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Editorial on the Research Topic

Spiking Neural Network Learning, Benchmarking, Programming and Executing

INTRODUCTION

A spiking neural network (SNN), a type of brain-inspired neural network, mimics the biological
brain, specifically, its neural codes, neuro-dynamics, and circuitry. SNNs have garnered great
interest in both Artificial Intelligence (AI) and neuroscience communities given its great potential
in biologically realistic modeling of human cognition and development of energy efficient,
event-driven machine learning hardware (Pei et al., 2019; Roy et al., 2019). Significant progress has
been made across a wide spectrum of AI fields, such as image processing, speech recognition, and
machine translation. They are largely driven by the advance in Artificial Neural Networks (ANN)
in systematic learning theories, explicit benchmarks with various tasks and data sets, friendly
programming tools [e.g., TensorFlow (Abadi et al., 2016) and Pytorch (Paszke et al., 2019) machine
learning tools], and efficient processing platforms [e.g., graphics processing unit (GPU) and tensor
processing unit (TPU) (Jouppi et al., 2017)]. In comparison, SNNs are still at an early stage in these
aspects. To further exploit the advantages of SNNs and attract more researchers to contribute in this
field, we proposed a Research Topic in Frontiers in Neuroscience to discuss themain challenges and
future prospects of SNNs, emphasizing on its “Learning algorithms, Benchmarking, Programming,
and Executing.” We are confident that SNNs will play a critical role in the development of energy
efficient machine learning devices through algorithm-hardware co-design.

This Research Topic brings together researchers of different disciplines in order to present
their recent work in SNNs. We received 22 submissions worldwide and accepted 15 papers. The
scope of the accepted papers covers learning algorithms, model efficiency, programming tools, and
neuromorphic hardware.

LEARNING ALGORITHMS

Learning algorithms play perhaps the most important role in AI techniques. Machine learning
algorithms, in particular those for deep neural networks (DNN), have become the standard
bearer in a wide spectrum of AI tasks. Some of the more common learning algorithms include
backpropagation (Hecht-Nielsen, 1992), stochastic gradient descent (SGD) (Bottou, 2012), and
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ADAM optimization (Kingma and Ba, 2014). Other techniques
such as batch normalization (Ioffe and Szegedy, 2015) and
distributed training (Dean et al., 2012) facilitate learning in
DNNs and enable them to be applied in various real-world
applications. In comparison, there are relatively fewer SNN
learning algorithms and techniques. Existing SNN learning
algorithms fall into three categories: unsupervised learning
algorithms such as the original spike timing dependent
plasticity (STDP) (Querlioz et al., 2013; Diehl and Cook, 2015;
Kheradpisheh et al., 2016), indirect supervised learning such as
ANN-to-SNN conversion (O’Connor et al., 2013; Pérez-Carrasco
et al., 2013; Diehl et al., 2015; Sengupta et al., 2019), and direct
supervised learning such as spatiotemporal backpropagation
(Wu et al., 2018, 2019a,b). We note that progress in STDP
research includes introducing a reward or supervision signal such
as spike timing which, in combination with this third factor,
dictates the weight changes (Paugam-Moisy et al., 2006; Franosch
et al., 2013). Despite the progress made, no algorithm can yet
train a very deep SNN efficiently, which has become almost the
holy grail of our field. Below, we briefly summarize the accepted
algorithm papers in this Research Topic.

Inspired by the mammalian olfactory system, Borthakur and
Cleland develop an SNN model trained using STDP for signal
restoration and identification. It is broadly applicable to sensor
array inputs. Luo et al. propose a new weight update mechanism
that adjusts synaptic weights, leading to the first wrong output
spike-timing to classify input spike trains with time-sensitive
information accurately. He et al. divide the learning (weight
training) process into two phases: the structure formation phase
using Hebb’s rule, and the parameter training phase using
STDP and reinforcement learning, so as to form an SNN-
based associative memory system. In contrary to just training
synaptic weights, Wang et al. propose training both the synaptic
weights and delays using gradient descent so as to achieve better
performance. Based on a structurally fixed small SNNwith sparse
recurrent connections, Ponghiran et al. use Q-learning to train
only its output layer so as to achieve human-level performance on
complex reinforcement learning tasks such as Atari games. Their
research demonstrates that a small random recurrent SNN is
able to provide a computationally efficient alternative to state-of-
art deep reinforcement learning networks with several layers of
trainable parameters. The above works have made good progress
toward better performing SNN learning algorithms. We believe
that further progress will be made in this field in the future.

MODEL EFFICIENCY

In recent years, hardware oriented DNN compression techniques
have been proposed that offer significant memory saving and
hardware acceleration (Han et al., 2015a, 2016; Zhang et al.,
2016; Huang et al., 2017; Aimar et al., 2018). At present, many
compression techniques are proposed that provide a trade-off
between processing efficiency and application accuracy (Han
et al., 2015b; Novikov et al., 2015; Zhou et al., 2016). Such an
approach has also caught on in the design of SNN accelerators
(Deng et al., 2019), with the following contribution in this

Research Topic. Afshar et al. investigate how a hardware-efficient
variant of STDP may be used for event-based feature extraction.
Using a rigorous testing framework, a range of spatio-temporal
kernels with different surface decaying methods, decay functions,
receptive field sizes, feature numbers, and backend classifiers
are evaluated. This detailed investigation provides useful insight
and heuristics with regards to the trade-off between performance
and complexity while using the STDP rule. Pedroni et al. study
the impact of different arrangements of synaptic connectivity
tables on weight storage and STDP updates for large-scale
neuromorphic systems. Based on their analysis, they present an
alternative formulation of STDP via a delayed causal update
mechanism that permits efficient weight storage and access for
both full and sparse connectivity.

Other than model complexity, several other papers focus on
direct compression of SNNs. Soures and Kudithipudi propose
Deep-LSM, a combination of randomly connected hidden layers
and unsupervised winner-take-all layers to capture network
dynamics followed by an attention modulated readout layer
for classification. The connections between hidden layers and
winner-take-all layers are partially trained using STDP. Their
SNN model is applied in a first-person video activity recognition
task, achieving state-of-the-art performance with >90% memory
and operation saving compared to the long-short term memory
(LSTM). Based on a single fully-connected layer with the STDP
learning rule, Shi et al. propose a soft-pruning method that
sets a fraction of the weights to the lower bound during
training, effectively achieving>75% pruning. Srinivasan and Roy
implement spiking convolutional layers comprising of binary
weight kernels which are trained using probabilistic STDP, as well
as non-spiking fully-connected layers which are trained using
gradient descent. A residual convolutional SNN is proposed,
which achieves >20x model compression.

PROGRAMMING TOOLS

Programming Tools have been one of the key components
driving development in ANN research, examples of which
include Theano (Al-Rfou et al., 2016), TensorFlow (Abadi et al.,
2016), Caffe (Jia et al., 2014) and Pytorch (Paszke et al., 2019),
MXNet (Chen et al., 2015), Keras (Chollet, 2015). These user-
friendly programming tools enable researchers to build and train
large-scale ANNs using only basic programming know-how. In
comparison, the programming tools for SNNs are rather limited.
To the best of our knowledge, only SpiNNaker (Furber et al.,
2014), BindsNET (Hazan et al., 2018), and PyNN (Davison et al.,
2009) provide a basic programming interface to support simple
and small SNN simulations. Generally researchers have to build
an SNN from the ground up which can be time-consuming
and require significantly more programming know-how. Thus,
developing user-friendly programming tools to efficiently deploy
a large scale SNN is imperative to the advancement of our field. In
this Research Topic, an open-source high-speed SNN simulation
framework based on PyTorch has been proposed. SpykeTorch
(Mozafari et al.) simulates convolutional SNNs with at most one
spike per neuron (rank-order coding scheme), and STDP-based
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learning rules. Although programming tools for SNNs are still
in their infancy, we believe that more research needs to be done
so that the training of SNNs may approach the efficiency of
training ANNs.

NEUROMORPHIC HARDWARES

Recent advances made in modeling SNNs in-silico, as
demonstrated by Neurogrid of Stanford University (Benjamin
et al., 2014), BrainScales of Heidelberg University (Schemmel
et al., 2012), SpiNNaker of University of Manchester, Tianjic
of Tsinghua University (Pei et al., 2019), IBM’s TrueNorth
(Akopyan et al., 2015), and Intel’s Loihi (Davies et al., 2018),
attest to the great potential of hardware implementation of
SNNs. In this Research Topic, Shukla et al. re-model large-scale
CNNs so as to mitigate hardware constraints and implement
them on the IBM TrueNorth. A CNN used for car detection
and counting was demonstrated, with reasonable accuracy
compared to a GPU trained CNN but with much lower energy
consumption. Bohnstingl et al. implement a learning-to-learn
SNN on a neuromorphic chip which accelerates the learning
process by extracting abstract knowledge from prior experiences.
Other than conventional CMOS circuits, emerging devices such
as memristors have also been studied in this Research Topic.
Guo et al. propose a STDP-based greedy training algorithm
for SNNs to reduce weight levels and enhance robustness
toward device non-idealities. They demonstrate online learning
on a resistive random access memory (RRAM) system with
non-ideal behaviors. Fang et al. propose a generalized swarm
intelligence model on SNN: the SI-SNN. SNNs are implemented
as agents in swarm intelligence with interactive modulation
and synchronization. They implement such neural dynamics
on a ferroelectric field-effect transistor (FeFET) based hardware
platform to solve optimization problems with high performance
and efficiency.

CONCLUSIONS

In conclusion, it is believed that SNNs achieve superior
performance in processing complex, sparse, and noisy

spatiotemporal information with high power efficiency
exploiting neural dynamics in the event-driven regime. Event-
driven communication is particularly attractive in enabling

energy efficient AI systems with in-memory computing that will
play an important role in ubiquitous intelligence. SNN research
is ongoing, and much more progress is to be expected in its
learning algorithms, benchmarking framework, programming

tools, and efficient hardware. Through cross-discipline exchange
of ideas and collaborative research, we hope to build a truly
energy-efficient and intelligent machine. This Research Topic

is but a small step in this direction; we look forward to more
disruptive ideas that distinguish SNNs and neuromorphic
computing from the mainstream machine learning approaches

in the near future.
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