB rendering of the vertex color CG under the

camera view Ωi, and N(x; Ωi) denotes the corresponding normal map rendering. The sets

{Īi} and {N̄i} are the multi-view RGB and normal images generated by the multi-view

diffusion process. The loss computation is restricted to the garment regions Mβ
i .
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Boundary Corner
Regularizer

Figure 6.38: Illustration of boundary corner regularizer.

6.4.6.3 Geometric Regularizers

The sewing pattern optimization under rendering losses alone is ill-posed because, for the

same sewn 3D garment mesh, there are infinitely many ways to decompose the mesh into

flattened patches. Therefore, we incorporate several geometric losses to regularize the sewing

pattern optimization.

6.4.6.4 Area Ratio Loss

We use the following area ratio loss to preserve the relative area of each patch with respect

to the connected component it belongs to:

LAR =
1

NP

∑
p

(
Āp(X)

Āp(X0)
− 1

)2

, (6.46)

where NP is the number of garment patches, Āp is the operator that computes the ratio

between the area of the p-th patch and the area of the component. X represents the current

2D discretization of the garment patches, and X0 denotes the initial sampling.
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Figure 6.39: Illustration of small angles where the regularization is applied.

6.4.6.5 Corner Regularizers

Boundary Corner Regularizer For the boundary loops of garment components, we

identify all corner vertices of the original Bézier curves. At these corners, where two patches

are typically sewn together, we apply the following boundary corner regularizer to penalize

deviations of corner angles from right angles, as illustrated in Figure 6.38:

LBC =
1

NBC

∑
c

(1− dc
1 × dc

2). (6.47)

Here, NBC represents the total number of boundary corners, dc
1 and dc

2 denote two consecutive

unit tangent vectors at corner c.

Small-Angle Corner Regularizers Small angles at patch corners can introduce instabili-

ties into optimization and simulation; thus, we use the following regularizer to penalize such

angles:

LSAC = − 1

NC

∑
c

sc(X) ̂(V c
1 − V c

0 )× ̂(V c
2 − V c

0 ). (6.48)

Here, NC is the number of patch corners, (V c
1 ,V

c
0 ,V

c
2 ) is the tuple of three consecutive

discrete boundary sampling points at the corner c, (̂·) is the vector normalization operator.

sc(X) is a non-differentiable sign function: sc(X) = 0 if the discretized corner angle is larger

than some threshold, otherwise, sc(X) equals the sign of the cross product on the initial

sewing pattern. This regularization applies to the two cases illustrated in Figure 6.39. It tries
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to maintain the same sign of the angle and avoid the angle becoming too small. However,

Bézier curves may still intersect at corners even though the discretized corner triangles are

normal. We use the following discretization consistency regularizer to align the curve’s end

tangents and discrete edge directions:

LDC =
1

NC

∑
c

(2− τ c
1 · ̂(V c

1 − V c
0 )− τ c

2 · ̂(V c
2 − V c

0 )), (6.49)

where τ c
1 , τ

c
2 are two consecutive end tangents of Bézier curves at corner c.

6.4.6.6 Comfort Loss

In addition to the appearance of the fitting matching the observation, we also aim to ensure

that the fitting is comfortable. We use the stretching elasticity energy to evaluate the tightness

of the fitting. To prevent overly tight fitting, we introduce the following comfort regularizer:

LComfort =

∫
∥F (x,X)−R(F )∥2dX, (6.50)

where R(F ) represents the closest rotation matrix to F . This is the same as the as-rigid-

as-possible (ARAP) stretching energy used in the forward simulation, except that here we

assume the global stiffness is 1.

6.4.6.7 Laplacian Loss

To ensure the smoothness of the fitting, we include a Laplacian regularizer:

LLap = ∥∆x∥2, (6.51)

where ∆ represents the node-area-weighted Laplacian operator on triangle meshes, and x

denotes the simulated garment vertex positions.
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6.4.6.8 Seam Losses

The stitched curved edge pairs should have the same shape to prevent undesired wrinkles

near the seams. To achieve this, we use a seam length regularization similar to (Li et al.,

2024d) to regularize the paired stitched edges:

LSL =
1

NS

∑
ei∼ej

∣∣∣∣∫ ∥Ṗ ei(t)∥dt−
∫
∥Ṗ ej(t)∥dt

∣∣∣∣ , (6.52)

where NS is the number of stitched seams, ei and ej iterate over all stitched edge pairs, and

Ṗ e(t) represents the tangent vector. The integral is computed using finite difference and the

Riemann sum. Additionally, we regularize the seam curvatures on these pairs to preserve

their initial curvatures:

LSC =
1

2NS

∑
ei∼ej

∥K̄ei − K̄ei,0∥+ ∥K̄ej − K̄ej ,0∥, (6.53)

where K̄e represents the relative coordinate of the control point within the frame of the

curved edge segment e, and K̄e,0 denotes its initial value.

6.4.6.9 Post-Iteration Processing

Occasionally, when two Bézier curves come close to each other—such as when forming a thin

strip—the curves may penetrate one another after a parameter update in some iteration.

This can lead to flipped triangles, causing the simulation to fail in the next iteration. To

address this, we enforce a safeguard that modifies the geometry in-place to prevent such

occurrences. Specifically, we optimize the negative triangle areas using a least-squares penalty

after each iteration n:

LFlip(P ,K) = 1

|F |
∑
f

(ϵ−min{Af (X), ϵ}) + λFlip∥X −Xn+1∥1, (6.54)
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Before Remesh Aer Remesh

Pullback

Re-init. Relax

Figure 6.40: Sewing Pattern Remeshing. We perform automatic remeshing during
optimization when ill-conditioned triangles are detected. To avoid penetration, we pull back
the new discretization to the initial unoptimized stage and rerun the garment initialization
to fit it onto the human.

where |F | is the number of faces Af is the signed area of triangle f and Xn+1 is the discretized

garment vertices after the parameter update at iteration n. We optimize the above loss only

if no triangles are close to flipping.

6.4.6.10 Remeshing

During optimization, we use cage deformations defined by a fixed set of harmonic coordinates to

deform a fixed number of interior vertices. The triangulation quality can degrade significantly

in regions with large deformations, creating challenges for simulations. To address this, we

introduce automatic remeshing during the optimization iterations when the mesh quality

drops below a predefined threshold. While rerunning the discretization on updated sewing

patterns is straightforward, directly remeshing the fitted garment state on the human body can

lead to penetrations. This occurs because the underlying smoothly interpolated surface may
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intersect after re-triangulation, as the collision handling relies on the previous discretization.

To resolve this, we propose a refitting procedure that sews and refits the garment patches

onto the human body without causing penetrations.

Assume χ0 is the initial garment sewing pattern in the continuous domain with triangula-

tion T 0. The sewing pattern optimization at step n can be characterized by a map Φn from

χ0 to χn, where Φn is a piecewise linear map defined on the continuous domain. Observe that

the initial fitting is sewn from the discretization of χ0, where SewFormer provides reasonable

transformations to position the panels around the human body. After generating a new trian-

gulation T n of χn, we pull T n back to χ0 as the new triangulation of χ0: T̃ 0 ← [Φn]−1(T n).

We then apply the initial transformations to the updated discretization T̃ 0 to position the

patches around the T-pose human body and execute the fitting procedure described in

Section 6.4.5.4. During this fitting process, we set the rest shape as T̃ 0. A relaxation process

follows, using T n as the rest shape. The newly fitted results are non-penetrating, and we set

them as the initial state xn
0 for the differentiable simulation process. Finally, T 0 is replaced

with T̃ 0. This remeshing process is illustrated in Figure 6.40.

6.4.7 Post-Optimization Steps

6.4.7.1 Texture Generation

To complete our pipeline and deliver a fully textured garment directly from a single image

input, tailored to the needs of the garment fabrication industry, we incorporate an additional

texture generation module. Unlike formulating texture creation as a reconstruction task—an

approach constrained by the ill-posed nature of the problem due to sparse inputs, severe

distortion, and occlusions caused by the human body and overlapping garment layers—our

module adopts generative methods to produce garment textures. This module employs two

strategies for texture generation:

Tileable Texture Generation via FabricDiffusion In this strategy, we assume that in

real-world garment creation, clothing panels are typically cut from a single piece of fabric and
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sewn together, resulting in similar and tileable textures. Based on this assumption, given the

front-view ground truth input image and its corresponding colored segmentation mask, we

identify the largest uniform color square area within the segmentation mask for each garment

component (e.g., top or bottom) as the captured texture region. This region may exhibit

distortions and varying illumination caused by occlusions and poses in the input image. To

address these issues, we process the captured texture region using FabricDiffusion (Zhang

et al., 2024), which generates distortion-free and tileable texture maps. To determine the

appropriate tiling scale for aligning the textures with the garment’s UV space (optimized in

our pipeline), we assume consistent camera view parameters for the front view. This scale

can be calculated by multiplying the derivative of the cropped region’s size by a constant

factor.

In-the-Wild Texture Generation via GPT-4o and FLUX For generalized textures

that do not fall into the above case, we utilize Vision-Language Models (VLMs) in collaboration

with a Diffusion model. Specifically, we process the input image using the GPT-4o (Achiam

et al., 2023) VLM to extract descriptive keywords for the textures of various components,

such as "denim, dark blue, smooth fabric" and "argyle, grey and white, knitted

fabric" through prompt-based querying. These extracted keywords are then fed into

FLUX (Labs, 2023), which generates the corresponding textures.

6.4.7.2 Showcase under Human Motions

The reconstructed simulation-ready garment and human model can be used to generate

realistic dynamic human motion in clothing using the robust CIPC physics-based simulator.

However, IPC-based simulators require the initial configuration of the human model to be

penetration-free. As IPC-based simulators produce intersection-free results, self-penetrations

of the human model during the given motion can cause solution failures when the human

model interacts with garments. To address this issue, we replace the human model during

motion with the nearest intersection-free human model by solving Injective Deformation

Processing (IDP) (Fang et al., 2021) problems. In solving these IDP problems, we follow
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the method in Li et al. (2024a) where the authors use PBD simulations to resolve collisions

between garments and human models. Instead, we apply extended Position-Based Dynamics

(XPBD) (Macklin et al., 2016) simulations to resolve self-penetrations in the human model

by repelling colliding vertices and faces, while preserving natural deformations.

6.4.8 Implementation

Differentiable Simulation Layer We implement CIPC simulation using NVIDIA Warp

(Macklin, 2022) to utilize the Auto-Diff feature. The simulator is wraped in a customized

autograd.Function to be integrated to the global computational graph.

Balancing between Losses The training loss is weighted sum of all rendering losses and

geometric regularizers. We use the LMask as the dominant loss and set the relative weights for

LRGB and LNormal to λRGB = 0.1 and λNormal = 0.1. For geometric regularizers, we do not have

a rule of thumb to balance them. For all experiments, we use λLap = 0.001, λComfort = 0.1,

λAR = 0.01, λSAC = 0.01, λDC = 0.001, λBC = 0.001, λSL = 0.1, λSL = 0.1.

Training Time The pre-optimization steps requires about 10 minutes. The garment

optimization process can be finished within 2 hours on a single RTX 3090 with 24GB device

memory.

6.4.9 Experiments

6.4.9.1 Geometry Reconstruction Comparison

We first conduct comparison study to evaluate the reconstruction accuracy of baseline methods

and our proposed approach.

Benchmark We use the CloSe (Antić et al., 2024) and 4D-Dress (Wang et al., 2024)

datasets for the comparison study. CloSe is a large-scale 3D clothing dataset featuring

detailed segmentation across diverse clothing classes. 4D-Dress offers high-quality 4D textured
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Table 6.7: Quantitative Comparisons of Geometry Reconstruction. We evaluate the
performance of baseline methods and our approach on the CloSe and 4D-Dress datasets. Our
proposed method achieves the highest reconstruction accuracy across both datasets.

Method
CloSe 4D-Dress

CD↓ IoU↑ CD↓ IoU↑

BCNet 2.277 0.781 4.704 0.575
ClothWild 2.166 0.664 3.125 0.664
GarmentRecovery 2.058 0.831 2.983 0.776

SewFormer 2.233 0.748 2.926 0.720
Dress-1-to-3 (Ours) 1.623 0.862 2.441 0.808

scans of dynamic clothed human sequences. For evaluation, we carefully select examples

encompassing a variety of human body shapes, poses, and their corresponding front-view

images to establish a comprehensive benchmark.

Baselines pare our method with state-of-the-art single-view garment reconstruction meth-

ods, including BCNet (Jiang et al., 2020a), ClothWild (Moon et al., 2022), GarmentRecovery

(Li et al., 2024c), and SewFormer (Liu et al., 2023a). Among these, BCNet and ClothWild are

designed for clothed human reconstruction but are limited to tight-fitting clothing and not

readily adaptable for downstream tasks such as animation and simulation. GarmentRecovery

extends to loose-fitting garments reconstruction by deforming predicted rest shapes to align

with input images. In contrast, SewFormer predicts corresponding sewing patterns directly

from images, enabling seamless integration into animation pipelines and physical simulations.

Our proposed method builds upon SewFormer and incorporate differentiable simulation to

refine 2D panels and physical parameters. For SewFormer and our approach, we simulate the

predicted sewing patterns and use the resulting 3D garments for quantitative comparisons.

Results We evaluate the accuracy of baseline methods and our approach using two metrics:

Chamfer Distance (CD) and Intersection over Union (IoU). CD quantifies the geometric

similarity between reconstructed and ground-truth meshes, while IoU assesses the alignment

between the garment mask of the rendered reconstruction and the input front-view images.

The quantitative results for the CloSe and 4D-Dress datasets are presented in Table 6.7, and
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Input BCNet ClothWild GarmentRecovery SewFormer Ours

Figure 6.41: Qualitative Comparisons of Geometry Reconstruction. Our proposed
method not only generates sewing patterns that seamlessly integrate into animation and
simulation workflows but also achieves superior garment reconstruction accuracy compared
to baseline methods.

visualized qualitative comparisons are shown in Figure 6.41. BCNet and ClothWild tend

to produce overly smooth garment meshes, lacking fine wrinkle details. GarmentRecovery

improves geometric details but often results in interpenetrated reconstructions. SewFormer

predicts sewing patterns that can be directly used for simulation, yet it neglects physical

parameters, leading to simulated results that deviate significantly from the ground-truth
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mesh. In contrast, our method not only generates sewing patterns for seamless integration

into downstream pipelines but also optimizes garment physical parameters, enabling accurate

geometry reconstruction that closely aligns with ground truth.

6.4.9.2 Sewing Pattern Evaluation

We compare our method with two approaches that predict garment sewing patterns: Neural

Tailor (Korosteleva and Lee, 2022) and SewFormer (Liu et al., 2023a). Neural Tailor generates

sewing patterns from garment point cloud inputs, while SewFormer and our method recover

patterns directly from single-view image inputs. For comparison purposes, we sample points

from garment meshes to serve as inputs for Neural Tailor. The qualitative results are shown

in Figure 6.42. Neural Tailor is trained on garments draped over an average SMPL female

body in a T-pose. Consequently, its predictions are usually unsatisfactory if the human pose

deviates from the T-pose, and may produce unexpected additional panels. Furthermore, its

reliance on garment point clouds as input significantly restricts its practical applicability.

SewFormer, on the other hand, generates symmetric and organized panels. However, its

predicted panel shapes often fail to align with the input image. For instance, it may predict

long pant panels for an image with short pants. This is probably due to the small scale of

the dataset used for its training. Nevertheless, collecting a large-scale dataset of real-world

clothed human images paired with corresponding garment meshes and sewing patterns is a

challenging and resource-intensive task. In contrast, our optimization-based method requires

no additional training data. By leveraging differentiable simulation, it refines an initial

estimate of the sewing patterns, achieving significantly more accurate results.

6.4.9.3 Textured Garment Reconstruction and Simulation

Test Images To evaluate the generative capability of our method, we perform extensive

tests on a variety of images from different sources. We begin by utilizing real-world images

from the DeepFashion2 (Ge et al., 2019) dataset, which comprises in-the-wild clothing

images sourced from the internet, including those from commercial shops and customers.
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Neural TailorInput SewFormer Dress-1-to-3 (Ours)

Figure 6.42: Qualitative Comparison of Panel Shape Prediction. Neural Tailor
(Korosteleva and Lee, 2022) takes ground-truth garment meshes as input, while SewFormer
(Liu et al., 2023a) and our proposed method use single-view images as input. Extra unexpected
panels and edges with significant errors are highlighted in red.

These images exhibit varying quality and are captured under arbitrary camera and scene

settings, reflecting casual user captures. In addition to real-world images, we evaluate our

model using synthetic fashion images from the DeepFashion-Multimodal (Jiang et al., 2022)

dataset. This dataset features high-resolution clothing images of various types, generated

by a diffusion-based transformer. To further extend the generative capability of our method

with text prompts, we employ FLUX (Labs, 2023) to generate input images using custom

textual descriptions of clothing on a model. For instance, prompts such as "a female model

wearing a blazer and pants" are used. To enhance the diversity of the generated results,

we randomly incorporate detailed descriptions, including the shape and color of the clothing,

as well as the pose and appearance of the model.

Textured Garment Reconstruction As demonstrated in Figure 6.43, Dress-1-to-3

effectively reconstructs 3D garments that accurately fit human models in both real-world and

synthetic images. Our method automatically retrieves visually plausible garment textures

using image diffusion techniques. This streamlined process requires minimal human effort

to reconstruct high-fidelity garments with sewing patterns and offers users the flexibility to

easily adjust garment shape and texture.
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Figure 6.43: Qualitative Results of Textured Clothed Human. We showcase the
generation capability of Dress-1-to-3 using in-the-wild test images from various sources,
including both real-world and synthetic images. Our streamlined pipeline generates perfectly
fitted 3D garments with visually plausible textures.

Garment Simulation The garments synthesized by our method are simulation-ready

due to the accurate sewing, fitting, and optimization of garment patterns. The optimized

3D outfits align perfectly with the human body at steady state, avoiding artifacts such as

self- or interpenetration. These garments can be seamlessly integrated into physics-based

simulations, such as those used in video games. In Figure 6.35 and Figure 6.44, we visualize

several simulated human motion sequences showcasing dynamic garment behavior.

276



Figure 6.44: Garment Simulation. We animate garment motion using various human
sequences as moving boundary conditions. Our simulation-ready garments exhibit physically
plausible dynamics.

6.4.9.4 Ablation Study

In Figure 6.45, we perform an ablation study for key individual components in Dress-1-to-3,

using the same garment images as in Section 6.4.9.3. This study evaluates the contributions

of each proposed component to the final garment reconstruction quality.
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Ours w.o.w.o. Symmetry w.o.

Ours w.o.
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Ours w.o. 

Figure 6.45: Ablation Study. We conduct ablation studies on our geometric regularizer
to ensure that the sewing pattern maintains both reasonable 2D patterns and a plausible
3D fitted shape. We minimize irregularities such as asymmetry, sharp or acute angles, and
inconsistent scaling of the 2D patterns while reducing noisy geometry and unrealistic wrinkles.

Patch Symmetrization We first evaluate the effectiveness of the proposed patch sym-

metrization, designed to facilitate better capture of symmetrical geometry. As shown in

Figure 6.45, removing symmetry enforcement results in visibly asymmetric outputs compared

to the input garment image. This highlights the critical role of symmetry enforcement

in preserving structural coherence and alignment, particularly for garments with strong

symmetrical patterns, such as dresses or jackets. By aligning the reconstructed mesh to

expected symmetrical features, this component ensures geometric fidelity.

Laplacian Loss Laplacian loss LSmooth is applied to smooth out noise and irregular wrinkles

in the reconstructed garment mesh. This loss minimizes high-frequency artifacts, enabling a

cleaner and more aesthetically pleasing surface. The weight of LSmooth is a tunable parameter,

allowing users to control the degree of smoothness based on their preferences. As shown
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in Figure 6.45, a higher weight results in smoother results but may slightly reduce detail,

whereas a lower weight preserves intricate wrinkles but may retain noise.

Boundary Corner Regularizer The boundary corner regularizer, LBC, mitigates the

occurrence of sharp angles in the reconstructed sewing patterns. Sharp or acute angles

can lead to practical difficulties during garment fabrication, as they introduce challenges in

stitching and material handling. As demonstrated in Figure 6.45, models trained without

LBC often generate sewing patterns with acute or impractical corner geometries, whereas

incorporating this regularizer results in smoother, more fabrication-friendly boundaries.

Comfort Loss Comfort loss, LComfort, ensures the reconstructed garment mesh adheres

to an appropriate scale relative to the input image. This prevents the generation of sewing

patterns that are too small or tight, which could compromise wearability. Without LComfort,

as shown in Figure 6.45, the reconstructed sewing patterns often exhibit significantly smaller

dimensions than expected, leading to impractical or unrealistic results. Incorporating this

loss ensures that the final garment size aligns with user expectations and real-world usability

requirements

Area Ratio Loss To maintain realistic proportions between garment parts, the area ratio

loss, LAR, is applied to ensure that the relative area of each patch remains consistent with

the connected components, reflecting real-world fabrication principles. For instance, in a

skirt, the front and back panels should have comparable areas to align with practical garment

construction. As illustrated in Figure 6.45, omitting LAR often results in disproportionate

patch sizes, such as an overly large front skirt panel compared to the back, violating fabrication

norms.

Seam Losses Two seam losses: the length seam loss, LSL, and the curvature seam loss,

LSC are adopted to ensure that stitched curved edge pairs should have the same shape to

prevent undesired wrinkles near the seam, and that enforces preservation of seam curvatures,

respectively. As shown in Figure 6.45, the absence of LSL leads to uneven sleeve seams,
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introducing visual artifacts and potential fabrication issues. Similarly, without LSC, the

seams can become overly curved, deviating significantly from the intended design. Together,

these losses contribute to producing smooth and realistic seams.

6.4.10 Conclusion

In this paper, we present a garment reconstruction pipeline, Dress-1-to-3, which takes a

single-view image as input and reconstructs a posed human wearing textured garments, with

both the human pose and garment shapes closely aligned with the input image. During

optimization, we refine the sewing pattern shapes and physical material parameters by

leveraging a differentiable CIPC simulator with accurate frictional contact. The resulting

garment assets are simulation-ready and can be seamlessly integrated into a physics-based

simulator.

We benchmark our pipeline against baseline methods through two key experiments: a

quantitative comparison of geometry reconstruction using existing garment datasets and a

qualitative evaluation of sewing patterns. In both cases, Dress-1-to-3 significantly outperforms

the baseline approaches.

To further assess the Dress-1-to-3’s robustness and performance, we test our textured

garment reconstruction using in-the-wild real-world and synthetic images, validated together

with animations of dressed humans. The high-quality results demonstrate the robustness and

effectiveness of our approach.

Additionally, ablation studies underscore the importance of the patch symmetrization

technique and the contributions of each regularization loss term, highlighting their critical

role in optimizing the pipeline’s performance.

Limitations and Future Work While our method provides consistent high-fidelity

reconstruction and has been extensively tested with in-the-wild images, its generation ability

is somewhat limited by the initial estimation of the sewing pattern. For instance, our method

cannot predict new connected pattern components if they are not included in the initial
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estimation. Additionally, challenges arise with layered clothing, as SewFormer can only

predict single-layer patterns, causing multi-layered garments to be fused into a single cloth

component. It is worth noting that with a more versatile sewing pattern predictor capable of

handling such cases, our method would also be able to process more complex garments. We

leave this enhancement as future work.
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CHAPTER 7

Sim-to-Real Applications

7.1 Lagrangian-Eulerian Multi-Density Topology Optimization

with the Material Point Method

7.1.1 Introduction

Topology optimization is experiencing a rapid advance over the past few years, thanks to the

collision of waves between next-generation computing infrastructure and high-performance

simulation software. A surge of recent work has been creating various computing infras-

tructures capable of accommodating topology optimization applications with a super-scale

resolution—millions to one billion of material voxels—on parallelizable data structures (e.g .,

(Aage et al., 2017; Liu et al., 2018; Wu et al., 2015)). These density-based approaches stem

from the conventional Solid Isotropic Material with Penalization Method (SIMP) (Sigmund,

2001; Andreassen et al., 2011) and naturally fall into Eulerian methods, owing to their

geometric representation of the material evolution on a fixed grid. Level set(Osher and

Sethian, 1988)-based methods(Wang et al., 2003; Allaire et al., 2004; Luo et al., 2008; van

Dijk et al., 2013) are also Eulerian due to an implicit representation of the topology on

grid nodes. On the other hand, Lagrangian geometries are increasingly attracting attention.

For example, particles (e.g ., in smoothed-particle hydrodynamics (SPH) (Gingold and Mon-

aghan, 1977)) can explicitly track the structural evolution under the guidance of material

derivatives. Tracking explicit meshes is also a promising direction thanks to the advent of

high-performance meshing software (Christiansen et al., 2014).
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7.1.1.1 Hybrid Representation

Despite extensive research, Eulerian approaches have limited capability in capturing intricate

structures, especially when the problem requires fine features that are hierarchical, codi-

mensional, and can emerge from a nihil. On the other hand, Lagrangian representations

suffer from a lower computational performance. Analogous to their computational physics

counterparts (e.g ., in computational fluid dynamics), Eulerian approaches are not naturally

adaptive to subgrid features, whereas Lagrangian methods face challenges in establishing

differential stencils that are geometrically symmetric and numerically accurate.

In computational physics, researchers face the same dilemma regarding the choice of

data structures and the corresponding numerical stencils when simulating large-scale fluids

and solids. This dilemma further triggered the invention of a bank of hybrid Lagrangian-

Eulerian methods, such as Particle-In-Cell (PIC) / Fluid-Implicit-Particle (FLIP) methods

(Harlow, 1962; Brackbill et al., 1988) and Material Point Methods (MPM) (Sulsky et al., 1995;

de Vaucorbeil et al., 2019), which are featured by an Eulerian background grid as a scratch

pad and a set of Lagrangian particles to track geometry and topology. By conducting data

transfers between the two representations, a hybrid Lagrangian-Eulerian scheme can typically

leverage both sides’ merits, enabling flexible and robust numerical solutions (Brackbill et al.,

1988; Sulsky et al., 1995; Zhang et al., 2016c).

Motivated by such a design philosophy, some hybrid methods are also proposed for

topology optimization. For example, the Moving Morphable Component (MMC) method

(Guo et al., 2014; Zhang et al., 2016b, 2017b,d,c; Lei et al., 2019) aims to substantially reduce

the number of design variables by optimizing component-wise distributions. It represents

structures by unions of superellipse level sets – low dimensional morphable components that

can move, deforming, and overlapping to track topology changes. The explicit geometric

information also helps control the minimum length scale (Zhang et al., 2016a). MMC can

produce results with sharp features with attractive convergence and timing profiles. However,

to acquire sophisticated geometry features, a large number of components, i.e., design

variables, is necessary. On the other hand, the Moving Node Approach (MNA) (Overvelde,
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2012) represents the target shape with a set of mass nodes, of which the positions are

optimized to search for an optimal structure. In MNA, the quadrature is a set of regularly

sampled discretization nodes, on which the densities are computed according to the clustering

of mass nodes. However, such an approach can lead to results with many isolated mass

nodes disconnected from the main structure, which can only be cleaned up using an extra

post-processing step.

Inspired by these hybrid methods, a new hybrid Lagrangian-Eulerian topology optimization

method—LETO is proposed in this paper. This new approach optimizes material distributions

over a design domain by evolving a set of material carrier particles on a background Cartesian

grid. With MPM applied for solving the static equilibrium, another set of particles, each

carrying a temporally varying density, is evolved as a Lagrangian representation of material

distribution, eliminating redundant, isolated particle blobs. The Lagrangian-Eulerian nature

of the framework enables the communication between the moving particles and the fixed

background MPM quadrature points by transferring the density values through interpolation

functions. More specifically, as the carrier particles move and change their densities, the

quadrature points’ density values are updated accordingly, naturally providing sub-cell

density resolution. As shown in the experiments, LETO tends to generate structures with

rich branching fibers with low compliance.

7.1.1.2 Topology Optimization with the Material Point Method

When applying the adjoint method on topology optimization for sensitivity analysis, elasticity

simulation is required in each iteration to obtain the nodal displacements under force

equilibrium given a material distribution and an external load. A static elasticity solver can

be applied since inertia effects are often ignored. While traditional topology optimization

methods often use a grid-based Finite Element discretization, we adopt MPM for the

static setting with the sub-cell resolution achieved by assigning a different density value to

each quadrature particle. The static force equilibrium is further solved with a variational

formulation that guarantees robustness and stability.
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Spatial Discretization Traditional topology optimization methods, including both density-

based approaches (Sigmund, 2001; Buhl et al., 2000) and level set-based approaches (Guo

et al., 2014; Wang et al., 2003), often apply grid-based Finite Element discretization for the

static solve. In FEM, the same material density is assigned for all quadratures in every single

cell. Therefore, the domain boundaries are formed with jagged finite element edges, and even

plotting zero-level contour still results in jagged boundaries (Maute and Sigmund, 2013). A

grid with higher resolution is often required to alleviate these artifacts, which increases the

computational cost.

MPM is a hybrid Lagrangian-Eulerian method widely used in different fields, e.g ., computer

graphics (Stomakhin et al., 2013; Wolper et al., 2019), civil engineering (Abe et al., 2014;

Zabala and Alonso, 2011), mechanical engineering (Sulsky et al., 1995; Guilkey and Weiss,

2003; Sinaie et al., 2018; Chen and Brannon, 2002). With the capability of handling large

deformation (Nair and Roy, 2012; Charlton et al., 2017; Nguyen and Nguyen, 2016; Sadeghirad

et al., 2011; Soga et al., 2016; Lian et al., 2012), topology changes, and coupled materials,

MPM has been considered as one of the top choices in various physics-based simulations,

including fracture (Guo and Nairn, 2006; Wolper et al., 2019; Yang et al., 2014; Long et al.,

2019, 2016; Homel and Herbold, 2017), viscoelastic and elastoplastic solids (Fang et al.,

2019; Burghardt et al., 2012), incompressible materials (Kularathna and Soga, 2017; Zhang

et al., 2017a), high explosive explosion (Ma et al., 2009), snow (Stomakhin et al., 2013;

Gaume et al., 2018, 2019), granular material (Bardenhagen et al., 2000; Klár et al., 2016;

Yerro et al., 2019; Zhang et al., 2009) and mixtures (Gao et al., 2018a; Tampubolon et al.,

2017; Bandara and Soga, 2015). In MPM, Lagrangian particles, which are also known as

material points, are used to track quantities like mass, momentum, and deformation. On

the other hand, a regular Eulerian grid is built to evaluate force and update velocity at each

time step. Particle quantities are then updated from the interpolation of nodal quantities.

MPM’s convergence was demonstrated computationally and explained theoretically with a

smooth, e.g., quadratic B-spline, basis for grid solutions (Steffen et al., 2008), which was

further verified with manufactured solutions (Wallstedt, 2009). MPM is applied as the spatial

discretization in this work. We also describe a static formulation for directly solving the

285



force equilibrium, which allows defining quadrature-wise density per cell to take advantage of

the sub-cell resolution. As shown in numerical experiments, LETO achieves a comparable

convergence speed with lower structural compliance.

Optimization and Nonlinear Integrators Another long-standing challenge of topology

optimization is to optimize structures undergoing large deformations, requiring a nonlinear

elasticity model and the nonlinear equilibrium constraints. This has become increasingly

meaningful with the increasing need for material and structural design in soft robotics(Scharff

et al., 2019), wearable devices, and even space antennas, etc. With large nonlinear defor-

mations, the force equilibrium is more challenging to solve as it often leads to numerical

instabilities, and the optimization itself will converge slower.

Numerical integration of partial differential systems can often be reformulated variationally

into an optimization problem. These methods can often achieve improved robustness, accuracy,

and performance by taking advantage of well-established optimization approaches. Simulation

methods are increasingly applying this strategy to simulate both fluid (Batty et al., 2007), and

solid (Gast et al., 2015) dynamics, which often enable large time step sizes. The static solve

simply corresponds to infinitely large time step size in a dynamic time-stepping point-of-view.

Our method also takes advantage of optimization integrators to solve for the static equilibrium

to high accuracy robustly.

For nonlinear optimization problems, Newton-type methods are often used because they

can deliver quadratic convergence when the intermediate solution becomes close to the local

optima. However, when the initial configuration is far from a local optimum, which is often

true in static solves, Newton’s method may fail to provide a proper search direction as the

Hessian can be indefinite (Wang et al., 2019; Liu et al., 2017b,b; Smith et al., 2018). Teran et

al . (Teran et al., 2005) proposed a positive definite fix to project the Hessian to a symmetric

positive definite form to guarantee that a descent direction can be found. This method is

referred to as projected Newton (PN) throughout the paper and is applied in the static solve.
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7.1.1.3 Artificially Stiff Patterns

Traditional density-based topology optimization methods considering one degree of freedom for

density per element may form checkerboard density patterns across elements. Such solutions

are indeed optimal mathematically but meaningless in reality. To avoid the checkerboard

pattern, filters (Sigmund, 2001; Andreassen et al., 2011) were proposed to smooth the density

or gradient field. These filters can be applied independent of the sensitivity analysis or encoded

into the objective (Wu et al., 2015), where the latter one defines a consistent optimization

problem. In this paper, the SPH kernel-based density transfer between carrier particles and

quadrature points serves the same purpose and is explicitly encoded in the objective.

When multiple densities are modeled inside one element to generate higher-resolution

details with a relatively low computational cost (Nguyen et al., 2009), sub-cell-level checker-

board issues, also called the QR patterns (Gupta et al., 2018), may appear. Such artifacts

happen on a sub-cell level where disconnected interfaces between material components may

form inside one element at the quadrature level. However, from the simulation grid view, the

disconnected components are connected, producing inaccurate compliance measurement at

static equilibrium, which can lead to results with large compliance when tested in practice

or simulated with higher resolution. An illustration of the checkerboard issue and the QR

pattern issue is shown in Figure 7.1. Existing solutions for avoiding QR patterns include

increasing the filter radius of gradient filters (Nguyen et al., 2009), changing penalty power in

SIMP formulation (Gupta et al., 2018) and using higher-order elements (Groen et al., 2016).

If applied naively, our method may encounter this kind of artifact as well if no treatment is

applied since the resolution of MPM quadratures is higher than the background grid. To

take advantage of the multi-resolution nature of MPM while keeping the formulation simple,

a graph-based narrow-band filter and a connectivity correction algorithm are developed: the

set of material points is considered as a graph and only one major connected component is

preserved during optimization. A secondary correction is applied after the optimization.
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Checkerboard QR Pattern

Figure 7.1: An illustration of the checkerboard issue and the QR pattern issue. In both cases,
the density fields are continuous from the view of the grids

7.1.1.4 Summary

In summary, a novel hybrid Lagrangian-Eulerian framework LETO is proposed for compliance-

based topology optimization with MPM. The hybrid representation of the material density

field enables both the flexibility of Lagrangian models and Eulerian methods’ computational

efficiency. The MPM discretization introduces a multi-density scheme naturally, provides a

unified treatment for both linear and nonlinear topology optimization, and supports optimizing

fully nonlinear compliance, enabling robust and accurate optimization of structures undergoing

large deformations. A graph-based narrow-band filter and a connectivity correction algorithm

are applied during and after the optimization to eliminate QR-patterns. The numerical

experiments show that the resulting scheme can generate sub-cell structures with mechanical

performances that sometimes rival conventional methods at a comparable computational

cost.

7.1.2 Problem Statement and Method Overview

7.1.2.1 Problem Statement

The general objective of compliance-based topology optimization is to seek for a material

distribution ρ, a scalar field representing the material density at each point on a design

domain Ω, to obtain the minimal structural compliance c(ρ,u), or equivalently, the least

strain energy e(ρ,u), under force equilibrium between external force load f and internal
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elasticity force − ∂e
∂u

with displacement u:

min
ρ

c(ρ,u) = e(ρ,u) s.t.


∂e
∂u
(ρ,u) = f

Du = 0

V (ρ) ≤ V̂ .

(7.1)

Here Du = 0 is the discretized Dirichlet boundary condition where D selects the zero

displacement nodes, V (ρ) =
∫
Ω0
ρdX is the total volume of the structure, and V̂ is an upper

bound specified by users to avoid trivial solutions(Sigmund, 2001). Usually, ρ is expected to

be close to either 0 or 1 for manufacturing, which potentially makes the problem non-smooth.

The density field ρ can be discretized and further parameterized by any set of design variables.

For example, the traditional SIMP method assumes that each finite element has a uniform

density and directly uses cell densities as design variables. In this paper, a set of movable

Lagrangian particles carried with density sources is used as design variables.

The strain energy of the material under a displacement field u is defined as

e(ρ,u) =

∫
Ω

Ψ(F)dX, (7.2)

where Ψ is the elastic energy density determined by the underlying constitutive model, and

F is the deformation gradient defined as

F =
∂x

∂X
= I+

∂u

∂X
(7.3)

through the world and material space coordinates x and X with u(X) = x−X and I is the

identity matrix. For linear elasticity,

ΨL(F) = µ||ϵ(F)||2 + λ

2
tr(ϵ(F))2, (7.4)

where ϵ(F) = 1
2
(F+ FT )− I is the small strain, and the Lamé parameters µ and λ linearly

relate to the Young’s modulus E. However, linear elasticity is only accurate under infinitesimal
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deformation since rotation is also penalized, and the nonlinear stress-strain curve is not well

captured. A nonlinear constitutive model should be used to model large deformation. In this

paper, we adopt the neo-Hookean hyperelasticity model:

ΨNH(F) =
µ

2
(tr(FTF)− d)− µ log J +

λ

2
(log J)2, (7.5)

where J = detF, and d = 2 or 3 is the dimension of the problem.

The compliance objective depends on both the density ρ and the displacement u, which

is generally nonlinear even for linear elastic materials as well as the static equilibrium

constraint. Therefore, the adjoint method (Giles and Pierce, 2000) is often applied to

avoid solving the nonlinear Karush-Kuhn-Tucker (KKT) system as in equality constrained

optimization (Nocedal and Wright, 1999). It takes u as a function of x and cancels out ∂u
∂x

by considering the searching process to be conducted only on the force equilibrium constraint

manifold. Given an intermediate state ρ, the PDE constraint has to hold by solving the

displacement field u at static equilibrium for each iteration. For linearly elastic materials,

finding the static equilibrium results in solving a linear system of equations, which is generally

considered the topology optimization’s bottleneck. Therefore, obtaining intricate structural

features by increasing resolution demands extra computational powers or carefully designed

implementations. (Aage et al., 2017; Liu et al., 2018). It becomes even more challenging for

nonlinear hyperelastic materials because a nonlinear system of equations needs to be solved

at each optimization iteration, leading to numerical instabilities.

7.1.2.2 Lagrangian-Eulerian Multi-Density Topology Optimization

A hybrid Lagrangian-Eulerian approach is proposed to establish a versatile topology optimiza-

tion framework that can accommodate different elastic models to address the aforementioned

challenges. In particular, the elastic potential as the compliance objective is optimized for

both linear and highly nonlinear (e.g ., neo-Hookean) elastic materials. A set of carrier parti-

cles is adopted to represent the material distribution and evolution. Each particle is a moving

material sample carrying the information of position xc, density ρc, and supporting radius.
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This modifies the general formulation in Equation (7.1) from a pure Eulerian representation,

which directly optimizes the density field ρ, to a hybrid Lagrangian-Eulerian form, which

jointly optimizes xc and ρc that define the material distribution ρ(xc, ρc) over the design

domain:

min
xc,ρc

c(ρ(xc, ρc),u) = e(ρ(xc, ρc),u) s.t.


∂e
∂u
(ρ(xc, ρc),u) = f

Du = 0

V (ρ(xc, ρc)) ≤ V̂ .

(7.6)

Using MPM as the static equilibrium solver, the design domain is discretized with an

Eulerian background grid and a set of uniformly sampled quadrature points in each grid cell

where every quadrature has its independent density value. These quadrature points jointly

form the scalar field ρ. In this way, a sub-cell resolution is naturally resolved through multiple

quadratures per cell. The relation between carrier particles (xc, ρc) and quadrature points

(ρ) is further constructed using smoothed-particle hydrodynamics (SPH) kernel and a sharp

density mapping function. Adopting the SPH kernel has the equivalent effect as the gradient

filter (Sigmund, 2001) that prevents the checkerboard pattern. However, since the SPH kernel

is directly incorporated in the objective, it avoids performing any extra smoothing on the

gradient, keeping the search direction and the objective consistent.

To efficiently solve the static equilibrium, it is straightforward to achieve a narrow-band

sparse simulation (Liu et al., 2018) using MPM by filtering out low-density quadratures. This

is essentially equivalent to how zero-mass grid nodes are filtered out in MPM-based dynamic

simulations. This mechanism is also adopted to eliminate QR-patterns by maintaining a

single main connected component to filter out isolated material blocks. The narrow-band

filter threshold’s increment replaces the Heaviside projection in traditional density-based

topology optimization algorithm for producing binarized designs.

Using moving asymptotes (MMA) (Svanberg, 1987b) as the optimizer, the optimization

pipeline can be summarized as the follows; also see an illustration in Figure 7.2.
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Grid
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G2P
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Quadrature Particles
C2P1 

P2C3

Carrier Particles

MMA 4

Figure 7.2: Hybrid Lagrangian-Eulerian method pipeline with an MPM solver.

0. Initialize: Collocate carrier particles on the uniformly sampled MPM quadrature

points and initialize carrier particle density ρc with the target volume prescription such

that the volume constraint is satisfied; see Section 7.1.3.1.

1. Transfer information from carrier particles to quadrature points (C2P):

Transfer density from carrier particles to quadrature points (ρ(xc, ρc)) with a spherical

kernel and a sharp density mapping function; see Section 7.1.3.1.

2. MPM Static Solve; see Section 7.1.3.3.

2.1. Transfer information from quadrature points to grid (P2G): Extract

the main connected component using the narraw-band filter; see Section 7.1.3.4.

Transfer density from quadrature points in the main connected component to grid

nodes and construct the MPM system matrix ∂2e
∂u2 on the grid. Untouched grids

are dropped out of degrees of freedom.

2.2. Solve force equilibrium: Solve ∂e
∂u

= f for the displacement field u on the

MPM grid subject to Dirichlet boundary conditions Du = 0. Here, only solving
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a single linear system is required for material with a linear elastic material (see

Section 7.1.3.2). On the other hand, the projected Newton method with line

search that guarantees stability and convergence is applied for nonlinearly elastic

materials (see Section 7.1.3.3).

2.3. Update quadrature deformation gradient (G2P): Update the deformation

gradient Fq of quadrature points with the solved nodal displacement field u.

3. Compute compliance and the derivatives (P2C): Evaluate compliance objective

e(ρ,u) (Equation (7.25)), compliance derivative de/d{xc, ρc} (Equation (7.19)), vol-

ume V (Equation (7.15)), and volume derivative dV/d{xc, ρc} (Equation (7.16)) for

optimization search; see Section 7.1.3.2.

4. Update carrier particle data: Update xc, ρc using MMA and evaluate convergence

criteria; see Section 7.1.4.1. If not converged, go to Step 1 and repeat.

5. Graph-based connectivity correction: Correct quadrature connectivity according

to grid connectivity where the static equilibrium is evaluated; see Section 7.1.3.4.

7.1.3 Hybrid Lagrangian-Eulerian Multi-Density Method

7.1.3.1 Material Distribution Representation

Introducing Lagrangian degrees of freedom by optimizing quadrature positions together with

quadrature densities is a straightforward choice. However, arbitrary movements of quadrature

may cause large numerical errors, which can even lead to degeneracies like quadrature

clustering and isolation. Thus, another set of moving carrier particles is introduced as the

design variables to re-parameterize the density field space and, at the same time, to avoid

moving quadrature points. Carrier particles are defined in the entire design domain with

Lagrangian variables ξ = (xc, ρc) consists of both position and density. The final material

distribution and the volume constraint are still discretized on quadrature points, where their

densities are computed according to the surrounding carrier particles. In the proposed method,

the carrier particles are crucial in emerging intricate geometry structures (see Figure 7.3).
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(a) (b)

Figure 7.3: Optimization evolution on carrier and quadrature points. (a) The position
and density changes of carrier particles. (b) The density changes on quadrature points.

The density of each quadrature point q is defined as the weighted sum of its neighboring

carrier particles {α} using an SPH kernel:

ρ̃q =
∑
α

∫
Ω

ρcαW

(
|xc

α −X|
h

)
dX ≈

∑
α

ρcαW

(
|xc

α − xq|
h

)
Vα, (7.7)

where W (R) is a kernel function, h is the kernel size, and Vα is the volume of each quadrature,

which equals to (∆x
2
)d when 2d quadratures are sampled in each cell. In this paper, the kernel

function with cubic spline is applied:

W (R) = σ


1− 3

2
R2 + 3

4
R3, 0 < R < 1

1
4
(2−R)3, 1 < R < 2

0, otherwise

(7.8)

where σ is a constant of 10
7πh2 in 2D and 1

πh3 in 3D.
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Figure 7.4: Density mapping function.

The derivative of ρ̃q w.r.t. the design variables is given by

∂ρ̃q
∂xc

α

= ρcα
∂W

∂xc
α

Vα, (7.9)

and
∂ρ̃q
∂ρcα

= W

(
|xc

α − xq|
h

)
Vα. (7.10)

To prevent the densities of quadrature particles from exceeding one, a smooth clamping

function is further added on top of ρ̃q (see Figure 7.4):

ρ̂(ρ̃) =


ρ̃, 0 ≤ ρ̃ < 1− ϵ

(ρ̃+ϵ−1)2

4ϵ
+ ρ̃, 1− ϵ ≤ ρ̃ < 1 + ϵ

1, ρ̃ ≥ 1 + ϵ

(7.11)

and its derivative is

∂ρ̂

∂ρ̃
=


1, 0 ≤ ρ̃ < 1− ϵ

(ρ̃+ϵ−1)
2ϵ

+ 1, 1− ϵ ≤ ρ̃ < 1 + ϵ

0. ρ̃ ≥ 1 + ϵ

. (7.12)

If ρ̃ is greater than 1 + ϵ, the output will be one, and the derivative will be zero.

Consequently, through chain-rule, the gradients w.r.t. the design variables vanish, which

successfully prevent aggregation of particles. Otherwise, stiffer material than allowed can be
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formed by gathering particles, leading to non-physical material.

Finally, the density of each quadrature q is given by,

ρq = ρ̂(ρ̃), (7.13)

and its derivative is
dρq
dξ

=
dρ̂q
dρ̃q

dρ̃q
dξ

. (7.14)

The volume of the structure is given by

V (ξ) =
∑
q

ρq, (7.15)

where q indices all quadrature points, and its derivative is

dV

dξ
=
∑
q

∂ρq
∂ρ̃

∂ρ̃

∂ξ
, (7.16)

The densities of carrier particles are initialized to a uniform scale such that the density of

each quadrature is equal to the prescribed volume fraction (the prescribed volume divided

by the domain volume). Since the clamping function is only nonlinear after 1 − ϵ, by the

partition-of-unity property of SPH kernel, the initial volume is very close to the target

volume, where the error comes from the approximation in Equation (7.7). Also note that

since the volume constraints are defined on quadrature volumes and the output structure is

also represented by quadratures with nonzero density values, there is no need to consider the

mass/volume conservation during carrier-quadrature transfers.

7.1.3.2 Design Sensitivity Analysis

To compute the derivatives of the compliance objective e w.r.t. design variables ξ required for

the topology optimization, the searching process of finding the adjoint variables is constrained

to be solely on the force equilibrium manifold.
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de
dξ

can be expressed via applying the chain rule as

de

dξ
=

[
dρ

dξ

]T (
∂e

∂ρ
+

[
du

dρ

]T
∂e

∂u

)
. (7.17)

Here du
dρ

is difficult to compute as u and ρ are related by the force equilibrium equation; even

the evaluation of u from ρ requires solving a system of equations. However, if the searching

process is constrained to be only on the constraint manifold defined by the force equilibrium

equation, differentiating ∂e
∂u

= f w.r.t. ρ provides

∂2e

∂ρ∂u
+

[
du

dρ

]T
∂2e

∂u2
= 0, (7.18)

then Equation (7.17) can be simplified by combining with Equation (7.18) into

de

dξ
=

[
dρ

dξ

]T (
∂e

∂ρ
− ∂2e

∂ρ∂u

[
∂2e

∂u2

]−1

f

)
, (7.19)

which is the final derivative, where the compliance e can be defined by either linear or

nonlinear elasticity.

Simplification Under Linear Elasticity The computation of derivative de
dρ

requires

solving a linear system. However, when linear elasticity is applied, it can be simplified to the

form widely used in linear topology optimization (Sigmund, 2001).

Specifically, when linear elasticity is utilized, the matrix ∂2e
∂u2 is constant, so the internal

elasticity force is linear w.r.t. u, and the potential e is quadratic w.r.t. u. Namely,

e =
1

2
uTKu, f =

∂e

∂u
= Ku,

∂2e

∂u∂u
= K,

∂e

∂ρ
=

1

2
uT ∂K

∂ρ
u,

∂2e

∂ρ∂u
= uT ∂K

∂ρ
,

(7.20)

where K is the stiffness matrix depending on densities ρ. Substituting these equations into
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Equation (7.19), it follows that

de

dρ
=

1

2
uT ∂K

∂ρ
u− uT ∂K

∂ρ
K−1f = −1

2
uT ∂K

∂ρ
u, (7.21)

which is exactly the same form derived in traditional linear topology optimization via the

adjoint method. For arbitrary design variables ξ, applying the chain-rule, the derivative

becomes
de

dξ
= −1

2

[
dρ

dξ

]T [
uT ∂K

∂ρ
u

]
. (7.22)

7.1.3.3 MPM Discretization for Multi-Density Topology Optimization

In MPM, the design domain Ω is discretized with a set of material particles, or quadratures

to approximate the integrals in Equation (7.1), which are computed as the weighted sum

over all the quadratures:

e(ρ,u) =

∫
Ω

Ψ(F)dX ≈
∑
q

Ψ(Fq)Vq. (7.23)

V (ρ) =

∫
Ω

ρ(X)dX ≈
∑
q

ρqVq. (7.24)

where q indices all quadrature points, and each quadrature q has its own density ρq, Young’s

modulus Eq, deformation gradient Fq, elastic energy density function Ψq, and volume Vq.

To get a sufficiently aligned density field, 2d quadrature points in each cell are sampled on

a regular lattice structure as illustrated in Figure 7.2. With MPM discretization, multiple

densities per cell can be handled in a straightforward manner.

Similarly to SIMP, Young’s modulus is scaled by the powered density of the particle:

Eq = ρpqE0, where E0 is the material’s Young’s modulus, so that the stiffness of the material

is continuously varying over the domain according to its distribution. Since Ψ is linear w.r.t.

Young’s modulus, the compliance can be rewritten as

e(ρ,u) =
∑
q

ρpqΨ0(Fq)Vq, (7.25)
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where Ψ0 is the energy density function with Young’s modulus E0.

Static Equilibrium While MPM is commonly used for dynamic time-stepping, a static

problem formulation based only on MPM spatial discretization similar to the total Lagrangian

formulation (de Vaucorbeil et al., 2020) is needed for topology optimization. In such a static

setting, there is no inertia effect or time-variant variables, meaning that only the elasticity

and external force terms are kept:

− ∂e
∂u

(ρ,u) + f = 0, (7.26)

where f is the external body force load (Neumann boundary condition) defined on the grid

nodes. Dirichlet boundary conditions can be defined as

Du = 0, (7.27)

where D is the selection matrix that extracts the Dirichlet grid nodes. From a variational

point of view, this is equivalent to solving the following optimization problem

min
u
e(ρ,u)− uT f s.t. Du = 0. (7.28)

In MPM, quadratures are embedded in the background Eulerian grid with a B-spline

kernel, meaning that the nodal displacement u is, in fact, defined on the uniform grid nodes.

Since in LETO elastostatic problems are solved without material particle (quadrature points)

advection, there will be no cell crossing errors or ringing instabilities for MPM even if linear

kernel is used for simplicity:

N(x) =


1− |x|, 0 ≤ x < 1

0, 1 ≤ x.

(7.29)

Here the weight ωiq between grid node location xi and quadrature location xq is defined by
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taking the Cartersian product in all dimensions. For example, in 3D,

ωiq(xq) = N(
1

h
(xq,1 − xi,1))N(

1

h
(xq,2 − xi,2))N(

1

h
(xq,3 − xi,3)); (7.30)

and in 2D,

ωiq(xq) = N(
1

h
(xq,1 − xi,1))N(

1

h
(xq,2 − xi,2)). (7.31)

The deformation gradient Fq on quadrature q is then related to the surrounding grid nodes i

as

Fq = I+
∑
i

ui∇ωT
iq, (7.32)

which also leads to the elasticity force definition

− ∂e
∂u

= −
∑
q

ρpqV
0
q

∂Ψ0(Fq)

∂Fq

∇ωiq, (7.33)

and the elasticity Hessian (in index notation)

∂2e

∂ui,α∂uj,β
=
∑
q

ρpqV
0
q (∇ωiq)δ

∂2Ψ0(Fq)

∂Fq,αδ∂Fq,βω

(∇ωjq)ω, (7.34)

where 1 ≤ α, β, δ, ω ≤ d and d is the spatial dimension. Fq,αβ is (α, β)-th element of the

deformation gradient Fq.

Compared with the MPM formulation for dynamic problems, the static formulation can

be seen as only solving for a single “time step,” and the deformation gradient at previous

time step, Fn
q , is just the initial undeformed deformation gradient Fn

q = F0
q = I.

Static Solve with Projected Newton To solve the equilibrium equation more robustly,

the variational form (Equation (7.28)) is minimized with the projected Newton’s method

(Teran et al., 2005) as outlined in Algorithm 7. Dirichlet boundary conditions are handled by

modifying the corresponding entries in the matrix and the right-hand-side to keep the problem

unconstrained, which is equivalent to eliminating the Lagrange multipliers in the KKT system

with linear equality constraints. The stopping criteria is chosen to be ||∆u||∞ < τ = 0.1∆x.
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Algorithm 7 Projected Newton for Solving Static Equilibrium

1: procedure ProjectedNewton(ρj, f , D, τ , u)
2: ∆u = 0,u0 = 0, i = 0 // initialize
3: do
4: P ← projectSPD( ∂2e

∂u2 ) // project each local Hessian stencil to SPD (Teran
et al., 2005)

5: ∆u← P−1(f − ∂e
∂u
)

6: α ← LineSearch(ui,∆u) // Back-tracking line-search
7: ui+1 ← ui + α∆u
8: i← i+ 1
9: while ||∆u||∞ ≥ τ
10: u← ui

11: end procedure

Note that when a linear constitutive model is used, the system is quadratic, so only one

iteration is needed.

Inversion-free Line Search Since in each projected Newton iteration, the Hessian has

been projected to symmetric positive definite, the search direction ∆u is guaranteed to be

a descent direction. Therefore, back-tracking line search can ensure E(ui+1) < E(ui) after

each u update, which effectively stabilizes the iterations and improves convergence.

However, for the noninvertible elasticity energy (neo-Hookean), projected Newton does

not necessarily ensure no deformation gradient inversion along search direction ∆u. Hence,

following Smith and Schaefer (Smith and Schaefer, 2015), to further prevent inversion of each

Fq, a large feasible step size before each line search is solved by finding the minimum of the

smallest positive roots of a family of equations

{
det(Fq(u

i + βq∆u)) = ϵq
}
. (7.35)

The line search step size then starts from minq βq. Here, ϵq = 0.1 det(Fq(u
i)) is used to avoid

numerical rounding errors, which is more robust than solving with ϵq = 0.

301



Active area

Active DOF

Figure 7.5: An illustration of the narrowband filter mechanism. An active area is first
extracted by the graph connectivity. Active DOFs are then indicated by whether they belongs
to cells with active quadratures. Only active DOFs are kept for the static solve to reduce the
computational cost.

7.1.3.4 Narrow-band Filter and Connectivity Correction

Multi-density topology optimization methods suffer from a common artifact known as QR-

patterns. Unlike the traditional checkerboard problem, QR-patterns happen on a sub-cell

level, which corresponds to the quadrature here. When QR-patterns appear, there are many

sub-cell level isolation of the solid components, which are still viewed as connected from the

perspective of the background grid where forces and displacements are discretized. This kind

of inconsistency prevents simulation from accurately predicting a structure’s compliance,

which can lead to results with large compliance when tested in practice or simulated on a

grid with higher resolution. Based on this observation, this paper proposes a narrow-band

filter to keep only one major connected component during the optimization and then apply a

connectivity correction step to correct the final topology further.

Given a threshold η, a graph is built at each optimization iteration before the static solve,

with its vertices being those quadrature points having a density greater than η. Quadrature

pairs are identified to be adjacent only if their Manhattan distance is 1 (adjacent along one

of the coordinate axes). By performing a breadth-first search on this graph, the connected

component Θ with the most quadrature points are then extracted. Only the grid nodes

within the kernel range of active quadrature points are kept as DOFs in the MPM static

solve step. An illustration is shown in Figure 7.5.
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Figure 7.6: Evolution of narrowband threshold.

The narrowband filter θ employed is introduced as:

θ(ρq) =


0, q ∈ Θ

1, q ̸∈ Θ,

(7.36)

with which the topology optimization becomes:

min
ξ,u

e(ρ,u) =
∑
q

θ(ρq)ρ
p
qΨ0(Fq)Vq, s.t.


∂e
∂u
(ρ,u) = f

Du = 0

V (ρ) ≤ V̂ .

(7.37)

To handle the non-smoothness of θ,an alternating optimization style strategy is performed

that computes θ between each MMA optimization iteration where θ is then treated as constant.

Theoretically, this strategy can lead to different local optimum compared to a fully coupled

search, but it has been shown to be effective in our experiments. During the optimization, the

narrow-band filter can also accelerate the pruning of redundant branches, for example, a fiber

with only one end connected to the major component, which can increase the compliance.

Given that the narrow-band filter can remove all quadrature points with a density below η,

a new binary design enforcement mechanism is proposed. A low threshold of the narrow-band

filter is chosen initially for a coarse but more global result and is further increased per iteration

towards a value very close to 1 (Figure 7.6). This mechanism provides better optimization
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Figure 7.7: Illustrated examples of emerging QR-patterns and connectivity correction proce-
dures.

stability by enforcing binary design without any nonlinear projections, e.g., a Heaviside

function.

However, QR-patterns may still exist when the two parts of the major component’s

boundaries are spatially close. Figure 7.7 lists some illustrated examples. Here the filled and

unfilled circles are used to discriminate solid and void materials. It can be seen that despite

a notable disconnection of quadrature points, when evaluating the static force equilibrium,

these are still considered connected since they can belong to the same cell (the left example)

or adjacent cells (the right example). However, when evaluating the resulting design, a double

refined grid where each quadrature corresponds to a different cell, the corresponding cells of

these separated quadratures will only share one node or are completely disconnected. To

detect and remove these QR-patterns, a connectivity correction step is further introduced:

for any pair of quadratures belonging to the same cell or two different cells sharing at least

one node, if the difference between their distance on the graph (the length of the shortest

path) and their spatial L1 distance is larger than a threshold, a shortest Manhattan path

will be created between them with the densities along the path all set to 1. Note that the

occurrence of such corrections is rare.

7.1.4 Numerical Examples

7.1.4.1 Optimizing Structures with MMA

The method of moving asymptotes (MMA) (Svanberg, 1987b) is used to solve the optimization

problem, which jointly optimizes the positions and densities of carrier particles. This optimizer

is designed for general structural optimization problems with inequality constraints and box

constraints. The algorithm approximates the original problem with a series of separable convex
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Table 7.1: Compliance value and volume percentage for linear elastic experiments. The
compliance value of results from the proposed method under optimization grid resolution,
under double-refined grid resolution and SIMP method under double-refined grid resolution
is shown in this table.

Experiment
LETO SIMP (r=1.5)

Compliance
Compliance
(refined grid)

Volume
Ave. Cost
(per iter.)

Compliance
(refined grid)

Volume
Ave. Cost
(per iter.)

Concentrated-load beam 1.218× 10−3 1.243× 10−3 29.9% 0.405s 1.264× 10−3 30.1% 0.387s
Michell truss 4.736× 10−2 5.054× 10−2 20.1% 0.544s 5.055× 10−2 20.2% 0.355s

Distributed-load beam 7.845× 10−3 8.386× 10−3 39.7% 0.867s 1.658× 10−2 40.0% 0.408s
3D beam 3.323× 10−4 3.334× 10−4 19.6% 3.753s 3.527× 10−4 20.0% 6.110s
3D bridge 1.653× 10−2 1.643× 10−2 19.4% 6.893s 1.892× 10−2 20.0% 16.816s

optimizations. At each iteration, it sets up two asymptotes for each variable to constrain the

searching interval. These asymptotes will be updated according to each sub-optimum. In our

implementation, we adopt an open-source C++ version of MMA.2

To obtain high-quality results from MMA, careful parameter tuning is necessary, and

different examples might have different sets of optimal MMA parameters. There are three

parameters to tune: asyinit, asyincr, and asydecr. In this paper, these parameters are set

to be 0.02, 1.05, and 0.65, respectively, as in the original MMC method. The parameters

are used throughout all the numerical examples. To further stabilize and accelerate the

optimization in a consistent way, the following regularizations are additionally applied within

MMA :

1. The step length of each variable is controlled by modifying its box constraint at each

iteration. The change of carrier density is controlled to be below 0.5, and the change of

carrier position at each dimension is controlled to be below 2 times the background

grid spacing. This step size control can stabilize optimization.

2. Following the MMC method, the gradient of objective and the volume constraint are

scaled such that their L∞-norms are both 1. In addition, the objective and the volume

constraint are scaled accordingly to make sure the scaled gradients are consistent. The

scaling accelerates the optimization significantly.

2https://github.com/jdumas/mma
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Cantilever beam with concentrated force Cantilever beam with distributed force Michell truss

3D beam 3D bridge

Figure 7.8: Convergence plots for linear elasticity experiments. It can be seen here in
the 5 experiments conducted, LETO achieves comparable structural compliance value and
convergence speed. Notably, under distributed force condition, LETO delivers better stability.

7.1.4.2 Linear Topology Optimization

In this section, the proposed method is compared with SIMP with Heaviside projection(Guest

et al., 2004) on linear elasticity examples. The filter radius of SIMP is 1.5 for all examples.

Under the same simulation resolution, LETO obtains more detailed geometry structures and

delivers comparable or even lower compliance at a similar convergence speed (see Figure 7.8).

For fair comparisons, LETO and SIMP’s final results are compared on a double refined grid

using FEM, where individual quadrature of LETO corresponds to a cell on the refined grid.

Each cell of SIMP is mapped to a 2× 2 (in 2D) or 2× 2× 2 (in 3D) cell block with the same

density. As varying volumes can easily lead to compliance changes, to further ensure fairness,

the final volume constraint of LETO is controlled to be slightly lower than the corresponding

volume in the SIMP method. For each of the following experiments, SIMP is first tested

with the target volume. The volume constraint of LETO is then set to be less than the

volume of the binarized SIMP’s result. Since LETO treats volume constraints as inequalities

through MMA, it usually ends up with an even slightly smaller volume. The binarization

threshold of SIMP is set to be 0.5. Since LETO can guarantee there exists no density values
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LETO SIMP

Figure 7.9: 2D beam with a concentrated load. The comparison between LETO and
SIMP on this standard 2D beam example where left most grid nodes are fixed, and a
concentrated load is applied at the bottom-right corner. The compliance value evaluated
at double-refined grid resolution for LETO and SIMP are 1.243 × 10−3 and 1.264 × 10−3

respectively.

between 0 and 0.9, the binarization threshold of LETO is chosen to be 0.9. To demonstrate

that QR-patterns do not appear in the proposed method’s final results, compliance values

are evaluated at both the resolution used in optimization and with double-resolution. A

collection of resulting compliance value and volume percentage of 5 experiments is shown

in Table 7.1. The average computational costs per iteration are also shown. Since MMA

used in LETO is usually slower than OC used in SIMP, it is expected that LETO is slower

than SIMP. However, the narrowband filter can prune inactive DOFs, which can reduce the

computational cost a lot after the structure becomes sufficiently binarized (especially in 3D).

2D Beam with a Concentrated Load In this example, a standard 2D beam benchmark

problem is tested; see Figure 7.9. The rectangular design domain is 1m in width and 3m

in length, discretized by a 300× 100 grid with a spacing of 0.01m. A 0.1N downward force

is concentrated at the bottom-right grid node (denoted by the red arrow) and the leftmost

grid nodes are fixed. The target volume constraint is 30%. The optimal material distribution

obtained from LETO has rich branching fibers. Even the thick fibers on the boundary of

SIMP’s result splits into several thin fibers in LETO . The compliance of LETO’s result

evaluated at optimization resolution and double resolution, and SIMP’s result evaluated at

double resolution are 1.218× 10−3, 1.243× 10−3, and 1.264× 10−3 respectively. The final

volume reached by LETO and SIMP are 29.9% and 30.1%.
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LETO
SIMP

Analytical

Figure 7.10: Michell truss. Here the resulting structure of LETO and SIMP for Michell
Truss is evaluated. The central region of the right-most grid is fixed, and a concentrated force
is applied in the middle of the leftmost grid. The compliance value evaluated at double-refined
grid resolution for LETO and SIMP is 5.054 × 10−2 and 5.055 × 10−2 respectively. The
analytical solution (Michell, 1904) is shown for reference, albeit the compliance value of both
methods are not significantly different, the fiber directions from the proposed method align
with those appeared in the analytical solution better.

Michell Truss The second example under consideration is Michell truss; see Figure 7.10.

A 2m× 1.6m rectangle is used as the design domain. The grid resolution is 200× 160 with a

spacing of 0.01m. A concentrated downward force of 1N is applied to the middle node of

the leftmost column of the grid. The middle region of the right-most grid is set to be fixed.

The target volume is 20%. The compliance of SIMP evaluated at double resolution, LETO

evaluated at optimization resolution, and double resolution are 5.055× 10−2, 4.736× 10−2,

5.054× 10−2 respectively. Although LETO’s result has almost the same compliance as SIMP,

it resembles more to the analytical solution (Michell, 1904) as can be seen from the resulting

fiber direction. The final volume reached by SIMP and LETO is 20.2% and 20.1%.

2D Beam with a Distributed Load In this example, the proposed version of LETO

and LETO without narrow-band filter (simulate with weak material filling across the whole

domain) are also compared to demonstrate the capability of the proposed narrow-band

mechanism to remove QR patterns; see Figure 7.11. To enforce binary design when threshold-

increasing narrow-band filter is absent, a family of density mapping functions are used like
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LETO
SIMP

LETO without narrowband

Figure 7.11: 2D beam with a distributed load. A distributed force load is applied to
this beam example at the top plane where the leftmost nodes are fixed. The compliance
value evaluated at double-refined grid resolution for LETO and SIMP are 8.386× 10−3 and
1.658× 10−2 respectively. LETO without a narrow-band filter is visualized in the top-right
corner to demonstrate that the isolated blobs can be removed with the proposed filtering
technique.

Heaviside projection in SIMP, except that the functions are smoothly clampped at 0 and 1

to have zero gradient:

ρ̂k(ρ̃) =


1
2
(2ρ̃)k, 0 ≤ ρ̃ < 1

2

1− 1
2
(2− 2ρ̃)k, 1

2
< ρ̃ < 1

1, ρ̃ ≥ 1,

(7.38)

where k is gradually increased from 1.01 to 10 during the optimization.

The design domain is a 4m× 1m rectangle. The left boundary is fixed and a total force of

4N is evenly distributed on the top boundary. The grid resolution is 400× 100 with a spacing

0.01m. The target volume is 40%. As highlighted by red boxes, a lot of isolated material

blobs form when LETO is used without the narrow-band filter. Such visually isolated material

blobs actually belong to one continuum at the simulation resolution but are disconnected at

quadrature level (or higher resolution). The large compliance difference between evaluations

at low resolution (c = 6.016× 10−2) and high resolution (c = 7.804× 10−3) also indicates the

inconsistency, which differ by an order of magnitude. The proposed version of LETO can

remove those isolated blobs automatically during the optimization, resulting in consistent

compliance values when evaluated at optimization resolution c = 7.845× 10−3 and double

resolution (c = 8.386× 10−3). The compliance of SIMP at double resolution is 1.658× 10−2.

309



LETO SIMP

Figure 7.12: 3D beam. The results of SIMP and the proposed method LETO for this 3D
beam example is evaluated. One ending plane of this cubic domain is fixed and forces are
applied at the opposite plane’s bottom edge. The compliance value evaluated at double-
resolution grid for LETO and SIMP is 3.334× 10−4, 3.527× 10−4 respectively. Richer thin
supporting fibers can be seen in the result from the LETO .

The final volume reached by SIMP and LETO is 40.0% and 39.7%. Results generated by

LETO contains richer intricate fibers than the one by SIMP.

3D Beam Here LETO is further evaluated on a 3D beam problem; see Figure 7.12. In this

example, the design domain is a cuboid of 1.6m× 0.8m× 0.8m. One end of this cubic domain

is fixed and a total force of 0.825N evenly distributes on the bottom edge of the opposite

end. A symmetric boundary condition is utilized to reduce the simulation domain to half to

save computational cost. The actual simulation grid resolution is 64× 32× 16 with a spacing

of 0.025m. The target volume prescription is 20%. With LETO , the result forms a set of

thin supporting structures. The compliance for SIMP evaluated at double resolution, LETO

evaluated at optimization resolution, and double resolution are 3.527× 10−4, 3.323× 10−4,

3.334× 10−4 respectively. The final volume reached by SIMP and LETO is 20.0% and 19.6%.

3D Bridge In the second 3D example, LETO is tested on a 3D bridge problem; see

Figure 7.13. The design domain is a cuboid of a length of 4m, a width of 1m, and a height

of 1m. The two ending planes along the longest axis are fixed, and a plane force of a total

40.74N is added on the bottom (denoted by red arrows). Two symmetric boundary conditions

are utilized to reduce the simulation domain to a quarter. The grid resolution in optimization

is 160× 40× 40 with a spacing of 0.025m. The target volume is 20%. The appearance of
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LETO SIMP

Figure 7.13: 3D bridge. A 3D brigade design is considered in this example, where the two
ending planes of the cubic design domain is fixed, and a plane force is applied at the bottom.
The compliance value evaluated at double-refined grid resolution for LETO and SIMP is
1.643× 10−2, 1.892× 10−2 respectively. LETO produces intricate supporting truss structures
unseen in the results from the SIMP method.

LETO and SIMP appears to be significantly different in this example, where LETO generates

truss structures with rich fibers in the middle. The compliance value for SIMP evaluated

at double resolution, LETO evaluated at optimization resolution, and double resolution are

1.892× 10−2, 1.653× 10−2, 1.643× 10−2 respectively. The final volume reached by SIMP and

LETO at double resolution grid are 20.0% and 19.4%.

Ablation Studies In this section, an ablation study on LETO with different quadrature

point distributions, together with a comparison between LETO and SIMP with 1.2 filter

radius are demonstrated.

First, two different variations of LETO are compared with the proposed one:

• LETO with Gaussian quadratures. The quadratures within each cell are moved to

Gaussian points. This means the sample points of the density field are not uniformly

distributed as well.

• Single-density LETO. The density field within each cell is a constant. The en-

forcement is achieved by setting each cell’s density as the average density of the

uniformly-distributed quadratures within that cell. When computing the density field,

Gaussian quadratures are utilized to increase the numerical accuracy.

The experiment setup up is the same as Section 7.1.4.2. The optimization results are
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LETO with Uniform Quadrature

SIMP

LETO with Gaussian Quadrature

Single-Density LETO

Figure 7.14: Ablation study on variations of LETO.

Method
Quadrature
System

Constant Density
in Cell

Compliance
(refined grid)

Volume

LETO Uniform False 1.241× 10−3 30.1%
LETO Gaussian False 1.257× 10−3 30.2%
LETO Gaussian True 1.408× 10−3 30.5%
SIMP Gaussian True 1.264× 10−3 30.1%

Table 7.2: Quantative comparison between variations of the proposed LETO.

shown in Figure 7.14, where the top-left one is from the proposed LETO. The top-right one

and the bottom-left one are from the two variations of LETO. The bottom right one is from

SIMP. The quantitative comparison is included in Table 7.2.

Among these versions of LETO, the proposed one (LETO with uniformly-distributed

quadratures) performs the best. Compared to uniformly-distributed quadratures, Gaussian

quadratures may cause bias on the sampling of the density field during the C2P transfer. The

quantatitive comparison also shows the advantage of uniformly-distributed quadratures. The

uni-density version of LETO performs worst on this example. However, a notable distinction

between the result from uni-density LETO and the result from SIMP is that the result from

uni-density LETO has far more fine structures than SIMP. Likewise, the result from the

proposed LETO has more fine structures than uni-density LETO. These comparisons show

that the multi-density quadrature system and the particle-based material representation

jointly contributes to the generated fine structures.

312



Figure 7.15: Linear topology optimization results of SIMP with filter radius 1.2.

Then LETO is also compared with SIMP with filter radius 1.2. In this case, the filter

only touches the adjacent cells on three axes. The results of SIMP on the five linear topology

optimization examples are shown in Figure 7.15. The quantitative comparisons are shown in

Table 7.3. LETO still performs better in these examples and generate finer structures. In

addition, 3D results from SIMP have checkerboard artifacts because of the small filter radius.

Experiment
LETO SIMP (filter radius = 1.2)

Compliance
(refined grid)

Volume
Compliance
(refined grid)

Volume

Concentrated-load beam 1.243× 10−3 29.9% 1.316× 10−3 30.0%
Michell truss 5.054× 10−2 20.1% 5.055× 10−2 20.1%

Distributed-load beam 8.386× 10−3 39.7% 1.458× 10−2 40.0%
3D beam 3.334× 10−4 19.6% 3.666× 10−4 20.0%
3D bridge 1.643× 10−2 19.4% 1.938× 10−2 20.0%

Table 7.3: Quantitative comparison between LETO and SIMP with filter radius 1.2.

7.1.4.3 Nonlinear Topology Optimization

In this section, the robustness of LETO’s nonlinear static equilibrium solver is illustrated

by varying the force magnitude in large ranges. Two different objectives are also compared:

the elastic potential energy and mean compliance uTf ext, where f ext is the nodal external
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Linear

Nonlinear Nonlinear (X10 force) 

Nonlinear (X50 force) Nonlinear (X100 force) 

Figure 7.16: 2D long beam. The results of the proposed method under different force
magnitudes are shown in this figure. The resulting material distribution differs sharply and a
clear buckling behavior manifested. It can be seen that the proposed method is robust under
large deformations.

force field and u is the nodal displacement field. Many topology optimization methods for

nonlinear elasticity only consider cases with small strains, thus utilize the mean compliance

as the objective function, essentially a linearization of the elastic potential (Buhl et al., 2000;

Bruns and Tortorelli, 1998; Gea and Luo, 2001). The two objectives are equivalent in linear

elasticity up to a factor. The following examples show that they differ significantly under

large force magnitude. Minimizing the mean compliance is equivalent to minimizing the

displacements at force loading points. However, that does not necessarily minimize the elastic

energy stored in the material. Buckled structures will appear to reduce potential energy

when force magnitude is large. The examples shown are all optimized with nonlinear LETO .

The compliance and mean compliance value reported are all evaluated on a double refined

grid as in the linear topology optimization examples.

2D Long Beam In this example, a concentrated force is applied at the bottom center of a

long beam; see Figure 7.16. The 4m× 1m design domain is discretized with a grid resolution

800× 100. The target volume is 20%. Force magnitude at 1N, 10N, 50N, 100N are tested. As

shown in Figure 7.16, when the force magnitude is small, the result is close to that of linear

topology optimization. As the force becomes larger, more and more fibers form between the

force port and the two top corners. And finally, a lot of buckled fibers appear.

Under the maximal tested force magnitude, results of compliance (elastic potential

energy) minimization and mean compliance minimization are compared; see Figure 7.17.

The undeformed and deformed states are differentiated by translucent and solid coloring.
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Compliance minimization Mean compliance minimization

Initial state

Figure 7.17: 2D long beam structure with different objectives. The resulting material
distribution of minimizing compliance and mean compliance under X100 force is shown in
this figure.

LinearNonlinear

Nonlinear (X100 force)

Nonlinear (X1000 force)

Nonlinear (X5000 force)

Nonlinear (X10 force)

Figure 7.18: 3D wheel. In this example, a large range of force magnitudes is tested to
further examine the robustness of the proposed method in 3D. Out-of-plane forces are applied
to the wheel and the central region is fixed.

The final compliance of the result by minimizing elastic potential is 3.473 and the mean

compliance of the result by minimizing mean compliance is 3.921. Although the displacement

of force port is much smaller when minimizing mean compliance, the elastic energy stored in

the structure is much larger: the compliance of the result by minimizing mean compliance is

8.535, which is significantly larger than the compliance value resulting from minimizing the

elastic potential.
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Compliance minimization Mean compliance minimization

Buckled

Initial deformation

Figure 7.19: 3D wheel structure with different objectives. The difference in considering
compliance and mean compliance as the objective function is further compared in this experi-
ment, where a force is enforced to create significantly large initial deformation. Minimizing
compliance objective delivers strong buckling behavior in the resulting structure.

3D Wheel In this example, LETO is tested on a 3D wheel design problem under normal

forces; see Figure 7.18. The design domain is a flat cylinder bounded by a torus. The outer

radius and inner radius of the torus are 1.2m and 1m, respectively. The grid resolution is

96× 96× 8 with spacing 0.025m. A small cylinder through the center of the wheel is fixed,

and the outer torus is set to maintain solid. Forces are perpendicular to the wheel plane and

are evenly exerted on a thin layer of the wheel’s outer-most boundary. The magnitude of

total force at 1.09× 10−2N, 1.09× 10−1N, 1.09N, 1.09× 101N, 5.44× 101N are tested. The

target volume is 20%. When the force magnitude is small, the result of nonlinear elasticity is

almost identical to linear elasticity, which is symmetric w.r.t the wheel plane. As the force

magnitude becomes larger, the symmetry disappears, and the spokes become denser.

Same as the 2D example, when the force is very large, buckled fibers appear. As shown

in Figure 7.19, the buckled spokes open up in the deformed state. Result optimized by

minimizing mean compliance is shown as well to compare. Although the overall deformation

of it appears to be more moderate than the compliance-minimized result, it actually stores

significantly more energy. The mean compliance of the mean-compliance-minimized result

is 2.946. However, the energy it contains is 6.960, while the compliance of the compliance-

minimized result is only 2.063.
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7.1.5 Conclusion and Future work

A new hybrid Lagrangian-Eulerian topology optimization method is proposed. MPM dis-

cretization is used to enable sub-cell resolution on the fly. The method produces intricate

results with comparable and sometimes lower compliance at similar simulation costs than

Eulerian methods. With a unified treatment, the proposed method optimizes the elastic

potential as the compliance objective for both linear and highly nonlinear (e.g . neo-Hookean)

hyperelastic materials. Notably, the method robustly captures large deformation and buckling

behaviors in nonlinear cases.

The finite strain formulation in MPM allows the construction of a unified framework

for general hyperelastic materials. With the ability to resolve sub-cell features, LETO can

be further extended in future work to optimize anisotropic, heterogeneous, and multi-scale

materials. It would also be interesting to apply this framework to optimize different objectives,

e.g ., compliant mechanisms and task-oriented objectives for designing soft robots.

In the 2D long beam example for nonlinear elasticity, slight overlaps between some fibers

happen under the maximal tested load when the equilibrium is solved with the narrow-band

filter turned on. However, when the equilibrium is solved with weak material like SIMP,

the non-invertible neo-Hookean constitutive model will push fibers apart. This brings the

inspiration that non-invertible weak material could be a contact handling model. On the other

hand, it is tricky to tune weak material’s Young’s modulus — too large Young’s modulus can

provide non-realistic supporting force. On the other hand, too small Young’s modulus may

cause numerical issues, not to mention that the weak material wastes a lot of computational

power. More robust handling of contact should be developed to enable contact-aware topology

optimization.

Last but not least, the method relies on MMA. As mentioned, MMA requires careful

parameter tuning to perform well. Even with the general and consistent regularizations for

all examples on step length and the relative scaling between constraints and objective, it

is still unclear whether the optimization parameters chosen in this paper are optimal. It is

also unclear whether the current MMA parameters can conveniently adapt for extensions to
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more complex materials. Therefore, it would be meaningful to develop a more general and

easy-to-setup optimizer, likely taking advantage of second-order design sensitivity information.

7.2 Soft Hybrid Aerial Vehicle via Bistable Mechanism

7.2.1 Introduction

Hybrid aerial vehicles (HAVs) aim to improve flight efficiency and vehicle versatility by

embedding in a single vehicle the ability to achieve multiple flight modes (Ke et al., 2018;

Becker and Sheffler, 2016; Barbarino et al., 2011): a maneuverable copter mode capable of

vertical takeoff and landing, hover, and other agile maneuvers; and a fuel-efficient fixed wing

mode aimed at long-distance flight. Morphing aerial vehicles achieve different flight modes

by changing the morphology of the vehicle itself (Falanga et al., 2018; Zhao et al., 2018a,b),

but such morphing behavior often incurs additional costs of added weight, complexity

and control (Xu et al., 2019a; Floreano et al., 2017; Tan and Chen, 2020; Morton and

Papanikolopoulos, 2017).

In this paper, we propose a new HAV design (Figure 7.24), wherein the vehicle switches

between a quadrotor mode and a fixed wing mode via a compliant bistable mechanism

that deploys wings without requiring any additional actuators for reconfiguration beyond

those included for normal flight. The design is inspired by (Bucki and Mueller, 2019), in

which the arms of a quadrotor fold inward when the thrust is below a certain threshhold

to allow the vehicle to fit through a tight space. We replace the folding mechanism with a

bistable mechanism, allowing the HAV to remain in either mode in the absence of thrust.

Our system replaces rigid quadrotor arms with soft material which deforms between two

stable configurations, but constrains the propellers to a fixed ring. The first stable mode

causes wings to deploy, and the other mode folds the wings. To transition between modes,

we show that a sudden change in thrust can cause the battery to lag behind the motion of

the outer ring due to its inertia, and that this inertial lag can be used to generate a mode

switch without requiring any extra actuators. For this concept to work, the force required to
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Figure 7.20: The fabricated HAV prototype with fixed wing (top) and quadrotor (bottom)
modes.

actuate the bistable mechanism must fall within a specified range, based on the mass and

thrust capabilties of the system.

Our vehicle is automatically optimized via differentiable elasticity simulation, where

the mode switching mechanism is optimized by differentiating the material topology to

achieve a compliant bistable mechanism, and the wing deployment mechanism is designed by

differentiating the multi-bar connectivity and its reachability. Using topology optimization to

design bistable structures has been studied for years. Most previous works rely on nonlinear

finite element analysis to achieve large deformations, where robustly solving the displacement

control and computing the analytic sensitivity information remain challenging. (Prasad

and Diaz, 2005) maximized the distance between two equilibrium states, but they used a

genetic algorithm to optimize the topology without sensitivity information, which has a low

convergence rate. (James and Waisman, 2016) achieved bistability by manipulating the

force-displacement curve directly. They minimized the backward switching force and set
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a lower-bound for the forward switching force. Arc-length method was utilized to achieve

displacement control. (Chen et al., 2018a) followed this formulation, but achieved displacement

control by increasing a prescribed displacement gradually to a target one. (Chen et al., 2019)

proposed a new formulation that optimizes the range of the force-displacement curve so that

two-direction switching forces can both get optimized. We follow this idea as part of our

formulation. We further model the displacement control as an energy minimization problem

under equality constraints. With augmented Lagrangian method and projected Newton

method (Teran et al., 2005), our approach is conceptually simple and practically robust even

with large deformations.

We further utilize a multi-body mechanism for the wing design to enable large rotations.

Our idea stems from (Swartz and James, 2019), which connects layers of meshes with clusters

of springs with decayed stiffness to simulate pin joints between layers. The major advantage

of this model is in the effective enforcement of positional continuity. Inspired by this work,

we model joints as equality constraints between the interpolated displacements on the same

material coordinate of two different layers in our optimization-based equilibrium solver.

Consequently, each joint is placed inside a computational cell with its position optimized.

The contributions of this paper include:

• a novel soft Hybrid Aerial Vehicle (HAV) that leverages a compliant bistable mechanism

for achieving two flight modes: 1) a quadrotor mode enabling maneuverability and 2) a

fixed wing mode enabling efficient flight without requiring additional actuators;

• a topology optimization approach for both the bistable switching mechanism and the

wing deployment mechanisms of the HAV; and

• experimental validation of the HAV design in a fabricated prototype.

7.2.2 Design and Validation of the HAV System

The automated design pipeline for our HAV system is materialized using efficient simulations of

both elastostatics and elastodynamics. First, with a differentiable deformable body simulator
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that solves for static force equilibrium, the design task is formulated as a smooth optimization

problem where design variables are optimized with sensitivity information back-propagated

from the objective (Section 7.2.2.2 and 7.2.2.3). Second, the elastodynamic simulation quickly

validates each design and filters out inferior design choices before fabrication (Section 7.2.2.4).

The HAV system includes a central bistable structure and a foldable wing structure,

wherein the state transition of the bistable structure folds wings inside or opens them up.

These two parts are sequentially designed: a nonlinear elastic topology is first optimized to

obtain bistability, and then the rotations of the joints of its arms act as boundary conditions

for the wing design, where we reuse the differentiable equilibrium solver to optimize a

multi-body rigid mechanism and obtain optimal joint locations for the wings.

7.2.2.1 Nonlinear Topology Optimization for Soft Materials

Topology optimization tackles the inverse simulation problem of finding a material distribution

that fulfills mechanical and geometrical requirements under static equilibrium. We perform

topology optimization on nonlinear hyperelastic materials to design the central bistable

mechanism. Here we review the adopted topology optimization machinery.

Density-based topology optimization (Andreassen et al., 2011) usually represents a struc-

ture with a smooth density field ρ ∈ [0, 1] in the material space Ω, where 1 represents fully

solid and 0 represents fully void. Then topology optimization can often be desribed as a

constrained optimization problem with the objective function L being the elastic potential, or

compliance, and the constraints specifying static force equilibrium condition and the material

volume target.

We choose the neo-Hookean hyperelasticity (Bonet and Wood, 1997) to model nonlinear

elastic deformations that are crucial for bistable transitions. We then adopt a differentiable

Material Point Method (MPM) (Jiang et al., 2016; Hu et al., 2019b) for discretization. MPM

is a hybrid Lagrangian-Eulerian approach for computational solids, where the deformation

is discretized on quadrature particles and physical equations are discretized on a grid. The

sensitivity information is computed by differentiating the objective and the volume constraint
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with respect to the design variables, which are a set of Lagrangian particles in this work (Li

et al., 2021f). With gradients we solve the optimization problem using the Method of Moving

Asymptotes (MMA) (Svanberg, 1987a).

7.2.2.2 Bistable Mechanism via Topology Optimization

Bistable mechanism allows elastic structures to contain two stable equilibrium states, both of

which can stably maintain their shapes without requiring any external loads. It is especially

suitable for designing HAVs with two modes.

Following existing literature (James and Waisman, 2016; Chen et al., 2018a, 2019), we

tackle bistable mechanism by controlling the force-displacement curve. The structure is

bistable when the curve intersects the f = 0 (zero force) line in three distinct locations. The

force-displacement curve is acquired through displacement control in the quasi-static setting:

certain ports (Figure 7.21a) are constrained on a prescribed path by a given displacement

sequence, then the reaction force on a port (the force needed to maintain the port on the

track) is computed sequentially by static equilibrium on other nodes.

min
u

e(ρ, u) s.t. ui = u∗i (7.39)

where the displacement of node i is prescribed to some non-zero value u∗i . Note that fixed

nodes with zero displacements are eliminated from the degrees of freedom directly. The

equality constraint is handled using the augmented Lagrangian method. With projected

Newton and non-invertible line search (Li et al., 2021f; Nocedal and Wright, 1999), the

solver remains robust under arbitrarily large displacement-control constraints. After the

displacement field is acquired, the reaction force at the port i is then computed as Ri =
∂e
∂ui

.

Similarly to (Chen et al., 2019), we maximize the difference of two switching forces

(the forces required for snap-throughs between the two states), while minimizing the mean

compliance under a force along the control path to guarantee sufficient structural stiffness.
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Figure 7.21: (a) The design configuration, where the design domain of each arm is of an
L shape, and the control direction is visualized with the red arrows. Each arm can rotate
around an axle on its end; (b) The final optimized arm.

The complete formulation of the bistable mechanism topology optimization is then

min
ξ

nT

(
∂e(ρ, u2)

∂ui
− ∂e(ρ, u1)

∂ui

)
+ αfTu3

s.t.



u1 = argminu e(ρ, u) s.t. ui = ū1i

u2 = argminu e(ρ, u) s.t. ui = ū2i

u3 = argminu e(ρ, u)− uTf

nT ∂e(ρ,u1)
∂ui

≤ f ∗
1 , nT ∂e(ρ,u2)

∂ui
≥ −f ∗

2

V (ρ) ≤ V̄ ,

(7.40)

where n is the control path direction, f is the regularity force along n, and α controls the

weighting between two objectives. ū1i and ū2i correspond to our expected peak and valley

points in the force-displacement curve. f ∗
1 and f ∗

2 are target snap-through forces to match

practical needs.

The derivative of the reaction force Ri =
∂e
∂ui

w.r.t design variable ξ contains term dûi

dρ
,

which can be acquired by differentiating the force equilibrium equation ∂e
∂ûi

= 0 on ûi w.r.t ρ.

This leads to dRi

dξ
=
[
dρ
dξ

]T (
∂e2

∂ρ∂ui
+ ∂2e

∂ρ∂ûi

[
∂2e
∂ûi

2

]−1
∂2e

∂ûi∂ui

)
.

The settings of the initial design domain, the control direction and the Dirichlet boundary

condition are illustrated in Figure 7.21a. We model the initial topology following the

configuration of a quadrotor and initialize the density in the design domain to be the target

volume fraction everywhere. To provide clearance for the rotors, we use a 3D L shape domain,
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Figure 7.22: Force-displacement plot of the optimized topology with both equilibrium
configurations visualized.

which is constructed by the constructive solid geometry difference between a box of 80 mm ×

40 mm and a small box of 60 mm × 20 mm. The arm width is 5 mm for the first 20 mm close

to the center and 10 mm for the remainder. Each such domain eventually becomes an arm

connecting the outer ring with radius 125 mm to a central plate with radius 45 mm. The

central plate represents the inner housing platform whose density is fixed to be 1 throughout

the optimization. In addition to the displacement control constraints, the displacements

of the axles (represented with small cylinders) are also fixed to be zero so that the arms

can rotate around them (visualized with gray bars in Figure 7.21a). For efficiency, we only

optimize over a quarter of the whole domain. Force equilibrium is solved under two symmetric

boundary conditions so that the displacement field coincides with the one computed with the

full domain. Likewise, to ensure identical arms, we set an extra symmetry constraint on the

density field of each arm. The base Young’s modulus and Poisson ratio of the arm are set as

5.5×106 Pa and 0.48 (TPU’s material parameters). The Young’s modulus of the central plate

is set to be 1000 times larger (thus essentially treated as a rigid body). The expected peak

and valley points of the force-displacement curve are chosen as ū1i = 10 mm and ū2i = 50 mm.

Other parameters include target forces f ∗
1 = 4 N and f ∗

2 = 1.2 N, f = −f ∗
1n, volume fraction

V̄ = 0.2, and α = 50. The force parameters are chosen according to the available mechanical

parts of the quadrotor. The force magnitudes must be low enough to allow snap-through by

the motors’ thrust and high enough to prevent accidental snap-through due to gravity. The

324



optimized single arm is shown in Figure 7.21b. The full structure with four arms (Figure 7.22)

demonstrates two equilibrium states.

7.2.2.3 Multi-Body Mechanism for the Wing Design

The folding of the wing is driven by the state transition of the bistable structure. One

potential design strategy is to use a compliant mechanism (Pedersen et al., 2001). However,

the rotation of the wing’s leading edge is much larger than the arm of the bistable structure,

and in this situation the compliant mechanism tends to generate low-density elements to act

as joints, which makes the fabrication challenging. Inspired by (Swartz and James, 2019),

we use multiple pieces of the continuum material to represent different components and use

pinned joints (points in 2D and segments in 3D) to connect them. The material spaces of

all pieces are aligned so that the same material coordinate refers to the same position in

world coordinate at the undeformed state. We model a joint as one (for 2D joints) or a set of

(for 3D joints) equality constraint(s) in the form of u1(Xi) = u2(Xi) when solving the force

equilibrium, where u1 and u2 are displacement fields of two different pieces that we connect

and Xi is the common material coordinate. We only need a foldable wing skeleton, so we

set the topology as the simplest form: we connect joint positions on the same component

directly by straight bars. The only optimization variables are then the positions of these

movable joints.

For any material coordinate X on some component i, its corresponding displacement can

be written as u(X) = Ai(X)u, where Ai(X) is the interpolation kernel for X on component

i, and u is the concatenation of all nodal displacements from all components. So the above

equality constraint for material coordinate X on components i and j can be written as a

linear constraint Ai(X)u− Aj(X)u = 0. These constraints can be abstracted into a linear

constraint Hu = 0. Likewise, since wing folding is driven by the transitioning of the bistable

mechanism, its boundary condition is given by the rotation of the arm from the bistable
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structure as a displacement control constraint . The equilibrium equation is then:

min
u

e(u) s.t. ui = u∗, Hûi = 0 (7.41)

where we assume the displacement-controlled port is far from the joint so that matrix H is

full-rank. This optimization problem can also be solved using augmented Lagrangian.

We use three components and two joints in the design, where each joint connects two

components (Figure 7.23). This configuration choice is inspired by an earlier observation that

three solid areas connected by two low-density joints will be formed when we only optimize

over one single piece. One fixed joint is introduced to assist the rotational mechanism and

another one serves as the rotation center of the arm. The formulation of the final wing

optimization problem is then

min
X1,X2

||u1o − ū1o||22 + ||u2o − ū2o||22 + αe(u2)

s.t. ||(X1 + u2(X1))− (X2 + u2(X2))|| ≥ s1

Xx
2 + (u2)x(X2) ≥ s2, Xy

1 + (u2)y(X1) ≤ s3

(7.42)

where X1, X2 are the two joints’ material coordinates, o indices the wing tip, and α = 10

controls the weighting between objectives. During forward motion, the transition from the

quadrotor mode to the fixed-wing mode is achieved by pulling the central plate followed by

releasing it (Section 7.2.2.4); it will experience a larger deformation (with displacement field

u2) than the deformation at the second equilibrium (with displacement field u1). Therefore

we need to control this more deformed state as well. Specifically, u1 and u2 are both solved

using Equation (7.41) under the same joint displacement equality constraints but different

displacement controls, u1i = ū1i and u2i = ū2i . We also minimize the compliance to ensure

that no energy is stored in the structure. The first constraint is used to sufficiently separate

the two movable joints for easier fabrication. The other two constraints prevent joints from

colliding with the bounding boxes of other parts.

The terms in the objective and the constraints can all be abstracted into L(u,X) that
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Movable joints

Fixed joints

Displacement control

Figure 7.23: Optimized configuration. The deformation state of u2 is illustrate on the bottom
right corner. Top left shows how we choose the boundary condition and the objective.

depends on the mesh displacement and joint positions, where u also implicitly depends on

X (the concatenation of the material coordinates of all movable joints to be optimized)

through Equation (7.41). The derivative of L is given by dL
dX

= ∂L
∂X

+
[
dûi

dX

]T ∂L
∂ûi

, where dûi

dX
can

be acquired by differentiating the equilibrium governing equation. The joint displacement

constraints involve degrees of freedom that cannot be eliminated, thus we solve the governing

equation using Lagrange multipliers and obtain dûi

dX
, and then compute dL

dX
for solving the

optimization problem in Equation (7.42) with MMA.

In Figure 7.23, the final optimized wing is shown, the design domain and boundary

condition is illustrated at the top left corner and its deformed state is illustrated at the

bottom right corner. Note that the optimization is done in 2D with point joints, but the

mechanism works in the same way when the point joints are extruded to be segments. For

the current prototype, we extrude by 8 mm to ensure that the 3D printed parts will be sturdy.

The visualization is exactly how we assemble the wing parts in reality.

We simplify the optimized bistable mechanism arm as a straight bar and control the

displacement on the tip to simulate rotation. The rotation angle (in radians) of the arm at

the second equilibrium and the maximal-deformation state is 0.83 and 0.93, where ū1i and ū2i

are set accordingly. The auxiliary fixed joint is at (35 mm, 20 mm) w.r.t. the fixed joint of

the arm. The rotation of the wing tip is assumed to be around (55 mm, 20 mm). ū1o and ū2o
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are determined when the rotation angles are 2.45 and 2.46 respectively. The rotation of the

wing does not need to be precise, since we optimize with L2 norm. ū1o and ū2o only provide a

guide for the optimization, and we can tune the rotation angles of the wing tip a little to

adjust the position of the leading edge.

7.2.2.4 Validation through Forward Elastodynamic Simulations

The computational procedures described above for automatic designs are based on quasi-static

approximations. To more reliably predict whether the designed system can function properly

in practice, the whole system needs to be tested with dynamic forward simulations.

We use implicit MPM (Wang et al., 2020a) to perform the elastodynamic simulations. At

each time step, we execute backward Euler time integration (taking step size ∆t) with lagged

Rayleigh damping (system matrix only) from the last time step, where the nonlinear system

can be reformulated into an incremental potential minimization problem (Gast et al., 2015;

Li et al., 2019a). Considering the assembly constraints, we solve

min
∆x

1

2
||∆x− ∆̃x||2M +

γ

2∆t
||∆x||2Kn +∆t2(e(xn+1)−∆xTfn

ext)

s.t. Hu = 0,

where Kn = ∂2e
dx2 (x

n), M is the mass matrix, e is the elastic potential, fext is the external

force, γ is the damping coefficient, vn,n+1 and xn,n+1 denote velocities and positions from the

known previous (n) and the unknown current (n+ 1) time steps, ∆̃x = vn∆t+ g∆t2, and

||x||2A represents xTAx. The above optimization is solved by augmented Lagrangian with

projected Newton and non-invertible line search (Wang et al., 2020a; Li et al., 2020). For

stability we adopt a total Lagrangian formulation for tracking the deformation (de Vaucorbeil

et al., 2020).

An assembled HAV is visualized in Figure 7.24. The electronics and the battery are

represented with boxes to simulate their inertia effects only. There are four propellers which

are simulated as four external forces applied on the corresponding positions. Mode transition

of the HAV relies on the inertia of the central mass. The theoretical transition procedure is
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Figure 7.24: Final design (the simulated HAV system).
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Figure 7.25: Theoretical state transition procedures.

illustrated in Figure 7.25. It is easy to transit from the fixed wing mode to the quadrotor

mode (F to Q): when the ring is accelerated suddenly, the fictitious inertial force drags the

central mass to the second equilibrium. However, it is not as straightforward to transit from

the quadrotor mode to the fixed wing mode (Q to F). For propeller efficiency, we constrain our

solution to only utilize thrust in the forward direction, which implies that the inertial force

on the central mass is always pointing from the first equilibrium to the second equilibrium.

Through experiments we discover a solution that utilizes the inertial force to temporarily

store energy in the arm. After the propellers stop outputting forces, this energy is released

to bounce the central mass from the second equilibrium towards the first equilibrium.
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7.2.3 Fabrication and Evaluation

7.2.3.1 Prototype

We build the HAV prototype in Figure 7.20 using the electronics and propellers from an

ARRIS X220 V2 5′′ FPV Racing Drone (ARRISHobby, a). The ARRIS drone has four 5′′

propellers placed 220 m apart along the diagonal, but we increase the diameter to 250 mm

for our HAV to accommodate motion of the electronics housing. The combination of ARRIS

X2206 2450kV brushless motors and Dalprop T5045C high efficiency propellers produces 8.9

N of thrust from each propeller when operating at 12 V (ARRISHobby, b). The drone is

powered by a 4S 1500 mAh 100C LiPo battery. and can be remote controlled via radio signal.

For experimental validation, we use the provided remote control and communicate over radio

using the Radiolink AT9S. The total mass of the off-the-shelf system is 490 g including the

battery. At 783 g, our prototype is not optimized for weight but the HAV has been shown in

simulation and in testing to still have sufficient thrust.

For the switching mechanism, we 3D print four arms from flexible thermoplastic polyurethane

(TPU) filament on a Makergear M3-ID 3D printer. Each arm replaces an arm of the ARRIS

frame and connects from the housing to a ring laser cut out of 1/4′′ thick acrylic sheet. To

allow the arm to rotate and deform, it is attached to an cylindrical axel 20 mm below the

ring. The motors mounted to the top of the ring actuate the propellers.

We 3D print the three components of the wing from the topology optimization out of

polylactic acid (PLA) filament. The long leading edge of the wing mechanism is constructed

from a 8 mm diameter carbon fiber rod. The second fixed joint is 3D printed as an extension

to the connector holding the first fixed joint. We also add a rigid 3D printed bar extending

into the ring that serves as an anchor for the wing surface.

The wing surface is a folded arc segmented into four panels and fabricated out of a 0.005′′

thick polyethylene terephthalate (PET) film ( Figure 7.20). Two thin wing ribs cut from

1/8′′ thick PET glycol (PETG) rotate about X2 and are attached to the second and third

panels to guide the folding behavior (Figure 7.23). We determined that for proper folding

action, the central fold needs to be biased towards the folded state, which we accomplish by
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Figure 7.26: (a) Motion of the bistable mechanism during F to Q. (b) Motion of the bistable
mechanism during Q to F.

sewing this fold.

The resulting prototype is bistable and able to support the weight of the battery against

gravity when in fixed wing mode, as predicted by Figure 7.22, which will allow for a high

climbing angle for the fixed wing. When the bistable mechanism snaps through, the wing

surface is able to collapse and fold out as expected.

7.2.3.2 1D testing without wing

We mount the HAV to the end of a low friction boom with an arm length of 0.987 msuch

that the thrust of the rotors is in the tangential direction. The setup was placed in a Vicon

motion capture system to allow tracking of the boom’s rotation. A GoPro Hero 8 mounted

on the arm of the boom records the motion of the bistable mechanism.

We performed 3 trials of Q to F and 3 trials of F to Q. Each trial began with the HAV at

rest. The F to Q transition consists of one short pulse with an average duration of 0.36s,

while the Q to F transition consists of one long full thrust pulse with an average duration

of 0.95s. Despite variability in control input due to manual operation of the HAV, the

switching is reliable and the GoPro footage reveals that the central displacement of the

bistable mechanism is similar to the predicted behavior of the simulation for both F to Q

(Figure 7.26a) and Q to F (Figure 7.26b).
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(a) (b)

Figure 7.27: (a) F to Q 1D wing angle comparison. An angle of zero corresponds to the fixed
wing mode. (b) Q to F 1D wing angle comparison.

7.2.3.3 1D testing with wing

When the HAV is constrained to rotate on a boom, the centripetal force dominates the rotation

of the wing, causing both wing tips to rotate to the outside of the circle. Thus, performing

boom tests with the wing did not provide useful information about the performance of the

HAV. Instead, due to limited access to a large space and safety concerns with flying the

untested prototype in a straight line, we conducted wing tests applying accelerations to

the HAV prototype by hand. Grasping the ring of the HAV with the plane of the wing

perpendicular to gravity, the experimenter manually exerted a pulsed force similar in profile

to that measured during boom experiments. A GoPro fastened to the ceiling recorded the

experiment at 120 fps, and the angle of the each wing was extracted. In all cases, the

vehicle was able to successfully transition from Q to F and from F to Q, despite variability in

the “control inputs.” Compared to the simulation, where wing deployment was symmetric,

imbalances in the frictional forces caused small differences in wing fold-out angle (Fig. 7.27a,

7.27b). When the wing surface was added, further deviation occurred since the non-optimized

folding wings added extra resistance to the foldout mechanism and prevented the mechanism

from reaching its extreme angles.
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7.2.4 Discussion

We have demonstrated a novel design for a morphing HAV that leverages a bistable mechanism

and vehicle accelerations to change flight modes. A topology optimization approach success-

fully generates a bistable mechanism with appropriate snap-through force that is low enough

for the HAV’s motors to trigger snap-through but high enough to prevent accidental mode

switching. We showed that reliable mode switching is possible on the physically constructed

system, even under variable acceleration inputs. We also demonstrate topology optimization

of a folding wing mechanism driven by the motion of the bistable mechanism.

Additional design iterations will likely need to be performed to create an efficient HAV

design. Sometimes during experiments, the fabricated prototype deforms at the connection

of the TPU arm to the axel rather than rotating, and thus does not transmit the motion to

the wing. We will iterate over the design of this connection so that there is no compliance at

the axle. Redesigning the rigid HAV components to be cut from carbon fiber rather than 3D

printed will allow for a reduction in system mass. Further, the wing surface has not yet been

optimized.

Future work includes progressing to more 3D flight testing and the development of a

controller for the switching maneuver. Since pitching motion is already required when

switching between modes, we will leverage this for more efficient transitions. Pitching has

been qualitatively observed to aid in both the Q to F and F to Q transitions.
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CHAPTER 8

Conclusion

In this dissertation, we explored various tools for constructing physics-integrated digital twins.

First, we developed diverse techniques to enhance the accuracy and efficiency of simulations.

Additionally, we investigated methods that enable simulations based on reconstructions from

real-world data. Finally, we demonstrated applications where mechanical designs can be

created in a virtual environment and subsequently fabricated into real systems.

Our key contributions are outlined as follows:

Accurate Inelasticity Modeling. We introduce ECI (Section 3.1), a fully implicit

inelasticity simulation framework. In this framework, we analytically derive plastic models

with variational energies suitable for optimization-based time integration. Additionally, we

propose PlasticityNet (Section 3.2) , a neural network-based extension of the ECI framework

that generalizes to arbitrary plasticity models by learning plastic energies.

FEM-MPM Coupled Simulation. We present BFEMP (Section 4.1), a fully im-

plicit strong FEM-MPM coupling framework utilizing IPC for interdomain contact. To

improve efficiency and generality, we introduce Dynamic Duo (Section 4.2), which employs

asynchronous time splitting to couple implicit FEM with explicit MPM.

Efficient Simulation. We develop SPPD (Section 5.1), a high-performance cloth

simulation system that accelerates the convergence of projective dynamics by integrating

subspace dynamics with Jacobian relaxations. Additionally, we propose XPBI (Section 5.2),

a method that combines continuum plasticity theory with the fast XPBD simulator to enable

efficient inelasticity simulations.

Real-to-Sim. By leveraging neural rendering and differentiable rendering techniques,
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we enable several real-to-sim applications: we estimate physical parameters from videos

(PAC-NeRF, Section 6.1), directly simulate real-world reconstructions (PhysGaussian,

Section 6.2), create an interactive physics-based digital twin of a captured environment in

virtual reality (VR-GS, Section 6.3), and generate simulation-ready garments from a casually

captured single-view image (Dress-1-to-3, Section 6.4).

Sim-to-Real. We introduce LETO (Section 7.1), a novel topology optimization frame-

work based on MPM. Using LETO, we successfully designed and fabricated an HAV (Sec-

tion 7.2) with both fixed-wing and quadrotor modes.
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APPENDIX A

Detailed Derivations of Variational Plasticity Models

A.1 Force-based Implicit Plasticity

Let’s first derive the implicit plasticity treatment in a similar fashion to (Klár et al., 2016).

Note that we will get a different expression which we claim is better. The idea is to not follow

any variational principle and define implicite plasticity through implicit force balance. Note

that in an updated Lagrangian MPM setting, we have

F E,tr =

(
I +

∑
i

vn+1
i ∇w⊤

ip

)
F E,n. (A.1)

A weak form derivation of the momentum balance equation

R(X, 0)A(X, t) = ∇X · P (A.2)

would results in a “force” term (for node i)

fi = −
∫
Ω0

P∇XQidX, (A.3)

where Qi = Qi(X, t) is a test function. For MPM, we typically push forward Qi onto its

Eulerian Ωn counterpart qi(x, t) by observing from chain rule that∇XQi = F n⊤∇xqi. Further

using the volume integral push forward property that
∫
Ωt
g(x)dx =

∫
Ω0
G(X)J(X, t)dX, the

push forward of (Equation (A.3)) is

fi = −
∫
Ωn

1

Jn
PF n⊤∇xqidx. (A.4)
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MPM uses particle quadratures to discretize the integral. Denoting ∇xqi(x
n
p , t

n) as ∇wn
ip,

we would then have

fi = −
∑
p

V n
p

Jn
p

PpF
n
p
⊤∇wn

ip (A.5)

= −
∑
p

V 0
p PpF

n
p
⊤∇wn

ip. (A.6)

For implicit plasticity, we then plug in P = ∂ΨE

∂FEF
P−⊤

(Bonet and Wood, 1997) to finally get

fn+1
i = −

∑
p

V 0
p

∂ΨE

∂F E
(F E,n+1

p )F P,n+1
p

−⊤
F n

p
⊤∇wn

ip, (A.7)

where for each particle p,

F E,n+1 = Z(F E,tr), (A.8)

F P,n+1 = F E,n+1−1
F n+1 = F E,n+1−1

F E,trF P,n. (A.9)

Clearly, the dependency of fn+1
i on x is in both the ∂ΨE

∂FE term and the F P,n+1
p

−⊤
term. Note

that by observing

F n+1 = F E,n+1F P,n+1 = F E,trF P,n = F E,tr(F E,n)−1F n,

we know

F P,n+1−⊤
= (F E,n+1)T (F E,tr)−⊤(F E,n)T (F n)−⊤,

so

F P,n+1−⊤
F n⊤ = (F E,n+1)T (F E,tr)−⊤(F E,n)T .

This means we don’t actually need to track the plastic deformation gradient F P on the
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particles. We can use

fn+1
i = −

∑
p

V 0
p

∂ΨE

∂F E
(F E,n+1

p )(F E,n+1)TF E,tr−⊤
(F E,n)T∇wn

ip. (A.10)

Note that by replacing the future states F E,tr and F E,n+1 by the last state F E,n, we get the

a force formulation for explicit methods:

fn+1
i = −

∑
p

V 0
p

∂ΨE

∂F E
(F E,n

p )(F E,n)T∇wn
ip. (A.11)

This is exactly the formulation we used in the traditional pipeline of MPM simulation for

elastoplastic materials.

The formulation in (Klár et al., 2016) Instead of using (Equation (A.7)) or (Equa-

tion (A.10)), Klár et al. (2016) used an implicit force formulation derived from (Equa-

tion (A.11)), where only the stress term is made implicit:

fn+1
i = −

∑
p

V 0
p

∂ΨE

∂F E
(F E,n+1

p )F E,n
p

⊤∇wn
ip, (A.12)

= −
∑
p

V 0
p

∂ΨE

∂F E
(Z(F E,tr

p ))F E,n
p

⊤∇wn
ip (A.13)

which is equivalent to setting F P,n+1
p

−⊤
F n

p
⊤ = F E,n

p
⊤
, i.e., F P,n

p = F P,n+1
p in (Equation (A.7)).

Thus (Klár et al., 2016)’s implicit force-plasticity can be treated as a particular semi-implicit

choice of modifying (Equation (A.7)).

Let B(Σ) = ∂ΨE

∂ΣE (Z(Σ)). The hessian of B is

∇B = (
dZ

dΣ
)⊤

∂2ΨE

∂(ΣE)
2 (Z) (A.14)

where dZ
dΣ

is not symmetric. So B cannot be a gradient of a smooth energy.
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Remark: Regardless of whether (Equation (A.7)) or (Equation (A.13)) is adopted, we

could easily verify that in the plastic region,

fi ̸= −
∂E

∂xi

where

E =

∫
Ω0

ΨE(F E)dX ≈
∑
p

V 0
p Ψ

E(F E) =
∑
p

V 0
p Ψ

E(Z(F E,tr)). (A.15)

This is clear because in the region outside (but not touching) the yield surface (consider a 1D

metal), (Equation (A.15)) is a constant with zero derivative. But clearly at this configuration

one should not get a zero force.

A.2 Augmenting the Energy: A One-Dimensional Inspiration

Consider a one-dimensional elastoplastic spring with its left end fixed at x = 0. Let its rest

length be V0 = 1. Under the framework of finite strain elastoplasticity F = FEF P , we have

F (x) = x. (A.16)

Looking at tn → tn+1, we get

xn+1 = F n+1 = FE,n+1F P,n+1 = FE,trF P,n, (A.17)

where FE,tr is a trial stress by assuming purely elastic deformation:

FE,tr(x) =
1

F P,n
x. (A.18)

We can use hyperelasticity to define the elastic response:

ΨE(FE) =
k

2
log(FE)2. (A.19)

339



We’ll pick stiffness k = 1 for brevity. The Kirchhoff stress can then be given by

τ(FE) :=
∂ΨE

∂FE
FE⊤

= log(FE). (A.20)

Let the yield stress be τY = log(FY ), where FY ∈ [1,∞) is a critical strain, and define

the yield function to be τ − τY ≤ 0, we can then follow standard plasticity treatment (Simo

and Hughes, 1998) to reach a simple return mapping procedure with the form

FE,n+1 = Z(FE,tr) =


FE,tr FE,tr ≤ FY

FY otherwise

. (A.21)

In terms of the Hencky strain ϵE = log(F E), return mapping comes from a discretized

plastic flow rule with the form (assuming FE,tr > FY )

ϵE,tr − ϵE,n+1 = δγ (A.22)

⇔ δγ = log

(
FE,tr

FE,n+1

)
= log

(
FE,tr

FY

)
> 0. (A.23)

Theorem A.2.1 (Augmented energy density for springs). In the problem setting described

above (V0 = 1, k = 1), using the following energy density function outside the yield surface

Ψ(x) =


ΨE(Z(FE,tr(x))) + τY δγ(F

E,tr(x)) FE,tr > FY

ΨE(FE,tr(x)) otherwise

(A.24)

reveals a force that is equivalent to what one would get if one performed the force-based

implicit plasticity.

Proof. The result for the elastic region is trivial and we skip the proof.

Note that we only have one element with volume V 0 = 1, thus the total energy E = Ψ.

For x in the plastic region (FE,tr > FY ), since Z(F
E,tr(x)) = FY is a constant, the

derivative of the first term in the energy vanishes. Plugging in (Equation (A.18)) and
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(Equation (A.23)) for FE,tr and δγ, we get

−f =
∂E

∂x
=
∂Ψ

∂x
= τY

∂δγ

∂x
= τY

FY

FE,tr

1

FY

1

F P,n
=
τY
x
. (A.25)

Next we take a force-based implicit plasticity approach to derive the force. We could

discretize the problem with linear FEM by using a material space interpolation function

Ni(X) = X,X ∈ [0, 1]. Therefore ∇XN = 1. Since we have only one degree of freedom and

one element, we get

−f =

∫
Ω0

P∇XNdX = P =
∂ΨE

∂FE
(Z(FE,tr))F P−1

=
logFY

FY

F P−1
. (A.26)

Since

x = F n+1 = FE,n+1F P,n+1 = FY F
P,n+1 ⇒ F P−1

=
FY

x
,

we have

−f =
logFY

FY

FY

x
=
τY
x

(A.27)

Therefore, two approaches result in the same force on this one-DOF system.

To enable a line search projected Newton’s method applied on Ψ(x) defined by (Equa-

tion (A.24)), we further prove

Theorem A.2.2. Ψ(x) defined by (Equation (A.24)) is piecewise C∞ and everywhere C1.

Proof. Piecewise high order smoothness is easy to show so we skip. Below we only prove that

the energy density function has a continuous first-order derivative at FE,tr = FY .

When FE,tr ≤ FY , Ψ = ΨE(F
E,tr(x)),

∂Ψ

∂FE,tr
=
∂ΨE

∂FE
(FE,tr) =

logFE,tr

FE,tr
, (A.28)

and at FE,tr = FY , it evaluates to
logFY

FY
.
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When FE,tr > FY , Ψ = ΨE(Z(FE,tr(x))) + τY δγ(F
E,tr(x)). Since Z(FE,tr) = FY is a

constant, the first term has derivative 0. Differentiating the second term gives

∂Ψ

∂FE,tr
= τY

∂δγ

∂FE,tr
= τY

FY

FE,tr

1

FY

=
τY
FE,tr

, (A.29)

and at FE,tr = FY , it also evaluates to logFY

FY
.

A.3 Extending to Multiple Dimensions: Von-Mises

A.3.1 Augmented Energy Theorem

It is equivalent and simpler to discuss in the principle stretch space. The deformation

gradient is decomposed as F = U diag(Σ)V ⊤. The return mapping is then defined as

Z(F ) = U diag(Ẑ(Σ))V ⊤.

Let’s define:

ϵ = ln(Σ) ϵ̂ = ϵ− sum(ϵ)

d
1 δγ = ∥ϵ̂∥ − τY

2µ
(A.30)

The return mapping for the von-Mises plasticity model in the principal stretch space is

defined as

Z(Σ) =


Σ, δγ ≤ 0

exp (ϵ− δγ ϵ̂
∥ϵ̂∥), otherwise

(A.31)

Denote H = ϵ− δγ ϵ̂
∥ϵ̂∥ , then

dH

dΣ
= diag(Σ−1)− (1− τY

2µ∥ϵ̂∥
)(diag(Σ−1)− 1

d
1Σ−⊤)− τY

2µ∥ϵ̂∥
ŝŝ⊤ diag(Σ−1) (A.32)

where ŝ = ϵ̂
∥ϵ̂∥ .

The Jacobian of return mapping outside the yeild surface is

dZ

dΣ
= diag(Z)

dH

dΣ
(A.33)
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Define the augmented elastoplastic energy density function as:

Ψ(F ) =


ΨE(F ), δγ(F ) ≤ 0

ΨE(Z(F )) + τY δγ(F ), otherwise

(A.34)

Lemma A.3.1.

∀F , τ (Z(F ))
∂ΨE

∂F E
(Z(F ))Z(F )⊤ ≡ ∂Ψ(F )

∂F
F T (A.35)

Proof. In the principal stretch space, it is equivalent to prove that

∀Σ, ∂Ψ
E

∂ΣE
(Z(Σ))⊙Z(Σ) ≡ ∂Ψ(Σ)

∂Σ
⊙Σ,

where ⊙ denote the element-wise multiplication between two vectors.

It is trivial that inside the yield surface, the statement is true, since that Z is the identity

map.

Outside the yield surface, we have

∂ΨE

∂ΣE
(Z)⊙Z =2µ ln(Z) + λ sum(lnZ)1

=2µH+ λ sum(H)1

(A.36)

∂Ψ(Σ)

∂Σ
=(
dZ

dΣ
)⊤
∂ΨE

∂ΣE
(Z) + τY (

dϵ̂

dΣ
)⊤ŝ

=(
dZ

dΣ
)⊤
(
2µH⊙Z−1 + λ sum(H)Z−1

)
+ τY (diag(Σ

−1)− 1

d
1Σ−⊤)⊤ŝ

=(
dZ

dΣ
)⊤
(
2µH⊙Z−1 + λ sum(H)Z−1

)
+ τY ŝ⊙Σ−1 − sum(ŝ)

d
Σ−1

=(
dH

dΣ
)⊤ (2µH+ λ sum(H)1) + τY ŝ⊙Σ−1

(A.37)
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2µ(
dH

dΣ
)⊤H =2µH⊙Σ−1 − (2µ− τY

∥ϵ̂∥
)(H⊙Σ−1 − sum(H)

d
Σ−1)− τY

∥ϵ̂∥
ŝ⊤H(ŝ⊙Σ−1)

=2µH⊙Σ−1 − (2µ− τY
∥ϵ̂∥

)(H⊙Σ−1 − sum(H)

d
Σ−1)− τY

∥ϵ̂∥
(ŝ⊤ϵ− δγ)(ŝ⊙Σ−1)

=2µH⊙Σ−1 − (2µ− τY
∥ϵ̂∥

)(H− sum(H)

d
1)⊙Σ−1 − τY

∥ϵ̂∥
(ŝ⊤ϵ̂− δγ)(ŝ⊙Σ−1)

=2µH⊙Σ−1 − (2µ− τY
∥ϵ̂∥

)(H− sum(H)

d
1)⊙Σ−1 − τY

∥ϵ̂∥
(∥ϵ̂∥ − δγ)(ŝ⊙Σ−1)

=2µH⊙Σ−1 − τY ŝ⊙Σ−1

− 2µ

∥ϵ̂∥
(∥ϵ̂∥ − τY

2µ
)(H− sum(H)

d
1)⊙Σ−1 +

τY δγ

∥ϵ̂∥
(ŝ⊙Σ−1)

=2µH⊙Σ−1 − τY ŝ⊙Σ−1 − δγ

∥ϵ̂∥
(2µ(ϵ̂− δγŝ))⊙Σ−1 +

τY δγ

∥ϵ̂∥
(ŝ⊙Σ−1)

=2µH⊙Σ−1 − τY ŝ⊙Σ−1 − δγ

∥ϵ̂∥
(2µ(∥ϵ̂∥ − δγ))ŝ⊙Σ−1 +

τY δγ

∥ϵ̂∥
(ŝ⊙Σ−1)

=2µH⊙Σ−1 − τY ŝ⊙Σ−1

(A.38)

(
dH

dΣ
)⊤1 =Σ−1 − (1− τY

2µ∥ϵ̂∥
)(Σ−1 −Σ−1)− τY

2µ∥ϵ̂∥
sum(ŝ) diag(Σ−1)ŝ

=Σ−1

(A.39)

So we finally get

∂Ψ(Σ)

∂Σ
⊙Σ = (2µH⊙Σ−1+λ sum(H)Σ−1)⊙Σ = 2µH+λ sum(H)1 =

∂ΨE

∂ΣE
(Z)⊙Z (A.40)

Theorem A.3.2 (Augmented energy theorem for von-Mises plasticity). The energy density

function Equation (A.34) reveals a force that is equivalent to what one would get if one

performed the force-based implicit plasticity.
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Proof. According to Lemma Lemma A.3.1 and Eq Equation (A.10),

fn+1
i =−

∑
p

V 0
p

∂ΨE

∂F E
(F E,n+1

p )(F E,n+1)TF E,tr−⊤
(F E,n)T∇wn

ip (implicit plasticity force)

=−
∑
p

V 0
p

∂ΨE

∂F E
(Z(F E,tr

p ))(Z(F E,tr
p ))TF E,tr−⊤

(F E,n)T∇wn
ip

=−
∑
p

V 0
p

∂Ψ

∂F
(F E,tr

p )F E,n
p

⊤∇wn
ip

(implicit MPM force from the augmented elastoplastic energy)

(A.41)

Von-Mises Plasticity under Linear Hardening Under linear hardening, the Kirchhoff

stress in principle stretch space is

τ (Z(Σ)) =


2µ dev ϵ+ (λ+ 2µ

d
) log J1, δγ ≤ 0,

τnY
dev ϵ

∥dev ϵ∥ + 2µKδγ dev ϵ
∥dev ϵ∥ + (λ+ 2µ

d
) log J1, otherwise,

(A.42)

where K ∈ [0, 1] is the linear hardening coefficient. Here τY is not constant over time, instead,

it evolves discretely by the linear hardening rule:

τn+1
Y = τnY + 2µKδγ. (A.43)

We can rearrange the stress terms into

τ (Z(Σ)) =


2µdev ϵ+ (λ+ 2µ

d ) log J1, δγ ≤ 0,

K(2µdev ϵ+ (λ+ 2µ
d ) log J1) + (1−K)(τnY

dev ϵ
∥dev ϵ∥1+ (λ+ 2µ

d ) log J1), otherwise.

(A.44)
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This leads to the following augmented energy:

Ψ(F ) =


ΨE(F ) δγ ≤ 0

KΨE(F ) + (1−K)
(
ΨE(Z(F )) + τnY δγ

)
otherwise

(A.45)

The energy is a linear combination of the purely elastic case (K = 0) the perfectly plastic

case(K = 1).

A.3.2 Implementation Tricks

By Theorem Theorem A.3.2, the gradient of the augmented energy in the principal stretch

space can be simplified as

∂Ψ

∂Σ
=
∂ΨE

∂ΣE
(Z(Σ))⊙Z(Σ)⊙Σ−1 = (2µH+ λ sum(H)1)⊙Σ−1, (A.46)

which avoids the evaluation of dZ
dΣ

.

Then the hessian is

∂2Ψ

∂Σ2 = diag(Σ−1)(2µI + λ11⊤)
dH

dΣ
− diag(2µH+ λ sum(H)1) diag(Σ−2) (A.47)

Following (Jiang et al., 2016), the other coefficients needed to evaluate hessian w.r.t.

deformation gradient are

∂ΣiΨ− ∂ΣjΨ

Σi −Σj =
1

ΣiΣj (−2µH
i + 2µΣi ln(Z

i)− ln(Zj)

Zi −Zj

Zi −Zj

Σi −Σj − λ sum(H)) (A.48)

where
Zi −Zj

Σi −Σj = (1− δγ

∥ϵ̂∥
)(
exp(Hi)− exp(Hj)

Hi −Hj

ln(Σi)− ln(Σj)

Σi −Σj ) (A.49)
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Figure A.1

A.4 Pressure Dependent Yielding: Drucker-Prager

The yielding stresses are pressure dependent for the Drucker-Prager palsticity model. For Σ

with different sum(Σ) outside the yield surface, the yield stress is different. If we still use

(Equation (A.10)) as energy density function, the gradient is then

∂Ψ

∂Σ
= (

dZ

dΣ
)⊤
∂ΨE

∂ΣE
(Z) + τY

dδγ

dΣ
+ δγ

dτ

dΣ
(A.50)

The relation between the following three vectors

A =
∂ΨE

∂ΣE
(Σ)⊙Σ,

B =[(
dZ

dΣ
)⊤
∂ΨE

∂ΣE
(Z) + τY

dδγ

dΣ
]⊙Σ,

C =[(
dZ

dΣ
)⊤
∂ΨE

∂ΣE
(Z) + τY

dδγ

dΣ
+ δγ

dτY
dΣ

]⊙Σ,

(A.51)

can be visualized in Fig Figure A.1.

It can be verified that

∀F , ∂Ψ
E

∂F E
(Z(F ))Z(F )⊤ ≡ [(

dZ

dF
)⊤
∂ΨE

∂F E
(Z) + τY

dδγ

dF
]F T . (A.52)

According to the proof of Theorem Theorem A.3.2, the MPM force computed from (dZ
dF

)⊤ ∂ΨE

∂FE (Z)+

τY (
dδγ
dF

) still coincides with the force from implicit plasticity. However, the Jacobian matrix
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of B(Σ) = (dZ
dΣ

)⊤ ∂ΨE

∂ΣE (Z) + τY
dδγ
dΣ

is

∇B =
d2ΨE(Z(Σ))

dΣ2 + τY
d2δγ

dΣ2 + (
dδγ

dΣ
)⊤
dτY
dΣ

, (A.53)

of which the last term is not symmetric. So B cannot be the gradient of a smooth energy.

It can be also verified that δγ dτY
dΣ
⊙Σ is parallel to the central axis of the cone and pointing

inwards. So the simulation using MPM force computed from ∂Ψ
∂F

will look like the friction

angle is moving towards zero a little, which will produce unrealistic simulation results.

A.4.1 Stress Iteration

We propose to use iterative yielding stresses: run multiple Newton optimizations where before

each optimization the yielding stresses are computed and fixed during the optimization.

A.4.1.1 Extrapolated St. Venant-Kirchhoff Model

To define δγ and yield stress in the area sum(ϵ) > 0. We introduce the extrapolated St.

Venant-Kirchhoff cosntitutive model:

Ψ̂E(Σ) =


µ∥ϵ̂∥2 tr(ϵ) ≥ 0

µ∥ϵ̂∥2 + (λ
2
+ µ

d
)(tr(ϵ))2 tr(ϵ) < 0

. (A.54)

where ϵ̂ is the deviatoric component of the Hencky strain ϵ. δγ is computed from the

volume-preserving projection.

The yielding stress is computed as

τY (Σ) =


0 sum(ϵ) ≥ 0

−α sum(ϵ)(dλ+ 2µ) sum(ϵ) < 0

. (A.55)
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A.4.1.2 Fixed Point Iteration

The goal of iterative stress is to reach the following condition:

τ ∗
Y = Γtr

Y (F
E,tr(∆v(τ ∗

Y ))) (A.56)

where τ ∗Y , F
E,tr are stacked vectors for particles and ∆v is the stacked vector of velocity

increments on the grid.

We solve τ ∗
Y by fixed point iteration:

τ tr,j+1
Y = Γtr

Y (F
E,tr(∆v(τ tr,j

Y ))) (A.57)

To make the iteration converge, one sufficient condition is that ρ(JΓtr
Y
(τ tr,j

Y )) ≤ γ < 1, for

all j and some constant γ.

At τ tr,j
Y ,

M∆v+∆t
∂Ψ

∂∆v
= 0 (A.58)

Take the derivative w.r.t τ Y

H∆v
d∆v

dτ Y

+∆t2
∂2Ψ

∂∆v∂τ Y

= 0, (A.59)

that is,
d∆v

dτ Y

= −∆t2H−1
∆v

∂2Ψ

∂∆v∂τ Y

(A.60)

Hence
dΓtr

Y

dτ Y

= −∆t2 ∂Γtr
Y

∂F E,tr

∂F E,tr

∂∆v
H−1

∆v

∂2Ψ

∂∆v∂τ Y

(A.61)

As ∆t→ 0, H∆v →M, ∂FE,tr

∂∆v
→ 0, ρ(Jτ (τ

(n)))→ 0.

A.4.2 Implementation Tricks

When sum(ϵ) < 0, we compute ∂Ψ
∂Σ

and ∂2Ψ
∂Σ2 as we do for von-Mises plasticity.
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When sum(ϵ) ≥ 0,
∂Ψ

∂Σ
= 2µ(H− 1

d
sum(H)1)⊙Σ−1 (A.62)

∂2Ψ

∂Σ2 = 2µ diag(Σ−1)(I − 1

d
11⊤)

dH

dΣ
− 2µdiag(H− 1

d
sum(H)1) diag(Σ−2) (A.63)

The coefficients needed to evaluate hessian w.r.t. deformation gradient in this region are

∂ΣiΨ− ∂ΣjΨ

Σi −Σj =
2µ

ΣiΣj (−H
i +Σi ln(Z

i)− ln(Zj)

Zi −Zj

Zi −Zj

Σi −Σj +
1

d
sum(H)) (A.64)

A.5 Viscoelasticity

For viscoelasticity, the return mapping is

H = A(ϵ−B sum(ϵ)1) (A.65)

According to Lemma Lemma A.3.1, we can assume

∂Ψ

∂Σ
=
∂ΨE

∂ΣE
(Z(Σ))⊙ Z(Σ)⊙Σ−1 (A.66)

Plug in the definition of ΨE:

∂Ψ

∂Σ
= (2µH+ λ sum(H)1)⊙Σ−1

= (2µ(A(ϵ−B sum(ϵ)1)) + λA(1− dB) sum(ϵ)1)⊙Σ−1

= (2Aµϵ+ (Aλ− AB(2µ+ dλ)) sum(ϵ)1)⊙Σ−1

(A.67)

Then
∂Ψ

∂Σ
= (2µ̂ϵ+ λ̂ sum(ϵ)1)⊙Σ−1 (A.68)

where µ̂ = Aµ, λ̂ = Aλ− AB(2µ+ dλ).

This vector field can be integrated to get Ψ(Σ) = ΨE(Σ
∣∣µ̂, λ̂).
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A.6 Discretization with FEM

For FEM with linear tetrahedral elements, the discretized nodal internal force is

fi = −
∑
e

Pe∇NieV
0
e , (A.69)

where e indices all tetrahedral elements, Ve is the rest volume of element e, and ∇Nie is the

gradient of the shape function on node i evaluated at the barycenter of element e.

By plugging in P = ∂ΨE

∂FEF
P−⊤

, the nodal force with implicit plasticity is

fn+1
i = −

∑
e

V 0
e

∂ΨE

∂F E
(FE,n+1

e )F P,n+1
e

−⊤∇Nie. (A.70)

Note that,

F E,n+1 = Z(F E,tr), (A.71)

F P,n+1 = F E,n+1−1
F n+1 = F E,n+1−1

F E,trF P,n. (A.72)

The internal force with implicit plasticity can be written as

fn+1
i =−

∑
e

V 0
e

∂ΨE

∂F E
(F E,n+1

e )F E,n+1
e

T
F E,tr

e

−⊤
F P,n−⊤∇Nie,

=−
∑
e

V 0
e

∂ΨE

∂F E
(Z(F E,tr

e ))Z(F E,tr
e )

T
F E,tr

e

−⊤
F P,n−⊤∇Nie

(A.73)

In tetrahedral FEM,

F = TB−1 (A.74)

where T = [x1−x0,x2−x0,x3−x0] and B = [X1−X0,X2−X0,X3−X0] are the triangle

bases of the element in the world space and the material space respectively.

So the elastic predictor is computed as

F E,tr = FF P,n−1
= TB−1F P,n−1

, (A.75)

351



The integrability of the vector field ∂ΨE

∂FE (Z(F E,tr))Z(F E,tr)⊤F E,tr−⊤
leads us to the

integrable internal force from the augmented elastoplastic energy density Ψ:

fn+1
i = −

∑
e

V 0
e

∂Ψ

∂F E,tr

∂F E,tr

∂xi

= − ∂

∂xi

(
∑
e

V 0
e Ψ(F E,tr)), (A.76)

where xi is the world space coordinate of node i.

In FEM, we need to track F P on elements, because F E is not stored across time steps.

F P is updated by the relation:

Z(F E,tr)F P,n+1 = F E,trF P,n (A.77)

at the end of each time step.

For the simplicity of implementation, we can directly update the triangle bases of the rest

shape. For readability, we omit the element index e in the following derivations.

Define

Bn = F P,nB. (A.78)

The update rule (Equation (A.77)) now becomes:

Z(F E,tr)Bn+1 = F E,trBn. (A.79)

For isotropic materials, let

F E,tr = UΣE,trV ⊤,

Z(F E,tr) = U ẐV ⊤.

The update rule for B is then:

Bn+1 = V Ẑ−1ΣE,trV ⊤Bn (A.80)
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APPENDIX B

Elasticity Models and Plasticity Models

Table B.1: Material parameter notations.

Notation Meaning Relation to E, ν
E Young’s modulus /
ν Poisson’s ratio /
µ Shear modulus µ = E

2(1+ν)

λ Lamé modulus λ = Eν
(1+ν)(1−2ν)

κ Bulk modulus κ = E
3(1−2ν)

Here we list elasticity models and plasticity models used in this thesis. The material

parameters are defined in Table B.1.

B.1 Elasticity Models

B.1.1 Fixed Corotated Elasticity

The energy density function is defined as

Ψ(F ) = µ∥F −R∥2F +
λ

2
(J − 1)2. (B.1)

The first-Piola Kirchhoff stress P = ∂Ψ
∂F

is

P = 2µ(F −R+ λ(J − 1)JF−T , (B.2)

where R = UV T and F = UΣV T is the singular value decomposition of elastic deformation

gradient. J is the determinant of F .
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B.1.2 Neo-Hookean Elasticity

The energy density function is defined as

Ψ(F ) =
µ

2
(tr(F TF )− d)− µ log(J) + λ

2
log(J)2. (B.3)

The first-Piola Kirchhoff stress P is defined as

P = µ(F − F T ) + λ log(J)F−T , (B.4)

B.1.3 StVK Elasticity

The energy density function is defined as

Ψ(F ) = µ tr((logΣ))2 +
λ

2
(tr(logΣ))2. (B.5)

The Kirchhoff stress τ is defined as

P = U (2µϵ+ λ sum(ϵ)1)Σ−1V T , (B.6)

where ϵ = log(Σ) and F E = UΣV T .

Newtonian Fluid MPM can simulate compressible fluids as well. We use J-based fluid

combined with viscosity term to model Newtonian fluid. The Kirchhoff stress τ for this

model is defined by

τ =
1

2
µ(∇v +∇v⊤) + κ(J − 1

J6
)I. (B.7)
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Figure B.1: Drucker-Prager plasticity’s elastic region in the stress space.

B.2 Plasticity Models

For isotropic materials, we can define return mappings on the singular values of F . The full

return mapping is then obtained by reconstructing the matrix from the singular value space:

Z(F ) = U Diag(Z(Σ))V (B.8)

B.2.1 Sand Plasticity

We use StVK elasticity and Drucker-Prager plasticity for sand simulations (Klár et al., 2016).

The elastic region is characterised in the stress space as:

α sum(τ) + ∥ sum(τ)− sum(τ)

d
1∥ ≤ 0, (B.9)

where α =
√

2
3

2 sinϕf

3−sinϕf
and ϕf is the friction angle. In our sand examples, ϕf is set to π

6
. The

elastic region in the stress space is shown in Figure B.1.

The return mapping for the Drucker-Prager plasticity is

Z(Σ) =


1 sum(ϵ) > 0

Σ δγ ≤ 0, and sum(ϵ) ≤ 0

exp (ϵ− δγ ϵ̂
∥ϵ̂∥) otherwise

, (B.10)
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Figure B.2: NACC plasticity’s elastic region in the stress space.

where δγ = ∥ϵ̂∥+ α (dλ+2µ) sum(ϵ)
2µ

.

B.2.2 Snow Plasticity

We use a specific form of neo-Hookean elasticity and non-associative Cam-Clay (NACC)

plasticity for snow simulations (Wolper et al., 2019).

The Kirchhoff stress of neo-Hookean elasticity is

J = detDiag(Σ),

b = Σ2,

b̂ = dev(b) = b− sum(b)

d
1,

τ = µJ− 2
d b̂+

K

2
(J2 − 1)1.

(B.11)

The elastic region of NACC is characterized by

y(p, q) = q2(1 + 2β) +M2(p+ βp0)(p− p0) ≤ 0, (B.12)
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where

M = d

√
6− d
2

√
2

3

2 sinϕf

3− sinϕf

p =
K

2
(J2 − 1),

q = µJ− 2
d

√
6− d
2
∥b̂∥,

p0 = K sinh(ξmax{−α, 0}).

(B.13)

ξ, β, ϕf are the parameters of plasticity and α is the hardening state. The elastic region in

the stress space is shown in Figure B.2. In our snow examples, ξ = 0.5, β = 0.3 and ϕf = π
4
.

The return mapping is defined as

Z(Σ) =



(1− 2pmax

K
)−

1
2d1, p > pmax = p0,

(1 + 2pmin

K
)−

1
2d1, p < pmin = −βp0,

Σ, y(p, q) ≤ 0,

J− 2
d

µ

√
−2M2(p+βp0)(p−p0)

(6−d)(1+2β)
b̂

∥b̂∥
+ 1

d
sum(b)1 Otherwise

(B.14)

Please refer to (Wolper et al., 2019) for the hardening state update procedure, which is

controlled by the simulator. For PlasticityNet, we set h = min{α, 0} as the hardening state

input.

B.2.3 Metal Plasticity under StVK Elasticity

We use StVK elasticity and von-Mises plasticity for metal simulations (Klár et al., 2016).

This combination provides a closed-form return mapping projection. This plastic model

without hardening is also used to simulate plasticine in PAC-NeRF (Section 6.1).

The elastic region is characterized by

∥τ − 1

d
sum(τ )∥ − τY ≤ 0, (B.15)
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Figure B.3: Von-Mises plasticity’s elastic region in the stress space.

where τY controls the radius of the yield surface in the stress space (Figure B.3).

The return mapping for the von-Mises plasticity is defined as

Z(Σ) =


Σ, ∥τ − 1

d
sum(τ )∥ − τY ≤ 0

exp (ϵ− δγ ϵ̂
∥ϵ̂∥), Otherwise

, (B.16)

where δγ = ∥ϵ̂∥F − τY
2µ
.

Under hardening, τY is updated with

τn+1
Y = τnY + 2µξδγ, (B.17)

where ξ is the hardening coefficient.

Non-Newtonian Fluid Non-Newtonian fluid also has a yield stress. We use viscoplastic

model (Yue et al., 2015) to model non-Newtonian fluid. We still use von-Mises criteria to

define elastic region. However, the existence of viscoplastic means the deformation will not

be directly projected back onto the yield surface. Define

µ̂ =
µ

d
Tr(Σ2),

s = 2µϵ̂,

ŝ = ∥s∥ − δγ

1 + η
2µ̂∆t

,

(B.18)
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The return mapping is defined as

Z(F ) =


F , δγ ≤ 0,

U exp ( ŝ
2µ
ϵ̂+ 1

d
Tr(ϵ)1)V ⊤, otherwise.

(B.19)

B.2.4 Metal Plasticity under Neo-Hookean Elasticity

The combination of neo-Hookean elasticity and von-Mises plasticity does not have a closed-

form return mapping. In PlasitictyNet (Section 3.2), we use this combination for the task of

learning metal plasticity return mapping. The Kirchhoff stress of neo-Hookean elasticity is

given by

τ = µ(Σ2 − 1) + λ log J1. (B.20)

The implicit representation of the elastic region we used in the training of the return mapping

is given by

y(Σ, τY ) = ∥τ −
1

d
sum(τ )∥2 − τ 2Y . (B.21)
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Xu, H., Zhao, Y., and Barbič, J. (2014). Implicit multibody penalty-baseddistributed
contact. IEEE transactions on visualization and computer graphics, 20(9):1266–1279. 139

Xu, J., Chen, T., Zlokapa, L., Foshey, M., Matusik, W., Sueda, S., and Agrawal, P. (2021).
An end-to-end differentiable framework for contact-aware robot design. arXiv preprint
arXiv:2107.07501. 251

Xu, J., Du, T., Foshey, M., Li, B., Zhu, B., Schulz, A., and Matusik, W. (2019a). Learning
to fly: computational controller design for hybrid uavs with reinforcement learning. ACM
Transactions on Graphics (TOG), 38(4):1–12. 318

Xu, J., Kim, S., Chen, T., Garcia, A. R., Agrawal, P., Matusik, W., and Sueda, S. (2023a).
Efficient tactile simulation with differentiability for robotic manipulation. In Conference
on Robot Learning, pages 1488–1498. PMLR. 251

Xu, L., Agrawal, V., Laney, W., Garcia, T., Bansal, A., Kim, C., Rota Bulò, S., Porzi,
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