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Abstract

Global, Non-scattering Solutions to Energy Critical Geometric Wave Equations
by
Mohandas Pillai
Doctor of Philosophy in Mathematics
University of California, Berkeley

Professor Daniel Tataru, Chair

In this thesis, we consider two geometric, energy critical, semilinear wave equations arising from
the wave maps problem (which is referred to as a nonlinear sigma model in many physics con-
texts) and Yang-Mills theory. The wave maps and Yang-Mills problems are families of equations,
parameterized by various choices of domain and target manifolds, etc. The wave maps equation is
geometric in the sense that the equation is independent of choice of coordinates on the domain and
target manifolds. The Yang-Mills problem can be regarded as a geometric problem because it is
invariant under gauge transformations. The specific symmetry reductions of these problems which
we study are semilinear because their nonlinear terms involve only the unknown function, rather
than its derivatives. Finally, both equations we consider admit a conserved energy and a scaling
symmetry. The energy is invariant with respect to the scaling symmetry in the dimensions in which
we study each equation, which is why the equations are said to be energy critical. We will now
describe the equations considered in more detail.

The wave maps problem is an extension of the scalar linear wave equation to the case where the un-
known function maps a Lorentzian manifold into a Riemannian manifold, (M, g). The wave maps
equation can be derived from the least action principle applied to the following natural extension
of the usual wave equation action.

S(®) = J (0aD(t, ), D, ) Yg(a(r.ay dide
R1+d

where the « indices are contracted using the Minkowski metric, which we take to be
m = diag(—1,1,1,...,1)

Now, we will describe the particular choice of target manifold and symmetry reductions consid-
ered. First of all, we will focus on the case (M, g) = (S?, g), where ¢ denotes the usual round
metric on S%2. We will regard ® as a map into R*® with unit Euclidean norm. The wave maps
equation then becomes

—0,0%P(t,x) = Tpi+a®(t, x) = O(t,z) (0°P(t, z) - 0,P(t,x)), P(t,z) - P(t,x) =1



where - is the Euclidean inner product on R3. We then make a symmetry reduction of the problem,
and consider solutions which are 1-equivariant by using polar coordinates (7, ¢) on R?, and writing

cos(p) sin(u(t,r))
O, (t,r,0) = | sin(yp)sin(u(t,r))
cos(u(t,r))

Then, the wave maps equation reduces to the following semilinear wave equation

sin(2u)
2r2

1
— Oyt + Opptt + — 0yt —
r

which has the following conserved energy

s (u, ) = 7 J ) ((atu)2 ELOM (&nu)Q) rdr

0 r

Note that the energy is invariant if we replace u by w, defined by u,(t,7) = u(\t, \r), for A > 0.
Such a scaling transformation is also a symmetry of the wave maps equation above.

Given a Lie Group G, the (free) Yang-Mills equation we will consider is an equation for a Lie(G)-
valued one-form A defined on R!*¢. We consider the Yang-Mills equation in 144 dimensions, with
gauge group SO(4). Therefore, A (which is sometimes called the gauge field) is a Lie(SO(4))-
valued one-form on R'™. We write A = A,dz", where, for each u, A, is a Lie(SO(4))-valued
function, defined on R'™. Defining F', a Lie(SO(4))-valued two-form on R by

1
F = §Fw,dx“ ndz”, F,, =0,A, — A, +[A A

the Yang-Mills equation can be written as
4
— 0, Fo, — [Ao, Fou] + Z (0,F, + Ay, Fu]) =0,  forv=0,1,2,3,4

where 0 on the right-hand is the zero in Lie(SO(4)).

The Yang-Mills equation is also invariant under gauge transformations, which are transformations

of A of the form

1 -1

Ay — gALg — 0,99

where g : R1*4 — SO(4).
We make the equivariant ansatz (which has also been studied in prior works)

At ) = (a9 — 81 (1‘(—> D 0<p<d 1<ij<4

and the Yang-Mills equation reduces to a single semilinear wave equation

2u(1 — u?)
2

1
—@tu + am«’u + —&u + =0
r

r



This wave equation conserves the following energy

Eyar(u, 6) = J - ((5tu)2 () + w) rdr

2 Jo r2
which is invariant under the scaling symmetry:
u— uy, where uy(t,r) = u(At, Ar)

Each equation mentioned above admits time-independent, smooth solutions, with localized energy
density, called solitons. For the wave maps problem considered above, the soliton is given by

Q1(r) = 2arctan(r)
For the Yang-Mills problem, the soliton is

1=

142

Q1(r)

By applying the aforementioned scaling symmetry to (), one obtains a family of soliton solutions,
Q@) for \ > 0, given by

Qx(r) = Q(rA)

As mentioned earlier, we consider energy critical equations, so all (), have the same energy.

In this thesis, we study global in time soliton dynamics for single solitons coupled to radiation.
More precisely, we construct globally defined solutions, u, which can be decomposed as follows.

u(t,r) =Q 1 (r) + f(t,r) + ve(t,r) 0.1

IYO)

The function f represents radiation coupled to the soliton with time-dependent scale, and is a
solution to the following linear wave equation

1

—Ouf + O f +=0rf — 12 =0, for wave maps
r r
1 4

—Ouf + O f +—0.f — —2f =0, for Yang-Mills
r r

(In the main body of the thesis, f will be denoted as vy in the wave maps work, but as v; in the
Yang-Mills work). The function v, appearing in (0.1) is a correction which is small in an appropri-
ate sense as time approaches infinity. We also provide a precise relation between the asymptotics
of the time-dependent soliton length scale, A(¢), and the coupled radiation f.

For the wave maps equation, for any choice of function \y(t) in an appropriate symbol class, we
construct a solution as described above, with A(t) asymptotically equal to A\y(t). Some examples
of the )\ in our symbol class are

1 _ 2+ sin(log(log(?)))

MmN T T )

, t>»1



For the Yang-Mills equation mentioned above, we construct a class of solutions as in (0.1). The
main difference between the wave maps result, and the result here is that A(¢) is asymptotically
constant for all of our solutions to the Yang-Mills problem. This is true, even though our set of
solutions includes ones for which the radiation f in (0.1) can be quite large, and in fact “logarith-
mically” close to having infinite energy. In fact, in the setup of this work, the soliton length scale
asymptoting to a constant is a necessary condition for the radiation f to have finite energy. Another
interesting point of this construction is that, for each choice of f in our admissible class of func-
tions, there exists a one-parameter family of solutions as in (0.1) with A(¢) having any asymptotic
value.
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1 Background Material

In this thesis, we study two energy critical semilinear wave equations. Specifically, we study a
particular wave maps equation (which is referred to as a nonlinear sigma model in many physics
contexts) and a Yang-Mills equation. As will be described in more detail later on, the wave maps
and Yang-Mills problems are families of equations, parameterized by various choices of domain
and target manifolds, etc. The wave maps equation is geometric in the sense that the equation is
independent of choice of coordinates on the domain and target manifolds. The Yang-Mills prob-
lem can be regarded as a geometric problem because it is invariant under gauge transformations.
The specific symmetry reductions of these problems which we study are semilinear because their
nonlinear terms involve only the unknown function, rather than its derivatives. Finally, both equa-
tions we consider admit a conserved energy and a scaling symmetry. The energy is invariant with
respect to the scaling symmetry in the dimensions in which we study each equation, which is why
the equations are said to be energy critical. The specific equations we consider admit smooth, time-
independent solutions with localized energy density, called solitons. (Solitons appear in a variety
of classical field theories in physics, as described in [20]). The soliton solutions of these equations
will play a major role in the work of this thesis. We will now describe the equations considered in
more detail.

1.1 Wave Maps

The (scalar) linear wave equation considers functions ® : R'*? — R. The wave maps problem
is an extension of this wave equation to the case where the unknown function maps a Lorentzian
manifold into a Riemannian manifold, (M, g). The wave maps equation can be derived from the
least action principle applied to the following natural extension of the usual wave equation action.
(The reference [6] contains an introduction to the wave maps problem). Choosing Minkowski
space with metric m = diag(—1,1,1,...,1) as the domain, the wave maps action for maps

¢ : R — (M, g) is

S(®) = (0a®(t, 1), 0°O(t, ) )y(w(t.aydtde
R1+d

where the «v indices are contracted using the Minkowski metric. We will now describe the particular
wave maps equation, and its symmetry reduction, which is studied in this work. First of all, we
will focus on the case (M, g) = (S?, g), where g denotes the usual round metric on S?. We will
regard ® as a map into R? with unit Euclidean norm. To fix conventions, we let

Crea = 82 — Aga = —0%0,
The linear wave equation for functions ® : R1*¢ — R is
DR1+d®(t, x) =0

On the other hand, for the choice of target manifold above, the wave maps equation can be written
as
(ri+va®(t, z) L Tq;(t,z)Sz c R3



or equivalently, as
Cri+a®(t, ) = (L, x) (0°P(t, x) - 0. P(t, ))

where - is the Euclidean inner product on R3, and we re-iterate that ® is regarded as a unit norm
map into R3.

Sufficiently regular solutions to the wave maps equation in this context conserve the energy

En(®) = %LW <|é’t<I>(t, z)|* + Z |0:P(t, x)|2> dx

where, for y € R?, |y| denotes the Euclidean norm of y. Note that, if A > 0, and ® is a solution to
the wave maps equation, then, so is ¢, defined by

(I))\(t, 7‘) = (I)(/\t, /\T‘)
and
En(®,) = En(®), forall\>0whend =2

For this reason, the wave maps problem considered in two spatial dimensions is called energy crit-
ical. In this thesis, we consider the energy critical case of d = 2. In summary, we consider the
energy critical wave maps problem with target S?, equipped with the usual round metric.

Next, we recall that, for a finite energy map F : R? — S2, one may define the integer-valued
topological degree, N (F') (see, e.g. [12], and references therein) by

ATN(F) = J F - (0iF x 6,F) dx (1.1)

RQ

The main wave maps result of this thesis deals with topological degree one solutions. For suffi-
ciently regular I : R? — S?, we have

En(F) = 4x|N(F)]

This can be seen in the following way (see [27], [20]). If we let R be the complexified stereographic
projection coordinate representative of F':

Fl(xl,xg) + Z'Fg(.fl,l'g)

R = E ) =F 5 7
F(l’l,ﬂﬁz) 1 —i—Fg(:l:l,:I:Q) ) (351 $2) (1751 332) €
then,
|(91+i92)RF |2 + |(91*i32)RF |2
En(F) =4 ’ ’ dz
e (1+[RF[?)?
and
| (01+i02)RF |2 (01—102)RF |2
NP = 4 f | [ ]
T = T
R? (1 + [Rp[?)?



If we complexify the domain of Ry, then, we see that any F' such that Ry is holomorphic or
anti-holomorphic, satisfies En(F') = 4w|N(F')|. These maps F are all time-independent solutions
to the wave maps equation with S? target, and can be regarded as soliton solutions to the wave
maps equation. Since, for any sufficiently regular G, we have En(G) = 47| N(G)|, these F' have
minimal energy within the class of maps of a given topological degree. The soliton which will play
an important role in our work corresponds to the choice

R(iCl,IQ) = + iill'z (12)

We can now describe a “threshold theorem” for the energy critical wave maps problem. The works
of Sterbenz and Tataru, [32] and [33] (which apply to much more general targets than S?) show
that for data with energy strictly less than that of the lowest energy non-trivial harmonic map, one
has global well-posedness and scattering. (In the case of the S? target, the topological degree of
any solution to the wave maps equation with such data is zero). More precisely, their result is (see
also [12])

Theorem 1.1 (Sterbenz, Tataru, [32],[33]). For the wave maps equation from R?>! to a compact
Riemannian manifold (M, g), the following is true.

a. If there are no non-constant harmonic maps into (M, g), then, one has global well-posedness
and scattering for large data in H' x L.

b. If Ey is the smallest possible energy of a nontrivial harmonic map into (M, g), then, one has
global well-posedness and scattering for all data in H' x L? with energy strictly less than E,

In the case of the S? target in the 1-equivariant setting (which is a symmetry reduction that will be
further discussed below), Cote, Kenig, Lawrie, and Schlag [2] showed that global existence and
scattering holds for smooth, topological degree zero data with energy less than twice that of the
soliton described by (1.2) (which is the appropriate threshold in this setting). An analogous result,
but without the equivariance assumption, and for slightly more general targets than S?, is implied
by the work of Lawrie and Oh [19].

Finally, in this thesis, we make a symmetry reduction of the problem, and consider solutions which
are 1-equivariant, by using polar coordinates (7, ) on R?, and writing

) t
O, (t,r, ) = | sin(yp)sin(u(t
s(u(t

Geometrically, this means that if R is a rotation in two spatial dimensions, R € SO(2), then
®,(t, Rr) = H(R)®,(t, ), where

H(R) = [%%] e SO(3)

is the corresponding rotation in three spatial dimensions, preserving the x3 coordinate.



We return to the topological degree defined in (1.1), and note that, for sufficiently regular u satis-
fying, for all ¢, u(¢,0) = 0 and lim, ., u(t, ) = 7, we have

N(®u(t)) =1

Under the 1-equivariant symmetry reduction, the wave maps equation reduces to the following
scalar, semilinear wave equation, which is the focus of the wave maps portion of this work.

sin(2u)
212
We consider the above equation with the conditions u(t,0) = 0, lim, o u(t,7) = 7. In total, we

thus consider the energy critical wave maps equation with S? target for topological degree one,
1-equivariant maps.

1
—Optt + Opptt + =0 — =0 (1.3)
T

In [31], Shatah and Tahvildar-Zadeh studied the local well-posedness of (a more general prob-
lem which includes) the Cauchy problem associated to (1.3), with data (ug, u;) such that

(xl, $2) — (xlu:(r)7 wgu;)(r)) € Hl%)c(]R2)
xquq (1) a:2u1(r))

(xluxQ) — ( r ) r

e L?

loc

(R?)
The special case of their theorem which is relevant for us is the following. Let
N =[0,7) x S',  with the metric g = df* + sin®(0)d¢*, (6,¢) € [0,7) x S!
Then, consider the following Cauchy problem with
Ul(t,z) = 0(t, 1) cos(p(t, ), U?(t,x) = 0(t, z)sin(p(t, x))

0,00 + 3 . T (U)o, Ubo U = 0
U(0,z) = Up(x) (1.4)
oU(0,z) = Uy(x)

where I" are the Christoffel symbols of /V. If the data satisfy the equivariant condition:
‘up(r) ui(r)

Ug=u— = Ul=z—= j=12

then, Shatah and Tahvildar-Zadeh proved

Theorem 1.2 (Shatah, Tahvildar-Zadeh, [31]). There exists T™* > 0 such that the equivariant wave
maps equation, (1.4), considered with data (Uy, Uy ) such that

Uy € H- (R% N), U, e L2 (R%TN)

loc

has a unique solution U satisfying, for all zy = (to, 7o) € [0,T*) x R?,

3 (D(t; ), N))

N

U e L*([0,to), H(D(t; z), N)) n L% ([0, ), B
U e L*(([0,t), L*(D(t; 2), TN))

4



where, for zy = (to, zo),
D(t;z) = {z = (t,2) e R"?||x — x| < to — t}

We note that the energy for the equivariant reduction of the wave maps equation is

((atuf + sin’(u) + (aru)2> rdr

72

0

En(®,) = WJ
0
We also remark that the soliton described by (1.2) corresponds to a 1-equivariant map from R? to
S?, with polar angle given by
Q1(r) = 2arctan(r)

1.2 Yang-Mills

Given a Lie Group G, the (free) Yang-Mills equation we will consider is an equation for a Lie(G)-
valued one-form A defined on R!*¢, We consider the Yang-Mills equation in 1+4 dimensions, with
gauge group SO(4). Therefore, A (which is sometimes called the gauge field) is a Lie(SO(4))-
valued one-form on R'™. We write A = A,dz", where, for each u, A, is a Lie(SO(4))-valued
function, defined on R' ™. Defining F, a Lie(SO(4))-valued two-form on R'™ by

1
F = §Fde“ ndx”, F,, =0,A,—0,A,+ A, A

the Yang-Mills equation can be written as
4
—0,Fy, — [Ao, Fou] + Z (0,F, + Ay, Fu]) =0, forv=0,1,2,3,4

where 0 on the right-hand is the zero in Lie(SO(4)). The Yang-Mills equation has the conserved

energy
1

4872

The equation is invariant under the scaling symmetry

Eyy =—

JW Tr (F (t, 2) Fl (t, ) dz

A, (t,x) = AA, (M, Ax)
The components of F' transform under this symmetry as
E.(t,z) = N°F,,(\t, \x)

which means that the energy Fy, is invariant under the scaling symmetry, because the equation
is considered in 4 spatial dimensions. The Yang-Mills equation is also invariant under gauge
transformations, which are transformations of A of the form

1 1

Ay — gALg™ — dugg”



where g : R — SO(4). In particular, if A is a solution to the Yang-Mills equation, and
g : R — SO(4) satisfies

g(t,z) = Id, in aneighborhood of t =0

but ¢(¢, x) is not globally constant, and, for some ¢, > 0, g(to, z) = Id with 0,g(t9, z) # O then,
AD(t, z) == g(t,2)Au(t, 2)g (t, 2) — D,g(t, x)g (¢, ) is a solution to the Yang-Mills equation,
with AV(0,2) = A(0,z) and 3,AM(0,z) = 9,A(0,z), but AV (ty, ) # A(to,z). Therefore,
one can not regard the Yang-Mills equation as a well-defined evolution equation for A, in the sense
that there can exist distinct gauge fields solving the Yang-Mills equation with the same Cauchy
data. Instead, one can regard solutions to the Yang-Mills equation as equivalence classes of gauge
fields under the equivalence relation: two gauge fields are equivalent if and only if there exists a
gauge transformation relating the two. The Yang-Mills equation can then be regarded as an equa-
tion which evolves Cauchy data into the space of equivalence classes of gauge fields.

When studying the Yang-Mills equation, one can then look for solutions whose equivalence class
is represented by a gauge field A satisfying certain properties. For example (see [24] for more
discussion), one can work in the temporal gauge, where Ay = 0. The symmetry reduction we
consider in this thesis is a reduction to a case satisfying, among other things, that A, = 0. One
could also work in the Lorenz gauge where

A, =0

or the Coulomb gauge, where

4
D 0AL =0
k=1

Small energy global well posedness for the (4 + 1) dimensional Yang-Mills problem was es-
tablished by Krieger and Tataru, [18]. More precisely, in [18], the Yang-Mills equation in the
Coulomb gauge is written as a Cauchy problem for the spatial components of A (with initial data
(Ao, A1) = (A;(0),0,A4;(0)) € HY(R*) x L*(R*)) coupled to Ay, which solves an equation
without any time derivatives. Then, the following theorem is proved.

Theorem 1.3 (Krieger, Tataru, [18]). The Yang-Mills equation in the Coulomb gauge is globally
well-posed for data (A j, A1 j) which is small in H'(R*) x L*(R*)

In addition, the works of Tataru and Oh, [24], [25], [21], [22], [23], established a threshold
theorem and dichotomy theorem for this problem, with gauge group given by any compact, non-
abelian Lie group. In order to more precisely state their result, we first note that, as stated in [24],
there exists a minimal energy non-trivial solution (called a harmonic Yang-Mills connection) to

4
D0 Fu+[A;, Fy]) =0, inR* 1<j<4
k=1

Let Egs denote the energy of such a solution. We will also need the following observation stated in
[24]: a finite energy connection A on R* is topologically trivial if and only if A € H" in a suitable
gauge. Then, the threshold theorem is



Theorem 1.4 (Oh,Tataru, [24]). One has global wellposedness and scattering for the Yang-Mills
equation in R'** for all topologically trivial initial data with energy below 2Es.

On the other hand, the following “dichotomy theorem” regards solutions which may not satisfy
the assumptions of the threshold theorem.

Theorem 1.5 (Oh, Tataru, [24]). The Yang-Mills equation in R'** is locally well posed in the
energy space. The maximal solution satisfies either

1. The solution is topologically trivial, globally defined, and scatters at infinity.

2. The solution “bubbles off ” a soliton either at a finite blow-up time, or at infinity.

Roughly speaking, the solution A “bubbles off” a soliton at a finite time %, if there exists a
convergent sequence of points (¢,, x,), with lim,,_,., ¢, = to, a Lorentz transformation, L, and a
harmonic Yang-Mills connection (), such that an appropriate re-scaling and gauge transformation
of A, translated by (¢, x,) converges to L(()). Bubbling off a soliton at infinity is defined simi-
larly, except that the sequence (%, x,,) is not convergent. See [24] for the precise definitions.

With the equivariant ansatz (see also [28], [15])

A0.0) = (3 =5’y (ME= ) 0ssa 1<ig<d

the Yang-Mills equation reduces to

2u(1 — u?)
2

1
—5tt'LL + 8Mu + —&u + =0 (15)
r

r

The energy Ey s reduces to the following quantity, which is conserved by the above reduction of
the Yang-Mills equation.

Byar(u, ) = J ) ((8tu)2 () + M) rdr

2
2 Jy r

Another way to understand the equivariant ansatz above is to note that a similar ansatz for the
SU(2) Yang-Mills equation in 1 + 4 dimensions also gives rise to (1.5). In particular, if we make
the ansatz (see also [34])

=1 fu(t,r)—1 . :
Ag =0, Aj =5 \— ZZ(Th)j,kl‘kUz‘, <)< 4

01 0 0 0 01 0 0 0 01
10 0 0 0 00 —1 0 0 10
M=t 90 0 0 1] P 1 =100 o | = 0o -1 0 0
0 0 -1 0 010 0 1 0 00



then, the 1 + 4 dimensional Yang-Mills equation with gauge group SU(2) reduces to (1.5). One
reason why the SU (2) perspective is a useful one to take, is that the following soliton solution to
(1.5) (which will be important for the work of this thesis):

1 —r?

1.
1+ r? (1.6)

Qi(r) =

corresponds to a gauge field for the SU(2) Yang-Mills problem in 1 + 4 dimensions, whose asso-
ciated [ satisfies, for 1 <i,j < 4, I}; = % Zim:l €ijimF1m Where € 1s the Levi-Civita tensor, with
€12314 = 1. The topological properties of the gauge field for this soliton are described by the second

Chern number .
— | Tr(F AF)

871'2 R4
where, F]k = Iy, for 1 < j,k < 4. This implies that the gauge field associated to (1.6) is a
minimizer of the energy within a class of functions with a given second Chern number, because,
from the antisymmetry of F},, we have Zk _ Tr(FFj) = Zi,j:l Tr(=F;, = Fj), where

= 1w =
(«F)ij = 5 Zk,l:l Fri€ijr. Therefore,

[ Tr(FuF)d

967’(’2 Z J k — *F]k)(ij — *ij)) +2Tr (ij * ij)) dx

1 .
T I8 Z fw Tr (Fjp« Fiy) da
Gk=1

For completeness, we note that the second Chern number of the gauge field associated to the soliton
mentioned above is -1:

0 3
L A o P

———dp=—1
872 Jpa 82 J, (p2+1)* b

1.3 Summary of main results

We recall the soliton solutions mentioned above. For the wave maps problem, the soliton is given
by
Q1(r) = 2arctan(r)

For the Yang-Mills problem, the soliton is

1—17?
1+ r?

Q(r) =

By applying the aforementioned scaling symmetry to (), one obtains a family of soliton solutions,
Q@ for A > 0. As mentioned earlier, we consider energy critical equations, so all (), have the
same energy. In appropriate regimes, it is known that if one has a globally defined solution to the



equations under consideration, then, it can be decomposed as a soliton with a potentially time-
dependent scaling parameter, Qﬁ’ coupled to a solution to an appropriate linear wave equation
(called radiation), plus corrections which are small in an appropriate sense, as time approaches
infinity.

More precisely, such a solution u can be decomposed as follows.
ult,r) = Q_(r) + f(t,7) + ve(t,7) (17

The function f represents radiation coupled to the soliton with time-dependent scale, and is a
solution to the following linear wave equation

1
—Ouf + O f+ =0 f — 12 =0, for wave maps
r r

1 4 (1.8)
—Ouf + 0 f+=0,f ——f =0, for Yang-Mills
r r

The function v, is a correction which is small in an appropriate sense as time approaches infinity.
We remark that the following energy is conserved by any sufficiently regular solution to (1.8).

So (Cpu)? + (0,u)? + 2) rdr,  for wave maps

E(u, dyu) = o .
T8 ((0)? + (6ru)? + 24 ) rdr,  for Yang-Mills

(In Section 8, regarding the Yang-Mills equation, £ appears with a slightly different normalization,
but this is not important).

Even though it is known that in appropriate regimes, if one has a global solution u, then it can
be decomposed as in (1.7), to the author’s knowledge, there were no known actual examples of
such solutions with “interesting” asymptotics of A(¢) for the equations under consideration. (This
will be made more precise for each equation later on). In addition, a relation between A(¢) and
the associated radiation was not known, to the author’s knowledge. The main result of this thesis
is to construct a large class of solutions of the above form, with the following properties. For the
wave maps equation under consideration, we can construct solutions with a symbol class of possi-
ble choices of A(t) (all of which satisfy A(¢t) — 0 as ¢ approaches infinity) by obtaining a precise
relation between the radiation and the asymptotics of \(¢).

In particular, we have the following. For b > 0, let A, be the set of f € C*([100,00)) such
that there exist Cj, C,,,, C, ;. > 0 with

C[ Cm Cm k
< flt) < —2—, B (1) < e
log®(t) 70 log®(t) )l tklog? ()

Then, the main result of this thesis regarding wave maps is (see also Theorem 2.2, which has
slightly more information)

k=1, t=>=100

Theorem 1.6. Let b > 0. Forall \o o € Ay, there exists Ty > 100 and a (real-valued) finite energy
solution uy, to (1.3) for t = 'Tj, of the form

up(t,r) = Q 1 (1) + ve(t, 1) + ve(t, 1)

Ap (1)



where \, € C*([Ty, 0)),

1
—attl)g + 57-7-1)2 + —5TUQ - U—; =0
r r
E( 5(@ + ))< ¢ t =T
Ve, 1 Ve XX T o =
ST t2log®(t) °
and
1
Ao(t) = Xoop(t) + O
log”(t)+/log(log(1))
In addition to solutions corresponding to Ao ,(t) = m (for ¢ sufficiently large) our class of

solutions includes ones for which the leading part of A\ has some oscillations, such as the example
2 + sin(log(log(t)))
log"(t)

Moreover, the radiation, v 1s uniquely determined by its Cauchy data at ¢ = 0, which is related to
the leading part of A(¢) as follows.

Xoop(t) = , t =100

v9(0,7) =0, Qw2(0,7) = va(r)

with

w©) == [ Fysnt

Cén o

where

© N op(s)ds
F(t) = <4J M) ,  for all ¢ sufficiently large
¢ l4+s—t

Here, ~ denotes the Hankel transform of order 1:

fo-| " )y

For the Yang-Mills equation, we consider a large class of finite energy radiation, including func-
tions which are “logarithmically” close to having infinite energy. We then construct solutions as in
(1.7) by obtaining a precise relation between A(¢) and the radiation. In this case, it turns out that
for a given radiation, there exists a one-parameter family of corresponding choices of \(¢), and all
such A\(t) are asymptotically constant in time, despite the “largeness” of the radiation mentioned
above. In fact, in our setup, A(t) being asymptotically constant in time is a necessary condition for
the radiation to have finite energy.

In particular, we have the following. For b > % let £}, denote the set of functions f such that
there exists /M > 50, and Cy, > 0, such that

feC®([M, ), [fP0)< Cr ,fort > Mandk >0

=tk log®(t)

10



The class of radiation components, vy, of our solutions can be labeled by F}, in the following way.

For f € F;, we have N Ty
011(&) = 32 Jo ; sin(t€)dt

(where v is an unimportant cutoff function, which is equal to 1 for all sufficiently large arguments),
and the radiation profile v; is given by

—6”'01 + 5”1)1 + %@vl — % =
(%1 (0) =0
atvl(o) =11

Here, - denotes the Hankel transform of order two

ee]

m(E) = j oLa(P) Jo(r€)rdr

0

In order to describe the leading order behavior of A(t), we introduce the following family of func-
tions. For b > % let Ay denote the set of functions A\ for which there exists 73, > 50 such that
Ao € C*([T),, 0)), and the following two conditions hold: Firstly, there exists f € F}, such that

o) _ (@)
N0 -t t =1, (1.9)

Secondly, ) ) .
Mo(t) ~ tlog(t)’

Note that the above conditions on g imply that A\o(t) — \; > 0 as t — oo, despite the fact that

some Ao € Ay (for b < 1) satisfy
r’ro 1] .
t T )‘O(S)

Ao(t) > 0, t=T, (1.10)

To see this, we write

M " M d /
A = (A —A
f(t) =— lim i O(S)ds = — lim iz (Qol3)s O(S))ds, t>T),
Integrating by parts and using the assumptions on ‘iggg' , and the fact that b > %, we see that

lim log(Ao(M)) < oo
M—w

Before we state the main result, we remark that, given any f € Fj, there exists 7), > 50, and a
one-parameter family of \g € A, satisfying (1.9) and (1.10). This can be seen as follows. Given
f € Fy, we can first find w satisfying

W(t) +w(t)? = /1) w ¢




(where N > 50 is sufficiently large) with a fixed point argument. By inspection of this equation,
w € C®(|N,0)). Then, we can define T\, = N + 1, and let \q be given by

t
Ao(t) = cexp <J w(s)ds) , t=N+1, anyc>0

N+1

Then, we have (1.9) and (1.10).

To clarify the relation between the radiation and the leading behavior of A, we note that, for a
given f € F}, and any )¢ € A, satisfying (1.9) and (1.10), the radiation is uniquely specified by its
initial velocity, which is determined from

70 = oz | snegyan

where, since ¢ (t) = 1 for all ¢ sufficiently large,

(- FY0) O N0

t t Ao(t)

t sufficiently large

An interesting feature of our solutions is that the radiation v; depends only on f (as per the for-
mula for v;; given above) which is invariant with respect to multiplying Ao by a constant. As we
just showed, there is a one-parameter family of \y € Ay, corresponding to a given f € Fj. In
particular, our family of solutions includes functions of the form ) - (r) + vi(t,r) + o(1), for a

one-parameter family of possible asymptotic values of A(t), and the same v;.

Our main result is

Theorem 1.7. For all b > % and f € F,, let \o be any element of A\, satisfying (1.9). Then, there
exists To = Ty(No) and a finite energy solution, u, to (1.5), with the following properties.

u(t,r) = Qﬁ(r) +v1(t,r) + ve(t, )

where \(t) € C*([Tp, 0))

1 4
—att’Ul + &wl + —(97,1)1 - —2U1 =0
r r
C
Eve,ﬁve < — t =T
( t ) 10g4b_2(t) 0

and, for some ¢y > 0,

A(t) = Xo(t) <1 +0 <@>)

Remark 1. The initial data for v; in the theorem statement is explicit in terms of f € F}, as noted
above.

12



Remark 2. For 2 < § < a < 1, we can let

£(t) = —Siiggfz()t)), t > 50

Then, f € F; for any % < b < . We then carry out the procedure discussed before the main
theorem, to recover a \qg € A, satisfying (1.9) and (1.10). In this case, we have

Aol(t) —alog® ' (t) cos(log®(t))

Ao(t) tlog”(t)

Since 1 + 8 — a < 1, this gives rise to Ay € A, with

")l
ft M(s) =

Nevertheless, as pointed out earlier in a more general context, )\, is asymptotically constant.

Remark 3. By choosing

we can show (see (11.6)) that

8 1
o (h) T <slogb“<§>> SR

which shows that we can have radiation whose initial velocity has quite a large singularity at
low frequencies. In fact, the condition for the radiation to have finite energy in our setting is
v1.1(€) € L*((0,00),£dE). The initial velocity therefore satisfies this condition only “logarithmi-
cally”. In fact, given our definition of v7 () above, A(¢) approaching a constant as ¢ approaches
infinity is a necessary condition for 07 1(£) € L?((0,00), £d€) (see the discussion after (11.8).

u11(6)

Now that we have discussed the equations to be considered, and summarized the main results,
we start by stating and proving our precise results for the wave maps equation. The Yang-Mills
equation results will be stated and proven afterwards. The following is taken from a work of the
author which is to appear in the Memoirs of the American Mathematical Society.

2 Introduction (Wave Maps)

We consider the wave maps equation, with domain R?*! and target S2. This equation is the Euler-
Lagrange equation associated to the functional

(@) = f (0B(t, 1), 6aB(t, 2))y(00y dtd
R2+1

13



where g denotes the round metric on S?, and ® : R** — S?. We will only work with 1-equivariant
maps ®, which we describe by first regarding ® as a map into R? with unit norm, and then writing

Oy (t, 7, ¢) = (cos(9) sin(u(t, ), sin(¢) sin(u(t, r)), cos(u(t, r)))
where (r, ¢) are polar coordinates on R?. Then, the wave maps equation becomes

1 in(2
O+ Ot + — O = sin(2u) 2.1
T 2r2

[31] studied (a more general problem which includes) the Cauchy problem associated to (2.1), with
data (ug, u;) such that

(1, 22) 1 (fvlu;)(?”), 932“;)(7“))

(21, 79) — (xlul(r), mul(r)) € Li.(R?)

T T

e H!

loc

(R?)

We will say that u is a finite energy solution to (2.1) if w is a distributional solution, with ¢, €
CYH'(R?) and 0,®, € CP L*(R?). Define the energy by

0 1.2
Ewm(u,v) = WJ <112 + smﬁ(u) + (6ru)2) rdr (2.2)
0
Then, if u solves (2.1), Ewm(u, d;u) is formally independent of time. We recall the ground state
soliton, 1 (r) = 2 arctan(r) is a solution to (2.1), with the property that the family of all Q,(r) =
(Q1(r\) are the unique minimizers of Ewy(u, 0) among finite energy u with ®,, having topological
degree one. In order to state our main theorem, it will also be useful to consider the following
non-degenerate energy which will be used to measure perturbations of ().

u?
<1)2 + (0,u)* + —) rdr

r2

0

Eu, v) :wf

0
The quantity E(u, d,u) is formally conserved for solutions to the wave equation

—0pu + Ot + lﬁru — % =0 (2.3)
r r

We consider the problem of constructing 1-equivariant, topological degree one, global,
non-scattering solutions to (2.1), which have energy strictly greater than Ewy((Q1,0)). The au-
thors of [3] classified 1-equivariant topological degree one solutions to the wave maps equation
with energy strictly between Ewwm((Q1,0)) and 3Ewm((Q1,0)). The part of their result which is
relevant for this paper is the statement that any such solutions which are global in time admit a
generic decomposition into the form

u=Qa +dLte (2.4)

where ¢, solves 2.3, A\(t) = o(t), ¢ — o0, and € — 0 (in an appropriate sense) as ¢t — co. There
are many possible asymptotic behaviors of A\ allowed by the above result, and, according to [3],
there were no known constructions of solutions of the above form, with A(t) — 0 or A(t) — oo.

14



This paper constructs a family of finite energy solutions to (2.1), say {u;}p~0, Where each w,
can be decomposed as in (2.4), with

1
b(t) = Xoop(t) + O <logb(7f) log(log(t))>

(see the main theorem below for the sense in which the ¢ term for our solution, which is called v,,
vanishes as ¢ goes to infinity). Here, Ao, € C*([100, o0)) satisfies, for some b, Cy, C,, . > 0,

C Crn Cm
< hoop(t) < — 2 DB < 2k k=1 t=100
log”(t) log”(t) . t*log”" " (t)
To the author’s knowledge, these are the first examples of such solutions of (2.1). First, we will
prove the following theorem, which corresponds to the special case of Ao (t) = —5. Solutions

log"(t)
with more general )\, can be constructed with a slight modification of the proof of this special
case, outlined in the appendix.

Theorem 2.1. For each b > 0, there exists Ty > 0 and a (real-valued) finite energy solution uy to
(2.1) for t = Ty, of the form

ub(tv T) = Q#(T) + UQ(t7T) + Ue(tﬂﬂ)

Ap(t)

where \, € C*([Ty, 0)),
EWM(ub, 5tub) < QO

1
—attﬂg + a,n,«Ug + ;aﬂjg — % = 0, E(UQ, 5151)2) < 00, V9 € COO([T(), OO) X [0, OO))
C
I (TN | L
(ve, & Q% ) t2log®(t) ’
and ] o
o(t) = +e(t), le®)] <
log”() log”(1)+/log(log(1))

¢ =12

) (1)] < 4 P or O oxtos)” T

g ] = 374

tJ logb*1(¢)’

Regarding more general Ay ;, we have the following. For b > 0, let A, be the set of f €
C*([100, o0)) such that there exist C}, Cyy,, Cpp . > 0 with

C
log’(t)

Theorem 2.2. Letb > 0. Forall \o o € Ay, there exists Ty > 100 and a (real-valued) finite energy
solution uy, to (2.1) for t = Ty, of the form

Cm
FARIGIES A k=1, =100

Cn
< t < X T 1,
o P log" ()

~logh(t)’

up(t,r) = Q 1 (1) + vo(t,r) + ve(t, 1)

Ap (1)
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where \, € C*([Ty, 0)),
EWM(ub, 5tub) < QO

1
— 0y Ug + OppU9 + —0pU9 — U—; =0, FE(vg,dvy) <0, vy C?([Ty,0) x [0,00))
r r
E(v E(Q +v))<L t =T
ey Ut X e ~ t2 10g2b(t)7 = 40
and o
Ao(t) = Aoop(t) +e(t), le(t)| <
log’ (t)4/log(log(t))
: g i =1,2
leD(t)] << log”*(t)+/log(log(1))” 7=
o j =34

tJ logb+1 (t) )

Remark 1. Our proof yields more information about the regularity of v, appearing in the main
theorem. In particular, we have
Ve = Ve, T Us

where the function v, g is fairly explicit (but complicated), and vg is constructed with a fixed point
argument, but has more Sobolev regularity than what follows from u having finite energy, namely:
if (r, ) denote polar coordinates on R?, then

(t,r,0) — ePvg(t,r) € C[Ty, ), H*(R?))

(t,r,0) — ew@tvﬁ(t, r) e CY([Ty, 0), H'(R?))

Remark 2. Theorem 2.2 includes solutions with mildly oscillating A 5, such as

2 + sin(log(log(t)))
log(t) ’

Remark 3. 1t is expected that the method used in this paper can be extended to allow for the
construction of such solutions with A(t) — o0, t — o0.

Finally, this method should also be applicable to higher equivariance classes, the energy critical
Yang-Mills problem in 4 dimensions with gauge group SO(4), as well as the quintic, focusing
semilinear wave equation in R'*3. All of these extensions are work in progress by the author.

Remark 4. The leading behavior of \(t) is partially motivated by the fact that, for k = 1, 2,

t = 100

0,0 =

AP (@)] C

) S g~ T

This fact is very important so that certain error terms appearing in this work which involve the
“transferrence operator” defined in [14] can be treated perturbatively. In particular, the method of
this work can not be directly applied to construct solutions with A(t) being all powers of .

In order to understand this work in a larger context, we review previous work regarding dy-
namical behavior of solutions to the critical wave maps problem with S? target. Firstly, the works
[32] and [33] (which apply to much more general targets than S?) show that for data with energy
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strictly less than that of the lowest energy non-trivial harmonic map, one has global well-posedness
and scattering. In the 1-equivariant setting, [2] showed that global existence and scattering holds
for smooth, topological degree zero data with energy less than twice that of (), (which is the ap-
propriate threshold in this setting). An analogous result, but without the equivariance assumption,
is implied by [19]. Then, [9] constructed, for all £ > 2, k equivariant, topological degree zero,
two-bubble solutions with energy exactly equal to 2 times the energy of Q. (r) := Q;(r*). In [10],
all k-equivariant solutions (with & > 2) of topological degree zero, and energy exactly equal to
twice the energy of Q(r) were classified. A classification of 1-equivariant, topological degree
0 solutions with energy equal to twice E(();) was obtained in [30], and shows that the dynam-
ical behavior of such solutions can be quite different than in the higher equivariance case. [30]
also constructs a finite-time blow-up solution in this setting. The methods used in this work differ
significantly from these previous works.

I-equivariant, topological degree one, finite time blow-up solutions have been constructed in
[14], and the work [5] extended the range of possible blow-up rates of these solutions. The method
of construction of the ansatz of this paper differs significantly from that used in [14]. However, we
do eventually use some technical information, most importantly, the distorted Fourier transform,
from [14] as part of the process to complete our ansatz to an exact solution. Analogs of the solutions
of [14] for the 4 + 1-dimensional Yang-Mills equation with gauge group SO(4) and the quintic,
focusing nonlinear wave equation in R**3 were also constructed in [15] and [17]. The work of
[16] studies the stability of the solutions of [14] and [5] under certain equivariant perturbations.
In addition, [29] constructs finite-time blow-up, k—equivariant solutions with £ > 4, and [28]
constructs finite time blow-up solutions for the (4 + 1)-dimensional Yang-Mills problem with
gauge group SO(4), as well as in all equivariance classes for energy critical wave maps. The
method of this work is quite different from the methods used in [28] and [29].

The work of [1] constructs modulated soliton solutions, where ) is bounded away from zero and
infinity for all time. Some facts from [1] about the wave maps equation linearized around (); will
be utilized in this paper, but the ansatz construction is again quite different. Finally, infinite time
blow-up and infinite time relaxation solutions to the quintic, focusing, nonlinear wave equation in
R'*3 have been constructed in [4], but the method of this paper is again quite different.

3 Notation (Wave Maps)

We will occasionally use the Hankel transform of order 1, and it will be denoted as

7e) = j:ntf<r>Ja<r§>rdr

The main Fourier transform we will use is the distorted Fourier transform of [14], which we denote
by

Hma=fwmwmm

Briefly, we will make some use of the distorted Fourier transforms of [1], which are denoted by
Fr and F . Finally, we use the same notation as [1] for the following norm

f
11y = N0 f Il rary + ||;||%2<rdr>
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We denote by ¢, the zero resonance of the elliptic part of the wave equation linearized around ();:

2r
ﬁ‘xﬂQ’\(r) T + 72

(This notation for ¢ is the same as that used in [1], but is different from that used in [14]).

do(r) =

4 Overview of the Proof (Wave Maps)

We remind the reader that we will prove theorem 2.1, with the extra arguments needed to establish
theorem 2.2 summarized in the appendix. The argument used in this paper proceeds in two parts.
First, we construct an approximate solution, u, to (2.1). Second, we construct an exact solution to
(2.1) which is close to our approximate one.

Part 1: Constructing the approximate solution

One way to understand the intuition behind our approximate solution is as follows. One could
start by looking for an approximate solution to (2.1) which consists of a dynamically rescaled
soliton and a radiation field, along with an appropriate compatibility condition between the soliton
length scale, and the radiation field. This would correspond to an approximate solution of the form

Ug = Qﬁ + vq, where vy is some solution to (2.3), A(¢) is not yet chosen, and one can look for
an appropriate relation between ve and A(%) so as to make the approximate solution accurate. Two

difficulties immediately arise with this procedure. One is that 6&2% (r) ¢ L*(rdr), which means

that Fwwm(ug, 0iu,) is not finite. Another key difficulty is that the elliptic part of the wave maps
equation linearized around ) 1 _ 35 has a zero resonance, ¢q( O ). So, one would like the principal

part of the error term of w,, to be orthogonal to ¢ (5~ ). On the other hand, the soliton error term

ol

) = N(t) ArA()N(1)?
480 = T T A

does not decay fast enough in r for its inner product with ¢0( ) to even be defined in the first
place.

Hence, we start by introducing an additional correction, vy, which is independent of v, and
whose purpose is both to make the ansatz have finite energy and to eliminate an appropriate prin-
cipal part of the soliton error term, 07 Q - , for large . More precisely the starting point for our

ansatz is
Uq,1 = Qﬁ("d) + U1 (t7 T) + U2(t7 T)

Here, A(t) is not yet chosen, and v; solves the nondegenerate wave equation

U1
7,2

.
1+ 72

—Oyv1 + Opp1 + 6 v — — = —2N"(1)

with 0 Cauchy data at infinity. As explained in more detail later on, we do not have the entire
soliton error term on the right-hand side of the v; equation, because doing so would be more
difficult and also would hide the leading, linear part in the modulation equation for \.

On the other hand, v, solves (2.3) with Cauchy data

v2(0,7) =0,  Gpwa(0,7) = va0(r)
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where v, o will be a prescribed function depending on a fixed parameter b > 0. The choices for vy
and A\(t) are closely related. Later, we will choose A(t) to solve a modulation equation involving
U2, thereby correlating the length scale of the dynamically rescaled soliton with the radiation
profile.

At this stage, one could choose A(t) by requiring that the principal part of the error term as-
sociated to u,, 1, Say e, 1, is orthogonal to ¢o(ﬁ)~ This is not exactly what is done in our argu-
ment, since we will need to add additional corrections to u, ; before imposing the orthogonality
condition on the principal part of the error term of our final ansatz. Nevertheless, computing
(ea(t, RA(t)), do(R))r2(rar) allows one to see, in a simpler context than our final equation for
A(t), a relation between the leading order behavior of A\”(¢) and v,. For the purposes of this dis-
cussion, the principal part of the u, ; error term is

) = 30 () 4 2" (), (COS(2QA3@(T)) - 1) )

A 1472 r2

(COS(QQ)\(lﬂ(T)) = 1>
+ v (t, 1)

r2
Using the Hankel transform of order 1 to express v, the contribution to

(ea,1(t; RA(1)), ¢0(R))r2(Rar)

from the v,-related term above is given by

cos(2Q1(R)) — 1
(e

) valt, RA(1)). do(R)) 2y

_ f " i) () 2K (A1) de

0

where K denotes the modified Bessel function of the second kind. We thus get

(ea,1(t; RA(1)), po(R))L2(RdR)
i | ks =2 sin o K eaw)e + - 0ED
+ fi(A(E), N(t), N'(¢))

We will choose v,y and the principal part of A, denoted by )¢, in order to have a leading order
cancellation in the above equation. The term f;(\(¢), N'(t), \"(¢)) turns out to be subleading for all
A close (in a C? sense) to the choice of Ao,0 which we make. Our choice of vy gives the following
equation

AT X m
(ea1(t, RA(Y)), ¢0(R)>L2(RdR) - A(t) Jt 1+s— td T A(t)82 logb(t)
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Again, the term fo(A(t), N'(¢), \"(t)) is subleading, for all A(¢) close (in a C? sense) to Ao o(t) =

—1__ which is a leading order solution to

log"(t)”

4 (* N(s) 4b 4AN"(t) log(A(t)) B
Y0 Jt Tt A(8)E2 log(t) " A(t) -
The term 1

occurs in the above computation, as a consequence of our particular choice of Cauchy data for
v. Despite the fact that our final equation for A(¢) is not exactly the one given above, the leading
behavior of our A(t) is indeed Ao (%), due to the same cancellation seen above.

Even if the principal part of the error term of u, ; is chosen to be orthogonal to ¢, (W)’ it does
not have enough decay to be treated perturbatively via our methods. So, we need to add three more
corrections to u, 1, denoted by vs, v4, and vs, in order to achieve an acceptable error term.

When the error term resulting from ) o and v; is computed in the renormalized spatial co-
ordinate R, defined by » = R\(t), it has insufficient decay for large R (because factors of ﬁ
will turn out to correspond to logarithmic growth in ¢, once we choose A(t)). On the other hand,
if this error term is completely eliminated, the resulting modulation equation for A becomes much
more difficult to study. The third correction, vs, solves an inhomogeneous version of (2.3) with
0 Cauchy data at infinity in order to correct the problem of this error term for large R while also
not complicating the final modulation equation for A. In the process of doing this, we introduce a
small, positive parameter o.

The soliton, along with these three corrections can be regarded as the principal components of
the ansatz. However, we introduce two more corrections, v4 and vs, both of which solve inhomoge-
neous versions of (2.3), with 0 Cauchy data at infinity, in order to improve the error terms resulting
from the previous terms in the ansatz. More precisely, v, eliminates a large r portion of linear error
terms associated to vi, k = 1,2, 3, as well as an error term arising from the combination of the

right-hand sides of the v and v; equations and Q?Qﬁ. vs eliminates error terms associated to the

nonlinear interaction between vy, k =1,2,3,4.
Our final ansatz

5
Uansatz = Qﬁ(r) + Z Uk(t, 7”)
k=1

satisfies
EWM(uansat27 atuansatz) <
sin(2uansatz
_attuansatz + a7"7"uanson‘/z + _aruansatz - # = - (F4 + F5 + Fﬁ)
r 2r
where 5 + Fg has sufficiently fast time decay in sufficiently many norms, and is perturbative:
||F5(t,’f‘) + Fﬁ(tar)||L2(7"dr) < C
)\(t)2 = 14 10g3b+2N71(t)

155 + Bl _ Clog®™* (1)
A(t) = +35/8
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and F;, the principal part of the error term, does not have as fast decay as F; + Fg, but satisfies

<F4(ta ')7 ¢O(W)> =0

and the following estimate (in a symbol-type fashion, see theorem 5.1 for the precise statement):

Ol ciogh ()" N Clypapyr
21og® T2 (1) (12 £ N(£)2)2  21og™ T2 (1)(r2 + A(t)?)2

|F4(t7 T)| <

where o and N are parameters associated to v and vy, respectively. « is small relative to b and 1,
while /V and is large relative to b and 1.
The modulation equation for A,

<F4(ta ')7 ¢O(W)> =0

has a principal part which is of the form of a Volterra equation of the second kind in the variable
A" (with kernel and coefficients weakly depending on ). In particular, this equation is of the form

—4 foo L(S)ds + A + 4aclog(A(E))N'(t)

I+s—1 t2log"(t)

loe] /\”(S)
B 4£ A4+ s—t)(1+s— t)?»ds
= f3(A(), N'(), A" (1))

We emphasize that the leading behavior of ) is independent of the small parameter o > 0, associ-
ated to vs3, and the crucial source term
4b
t2log”(t)
comes from vy, and is a consequence of the particular choice of data for v,. The other terms on
the left-hand side of the above equation come from vy, vs, Q) . In particular, v4 and v; do not
t

contribute to the leading order part of the equation for \(¢) because the terms contained in f3 are
subleading, for all \ close (in a C? sense) to m.

To the knowledge of the author, a modulation equation of the above form is quite different from
that of previous works. Moreover, in the context of our ansatz, the Volterra form of the modulation

equation seems to be related to the fact that &| ~ Q\(r) ¢ L?(rdr). Indeed, the integral operators
A=1

acting on \” arising in the principal part of the modulation equation come from v; and v3, which
were introduced to correct soliton related error terms for large 7.

As motivated by the discussion of the simpler ansatz v, ; above, we find an approximate solu-
tion to the modulation equation (5.63) for A of the form

|
Yoolt) = log”(t)
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The equation for ) is then exactly solved around \q o with a fixed point argument in a weighted C*
space, and we obtain an exact solution

1 1
AMt) = —F——+0
= o) <1ogb<t> 1og<1og(t>>>
Afterwards, we show that ) is in fact a C* function, and prove quantitative estimates on its deriva-

tives. Along the way, we thus obtain estimates on higher time derivatives of the corrections vy,
whose right-hand sides depend on A(t) (for all k& # 2).
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Part 2: Construction of the exact solution

Once we construct Ugpsqiz, We substitute © = Ugnsar. + Vg into (2.1), thereby obtaining an
equation for vg. Our goal is to solve this equation for vg perturbatively, with 0 Cauchy data at
infinity. We achieve this, by studying the distorted Fourier transform (in the sense of [14]), of vg.
In particular, we (formally) derive the equation for

y(t,w) = F (v vs(t, A1) (wA(t)?)

where we recall that F denotes the distorted Fourier transform of [14]. The particular choice of the
rescaling used in the definition of y is explained by noting that the equation for y takes the form

Oy +wy = —F(VF(t, A1) (A®)*) + Fa(y)(t,w) — F(V-F3(vs()) (¢, A1) (wA(1)?)
for appropriate F5, F3, where
F=F,+ Fs+ I

is the sum of the error terms of w,sq:.. In deriving the y equation, a few properties about the
distorted Fourier transform, most importantly, the transferrence identity from [14] are used. The
equation for y is solved by showing that the map

T(y)(tw) = _fo Sin((t\—/g)x@)

(Fa(y) (2, w) = F(V-F(z, M) (wA(z)*)
—F(V-Fs(u@)) (@, M) (wA(z)*)) dz

has a fixed point in an appropriate Banach space (whose norm is roughly the sum of weighted
L* L2 norms of y and 0,1, see (6.46) for the precise definition) via the contraction mapping theo-
rem. The most delicate term to estimate is

o -
_J sm((t JJ)\/E) (—F(\/F4(:Jc,)\(a:)))(w)\(x)Q)) dax
i Vw
In order to obtain sufficient estimates on this term (and its time derivative) in appropriate norms, we
must utilize the previously discussed orthogonality condition on F);. The orthogonality condition
on Fj is utilized by noting that it implies that F(y/-Fy(z, -A(x)))(wA(z)?) has a certain degree
of vanishing at small frequencies, and this allows us to integrate by parts in the x variable in the
integral above. This, combined with the symbol-type nature of the pointwise estimates on F}
turn out to provide sufficient decay of the integral above in all norms required by the fixed point
argument. Since the density of the spectral measure associated to the distorted Fourier transform
of [14] (which appears in the weighted norms of our iteration space) has a singularity at low
frequencies, such integration by parts would be impossible without the orthogonality condition. In
particular, we can not integrate by parts for the analogous integrals involving F5 + Fg. The faster
time decay of the L? and H g norms of this term, relative to F; is what allows it to be perturbative,

despite the non-orthogonality to gbo(ﬁ).

5 Construction of the Ansatz (Wave Maps)

Fix b > 0,0 < a < min{;y555, 19501} and N > (50001)(b + 1). We consider (2.1) for ¢ = T,
where e
61000 +1

T() > 2e + T071 (51)
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4
and is otherwise arbitrary for now, and where Tj; > e(128000)% 4 N ? is such that

@ (log(log() |, & ! L@ (1
b ( log"(¢) ) I+ 1% (blogb(t) log(log(t))> < ﬁ|% (logb(t)) |

t>Tyy, j=01,2

A [To, 00) — (0, c0) denotes a C?([Tp, 00)) map satisfying, for some C' > 0, independent of T,

C 1 1
— — ad——— <At <=, t=T 5.2
t2log"* 1 (t)’ Clog® (1) 1)< 3 o 62

and is otherwise arbitrary for now. (Note that the first and third requirements above are not strictly
necessary for the validity of most of our procedure. However, for this work, there is no loss of
generality in assuming them, since A will later on be restricted to a class of functions of the form
A = )\g + e, where ) is some explicit function to be specified later, and e belongs to a certain
space of functions such that (among other things) (5.2) holds for Ay + €).

Also for all estimates appearing in the entire paper, we use the convention that C' will always
denote a positive constant independent of 1, whose value may change from line to line. Although
we have already summarized the ansatz construction in the overview of the proof, we now provide
an outline which clarifies the logical structure of the process.

N(t) <0, M) <

5.1 Outline

Step 1, Definitions of the corrections, v;: For all 7; and A as above, and ¢ > T{, we define
functions v, 1 < k < 5, which were roughly described in the overview of the proof, thereby
obtaining

5
uansatz(t7r) = Qﬁ(r) + Z ’Uk(tﬂn)
k=1

Step 2, Splitting of the error term of u,,,,.:., and setup of the modulation equation for \: We
define functions Fy, F5, and Fis, which split the error term of wg;,54¢, into — (Fy + F5 + Fg). Then,
we consider the modulation equation for \(¢) resulting from setting

(F(t, ), %(@» —0, t>T

(Note that F); depends on \(t)). As described (to a certain extent) in the overview of the proof, this
modulation equation takes the form of a Volterra equation of the second kind in the variable \"(t)
(with kernel and coefficients weakly depending on \), and our choice of Cauchy data for v, gives

rise to a leading order solution
—b%log( log tg))
dtodt

log

to this equation. We then introduce a weighted C? space, X, with norm (5.30). From this point on,
we further restrict \(¢) to be of the form

A(t) = Mo(t) +e(t), eeB
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where

B=B0)c X

(Note that \o + B is contained within the class of \(¢) we initially started with (which is described
by (5.2))).

Step 3, Solving the modulation equation for \(¢): Writing Fy(t,r) = F} ® (t,r) to empha-
size the \ dependence of Fj, we show that there exists 75 > 0 such that, for all 7j > 75, the
equation

EPOO( ), ol D=0, t=T
0

(t) + e(t)
can be solved for e(t) € B, using the contraction mapping principle. An important part of this
procedure is that the kernel appearing in the Volterra equation for e (which is independent of e,
modulo error terms which can be treated perturbatively) satisfies the structural condition (5.69).
From here on, we work under the constraint 7y > T3.

Step 4, Estimates on higher derivatives of \”: Denoting the solution to the above equation
for e by eg(t), we fix A(t) = Ao(f) + eo(t). Then, we prove that A(¢), which is apriori only in
C*([Ty, ©)), is actually in C*([T}, ), and establish quantitative estimates on \” and \"”.

Step S5, Estimates on F}: At this stage, we prove pointwise estimates on F}, as well as es-
timates on |[Fy|[r2(rar), |[Fk|/gy for k& = 5,6. This completes the ansatz construction. More
precisely, our main result of this section is

Theorem 5.1 (Approximate solution to (2.1)). For all b > 0, there exists T3 > 0 such that, for
all Ty = Ty, there exists Voo € CH{([Tp,0); C?((0,0))), and X\ € C*([Ty,0)) such that, if

u =@ o5 + Veorrs then

EWM(U, 5tu) <

—Optt + Opput + lﬁru — sm(22u) = — (Fy+ F5 + Fp)
T 2r
where
1 C

)\(t)2 || (F5 + F6) (ta T)||L2(rdr) < 4 log3b+2N71(t) (53)

F + E t - 6+b
| (Fs + Fs) ()]l 2  Clog (t) 5.4)

)\(t) t35/8

<F4(t7 ')7 ¢O(W)> =0

ForO0<k<2 0<j <1, j+k<2 wehave

Cl{r<logN(t)}T n Cﬂ{ré%}r
21og® 2 (1) (r2 £ N(£)2)2  21og” TV 2 (1)(r2 4 A(t)?2)2

trk|ore] Fu(t,r)| <

In addition, we have

|02 F4(t, )| < Ol <iog™ (1) " N Cly<yyr
t ) 14 1Og3b+1—2ab(t)(r2 +A(1)2)2 10g56+2N—2(t)(T2 ISYOEE
Cly<y

_l’_
t41og” PN 2 (1) (r2 + A(1)2)2
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We also have the following estimates on V.o,

Veorr (T, RA()) (15 Veorr (T, RA(2)) C'log(log(z))
! R\ (z) e+ ||R)\(.T)2(1 + R?) lles < - 22log(x) 5:3)
o |2 E O ot o, RAG ]l < © 56)
Veorr (T, RAN())Or (Veorr (2, RA()))
| RA(1)? 2z 0.
||Ucorr (:L“, R/\(‘rgf/l\%((;))cgrr(l‘7 R)\(l‘))) ||L1§‘((1,oo)) n ||6R211)cir}(§;7)f&(;))) ||LOC (5.7)
< C'log(log(x))

22 log(x)

Finally, ) is described by

1 C
A(t) = b + e(t)> |€(t)| < b
log”(t) log”(t)+/log(log(t))
g i =1,2
) (1)] < 4 P or O ostos)” T

g j=234

tJ logb*1(t)’

5.2 Correcting the large r behavior of Qﬁ

The error term (9?@% , which arises from inserting Qﬁ into (2.1), does not decay quickly enough

for its inner product with qbo(ﬁ) to be defined. The first term in the ansatz, vy, is designed to

correct this problem. Note that we do not choose v; to solve an equation whose right-hand side
is equal to 02Q o 3 doing so would result in a much more difficult equation to solve when we
t

eventually choose \(t). Instead, v is defined as the solution to the equation

(%1

1
—8ttvl + 8”111 + —ﬁrvl -5 = —2>\”(t)
r r

’
14 r?

with 0 Cauchy data at infinity. I.e., by Duhamel’s principle, we have

vi(t,r) = f:o vs(t,r)ds

where vy is the solution to the following Cauchy problem

_attvs + arrvs + %&\rvs - :_5 =0
vs(s,7) =0 (5.8)
Opvs(s, ) = —2\"(s) L

1472

26



We can determine a fairly explicit formula for vs. The procedure used to determine the formula for
vs may be slightly formal, but the final expression obtained can be seen to be the solution to the
Cauchy problem (5.8). Firstly, note that if « is a solution to

1
—6ttu + @Tu + —@u =0
r

then, w = 0,u is formally a solution to

w
—5ttw+(3mw+ 611)——2:0
r

So, we will first write down the spherical means representation formula for the problem
—(9ttu1 + Au1 =0

ui(s) =0
Oy (s) = —X'(s)log(1 + |z]?)

then define u by u(t, |x|) = uy (¢, x) (which is possible, since u; is radially symmetric). Then,

vs(t,r) = dyult,r)

will be seen to be the solution to (5.8). From the spherical means representation formula, for ¢ > s,
we have

" 2
ST Y G E
2T JB(04—s) ((t —s)2 = |y)?
_ )\” f s JQ” log(1 + |ac|2 + 2|z|p cos(d )+p2)d0dp
((t —s)2 = p?)'2

Recalling that w is the radial coordinate representative of u;, we have

LN [ 2(Je] + peos(d))
Oeftt =~ f pL (Lt 2P + 2lalpcos(0) + 2)(( —s)2 — ppytdr O

To do the integral over the angular coordinate, we can regard it as

j 2(|z| + 2(z + 1)) dz
o (L4 |22+ |zlp(z + 3) + p?)((t — 5)% — p?)1/2 iz
where C' is the boundary of the unit circle in the complex plane, traversed in the counterclockwise

direction.
The integrand is a meromorphic function on C, with poles at

o (1 +la + o2 £ A/~ + (L + 2P + p2)2>

2|z[p
Note that

—Alz*p* + (L+ |2f* + p%)* = 1+ 2(|2]* + p°) + (|2 = p*)* = 1

27



So,

L+ [z]? + p? + /=422 + (1 + |22 + p?)2 i b

>1
2|z[p 2|z|p 2|z|p

On the other hand, we have

Ve + (L4 P+ p2)? < (L [af? + p?)

so that

L+ |2 + p* = A/ =42Pp? + (1 + 2 + p?)?
2[z[p

>0

and

L+ |2 + 0% =/ =4aPp? + (1 + |22 + p?)?
2[z|p

_ 2|zlp <1
L+ 22+ p? + /—Af2p? + (L + |22 + p?)?
So, the only two poles of the integrand located inside the unit disk in the complex plane are

14|22 4-p2 =/ —4|z|2 p2 4+ (14| z|2 4 p2)2
z=0andz=z1=—( \/2|ar|p

) . The corresponding residues are

1
Resy = -
ilz|/(s —1)* — p?
—1 + |2 = p?
ilely/ a2+ (1t 12l + 225 — 02 — /7
Returning to (5.9), we get, for t > s,

" t—s 2 1— 2
(Oau)(t, ) = _Ms) f p 1+ 121 p dp
z| Jo (t—s)?—p? V(L + [z]? + p2)? — 4]z [2p?

By substitution, we see that é‘mu(t, r) solves (5.8) for ¢ > s. We can extend the solution to ¢ < s
with the same Cauchy data at ¢ = s by defining

vs(t,r) = (=0u)(s — (t = 5),7), t<s

Res,, =

so that, for { < s, we have

2\ s—t 2 1— 2
vs(t,r) = (5) J i 1+ - P dp
rJo A/(s—1t)2—p? \/(1—1—7"2—1—,02)2—47“2,02
We will only need to use pointwise estimates on v, which will be proven shortly, but to give the
reader some idea of the behavior of v,, we note that
2X'(s) (1 = V1 = a?)

s(ts , 0 =
vs(t, ) - <a =

We have
0 /\I/ s—t 2 1 — 2
wi(t,r) = f (5) f P 1+ . P dpds  (5.10)
¢ Jo (s — )2 —p? V(L4712 + p2)2 — dr2p?
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5.2.1 Pointwise estimates on 0/v;

In this section, we will prove the following

Lemma 5.2. o
vi(t,r) = rf 1—(8)75d3 + Err(t,r) (5.11)
t

+s—

where
|Err(t,7)| < Crlog(3+ 2r)sup |\ (z)|, >0

x>t

In addition,

C e 0]
oy (t,7)] < —J IN'(s)|(s —t)ds, >0 (5.12)
T Jt
Moreover, similar results are true for 0,v;:
0 A”(S)
6,4}1 (t, 7’) = J; mds + EaTvl (t, 7’) (513)
with
| By (t,7)] < Csup (|\"()|) log(3 + 2r), >0
r=t
and

el < 5 (sup (W@I+ (0= 02) + [T VI - ds) 72

x>t

Proof. We start with

o0 I/ s—t 2 1 2
v (t,r) = J X(s) J p ! — L 1+ ! Ll dpds
e Jo (s—t)2—p2 s—1 V2 —1—p2)? + 472

oo} N s—1 2 _ 1— 2
+ J (5) f P 1+ L P dpds
e Jo (s—1) A (12 =1 —p2)2 + 492
The first line of (5.14) can be estimated as follows

e P s—t 1 1 2 1— 9
¢ T Jo (s—t)2—p2 s—t V0P —1—p2)? + 472
)\// 1 2 1 2
- supx>t J f B - r P Isdp
ptt S—t p2 s—1 \/(TQ—l—pz)Q—i—er?

sup,, (1\"(2)]) rf—1—p

< r Jo plog(2) <1+\/(r2—1—p2) +4r2> i

CSUszt (IA"()]) 2
r

< Crsup (|A"(z)])

=t

(5.14)

N

29



The second line of (5.14) is split into the following two terms

0\ s—t 2 1 _ 2
j N(s) J i 1+ rolor dpds
oo o Jo (s—1) A (12 =1 = p?)2 + 472

t4+2(r+1) yu s—t 2_1_p2
_ f A"(s) f P (1 + T P > dpds (5.15)
t

roJo (s—1)

0 " s—t 2 1 — 2
+ f N(s) f P 1+ ! P dpds
2y T Jo (51 V2 =1 —p2)2 + 42

For the second line of (5.15), we have

t+2(r+1) A\ s—t 2_1_,2
f (s) f P 1+ L P dpds
¢ rJo (s—1) A (2 —1—p?)2 + 472

) () (1 b2t (s— 12— /A+ (rts—0N1+(r—(5— t))2))
a L r(s —1t) 2 ds
_ Jt+2(r+1) )\”(s) 27“2(5 _ t)2 s
: =) Q+r2+(s—t)2++/ A+ +s=—t))1+ (r—(s—1)?))

So, we have

|J~t+2(r+1) )\”(8) J~st P - r2_1— p2 y d8|
. roJo (s—1) V(2 —1—p2)2 + 492 4

t+2(r+1) (8 _ t)

<C A d
(V@) | B
< Crsup (|]\"(2)])
=t

For the third line of (5.15), we have

@ 2r(s —t

J )\”(S) T(S ) ds
t4+2(r+1) I+7r2+ (s—1)2+/A+(r+s—)2)1+(r—(s—1))?)
2

L:M Yoty (3o (o))

f N(s)—"—ds + Ey(t, )
t

+2(r+1) (S - t)

where

|Ey(t,7)] < sup(|xf(x)|)r(1+7,)2f° ds

>t +2(r+1) (s —1)?

< Crsup (|\"(2)])

=t
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Next,

Q0 AII e @] )\II
J J AT g
t+2(r+1) (s — t trareny L Hs—1
1 1
+ J N'(s)r ( — ) ds
t+2(r+1) s—t l+s—1t
and
7 e (= ) ol < rswp (X @D o1+ )
s)r — s| <rsu x)|)lo
t+2(r+1) s—t 1+s—1t m;z & 2+ 2r
< Csup (|X"(2)]) r
=t
Finally,
e )\ w AN t+2(r+1) A\
J —(S)T ds :J —(s)r ds —J —(S)T ds
with

t+2 r+1 )\//
|f S 5] < Csup (/) rlog(3 + 20)

x>t

Thus, we obtain the decomposmon (5.1 1), with the desired estimate on Err.

Next, we have
2 1 — 2
L P dpds|

[ y
|U1(t,7’)|—|Jt . L \/(S—t)—2—p2<1+\/(7'2_1_p2)2+4r2

< S s - s

Now we treat 0,v;:

w A\ t 2 _1—p?
oy (t,r) = i p 1+ ! p dpds
7 «/s—?fQ—p2 A (12 =1—p?)2 + 472
47“(p + 724+ 1)

JXI J m( 1)? + 472)””

Even though the first line of (5.16) is equal to =, the principal contribution to ¢,v; near the origin
actually comes from a combination of effects from appropriate parts of both the first and second
lines of (5.16). So, we do not simply divide the previous v; estimates by —r to treat the first line
of (5.16). Instead, we split the first line of (5.16) as

2_1_ 2
L P >dpds

J " J p (1 )

N R V(2 —1—p?)2 + 4r?

B [0¢] —>\”(S) s—t 1 - 1 T2 1 p2 8
_L 2 fo p( (s —1)2—p? (5—t)> <1+\/(T2_1_p2)2+47,2> dpd

w A\ s—t 21— p?
+ f 2(8) f P 1+ L P dpds
¢ T o (s—1) V(12 —1—p2)2 + 412
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(5.16)

dpds




2

o —>\”(8) s—t 1 1 r2—1 p
[0 (o) (o v
< G5 (N'(@)])

r2
0 7,2_1_/)2 Jw 1 1
. 1+ — dsd
Jp( %(r?—l—p2>2+4r2> i \Veoi= g so1) "V

0

" o0 2 12
B LY o (L BV
2 \/(TQ—I—p2)2+4r2

r 0

< Csup (|A"(z)])

=t

The second line of (5.16) is split in the same way
N'(s 4r (0* +1° + 1
J J (p* ) ydpds
VA S—t —P(p—r2+1 + 4r?)

PN 1 1 4r(p* + 1?2+ 1) dod

B r P (s —t)2 — 2_(s—t) 2 _ 2 2 2)%/ pas
t 0 s p (0 —r2+1)" + 412)

[oo] )\// s—t 4 2 2 1
J (S)J p r(pt+rt+ 1) —pdpds
t o (s—1) ((p2 —r? 4 1)2 + 47“2)

_l’_
r

and we again have

N'(s 1 4r +r 41
T ot
(s —1)? (s —1) ((pQ—TQ—I—l) +47‘2)
< C'sup (|N'(z JOO p p ) JOO ! ! dsdp
x>t 0 1) + 47“2)3/2 pit (5 — t)2 — p2 s—t
< Csup (|\"(2)])
=t

So far, we have
OO_)\/IS s—t p 7"2—1—p2
@vl(t,r):f 2( )J — 1+ — = | dpds
¢ T o (s—1) A (12 =1—p?)2 +4r

00 )\”(S) s—t p 4y (P2 4 7”2 + 1)
t 0 ((p* =2 +1)" + 412)

(5.17)

r
+ EO,aTvl

where
| B0, (t,7)] < C'sup (|\"(2)])

=t
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Now, we combine the first and second lines of (5.17), to get

w AN s—t 2_1-—p2
f #J P 1+ L d dpds
¢ r o (s—1) \/(7’2—1—,02)2—1-47“2

+f°° N'(s) JSt p 4r (p* + 12 + 1)
t

rodo D (22 1) 4 42)
_ > " (T2_1_(S_t)2)
_—2£ /\(s)(s—t)(\/B(1+r2+(3_t)2+\/ﬁ))d8

B=4r*+(?—1—(s—1)*?

Now, we proceed as in the estimates for v;.

t+2(r+1) ; (T2 —1— (5 _ t)2)
-2 -0 (e v @

c )\” t+2(r+1) |S . t| p
<
Sxt;ltﬁﬂ (x)l)ft T2l

< Csup (|X"(2)])

=t

33 dpds

where

Next, note that

L ):—(“W%%)( i )

VB +12+ (s—1)2 +/P) (s —t)? VItq 1+y+vitg

where
21 —7r?)  (r*+1)?

L PR PR P

140
ENEEE
So, for s —t = 2(r + 1),
<=, <t
16’ 4

Using this, we have

Qﬁéi;:éi;@¢m):m;iwo+0<ét;>>

So,

“ " (7"2 —1- (S — t)Q)
- 2~[§+2(T+1) Yiee =) (\/B(l +r2+(s—1)° + \/B)> "

0 )\l/
— J (5) ds + Ey p,4,(t,7)
t4+2(r+1) (s —1)
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where

()| (14 >d5 < Csup (V@)

|
E rU1 <CJ\
Fromtl<C) 6= G- ® =

Then, . 0
" "
J N'(s) ds — J )\—(S)dg + Es g0, (t,7)
tv20ri1) (8 — 1) 241y L+ —1
with
Bronttrl < [ WO (5 - iy ) ds < Com (V@)
20ron i h t+2(r+1) s—t l+s—t - et
Finally,
© NG o A1 t+2(r+1)  n
J (8) ds = J idS — J ids
tr2r+y L5 —1 ; 1+s—t ¢ 1+s—1
a0 )\”(8)
- ————ds + Es5 5,4, (t,
L 1+s—t$+ 30001 (1,7)
where

| Es,0,0,(t,7)] < C'sup (|A"(x)]) log(3 + 2r)

x>t

and we get the desired result

© \(g
arvl (tv T) = J; ngtd‘s + Ea'r"Ul (t7 T)
with
| B0, (t,7)] < Csup (]A"(2)|) log(3 + 2r)

x>t
It remains to prove the last estimate in the lemma statement: The first term of (5.16) is estimated
by

N\ 21— p?
|J 5 J P 1+ 4 P dpds|
¢ r 0 A/(s—1)2—=p? A (12 =1 = p?)2 + 472
C o0
<5 | WOl - s
Turning to the second term of (5.16), we have
00)\// s—t 4 2 2 1
|J (s) P___ r(p +7“2+ ) —pdpds|
0 A(s—t)2—p (0% =2 +1)% + 412)
2 1 0 N —t2
cof e =0,
(P =2+ 12 4+4r2)32 ) (s — )2 = p2(1 4 (s —1)?

< Csup,o, (N'()](1+ (2 — 1))
.JOO p(p? + 1 +1) J 1
o (P =72+ 1)24+4r2)%2 ), /(s — )2 = p? (s —t)2

(p* +1r? +1) dp

< G (VO + = 09) [ s i s

dsdp
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Let us first note that, for p < £, we have
r?—1—p*>Cr? forr>2

S0,
(P*+7r2+1) _C
(02 =72 +1)2 + 4r2)3/2 = pt

and

Jr/Q (p* +1r2+1) dp - & T (f)
o ((P—=r2+124+4r2)%2 /142 1!

On the other hand, when p > r/2, we have
f"o (P> +7r>+1) dp
rp (PP =12+ 1)2 +4r2)32 /1 4 p?

<CJOO (P*+7r2+1) i
S L p(2—r? 4 1)% + 4r2)32

r2 + 3rd _ 9r2 _ 12
Vor4+40r2+16 VOor4+40r2+16 VOr4+40r2+16

4(r2 +1)°
2log (3r* + (VIrt +40r2 + 16 + 9) 7 + v/9r® 4 4012 + 16 + 4) — 4log(r) + 1 — log(4)
+ 2
4(r2 +1)

<C

So, we conclude that

dr (p* + 12+ 1)

)\//
I =
S=U)" =P ((p2—r2+1) +4r2)3/2

< Csup,, (N'(@)I(1 + (2 — £)%))

r

dpds|

Combining these estimates, we get

Al < 5 (sopeoe (WL + o= 0) 4 [ Wl = s, =2

5.3 The free wave correction

The next correction is designed to produce a crucial source term in the equation that we will
eventually use to choose a specific A. In fact, it is this correction which ultimately determines the
asymptotics of the A which we will choose. Define v; to be the solution to

—OyVg + Oppo + = 8 Uy — 13 =

UQ(O) =0

01v2(0) = a9
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where

: D Xle@f b#1
U20(§) = J voo(r) 1 (ré)rdr = 7T(éffl) log" (1)’ 1
’ o1 (©)logllog(d)), b=1

where x .1 € C([0,0)), 0 < x<1(z) < 1forall z, and x 1 satisfies

0<z<i
) 8
X<i\T) =
<4( ) {0, x> }l
and is otherwise arbitrary. For ease of notation, let

4b
o) — | 70T b#1
= b=1

T 0

Note that this particular form of ¢, is due to the fact that part of U5 (&) involves an antiderivative
of s ,,( 3 We have a formula for vy, namely:

© b 1 )] b # 1
vz(t,r>=cbf sin(t€)Jy (r€) x <1 (€) - { @ d¢ (5.18)

NI

0 log(log( ), b=1

The significance of this particular choice of Cauchy data will be seen later on, when we identify
the vy-related contribution to the equation we use to choose .

We will prove pointwise estimates on v, later on, but, to give the reader some idea of the
behavior of vy, we note that (for instance, for b > 1)

(1 —sgn(t —r))

va(t,r) = + Eq(t,r
A0 = S =g (= T2
with
1 C C
Ey(t,r)| <C + +
L) (\/;q/|t—r|logb(|t—r|)> S rlog t 1) | rlog (1)
r>%, t—r|>5

This can be established by a procedure similar to the one which we use later on to compute the

inner product of the vy linear error term with ¢o (7 0 ).

5.4 Further improvement of the soliton error term

If we substitute u = ) o5 + v1 + v2 + ug into the wave maps equation
t

sin(2u)
2r2

1
—Optt + Opptt + =0y —
r
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we get

1 cos(2Q 1)
- attu?) + arru?) + _arui‘l - 2 0
T r
A\ COS(QQA%) -1 COS(QQﬁ) -1 '
= attQﬁ + 21 +(?27” + < TZ() ) v + ( 7,.2(> > (%) (5.19)
+ Ng(Ul + ’Ug) + N(Ug) + L(U3)
where
N(f) = (W) cos(QQﬁ) + (%) sin(Q(Qﬁ + v1 + 1))
L(f) = Sn;sif) cos(QQﬁ)(cos(Q(vl +vy)) — 1) — su;iif) sin(2Qﬁ) sin(2(vy + v2))
sin(2Q 1) cos(2Q) 1
No(f) = Tw(cos@f) -1+ 27’; D (sin(2f) — 2f)
Note that N (1)
Fo(t,r) = 5ttQm) 1+ TQT

appears on the right-hand side of (5.19). When the spatial coordinate is renormalized, via
r = RA(t)

one term arising in the the large R expansion of F{ has insufficient decay in time. To remedy this,
we will add another correction, to be denoted v3. On one hand, choosing v3 to solve an equation
whose right-hand side is exactly equal to Fy would eventually lead to a much more difficult equa-
tion that we use to determine A(¢). On the other hand, the error terms remaining after adding the
correction vz should no longer have insufficient decay in time for large values of R. We therefore
proceed as follows: recall that o has been introduced just before (5.1), and satisfies

1 L,
(1040!)” 1040!

0<a<min{b

and let

2r\"(t) —1+ A(t)? 1— A(t)*>
Foa(t,r) = 2, 2 2 23\ (41202
(A(t)? +r?) 1+ 1+ r2)\(t)2@
Next, we consider vs, defined as the solution (with O Cauchy data at infinity) to the equation

U3

1
—0yv3 + O3 + 03 — — Foa(t,r)
r r

Following the same steps as for v, we get

vg(t, )

(8,4/72 + p2 + 2rpcos(0))(r + pcos(0))

B 1 J*OO js—t 0 J~27r FO,l
2r ) Jo A(s=t)2=p*do A/12 + p? + 2rpcos(0)

dfdpds
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which gives

vs(tr) — —Ht

OO ft (s —2)2 — p? M)

. ( —loprr (5.20)
V(1 + p2—12)2 + 4p2
A — (2 — PN o
+/\(s)2\/1 + 2(p? + r2)A(s)2=2 + (p? — 7"2)2)\(3)4“_4) P

The main result of this section is a decomposition of v3 which will be useful in understanding its
contribution to the equation for \:

Lemma 5.3.
t = N N t 1 L d Es(t 5.21
wttr) = =r [ X0~ (g s o Bt 620
where
Bu(tn)] = € (sup )] ) -sup (U ) e
+ Crsup (|/\”(x)|)\(x)a_1()\(x)a_1 — )\(t)a_l)) ()22
+ C'rsup |\ ()|
Proof.

B _1 o0 s—t p , )
witn) == || )
' —1—p?+1r?
V(L +p2 —12)2 + 4r?
AP = (7 = PN o
NPT 207+ PG 7 1 (7 r2>2x<s>4a4> ’

vs 1s then decomposed as
Vs (t, T‘) = U371(t, T’) + 7J372(t7 T‘)

OO f e

where

1
’03’1(757 7“) = —;j
t

—1—p?+r?
<\/(1 + p?2 —12)2 4+ 4r? (5.22)
A — (02— PP 5
NI 22+ A (- r2>2A<s>4a—4> v
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V3,2 = U3 — V31
Then, we record some pointwise estimates on vs . If
L= (7~ M)
V142002 + 12)A(s)2072 + (p2 — 12)2)\(s)de
L (2= p)A(s)
\/47,2)\ 20-2 4 ( (7“2 _ p2))\(3)2a72)2

vga(t,r) = f J ( o= t) — (s i t)) N'(s) (5.23)

. ( ol Sl + F3(r, p, /\(t))> dpds

FS(T7 Ps /\(3)) =

then,

\/(1 + p2 —12)% + 4r?

__Jf < s—t) — (sit)>v(s)

: (F3(Tv P >‘( )) - F3(r’ Py )‘(t))) dpdS
For the first line of (5.23), we have

|__J f ( s—t) — p? sit>>\”(s)

(W 1_1_,) - +F3(7",p,)\(t))> dpds|

—1—p? +1r2)2 4 4r?

e (sup |A"<w>|)
r r=t

00 _1_p2+7,.2
) +1 =1+ F3(r, p, \(t
pr(_l_pzw)ww (7, . A1)

fjp < (s —1‘)2 -7 Sit) o
< (ammion) [0 (1 )
+[ o= Ft o0 d)

0

< Cr <sup |)\”(x)|)
xz=t

where we used the facts that
12 2
1—p*+r >
V(=1 = p? +72)% + 472
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and
F3(T7 P, )\(t)) < 1

To estimate the second line of (5.23), we first note that
F3(T7 Py /\( )) - Fg(T P (t))
! —4r?2, (1 + (r? — p?)22) o o
_ J : (Ms)™ ' = A0 ) do

14 2(p? +12)22 + (p? — r2)2224)3/2

where
Zy = a)\(s)o"l +(1- 0))\(15)“*1

First, we note that
L+ 2002 + )22 + (p? —rH)22t = 4022 + (1 + (r? — p?)2?)?
So,

—4r?z, (1 + (r? — p?)22)

(1+2(p2 +712)22 4 (p? — 1r2)224)3/2 (/\(S)O‘—l _ ,\(t)a—1) |

2|z (AM(s)* ™! = A(H)*TH)

(1 +2(p* +12)22 + (p* = 1%)%2;)

Since A is a decreasing function, and 0 < a < 3, we have

A<z = oA P+ (T =)A< M), 0<o<1, s>t

So,
|[E3(r, p, A(s)) = F3(r, p, A1)
PAG) M) = A -,
T (L4 2(0% + r2)A(E)202 4 (p2 — r2)2\(t)de 1)’ ~
This gives

1 "
= ( s—t) p‘<s_t>>A<S><F3<T7P7A<s>>—Fs<w,A<t>>>dpds|

<Cr J f o1 X (5)A(5)° A (5)°~1 = A(1)*~"|ddp
V——p? (s=1) ) T+ 207 + PAO™ 2 + (07 — 122D )

< Crsup (IX"(2) A () HA@)* = M)

=t

_ J * pdp
o (142(p* +r2)A)>7% + (p* — r2)2A(¢)*1)
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Then, if 2r > A(¢)'~°, we have

f * pdp
o (142(p% + r2)AE)> 2 + (p* — r2)2A(E)* )

Mt)l—e 2r d e d
o R - = =
0 OGRS A(t)2 o PAA(E)

< C/\(t)272a

N

On the other hand, if 2r < A\(t)'~2, we have

J * pdp
o (1+2(p% +r2)A()* 2 + (p* — r?)2A(t)* 1)

N o0 d

p
< pdp+ f 4
L Aty PPA(E)

< ONt)*™*

In total, we get

|__J f ( S—t) 2 (sit)> A(s) (Fs(r, p, Als)) = Fa(r, p, A1) dpds|
< Crsup (N ()| A\ (2)*~ A (z) _)\(t)a_lD A(t)2 2

x>t

It then suffices to study vs ;. Firstly, we have

1 (tr6r st 11— 242
-2 f f L) P L By As)) | dpds]
r (s —1) \/(—1—p2+7“2)2+4r2

Jt+6r J*s t

< Crsup [N'(z)

x>t

(s)| - 2dpds

Next, we have

1 0 s—t p —1—p2+r2
— A/I +F T’ ’AS dds
TJ;+6TJ;] (s —1t) () <\/(_1_,02+7"2)2+47“2 5(r, p, A(s)) ) dp
1

202
(1+U}2)(1+2+1+\/1+2+1) 4m)

= —27‘] N (t + w)w
67

+ — dw
(A(t + w)272a + wQ) ( (t—i—w)2 Torw? T L+ \/ A(t+w) 2 2‘l-i-w2 T 1) N (A(t-i-w)gjga-&-wZ)Q)
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Using the fact that w = s — ¢ > 6r in the integral below, we get

L[~ JSt " -1 - ,02 + r2
o S + F5(r, p, A(s dpds
r J;H—Gr 0 ( ) \/(—1 — p2 + T2)2 + 4T2 3( p ( )) 4
% " 1 1
= -2 At _ d 5
TLT (E+whw (2(1 +w?) 2\t + w)>2e + w2)) Wt S
where
o .2 1 1
E < C )\// 7" w d
= Tigtﬂ @)l o w? \1+w? * At +w)?2e + w? v

< Crsup [N'(2)]

=t

So, it suffices to study

[ e (5~ )

We will make one more reduction, which is to replace A(t + w) in the above expression with A(¢).
The error in doing this replacement is

[ 2060 (e - sarE e
But, if
Fu(w,s—1) m
then,

At
(s~ 1)
N (O

(s —1)* o>t A(z)~

[Fi(A(s)" s —t) = Fa(MB)" %, s —1)| < C AT = As)

where we use the fact that A is a decreasing function. So,

® 1/ ]'
"TLGTA () =1) ((W 2a+<s—t> e <s>2—2a+<s—t>2>)d5'

N (= t)a 1-2a JOO w
<Cr (Srli}z I\ (z ) ( A(t) o dw

x>t x>t

This finally gives (5.21). []
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5.5 The linear error terms for large r

Despite the decay of
1 — cos(2Q1(53))
2

’
for large r, we will still need to add another correction which improves the linear error terms of
vy, Vg, 3, as well as Fop = —Fy 1 + 2f+(:2)” + anﬁ, for large r. The addition of this correction
will not change the leading order contribution of these error terms to the modulation equation, but,

will improve the overall error term of the final ansatz for large r. Let x>, € C°(R) satisfy

(z) 1, =2
xTr) =
= 0, z<1

and
0<xs1(z) <1, zeR

Then, we recall that N has been defined just before (5.1), let

r cos(2 1% —1
Vae(t,r) = xo1( 2 )(( 20 G) )(Ul+v2+v3)+F0,2(t,r)>

log™ (¢) r?
and define v, as the solution to
Vg

1
_6tt'U4 + 87«7424 + ;614)4 — ﬁ = U4,c(t7 T)

with 0 Cauchy data at infinity. In other words, we have

o0
vg(t,r) = f vy5(t,7)ds
¢

where v, 5 solves

_attvll,s + 67‘7‘/04,8 + %arv4,s - U:ﬁs =0
U4,s(57 T) =0
Orva,s(S, ) = vac(s,T)
So,
Vg s(t, 1) = Orwys(t, 7)
where
Us,s(t,y) = was(t, y])

and uy, : [Ty, 0) x R? — R solves

att‘u4,s - Au4,s =0
Uy s(s,z) =0

a15“4,3(57 I) = - Sr;‘ U4,c(87 Q)dq
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We get, for s > t

ugs(t,z) =

1 J (Sf; v4,c(s,q)dq) 1 (S[Zﬂ v4,c(s,q)dq) .
Bs_¢(x)

— dy = —
2m Vet —Jy—aP " 27 s /07— o]

We use polar coordinates in the z variable, with origin 0, and polar axis & for z # 0. Then, we
obtain, apriori for r # 0,

U4(t,7“)
-1 f"of p JQ’T Vgc(8,4/72 + 2rpcos(0) + p?) (r + pcos(@))dedpds
T Ji Jo A/(s—1t)2—p? \/7“2—1—27",0008(9)—1—,02

If we let

2 2 9 0 2

Glovrp) = [ NI L) -y o)) at
0 \/7‘2 + 2rpcos(f) + p? (5.24)
szt, r=20, s—t=2p=0
Then,
G(s5,0,p) =0

and

Glovri) = [ 6o,

_, L 1 fw (520470(3, VB + 2Brpeos(9) + p2) W;ﬁ T;g £ pcjjs((eg T
= el VB + 2Brpcon(®) + ) Lo jjjfg)f P
- S

So, vy(t, -) is (for instance) continuous on [0, c0) and we have, for all » > 0 (including r = 0)

s, B, p)dBdpds (5.25)

SN mf‘%

We will use this formula to prove estimates on v,, but this will be done later on, once we further
restrict the class of functions A\ under consideration (which will be done once we introduce an
iteration space in which to solve the eventual equation for \).

5.6 The nonlinear error terms involving v, vy, v3, v4

Let
fv5 ZUl+U2+U3+U4

44



and
sin(2Q 1 (1)) cos(2Q 1 (1))

——20 (cos(2f,,) — 1) + % (sin(2fu;) = 2fu5)

No(fos)(t,7) =

Then, we consider vs, defined as the solution with 0 Cauchy data at infinity, to the problem

1
— 05 + OppUs + ;@«05 - :—; = No(fu,)(t,7)

Following the same steps used to obtain (5.25), we obtain the analogous formula for vs:

1
J 0G5 (s, [, p)dBdpds
0

wen=3 [

where

1
Gs(s,r.p) =1 f 0:Gs (5,75, p)dp

ot (Br + pcos(9))?
I O T e

5(6))?2
- N2(fv5)(37 \/ﬁ2712 + 2BTPCOS(0) + 102) (BQTQ _(i_ﬁgﬁ—:,ppsoo:((e)))_i_ p2)3/2

Na(fus)(s,4/B2r% + 2Brpcos(0) + p?)
dodp
\/ﬁzrz + 208rpcos(0) + p?

_l’_

As was the case for vy, we will prove estimates on v5 later on, once we further restrict the class of
functions A under consideration.

5.7 The equation resulting from v, ..

If we substitute
u=Qﬁ 4+ V1 + Vg + V3 + Vs + U5 + Vg

into the wave maps equation

sin(2u)
2r2

1
—5ttu + arru + —&u —
r
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and use the equations solved by vy, va, v3, V4, U5, then, we obtain

1 cos(2Q) 1)
- é‘ttvﬁ + 67»74)6 + —&JUG - —WUG
r r2

= F072(t, ’I") + N(UG) + LI(UG) + N2(1)5)

N sin(2(vy + vy + v3 + v4)) (cos(?Q + 2v5) — cos(2Q A(t)))

2r2
N (COS(2(U1 + “22‘:22’3 ) — 1) (sm(QQ + 205) — sin(2Q )) (5.26)
cos(2Q ) —1
+ ( r/;(t> > (’U1 + Vg + V3 + vy + U5)
9 cos(2Q 1) — 2
where
in(2f) — 2
Vi = (P st )
- (%) sin(Q(Qﬁ + 01+ 02 + U3+ 01 + 05))
£1(7) = 22O cos(aq 1 )(eos(@vr + v+ v+ 01+ 5) 1)
— sn;iif) (2Q )sm( (V1 + vz + V3 + vy + v5))
sin(2Q) 1) cos(2Q) 1)
No(f) = —5 5 (cos(2f) — 1) + T*“)(sin@f) —2f)

2N (t
F[Lg(t,?“) = —F071(t,’f’) + 1 +( ) QQx(t)

Note that we do not combine the terms involving x-; with analogous terms having coefficient 1
because the terms involving y-; will turn out to have a subleading contribution to the modulation
equation for \. When we solve the final equation, after choosing A\, we will of course make use of

the fact that 1 — y>1(z) is supported on the set z < 2.
We can re-write the right-hand side of (5.26) as F' + F5 where

F=F,+Fs+ Fg

with
cos(2Q) 1 ) —1 Ay
F4(t,7“) = F072(t,7”) + < 7?\2(0 ) <U1 + Uy + V3 + (1 — X>1(7)) (U4 + ’U5)>
o COS(ZQﬁ) -1 9 (5.27)
— XZl(logN(t)) 2 (v1 + v2 +v3) — X>1(m)Fo 2(t,7)
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sin(2(v1 + vo + U3 + 1)4))
2r2

F5(t,r) = No(vs) + (COS(QQ + 2u5) — cos(QQﬁ))

A(t)

_ (5.28)
+ <COS(2(01 - U22::2?}3 + ) 1) (sin(QQﬁ + 2v5) — Sin(QQﬁ))
4r [€0s(2Q 1) —1
Fs(t,r) = X>1(T ( ;2(” > (va(t, ) + vs(t, 7)) (5.29)

and
Fg = N(’U@) + Ll(U(;)

5.8 Choosing \(t)

A will be chosen so that the term

Fy(t,r) = Fyalt,r)
N (coS(QQAEj;(T)) — 1) (m ot 4 (1 _ X>1(4%)> (vg + v5))

, cos(2Q 1_(r)) —1
- X21<2T> Foo(t,r) + (01(t,7) + valt, ) + vs(t,7)) .
log™ (t) r

which appears on the right-hand side of (5.26), is orthogonal to ¢, (W)
Define the space (X, || -||x) by

= {f € C*([To, ))|llf[lx < oo}

where

1£11x = supg, (1£(Iblog?(t)y/log(log(®)) + | (1)t 10g"*" (t)/Tog(log(1))

(5.30)
+ 1f1 ()l 108" (1)y/log 08 (1)) )

In this section, we will first prove the following proposition

Proposition 5.1. There exists Ty > 0 such that, for all Ty > T, there exists \ € C*(|Ty, o)) which
solves

(Ea(t), do (m)> =0, t=T,

Moreover;

A(t) = Ao(t) +eolt), |leollx <1

1 log(log(t
() f f og(los(t2)) ot

t2log""2(t,)

and
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After fixing \ as in the above proposition, we will then show that \, apriori only in C?([ Ty, o0)),
is actually in C*([Tp, 0)), with the estimates

|)\(2+k)(t)| < Cb —
2tk log” ' (t)

To prove the proposition, we will first show that the equation

0.0 (575 ) =0

t=Ty), k=12

is equivalent to

©\(s) 4b
—4 ———2—ds + ————— + dalog(A(t))\'(t
|, T Tt o i los OO

o8] )\/I(S)
_4L OO +s—t)(1+s —t)3d8

_ —)\(t)Eoyl(/\(t), N (), N'(1)) — 16 fo N'(s) (K3 (s — £, A(1)) — Kao(s — t, A1) ds

S| K= MO s = A B 1. A1)
P A(t)?2
o f N(s) (Kl(s—t D)) — m) ds (5.31)

cos(2Q 1 ) —1 ,
- A(t)<< 7,2(0 > <(U4 + vs) (1 — X>1(4t )) + E5> lr—RA(t), Do)

cos(ZQﬁ) -1 o
+ A1) 2 X>1(W) (v1 + v2 + v3) [r=RrA@t), Do)
+ A(t)<X>1(log2%)Fo’2(t’ ) lr—Rrag)> Po)

= G(t, \(1))

Then, we will substitute A(t) = \o(t) +eo(t), for eg € B1(0) < X, and solve the resulting equation
for eq with a fixed point argument.
We start by studying the relevant inner products of the vy, v, and v terms above.

5.8.1 The inner product of the (rescaled) v, linear error term with ¢,

In this section, we will prove

Lemma 5.4. For v, defined by (5.10), we have

(cos(ZQ ) —
<

r2

NG

) V1 |r=RAt) P0)
) g —16 "
B WL M) (s =1 A[)ds + WL N'(5)K1(s — t, A(t))ds

48



where

fo K (s — £, \(8))|ds < OA(t)?

Kt < AU
fo K (s — £, (1)) — mi(—tgit)ws < OAB)? (5-32)
K (s — £ A(F)) — 429(?2t)| _ (S_Agst))(Ql(lJrJr(sA@tz))Q)’ s—t=1
Proof. We have
(cos(2Q 1 )~ 1) e s R
< = . o %) = WL ult IXO) e Ty
16 [~ R
_ _WL 16 ENO) o e
0 |, PO e

16

_WLOOXI(S)L 1+R2 f\/T

—1—p?

R2>\ —1— 22 + ARZA(t)?

> dpdRds

_ _A}g?) L CN(s) L ) i +RR2) f (5.33)

S —t
1 _
v dpdRds
R2)\ - 1 — )2 + ARPA(1)?
( 5 — t

H)

|+ RQA( ) —1-p
VR2A()2 — 1 — p?)2 + 4R2\(1)?

16 © "
_A(t)?’ft A(S) ) +R2

) dpdRds

The last line of (5.33) is of the form

6 [,
o, L N(s)K (s — £, A(£))ds

where

Kz (1)) = LOO ﬁ

v 1 1 R2A(t)? — 1 — p?
Jo ’ <\/x2——p2 N E) (1 " VR =1 p2)? + 4R2/\(t)2> dpaf >0
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and

j " K(s—tA(1)ds

o ) (S R,

- RA(t)? —1—p?
VRRA()2 =1 — p?)? + 4R2\(1)?

ol e L e
o Py R )\ st (5.34)

1+ RAA(t)? —1-p?
A (R2A()2 — 1 — p2)2 + 4R2\(t)?

© (R REA(H)2 — 1 — p?
L p L 1+ R (1 AN = 1= ) ¢ 41%@)2) log(2)dFrdp
© R

log(2)R*\(t)?dR

) dpdRds

> dsdRdp

J, e
10g(2) )\(t)Q

4

Hence, it remains to calculate

16 ] ; ] R s—t p R2)\(t)2—1—p2
_ A(t)3 J; A (S)L (1 + R2)® J;) .1 (1 + \/(RQ)\(t)Q e 4R2)\(t)2> dpdRds

- 16
At)3
* n * R
L A (S)L (1 +R2)3
(m —V(r+s—02+ 1)2(((;~::)+ 2+ 1)+ (s —t)2 + 1) g dRds

16 % 1
= YL Jt N'(s)Ki(s —t,\(t))ds
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where
K1 (w, \(t))
Jw R (RQ)\(L‘)Q +w?+1—+/(1+ REA(1)? + w?)? — 4R2)\(t)2w2> .

o (1+ R2)3 2w

WA A w2+ 1) WA og (A (Vi 4u? — y)) (5.35)
+
4(y? + 4w?) 2 (y2 + 4w2)3/2
log (4w2 2 — A%y + (w? + 1) m)

_ 4
wALD) 2 (y2 + 4w?)?

where
y=At)>+w* -1

and, for the first line of (5.35), we used the fact that
(r+w)?+D((r—w)?+1)=(*+w* +1)* — 4r*w? (5.36)
Now, we will prove a pointwise estimate on K. Using (5.36), we have

0 <Ki(w,A(t))

_.[w R 4R2\(t)*w? IR
)y 2w(l+ R2)3 14+ R2A(1)2 + w? + /(1 + (RA(t) + w)2) (1 + (RA(t) — w)?)

* RPN w w
< dR < C\(t)*
CL Q+le+w2R C()1+W

So,
T

K )] < CM =

(5.37)

For use later on, we will also need to estimate

fo Ky (s — £, (1)) — %m

Note that K;(w, A(t)) = 0, by its definition as the integral of a non-negative function. We start
with

L |K1(S—t,)\(t)) — %kﬂ? < J; Kl(s—t,/\(t))dS—FJ; %(ﬂ?
CA(t)?

where we used (5.37).
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Now, we consider the region s — ¢ > 1. Returning to (5.35), we see that

R RAA(t)?
K —
1w, A(t)) L 0+ w dR
- r’ R AR?\(t)2dR
2)3
o (1+F) 2w (\/(—R2)\(t)2 +w? +1)° + AR2A(t)? — R2A()? + w? + 1)
(5.38)
The right-hand side of the first line of (5.38) is equal to
0 R R2)\ 2 2
[ (0 A
o I+R%)3  w 4w
So,
A()”
K _
(w0, A1) - 2
o F R AR2\(1)? .
o (1+R?)g, (¢(1 T w? — RN + ARA(D)? + 1 + w? — sz(ty)
First, we note that
2 2y (1)2 2 . w
14+w — R*A(t)" = C(1+w?), if RA(t) < 3
So,
Jzi‘éw R 4R2\(t)? iR
o (1+R2)?g, (¢(1 T w? — RINO2)2 + ARPA(? + 1 + w? — RQ/\(t)Q)
JOO R R2A(t)? CA(t)?
< < ;o w=1
o (1+ R?)Pw(l+ w?) w(l 4+ w?)
Next,
1
V(L +w? — R2A(1)%)? + 4R?A (1) + 1 + w? — R2A(1)?
1+ w? = RAA()? — /(1 + w? — R2A(1)?)? 4+ 4R?A(1)?
B —4R2\(t)?
and
2 R2)\($)? — 2 _ R2)\(1)2)2 2)\(1)2 2 (4)2
|1+w REA1)* — /(1 + w? — R2A\(1)?) +4R)\(t)|<CR)\(t) <C
—4R2\(t)? R2\(t)?
it RA(t) > % w1
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o R AR\ (t)?
e dR
st (UH 2 20 (U4 w2 = RN + A0 + 1+ w? — R2A(1)?)
© 1 REA(1)? CA(t)*
<| = <
LB w dR pea w =1

Combining these, we get

| K (w, A(t)) — A532| < CA(t)(Ql(ljwé)( ) ), w=1 (5.39)
So,
” A(t)? YO 1
£+1|K1(S_t’/\(t))_ 4(1+S_t)|ds<0£+l 4 <s—t B 1+s—t) ds

© C’)\(t)Q(l + )\(t)2)
’ CJ G0t G-9”
< CAD(1+ A(1)?)

Recalling (5.2), we conclude

[ s =120 - 52 kas < oxy
, e l+s—1) 7S
H
5.8.2 The inner product of the (rescaled) v, linear error term with ¢,
Lemma 5.5. For all b > 0, and vy defined by (5.18), we have
*® _ [cos(2Q1(R)) — 1) 4b
R R)vy(t, RA(t))dR = —————— + Ey, 0 (t, A(t
[ 7 () st RAOMR = S+ B4 AO)

where o

| By ip(t, A())| < (5.40)

A(t)#2log"" (t)

Proof. We start with the case b # 1. Using our formula for vy, we get

*® _(cos(2Q1(R)) — 1
L R< ToNOE > oo (R)vs(t, RA(H))dR
()
'(3)

where K denotes the modified Bessel function of the second kind. (This follows, for instance,
from equation (6.532 4) of the table of integrals [7]). Recalling that

- _2be €2 sin( tﬁ) i% K1(EA(t))dE

Ki(x) = i + O(xzlog(x)), x—0
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we can integrate by parts two times, and get

o, f & sinto); %f(i) (EA(D))de
£
_ sin(té) [ .o X<t 1(¢)
_ 2, j e (5 g e >>> d
Let
Fy(€) = &2 (52 Xﬁfgf <§A(t))>
1 ()
Note that
F(€) = X232 (s?ﬁfﬁ?f) V€ AD) 541
£
where

v € C2(l5 1)

So, integration by parts (for instance, once) gives

To study

we can use the asymptotics of /; to write

s (D@D _ ¢ 1
ag (f logb_l(%) ) - 6& ()\(t) logb_l(%)> + Fv2(€a)‘(t))v 5 < 4 (542)
where
. - £2y%log (%) (—3log (1> —2b+ 2) Ko(y€)
e = Eylog" (1)
(b-1) (10g (-) ) (EyKa(ys) — 1)
+ b1
Eylog” ()
. 343 1og? (%) K1(y¢) ‘< 1
log” ' (}ey 1
Using the simple estimates, valid for all x > 0,
| =1+ 2Ky (o) < C2*(|log(w)| + 1)
| Ko(x)| < C([log(x)| + 1) (5.43)
e Ky ()] < C



we get, for any A\(t) > 0,

EA(t)
logb_l(

) (Hog(&)] + [log(A@®)]), & <

|Fo, (6, () < C

=
B~ =

Similarly, we have
(b—1) (—1og” (1) + 1 + ) log™2 (1) (Eya(ye) — 1)
&y
(gy log (%) (4 log (%) +3h— 3) K, (yg))

10gb+1 (%)

0¢F, (§,y) =

+y

(6(b ~1)log (%) +3(b— 1)b + log? (%) (€22 + 3))

— yKo(y€) ()

log £

Again, using (5.43), we get, for all A(t) > 0,

o F e () < QA (1oBO)] + [los ()
v2 Y logbfl(%)

So, we can integrate by parts (for instance) once, and recall (5.2), to get

12, LOO Xgi(f)snzﬁ]?%(&)\(t))dﬂ < C)‘(t)“;g()\(tm

(1+ ()%, €<

1 =

Next, we need to consider

%0 sin(t€) ., §
2ch0 X<3 (€)= 0 ()\(t)logb_l(%)>d£

_ 20 (V2 sin(té) [ b—1  bb—1)
_ )\(t)L X<1(6)—; <€10gb(%) +§10gb+1(%)>d§

N

From one integration by parts we see that

2¢, (V? sin(t€) [ b—1 b(b—1) C
S, (-1 <§1ogb<§>+aogb“<§>>d§'<t3x<t>

So, we need only consider
2¢, (' sin(t b—1 b(b—1
" f SIH(Q g by ( b1 )1 dg
At) Jo {log’(g)  Elog™ (¢)
2 _ _
_ Zbe sin(u) b bl N b(bb 11) du
A(t) Jo 2 ulog (5) ulog”™" (%)
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Let us start by studying, for a > 0,

J Y2 sin(u)

o ulog™(t/u) ™
Let A
e'LZ

J(2) = zlog(t/2)

where we use the principal branch of log and (-)® Then, f is analytic on (for instance) D given by
D = C\((—0,0] v [2t/3,0))

For0 < e < %, consider the contour Cy . in D given by:
t o 4 - t i 4
Cie = {§e 0<0< 5}u{zy|e<y< §}u{ee 0 <0< 5}\.} le, /2]
traversed in the counter-clockwise direction. By Cauchy’s residue theorem,

f(z)dz=0

Ct,e

On the other hand,

™ ;10

( )d f2 ,6% cos(0) o —3 sin(0) " J‘t/Z e Y 4 Jg  glee "
z)az = ! a —i - a Y= ¢ @/ te—1t
Chc o log"(2e77) e ylog"(3) o log(t=")

t/2 eiu
S
*i wlog™(t/u) ™

So,

t/2 : t/2 —y z ieet®
f sgﬁ_mzm_[_iTT@.ﬂmJi_i_Tw
. ulog®(t/u) ¢ ylog(+) o log*(fe=)

iy

T cos(h) ,—Lsin(9)
Cm Jze B —T)
0 log®(2e~%)
Letting ¢ — 0, we have

t/2 : t/2 —y
j sy i m j gy
o wlog®(t/u) ™ T B L ylog™(Z)

T % cos(6),—1Lsin(0)
— Im JQ ie : 2 ¢ 2.9 do
0 log®(2¢e~)

. f/Q oV ” —Jt/Q e‘ysin(atan_l(m»dy
e ylog"(y;)  y((log(t) —log(y))? + %)/
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Note that




So,

o 42 oy o t/2 e*ysin(atanfl(m))d
o log* (L)) = log(t) —1 21wy Y
¢ ylog®(5 o y((log(t) —log(y))* + 7)

We have
e Ysin(atan (st )) ~y
y((log(t) —log(y))? + =)/ 2 ylog™" (t/y)
where
|Err| < Ce_y L 0<y<t/2
= Ty 3%as, N0 Y
y log*(t/y)
So,
Jt/Q e Ysin(a tan_l(m))dy _JF Jt/Q e’ dy
2 - a
o y((log(t) —log(y))? + &)/ 2Jo ylog™(t/y)
o (5.46)
+ J Err dy
0

Let us start by considering

fl ¢ Vdy _f dy +J1 =1
o ylog®(t/y) Jo ylog"™(t/y) ylog™™ (L)

Treating each term individually, we have:

f ! dy _ 1
o ylog"'(t/y) alog(t)

Ve v—-1) C Lewv —1] C
| PRSI | = a+1 f dy < a+1
o ylog ( ) log®™ (t) Jo y log® (t)
where we used the fact that
1 . . 0.1
y— m, is increasing on (0, 1]
> 11 evd 1
e Y 1
L S 7~ o O (1oga+1< >)
Also,
J“z Uy e JJ lLevdy 0 1
1y (log(t) —log(y)«+ 1oylog™i(t) log™()
Finally,

jtﬂl e Ydy - 1 (" e du — e Vi
vi y (log(t) —log(y))*= = vt Jyz log"*(2)
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So,

21 evdy 1 1
- — +0( — 5.47
L ylog™ i (t/y)  alog®(t) <10g“+1( )> 047

Treating the Err term in (5.46) in the same way as was used to obtain (5.47), we have
Jt/z e Ysin(a tan—l(‘2(1og(t)7i‘1og(y))))dy _ T ( 1 L0 ( 1 ))
o y((log(t) —log(y))? + %)/ 2 \alog®() log**!(t)
1
+0| ———
<log“+2( )>

= T +© (ﬁ)

Lastly, let us estimate

. 5 ez 005(9)6——51n(9) " c 5 6—%sin(0) 70
— 1 < -
=), o) 1<), T

3 1
<Cfe2w9d0—0()
0 t
So, (5.45) can be written as

t/2 : 1
J sma(u) du - 7Ta Lo .
o ulog®(t/u) 2log"(t) log"™ (1)
Since (5.45) is valid for all @ > 0, we can repeat the identical steps done in this section for the case

b = 1, and apply the above result to (5.44) (and its analog for b = 1), thereby obtaining, for all
b> 0:

© L (cos(2Q1(R)) — 1 B 4b |
L R ( REA(D)? ) do(R)va(t, RA(t))dR = NOPE D) + By ip(t, A1)
where, for b # 1:
EunantM0) = 20, [ 5600
+ 2be (1 © 22 b A0
sm(tf) b—1 b(b—1) (5.48)
J % t2 <§10gb(%) + flongrl(%)) df

t t

2 2 gj b—l b—1 2 gj bb—1
Cb J du——( b)ﬂ +J ()51 )du
t2ulog 2t2log’ (t) o t*ulog’™ ( )
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When b = 1, E,, ;, has the same form as (5.48), except the third and fourth lines changed to
2¢, F ( sin(t€) 1 1
= (xas© - 1) — - 25
M) Jo \ g2\ log’(3)  log(y)

20 ((Fsind) (-1 1 n
Y0 (fo £t <log(%) 10g2(%)>d£+2t210g(t)>

For all b > 0, o
Evzi t? A(t <
Bt MO < 5o
O
5.8.3 Pointwise estimates on 0,0’ v,
Lemma 5.6. For any b > 0, there exists C > 0 such that
For0<j <2, 0<k<l1, j4+k<2
J ok aor (%)
ﬁt @,vg(t, T) = W + E@{ﬁﬁvz(t’ 7") (549)
where )
A A t
B (t7)] < CHO" (;) +Colok <T—> L or<-
| 5t67’?v2( )| t¥r 12 longrl(t) tor 13 logb(t) 2
For0<j <2 0<k<2 j+k<2
, C t
|01 0Fva(t, )| < 7 73 (5.50)
For0<j <1, 0<k<1, j+k<2
; C'log(r) t
J Ak
|6t67,?]2(t77’)| < m, = 5, r#t (551)
Finally, we also have the estimates
Cr t
P r < Z
Puy(t,1)] < { Lhlog’(®)’ 2 5.52

Proof. In the course of proving these estimates, we will occasionally make use of the following
formula, which can be found, for example, in Appendix B of [12]: for n > —%

T

Jn(z) = m (g)nfo cos(z cos(f)) sin®"(6)do (5.53)
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Similarly, we will need, Lemma 8.1 of [12], which states
d—2

ﬁﬁuoz(@21¢<—mmf@», z>0 (5.54)

a=2 =

2

where

B |(2) < Oz~ 7k

We will first prove the lemma for the case b # 1, and then remark what the identical procedures
give, for the case b = 1.
We will start with the region 0 < r < %, and use (5.53) for n = 1 in the formula for v5:

0 gi( )
w(tr) = e | sneneo, 5! TR
= —J sin? J sin(t€)ré cos(ré cos(6)) il( 2 d&do
log” ()
_ 2; 0 51112(9) f:o ré (sin(€(t + rcos(6))) + sin(£(t — r cos(6)))) ﬁdﬁd@

Integrating by parts twice, we get

w(t,r) =~ lwwﬁm@<€%¥®>(mﬁmhﬁm@)>ﬁw

2 2

where
ty) =t+rcos(f)

We divide the terms analogously to how similar terms were treated in the previous subsection. In

particular, we have
o (T, * b—1 b(b—1)

vo(t, 1) = o J;] S (Q)J;) <X< €) <§10gb(%) + flogb-;-l(%)) +¢(§)>

) d&do

sin(&ty)  sin(&t)
( t2 e

i

where 1) € C2([4, 1]). So, we can integrate by parts (for example, once) to treat the ¢ term:

|;f££ﬁ@£¢@<mgg+m§”>ww ff|w ¢)|dedo

Cr t
< —, r<-=
3 2
where we use
1 C t
- < —, r g —
L] 2 2



Then, it remains to study

—apr (T ., * 1 b—1 b(b—1) (sin(éﬁ) sin(&t ))

o L sin (H)J0 <X<4(§) <flogb(%) +§logb+1(%)>> 2t dedo
o (T, 2 b1 b(b—1) (sin(§t+) sin(&t ))

" on Lsm (Q)L <§10gb(%) +flogb+1(%)> 2 T )

N —267(;7“ Lﬂ sin?(6) fj (Xg%(f) B 1) <€1bog_b(1%) N b(b—1) ) (Sin(fh) N SIHS )) dedd

¢log""(3) £

(5.55)

We start with the second line of (5. 55) Since all other terms will use the identical argument, we
first consider the term involving o ,, 0 and ¢, namely

—cpr ™ + sin(u)du

’ J sin?(0) | (b — 1)J —— | d0
2 Jo o ulog (ﬁ)ti
ar ("

= -5 | sin’(O)6-1) <

0

(5.56)

———— + Err(t,r,0) | db
Yo T )

where
C
t2 1Ogb+1( )

and we use our calculation of (5.45) from the previous subsection. To treat this last integral, we
start with the first term:

—cpr T (™ sin®(6)df
bl (b — 1)_] - ( ) .
2m o log’(t:)t5
_—ar(b—-1) 1 J’T sin?(0) do
4 Plog’(t) o (14t (1 N 1og<1+”°:<9>>)b

|Ert(t, 7, 0)] <

log(t)

—cpr(b—1) T t
= E,,A(t, , < -
4 2t2 log"(t) + B () "3
with ;
,
Epnai(tr)| <C——7F—, < -

For the second term of (5.56), we have

_ ™ ™ d&
or j sin(0) (b — 1)Err(t, r, 0)d6| < crf
T Jo

0 2 1Ogb+1( )
Cr

< -
2 logb—H( )

<

N |+
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where we used
1 C

<
t2 10gb+1( ) 2 1Ogb+1( )

N |

<

Combining these, we get

it
—cor (T ., 2 sin(u —br
)| (b—1 —— 7 | = ————— + E,,2(t,7), 7T<
o J;] sin ( ) <( )J;) ulogb(ti)t2> 2t210gb(t) ,2( 7") r

By a(t.r)| < C ( T o ) <!
v YT X 3 rx 3
22 t3log”(t) t2log"* (1) 2

We use the identical procedure to treat all the other terms in the second line of (5.55), and get

—ar (™., :f b—1 b(b—1) sin(éty)  sin(&t)
), w0 | <§logb<§)+flogb“<§)>( R
—br

TP log®(t)

ot >|<o( r__ ) <!
V! IS ’ rx g
23 2log" (1) t3logh(t) 2

Finally, for the third line of (5.55), we integrate by parts, identically to how a similar term was
treated in the last subsection, and get

2 o ]! (a0-1) (st - ) (242285 e

Cr
3

N | =+

+ E1,273(t, 7’)

with

<

~

N | o+

This completes the proof of (5.49) (for vs).
We will need two more estimates on v,. One is given by using the simple estimate

@) <

which yields
|U2 (tv T) |

~ \/_5
C
< N
AT
We will obtain another estimate in the region r > % by first decomposing v, as follows:

ltr) = 6 foo sin(te) . (re) 54

0 log"™*(3)
= ch X<1(r&) sin(t€)Jy (rf)xii—gzdg (5.57)
log” (¢

0

Y Xg%(
Lo j (1= X () sin(te) ()
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where x<1 € CX([0,0)),0 < x<1 < 1,

and Y < is otherwise arbitrary.
We start with the second line of (5.57). Using the simple estimate

|Ji(2)] < Cx
we get
© gi( €) © Xg%(é)
|J;) X<1(7”€) SlH(tf)Jl(’f’g) gb—l(%)d§| CTJ;) Xsl(?’f)ﬁmdﬁ
C t
S——7 0 r=5> 4
rlog” (1) 2

We need only estimate the remaining integral in (5.57), namely,
* . X<l (f )
| @ xatesineen e e
0 log (g)
Note that this integral vanishes if » < 2, by the support properties of y<; and X<l We use (5.54),
for d = 4. Then, for r > 4, we have

(€

[0 vatersmnoe i
3
= |Re - — r)) sin ré e~ D, (r —Xg%(f) d)
uz<L (1= X)) e o)y SErae )| 6

C ® Xgi(g)
< WL |0 ((1 - X<1(T§))T5@1(T5)m> |d§

Note that
o <1 (©) v g
J, Wavorren o St <cr
C t
o) 72
where we used the support properties of x and symbol property of ®;.
Next,
® Ix<1(§ ) (1 — x<1(r6)) Ix<2 ()
[, @ -xatiaee e s yde < Cr [ S P
i d¢
xf L &21og" ()
o
log""(r)’ 2

63



Finally, we use the same procedure to get

[ a-xateyren, @§Mw5<—5i§§}>|d£
0 og (g)

C (i ( IX_1 (&) 1
< . 4

— dé
Vi J o \WElog" N (§) €2 10g"(§)
C t
< , ==
log®(r) 2
Returning to (5.58), we get, for r > £,

ﬁ [ "l ((1 — X< (7)) rE® (7€) iif

Note that, 1f

< r,then, [t — 7| <7, s0

C _ C - t Ly
= s r=—, r
r logb_l(r) [t —r| log®~! () 2

So, we can combine the previous two estimates to conclude (5.51), thereby concluding the proof
of the vy estimates (in the case b # 1).

We now proceed to prove the similar statements about 0,v5. We have

Orva(t,r) = %J@ sin(t&)€ (Jo(r§) — Jg(rg)) A

d
0 gb 1(%) )

and start by treating the .J; term. Using (5.53) for n = 0, we have

<1(8)
)

f f sin(¢t,) + sin(¢t_)) gxfil(f))dgde

B _be J (sm &ty) Slnigt)) 852 fxbggl((f))) dedb
og’ (3

We follow the identical procedure used to prove (5.49) for vy, the only major difference being an
extra sin(0) in the 6 integral in the v, case. We get

<1(6) —b
(%)df = m + Eﬁrvz,l(tﬂﬂ)

C—J sin(t& {’Jo(rf) — - d¢

\/‘V‘tlH

—fsm%amw>

where

C C
| By (t,7)] < —— <
Plog’(t) | 2log" (1)’

N |
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Now, we treat the J, term, again using (5.53), this time for n = 2.

_ _f sin(t& fJg(Tf) i%f(i)df
3
—CbT2 [ . 3 i s 4 gi()
= ) sin(t&)¢ Jo cos(ré cos(f)) sin (G)IOgb_l(%)dﬁdﬁ
— _16;7:2 Jr: sin®(6) LOO (sin(&(t + 7 cos(f))) + sin(&(t — rcos(h)))) ﬁd&w
et (T, *© (sin(§(t + rcos(d)))  sin((t —rcos(6))) 4 nggi(f)
=T J, o [ (e ey >%Q%H@dee
Note that
Py <§3Xg}1(5)>
$\log" (3
L 1bb—-1) 6(b—-1) bO-1)b+1)(b+2) 6b(b—1)b+1)
O G Taw ) T aem ) T o) >
+9(6)
where 11
ve Gl 7))

We treat the v term in the same way as in the v, estimate, and use the same argument as in the v,
estimate to handle the other terms. In total, we get

o [© X<1(§) Cr? t
- — sin(t&)¢ Jo(r 2 el < ————, < -
| 2 J;) (5)6 2( 5) b*l(%) €| t410gb(t) 2
Combining our results, we then get (5.49) for 0,.vs.
Now, we study the region r > % Again using the simple estimate
C
| Ji(2)] < N
we get
C
|67"U2(ta 7")| < 777
Then, we decompose
Orva(t,r) =1, + I,
with ©
a [* . X<l
=2 | sint)ena(re) (ore) = ) 5t e
2 Jo log (g )
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Using the simple estimate
| Je(x)] < C, k=0,2

we get
© Xgi(f)
n<lg wrmt5>X<l<rs>s<Jb<rs>——ob<r£>>igé;:T(§5d€|
mm{ fdf C t
<ol R ACE
It remains to estimate //,. We write
I, =110+ 11,5
with
g%( )
II.o = —f sin(t€) (1 — x<1(ré)) §J0(7“£) b1 (1
(9
I, = ——f sin(t€) (1 — x<1(rf)) fJZ(Tf) <bil( ° dg
log"™(¢)
Again using (5.54) for d = 2, we get
© si( ) d§
10| < C’L |5§ ((1 — x<1(r§)) 5(1)0(7“5) b1(%)> |(t —r)?
C (* Lpenley
< —dé
(t=r)Jo /rg32log" ! (3) (5.59)

PN

coo1f A
NG J £¥210g" 1(3)

C
< (t _ 7“)2 J 3/2 b—1/1 < t—1r)2
L VrElog () (E=r)2yT

C
< :
(t —r)2log" " (r)

For I1, 5, we use (5.54) for d = 6. Using the same argument as for I/, , we get

—~

N~

N | =+

© <l€
uhﬂscf|@<u—x@voﬁvo%xwhérf;>u &
0 O ¢

( t—r)?

< ¢ > t

=~ 9 r= =

(t —r)2log" " (r) 2

Combining these, we have

t
|IL"|< 20 b—1 y rz==
(t —r)?log™ " (r) 2
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Using the same reasoning as was used to prove the analogous estimate for vy, if > %, r # 1,
we have
C

<
r2 logbfl(r) (t—r)? logbil(r)

which gives (5.51) for 0,v5.
Next, we study 0,vs, in the region 0 < 7 < % Using (5.53), we have

oo Ji(r <1
dus(t.r) = o | cos(16)° fgf?f\;) ¢
0 O 3
Cp T . 9 @ Xg%(g)
=— ) sin (G)L & cos(t&)ré cos(ré cos(@))mdﬁdﬁ
ar (T g [CE X<1(8)
= — | sin®(# > (cos r cos(f cos — rcos(f —2——d&do
2], ) || teotett+ reos)) + ottt —reosto) Sk
_ar ﬂsinQ © (sin(&(t +rcos(f)))  sin(&(t —rcos(f)))
~or ), (e)fo ( (t+rcos(@)? | (i —rcos(0)) )
3 §2X<%(§)
% (M) d&do
We note that
3 £2 1 _ b—1bb+1) 3b(b—1) 2(b—1) 1
: <log“<§>x<4(5)> ( flog () Elog (L) slogb@) Xl
+ (6
where - 11
Vel ([é’z_l])

The integral to estimate is therefore of exactly the same form as that treated in estimating v,, and
repeating this procedure gives (5.49) for 0;v,. For the region r > £, we can again use

C
| J1(2)] < 7z
to get
C
|6t1)2(t,7“)| < 7;

We now consider the region r > . First, let us write

t
:.
Oa(t,r) = Ii(t,r) + IL(t,r)

where (¢
= [ xalrOeeonte) 9 5

d
o o (1)

M= ~—
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fi=a [ 0= xalr©) ot ) 5

)
d
0 log (% :

Then, we use
|Ji(z)] < Cx

to get

m1n{ 2
1t < Cf S 1d§<%, r=4
log”™ E) r2log” " (r)

As usual, we use (5.54) with d = 4 to get

© - Citr 5(1) (T’f) <i(£)
I = 47 3/2Re (L (1= x<1(r€)) € (177 + e7177%) : (3 d§>

and this gives

e r€)) &P (ré)x<1(§
|Ut|<CL |t_1r|2|a§<( <1(ré)) (r&)x 4()>|d§

log" ()
But, comparing this expression with (5.59), we see that the only difference is
D (r€) is replaced by @4 (rE) - ré

Comparing the symbol-type estimates on ®; which follow (5.54), we can use the same procedure

used to treat (5.59) to get
C

1] < ,
17 (t —r)2log"*(r)

T =

N | =+

This gives (5.51) for d,v,.
Next, we obtain estimates on 537)2, using the same procedure as above. In particular, we use

T(@) = 3 () ~ 31(2))

to get
2 N 9 X<
Groa(t,r) = — | sin(t€)€” (=3J1(r§) + J5(r€)) —5 71+
4 Jo log” *(
Then, we use (5.53) for J,, Kk = 1, 3. For the term involving Ji, for £ = 1 or k = 3, we integrate
by parts k£ + 3 times in ¢ and get:

ot ) —3cpr J’r in2(6) J"O <sin(§(t + rcos(6))) N sin((t — rcos(&))f))

T (t +1rcos(f))* (t — rcos(9))*

o <£3X< (£)>d§d9
log" (1)

cpr® j“ sin®(6) J‘” (sm(f(t + rcos(6))) N sin(&(t — rcos(&))))

1207 J, (t + rcos(h))° (t — rcos(0))S
o <—f ;k 8) dedo
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We will not need as precise of a description of dv, here, since such a description for small 7
will be obtained later using the equation solved by v,. So, we use the identical procedure used for
0rva, and get

C t
et < o r<g
t*log”(t) 2
For the larger r estimates, we can again use
C
J <—, k=13
Al <
to get
® g2 Xgi(f) C

|02va(t,7)| < C de < —

0 Vr€log"(3) T VT

Lastly, for another estimate for large r, we first split 0%v, as follows

2vo(t,r) = Ly + I1,,

and
o . Xgi(f)
L,=2 L SIn(t)E%x <1 (r€) (=31 (r€) + J5(r€)) mdf
o Xsi(g)
I, = %L sin(6)&” (1 — x<1(r&)) (=3J1(r€) + J3(r§)) 1Ogb—1(%)d£
which give
min{%,i} 527”5 C
e G ey T2

Next, we again use (5.54) for J,, k = 1,3, and integrate by parts 3 times, to get

i< Y S f e <§X<—i(§)<rok<bk<r@ <1—X<1<rs>>> e

< C J‘OO ﬂ{%)%}llggi} n \/?]1{1>r£>é}]1{§<i} df
[t =r[* Jo \Vred2log" (3) ¢ log" (3}
C t

< i, T2
|t —r[*log” " (r)

Combining the above estimates, we get (5.52)
Next, we study ;v in the region r < 2. We proceed just as for v,:

—c, (7. ®  (sin(ét in(&t_ X<1(§) - &
(91‘/21)2(75,7") = 2—::L SIDQ(Q)J r (Slnig +) + Slnig )) 6§ (T(l)) dfd@

0
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We then use

6 (5 1)  (b-Lbb+DG+2)  1b-1b 6061

e () e (1) e (1) e (2)
+(8)
ez )

The integral is of the same form as that considered during the vy estimates, and we get (5.49) for
0?vy. (Note that any other estimates on d?v, which we may need can be obtained using the other
estimates of the lemma, and the equation solved by vs).

Finally, we will need a similar formula for 0;,.v5: We have

c [* 2 <3
dualtr) = 5 [ e 00 = e oy

Applying (5.53), the J, term is

() () e

Comparing this to the analogous integral treated while studying d,v,, we get

il J (P ) e (igf—lg) dedf

= T E012'U2 1(t T)

t3 log (t)
where )
r t
E v ta < ) < a
| 012 2,1( T)| ¢ (t4 logb( ) t3 logb—H( )) r 2
For the J, term, we use (5.53), and get
<l(§)d§
_f cos(t&)E Jg(ré)) 2—1(1)
13

o " i) LOO <sin(ft+) , sin(ét )) o (%) seds

127 J, t5 to

we then treat this integral in exactly the same way as the .J; term, and get

cos(tf)fQ(—Jz(T‘f))l @10 S5 (1)
0 (0] Z (0]

e JOO X<§(§)d5 Cr?
<
2 b



This gives (5.49) for 0;,vs.

Finally, (5.50) is proven for 02v, and 0;,.vs, and (5.51) is proven for d;,.v, in exactly the same
way as for the other derivatives.

The identical procedure shows that (5.49) is still true for b = 1 In the region r > (5 50) is
still true for b = 1, and for the second estimate in the region > 3, we get
for0<j<1, 0<k<l1, j+k<2

|07 3Fvy(t, 7)| < b=1

N)Ic*

C
m log(log(T‘))a t#r =

(Note the difference with the case b # 1, which had on the right hand side). In any

log' °(r), b#1

log(log(r)), b=1
in (5.51)). O

C
=T log" T (1)

case, (5.51) is true for all b > 0 (for simplicity, we use log(r) instead of {

5.8.4 The inner product of the (rescaled) v; linear error term

Lemma 5.7. For vs defined in (5.20), we have

LOO (coS(2Q1(R)) — 1> at, BA()) ol ) R

R2)\(t)?
_ 16f Kals — ()N (s)ds
cos(2Q1(R)) — 1
+Jo ( R2(t)? )E5(t7R>‘(t))¢o(R)RdR

where Ej5 is as in (5.21),

Ka(w, Alt)) = (1 +w? ()22 4 w2) 4(w? + 36A(t)2)2
and "
fo Ky (w0, M(8)) — Ko, A(1))|dw < C (5.60)

where
1

4@ +w)(1 4+ w)?

Kgp(ﬂ], )\(t)) = —

Proof. We start with

f <COS 26 (R 1) (t, RA(£))éo(R)RAR
0

R2\(t
— Al(i) Lw )? L:OGR)\(t (1 +S(3_ _t 2 )\(t)2gi:_t()8 — t)2> dsdR  (5.61)
' Jo (COS(QR%A(( )) ) Es5(t, RA(t)) o (R) RAR
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where we recall the decomposition (5.21).

We study the second line of (5.61) in more detail, since the third line is as in the lemma state-
ment.

ol el )A“Q<1+S_t S ) R

L6RA(t (s=1t)*  A)*?+ (s —t)?
16 * n
_ WL Ka(s — t, \(£)M(5)ds

where

4
w w w
K At)) = -

3(w, A(1)) (1 Fw?  At)2 2+ w2) 4(w? + 36A(t)2)?
We now estimate

Jw | K3(w, A(t)) — K3 0(w, A(t))|dw

0

where )
K. A(t)) = —
ol M) = = e T w) (1 + wp
We start with
A)t—e Ao dw
Ka(w. A()|d
J, st | 100+ w) (1§ w)?
()« At A)t—e
<CJ wdw “‘CJ wdw “‘CJ dw
0 (14 w?) 0 A(t)?—2 0 A(t)t—e
<C
Next,
> 1
Ka(w, \(1)) + d
LWJ s(w, A1) 4()\(t)1*°‘+w)(1+w)3| v
2 1 1 w? 1
< Ay-a T T A()220 +w? ) \ 4(w? + 36A(1)2)2 4 [duw
1 (5.62)
N J? |w 1 _ 1 N 1 |d
oiee A \T+w? X022 +w?) T A0O rw)
. F | ~1 N 1 d
w
soi—a 2O T w) A0+ w)(1 + w)?

For the second line of (5.62), we have

1

Jo o (i 1 Y )

o \T+w? A2 2w ) \dw? + 360027 4) Y
1 1 A(t)?

Cft)la ( ()22 +w? ) e

14+w?2/) w?
(t)**[log(A(t)***)| < C

72



For the third line of (5.62), we have

[NIE

f |E L ! + 1 |dw
e A\T5 @ xR ) T I0m e f )

1

N

_ fz wdw N f | 1 w
<C

|dw

Finally, the last line of (5.62) is estimated as follows:

-1 1

X e
T
Q
1N
—~
>
=
T
Q
+
g
~—
+
=
>~
—~
~
~—
T
Q
+
£
—~
—_
+
S
~—
w
U
g

Then, we consider

* 1
ﬁ'Km“Mm+4u@la+mu+wﬁW”

N

<L|Km“mew+ﬁu@ku+ma+wﬁ

2

0 2—2a
<CJ wlA(®) Yow 1 o

w?

<C

Combining the above, we get that

JOoo K (w, M) — Ks.0(w, \(t))|dw < C
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5.8.5 Leading behavior of )\ and set-up of the modulation equation

From the previous subsections, we have

(Fu(t, -A(t), ¢o)

e R V1 PN (N 111 1.0
S, O 0 S+ S
+ %L X'(s)Kzo(s —t, A(t))ds

16

+ Eor (MO, V(0. X'(0) + 3755

Loo N'(s) (K3(s —t, \(t)) — K30(s —t,A(t))) ds

+ ;(i)i L NS K (s — £, A()ds + Bup (6 A1)
cos(2Q 1 ) —1 ,
+<< £ ) (o) (1= 261F)) + 86 Lo
COS(ZQﬁ) -1 9
—< 2 ) X>1(logN(t)) (01 4 v2 4 v3) [r=Ra@), Do)
2r
- <X>1(W)FO,2(tv ) |r=RAt): P0)
where
v N@®)?  2X(t)  4aN"(t) log(A(t)) 1
Eo1(A(t), N (1), \"(t)) = 2)\(t)2 + ORE 0 (_1 IpYRE: + 1)
So, the equation resulting from '
(Fy(t), ¢o(m)> =0
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is what we recorded at the beginning of this section, namely (5.31). For convenience, we repeat
the equation here.

—4 JOO L(S)ds + A + 4aclog(A(E))N"(t)

I+s—t 2log”(t)

[e o] A”(S)
_4L OO +5 -0 15— 1P

_ _A(t)Eo,l(A(t), N(t), N'()) — 16 L " V(5) (s — £ A1) — Ksols — £A®D)) ds

S (D)X ()5 — M) Bunip (1. A(8)
p At)?
" A(WL \'(s) (Kl(s—t A(D)) - m) ds (5.63)
cos(2Q 1 ) — -
- )\(75)<< sz(t) ) ((U4 + vs) (1 - X>1(47)> + E5) lr=RA®)> P0)
\ COS(QQﬁ) -1 9
+ (t)<< 2 X>1(m) (v1 4 v2 4 v3) [r—RA®), Do)
2r
+ A@)<X>1(W)Fo,2(ta ) |r=RA(8): P0)

= G(t, \(1))

The key point is that there is leading order cancellation between the four terms on the first two

lines of (5.63) (which means cancellation of terms of size and terms of size M)

1
2 log® (t) 2 logb+1(t)

when we substitute A\ = A into these terms, where

—b*log(log(tz))
A dtodt] == Ao + A
o(t) log J J t2log" " (t,) 2 00T 701

In order to show this cancellation, we first let A(t) = Ao(t) + e(¢), and re-write the equation for e
in the following way:
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ro N\ 4
_ 4 L(S) s + —bb
o 1+s—t t2log’(t)
[ A5a(s) * Noo(s)ds
—4 —d dalog( A () — 4 ’
J, T1s—t s + dalog(Aoo (1)) X (?) L Coot)= + s — ) (L +s—1)°
[ €"(s)ds “ e"(s)ds
—4 ——7 +4alog(N\g(t))e" (t) — 4
Jt1+s—t+(1%(d)k() ‘L(M@Vﬂ+s—ﬂﬂ+s—ﬂ3

+4da(log(A(t)) — log(Aoo(t)))A5,0(t) + dalog(A(#)) (AG(t) — Ao (t))
+ 4ae”(t) (log(A(t)) — log(Xo(2))) (5.64)

00 "

4 e”(s) 1 B 1 s
o A+s—=tP \ O >+s—t X)) 2+s—t

( (A5(8) — Ago(s))ds

Jo Qoo(®) = 45 =)(1+ s —1)°

[ A\(s) 1 1
_4“ u+s—w3(u@ya+s—w"@w@ya+s—w)d3
= G(t,\(1))

Now, we will show that the terms in each of the first two lines of (5.64) cancel to leading order.
More precisely, this means that both terms in the first line of (5.64) are of size m, but their
sum has size bounded above by m. Similarly, each term on the second line of (5.64) is of
log(log(t))

. . 1
Elog (1) but their sum has size bounded above by e

4 f’mds:_4 f 260 4,y [ Mols)
t t

1+s—t +s—t 9t 1 +5—1

ot ot PV — N (t
_ _4)‘go(t)f ds _4J 0.0(8) = Agol )ds
’ . 14+s—1t . 1+s—t

o0 )\l/
B 4f 0,0(5) ds

size

i log(1+t) + O( ) + Err
= - - 0 e —
tQ logb+1(t) 8 21 gb+1()
where
2 )\”’ w0 s—1t 4
|mq<4f||”m*”M Vi + J|A()MS
< C
t210gb+1()
So, we get

o0 )\/I 4
_4J 0,0(5) d b
t

8 —
I+s—t t2log”(t)
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where
C

Er,l<———
[Bral 210" (1)

Next, we have

% Aoo(@)dx
B 4£ Moo +z—t)(1 +z —1)3

=4 JOO b dx . o
- ¢ 22logt () (Moo(t) =+ —t)(1 + 2z —t)? U3.ip

where
dx

E, |<C
| 3,1p| L xQIOng( )(/\O’O(t)l_o‘+$—t)(1+$—t)3

Then, we have

t+)\0’0(t)170‘ d([f
—4b
| L a:2 log” (@)oo ()@ 4+ 2 —t)(1 +x — t)3|

t+)\070(t dx 1
< CJ 2 b+1 1—
; 221log" () Moo (t)
C

< —F
t2 1Ogb+1( )

The second term to consider is

4b Jtﬂog(al)b(t”% 1 1 dz
ooy 210g" (@) (log® (0) +— ) (L+ 2 — 1)
—4b t+log(@= Db (t)+1 do

t2 logb+1( ) £+]0g(a_1)b(t) (log(afl)b(t) + T — t)

t+logle— Do)+ 1 1 1 1
— 4bf < b+1 b+1 > (a—1)b dz
F+log(@=1b(p) z2log”" (z)  #2log (t)/) (log" °(t) + = — 1)

t+logle—Db (1) + 1 1 1
_4bf - 2]oght! (1) — ((1+ —t)?’_l)dx
t+logle=Dby  x21og” " (z) (log (t) +x—t) x

The second line of (5.65) is treated as follows:

—4) Jvt+log<al>b(t)+% dr
t210g" ' (t) Jrstoge-vy  (log @V (t) + 2 — 1)
—4b 1
——— [ log(21og®~(t) + =) — log(2log @V (¢ )
— e (1082108 0) + ) — og(21os® (o)
_ 4b*(a — 1) log(log(t))
12 1Ogb+1( ) v3,ip,1b
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where

C

Ty

The third line of (5.65) is estimated by:

t+logl@—b(1)+ 1 1 1
|_4bJ ( 21 bt1 2160 t! ) (a—1)b d|
t+log(@=1b(¢) 22log” " (x ) t2log”" " (t) / (log (t) +z—1t)
C t+logle~1b(t)+1 (x o t)dx
< b+1 f (a—1)b
t310g” " (t) Jrsrogto-ry  (log™ (t) + x —t)
< C
3 logb+1( )

The last line of (5.65) is estimated by

t+loglo=1b (1) + 1 1 1
|_4bf b+l Db ( 3—1)dx|
trioge-vy  22log" (x) (ogl@™VP(t) + & —t) \(1 + 2 —1)

<:C7J¢+b§a_nwﬂ+5 1 vt d
< X
troge Doy 2log"™H (@) (logl@ V() + & — t)

C

< —
12 logb—H( )

The third term to consider is

* 1 1 dx
| —4b - 12 b+1 (a—1)b . 1 —t 3 |
t+loge0r(p 41 12 1og” ! (2) (log Mo (t) + 2 — t) (1 + 2 — 1)

B C JOO dx
x 2 logb-‘rl(t) t+log<a71>b(t)+% (ZL' — t)4
C
< b+1
t2log” (1)

Then, we estimate E,, ;:

Bl < [ “
o t2lo gb+2 (log @ Vo(t) + 2 —t)(1 + = — t)3
_C log(log( )
21og" 2 (1)

In total, we have

» foo Aoo(z)d B . .t 4% (o — 1) log(log(t))
o (og@ () — )1+ —t)p £21og"" (1)

where

C

| Evsip.f| < S Elog (1)
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By the same procedure used to study the analogous term involving A, o, we have

» J ©Aoa(s)ds  4b*log(log(t))
p l+s—t  2log" (1)

E’U&q‘,p ,01

where Clog(log(?))
og(lo

|Ev3,ip70]-| < g—bj

t2log” " *(t)

Combining the above, we can show the cancellation, to leading order, of the terms on each of the
first two lines of (5.64):

o N (g 4b
_4J 0,0() ds + . :E/\oo
. 14+s—t t2log”(t) ’
with o
E < ——F
Bl t2log"™ (1)
and
© NG (s) © Apo(s)ds
—4 | 2227 ds + dalog(A t)\”t—4f 00
L T35 =08 Talos(oo®haolt) =4 | - o A
= Loyz,ip,01 + Evg,ip,f + E)\o,l
with .
B, . (t) = dalog(Moo(®) [ Moo () — ————
)\0,1( ) g( 0,0( )) ( 0,0( ) 2 lOngrl(t))
- C
| Evsipo1| + | Evsip.f| + |E>\o,1| < m

We recall that we are considering (5.63) for t € [T}, o0), with T} satisfying (5.1).
The equation for e can be written as follows:
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« e"(s)ds " “ e"(s)ds
- 4£ gt (1 +s—p) T2t — 4£ Tog 00 (3) o) + 5 — (1 + 5 — 7

= (=Exoo — Buyipot — Euyips — Exo,)

(Gt A(D) — da(log(A(1)) — og(hao(t)))Xo(t) — da log(M(D) (N(E) — N (1)))
Toa O (hoe” (1) (log(A()) —log(A (1))

1 1
log ( —i—s—t < Ao 45—t )\o(t)la—i—s—t) dS)

o (AG(8) — Ago(s))ds
/\00 1a+8—t(1+8—t)3

J'OO AII 1 B 1 d
+s—t Y=ot s—1) (oolt)—+s—1))"
1

(log ) log( /\0 )))(1—|—s—t)
0 (e

log

ds

1

log(Mo(t))  log(Nof ))) M) 2+s—t)(1+s— t)3d8

(5.66)

where A(t) = A\o(t) + e(t). In order to study this equation, let us first consider the problem of
solving an equation of the form

* y(s) 1 1 -
_L log(Ao(s)) (1 Tt Do) e ts—B(1ts— t)g,) ds + ay(t) = F(t)

t="1T,
where
Fel(Th). [P < (5.67)
If
o) = y(—t), H(t) = & (;t) t<-Tp

then our equation becomes

t x(s) 1 1
_ J_OO alog(Ao(—s)) (1 — s+t * Do) @ —s+0)(1—s+ t)3) ds + x(t)
=H(t), t<-Tp

which can be written as

f w($)K (£, s)ds + 2(t) = H(t), teJ (5.68)
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where
J = (—OO, —To]

and, for (¢, s) € J?,

K(t,s) = L<o(s —t) ( LI 1 )

CalogN(=s) \I—s+t  (Ao(=t) =@ —s+t)(1—s+1)

 Te(s—1t) 1 1
B allog(Ao(—s))| <1 — s+t * (Ao(=t)l—s+t)(1—s+ t)3>

Note that K'(¢,s) = 0 when s > ¢, so K is a (non-negative) Volterra kernel on .J2.
Moreover, K is of type Ljo. on J. To see this, it suffices to consider C' = [a, d] < J a compact

subinterval, g € L'(C'), f € L*(C) with ||g]| 11y < 1, [|f]l=(cy < 1 and estimate

Jc Jc lg(DIIK (2, 8)][f(s)]dsdt

¢ ¢
< lg(t)] (j ds N 1 f ds )dt
o 2« s l=s+t  X(=t)r )  (1—s+1)3

log(l—l—d—a)—i—m

2c0
where we used the facts (which follow from (5.1) and (5.2))

~

1 1 1
t — ———— is decreasing, ————— < —
No(—1)1= ® Tlogo(-0)] = 2

Moreover, if s < u < v < t, and (t,v,u,s) € J4, then,

, teld

K(v,s)K(t,u) < K(t,s)K(v,u) (5.69)
To verify this, let us note that, by the given conditions on s, u, v, t, we have
1=Tlco(s —v) =T<o(u—1) = L<o(s — 1) = T<o(u — v)
and

. ﬂ<0(8 — t)
~ allog(Xo(=s))|

K(t,S) k’(t,S)

for

So, it suffices to show that

52
7 < <
EREn og(k(t,s)) <0, s<t
Then, we note that
log(k(t, 5)) — log(————) + log (1 + !
SR, 8)) =8\ T/ T8 Do(—D)= — s+ 1) (1 — s+ )2
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and we have

1
Ourlog <1 * (Mo(=t)1 —s+1)(1—s + t)Q)
B <_ (201 — s+ )Mo (=) — s + 1) 4+ (1 — s + £)2(=Xy (=) (1 — @) Ao (=)~ + 1)))
N (1 —s+1)2No(—t)1 > — s+ 1) +1)2

2 1
' (1 ot i Do(—t)ie —s+t))
1 —2 (—(1 —a)\o(—t) " *Ny(—t) + 1)
* ((1 —s+t)2No(—t)'=* —s+1) + 1) ((1—s+t)2 a (Ao(—t)t— — s 4+ )2 )
<0

where we recall o < }1 and \j(z) <0, a = Tp. This completes the verification of (5.69).
Now, by Theorem 8.6 (sec. 9.8, pg. 259) of [8], K has a non-negative resolvent, r, which is
locally of type L on J2. Recall that the resolvent kernel, r, satisfies (a.e) the equations

r+Ks+«sr=K, r+r+:K=K (5.70)
where the * operation, (as defined in [8], Definition 2.3) between two measureable functions on
J2, or between a measureable function on J? and one on .J (when the integrands are integrable) is

(a+b)(t,s) = L ot u)b(u, 5)du
(@ O = | altu) s

J
In fact, we also have

K(t,s)
<2, s<u<t 5.71
K(u,s) s >-71)
because
1 1
K(ta 3) _ 1—s+t + (No(—t)l—o—s+t)(1—s+t)3
- T 1
K(U, S) 1—s+u + (Ao(—u)l=2—s+u)(1—s+u)3

l—s+u (Mo(—u)'™™—s+u)(l—s+u)?
Tl-s+t (o=t —s+1)(1—s5+1)3
<2, s<u<t

Hence, by Theorem 8.5(sec. 9.8, pg. 258) of [8] r is in fact a non-negative Volterra kernel of type
L*, and we have the estimate

t
J r(t,u)du <2, ae.teJ (5.72)
-0
By our assumptions on F', namely (5.67), H satisfies the property that (e.g)

H(-) ()" e L?(J) (5.73)
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Then, we have a solution to (5.68) (a.e.) given by the formula
v = H—(r+H) (5.74)
To see this, we first note that (5.68) is
Ksx+z=H

Then,
Kx«(r«H)=(K=r)«H

by Fubini’s theorem. Fubini’s theorem is applicable because

J f (), )| | HE (s |dsdu_J J Kt w)|[r(u, )[|H (5)|dsdu
< [|H(") ||L7(J)f f K(t )d du

< [|H(") (')2||L7~(J)f f K, )T(u,s)dsdu

u2

Ktu
<20 P e [

2||H()() L () 1 b odu
s o log(Ao(T0))] <1 " Ao(—t)l") fw u?

2| H() () =) 1 L
= " allog(A(Th))] <1+Ao(—t)1”) mote’

by (5.72), (5.73), and inspection of the formula for /. Now, substituting

r=H—(r«H)
using Fubini’s theorem as above, and using the resolvent equation
r+Ks+r=K

we see that (5.74) is a solution to (5.68).
But, this means that we have a solution to the equation

~ ®y(s) 1 1
ay(t) = F(t) + L log(Ao(s)) (1 P (o) > +s—t)(1+s— t)3> dS

, ae.t="1T,

Since we are considering this equation for F' satisfying (5.67) the right-hand side of the equation
above is a continuous function of ¢. So, y agrees with a continuous function a.e., and hence, we
may extend y given a.e. by (5.74) to a continuous function of ¢ € [T, o).

(5.74), written in terms of y reads

y(t) = P _ foo F(S)r(—t, —s)ds (5.75)

(0% «
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and (5.72) implies that
0
J r(—t,—z)dz <2, ae. t=T (5.76)
t

Now, we are finally ready to solve (5.66). We recall the complete, normed vector space (X, || - ||x)
defined in the beginning of this section by

= {f € C*([To, ))|llf|]x < o0}

where

111 = suprs, (17 (1) b1og”(t)/1og(l0g(1)) + | (1)|t1og (£)y/Tog(log(#))
S 1 1og" (£)y/Tog(log(1)))

We quickly remark that all previous manipulations done on vy, including estimates and representa-
tions of inner products, are valid forall A = Ay +e, e € B;(0) = X, since (5.2) is valid for all A
of this form. For e € B1(0) = X, RHS(e,t) is a continuous function of ¢ € |1}, c0). We will now
estimate RH S(e,t) for an arbitrary e € B1(0) < X. The estimate we will obtain will then allow
us to define a map, 7', on E(O) < X, and prove some properties about it, using the discussion
above. Eventually, we will show that 7" has a fixed point.

We start by estimating all the terms of RHS(e,t), except for the one involving G, for e €
B;(0) < X. From our previous calculations, we have

C
[ Bl + | Bvgipor| + [Eugip.s| + [Exg, | < g 1(1)
So, the first line of RH S(e, t) is bounded above in absolute value by
C

log(log(t))#? log"* (¢)
Next, we note that

—b*log(log(t —b%log(log(t 1
)\0 ) f f Og Og 2))dt2dt1 _ Og( Og( )) + O (1 )
0og

t2 10gb+2 ) (b+ 1) 10gb+1(7f) b+1( )
Then, using the fact that ¢ € B;(0) — X, we get that the terms in the second line of RH S(e, t),
except for the one depending on GG are bounded above in absolute value by
C
(log(log(t)))¥/2t* log" (1)

Similarly, the third, fourth, fifth, sixth, seventh, and eighth lines of RH S(e, t) are bounded above
in absolute value (respectively) by

¢ 4 ¢ C'log(log(t))
(1ogl0g(1)) P12 log” () " (loglog($)?log™ (O log™"*(1
+ ¢ n ¢
(lo510g(1)))" log (¢) *  log" (1) log(log (1))
C

" (log(log(1)2t* log" (1)
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Now, we proceed to estimate the terms from G. In the below expressions, we note that A(t) =
Xo(t) + e(t), and e € B1(0) < X is arbitrary. Recalling the definition of E; ;, we have

; " ¢
AOEo1 MO X N O < 1y

Then, from (5.60), we have

* " C
16 V) Ul =100 ~ Kol — A sl < s
From (5.40), we have c
N Busi 6N € 7
Using (5.34) and (5.32), we get
6 [*, B C
SR ), XKt < s
6 [~ A(t)? C
e |, ) (=00~ ) < gy

In order to proceed, we will use some pointwise estimates on vs, v4 and vs.

5.8.6 Pointwise estimates on vs, 07v3

Here, we will prove two simple pointwise estimate on v3 which do not directly follow from (5.21).
As with all of our work from now on, every estimate is valid for any A of the form

At) = Xo(t) +e(t), eeB(0)c X
Lemma 5.8. We have the following pointwise estimates on dvs, j=0,1,2:

Crlog(log(t))

|vs(t, )| < Pl (1 (5.77)

ot 1) < g J " IV(8)[(s — £)ds (5.78)
t

|0vs(t,7)] < ¢ (5.79)

t2log”(t)
Proof. We again make the decomposition
U3 = V31 t V32

and use the same estimates on v3 o proven while obtaining (5.21), to get

Cr

v3a(t, )| € ————
[vs.2(8,7)] t2log"™(¢)
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For v3 1, whose definition is (5.22), we have

C ®© 1 1
lvg 1 (t,7)| < o + C’Tj IN'(t + w)|w S |dw

t21og"" (1) 6r At +w)2 2 +uw?) 1+ w?

In order to estimate this integral, we use the fact that \'(x) < 0, =z > Tp, and get

f " N (t 4+ w)|dw C 1 f wdw
o At +w)2 2 p2) T g2 logh™ (t) log?a—2® (t) Jo 1T+ w?A(t)>2
_ Clog(log(t))
2 logb+1( )

(5.80)

Also,

Jl w|\'(t + w)|dw < C
0 1+ w2 12 logb—H( )
On the other hand, if w > 1, then,

| 1 1 C

At +w)22e +u?) T4+w? ~ wl

which gives

1 o1 d C
(At +w)?22 +w?) 14 w? ws t2log"" (1)

f Nt + w)|w]
1

In total, we get
Crlog(log(t))

1o gb—&-l ( )
which gives (5.77). For the second pointwise estimate on v in the lemma, we use

v (t, 1) <

lvs(t, 1) =[\"(s)] - 2dpds

s J J v (s — t — p?
< S [T W - nas

T Jt
We now prove the estimate on ¢,.v3 in the lemma statement. We recall the definition of v3
—1—p?+1r?

—~1 (% P p
TL JO (s—t)Q—pQ)\ (s) <\/(1—|—p2—7“2)2+4r2
(5.81)

Then, we make a decomposition analogous to v3 = v3 1 + v3 2, used previously, and treat each
term separately:

1 1 MN'(s) —1—p? 4 .
|JJ ( V(s =12 —p? (3—t)> r ar<\/(1+p2_r2)2+4rg>dpd|

© L+ p* 4 r?
< C )\Il d
<Sx‘§f| m')fo P <(4r2 + (14 p? —r2)2)3/2> g
< Csup [X'(2)]

=t

+ F3(rv Ps )‘(8)) dpdS
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L NN S oy dods
|JJ ( s—t) — (s—t>> p O (B5(rp A(s))) dpds

4 4o—4 * (p2 + 7'2 + )\(t)Q—Qa)
< CS;;I? (|>\ (z)[ M) ) L p(l F 2002 + r2)A(1)2 2 + (p2 — r2)2A(1) e 4)32
< Csup (IN(2) M) ") A@)*—

=t

dp

where we used

|0nFs| _ C((p* + r)A()** + A(s)™2)

o (14 2(p% 4+ 1r2)A(s)2072 4 (p2 — 1r2)2)\(s5)da—1)3/2 (5.82)

Next, we have the term where the r derivative acts on the % factored out of the integrals in
(5.81). For this term, we simply note that

pA'(s) —1—p*+r?
+ F Ty 7)\3 dpds
JJ Vi{s—1)? - (\/(1+p2—r2)2+4r2 3(r,p, As)) | dp

—vs(t,r)

r

Then, using (5.77), we have

J J \/ le (V(ljp;frj);r el p’A(S))> dpds|

log(log(t)
2 longrl( )

The last term to estimate is

0 1 s—1 )\”(8) —1 _p2 +7”2
_ 6T _|_F , 7>\ dod
Jt (S_t)fo " (\/(1+P2—T’2)2+4r2 3(rp M) | dpds

If s — t < 3, we start with

s—t 2 2
p 1—p"+r
|J ar 2 2)2 2 dp|
o T \/(1—1—/) —r2)2 +4r

_| —1—r?+4 (s—1t)?

VAG =12+ (42— (5~ 1))

+ 1]

_ 4(s —t)?
VA =12+ (T +7r2 = (s —1)2)2(1+ 72— (s — )2+ /(L + 72— (s — 1)2)2 + 4(s — 1)?)
1

<C(s—1t)% s—t<;
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This gives

t+1 1 s—t  \n 1 2 2
- [+, LA — R
i (s—=1) Jo r V(L + p2 —12)2 + 42
C

< -
t2log"™ (1)

On the other hand, we have

0 1 s—t " -1 = 2 2
|__[ —f P)\ (S)5r T dpds|
t+3 (s=1) Jo r \/(1 + p? —12)?2 4+ 472

@ 1
< J‘ IV/(s)] - 2ds
t

+3 (s—1)
" log(t
<mgmum)$)

Now, we have to treat the F3 related terms. We start by recalling (5.82).
Then, we use a slightly different procedure:

[ [ e s

(s —1) Jo
(* J 7 ) (p* + 7% + M) *)A(s) "
Jo " Jore (s = 8) (14 2(0% + 72)A(5)%0 2 + (p? — r2)2A(s) 10 1)72
(* f 7N G) (p* + 2 + MDA ()
Jo " Jore (s = 1) (L4 2(0% + r2)A(8)2272 + (p? — r2)2A()10—4)%2
* plp” + 12 + A(B)* ™) !
Jo (T4 2(p% + r2)A(1)20=2 + (p2 — r2)2\(t)da—1)3/2 log(4a_4)b(t)tlogb+1(t)

©  ds
dp
Jp+t s(s—1)

t p(p® + 72 + A(1)2 ) log(1 + )dp
L (1 + 2(p2 + TZ)/\(t)Qa—Z + (p2 _ T2)2/\(t)4a—4)3/2 log(4a—4)b(t)t2 logb+1(t)
| ) ple + 12 + M)*2) dp
o (L2002 + 72)A(1)2072 + (02 — r2)2A (1)1 1)3/2 1ogUa=Db (1) 12 1og" L (1)

<C

dsdp

<C dsdp

<C

<C

We finally consider two subsets of the region r < ¢ separately:
11—«
f o p(p® + 1% + A(1)**) (log(t) + [log(p)[)dp
0 (142002 + rD)A(0)202 + (p — 12)2A(¢)1e1)3/2 1Og(4a—4)b(t)t2 log"*1(t)

co [ A () el 1
= . (1 + 2(p2 + 7"2))\(75)20‘_2 + (p2 _ 7’2)2/\(t)40‘_4)1/2 log(4a74)b(t)t2 longrl(t)

C
< b
t2log”(t)
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Then,

~+

J plo” + 17+ M) (log(t) + | log(p)])dp
ai—a (14 2(0% + r2)A(£)2072 + (p? — 12)2A (1) 10=1)3/2 1o (e=Db ()42 1og0 L (4)
Clog(t) Joo p(p2 + T2 + A(t)272a)dp
12 log(4a—4)b(t) log" (1) Jo (1 +2(p2 + r2)A()202 + (p? — r2)2\(t)4e—1)3/2
C
<
t2log”(t)

N

The final integral to estimate is then

* p(p? + 1%+ Nt)*2)dp 1
ft (1 + 2002 + P2)A[D)2 2 + (% — r2)2A(E) 10 4372 Log (a0 (1) 2 1ogh* (1)
«_©
= 2loght i (2)

This gives (5.79).

5.8.7 Pointwise estimates on v, 0,0,

In this section, we prove

Lemma 5.9. For all \ of the form

we have the pointwise estimates

Cr t
ST ShiaN =T r<
a(t, )| < 4 H T

3N | -
Vrtlog 2 T30=1(3)’

(5.83)

c t
2 1og30 2N T4y T < 2

|Orva(t, )| < (5.84)

5N
VTtlogt T e (1)

and

C
|6tv4(t,r)| < r=

Vrtlog? 1 (1)

We also have the L? estimates

C

V4
Oval | L2(rary + 11004l 2 (rary + |I7||L2<rdr) < Flog2 ¥ (1)
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Proof. We start by considering v4(¢,r), for £ > r > 0. In order to ease notation, let z € R? be
defined by x = re;. Then, we recall (5.25) and get

_ ([ 1 Ovac(s, | Bz + yl) (Bz +y) - 2)°
v4(t,7") - QWL L JBH(O) (s—t)2 _ |y|2 < |5x+y|2

sl BT +y)) (Br + y) - )
Bz + y[?

U47C(37 |ﬁiﬂ + y|)
+ Bz + 7] > dA(y)dsdp

Note that, for [z| < 5,0 < 8 < 1, and |y| < s — t, we have

t
S—|ﬁx+y|>§

This means that, for the purposes of estimating v, in the region r < %, we can use (5.51) to estimate
vy, forall r > % We then combine this with the estimates for vy, v3, and Fyp o, to get

2r S, TS :
r3 1o ’ ==
|U4,c(tar)| < C|X>1(1T)| ! log(r)(t) log2be () ‘ (585)
0g (t) 10g2b(t)r4|t77“\ 1273 10g3b+1(t)’ r = b

and similarly, for the derivatives, we have

1 t
2r g TS 3
arv At <C et r4t2log>°(t)

| 4, ( )| X?l(log]\/’(t)) { log(r) + 1

>
log3®(t)t2r4? r=

N |+

log?? (t)r4 (t—r)2
Clxe (IO;%) I
log™™ ™2 (t)  t2log"(t)

Then, we get

1 poo 1
lva(t,7)] < C’rf f ————|0ova.c(s, | Bz + y|)|dA(y)dsdp
0 Jt B w0)nBy(—82) /(s —1)* — |y
rl r

%
Lo j ) ! [vse(s. 182 + y))|
Jo Ji JB._4(0)nBj (~pz) (s —1)2—|y|? |Bx + y|

rl poo
L f 1Oyvse(s, |8 + y))|dA(y)dsdB
Jo Ji JBou0)n(By () (s—t

dA(y)dsdp

—_

—r

2 —|yf?

—_

lvae(s, |Bz + )|
: dA(y)dsd
W Byl (y)dsdpB

rl oo p
+ Cr f
Jo Jt JBs 4 (0)n(Bg (—Bx))° (s =t

~—

(5.86)

Each line of (5.86) is then further split into two terms, based on the decomposition

1 1, 1 1
(s—t)? =1y s—t (s—t)* =1y s—t
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and estimated separately. For the first term of the first line, we have

1 QO 1
f j f L oyuna(s, |8 + yD)dA()dsdB
0 Jt JB._4(0)nBy(~pz) (s —1)

1 pt+d 1 1
<C dA(y)dsd
TL J; JBSt(O) (8 . t) 10g4N(8)82 10g3b(8) (y) 6

+Or Jl f - J i o) dA(y)dsdp
0 Jest (s =1) By (-pa) BT +y[*s? log™(s)

1 pt+d (s —1)
<C ——— v dsd
TJ;) L 3210g3b+4N(S) § B

o J1 Joo 1 J Md/l(z)dsdﬁ
0 deey (5= 1) Ji [2fts21og™ (5)

C

3b+2N—1 (t)tg

N log

where we used

|Bz+y|
|XI>1(1ogN(S))||6I +yl <C L{i8aryl108" ()}
10g5N+3b(8)82 = |,61' + y|4log3b(s)s2
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Cr C Jl foo 1 J2 f” 1
S —— -t 0r o1 3b, %
12 10g3b+4N (t) 0 t+% (S - t) log™ (s) P 0 P452 10g3b(8)
- T

dfdpdsdfs



Next, we estimate

1 poo 1 1
TL L JBH (0)n By (~px) ( (s—t2 -y (s— t)) |0rva.c(s, |82 + y|)|dA(y)dsdp
1 1 1 dA(y)dsdp
Crf J J ) ( NCEUEEITENCE ’f)) log?" (s) (log™ (1) + B + y[?)s* log™ (s)
21 1 1
Crf J J log ( ) + £2r2 + p2 + Qﬂrpcos(Q)) 10g3b(t)

© 1 1 1

1 1
J J J g?N 30 (1) (log?N (¢) + 212 + p? + 2Brpcos(f)) (p + t)Qdepdﬁ

1
< W : dpdp
log®V+3(1) L Jo (p+1) \/(1og2N(t) + (Br + p)?)(log®" (t) + (Br — p)?) '

o 1 dpdp
log2V 3 (¢) L L (p+ t)2 () + (Br + p)2)(1og™ (1) + (Br — p)?) !

(log
logZV (1) J J o dpd3

C’r(log 2 +7?) + log(2 + 12))

2 10g2N+3b(t)
- Cr - t
S log? ¥ F1(7)’ sy

(5.87)

where, we used the fact that

pzt, r<5 = |fr—pl=p—pr=

N | o+
N

Next, we estimate

1 o0 1
TJ J J |U4’C(S, |ﬁx+y|)|dA(y)deﬁ
0 Jt  JB.t(0)nBy (—p) (s—1) |Bx + y|

[Bz+y]

1 X1(om )
C’rf J f = Mog™(s) dA(y)dsdp
Bs_ t(O)mB (—Bz) (S - t) log ( )32|ﬁ3§' + y|4

The last line in the above equation has already been estimated above, and we get

1 poo
1
TJ J J |v4:C(S7 |ﬂfl’ + y|)|dA(y)d8dﬁ < 313;\]71
0 Jt JBet(0)nBy(~pa) (s—1) Bz + y t2log (t)
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Next, we have

o 1 1 |vac(s, |Br + yl)]
— ’ dA(y)dsd
rjo L JBSt(O)mB§(—Ba:) ( (s—t)2—JyP (s— t)) Bz + | (v)dsdf

|Bz+y| )

<C J'l JOO j 1 1 X>1(logN(S)
< Cr _
o Ji JBwo)nBs (80 \ V(s —1)? — [yl (s —=1) ] |Bz + y|*s2log®(s)

dA(y)dsdp

The last line in the above equation has also been estimated above. Next, we recall that

t
r<glylss—t = s—[Brtyl>g

and consider

1 poo
1
NN el B + yDIdA)dsds
0 Ji JBo y()n(By () (s —1)

We first treat the portion of the integral when s — ¢ < %:

1 pt+d

: 1

" f f f L (s, |Ba + y)ldA(y)dsds
0t JBwonBy (s (5 —1)

s +
TJO Jt J-Bs_t(()) (3 —t) (10g2b_1(8)84t2 10g3b(8)86) (y) sdfs
Cr

< —
t6log® 1 (2)

We next consider the region s — ¢ > %, and get

1 Q0 1
rf J f L \auna(s, B + y])|dA(y)dsdB
0 Jird I (0)n(By (o)) (s —1)

Lre 1 1 1
<C"’JJ J ( ;g(|2|) +— )dA(z)dsdﬁ
0 Jios G0 S, o \log®(s) 022 o (s)s2]a]"
o]
1

1
<Cr ds
L; (s —t) s2t210g® " (s)
o Or
Tt log? 2 (1)
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Next, we have

1 poo 1 1
- OaUs.¢(s, dA(y)dsd
TL L JBH(O )N (B (=) ( (s—t)2—JyP (s —t)) |G2vae(s, |Br + y|)|dA(y)dsdp

! L log(s) .
J f J ~(0) ( V(s =12 =y (s t)) s? (12 + |Bx + y|*)t2 long(s)dA(wd dp

1
<C dfdpd
Tjo L ,OL (p + t)t31og® 1 (t) (12 + B2r2 + p2 + 2Brpcos()) pip

We can then treat the last line of the above equation in the same way as we treated (5.87). This
results in

o 1 1
r - |Oav4,e(s, B + y|)|dA(y)dsdf3
fo L JBs_t(O)m(BS(,B:r))C ( (s—t)2—Jy]2 (s— t)) 2

t4 10g2b 2( )

Next, we have

1 poo
1
TJV J f |U47c(87 |6x+y|)|dz4(y)d8dﬁ
0 Ji JB. () (By(~pa)) (s—1) Bz + y|

The contribution to the integral from the region s —¢ < % is treated in an identical manner as above,
and we estimate the other contribution, using the same procedure as used above:

1 poo
1 c(s,
) f [ 306,182 + UD1 4 45
t+5 JBst(0)n(By (—Ba))° (s —1) |Bx + y|

10g2ba( )
f J (s —1) f J <tlog2b I(5)p® 32 410g3b+1( ))depdsdB

0 logaa 3b— 1( )dS
+CJ (s —t)s*

<Cr J
1l (s —t)ts? loggb '(s)
- Cr
= 4 1og? (1)
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The last term to estimate is

1 poo 1 1 |V, (s, |Baz+y|)|dA e
TL L JBH (O (B (=pa))* ( (s =12 —y* (s —t)> Bz +y] (v)dsdf
1 1 log(s) longa( )
CTJ J J -4(0) ( (s —t) P G —t)> (1og2b(3)35t " 10g™ (s )) AAly)dedp

<Cr J L H( T (Si t)> ( (p+t)4t2110g2b_1 5t 10gz;a:’>z;(t)) dsdp

t4 log% ()

Combining these estimates, we conclude that
Cr t

36+2N71(t)’ RS )

va(t, )| <
ot )| <

Next, we estimate 0,v,4, starting with the region r < We recall the function GG defined in

(5.24):

t
5

Gls.r.p) = JQW Vg (S, \/7’2 + 2rpcos(f) + p?)
Y 0 \/12 + 2rpcos(0) + p?
s=zt, r=20, s—t=p=0

(r + pcos(6)) do

and start with

J J Ny G(s, T, p)dpds

Note that, when we estimated v, in the region r < %, e used
1

G(S> Ty p) =r o (Sa 5, p)d/B

Now, we have

Orvy(t,r) = JJ G(s,r, p)dpds
2 A (s — t
Therefore, the identical procedure gives the estimate
C t
|0,v4(t, )] < Elog N1 7)’ r < 3
Now, we treat the region r > % Here, we use a different combination of the v, estimates in the
various regions, to obtain
1 t
2r O Sz 26
1 log2be (¢
|U4,C(t7 T)| < C|X>1(1OgN(t))| log%(otg)fﬂz)‘tfr‘ + t21“301g0g3b(+)1(t)7 % < T < t - \/{f, T > t + \/%

W, t_\/%grgt‘i‘\/%
(5.88)
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and

|0rvac(t,1)| < |X>1(1°gN(t))| ( " )

logZ ™ (t)r4 \ #21logb(t)

1 < t
CXZl(logQ%) 2logh (1) 17‘ (\)2 (5.89)
rilog”(t) | Y] oot sS<r<t—torr>t4
7 t—tVr < <t +

Next, we will use a different representation formula for v, to estimate v, and J,.v4 in the region
r = £. In particular, we have

va(t,r) = L - LOO T (r€) sin((t — 2)€) T, €)déda

So, it suffices to estimate ;... To do this, we consider separately the regions

1 t t 1
StV tEVEZ o2tV =Vt -2 2 = = log (¢
3 5 § 2 27 ¢ Q
Then, for example, in the case % t + +/t, we have
0 5
f Ji(r&)rvg (t, r)dr = ZJ Jy(ré)rvg (¢, r)dr
0 k=11
where
1 1 t t
11:[5700)7 [2:[t+\/g7§]7 13:[75_\/%775—’_\/%]) [4:[5775_\/%]7 [5:[075]
and we use

Cr, O0<z<l1
(@) <9 ¢
\/—5, x> 1

and (5.88). The analogous decomposition is done for all cases of & mentioned above.
This procedure results in

[ Célog(t)(log(t)+|log(€)])

C&?|log(&)[] log(1—~ té)\ 1
2 1og??(t) + tlog 2b(t) 5 < t+vt
— 2 62;5 2 \[ f < _\[
2 log?—2(t)’ t+ =5
|U4,c(t7€)| < 9 Cfcl)og 2(1) <£ < 2
t2 log?®(t)’ tf\/i t
C¢(|log(&)|+1og(log(t))) c 2 1
L t210g® (1) N ET T N &< log™ (t)

Rather than recording pointwise estimates on vy, (¢, &) in the region % < log™(t), we use the
following argument to infer an integral estimate on 0, (¢, ). From (5.88) and (5.89),

1 Vg e(t, )
120+ 1 ) ot My < 12ronatt Pl + 12225y
C

< —
2 log3b+3N (t)
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On the other hand,

[ 00 (e + 20 o

r

= —f Vg c(t, 1) Jo(ré)Erdr = fL vy c(t, )y (ré)rdr

0

= fv/éljc(ta 6)

where the vanishing of the boundary terms arising from integration by parts is justified by (5.88).
By the L? isometry property of the Hankel transform of order 0, this implies

C Vg(t, )
T]V(t) 2 ||ar’l)47c(t, T) + r

= e, 5.90
o z2(rary = [|0ac(t; )| L2(cae) (5.90)

Then, we use
| J1(2)] + | Ji(2)] <

Slo

in the formulae o o
valt,r) = j f T (r€) sin((t — 2)€) T, €)déda
t 0

and

dun(er) = [ [ €€ snl(e — 29T, e

(Note that the differentiation under the integral sign is justified by the pointwise estimates on vy,
as well as (5.90)).
Thus, we get

loa(t,7)] < Cfo WLN() M\/%é)'dgdx

21T e8] €

© 1 (e [z, )]
<C£ \/;L NG dédx

1/2
© q ® d —~
+C£ W(J 1 §—§> 1801e(2, E)||L2(ga) e

logN (z)
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and

|0y (t, 7)] < J Jlog © |Use(, €)|n/EdEda
vo [ 1w ove faa

logN(I)

f = e O B

© * o d —~
+CL W(J ;) 1€08.c(2, || 2(eaey d

logN(T)

Using our pointwise estimates on v, as well as (5.90), we get

oa(t )] < < > !
Vg, T)]| = y r ==
Vrtlog? T¥1(1) 2
and o ;
|5TU4(t>T)| < 5N ) rz=-
Vrtlog® 12 (1) 2

In addition, we have

Orua(t,m) + valt,7)

- i LOO EJo(r€) sin((t — 2)6) iz, €)ded

r

First using Minkowski’s inequality, then the L? isometry property of the Hankel transform of
order 0, and then that of the Hankel transform of order 1, we get

pee) o
||Orva(t, ) + 04(? r) | L2(rary < I f §Jo(r€) sin((t — 2)&)Uac(x, §)dE|| L2 (rary

Jrfoo 0

< | IIsin((t = 2)§)0ac(w, || 2(eayd
Jrz‘foo

< | 10, Ollezag de
© * Cdx

«_ Y

=~ t10g2N+3b( )

where we used (5.88). Note that this is simply the energy estimate for the equation solved by v,.
Next, we note that the pointwise estimates established for v, imply that

vg(t,0) =0, lm vy(t,7) =0

r—00
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So,

1 w0 A 2 2
(03 )l = [ (@ + =8 4 20 v
0

r

V4
= ||arv4||%2(rdr) + ||7||i2(1ﬂdr)

We now treat d;v,:

witr) = [ [ s cost (e ~ a)6)€ o, o

where the differentiation under the integral sign is again justified by the pointwise estimates on vy
and (5.90).
This gives

At )] < % | ) ) * e, ©)deda

So, the same exact procedure used for ¢,v4 pointwise estimates in the region r > % also applies to
6151)4.
Finally,
ade el Q0
0wt llisan < | 11| €00€) cosl(t ~ )57, el ireands
J;EOO 0
< | [leos((t = 2)€)0ac(x, )| L2 (cagyde
J:OO
< | oge(®, )|lr2eagyde
Jt
[ x Cdx
< Vg, \T)||L2(rdr dx < f T _9N43bs/ N\ _o
), relzeande < | vy
- C
= t10g2N+3b(t)
This completes the proof of the lemma. [

5.8.8 Pointwise estimates on v;

Lemma 5.10. For all \ of the form

M) = Mo(t) + e(t), eeBi(0) X

we have the pointwise estimates

Cr r<t
363+ 20 ) =2
Jos (t,7)] < 4 Clog 2@ (5.91)
C'log™*(t) t
NGIE r>3
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¢ 5N . < i
10,05 (t,7)| < { 17P1log™ P E (1) ? (5.92)
C'log®(t) r> t
\/;t3/2 ) 2
C'log?(t) t
|atU5(t,7’)| < W, r> 5
In addition, we have the L? estimates
log® (¢
sl + sl + 1|20y < O 22D (599

Proof. We start with the region % 5 > r > 0. In order to ease notation, let x € R? be defined by
x = re;. Then,

- f J‘” f e 1 <62N2<fv5><s, Bz + y]) (Bz +y) - 8)°

) A/ (s = 1) = [yl Bz + y[?
N2(fv5)(87 |ﬁl’ + y|) ((ﬁx + y) '%)2
Bz + yl?
Na(fos)(s, [Bx +y)
+ Bz + 9] ) dA(y)dsdf

We then decompose
Us (t, T‘) = U571(t, T’) + 7J572(t7 T‘)

where
Vs 1(t T
J J J 1 02 Na(£55) (s, 1Bz + yl) (Bx +y) - 2)°
B (n B (-2 /(5 = D)2 = [y Bz + yf?
_ Na(fy) (s, 1B + y]) (B + y) - 2)°
Bz +y?
N2(fv5)(57 |ﬁx+y|)
and

U5,2(t,7“) = U5(t, 7“) - v571(t, 7‘)

Finally, we use the pointwise estimates on vy, vq, V3, v4 to record pointwise estimates on Na( f,.):

We start with c ) X
r(f(, )) N C|f(t,27“)|
A)(1 + A(t) s )12 r

[N2(f)(E,7)] <

The first set of estimates we will require on N(f,,) concern the regions 7 < £,and ¢ > r > L. In
the region r < 7, we get

Cr Cr

IN2(fun) (7] < O + ) 10g™ (1) | Blog®(t)

N
N |
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In the region t > r > %, we use (5.51) to estimate vy in the region ¢t > r > %, exactly as was
done while studying v,, and we get

C'log®(r) CA(t) t
N2 (fos) (8 )] < P2t — [P 4502 10gPN 6 2(g) 'r2a

\V)

Next, we consider 0, Na( fy):

10, (Na()) (8, 7)] < O)(f@ ) ClEENafE)] | ClE (D)

A (1+25) A0 (1+55%) e
L Clf 2o f(t.r)]

r2

We again treat the regions ¢ > r > £ and r < £. We get

C C

t
0, No(fus) (8, 7)] < - LTS
|0r No( fus ) (£, 7)) t41og® (H)(M(t)2 +72)  t61log™(t) T2

C CA(t) log(r)
|0r Na( fus ) (£, 7)] < 343 1 AN 1702 3b—1+2¥
r3t3 log ) r332)t — r|log® 12 (1)
2 3
C'log*(r) _ C'log (7")7 t>r>z
T2t3/2(t_r)210g3b71+7(t) TQ(t—T)4 2
where we used
1 1 t
— < , r Z —
ro |t —r| 2
So,
1 poo 1
|U5,1(t,r)|<orf f f —
0 Ji JB. )nBy(—82) A/ (s = 1) — |y
L aay)dsas
- % y)ds
s*1og(s) (1 - WA(JSF)%P) 5% log™(s)
(5.94)

We treat several terms comprising (5.94) sperately. First, we have

1 pt+l
2 1 1
. dA(y)dsdp
Jo L JBSt(mmBg(—ﬁz) (5 = 1) s410g"(s) (1 + '5@)2’2'2)

1 t+% s—t p 27 1
< C?“J J f f 3 dfdpdsdp
0 Jt o (s—t)Jo st log”(s)
Cr
<

= ttlogh(t)
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Next,

1 1
~ dA(y)dsdj
J £+2 J B, (0)nBs (—Bx) (s —1) g4 logb(s) (1 + ‘B;(:)%‘ )

1
CTJ J % S_t J J p+t 210g( )(1+527"2+,02+2,8Tpcos(9))d0dpd8d6

(log(2 + r2%) + log(2 + t%))
CTJJ 8—t8210g()2 dsdﬁ

2

S <
t4logb 2(t)’ 2

where we used the same procedure that we used in (5.87).
The third term to consider is

R e ey

2

1
st1log’(s) (1 + |5;(Jsr)%|2)

dA(y)dsdp

Jl J p+ J% + B2r2 4 1
< Cr
0 Jo ( )2 Jy (1 2r2 4+ p? + 2Prpcos(0))

LH ( (s—1)2—p2 (s5— t)) &2 1Ogb(5)d5’d9dﬂd5

log(2 + r?3%) + log(2 + t2)) ds
sCr f ( t? 12 logb(t)
t

<— r<
t4log"1(t)’ 2

Finally, the last term to consider is

jf Jst(o)mB (—B2) (S—t) |y|25610g () dA(y)dsd3

dfdpdsdp

2
S e N N e
$510g®(s) log
o0
—1
corf L0y,
¢ $91log™(s)
- Cr
=t log®(t)
Combining the above estimates, we conclude:

r
t4 logbe (t) ’

N |+

lvs 1 (t,r)| < C r<
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Next, we treat vs 5.

Vs Q(t T

JJJ 1 (52N2(f)(5,|5£L’+y|)((ﬁﬂf+y)-j)Q
Ber(On(By (s /(5 —1)* — [y Bz + y?

No(f)(s, |8z + y]) (Bz +y) - )
Bz + y?

AP 52 1D 10
+ Bz + 1] dA(y)dsdp

So,

|'U52 t T'

1
CTHJ —
Bo o(0)n (B (~Bx)) A/ (s — 1) = |y]

Q@Nxﬁ@mh+ym+

INo(f) (s, |62 + yl)|
Bz + y|

1 proo
1
< CTJ J J integrand,_, (s, |8z + y|)dA(y)dsdj
0 Jo JB By (- A/ (s — )2 = [yf? ’

> dA(y)dsdp

where

integrand,_, (s, |5z + y])

_ 1 A(s) log(| Bz + yl)
|Bx + y[3s3 10g4N+7b—2(8) |8z + y[3]s — |Bx + yl|s32 10g3b71+%(8)
log”(|Ba + yl) log*(|Bx + yl)

_l’_
Bz + y|2532(s — | Bz + y|)2log® 1+ 2 () |Bx +yl (s — |Bx + y)*

Exactly as in the case of vy, we note that, for z € B, (Bz) n (Bs(0))¢, we have

t
|Z|=|Z—59€+596|<Iz—ﬁx|+r<s—t+r<3—5

So,
||>t
S_Z/_
2

We use this estimate for every term in integrand,_,, except for the term

log’(|Bz+yl)  _ Clog’(s)
Bz +y[2(s — |Bx +y)* ~ s2t3(s — |Bx +yl)
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Then,

|vs2(t,7)|
CTJ\I J‘OOJ\ —t p JZW( IOgQ(S) N log?’(s)
0Ji Jo AS(s—t)2—p2Jo \ 722 10g3b_1+% (s) s3t3
1 powo — 27 log?)(s)

OTL J; Ls | \/(s—i)—Q—ﬁfo s2t3(s — A/ B2r2 + p* + 2Brpcos(0))

- Cr
= £7/2 10g3b—3+% ®)

) dbdpdsdp

dbdpdsdf s o)

log®(s)

Ll fofo \/(S—/;)—2—p2 fﬂ s2t3(s — /B2 + p? + 2Brpcos(f))

We need only continue to estimate the last line of (5.95).

. Jl J@J‘ t p J~2ﬂ' 10g3(3)
A (s —1)2 = p? s2t3(s — /822 + p2 + 2Brpcos(f))
log®(s) 1

CTJ f J% : f \/T s> (s —/p? + 2pBrcos(f) + B%r2)

JJ J%ljﬁp\/s t+p\/s—t—

log®(s)
$* (s—a/p*+ 2pﬁr cos(8) + 52r?)

+Cr dbdpdsdp

dbdpdsdp

dsdfdpdp

dsdfdpdp

fJ rﬂl 1 logtf;pj WS—\/P +d;i;ipcci€()+52r2)
erf V/plog® t+p)f“1 1d9dpdﬁ

(t+p)? o Bi
<Crlog
t4
(5.96)
So, we get
C t
vt 7)] < L r<-
) t7/2 10g3b*3+7 (t) 2
In total, we have
RS P p——_ <!
vs(t,r)| < , r< =
S\ 172 10g™ 3 (1) 2
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Exactly as for 0,v4, we have

|0rvs(t,7) J J mj 02 No( fu) (5, A/7% + p2 + 2rpcos(0))]
2
|N2 fus)(8,4/12 + p2 + 2rpcos(6))| 8 pds
\/12 + p? + 2rpcos(0)
5.97)

As was also the case for vy, the integrals appearing in (5.97) were already estimated above. So, we
get

C t
|a7"v5(tv 7')| < 5N ) <5
£7/2 long—3+T (t) 2
We will now prove estimates on v5(¢, ) and 0,vs in the region > L. For the next steps, we will

use slightly different combinations of the estimates (5.51) and (5. SO) for vy in various subsets of
the region 7 > £, in order to estimate N,( f,, ), resulting in

Cr Cr
()\(t)2+r2)t4 log3?(1) + t6 log3(t)’

<
|N2(fv5)(t> T)| < leﬁg r(r's) + 7T/2¢5/2 105N+7b 2()° % Sr<t— \/{f orr=t+ \/ (5.98)

r%, t—\/<r t—l—\f

r

DO |+

We will also need estimates on &, N (f,,). To obtain these, we use (5.49) in the region 7 < £. In

the region r > %, we use (5.50) in the region t — v/t < r < t + +/t, and (5.51) in the reg10ns

: <r<t—\/fandr>t+\/fforv2 For 0 vg,weuse(S50)intheregiont—t1/4 <r<t+tA

and (5.51) in the regions % <t —t"/*andt + t"/* < r. Then, we get
C C t
OrNo(fo)(t, )] < + , <=
19 Nellfus )t T)] < 35 log® () (A()2 +12)  161og™(¢) 2
C C'log(r)
Or No(for )(t,7)] < +
0N o) I S g2 e TR ()
C'log*(r)
P22 (t — )2 1og? 1+ (1)
C'log?(r)

t
ST t—\/g>r>§orr>t+\/i

|0 Na(fur)(t,1)| < géffi’}l, toi<r<t—t/ort+tr<r<t+ it
riV2 Jus J\Ys < C t_t1/4<r<t+t1/4

r7/29

Then, we have

vmmaffmwmwﬂmﬂﬁm&ws
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and we will prove estimates on Ny(f,.)(t,£), fo % 1. We consider separately the cases
1 1 t 1 1t
StV t— VIS S <SEHVE S <o <t-WE 1< o< o
3 3 5 £ 2
and proceed in exactly the same manner as was done for vy...
This results in
T ¢ 3 3 1 Vi
[N2(fus) (8, )] < == (log”(t) + [ log(€)[") gzt Ve
— Clog’(t 1
o)« B o vieL<iavi
—— Clog®(t) ¢t 1
RS [e AU AR
¢ 2S¢
— C C C'log™(t) 1t
No(fos)(t,6)] < + — + , 1< -< -
| 2(f 5)( §)| ft4 10g3b (t) 531;6 1Og3b(t) \/Et5/2 6 2
For the region % < 1, we again use the following argument:
From (5.98) and the 0, Ny( f,,) estimates which follow it,
1
1(60+ 1) )t Ml
No(fos) (1)
< | |6TN2(.fv5)(t7 T) | |L2(7"d7’) + | |+ | |L2(rdr)
< C'log(t)
$23/8

Then, the same procedure used for vy . gives

C'log(t
CLo80 » Joalfi)(t.r) +

Now, we return to

/ww=ffmwmwﬂm@m@ww

No(fus)(2, —
Tl = €M) O sy (599

use
[ Ji(@)] <

Slo

and the same procedure used for vy:

|v5tr|\ff ffuvzf% 5,6)|déds
\/f(ﬁg)|w@EW@mmws

t3/2

N
%IQ
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Next, the pointwise estimates on N ( f,. ), as well as (5.99) justify the following differentiation
under the integral sign:

ousttr) = | ) [ R rE) sin((t — $)E)Na(fon) (5, €)deds

and we also have
| J1 ()] <

slo

So,

o prl I 0 —
st < o= | | Va6 s + = | 1N s
C'log®(t)
< - 7
N/;t3/2

For 0,v5, we can similarly differentiate under the integral sign to get

ot = | ) ) " 1 (r€) cos((t — 2))EN3 (o) (. €)dedn

so, the same argument used for 0,v5 also applies to ¢,vs.
Finally, the same procedure used for the energy estimates for v4 also applies here, to give

e}

1
Nowsllzons + 11 (24 1 ) vl < [ 1Nl
t

log(t)
£7/4

<C

(We again have
1 Us
| (5r + ;) Vsl |22 (rary = 110r0s] 22 (rary + ||7||%2(7"d7")

by the same argument used while studying vy). O]

5.8.9 Solving the modulation equation

The main result of this section is to prove Proposition 5.1, which we recall is the following state-
ment:
There exists T3 > 0 such that, for all Ty > Ts, there exists A € C?([Tp, c0)) which solves
(5.63). Moreover,
At) = Xo(t) +eo(t), leollx <1

(|| - ||x was defined in (5.30)).
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We use our pointwise estimates on vy, Fs to get

cos(2Q) 1 ) —1 -
| — )‘(t)<< ' ) (o (1 - X>1(4—)> |lr=RA#)s Do)

72 t

C @ R?
< — Tt RA)|d
s 1 T R o)

cos(2QQ 1 ) —1 ,
| — )\(75)<< a0 ) Us (1 - X>1(4—)) lr=rA@®)s Po)| < ¢

t t7/2 log3b*3+% (t)

cos(2Qﬁ) —1 C
| = A()X 2 Eslr=ra@), ®0)| < Plog" (1)

COS(ZQﬁ) -1 o
| = A(t) (v1 +v2 +v3) + Foo | Xo1(—F)r=rr)s Do)

72 log™ (¢)
o C
< OM(t (T, RA(t R)RAR € ———57—
(0) [ It RAEDI(RIRIR < s

Combining the above with our previous estimates, there exists a constant J; > 0 such that

D —
|G(t,>\(t))| < m, )\:)\0+€, €EBl(O)CX

Then, combining this with the estimate of all the terms comprising RH S except for G, we get, for
a constant D, independent of e, Tj:

Dy
log(log(1))2log"" (1)’

|RHS(e,t)| < ee B1(0)c X

LetTpo > ¢ be such that the following three inequalities are true:

1 - 1 o
log(log(Ty,)) 100 3D,

(b+1) N 1 - 1
log(Th2)  2log(Tpo)log(log(Th)) — 100
1 b b 1
2bloglog(Tos))  log(Toa) 200+ 1)1og(Tys) log(log(Tos)) ~ 100
Finally, there exists 7y 3 > 700 + 7000, such that

70047000 (T073)

T0,3

log

DN | —

<
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From now on, we will work under the additional restriction that

£1000(b+1)

Ty = 2e + T0,1 + To,Q + TO,S

(Recall that (5.1) was, up to now, the only constr_aint on Tj). From the discussion preceding (5.75),
and our estimates on RH S(e, t) above, for e € B;(0) < X, the map

RHS(e,x) JOO RHS (e, 2)
4o

€T +—>

) 1o r(—z,—2)dz, a.e. x € [Ty, o)

a priori defined only almost everywhere, admits a continuous extension to [7j, o0). Then, we define
T on B;(0) < X by

o] o0}
()0 = || Silae)dnda
t Jaq
where we define S by (the above mentioned continuous extension of)

_ RHS(f,7) F RHS(f, 2)

Sf (:r) 4o 4o

By definition of 7', we have

r(—z,—z)dz

T

T(e)"(t) = Se(t) r(—t,—z)dz

_ RHS(e,t) JOO RHS (e, z)
B 4o ¢ 4o
Using (5.76), we get

3D,
alog(log(t))t2 log"™ (t)

T(e)"(t)] <

ee Bi(0)c X

1
< ;
100+/log(log(t))t2 log"™ (t)

Next, we have

T(e() - - | T @)

T(e)' ()] <

1 (* dx
ﬁft Vog(log(x))z2 log"* (x)

Then, we note that

@ dx 1
L log(log(w))z*log"" (z)  tlog""" (t)4/log(log(t))
b+ 1) J - d
¢ 22log”?(x)4/log(log())

1 JOO 1 dz
2 ), 221og"(x)(log(log(z)))3/?
1

" tlog" 1 (t)1/log(log (1))

+ Eint,l
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where
(b+1) 1

t1og" 2 (t)y/log(loa(?)) 2t log" (1) (log(log(1)))?2
1 1

< )
100 ¢ 1og"**(t)4/1og(log(t))

|Eint,1| <

t=1T,

which gives

, 1 1 1 _
Ty @)l < 100 <1 " 100) <tlogb+1(t) log(log(t))) - =t

J J "(xg)dxodry

dl’g dSL’l 1
b+1 - b + Eint
log(log(v2))z3 log” (x2)  blog’(t)4/log(log(t))

Similarly,

Then we use

where
1
|Bint2] < b+1
262 (log(log(t)))3/2 log”(t «/log log )log
1
2(b + 1)(log(log(t)))*/2 log"" (¢)
1 1
< b ) = TO

100 blog’(t)4/log(log(t))

to get

1 1 1
Tl < 155 (1 ¥ ﬁ) blog’ (D) loslos (@) |~

Then, we conclude that T'(e) € B(0) for e € B;(0).
Now, we will show that 7" is a contraction on the space B;(0) < X. We start by estimating, for
e1,es € B1(0) X, the expression

RHS(er(t),t) — RHS(es(t), 1)

In particular, we will prove the following proposition.

Proposition 5.2. There exists C;;, > 0 independent of Ty, such that for ey, e5 € B1(0) < X,

Clz‘p||€1 — eof|x
t210g" " (t) (log (log(t)) )%/

|RHS(e1,t) — RHS (e, t)| <
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To prove the proposition, it will be useful to define the functions
Ai(t) = No(t) + e(t), i=1,2
We start with the terms of RH S which don’t involve G:
| —4aXg(t) (log(M (1)) —log(Aa(1))), _ C [AL(t) = Aa(t)]

log0ho(0) S o () logllog @) Man®)
Cller — ea||x

 t21og"™ ! (1) (log(log (1))

—4da " ,
ogOu @ (€40 Gos 0 (1)) = log(o(1))) = €5(1) (log(Xa(®)) ~log(a(1))]
" " )\O (t) + e (t) ”
< Togllog) (Iel(t) — e(t)log (- 0 ) + |e5(1)] (log(Ai(t)) — log()\g(t))))

ller — eaf|x

~ 2log" (1) (log(log(1)))?

|log(§0(t)) (fo “ (1(+) ;—6275() B <A1(t)1a1+ s—t Ao(t)lj+ s — t) ds
*L il EQS(SE BE (Al(t)ljJr s—t )\Q(t)lal—ir s t) ds) |

||€1 - €2||X
(log(log(t)))?tlog"" (¢)
1 r’ 1 | 1 1 4
- S
log(log(t)) J;,  s2log"* 1 (s)(14+s—t)3 M) +s—t Ao(t)*+s—1t

Cller — ea|x
~ (log(log(t)))32t2 log" ! (¢)

J () — 1 | ds < Cller — eal|x
2 o( ) log(Ma(s)) ' T+s—t  21og"*2(t)(log(log(t)))™?

* " " 1 1 ds
J, 1610 = 0~ ataay o

Cller — esf|x
= t31og"t2(t) (log(log(t)))/2

We now proceed to study each term appearing in the expression

G(t, M\ (1)) — G(t, \2(1))
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By writing

(1) Eo1 (M (£), N (1), AT(1)) — Aa(t) Eo1 (Aa(2), Ay(2), A5 (t))

j DFy () — alt), X5 (8) = Ny(), Ni(1) — Ny(1))do
where
Fooa(z,y,2) =xEp1(z,y, 2)
Ao = 0(Mi(2), Ny (1), A (1)) + (1 = o) (Aa(t), As(2), A5 (1))
we get

A () Eo(Ar(t), Xy (1), N[ (1)) — Aa(t) Eon(Aa(t), Ay(t), X5 (1))
Cller — esf|x

~ 21og" (t)/log (log (1))

Next, we consider

Kz(w, Ai(t) — Kzo(w, Ai(t)) — (Kz(w, A2(t)) — Kz o(w, Aa(t)))

B w® 1 1
41+ w?) ((w2 +36M (02?2 (w?+ 3%@)2)2)

1 w® w®

4 ((Al(t)Q—Za ) (W + 360 (D22 (a(t)220 + w?)(w? + 36X, (1)2)2

w® wd

- (Mo (£)2720 + w?)(w? + 36A1(£)2)2 (Ma(£)2722 + w?)(w? + 365(1)2)?

B 1 . 1 )
MO+ w)(1+ w2 (O +w)(l+ w)?
So,

J;OO|K3($ — t,)\l(t)) — K37()(S —t )\ ( )) — (Kg(S —t )\2( )) — Kg Q(S — t, )\Q(t))) |d8

Cller — eaf|x ||€1—€2||X C||6’1—€2||X C||€1—€2||X

< log®(t)+/log(log(t)) v/ 1log(log(?) log (t)4/log(log(t) «/log(log(t))

Cller — esf|x
log(log(t))
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From this, we get
| fo A (s) (K3(s — 1, M(t) — Kso(s —t, M(t))) ds
- Joo A3(s) (K(s — 1, A (t) — Kz 0(s — T, Aa(t))) ds]
< of €(s) — () [ Kals — £ M (6)) — Kaols — £ (1))]ds

+Cf A3 ($)[1Ka(s — 1, M (1) — Kz0(s — £, Ai(t))
¢ (Kg(s—t/\2 1)) — Kso(s — t, As(t))) |ds

|ler — eal[x
2 longrl ]og ]Og |K3 t /\ K370(S - t, /\1(t))|d8
tzl g”“ J [K3(s —t, (1) — Kzo(s —t, A\i(t))

— (K3(s —t, \a(t)) — Ks0(s — t, \a(1))) |ds
ller — eaf|x N Cller — ea|x
t210g"" (t)/log(log(t)) ~ #21og"**(t)+/log(log(t))
Cller — e x

~ 21og"" (£)4/log(log (1))

(where we recall that §,” |K5(s — t, A1 (t)) — K30(s — t, Ai(t))|ds was previously estimated).
Next, let us consider the following term which appears in the expression
Gt Ao(t) + ea(t)) = Gt Ao(t) + ea(1)):

Co) 1661@))2 fugu) + e (x)) (K1 (z —t, ho(t) + ex (1)) — (Z ((1):;1_(2) ) I
- e |, e+ e (Rt = o) +eat) - o228 o,
which we re-write as
( ; )
(/\0( )+ 61(t))2 (Ao(t) + 62( ))?
[+ et (ate = 120 + e - SO 0
et  CERE (m (o= tft) + o) - SO g
T+ ea())? JOO No(z ) (Li(x — ¢, Xo(t) + e1(t)) — Li(x — ¢, Xo(t) + e2(t))) dx
(5.100)
where )
Li(w, z) = Ki(w, z) — M w)
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From (5.37) and (5.39) there exists C' > 0, independent of z such that

2* Cz? 1
< 4 < 2
4(1 + w) 2

K — < ,
[ (w, 2) 1+ w?

(Recall that, by the choice of Tp, [Ao(t) + f;(£)| < 3, 4= 1,2). Finally, let us note that

2
E (Kl(w,z)—4z—)>|<& w0

(1+w) /)"~ 1+w?
Using the facts that

| 16 B 16 <C log™(t)|ler — e2]|x
Mo(t) +ex(t))?  (No(t) +ex(t)? ~ 7 /log(log(t)) log®(t)

and
|L1(w, Zl) - Ll(w, 22)| < ||52L1(U), Sz1 + (]. - 8)22)|

Le(oa)l21 — 2|

we get that the absolute value of (5.100) is bounded above by

Cller — es||x
t21og"" (t)+/log(log(t))

Another term arising in
Gt Ao(t) +ex(t)) = G, Ao(t) + e2(t)) is

oG i6el(t))2 LOO(AS(@ + el () K (x —t, \o(t) + e1(t))dx
- o 1662(15))2 [’O()\g(x) + eb(2)) K (x — t, \o(t) + ex(t))dx

This can be split analogously to the previous term:

16 16 © ., ) ) e )
<<Ao(t> +ei()? (ho(t) + eg(t))2> L (Ao(@) + el (@) K (z — 1, Mo(t) + er(t))d

16 ® ,
* (Ao(t) + ea(t))? L (el(x) — e5(x)) K (2 —t, Xo(t) + e1(t))dx

16 . ,
+ Oolt) + e2(0))? L (Ag(x) + eg(x)) (K(x —t, Mo + e1(t)) — K(z —t, \o(t) + ea(t))) dx

(5.101)

Note that

1
K(x—t,z1) — K(z —t,29) = (21 — 22) J O K (x —t, 20 + q(z1 — 22))dg
0
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So,

f Kz —t,2) — K(z —t, 2)|da

: | (5.102)

< Jor = Zz|f J 02K (w, 22 + (21 — 22)q)|dwdg
0 JO

But, using the formula for /& from the previous sections, we see that 0, K (w, z) has a sign:

0. K (w, 2)

4pR3 (P + R*2* +1) 1 1
53 — — | dpdR
(R2+1)° (02 — R22% + 1)* + 4R222) Vw?=p? W

/

So, to control the integral in (5.102), we can note the following: If

2y = 22 + (21 — 22)q

1 00
J f |02 K (w, 2,)|dwdq
0 Jo
B Jl Jw Jw Jw 4pR3zg (p* + R?22 + 1)
o Jo Jo Jo 2 3 2 P2.2 2 2.2 32
(R?+1)" ((p? — R222+ 1) + 4R?22
1

w2_p2

Jl JOO JOO JOO 4Rz, (p* + R?22 + 1)
0o Jo Jo Jp 3 2

3/2
(B2 +1)° (02 = R222 +1)° + 4R222)

then

1
— —) dpdRdwdq
w

(5.103)
1

/0 2 _ p2
s J f 4pR3zq log(2) (p* + R?22 + 1)
(R + 1 (02— R222 +1)" + 4R2z3)
32, log(4
_ f 2 logld) Og(3) dRdq
0Jo (R*+1)
rl

=] 3% log(2)dq
Jo

1
— —) dwdpdRdq
w

372 dpdRdq

_ }llog(z)(zl )
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Using (5.34), we see that the absolute value of (5.101) is bounded above by

Cller — es|x
t210g"" (t)+/log(log(t))

Next, we will consider the terms involving E,, ;,, starting with the case b # 1. We recall

sm(t§ )

At Evy (1 (1)) = 26 (8) j b, A(1))dE

* sin(t& )

#20A0) | xay (O R A0

: sin(t¢) [ (b—1)  bb—1) (5.104)
+205L (Xg%(g)_l) 2 (flogb(%) +€]ogb+1(%)>d

7 sin(u)(b—1)du  (b—1)7 7 sin(u)b(b — 1)du
+ 2¢p 5 b1 T 5.2 b + 2 b+1
o tulog’(y) 2021og”(t)  Jo  tPulog” (%)
where F,, and 1, were defined in (5.42) and (5.41), respectively. Notice that the last two lines of
(5.104) are independent of \(t). So,

A () By ip(, M) — Aa(t) B, ip(t, Aa(t))
_ zchl(t)L Sm(tf)%(g M ()dE — 2,00 (t) L

SE) ), (. halt))de

F2e0) [ ey O R )i — 20000 j (e © P b nn)ie
(5.105)
First, we consider the second line of (5.105):
2e (1) f ) (€ M) — 250000 f SE) (€ halt)) e
< Pey(er(t) — ealt)) j ) b (6 () de (5.106)
0

sm( €)

#2al) [0 (e M) — e Xa0) e

0

The second line of (5.106) is estimated as follows:

sm( €)

2ater(t) - o) | e (o)

0
< Clat) ~eat] [ %%(a M)

le1(t) — e2(t)]
<CEN D
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where we use the same procedure as used in the previous subsections to estimate the integral. For
the third line of (5.106), we first note that

oy (§, A1) = 2x1 (€)% (

a§¢v2 (ga )‘(t)) = 3Xii(§)a§ <—

log” (1) : log" ' ()
ey oS 0D
Og Z
Then, we use
K (y) = — (yKo(y)er Kl(y))
Ki(y) = Ki(y) + KQT(y)
K2 = ~C k)

and the estimates, for 0 < z < % and % <E< %,

Kieo)l < o0 Koo < Cllog(éoll, [Ka(en) < gy (510)
Since supp (x(;)) <[4, 1], we have
01290, (€, 9)| < ;lii—ﬂz), 0<y< % (5.108)
Note that
[0 et =t ato)
- [ D2 e 1) — sl M)
and

|06 (0, (&, A (8)) = P, (6 Ao (D)) [ < sup - [01990, (€, 2)[[Aa(t) — Aa(?)]

A
ze[241 1]

where we used the fact that, for e; € B;(0) € X, = 1,2, we have

1 1
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Now, we use (5.108) to get

| f O o (€ M1 (1)) — oo (€. Aal1))) ]

sup (212t (€ 2)] A () = Aa(B)ldg
Aot %]
e1(t) — es(t)] Lps 1(€)dé
O LAo<t)Qflog”—l<%>
e2(1)] log™(t)

t3

t3

ze[=5=

_ lealt) -

We conclude that

|26b()\0 (t) + €9 (t)) J\

0

") (B 1 0) — s € (1)

Cller — eaf|x

<
t2+/log(log(t))
We now need to consider the third line of (5.105). Here, we use a similar procedure as above
sin(t&
) 6 Nalt)) e

pe® [ 31 @6 M0 2000 [ 0

< Ol ea(t) ~ ealt) f vy O g a0

) sin t£
U2 (57 A1 (t)) - sz (67 >‘2(t))) d€|

+ CXo(t) |J
(5.109)

For the second line of (5.109), we use the same procedure to estimate the integral as that used in

previous subsections, to get

) = es) [ ey O A M0

< Clea(t) ~ ea(y MO AD)

For the third line of (5.109), we first integrate by parts once to get

f‘” Xt O e ) — Fun(€ 0a(8))) de

t2

— [ (0 (Rl M) = a0
()2 (Fuu (& M(1)) = Fun(€: 2a(1))) ) d

0
+ X<

1
!
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Now, we recall that

Fp(&y) = 0% (ﬁ (Kl(gy) - é))
3

Using the same estimates on K as used to obtain (5.108), we get

CE([log(§)] + [log(y)])

1 1
|62FU2(£,y)|< ) O<€<17 0<y<_

log"™*(3) 2
e C(J10g(0)] + | log(v)]) i i
og + | logly
|612Fv2(£7y)|< 10gb71(l) ) O<y<§7 O<£<Z
3
We then get
[ Fy (65 Aa(t)) — Fip (§ Ar ()] < ( Sup @2Fv2(£,w)> [A1(t) — Xa(t)]
ze[201 1]
and

|01F, (§, Aa(t)) — 01 F, (€, Mi(t))] < sup 01280, (&, )| | [A1(t) — Aa(t)]
ze[208) 17

Using the above estimates, we obtain,

2are(®) [ e O (B 60 (0) - Rl a0 6

< o) = ®Po@)log(lo®) _ - [ler = el x+/log(log(t))
t3 t3log™(t)

The same procedure for the case b = 1 yields the same estimates, since 1), and F;,, have the same
form for all b.
Combining the above estimates then gives, for all b > 0:

Cller — eof|x

t3+/1og(log(t))

| = M) By ip(t, M (1) + Aa(t) By ip (L, Aa(t))] <

If

Galt, (1)) = —A<t><<cos(2%) - 1) (00 (16480 ) b

72 t
cos(2QQ 1 ) —1
- )\(t)<< 7;2“) > Es|r—rat): $0)
COS(ZQﬁ) —1 o
+ A(t) = XZl(—logN(t)) (v1 + va2 + v3) [,=RA®t): Do)
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Then, we need to estimate
Ga(t, M(t) — Ga(t, A (1))

From now on, the fact that v, % # 2 depends on A(t) is important, so we will denote these
functions by v} to emphasize the dependence of these functions on .
We first note that

cos(2Q 1 ) —1 ,
/\(t)<< 2 ) Ui\ <1 - X>1(4—)) |T:R)\(t)7 Po)

r2

1 cos(2Q1(ﬁ)) -1\ dr v
ol ( > ) ) (1= D)l

cos(2Q 1 )—1
Al(t)<< o ) Ui\l (1 - X>1(47T)) |r=R)\1(t)> Po)

cos(2Q) 1 ) —1 -
- <)\2(t)<< ;;m ) Uf (1 - X>1(4T)> |T:R)\2(t)a ¢0>>
B D V1) D V1) W S R TN W
~10J (G~ a0 ()

© [cos(2Q1(57) — 1 r \ \ r
+ f ( WOl >¢0<A2<t>><“41—”42> (t.7) (1—X>1<47>) rdr

and we have the analogous formulae for all the other terms in G5. Using the pointwise estimates
forv;, F5, 1 <1 <5, we get

-l ()

SO,

ar 2r
((Uil +v3") (1 - X>1(7)) + By — X>1(W) (vt + va + UQI)) r2dr|
< Cller — es||x N Cller — esl|x
12108 V(1) log(log(1)  £7/210g™ % (1) /log(log (1))

Cller — ealx Cller — eaflx
t21og"" (1)/log(log(t)) ~ #210g™**" (1)1 /log(log(1))
Cller — eaf|x
2 1og" ()4/log (log (1))
In order to estimate the rest of the terms arising in G(t, A1) — Ga(t, A2), we must first prove
estimates on vs ; o defined by

U312 1= vg‘l — U§2
Lemma 5.11.
Cr|le1—esl|x <t
t24/log(log(t)) log®(t)’ =2
v31.2(t,7)] < Clteronllx ot (5.110)
r logb(t)\/log(log(t)) ’ 2
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Proof. Note that vs ; o solves the following equation with 0 Cauchy data at infinity:

1 V31,2
bl A )\
—0yV31,2 + OrpU312 + ;(9r7’3,1,2 T2 = Fo,i(ta r) — Foﬁ(ta r)

With the definitions from the v3 subsection:

a2

) (\/( - p2 il 72 + FS(Ta Ps )‘(S))> dpdS

1+ p2—12)2 + 4r?

and
A

A A
Ugo = U3 — Uz,
we then consider

U32a(tr
1 " —1—p2+7”2
JJ ( s—t) p_(S—t)>)\(S)<\/(1+p2—7‘2)2+47"2+1>dpd8

A 1 "
V394(t,7) J J ( = t) — e —t)) N'(s) (=1 4 F5(r, p, A(s))) dpds

and get

|U32a(t r U32a(t r)|

]- " "
_f J ( S—t) — (S_t)>|>\1(3)_)‘2(5)|
—1—p°+r
<\/(1+p2_r2)2+4r2+1> dpds
C [ —1—p*+7? ” 1 1
<?L p<1+\/(1+p2—r2)2+47“2> LH ( (S—t)Q_P2_(S_t)>

|ler — es[xdsdp
s?log""(5)4/log(log(s))

which gives
Crlle; — es||x

t21og"*" (t)4/log(log(t))

|U32a(t7r) U?))\22a(t T)| <
For v3 55, we have

vy y(t, ) — b4 (¢, 7)
s—t 1 ) )
f j < S—t) 0 (S—t)> (A[(s) = A3(8)) (=1 + F5(r, p, Ai(s)) dpds

J J ( s—t) pQ_(Sit)
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The first line on the right-hand side of (5.111) is treated identically to the analogous term arising
in the pointwise estimates for v3, and it is bounded above in absolute value by

Criler — eo|x
t210g"*! (t)4/log(log(t))
For the second line on the right-hand side of (5.111), we start with

|F3(’l“, P Zl) - F3(7’, Ps 22)| < rg[g){:] |83F3(T7 P, 0z1 + (1 - 0)22)||Zl - 22|

we then note that
_4(_1 + a)r2273+2a(1 + (7,2 o p2)22a72)
(14 (r2 — p?)222-2)2 4 4p222a—2)3/2

a3}73(707 P Z) =

so, for z = oA\ (s) + (1 — o) Aa(s),

C,r,2)\070(s)2a73
(L (=7 + ) dao(5)222)2 + 4 g ()2
_ C,',.2A070(8)2a73
T 14 2(p% + 7’2)/\0,0(15)2“_2 + (p? — 7’2)2)\0,0(75)40‘_4

|03 F3(r, p, 2)| <

Then, we get

]' "
ff ( S_t) = (S_t)>Az(s>(F3(r,p,A1(s))—Fg(r,p,Az(s)))dpd3|

<_J P r?||er — ea||x
S t210gb+1(t) logb(mf?’)(t) logb(t) log(log(t))
) 1 4
(142007 + 12D (07 + (2 = 1D (D)) "

The p integral appearing on the last line of the above estimate has been treated in the v3 pointwise
estimates, and, in total, we get

Crlle; — es||x
t210g"" (t)/1og(log(t))

We similarly divide v3 — v3?2 into two parts. First, we consider

gy
L
e

CT||€1 — €2||X
 21og" (t)/log (log(t))

|U32b(t ) — U§7227b(t,T)| <

—1—p2—i—7"2

1(s) — Ay(s)) ( V(Hﬁ_ﬂ)uw+F3<r,p,xl<s>>> dpds|

1(s) = X5(s)|dpds

—1—p?+1r?

(M(s) — Ni(s)) (\/(_1 e + F3(r, p, /\1(3))> dpds|

+ 11
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where, using a procedure similar to the analogous term treated in the v3 pointwise estimates, we
have

II:|—2rfo(A’1'(t+w)—Ag(t+w))( - i ))dw|

6r 2(1 +w?)  2(A\(t +w)?2> + w?

with
OT||€1 — 62||X
t210g"" (t)/log(log(t))
We already estimated the integral appearing in the above expression in (5.80) (except with the
replacement of \” with \] — \Y). Therefore, the same procedure used there shows

|EII| S

Crller — es||x
t210g"" (1)/log(log(1))
_ Crlog(log(t))[les — eaflx Crller — e[ x
T 2log"  (t)4/log(log(t))  2log"t ! (t)4/log(log(t))

Next, we consider the second part of v3 ] vz,’,\ﬁ

[11] < Crlog(log(t)) sg;t) IN] () — Ny ()| +

_1f J p )\u (8) (Fs(r, p, M (3)) — F3(r, p, \a(s))) dpds|
J f "(s)| 72(X0,0(8)2273) | M1 (5) — Ao(s)|dpds

(1 +2(p% +12)Aoo(t)2*72 + (p? —1r2)2 Ao p(t)**?)

t+X0,0( t)1 a hg—t
<cr| f G ea(s) = ealo) ool Pdpds
t 0 (3 t)

N R By S AT
taoo(yi—o (8 — 1) log”(s)~/log(log(s))

. pdp
J;) (1 + 2(p2 + 7"2))\0’0(75)20‘72 + (p2 — 7»2)2)\070@)40474)

t-‘r)\(),o(t)l @
< CTJ (s = 1)IX5(s)[lea(s) — ea(s)|Aoo(s)** s
t

" CT||€1 — €2||X ®© )\0 0( )20{73)\ ( )272ad8
log” (t)4/log(log(t)) Jitagoi-« (s —t)s2log""!(s)
Crller — es||x CT||61—62||X

< +
t2log"™ (t)4/log(log(t))  t24/log(log(t)) log®(t

Crller — e|x
t24/log(log(t)) log"(t)

Combining the above estimates, we get

Cr||el—62||X

2, /log(log(t)) log’(t)
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Next, we prove an estimate on vs ; » which is more useful for large 7.

—1—p?+7r?

S Voo (><¢ 1_p2+rz)2+4r2+F3(7”=P=)\(5))>dpds

vgtr

and get

(vg\l — 113 ) (, 7“)

[ [ (et o)

1—0p _|_712) + 472 (5.112)

“f J, m”’ (Fs(r, 0, 4(5)) = Falr ps () dpds

For the first line of the right-hand side of (5.112), we have

= — () —1— g+
f f V S—t <¢<—1—pz+r2>2+4r2+F3<T’p’kl<8>>>dpds|

- J ller — €2||X
= §— b+1 §
r i s?log”"" (s)/log(log(s))
Cller — ea]|x
" rlog(t)/log(log (1))

For the second line on the right-hand side of (5.112), we use the same method used previously
to estimate

FS(T7 P /\1) - FS(’F? P )\2)
and we get

|——ff ) 0 M (9) = Falr . Xa(5) s

log log(log(s))
2||€1—€2||X dpds
(1 + )\0 0( )4a—4(p2 — 7"2)2 + 2)\070(8)2a_2(p2 + ’]”2))
< DA el
m1 (5)+/log(log(s)) 72Ao,0(s)?*~
Cller — ea|x
" rlog(t)/log(log (1))

whence, we conclude the final estimate

Clley — ¢
ot — w2|(,7) < b”el allx st
rlog’(t)+/1og(log(t))
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Next, we recall the function E’5 defined in the v3 subsection:
e = [ X66-0 (10 1
vs(t,r) = —r S)s — —
st T+ (s — 02 AOP % 1 (s — 1)

We will need to estimate E’\1 EAQ For this purpose, some of the estimates already proven
for v — 1)3 will suffice, but we will need to use a slightly more complicated argument for some
terms. In particular, we have

) ds + E2(t,r)

Ej(t,r) = /U?))\,l,a(t7 )+ U?))\,l,b,i,l(t7 )+ U?))\,l,b,ii(tv )+ Ué\,z(t, 7)
with

U3 1 (t, r)=—2rfoo>\”(t+w) (Q(A( - + ! )dw

t+w)272 +w?)  2(A(t)272 + w?)
—1—p?+1r?
V2 (t,r) = f .[ S + F3(r, p, A\(s
31bzz 6 S—t ) \/(—1—p2+7’2)2+47“2 3( P ( ))

(g Y s

and
-1 JH—GT vat p -1 _p2 +T2
A "
vy, (tr) = — A (s + F3(r, p, AM(s dpds
et = | ) IO S e A | do
(Note that vs 5 was already defined when proving estimates on v( — v3 2).

A1 A2

U31la ~ Y31a
—1—p*+7r?

- j 1(s) — A4(s) ( w_1_p2+702)2+4702+F3(7~,p,xl<s>>>dpds

JH Tfs t . it MNo(s) (Fs(r, p, M (5)) — Fs(r, p, \a(5))) dpds

This gives

t+61
|U31a U31a < f J )_6/2,(5)|de3

s 2a—3
c f f ) w $)](r 200 (1)) 2 e () — ex(s)|dpds
S — t 1 + 2(,0 + 7“2)/\0 0( )Qa 2 + (p — T2)2)\070(t)4a_4)
CT||€1 — 62||X

T 2log" (1) log(log( )
_J f _t Y 5)|%|61( ) — e(s)|dpds

CT||€1 — 62||X
 21og"t (1) /log (log (1))
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For the next term, we have

by Ao
V31641 — V31641

= _QTJ (N[ (t + w) = A5(t + w)) (2()\1(2? i ;)2—204 + w?) + 2(\i (£)22 + wZ)) dw

6r

— o foo Aot + w) (2()\1(75 mn l;;)_ga o) + 2()\1(75)27;0204 + w2)) dw

6r
x —w w
"
d
" QTJ Aot + w) (Q(Ag(t TR ey ST W () E w2)> v

6r

(5.113)

For the first line on the right-hand side of (5.113), we have

2 L (NIt + w) — N+ w)) (2(A1(t o O w2)) dul

_ f’o e (t + w) — ey (t +w)w (WAoo () >*[Xyo(1)]) g
= 6r rLUQ)\o’Q(t + ’LU)sza(l + w2)\070(t)2a*2)
Crller — ea||x @ dw
<
t31og""2(t)4/log(log(t)) Jo (1 4+ w?Ago(t)?*~2)
Crller — es|x
13 10g"()/log (log(t)

The second and third lines of (5.113) can be treated together:

* —w w
—9 "t d
e (e * )

a0
2r | Nt — - d
von [, e o) (e wo ) ™

zﬂJm£@+mw@W+w%—ﬂﬂMw

6r

where
_ A ()72 — Ao (2)? 2
PO = e = + o) 0@ = 1 )

We first note that
C)\ t 1—2« o
|F'(o0s+ (1 —o)t)] < - — b0701( ) ler — eof|x
tlog’(t)log™"(s) log”™ (t)a/log(log(t)) (w? + Ago(s)%2)2

0<o<1

?
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Then, we get

I—r fo Ni(t + wyw (F(t +w) — F(t)) dul

6r
B Crller — es|x log ™12 (¢) JOO NS (t + w)|dw
tlog" (1) log(log(t))  Jer (w2 + Noo(s)2~2%) log®(t) log ™" (t + w)
_ Crlog "2 (t)]ley — e x JOO ds
A tlog” ! (t)4/log(log(t)) log’(t) Jirer 57 108(5)Ao0(5)>2*(Ao0(8)* (s —1)? + 1)
Crlle; — es||x

B log"2(t)4/log (log(t))

It then remains to consider

V3~ V3L
L%JWts—tA"> ”“”<¢¢[f;i;§+®3+RWmAmm
<( + p?) (Aff)él(?a)ij)»dpds (5.114)
%f%hf ) (Bl (o) + ot

(roan 2R

The first two lines on the right-hand side of (5.114) are estimated in the same way as the
analogous term appearing in the v3 pointwise estimates, and we get
-1 = 2 4 2
5 (X(5) = 4(5) o

V(=1 = p2 +72)2 + 42

s
2r2)\ (5)2-2 2>)dpds|

((1+p) (A(s)272 + p?)

Cr|ler — e2f|x
2 1og" (t)4/log (log (1))
To treat the third line on the right-hand side of (5.114), we start with defining G's ; by

27‘2)\(3)2*2"‘
O@V”a+ﬁﬁ)dp

+ F3(7“, P )‘1(8))

w

Gsi(w,m, A(s)) == J

0

P (FS(Ta P, )‘(S)) +
Then, we get

le1(s) — ea(s)| Aoo(s) 2 H2r?
(]_ + )\070(8)2()‘_211}2)2

|G3,1(w7 r, A1(5)) - G3,1(w7 r, )\2(S>)| <
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which gives

| - L+6 J S i t /\/, ) ( F3(T’ Ps )‘1(3)) + ()\?Ej)/\;(jy)ij;)Z
(Bl ) + s ) ) doal
C [ [Noo(s)]]ei(s) = ea(s)|Aoo(s)' 2

S e G0 Goa®r (s 07 ©

O’l“||€1 — €2||X
 21og"* (£)4/log (log (1))

Combining the above, we get

Crlle; — es||x
t21og"" (t)+/log(log(t))

(5" = E5?) ()] <

Lemma 5.12. We have the following estimates

Cller—ez||x r<t
Qp ~
A e 12/log(log()) logN *+30=1 (1)’ 2
oA |(t,7) -
’ Cller—es||x > t
r = 3

t 10g3b+2N(t)\/10g(10g(t)) ’

Proof. We proceed to estimate vy 2 1= Ui —v4 , by noting that v, ; 5 solves the following equation
with 0 Cauchy data at infinity:

Uq,1,2 M Aa

—OuVs12 + OppUa 12 + ;57414,1,2 T2 T Vge — Vse

So, we start by estimating v4 L — vi‘i
x1(prgller — ellx o 4 vy + 0|
log™(t)/log(log())  (Aoo(t) +72)7
2r ller — eal|x 1
+C
o) 1o (1) Torl08 (D) 2 1o (0
2
X>1(log ()))‘ (t) (|U/\1
(r? + Aoo(t)?)? '
where we used the explicit formula for Fj 5.
We note that the right-hand side of the equation for v} depends linearly on \”. Therefore

v} — 2 = v}172, 50 we can use our estimates for v; which were previously recorded.
We thus have, in addition to (5.110), the following estimates, valid for any A of the form

At) = Xo(@t) + f(t), feBi(0)c X

|U4C_U4C| \O

— 0’|+ Jog" = v3?])

{L < t
t2log®(t)’ 2
v} + vy + 03] <

1 2 3 C'log(r) t
i 1T T 23
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Cr|ler—ez]|x <t
M el o ) 2l oglog) | 2
vy v v
Cllei—e2|[x r>t
r\/log(log(t)) logb(t) ! 2
This gives
2r
i = 2] < Ol — ol
1 t 5.115)
r3t210g® (t)4 /log(log())’ TSy (
log(r) 1 t
r410g?(t)/log(log(t))|t—r| + £210g3 17201 (1), /log(log(t))r3’ t>r>3
Now, we start with
(UZL\I - U4 ) (t,’f’)
_ -t J J o p
2 e Joo A/(s—1)2—p?
A1 2
r2 + p? 4+ 2rpcos(f
(s,4/7% + p? + 2rpcos(6)) d6dpds

JQW (T + pCOS(Q))(U4C - U4c
0 A2 + p? + 2rpcos(f)

which gives

= o

JJ WJ v~ el

Note that (5.115) has the same right-hand side as (5.85), except for an extra factor of %
og(log

So, we can inspect the intermediate steps of the procedure used when obtaining pointwise estimates

\/7“2 + p? + 2rpcos(9))dfdpds

on vy, thereby getting

ol —uel(tr) < e el el
! 12+/log(log(t)) log "+~ (1)’ 2

In the region r > £, we use the following, slightly different estimate for v{ + v, + v3, again
valid for all A\(t) = M\o(t) + f(t), fe B1(0)c X:

Cr t
t2 log®(t)’ T<§
[0} + v2 + 3] < G t=Visr<t+ i
Cloglr)  t < p <t —w/t orr=t++/1t
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We then get

2r
vyt — vk < C e —e
| 4c 4c| X>1(10gN(t))|| 1 2||X
( 1 r< t
r3¢2 log3b(t)\/10g(log(t)) ’ =2 (5.116)
1 .
. { Tog®(t)4/1og(log(1))r%/2 SVisTsteVt
log(r) + 1
r4log? (t)4/log(log(t))|t—r| 12 1log3bT1-228 (1), /log(log(t))r3
. t—it>r>lorr>t+/t

Note that (5.116) again has the same right-hand side as (5.88), except for the extra factor of

%, so, we can infer the following estimates from our study of vy:
og(log

2 — 032, ) le P
Le Ve (6de) S 2210g® N ()4 /log(log(x))

Then, we simply note:

vg12(t,7) J j J1(r&) sin((t — s)¢) <U4C — vjl\Qc( f)) déds

So,
|’U412t7~ < J J T£|U4c_v4c|( )dfds
+CJ Jvoo|v4c_v4c )de
Vg
1/2
corf ([Fe)” ([ o eora) "
1/2
§lvye — vis d¢ ds
WJU ) (j ol — o2, 6P
C ||U4c - U4c )||L2(5d5)d8
Cller — e x
t«/ log(log(t)) log® ™V (t)
which finishes the proof of the lemma. ]

Lemma 5.13. We have the following pointwise estimate

||€1 €2||X10g ()

vt — v
| 5|( r) < t34/log(log(t) log
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Proof. As was the case for vy, we start with noting that

RN A2
’U571’2 = VUs — Uy

solves the equation (with O Cauchy data at infinity)

1 U512
1 A A
—OuVUs12 + OrpUs12 + ;57415,1,2 T2 = NQ(fv;) - NQ(fv52)
where
N=0 v+ v o)

Collectin& the estimates from previous subsections, one estimate on f (vg\), valid for all A = A\g +
f, feB1(0)c X,is

DO |

Cr
P =2 r <
A 2 logh(t)’ =
| v5|<{ @)

C'log(r) t
T t>r>3

Now, we start to estimate the right-hand side of the v ; » equation.

sin(2Q 1 (r))  sin(2Q_1 (r))
N2<f,3;1) . Ng(fj‘;) _ < 2;12(0 . 2;22@) > (COS(Qf;\;) — 1)

in(20Q .
.\ sin( 2o () (r (coS(Qfg\;) _ COS(ijtf))

2r2
cos(2 1 (7)) — cos(2 A
R ( Q. () —cos2Q . ( ))> (i) —272)

(5.117)

212

cos(QQA - (r)) R R R R
+ 275 (sin(2f01) — 20 — (sin(2/,2) — 2/,2))
For the first line of (5.117), we have
sin(2Q 1 (r))  sin(2Q _1 (r))
X1 (%) Ao (t) A1
| ( o2 - 52 (cos(2f)1) — 1) |

Clles—ealy ()’
= rlog(t)4/log(log(t)) (Aoo(t)? + 1?)

" rlog(t)y/log(log() | #EDy, >4
For the second line of (5.117), we have

in(2Q 1 (r
|S ( AN)( ) (cos(2f3‘51) —cos(2f3‘52))|

r2 t
—_ < 2
C||€1 €2||X {t4 log2®(t)(Mo,0(t)2+72)’ TSa3

2r2
Co(t)
< e A1 12 (ol =l 1+ o =)
Crio,o(t)|ler—ez]|x Cller—e2||xAo,0(t)

r<

N |+

< ) (PPHr000))itlog*(t)y/log(log(t)  (r24+20,0(t)2)t4/log(log(t)) logN 40~ (1)
< Clog(t)||e1 —e2||x t>r>1%t
r3‘t77‘\tloggb(t)\/l()g(log(t)) ’ 2
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We consider the third line of (5.117), and get
cos(2Q) 1 (r)) —cos(2Q _1 _(r))
'( R ) (s ) — 26|

7.3
< Cller — eaflx ol r<t
10g2b(t) log(log(t))(ﬂ + )\0,0(75)2)2 log®(r)

|t 7‘|3 Y
For the fourth line of (5.117), we have

cos(2Q Az(t)( ") . A M . Aa As
| 2 2 (Sln(2fv5 ) - 2fv5 - (Sln(zfv5 ) - 2fv5 )) |
(IfAl PPy -
Crl|ler—eal|x Cllei—ea|[x r< 13
164 /log(log(t)) log® (t) ~ 94/log(log(t)) logN o0 =1(t)" T 2
= Cller—ea||x log?(#) t
)2 g () loalos)” 2
Combining all of the above estimates, we obtain
N2 (f20) (8, 7) = Na(fo2)(t, 7)]
Crio,o(®)ller—ez||x + Cller—ea|lxAo,0(t) r<t
(r2+X0,0(t)2)t4 log%(t){/log(log(t)) (r2+X0,0(t)2)t4 4 /log(log(t)) log N +40=1 (1)’ T2
= Clog(t)|ler —ea||x log(t) 1 log?(t) t
108 () fioz(og(0) \ (-2 T Tirllogh@ T logh(orleE ) 17T
We now proceed to estimate vs ; 5 in the region r < 5. We start with
Us1,2(t,7)

2 1 . (r + pcos(h))
(L (No(f21) = Na(f22)) (s,4/72 + p? + 2pr cos(0)) \/rQ o)1 > dfdpds

We then estimate as follows

dA(y)ds

|vs.1.2(t, 7) J J [Na(fi) = Na(fu) (s |2 + y)
el = B;—4(0) (3 —1)2 — |y|?
[Na(£) = No(fo2)|(s, |+ y])
= CJ JBS (0)B dA(y)ds

(s — 1) — |y|?
© [N (f) — Na(f22)|(s, |z + )
C 5 5 dA(y)ds
" j st (0)(Bs (—x) (s —1)2 —[y|? )

Now, we carry out the identical steps which were done to obtain the v2 estimates, and get

||€1—62||X10g () !

v t,r))<C r< =
[v5.12(t:7)] log(log(t)) log®(t 2

which completes the proof of the lemma.
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We can now use all of the above estimates to get
o COS(QQl(AL(t))) —1 r \ 4r
: 1 — 1—xs d
. ( e aulr (8 =) ) (1= )

: r? ||€1—62||X d

< Cho(t 2[
0( ) 0 (7,2 + )\0 t2 log log lOgN+3b 1

Cller — ea||x

tzw/log (log(t)) log™V 2= 1(

© (s~ 1\ r ar
|L ( t) >¢O(W)T (U5 _U5 )(t r) (1—X>1( P )> dr|

7”2)\2t
i ler — esl[xlog*(t) ,_ Cller — esf|x log (1)

< Ot QJ <
o(?) o (124 Xo(t)?)?® 34 /log(log(t)) log" () : t3+4/log(log(t))

72X (%)

© ) rller — el .
“L all)? + 17 (zzlogb“a) logaog(t)))d

Cller — esl|x © wddu Cller — eol|x

< <
t21og"™ (t)+/log(log(t) (T+u?)3 = 21og" ! (t)4/log(log(t))

« COS(QQI(#@))) —1 r 2r A Ao A Ao
|L ( ) ) ¢0(/\2(t))7”X>1(—) (_Ul + 1" — vz + U3 )dr|

Ao (t log™ (t)

_of >\2(t)2r2< ller — eal|xr )dr

logN (1) r6 t21og”(t)+/log(log(t))

CJ ller — ea|x

: 7“6 r4/log(log(t)) log? (1)

- Cller — eal|x
= 21og™ N (1) /log (log (1))

© [ cos(2Q1 WO r \ \
|JO ( 215 ) ) — )QSO(W)T (E51 _E52) (t,r)dr|

[ s~ 2
2_T A2 QSO(’\IT“)) - QSO(#@))
+ | , X>1(10gN(t))F0’2(t’r) < A1 (t) A2 (1) i

Cller — ea]|x

<
£210g™ 1722 ()4 /log (log (1)) log" (¢)
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Combining the above estimates, we firstly have

|G(t, \i(t) — G(t, A2(t))| < Cller — ea|x

 24/log(log(t)) log"" (t)

Then, combining this with the earlier estimates of the terms in RH S (e, t) — RHS(e2, t) which
don’t involve G, we finally get: there exists Cj;;, > 0 independent of T}, such that for e;, ey €

Ciipller — eal|x

t21og”*! (t) (log(log(t))) /2
G(t,A(1))
log(Ao (%))

|RHS(e1,t) — RHS (e, t)| <

(Recall that GG appears in the expression of RH S in the term
of Proposition 5.2.
Using the L' estimate on the resolvent kernel, 7, we get

|(T'(e2) = T(e2))" (2)]

< [RHS(ent) — RES(es, 1) + zsup (|RHS(e1,2) — RHS(ez, 2)|)

« & 2>t

). This concludes the proof

_ 3Cup ller — eal|x
a 2log"™ (t)(log(log(t)))3/?

Then, with the same procedure used when estimating |T'(e)(t)| earlier, we get

, ?)Clip 1 ||61 _ 62||X
|(T'(ex) = T(e2)) ()] < — (1 + ﬁ) tlog" ! (t)(log(log(t)))?
3Clip 1 ||61 — 62||X
(T(er) = T(e2)) (D) < — (1 + ﬁ) blog” (t)(log(log(t)))*?
whence, —_—
10C%;) e er e E
||T(el)—T(€2)||X<m||€1 ol|x, e1,e2€ Bi(0)

Since Cj;,, is independent of 7j, and the above estimates are valid for all 7} satisfying

£1000(b+1)

TO > 2e + T()J + TO,Q + T0,3

if we further restrict 7 to satisfy

1500(Cy;,,+1000(1+%))
«

£1000(b+1)

TO > 2e + TO,l + T072 + T073 + e

then, T is a strict contraction on the complete metric space B;(0) < X. By Banach’s fixed point
theorem, T has a fixed point, say eg, in B;(0) < X. Then, if

A(t) = Xo(t) + eo(t)

we have
e C*([To, ), |leollx <1

and A solves (5.63).
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5.8.10 Estimating \" ()

The main proposition of this section is:

Proposition 5.3. \ € C3([Ty, 0)), with

C
N €< —————, t=1T
OIS G 0
In addition, we have
Cr < t
|01 (t,7)] < {tglogb(t)’ s
) ~ C - t
rtlogPt1(t)’ r 2
Crlog(log(t)) ¢
odtn s TS 3
wmwwﬂs{”%+@ f
rtlogb+1(t)’ r>3
C
Opvs(t,r)| < ————
9r0s(t7)] < 5 log’(t)
_Cc < t
|Opvr (t, )] < {tglogb(t)’ s
" ’ s)y_¢ = t
r2tlogb*1(t)’ r 2

Cr
3T 3bi2N—3 r<
|6tv4(t7 T)| < {ts logdb_gN Q(t), N

+2 log3b+2N71(t) 9 >

N+ DN+

Proof. Since A(t) = \o(t) + eo(t), it suffices to show that eg € C3([Tp, o0

Recall that X solves (5.63), which can be re-written as

where
=2 dalog(A(t)) 1 20\ (t)7% — 1)
w0 = 5 5 () -
© >1(1201g%]>\\[(tt) )¢0( )R2dR
w0 || G Do
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(5.118)

(5.119)

(5.120)

(5.121)

(5.122)

o)), and estimate ef (t).

(5.123)



and

RHS(t) - —A}f)g [} 06 a5 =100 + 16 070 s+ 2510
+ e i + Bt A1)
. << oo ) (s o 0m) (1= ) 0
<< QQ“’” ) ot (oo ) 00 2+ 3] )
“af Mf ) O

The point of this re-writing is that the right-hand side of (5.123) is in C*([Ty, o0)), since \ €
C*(| Ty, o0)). So, A € C3([Ty, o0)), and we have

o - (P50)

g2(t)

We will first prove a preliminary estimate on A”(t), which will then allow us to obtain a more
useful formula for eff. Using the formula for go, and estimates on e, from the fact that e € B (0),
we get

R — (2) 0l s
92(t)" "~ log®(t) log(log(t))’ 92 tlog"™ () log(log(t))

log”(t) log(log(t)) ~ tlog""(t) log(log(t))

For the preliminary estimate, it will suffice to estimate each term in RH .S, separately, despite
the fact that there is some cancellation between some terms in RH.S;. When we prove the final
estimate on \"”(¢), we will take this cancellation into account.

Using the same procedures and estimates used to estimate G(t, \o(t) + f(¢)) for arbitrary
f € B1(0) € X, we get

and

C
|RHSz(t)| < 2
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Now, we estimate | RH S} (t)|. Using estimates on AU)(¢), j =0, 1,2, we get

IRHS(1)

<|@(Ajﬁ, A"(><Kl<s—tA<>>+K<s—m<>>>d)|
C

oz + g+ Bt D)

(5.124)

cos 2@ A

+1a <<< s ) (o2 oo (1= D) ) |T=m>,o>o>> |
cos(2Q) 1

+ |0 ( ( A(t) ) le(li) (1 4 v2 4+ v3) [r=RA@), ¢0>> |

og™ (t)
For the E,, ;,(t) term, we recall the definition in (5.104), and start with
2 B sin(t€) [ (b—1) b(b—1)
at (L (Xsi(f) 1) t2 (flOgb(%) + flOngrl(%)) df)
B : u,  ysin(u) [ b-1 b(b—1)
0 (L (Xgi(t) 1) 2 (ulogb(%) i ulog™tt (L )) du)

After taking the derivative, and integrating by parts once in the remaining integrals, we get

3 sin(t€) [ (b—1)  bb—1)
at (L (Xg%(g) - 1) 12 (flogb(%) + flOngrl(%)) d€>
=—sm()(b—1 +b(b_1))—|—Err

t3 log”(2)  log"™(2)
where
[Err| <
On the other hand,
o ([ At
0 t2ulogb+1( )
sin($)b(b— 1) 2 sin(u)b(b — 1) —2 (b+1)
ZWJF ST T b | AU
Pl T w \Plog(E) gD
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So,

L= o : ey ) s [ b—1 b(b— 1)
Et,vz,w,l =0 (2 J;) (Xé;(f) 1) 2 (flogb(%) + flogb'i_l(%)) d&
: sin(u)(b—1)du  (b— 1) 3 si n(u)b(b — 1)du
aa (Jo t2ulog(L)  2t2logh(t) +L 2ulog" (L) ))

5 2 b
= 2¢,Brr + 2¢4 (L sin(u) (b —1) <t3u]0gb(%) - logbﬂ(ﬁ)t?’u) a

51 ) (b+1)
|, oo <t3 log" 1(t) ¢ 1ogb+2<5>) du>
+ 26, ((b_l)w y 2oz Dn )

t3log”(t)  2t3log"* (1)

The asymptotics of the integrals in lines 3 and 4 of the above expression were computed previously,
in the section which constructed v,. The following is the most important asymptotic, which shows
that there is some cancellation between the integral in line 3 and the terms on line 5.

t

<[ 2 - (e o ()

In total, we get

C

| Eyva,ip1 (1)] < P log" (1)

Next, we estimate

a (2ch<t> [ 2 e a0 5)

Here, we use estimates on the derivatives of %, proven earlier, when showing that the map 7" was
a contraction, as well as (5.107), which shows (among other things) that

e A < CREL peCrgg)

2 (%M(t)fo ) € A(D) g) <

Similarly, we use estimates on derivatives of F),, which were proven while showing that 7" is a
contraction, as well as (5.107), and asymptotics of K, to get

R R S I

o S £ t4log? (t)

This gives us

In total, we have
C

tg longrl( )

|00 () By ip (1, A1) | <
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By the same procedure, this estimate is also true for the case b = 1.

Some of the terms in (5.124) which remain to be estimated will be estimated in two different
ways. One way of estimating these terms will give rise to preliminary estimates on e”, which will
then allow us to obtain stronger estimates. For this preliminary estimate, we will start with the first
line of (5.124):

8, (Ai f N(s) (K (s — £, A(8) + K1 (s — t, A1) ds) — [+ I+ 1IT+1V

(t)?
where
16 * n /
I— A(t)BL N(5)0aK (5 — £ A1)V (£)ds
16 * n !
1= 5o L N/(5)0a K (5 — £, ()N (£)ds
111 = _)\17?)3 fo N'(s) (01K (s — t, \(t)) + 01 K1 (s — t, \(t))) ds
= %A)f) fo N(s) (K (s — £, M) + Ki(s — £, \(£))) ds
C
VIS So0e

In order to estimate I, let us start with

O K (x, \(1))
[ R e 1 1 ANER*(1+ p* + A(t)*R?)
- mwEh ( 7 E) (o (T RGP

Then, the same procedure used to obtain (5.103) gives

* " ’ C
C

< —
3 log3b+2(t)

fo 102K (s — t, \(£))|ds

So,
C

S 3.2
t3log”(t)

1|

Next, we recall the definition of K7:

s} z 2 2
r 0 r“—1-p Iod
Ki(z,\(t)) = 2 1 y :
1( ( )) L )\(t)2(1 )\Zt)Q)S L x ( \/(T2 -1 p2)2 7,2)
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So,
|02 (z, M) N (2)]

. o0 r xp T2_1_p2
CAPIN ()] f mj@;(H Wg_l_pg)mlrg)dpdr

and we get

1< 55 | OOA"( ook — AN (D)

<) f e

J . =y {0 2pdp, z—t<1
S — P drdz
o (24 X(#)?)? (_xl_t) SSO pdp (1 + \/(T2_1—1p2l;2+4r2> , o rx—t=>1

1), a—t<1
< CIN(1) |J N (x |J S (x )@ drdz
r—i—)\ r—t=1

(xt

<onol ([ g (xit?j | e b )
C

< —
t310g1 2b()

We will now treat the term //1. Let L = K + K. Then, we have

O1L(2, A1) = La(a, M) + Lo(z, A1)

with

) R2A(1)? — 1 — u?a? "
Ly(z, A(t)) = Jo 0+ R2 L Aw (1 + VRAD? —1— 222)? + 4R2)\(2€)2> dudR

_ RAA(t)? —1—p?

- L (1+ R2 3 J P2 (1 AN -1 =)+ 4R2)\(t)2> dpdR
(7 ! —8RA\(t)*u’x

= L T+ 32 3 L m ( (ARPNE? + (1 = PA(L? + u2x2)2)3/2) dudRt
_( —8R*\(t)*p’

‘L o v < TR+ (L = AT 7R P
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Now,

fo Lo(s — £, \(8))|ds

TR (7 RA(t)? =1 = p? « dsdpdR
s fo (1+ R%)3 L g (1 i VRN =1 - p2)2 + 4R2)\(t)2> JH (s —t)r/(s — )2

P
0 e 2 2 1 _ 2
<cf LJ 1+ FEAW” 1 v dpdR
o (1+R*)? ) VREA(1)? — 1 — p2)2 + 4R2A(1)?
0 o 2 _ 1 _ 2
o (L+12)? Jymay+) VRIA(£)2 =1 — p2)2 + 4R2\(t)?

N CJ\OO L J\2(R)\(t)+1) - RZ)\(t)Q - 1= p2 dodR
. 0+ R2P ), VENDE 1o+ ke )

When p > 2(RA(t) + 1), we have

REAA(t)? —1-p?

1+
| A(RA{#)2 -1 — p2)2 + 4R2)\(t)2|
—1-L 4+ & (t)Q 2
— |1 + (R — 2 (R))\(t) = | g C(R)\(t)2+ 1)
2 2 1 2 2+ 2
V1 252 1y NG p

If p < 2(RA(t) + 1), then, we use

RAA(t)? —1—p?
A (R2A()2 — 1 — p2)2 + 4R2\(t)?

to continue the estimate in (5.125)

|1+

| <2

fo Lo(s — £, A(1))|ds
0 R 0 R2)\(t)2 — 1= p2
<O | T <” N(op= 1—p2>2+4R2A<t>2> il

o R 2(RA(t)+1) R2)\( )2 —1- p2
0, ), (1 : wm( 1= ) ot

_p2

(5.125)

<C ro R Jw (A + dde +C ) RA(t) + 1)dR

o (1413 Lrp+n p? 0

<C
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Similarly, we have

|LOO Lo(s — £ A(1))ds|

8RZ\(t)?p?

dsdpdR

s LOO ﬁ ;p (<4R2A<t>2

+ (1 — R2A(t)? +

0 R e RQ/\(t)QPQ
<
|, e, o s
0 R O R2)\(t)2p2
<C dpdR
L a+wp ), a1 ARENEZ + (1= REA(D)2 + p2)2)2
w F2(RA(E)+1) 23 (112 2
L c f _R RN dpdR
o (1+R2)3 ), (AR2A\(t)% + (1 — R2A(t)? + p?)?)3/2
When p > 2(RA(t) + 1), we have
1 - C
(AR2A(1)2 + (1 — R2A(t)2 + p2)2)3/2 — pb

When p < 2(RA(t) + 1), we use

1

C

(ARZA(1)2 + (1 — R2A(1)2

and then continue the estimate from (5.126):

|fo Lu(s — £ A(D)ds]

212Y3/2 S
+PPPR S AW

RQ)\(t)Qp2

o0 R o0
S CJ 2\3 J 22 ()2
o (1+ R2)® Jopagyr1) (ARZA(E)

T (1— R2A(t)?

+ p2)2)32 dpdR
R2A(1)2p?

0 2(RA(t)+1)
JO 1+R2 f (ARZA(1)?

(- R2A(2)?

T p2)2)32 dpd Rk

dpdR

Q0 00 pz
<C f )\(t)QJ —

0 2(RA(t)+1) P

o 2(RA(t)+1) R2)\( ) p

—d d
= JO i+ R2 f R Pt

< ¢
S

Then, we combine the above estimates to get

Jw 0, L(s — £, \(t))|ds <
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So,
10g3b_1 (t)

11| < C—=—;

We finally conclude that

C'log® (1)

||+ |II|+ |ITI|+ |IV| <
t2

Next, we estimate the last two lines of (5.124). First, we note that

a<<cos(z%) _ 1) Pl 60)
t 2 r=RX(t), Y0

cos(2Q1 ( )\(t -1 ¢0(%)
(( ) NOE )f(t,r)rdr

0s(26) (“)) ¢o(5)
f ( ( ) )\(t;; ouf(t,r)rdr

which gives

COS(QQ%) -1 w V(t

(5.127)

o0
rA(t)
+C ———————|0,f(t,r)|rdr
JO (T2+>\(t)2)5| tf( ) )|
We now proceed to estimate d;v, k = 1,3,4,5. We first prove a preliminary estimate on
these quantities in order to obtain the preliminary estimate on \”. Once this is done, we can
improve our estimates for d,vy.

Lemma 5.14 (Preliminary Estimates on ¢,v;, k = 1,3,4,5). We have the following preliminary
estimates on O;v;,, k=1,3,4,5.

(b, 7)] < mog%()
|Ows(t, )| < mog?%(t) (5.128)
|Orva(t, )| < " loggfw_l o < % (5.129)
e Lo O i
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Proof. For 0,v3, we have

6#)3 (t, T)

_1 0 rs—t 0 Y ; —1—p2+7"2 . . )
_Tftjo (s —1) (S—t)Q—PQ/\()<\/(1+p2—7‘2)2+4r2+F3("0’)‘( »)dﬂd

1 JOO J'St P )\”( ) 8p2r2
- s
rde Joo (s—t)\/(s—1t)2—p? (472 4+ (1 + p? — 1r2)2)3/2

_8)\( )4Oé 4p2,’,,2
b O (A e R ) e

(5.131)
For the first line on the right-hand side of (5.131), we first note that
|1 o F3(T7 P A(S))| =1- F3(T? P /\(S)) = F3(07 Ps )‘(S)) - F3(T7 Ps )‘(S))
So,
1 A(s)202(1 & \(8)2%2(p2 4 12
R R
o W20 + TN + (27 = 2PN )P
where

re =(1—o)r

Then, because N (x) <0, x = Tp, we have \(s)** 2 = \(t)** 2, s>t So,

)\// _1_ 2 2
|_J J () i +1+F3(7“,p,)\(8))—1 dpd3|
(s—t)a/(s — )2 — p2 \ /(1 + p2 — 122 + 42

dodp
< C )\/I
rm i 'J f (L+2(07 +12) + (02 = 12)) 72

+ Crsup (|)\”( YA (z) 4

(A@)* >+ p* +17)
J j T+ 202 + MO + (2 = r2 (D)l ayn 7%

and where we obtained the second, third and fourth lines by switching the s and p integration order,
and using

JOO ds <C’
prt (5 —t)/(s—t)2—p2 ~ p

So, it suffices to estimate

© dp 2y dp JOO dp
B _ <C - <C 5.132
3(y) L (14 2(p2 + y2) + (p? — y2)2)1/2 fo Yy * 9y (14 p?) ( )
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This gives

" . _ 2 2
f J P Lot + 1+ F3(r,p, A(s)) — 1 ] dpds|
t S—t S—t) — p? \/(1+P2—T2)2+4T2

+C
t2 long( t) 12 logHbo‘( t)

We then consider the second line on the right-hand side of (5.131), and use the same procedure as
above:

—1 (st p N'(s 8p2r?
TJt J;) (s—=1)/(s—1t) —p2((47“2+(1+p2—7’2) 2)3/2
B 8A(s)14 522 )
(AAN(8)2272r2 + (1 + ()27 2(p2 — 12))2)3/2
TP (sup, [N (2)]) P sup,= (A" (@)|A(z))
< C’TJ <(4r2 + (14 p2—r2)2)32 + (14 2X(6)222(r2 + p2) + A(t)e—4(p? — 7"2)2)3/2) dp

dpds|

0

<C JOO 1 g
<Cr
o t? logb+1( (1 + 2(p% + 72) 4 (p? — r2)2)12 P

© )\(t)3—3adq
+Cr b1 —db+4ab
o t2log”"(t)log DY+ 2(q2 + 12A(1)2072) + (2 — r2A(t)202)2)1/2
B Bs(rA(t)e !
r 3§+3 +or bfl(r W szab
t2log”" (t) t2log” " (t) log (t)

This gives

ijwj p ) 8p°r
P do (D512 g2 (Wt (L p? —r2))
_ BA(s)™ p?r? )d |
(AN 2 4 (L A2 22 =222 )

r r
C +C
t2log"™ (1) t2log' 0 (¢)

In total, we get (5.128).
Next, we have to estimate 0;v, in the region r < Agam we write the formula for v, as

vg(t, 1)

(8,4/1% + 2rpcos(0) + p?)

=
ThoJdo A(s=1)2—p* o A/12 + p? + 2rpcos(0)

Like done previously for vy, we introduce = = re; € R? to ease notation, and get

integrand
Bua(t,r) :—f vas(ts ) f f S A (y)ds (5.133)
¢ (s—1) Bow0) A/ (s — )2 = [y]?

(r + pcos(0))dbdpds

145



where we recall

vgs(t, 1) = -1 1 Vae(s [z +y) (@ +y) -2
o 21 Jp_yo) /(s — )2 — Jyf? |z +y|

—0904¢(s, |z + y|) .
Pl () ) 6 )

L vacls v +y)) (—y-fc+ (@ (z+y)) (y-(y+fv)))

(s =)z +y|

integrand,, | =

So,
Cloge(s, |z + yl)|

integrand
| |+ y]

| < C|&2U47C(S, |fL' + y|)| +

V4,1

This is the same estimate obtained when estimating the integrand of v,, except for a factor of %
So, the second term of (5.133) is estimated as follows:

f f 1ntegrandv4 L dA(y)ds] C
S| < , TS
o Boi(0) A/ (5 — t |y|2 y 2 10g3b+2N—1(t)

For the first term in (5.133), we have

"1 [01.c(8, |7 + yl)|
s¢ J 7 I, (—2)(y) + Ly (a)e(y) ) dA(y)ds
: (s—t Ba_a(0) (s—t)2— 2 ( B ( ) (Y) (Bs (—2)) ( )) (y)

DN |+

<o F’ J JQ’T 1 dfdpds
B P g 0 (s —1)\/(s — )2 = p? s21og™V % (s) (log*V (s) + r2 + p? + 2rpcos(0))

0 s—t log( ) 1
+C dfdpd
L fo pf (s —t Wlog% s2t (82 4+ p? + r2 + 2rpcos(6)) pas
(5.134)
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We first estimate the third line of (5.134):

o dfdpds
| L Jo pL (s —t)4/(s — )2 — p? s2log" " (s) (log®™ (s) + 72 + p2 + 2rpcos()) |
el of 1
o " Jo (t+ p)2log® ™ (1) 1og®N (t) + p? + 72 + 2rpcos(h))
foo dsdfdp
prt (5 =)\ (s = 1)* = p?

\[@ 1 JQ” dfdp
<C N
o (t+p)? log3b+N(t) o (log™" (t) 4+ p? + r2 + 2rpcos(6))

- CJOO 1 dp
o (e bg?”’*”ﬂ X (g™ )+ (r + pPog™ () + = P

- C J dp
A log® ™ (t) Jo (t+p) \/log (r + p)? log™ (¢)
- C

= 12 10g3b+2N71(t)

Next, we have

log(s)dfdpds

0 ps—t 2m 1
| ft Jo pL (s —t)\/(s — )2 — p2 log®(s)(s2 + p? + 12 + 2rpcos(0))32t|
0

<Cf J% log(t) 1 lfw dsdfdp
b g log? (t) (p? + 12 + 2rpcos(0) + 2) (p+ ¢) 12 J 1t (s — t)a/(s — £)% — p?

J J log(t)dfdp
t2 log% (p? + 12+ 2rpcos(6) + t2)(p + t)

< C'log(t) J dp
t3log™(t) Jo (p+ )3/t + p?
- C'log(t)

= ttlog®(t)

Combining these, we get (5.129).
Now, we are ready to estimate d;vs;. Again, we have

1 o prs—t p 1
aﬂ)g): 2—
ThoJo (=1 \/(s—1)2—p2

J27r Na(fus)(8,4/12 + p2 + 2rpcos(0))(r + pcos(6))
\/ 12+ p? + 2rpcos(0)

1ntegrandv5 )
J f dA(y)ds
o Bot(0) 4/ (s = )% = [y?

147

dfdpds




with
fos) (5, |2 +y])
[z + y

N.
integrand,, | < 16Ny (f) (5, + )] + 122

Again, this is the same estimate for the integrand which appeared in the v; pointwise estimates,
aside from an extra factor of % So, we get

integrand,,_ | C t
SN 1A ()is| < e r<t
) Js o /-2y t7/210g™ %2 (1) 2
Then, we need to estimate
” 1 | Na(fos)| (s, |2 + y)
Lp, (-2)(y) + Ling (—ape(y) ) dA(y)ds
J f OV e () gcor)
<[, o] == 'a
(s—t)2—p2(s—1) 2472 4 p2 + 2rpcos(f))st log™(s)
s
+—F>—— | dfdpds
0 loggb(8)> g
0 rs—t 27 1 1 10g3(s) 1
dfdpd
—I—CJ f pf %S—tQ—pQ(S_t)( 5243 +8610g3N+7b—2(S> pas

27 1 r + p) 1 * ds
dodp + C f —
J J L2+ 2+ 2rpeos(B) log? (D (p+ ' i 5 log®(s)

log®(s 1
+C j ( 2t3 86 10g3N+7b—2(8) ) ds

_ ol Dlogt) | Jog'()

t41og(t) t4
rlog(t) log®(t) _t
T X -
t4log”(t) 7 2

In total, we have (5.130).
Finally, we estimate d,v;. Using the same procedure used to estimate 0,v3, we get

aﬂ)l(t,r)
W s—t 9 1_ 9
:J A (8)j p . r p s
t r 0 (s—1)4/(s—1)% —p? \/(7”2 — 1= )2+ 42
o s—t 9 9
_|_J A (S) P 8p r dpds
T Jo A(s—t)2—p2 (s —)(dr? + (1 + p? —r2)2)32

So, recalling (5.132), we have

Cr

B (7] < WL By(r(1 — o))do +

CrBs(r) Cr
21og"" 1 (t) — 2logti(t)
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Now, we return to (5.127), and get

cos(2Q 1) — 1 C'log(log(t)) C
A . N _ Clog(log(t)) |
| t< ( ’}"2 ) U3| —R)\(t)7 ¢0>| t3 1Og2 (t) t2 log7b+1+ba (t)

cos(2QQ 1 ) —1
|at<< £ >v4(1—x21(4{>) e 600

- C N C
= 13 10g2b+2N (t) 12 lOgb+2N_1(t)

cos(2Q 1 ) —1
|5t<< - ) Us (1 - X>1(4t—r)) lr=RA®) 90|

T2
- C N C
T2 10g® (1) 12 10gb 3 (1)

cos(QQﬁ) -1 o
|0, 2 X>1(1—) (v1 + va + v3) |T=R)\(t)a b0,

og" (t)
C C
< +
3 10g2b+2N+1(t) 2 10g1+ba+b+2N (t)

Combining these estimates, we finally conclude

RHS)(t)| € ————

which implies
C

t2log(log(t)) log' ~**(t)

A" (0)] <

Since A(t) = A\o(t) + eo(t), we get

c
m t <
VO Lo (lon() o™ (1)

Now that we have this preliminary estimate, we return to (5.123), and write

A(t) = Aoo(t) + e(t)

(5.135)

Note that the function e defined in the above expression is different from the function e which
appeared in the construction of A as a solution to the modulation equation. It will suffice for our

nm

purposes to have an estimate of the form |e”(t)| < C|Af(¢)|, and this is why we will not need to

use the slightly more complicated decomposition

)\(t) = )\o(t) + Go(t) = )\0’0 (t) + )\0’1(25) + €o(t)
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Then, we differentiate (5.123), and write the equation in the following way, with any differen-
tiations under the integral sign justified by the preliminary estimate on ¢”. (Note that ”(t) =

III( ) + AIII ( ))

B o0 e///(s)ds B oe} e///(S)dS
4£ log(Xoo(s))(1+s—1) 4£ (14 s —1t)3log(Xoo(s))(Aoo(t) =@ +s—1t)
+ 4ae” (t)

—4(1 — Q)A() N (D) f ¢(s)ds
log(ko,o(t)) o ABr+s =21 +s—1)°

N(E)N'(t) ® Ao ot +w)dw
" ol Aoo 7 (5 aceo v ([ )
+ o2 Caa ) AOO ( B, (t) + 4a(log(hoo(?)) —log()\(t))))\”'(t)) (5.136)

)
o0 /”(8) 1 1
log()\o,o( )) L (1+s—1t)3 <)\0,0(t)1a +s—t MOl +s— t) ds

B 4fo 1 +(Zt (log()\i,o(s)) B 1og<xi,o<t>>> *

B o0 e”/(s) 1 B 1 .
4£ (1+s—=1)>*(Aoot) > +s—1) <10g()\0,0(3)) 108;()\0,0(75))) /

= RHSg (t)
We now proceed to estimate RH S3, starting with the terms which do not involve G.
C
"
| — daXgy(t)] < P log 1 (1)

|—4(1 — a)A(t)7N(t) J e"(s)ds |

log(Xoo(t)) ¢ AOITr+s—1t)2(1+s—1t)3
_ C
3 1og"(¢) (log(log(t)))¥2

—4aXN(t)N'(t) C

logCan (DA~ P 1og (1) log(log(0)

® Moot +w)dw |
log)\oo fo 10‘+w(1+w)3

f"o oot +w)|dw +JO° |)\6;7§\(t+w)|>\(t)_°‘|)\’(t)|dw)

0 1 “+w)(l+ w)? (O + w)?(1 + w)?

1og 1og (

< -
31lo gbJrl( )
By the same procedure used to estimate E), ,, we have

B0 c
|log(Moo(t))] ~ 3 log”™(t) log(log(t))
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In addition,

da(log(Aoo(t) — log(A(t)))A"(t)
log ()\0’0 (t))

C o e(t) 1 s
= Togog®) ' T R <t31 ) (e )|)

C 1 n
< (log(log(1)))?2 (t3 log" (1) + |e"(t )|>

—4 o e"(s) 1 1
|1og(A0,o(t))£ (14 s—1)3 (Ao,o(t)l—us—t a )\(t)l—curs—t) dsl
< ¢ J“’ ()] AT = doo(O)" ]

log(log(t)) J; (1+s—1)? (Aoo( )T+ s —t)?
C'sup,-, |e"(z)|

)
_ Csupy | ()
log(l0g(1))

ds

J «/loglog L+s—t)3Noo(t)! = +s—1)

log(log(%)

Similarly,
B e 6} 6/// S) 1 B 1 .
| 4L (I+s—1) (1()%()\0,0(5)) 10%0\0,0@))) |
- C f’o €(5)|ds < C'sup, (|e”(2)|2%?)
t(log(log(t)))? log(t) t3/2(log(log(t)))* log(t)
Finally,
- o I”(S) 1 - 1 )
| 4£ (1+s—1t)3Noo(t)—+s—1t) (log(/\ojo(s)) log()\ovo(t))) ds|

(A
Csup,; |e" ()]
~ tlog(t)(log(log(t)))?

Now, we start to estimate the terms arising from 0,G (¢, A(t)):

C

—+C "(t

|00 (A(£) Eo 1 (A(£), X'(1), (1)) | <

, (—16 ft " N(S) (Kol — £ A1) — Kaols — L A1) ds>
_ 16 L " N(S) (Fy(s — A(8)) — Ksols — £ A(1))) ds (5.137)

16 L " N(5) (BalKs — Ka) (5 — £ A1) N()ds
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For the first line of the right-hand side of (5.137), we have

|- 16 fo N(s) (Ks(s — t, M(t)) — Kso(s — £, \(t))) ds]

< Csup V(@) f K5 — £ A0) — Ksols — £ A1)]ds

=t
C
—————+ Csuple”
= 3loght (1) x>I;;)| @)l

where we recall that §,” [ K3(s—t, A(t)) — K3,0(s—t, A(t))|ds was estimated in the v; inner product
subsection. For the second line of the right-hand side of (5.137), we start with

Ks(w, A(t)) — Kso(w, A(t))

w w w? 1
- (1 Fw? M) 2 4 w2> 4(w? + 36A(t)?)? * AN + w)(1 + w)?

Then, we get

e e < Ay
|62(K3 K?),O)( 7)‘(t))| = (1 +w)3()\( ) + /\( ) )
N C)\( )1+2a 5

(B6A()% + w?)2(A\(t)? + A(t)%w?)?

CA(t)w® 1 1

(36A()2 + w?)3 | L+w?  (A\(£)22 +w?) |

Then, we note that

Joo A(t) *dw < C'log(log(t)) log"(t)

o (L+w)P(A(B)! = +w)?

°0 At 2*widw _c
f (36A(1)2 + w?)2(A(t)2=22 + w2)2 ~ A(1)
* A(t)w® 1 1
JO BOANEE + 0P T+ (i & w?)
_ Clog(log(t))
Y0

This gives

10, (—16 L N(s) (s — £ A1) — Ksols — AWD)) ds) |

C
< C'sup |e” +—
:p>1t)| @) t3log"™ (1)

152



As mentioned before, some terms arising in 0,G (¢, Ao(t) + e(t)) will be treated differently, now
that we have the preliminary estimate on ¢”. We start with the term

(g s 200 2 ) )

1+s—t)
e RCICER U e T
. % fo N(s) (Kl(s — 1, A1) - 4(11(—22_75)) o

For s —t < 1, we estimate 0, K as follows:

|02 K1 (s — 1, A(1))]

v R o ANOR? (1 + p* + R2A(t)?)
S L (1+ Rr?)? L (s — 1) (4N(t)2R2 + (1 + p? — R2)\(t)2)2)3/2dde

We then note that

ARPA()? + (1 + 0% — REA(D)?)? = (1 + (p + RA®)?)(1 + (p — RA(1))?)
So,
AN R? (1 + p? + R2A(t)?) ,
|(4>\(t)2R2 + (1 + p2 — RzA(t)z)z)s/ﬂ < CR7A(Y)

Then, we obtain

|02 K1 (s —t, A1) < CA(t)(s—1t), s—t<1
From here, we get

aQKl(S —t )\(

” UW(+ﬁ+M)2)
L +R23L (5 —0) (NE2RE 1 (11 g2 — Reapppype P

(t
) ()32(1 +p + RA( )2)

g © 4>\( JRA(L+ 2 + R2A(1)2)
fo T+ R2 ) o @A + (L 2 = ey PR
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Then,

* n )\(t) !
Ll (A" ()][02K1(s — £, A(t) — SR |ds|N'(1)]
C “ A(t)
W Ll 02K (s — ¢, A(F)) — s 1) |ds

<o ), (a0 o)

C * R * AN RA(1 + p* + R2A\(1)?)
272y )J 1+ R2)3 ), plog(p) (AR2N(®)? + (1 + p2 — R2A(1)2)2)372

+ dpdR
t3 log P

C C © R
+ log(2 + RA(t))dR
tS 1Og3b+2( ) 3 10g3b+2(t) J;] (1 + R2)3 g( ( ))

C

t3 10g3b+2( )

We also have
|%)‘)3(t)£ )\//(3) (Kl(s —t, )\(t)) — %) dS|
C * A(t)?
< WL |K1(S—t,/\(t)) - 4(1 T —t)|d8
R
t3log"™2(t)

Finally, we have

|% LOO )\”’(l‘) (Kl(x — t,)\(t)) B 4(11(—122—15)) d$|
< /\(Ct'> leilt) /\/// J |K1 I—t /\( )) %wx

< Csup [\"(2))|

x>t

Combining these, we get

8, <% fo N (s) <K1(3 — 4 AE) — 4(11(22_ t)> ds) |

C
< ————+Csuple”
t3log"™ (¢) o (@)l

Next, we consider

2 <Aﬁ L V) K@t A(t))dm)

(1)
- _ii?),?ft) f N (@) K (= £, M) der + QSJ X'(@)K(x — , M) de

i %z fo N(@)0sK (2 — £ BN (t)da
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Note that

—32)\(t) JOO y C'log™(t) f@
T N (@)K (-t A1) de| < ——2 ) | K (@ — ¢, A1))|d
S | e = o < S [ e - @)
< ¢
t31og" (1)
Next,
50z | X G =t A0 < Csip )
NOEUREEE
C n
<—t310gb+1()+0ig§|€ ()|

Finally, the integral

16 (., ,
NOE ﬁ N'(8)0,K (s — £, A(8)) X (t)ds

was treated during the preliminary estimates (it is equal to A(¢) - I in the notation of that section).
So, in total, we get

8, <A1t6)2 fo N(2) K (& — t,/\(t))dx> < ﬁ + Csuple” (o)

Now, we return to (5.77) to prove an estimate on d,v3 which will be sufficient to estimate 0,vy.
We start with

ops(t,r)
—1—p*+r?

J J ﬁAIII w +t) (\/(_1 — e + F3(r, p, At + w))) dpdw
_Z J f ﬁA” (t +w)d3F5(r, p, At + w))N (t + w)dpdw

(5.138)

The first line of (5.138) is treated in the same manner as v3 was, while obtaining (5.77). In par-
ticular, the analog of v3 o which appeared in an intermediate step in obtaining (5.77) is estimated
by

Crsup |\"(z)] 4+ Crsup (]N"(2)|A(2)*" (AM@)*™" = A(&)*71)) A)* ™

=t x>t
Cr Cr le" (z)|x
b+1 b—ba 1y SUP 1—a
t3 log”™ (¢ ) t1og" " (t) 2=t \ A(z)

while the analog of v3 ; is estimated by

Crsup (%) log(log(t))A(t)*~2*

=t
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To treat the second line of (5.138), we start with
Cri\(s)?e3
03 F' A <
B (R Y R EE D PR

Then, we get

f J S—M" )05 F3(r, p, A(3)) N (s)dpds|

1 —t P2\ (s)20
_J 2042 f p 5oz 3 dpds
S—t)s?’log (s)Jo " (1 +2X(s)*2p?)

s—t

C (® 1

= 03 Fs(r, p, M(s))dpd

C ) FE T ) AR A ldpds
Cr

< —F
Zf?’ longrl( )

and

1 n ’
f J ( (s —t) — 2 (S—t)) N'(s)0s F5(r; p, A(s)) X (s)dpds|

pdp log®™ ™" (t)

) CTL (L4 A(E) 10402 = 12)2 + 2X(£)222(p? + 12)) 13 10g™ *2(1)

< Cr
tg 10gb+2( )

Combining these, we get

Cr log(log(¥)) + & sup <—:U|e”’( 2l ) log(log(t))A(t)*~>

t L —F
|atv3( ,’I">| 43 10gb+1( ) n )\(.CE)Q 20

Es(t,r

Next, we estimate 0; 5. First, we recall the definition of E:
P + F3(r, p, A(8))) dpds

J f )(\/(—1—p2+r2)2+4r2
1 " —1—p2+7“2
- ;LT (L w)\ (t +w> (\/(_1 - ,02 + T2)2 +4r2 + F?’(T’ p’)\(t+ ’LU))) dp

Nt +w) 5 4 1 1
N S — d
T AT (At + w)?2> + w?) v

w

—rJ 060 (G - e ©

+67
+ ?}372 (t, T)
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We then estimate the time derivative of each of the lines of (5.140). For the first line, we have

1 or 'wp —1—p2—|—r2
‘ __f J G + Fy(r, p, Mt + w)) | dpdw
(L[ oresn (Tt penes o) o)

C 6r wp —1—,02—1—7“2
< — N (t + w)] - + Fs3(r, p, Mt + w))|dpdw
S L e ol e e 4 G

C 6r prw
F ST [ L e Futrp A+ w)N G+ w)ldpi
0 0

C [ (v p Cr
< — —|N"(t + w)|dpdw + ————
r L fo w| (t+ wldpdw t3log"™ (t)

where we note that the third line of the inequality above has been estimated already. Next, we have

1 . wp " —1—p2+r2
7y wh T + Fy(r, p, A(t + w)) | d
t< TL’“ (L T (\/(—1—p2+r2)2+4r2 (. At w) | dp

_1 Y w)rw (2 —2a) w20 ) W) ) dw
_ f N'(t -+ w) ((A(t+w)22a+w2)2)\(t+ J2N (it + ))d

P \m —1—p2+7‘2
o o ttw + F5(r, p, Mt +w)) | dpdw
LT J;) (\/(_1 _,02 +T2)2 +4T‘2 3( P ( ))) P

+ _f N(t + w)r® (1 +1w2 e w)i_m + w2)) .

— - J f P =Nt + w)o3F5(r, p, At + w)) N (t + w)dpdw
6r JO

(5.141)

We get
1~ " 2 (2_205) 1—2ay/
|r Lr Nt + w)rfw (()\(t T T w2)2)\(t +w) N (t + w) ) dw|

o0 |)\//(t + w)|w s
<
OTLT ()\(t+w)2—2a+w2)2)\(t+7ﬂ) IN(t 4 w)|dw

- Cr
T B3log"2(t)

By the identical procedure used to estimate £, in the v3 subsection, we have

P \m —1—p2+7‘2
o o Etw + F5(r, p, Xt + w)) | dpdw
| LTL <\/(_1—P2+7‘2)2+4T2 3( P ( ))) 1%

1 1 1
- )\Ill t _ d
* T‘Lr (t+wjr w(1+w2 ()\(t+w)2_2a+w2)> vl

Cr
< —+——— +Crsuple”
t3log"™ (t) e (@)l
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We then note that the last line of (5.141) was already estimated, and is bounded above in absolute

value by
Cr

If3 logb+1( )
Then, we estimate

|0y (T J:;r N'(s)(s — 1) (A(£)2 20 i (s —1)2)  A(s)2 20 Jlr (s — t)z)) ds) |

* " |)‘(t + w)2 2o _ )‘(t)2_2a|
< N (t d
Cr | eI ey g v
® " 1 1
+ Cr| N N'(t + w)waoy (()\(t)2—20< ey — Nt w2 1 w2> dw|

The second line of the above expression is estimated by

* m |/\(t + w)2 o — /\(t)272a|
A d
TLT | ( )| ( (t 4 w)2 20 + w2)2 waw

1—2a| )/ 2
N R e il
67

(A(t 4+ w)? 2> + w?)?

- Cr 1 s le” (x)]
< up | —=—-
$log® =34 (1) \ 3 log 072 (7) m;? A(z)2—20
On the other hand, we have
|rfoo N'(t + w)wé ! — ! dw|
or N2+ w?) A+ w)2 2 4 w?

O
t3 logb+2( )

Finally, we recall

vga(t,r) = J f ( s—t) = _(sit)>)\”(s)

(\/( Lo + F3(r, p, )\(5))) dpds

—1—p2+1r2)2 + 42

After taking the time derivative, we estimate the following term with the same argument used for

Sl P (SR R
T 0 0 w2—p2 w

<\/( Sl + F3(r, p, A(t + w))) dpduw|

—1—p2+r2)2 + 472

U372.

o Crsup, (1)
< +
3 longrl( ) t10g3b72ba(t)
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Finally,

_1 o] w 1 1
_ = " F !/
. L L p( e w> N'(t + w) 03 F5(r, p, At + w)) N (t + w)dpduw|

< -
t31og" (1)
where we note that the integral has already been estimated while studying 0, vs.

In total, we get

()|

Cr Crsup,-, (A(m)g_m )
+
t3log" (1) tlog® 20 (¢)

|atE5(t7 T)| <

Now, we will obtain an estimate on d,v, which is better than the preliminary one, (5.129). In
particular, now that we have the preliminary estimate on \”, we can use the same procedure used
to estimate J;v3, to see that d,v; solves, with 0 Cauchy data at infinity, the same equation as v,
does, except with \” replaced by \"”. This observation, combined with the estimates on v; gives

Cr (log(t) + log(3 + 2r)) sup (|X”(l‘)|l’) (5.142)

t r=t

|5tv1 (ta T)| <

(Note that we can not directly use the d;v; analog of (5.12), because the preliminary estimate on
|e” | is not good enough to justify the steps which would produce such an estimate).

Now, we use the estimate (5.139), combined with the above estimate on d;v1, and the previous
estimate on v, to get

|Ovva c(t,7)] <

|X>1(10gN(t))| ( A t)2
tlog( ) (A(t)2 +1?)

)
|X(t)|

5 |U1 + U9 + /U3| + |F072(t,7“)|>

e A

|Ul + U + 1)3|

~~
=
[N}
> =
\/A\_/
~
N—r
[}
\/\—/\_/

+ Cxz1(

S—
)
e
o
—~
@;.
=
~

2r

. {rz=—5""+
Using |X/>1(logN(t))| tlogN“( t) <C tlog(Qt) » we get

C1 0N _r < t
{7’2%} t3log®(t)’ 'Sy

Opvge(t,r)| < ———2—
|t4,( )| long(t)T4 10%(@( 1 + 1 ), t>7‘>%

[t—r| [t—r| tlog(t)
N OL s s <log(t) + 10g(7")>
7»3t3 1 g3b+1(t)
2—2« "
TOL e, = r?g(fg(; )(?)log(r)) e (>|\(x()2)|23;>
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Then, we note that
Orvg(t, )

-1 J"O .r” p jz’r O1040(t + w, /T2 + p? + 2rpcos(0))
2 Jo Jo A/w?—p? Jo A/12 + p? + 2rpcos(0)

and, carry out the identical procedure done to obtain the estimate on v;\l — vf. This results in

|Ovva(t,7)] < < + O™ su ze"(@) rel
t ) = 3 10g3b+N72(t) tlog2b+N73(t) et )\(x)2—2a ) < 9

Like previously, in order to estimate d,v, in the region r > % we first record a slightly different
estimate on 0,v4 .. To obtain this, we use (5.50) in the region ¢ — Vi < r < t+ 4/t and (5.51)
for the other parts of the region r > % to estimate v,. For 0,vy, we use (5.50) in the region

t —tY* < r < t+tY4 and (5.51) in the other parts of the region r > L.
This leads to

(r + pcos(0))dfdpdw

C1

{r>lee] (1))

log2b(t)7’4

-

|6tv4,c(t7 T) | <

N |+

T
_r__ <
3 logh(t)’ "=
log(r) 1 1 t
o\ T tlog(t)) , 3 ST
<

<t—wt orr=t+/t
PR+ s b= VES <t =tV ort + P < <t Vi
k\/LF? t—tY < <t VA

C1

N (rzleel Wy (og(t) + log(r)
r3¢3 log3b+1(t)
A(t)?> 22 (log(t) + log(r e"(x)|x
1 O MY o) (1)
{r="554 r3tlog™(t) e>t \\(x)272%
First, we obtain
C Csup,, ( ﬂ';l)ﬂz(—xz)i)
[|0vs,el2rar) < BreN T 1b—2ba+2N—1 (5.143)
’ t3log™ =N (1) tlog™ TN
Then, we use the same procedure used to estimate vjl\l — vf in the region r > %, and get
xle”(x)|
C Csup,, (m)?—?a) t
|Opoa(t, )| < Pl T o = (5.144)

Now, we recall (5.127), and prove new estimates on the terms involving vy, F)5, v1 + vy + v3,

and F072
cos(2Q 1 ) —1 Ay
|(9t<< T;(w ) (! (1 - X>1(7)) lr—RA(t), D0,

z|e”(z)|

C C supw% (m)
< +
3 longerZ(t) tlogN73+2bf2ba(t)
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cos(2Q 1 ) —1 C C'sup,, (x‘;”;(fg)g
X N0 ) Ealo s 00)] < g
r t31og(t) log® 2% (1)t

COS(QQ% -1 9
10 - X>1(1—) (01 4 v2 4 v3) [r—Ra@), D0)|

r? og™ (t)
¢ ¢ A2 sup,-, (S )
=~ 13 10g2b+2N(t) t10g2N+b—1(t)
2r C Cle"(t)]
a 1. N/, F r= 9 < +
| t<X>1(logN(t)) 0,2] RA(t) o)l /3 10g2b+1—2ba+2N(t) logb—2ba+2N(t)

From our previous estimates, we also have

|X(t)||<<COS(2QT§t)) - 1) (0000 (1= 3a)) + 55 b0

cos(2Q) 1 ) —1

+ |>\/(t)||<< T)‘Q(t) ) le(b;%) (U1 + U9 + Ug) |r=R/\(t)7 ¢0>|

2
log" (t)

+ V(O[O (

< ¢
= 3log" (1)

) Eo2lr=RA(t)> D0,

Combining these, we get

N (A(t)<<COS(2QT§”) — 1) <(U4 + vs) (1 — le(%r)) + Eg,) = RA()» ¢0>> |

008(2Qﬁ) -1 9
+ |0 (MW( ) X>1(1—) (v1 + v2 + v3) lr=RrA@) ¢o>> |

r? og™ (1)

2r
+ |0 [ A(t ——— ) Fpol= ,
| t( ()<X>1(logN(t)) 0,2| RA(t) ¢0>) |
C Csup,-, (f(‘;):’,(—gjz)i)

< +
t3log"™(t) tlog®=2b(¢)

where we use (5.130) to estimate 0,vs. Finally, for all remaining terms in RH S3, we use the same
estimate that was used in obtaining the preliminary estimate on e”, and conclude

C |, o, ()
t3log"™ (1) t3/24 /log(log(t))

|RHS3(t)| <

Note that the left-hand side of (5.136) is the same as that of (5.66), except with ¢” replaced with e,
and A, replaced with )\ . This will not cause any major differences in the study of (5.136) relative

161



to (5.66), because the key estimates (5.69) and (5.71) are invariant under multiplication of K (¢, s)

by anylnon—negative function of s, and (5.69) is still true with the replacement of WM by

()\()’0 (t)lfo‘ +8—t)

Koylt,s) e z0(8 =1 ( L 1 >

allog(Moo(—s))| \1—s+t (1—s+t)3Noo(—t)' @ —s+1)

then, by the above discussion, the resolvent kernel associated to K5 in the same way that r was
associated to K, exists, and satisfies the same estimate as r: (5.72). Let us denote this resolvent
kernel by r,.

So far, we have that ¢” is a solution to (5.136), which can be re-cast into the form

. In particular, if we define

KQ*I+ZE:H2

similarly to (5.66). Next, we carry out the following computation, noting that the step which
requires Fubini’s theorem is justified by the preliminary estimate on e”, (5.135).

ro# (Ky*x) +roxx =19 Hy
(T’Q*KQ)*?L’—FTQ*I':T’Q*HQ

HQ—LIZ':KQ*LE:T’Q*HQ

where we used the equation
To + 7o = K2 = K2

(Recall that 5 solves the ry and K5 analogs of (5.70)). Translating = and H; back to ¢” and RH S3,
we have

e”(t) ro(—t, —2)dz, ae.t =T, (5.145)

. RHSg(t) _ Jw RHSg(Z)
4o ‘ 4o

e". RH S5 are continuous functions, and the above equation can be rearranged to yield
* RHS3(2) RHS;(t)
P (=t —2)dr = ——=2 0 (¢ e t=1T
ft 1o ro(—t, —z)dz ™ e”(t), ae 0
So,

@ RHSg(Z)
t— L Trz(—t, —Z)dz

agrees with a continuous function almost everywhere, and can thus be extended to a continuous
function. Moreover, using (5.72), for r, instead of r, we have

© RHS5(z RHS,
[yt =)l < T ey, et T

So, the same estimate holds for all ¢ > Tj,, where we now identify

@ RHSg(Z)
t— J; T’l“g(-t, —Z)dZ
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with its continuous extension described above. Such an identification will be performed without
further mention. Returning to (5.145), we get

le”(t)] < C'sup |RHS3(x)|

x>t

< C n C'sup,-, (333/2|6m( )|)
t31og"(t) t3/24/1og (log(t))

Thus,

3/2| m
t3/2|6/”(t)| < Cb 4 C'sup,- (I " (z )|)
t32log™ (t) log(log(t))

But, as mentioned earlier, ¢” is a continuous function on [T, «),
so t — t3/2|e”(t)| is also continuous on [T, ), and

| ///( )|t3/2 -0, t—ow
by the preliminary estimate on ¢”. So, for all ¢ > Ty, there exists y(t) = ¢ such that

sup (277" (2)[) = y()**[e" (y(1))|

x>t
But, then,
sup (22" (2)]) = y()**[" (y(t))|
< C Csupxzy(t)( 3/2|€”’( )|)
y()321og" (y(1)) log(log(y(t))
_ C C'sup,, (232" (z)])
~ 3210g" (1) log(log(t))

So, there exists some absolute constants C,,, C},, > 0 such that, for all
t=C, + 10

we have

C
3/2) < D2
(e (@) < log" (1)

But, ¢” € C([Ty, 0)), so, there exists some absolute constant C},, > 0 such that

C
M) < ——P =T
0] < i 12T
Recalling \(t) = Ao o(t) + e(t), we have
m C
()] < 2T, (5.146)

3 logb+1( )
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To finish, we only need to establish the estimates on atag; vk in the proposition statement. We recall
that 0,v; solves the same equation as vy, also with 0 Cauchy data at infinity, except with \” on the
right-hand side replaced with \”. Now that we have established (5.146), we can justify the steps
leading to the d;v; analog of (5.12), which gives
C t

o (t,r)| < ——————, >

[Gront, )] rtlog”™(t)’ 2
Combined with (5.142), this gives (5.118).

A similar large r estimate can be also proven for d,v3: Starting with (5.138), we get

|Oyvs(t, 1)

—f N3] (s — t)ds

NN

v dpd
i TL JO W 1+)\ 4a 4 7“2) +2)\(S)2a_2(p2+r2)) pas
t
< — > _
rtlogb+1() "3

Combining this with (5.139) gives (5.119).
Next, we estimate 0;,v,, k = 1,3. We start with 0;,v3:

6tvg(t, 7’)

—1—p?+7r?

_Tl Joof \/%2—,02)\”/(5) <\/(1 + p? —r2)2 + 42
1 f J . t\/Tx' $)3sFa(r, p. A())N(s)dpds

+ F3(r, p, A(s))) dpds

(5.147)

Since the first line of (5.147) is the same expression as v3, except with \” replacing \”, we use the
same procedure for this line, as was used to estimate ¢,v3 . For the second line of (5.147), we start

by noting that
2, (63F3(r,rp,/\(s))) |
_ OMP L) + (7 + M) 4 (5 + 12 PA()* )
=TI (P = PN+ 2+ )
N CA()™* (p? = r*)*(p* + 1?)
AT+ (2 = 2PN+ 2 + A )P

We then estimate the partial » derivative of the second line of (5.147) using the same procedure
used before to estimate 0,v3, and get

¢
t3log (1)

"(s)03F3(r, p,A(s))X(s)dpds) | <

(JJWA
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¢
slogPt1(s)

(Note that we have the factor | N (s)| <

in the integrand of the second line of (5.147),

which explains the gain relative to the analogous term arising in the 0,v5 estimates). In total, we

get (5.120).

As observed before, 0,v; has the same exact representation formulae as v;, except with an
extra derivative on \”. Therefore, we can use the identical procedure used to estimate d,v1, to get

(5.121).
This gives

2r 2r
C|X'§1(m)| C|X'>1(m)|
1+N+3b(t) 3b+N(t>

O g c(t,r)] <
19 vac (87| r3t3 log

1
4¢3 log3®(t)’

r3t3 log

<

NI

2r log(r) 1 1 1
+ CX)l(logN(t)) log?® (t)r4 (log(t)rltﬂ”lt tTaom T (t*’")s)

t
t>r>§

1
+ 3714 log30(t)’
Using the final estimates on \”, we also get

C1

{r= logl;](t) }

3b+1—2ab (t)

clt )| _
r r4t3 log
Cﬂ{r>logg(t)} m, r<

+ 2b log(r) 1 1 1 t
log” (1)r® | lostr (ﬂog@) + M) b, t>r>d

N+

Now, we can prove (5.122) in the region r < %, by writing

ﬁtm(t, 7”)

B —_r J'OO s—1 P
2r Ji Jo (s — )2 — p?

\/12 + p2 + 2rpcos(0)
and using the same procedure used for v,4. In total, we get

Cr

t
|6tv4(t7 7”)| < 3b+2N_2(t)7 TS 5

t3 log
Combining this with (5.144) (and the final estimate on ") gives (5.122).

5.8.11 Estimating \"”
Proposition 5.4. \ € C*([Ty, o0)) and we have the following estimates:

C

Y i=T
t4log” (1) ’

|)\””(t)| <
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(5.148)

Jl JZW Or (811)476(3, V12 + 7+ 2rpeos(f)) (r+ pcos(@))) (s, p, Br)dédpdpds

(5.149)



2 4 lirrb(t)’ rs %
Gpoi(t, r)| < o , (5.150)
72 logb*1(t)’ r=3

|52U3(t 7“)| < CT log(log(t))
t ) ~

t4log"™ (¢)
C t
TNy TS 3
uult,r)] < {”“’gS c v (5.151)
$35/12 long_l(t)’ 2
C t
025 (t, )] < Hlog V2 (7)’ r<y (5.152)

Proof. Recalling that A\(t) = Ao o(t) + e(t), we will show that e € C*([Tp, o0)), and estimate e"”.
Returning to (5.123), we have

CRHSY) (1)
O 0 s

Because \” € C°([T}, o)), an inspection of the definition of RH S, shows that
RHS, € C?*([Ty, 0)); so, \" € CH([Ty, 0)), with

)\/// (t)

o =a (T - s )

The previously obtained estimates on RH .Sy, RH S, then show that

(o) < _CIBHSH0)

C
" log(log(t)) log"(¢)

108 7(¢) log(log (1)) 6159

Again, we will first obtain a preliminary estimate on A", which will be improved afterwards. We
start by recalling the definition of RH.S5:

RHS,(t) = —%3 L ") (Kus = £ A0) + K (s — £ A(®)) ds + 2(1(%)2)
4b
+ W + Evz,ip(t7 /\(t))

cos(2Q) 1 ) —1

+< sz ) (US + (va + vs) (1 - X>1(4Z)>) |r=RA®)> P0)

cos(2Q) 1 ) —1
<< TA;) ) X=1 (logQ;(tQ (v1 4 v2 4 v3) [r=RrA®) D0)

) (N()*R*¢o(R)dR
0 logN(t)” A(t)?(R? + 1)
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We then note

o [(2N(t)? C
4 ( YO ) < o)

4b C
P ——F <=
% (A(t)ﬁ logb(t)) <4

2 (—4)«(15)2 JOO (2RA(t))R2¢O(R)§iR> < C

At)? o et logV(t)” (R?+1)? DT log? ™20 +2N (1)

To continue estimating RH S), we start with

af( 16 L OO)\”(x)Kl(m—t,A(t))dx)

A(t)?
_ (;?6) N(t)? — %t)(f)) fo N (@) K (2 — t, A(8))de
64?')( ) J N (2) Ky (2 — 1, \())de
(A)(t) f N(2) 8K (2 — £ AN (1) da (5.154)
_ Aigz L )oK (& — £ A ()
+ AZQ)Q L @)K (i — £ )N () d
e || V@) @i~ AN 0? + 2o~ L ADN0) do

The only term in (5.154) which we can not immediately estimate from previous estimates is the
one involving 03 K. The analogous term involving K is also present in RH SY(t). We start with

G2 K (2, (1) (X' (1))* + 02K (a, A(E)) X" (2))]

CCrAE)E N ()2 + AH)N'(1)) 1 1
<), ) J,? (m :c>

h (r2 + A\(t)?)3
1+ rolor dpdr
\/(TQ —1—p2)2 + 42
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which gives

|A%f)2 J:O N'(x) (3K (x — t, AN (1) + a K (w — £, M()N(1)) da

s, | e (e )

r2—1—p?

1+
< V2 =1 —p?)? +4r?
C @ r @© 7’2—1—p2
< 3612 2 5 pl1+
Mg (1) o 7+ AP Uy NS

“ 1 1
J — dxdpdr
p+t (x—t)2—p* -t

> dpdrdz

C « rs
< d
#4 log3b+2(t)fo (2 + A2
S
=t logt (1)

Then, we treat the K term:

00 T 2 2

r p rc—1—p
Ky(z, A1) = i P+ dpd
1(1‘ ()) J;) )\(t)2(1+)\zt)2)3\[) 33'< \/(T2—1_p2)2+47"2> par

Proceeding as for K, we get

16
SOE

fo N () (62K, (z — £, AE)N (1) + 02K (x — £, A(£)N'(1)) da

< [ WOl [ i
I 21og?" (1) Jo (r2 + A(1)?)3 (z — 1)
x—1 2 _ 1 _ 2
f pl 1+ rolp dpdrdz
0 A (12 =1 = p2)2 + 4r2

* n 1 ” " 1
< C'L A (l‘)|t2 10g2b+1(t) Jo (r2 + A(t)2)3 (x — 1)

r—1

o 2pdp, r—t<1

drdx
o0 ,,.2_1_ 2
o r (1 - \/(r2—1—p;;2+4r2> dp, w—t=1
<C Jtﬂ (x —1t) dx

. 2 1Ogb+1(£€)t2 10g2b+1(t) )\(t)4

e¢]

d

Y

41 221og”" (z)(x — t)t2 log(t)

B C
= it log! (1)
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Combining this with estimates for the other terms in (5.154) (which are deduced from the proce-
dure used in obtaining preliminary estimates on e”), we get

|%(Agzﬁwvuﬂﬁ@—aA@Wm+Ag;L®V@ﬂﬂx—tMﬂM{w
c

< —
t3log' =% (1)
Next, we consider terms arising in 07 (A(t) Ey, i, (t, A(t)))-

2 (2000 [ 20 6 A0 )

= 20) [ v A0 + 40 [

0 0

22 e M0 e

+%w@f5%WQ%KM»&+%W@LSMW%%XU§

: —2¢ cos(tf ) 6 sm(t§ )

Wy (€, A(t))d€

b (END)E + 2\(8) f

0

+““@J

0

+ 401,)\( )J 28%@621@02)‘,( ) 5

20,1 f ) b (€. M) + e\ 1) [

0

52%2 /\I( ) 5

§ cos(t8)
2

+2%M@J mﬁ@(@ﬂ@X@V+aﬂ@XﬁDd€

0
Only three integrals can not be immediately estimated based on our previous estimates. These three
integrals are estimated using the same procedure used before, by estimating K (x) and various of
its derivatives, using the fact that K appears in 1, (EA(t)) with its argument 2 = £\(¢) satisfying
0 <z < 1. We have

_2017/\ J 52 sin tf)¢v2(€ )\( ))df _ QCb)\(t) LOO COS(t{)@S (6277%2(6’ )\(t))) df

19
cos(t& )
t

ta() [ 500; ot = ~10A0) [ e c0a0) X0y

and

COSIE) i (6 AN (1)

* sin(t€) LD B
200(0) [ 5 (@, N 0) d = 2000) [

Using these, and the procedure described above, we get

2
2000 [ By e ampael + e [ S E ey
+ |20b)\(t)f0 smt(tf) (Oaathu, N (1)?) d|
C
< p—
t5

169



Every other term arising in

2 (2000 [ 2 v 6 a0 )

can be estimated by using estimates for A, A, \”, and the terms estimated when considering

o <2ch(t)L Sm(tﬁ)%(& A(t)) 6)

7 (2000 [ e a1 <

# (20000 [ D@ a0

In total, we then get

For the term

1
1

we use the identical procedure as above, noting that the only difference is that v,,(£, \(t)) is
replaced here by x 1 (&) Fyy (&, A(t)). Then, we get

|~ 20,0 f ) (B MO
e [ S O (R A0) N0
#2020 (1) @ (Rl AO) N 07) de

C log(log(t))
5 log®(t)
In total, we have

, * sin(t€) C'log(log(t))
2 (20000 | iy ©Rate e | <« SEGEC)

The next term to consider is

) 3 sin(t€) b—1 b(b—1)
“ (L (a0 -1) <5logb(§) i élogb“(%)) d§>
s ( b—1  b(b—1)

t
+ sin(=) + Err
log"(2) 1og”+1(2)> 3

C(2(b—1)  2b(b—1)Y cos(3) sin(5) Eb—1) &b(b—1) 1
( logb(2) + logb+1(2)) 4¢3 + t4 <a5 <logb(%) - logb—kl(%)) |£2>

+ Fy

where we integrate by parts after differentiating the integral, and

C C
t_57 |E2| <=

Err| < -
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On the other hand, we have

o (7 sin(w)b(b — 1)du
at (J;) t2ulogb+1( ) )

_cos(5)b(b—1) 3sm( Yb(b—1)

© 231og"t1(2) t+logh™(2)
sin(5)b(b — 1) -2 (b+1)
+ / <t3 logb-H( ) t3 logb+2( ))

+f2 sin(u)b(b—l)( 6 50+ +(b+2)(b+1)>du

u t4log" (L) ttlog"(L) T ttlog"tP(L)

So,

(2 sin(té) [ b—1 b(b—1)
at (L (Xéi(f) - 1) 2 (élOgb(%) + glogb-i-l(%)) d£>
5 3 sin(u)(b— 1) b 1
+ 0, <L 2u <logb+1( ) logb(§)> du)

1 2 sin(u)(b— 1) 6 5b b(b+ 1)
—o(=)+ + + d
(t5) L u g’ (L) T tlog" (D) #ilogh (L) )

+Jé sin(u)b(b — 1) 6 5(b+1) +(b+1)(b+2) "
0 t*log

b+1( ) + t410gb+2( ) t4logb+3( )
(1) . 30— 1
=0 (t5) " t4log”(t) O (t4 log" (¢ ))

where we used the computations from the section which constructed v, to obtain the - Tiog T o term
above. We conclude the following estimate on one of the terms arising in 0Z (\(¢ )vap(t A(t))):

3 sin(t¢) [ b—1 b(b—1)
03 (L (xer© 1) =5 <§logb(%) " £log”“(%)> dg)
, i sin(u)(b — 1) b 1 M
+ 0; (L 2 <10gb+1( ) logb(§)> du — <2t2 logb(t))> |

S VA
= 14 10gb+1( )

=

[V

In total, we finally get

7 OBt O | < 11

By the same procedure, this estimate is also true for the case b = 1.
Now, we record preliminary estimates on 0?vy,, &k =1,3,4,5
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Lemma 5.15 (Preliminary estimates on 02v;). We have the following preliminary estimates on

&‘ka:
Cr 1
020, (¢ < 5.155
| tvl( ,T)| (1+T) tglogb-‘rl(t) ( )
Cr C
O%us(t, )| < 5.156
| t 3( )| 4 10gb+1() 13 1Og1+2ab—b(t) ( )
—c  r<ti
et )] < { i (5157
ErASiONE
C t
OPus(t,r)| < , r<; 5.158
Phest0) < vy TS g (5.158)

Proof. First, we estimate d?v3. We start with the formula for d;v3 used in the process of proving
the final estimate on \"":

aﬂ}g(t, T)
—1—p?+1r?

_1 " p n
_J f \/m/\ (s) (\/(1 PR + F3(r, p, )\(3))> dpds
L J ﬁ/\// (t +w)03F5(r, p, \(t + w))N (t + w)dpdw

(5.159)

Denote the first line on the right-hand side of (5.159) by vs3 ; ;. Then, we have

8,51)3” t 7"

m —1—p2+r2
f J (s —t)4/(s —t) — p? )\ () <\/(1 + P2 —12)2 + 4p2 + F3(T>p>)‘(3))> dpds

- J JS ' P )\I”(S) 8/027’2
rhe Jo (s—t)\/(s—t)2—p? (4r2 + (1 + p? — r2)2)3/2

g\ (s)io—d 22 S
+ (4A(s)2072r2 4 (1 + A(s)222(p% — 7,2))2)3/2) dpd

(5.160)

We will need to use a more complicated procedure for (5.160) than what was used to treat the
analogous term which arose in the course of obtaining (5.128). For the first line on the right-hand
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side of (5.160), we start with

1?42

V(4 p?—12)? 4 42
2, p<dr

—1-p?4r? + 1|+ | =14 F3(r,p, A(s))|, p>4r

< {
| \/ (1+p2—12)2+472

+ F3(r, p, A(9))|

2, p<4r
7“2

2 p > 4r

<

Then, we have

3 f TENN TR (wl — f —— m<s>>) dpds
Lol 2 )Lt
3 logl’Jrl ;2, p>Ar (s—t)\/(s — 12— 2
4r © de
_J t 10gb“ r L P9 1og" (1)

t3 longrl (1)

We then consider the second line on the right-hand side of (5.160). First, note that, because

N(z) <0, x = T, we have \(s)?**72 = A(t)?**2, > t. Then, we start with the case
AW

s Ta < - Wehave 1+ p® > 16r%, and 1 + A(t)*~ 2P2 > 16\ ()%~ 2r?. Whence, we have
1 B C
(4r2 + (1 —r2+ p2)2)32 = (14 p?)?
1 _ C
(AN(1)27272 4+ (1 + A(1)2072p2 — \(£)207272)2)3/2 (1 + p2\(t)20-2)3
So,

m 8P2T2
|__ () 2 2 _ 212)3/2
(s —1) S—t) -’ (4r? + (L+ p* = 12)?)

—8A(s )4a 42,2
dpds|
(4)\( )20‘ 2r2 +(1+A )2a 2(p2 — 12))2)3/2
C p2r
S d
rJo t3 longrl ( 1+ p (1+ Mt )2a_2p2)310g4ab_4b(t)) P
L .
t3 10g1+ba( ) ~ 4
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Ifr > W, then,

1 J\OO Jst p )\”,(S) 8p2T2
rde Jo (s=t)\/(s—1t)2—p? (4r2 + (1 + p? — 12)2)3/2
_8)\( )401 4p27,.2

T (X )

dpds|

_ g T‘2 J4T de
x r t3 ]-Ogb+1(t) 0 (4,,,.2 + (1 _ ,,,.2 + p2)2)3/2
N 7,2 J\4r dep
3 logb+l( )10g4ab 4b t) 0 (4)\( )20472702 + (1 + )\(t)2a72(p2 _ 712))2)3/2

PR — (p - o ) d
rt3 lOgb+1 ;06 4ab—4b(t)>\(t)6a_6p6 P
£ f * pdp
o\ longrl o (Ar2+ (1 —1r24 p?)2)3/2

pdp
+t3 log" (¢ )10g4ab ) L (AN(£)2 272 + (1 + A(t)2e2(p? — 702))2)3/2>

N C (1 N 1 )
rt3log"™t (1) \r  rlog? T2 (t)
C

—b+2ab+1 (t)

<
t3 log

In total, we get
C

|Orvs14(t,7)] < 1205 )

t3 log

For the ¢ derivative of the second line of (5.159), we start with

C|o3F5(r, p, A(s))]

B M5 < —

C\(s)46p2

TP L (7 = PPA) T+ 2+ AP

Then, we use our estimate for d;F3 proven while estimating d;,v3 previously, and note that the
estimate above for 03 F3 gives rise to an estimate of the ¢ derivative of the integrand of the second
line of (5.159) which is of the same form as the estimate on the integrand used to obtain the final
estimate on ¢d,v3. We can therefore read off an estimate from our previous computations, and get
that the partial ¢ derivative of the second line of (5.159) is bounded above in absolute value by

o
t4log"t(t)

This gives (5.156).
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For 0%v,, we have

é‘ttvl(t,r)
o ym s—t 2 12
= f X(s) J P 1+ rolos dpds
t r 0 (s —t)2 — p%(s —t) A (12 =1—p?)2 +4r? (5.161)
0 )\”’(S) s—t P 8[)27"2
dpd
o= V=07 = 2 (s = D+ (14 7 =2t

For the first line of (5.161),we get
© _\m s—t 2_1_ 2
f (5) J P 1+ L P dpds
¢ r 0 (s—t)\/(s—1t)2—p? V(2 —1—p2)2 + 412

0 2 _ 1 _ 2 0 2\
= —J pl 1+ ol f (5) dsdp
0 \/(7"2 —1=p2)2+4r2 ] Do r(s —t)A/(s —1)%2 — p?

Next, if
rT—y
milx,y) =14+ , v=0y=>1
f 1,t( y) (.I' —y)2 T A )
then,
Cx Y

|fv1,t(x’y)| < ?a r < E

Also, we have
|fv1,t(I’y)| <2

Note that if 7 < 1, then, 7% < %. So, we get

0 M s—t 2 _ 1— 2
|J N(s) J P 1+ L L dpds|
¢ r 0 (s—t)\/(s—1t)2—p? V(12 =1 = p?)2 + 472

< 5zt V@) 55 [ford 021+ p%)ldp, 7 < 5
s CU—————— Ar 2
r o 2dp+ C’SZ; Tffe r>

)

< Csup |M"(2)| { "=

x=t 1, r>

SN

r

<C

sup |\"(z))]

1+7‘ x>t

For the second line of (5.161), we use a similar procedure as above, again treating first the case
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1
< j,and get

8p27'2

|f X'(s) f P dpds|
e VoG (-2t )

- C'sup,=; |\ ()| JOO 312 o 1 dsdp
= r 4r2+(1_r2+p 3/2 +tmt9—t

< Csupx>t |X”(93)|7,2 JOO Qdﬂ

r

< Crsup|\N"(z)|, r<

x>t

where we used the fact that

1
rgz = 1+p°—r*>C(1+p?)

Next, we consider the second line of (5.161) for r > }1. Here, we get

8p2T2

|J )\III J' p
o Jo A5 t)2=p2(s—t)(dr? 4+ (1 =12 + p?)2)32

_ CSUszt |)\”’(l‘)| JQT 2 de N Joo pzrzdp
h r (4r2 (1 — 72 + p?)2)3/2 o (472 4 (1 — 72 4 p2)2)3/2

Csupx>t|/\m TJQT r pdp +r2 Jvoo dep
0 472 + 7’2+,02)2)3/2 or /)6

1
< Csup | N"(x)], r>-=
x=t 4

dpds|

In total, we get (5.155).
Now, we will obtain an estimate on 831)4. We write

vy = vy (t,r) +vi(t,r)

where v} solves the same equation as vy, with 0 Cauchy data at infinity, except with right-hand
side equal to v ., which is given by

r cos(20Q)y NG -1
vic(t,r) = x>1( : )(( O (xig © ) >(U1+U2+03)>

log™ (¢) r?

and similarly for v}, where

We start with
a7 (t, )

9 (8,4/72+ p% + 2rpcos(0)) (1 + pcos(d))

B -1 J*OOJv p J*27r 621}4’6
2r )y Jo A(s=1t)2—=p*Jo A/12 + p? + 2rpcos(0)
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Then, we note that
1{@%}% + vg + vs| N C]l{@bgzv(t)}wt(vl + vg + vs3))|
£21og2 L ()4 tlog? 1 (1)
C’IL{ >logw(t)}|6 (v1 + vy + v3)]
r4log? (1)

For the purposes of obtaining a preliminary estimate on ¢7v{ in the region r < %, we combine all
of our previous estimates in the following way:

|07vg ,(t,7)] < C

_l’_

C 1 1
<
r4 log?? (¢)t3 (log1+2b°‘_b(t) - logb(t)) o TS

2 C'log(r) 1 1 1
& U4c(t’r)| S 1{7»2710%1; Wy ) T o10g25(t) <|t—r|3 T =z T 2 log(t)|t—'r|)

c t
TH5+2ba (1) t>r> 2

N[+

r4t3 log
Directly inserting this estimate into our previous formula for 6?v(¢, ), and estimating as in pre-
vious sections, we get

C t
2ul(t,r)| < ., r< =
D] < G T
We will use the same procedure used for 0;v,4 to estimate 0?0 in the region r > L. As in previous

cases, we will use a different combination of v, estimates to get a different estlmate for &‘,5211476.

rcﬂ{rzlogg(t)} ot
g 0 TS 2
__Cc R VR 1/6
20 (1, 1)) < { o, TP STSEAT
Clog(r) L 1 n 1
r4log??(t) \ [t—r[? tlog(t)(t—r)? t2 log(t)|t—r|
—i—qum(t), t—tV5>r>"Lorr>t+ 1/
We then get
C t
Pt < —e—, T ==
PR S g T
which gives
t
2

C
31 ONFb—2/. r
B8 (t, )] < { B
=

2 log3N+b(t) ) r

N |- //\

Now, we estimate d?v;. This time, we follow the procedure used to obtain the preliminary estimate
on 0y v4:

drva(tr)

1 (™ 1 s—t P
T on ), (S—f)Jo (s —t)2 = p?
JQW 010 o(5,4/T% + p* + 2rpcos(0)) (r + pcos(&))dedpds (5.162)
0 A/12 + p? + 2rpcos(0)

integrand,, 1
f f =2 dA(y)ds
Be(0) A/ (s — )2 = [y]?
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where

_8121&,0(57 |£C + y|)

integrand,; = P T — (z+y) @ (z+y))
ol (s, |z + 7. .
L Qwa(s o+ yl) (_y_g?Jr (z ($+y))(92(y+f€)))
(s = )|z +y] |z + ]
which gives
|a1vi,c|

|integrandvi,2| < Clo1vy | + C|x ]

We start with the term on the first line of (5.162):

1 1 s—t 0
5, oo, Vo7
27 010} o (s,4/12 + p? + 2rpcos(9))(r + pcos(h))
L A/12 + p2 + 2rpcos(0)

< CLOO (s i t) ft (s _i)z s

2m dfdpds
o 83log® N2 () (1og?N () + p2 + 12 + 2rpcos(h))

dfdpds|

1
L ,OL (p + )3 1log® N2 (1) (10g®N () + 12 + p? 4 2rpcos(h))
JOO dsdfdp
pit (s =1)y/(s —1)? = p?

C

3b+2N —2ba (t)

<
3 log

For the second line of (5.162), we use the same procedure used to estimate v, previously, and we

get
integrand,, 1, C
dA ds| <
27T J f Ba+( S _ t |y|2 (y) 3| 13 log3b71+2N72ab(t)

C

/3 log3b+2N—1—2ab(t) ’

In total, we get
|0Fuy(t,7)] <

Combining with the estimate on ¢Zv{ above, we get (5.157).
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Next, we estimate 07vs. We start with

= (S S
CIN ()]

+ Wv(t,r)ﬁtﬂt,rﬂ
24 |f(t)0uf(t, 1)) (5.163)

(@
c( <>>2+A<>|A"<>|> GIENO] ,
e e )

+ D@ ) + () a7

where f = v; + vy + v3 + V4.

For the purposes of estimating 0?vs in the region r < & 3» we return to (5.163), and use (5.51)
for all quantities involving v, in the region r > % with the following exceptions. For the term
involving | f| - |0, f|? on the last line of (5.163), we take the following average of (5.51) and (5.50)
to estimate (0,v,)? in the region r > £

)

log(r) )3/2 1

t—rl? ri/4

(Qa(t,m))* < C <|

Similarly, for the term involving f?|0;; f|, we estimate v3 |0y vs| by

C'log(r)?

[EERYG

(This is so that we will not have to have an extra argument for a term analogous to the last line of
(5.95)). This procedure gives

(v2(t,7))?|0uva] <

1 t
Flg@ram) | Sz i .
log(r log“(r log®(r
N1t < C S oy oty + e + E T

logb(r) ¢
+r9/4(t—r)4’ 2 sr<t

Using these estimates in the formula

2vs(t,r)

(8,4/1% + p* + 2rpcos(0))

J J m JQW AR \/7‘2 + p% + 2rpcos(d)

(r + pcos(0))dldpds

gives (5.158). L]

Then, we use all of our estimates above to get

) cos(2Qﬁ('r)) -1 C
|at < r2 U3|7“=R)‘(t)7 ¢0> | < 13 10g1+2ab73b(t)
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) c0s(2Q 1 (r)) — 1 4r C
& << ) o (1 _ X>1(—)) . ¢o>> 1<

2 13 = #3log
cos(2Q 1 (r)) —1 Ay 8.
2 A(t) 1— 1(— _ <
|at << r2 Vs ( X/l( t )) |T—R)\(t)7 ¢0> | 4 10g3]\/,b,2(t>

r? “Mog™ (1)

cos(2Q 1 (1)) —1 -
o} << = ) (X () vr + +Us)) |rRA(t>7¢0>> |

< 3 10g1+3N+2ab (t)
Finally, assembling together all of our previous estimates, we conclude

C

RHS)(H)] € —————
| 2( )| t3 10g173b(t)

Returning to (5.153), we get

SO —
t?log™ 7 (t) log(log(t))

Now that we have this preliminary estimate, we return to (5.63), substitute

A(t) = Aoo(t) + e(t)
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and differentiate twice in ¢, to get

o0 l///
_ 4J (s)ds + dae™(t)
¢ log(MNoo(s))(1+s—1)

B 4J® 6Illl(s)d8
¢ log()\(),()(s))()\op(t)l*a + s — t)(l + s — t)3
B, 4a M) NBPN o, SaN(ON()
~ log(Molt )) log(Ao,0(t)) ( At) )‘(t) ) ¥ A(t) log(Ao,(t))

log()\go log()\o olt )) 0.0
© Moot +w
log )\00 <L e 1 w)( +w3)dw)
OO e t—i— w) < 1 ) dw
0 log(Ao.0(%) (A(t )1 o+ w) )\0 o) 4+w)) (1+w)? (5.164)
8(1 — a)A(t)*N(t) e”(t +w)
log(Ao,(t)) o (A7 +w)(l+w)?
A =) (=) TN @) A N@) (7 e"(t + w)dw
log(Aoo(t)) o (1+ w) (A= +w)?
w) (L= a)’A@) 2N (t)dw | GGt Aoo(t) +e(t))

+ 8 JCD /I( +
og0oo@) Jo (AT wf O T w)? I0)
o 1 1 ds
w4 e (10g(>\00(t)) 1og<Ao,o(s>>) s

[0 0] ////( ) 1 B 1 .
" 4£ (1+s—=1)*(Noo(t) > +s—1) (10g(>\0,0(f)) log()\o,o(s))) !

= RHS4 (t)
Like before, we start by estimating all the terms on the right-hand side of (5.164) which do not
involve G .,
| —Ef,, () < C
log(Aoo(t)) ~ #410g"**(t) log(log(t))
—4o Nt N(t C
| ( (1) <>)A(t)|<4
log(hoo(£)) \ A()  A(t)? t*log” *(t) log(log(t))
| —8a N (t)\" () < C
A(t)log(hoo(t)) ~ t+1og”**(t) log(log(t))
log(AO 0( ) e(t)) ) n C|€””(t)|
— 4o : —1)e" ()] <
-0 (R OIS Tog(log (1)
—da log(/\( )) " C
——— N )| € ————
Toatao®) WS g

181



Then, we note that the following estimate:

|0? (M) | < ¢
PAw+ M)t ) T £2(t + w)? logb+1(t + w)(w + A(t)1=*)

implies

4 © o Mot +w) dw C
|10g(>\0,0(t)) L & (w + )\(75)1_0‘) (1+w)? sl < t41og" (1)

0 ellll(t 4 w) /\0,0(t)lia _ )\(t)lfa dw
4J0 log(Ao,o(t)) ((A(t)l‘a +w)(Aoo(t)'~ + w)) (1+ w)3|
CSpr>t " (z)]

log(log(t))
| —8(1 — ) a)\' JOO e”(t + w)dw < C
0o (MO~ a+w) (L+w)* = tlog"(t)

—4(1 - a)(=a () TV AN (@) f"o e"(t + w)dw |
log(Ao, o( ) o (L+wPA@) = +w)?

Next, we have

log( )\0 0

< ¢
4 logb+2( )
8 f@ ¢(t+w) (1= )’ AW) **N(W’dw, _ C

|log()\070(t)) o (1+w) (A1 + w)? t4 10gb+3( t)
o L ds  Csup,, (@2le"(@))
4] o (log()\o,o(t)) 10g(>\0,0(3))) [T 5= < Plog(t) (log(log(D)))?

and

(o 0] 6////(S) 1 B 1 .
|4£ (1+s—=1)*(Noot) >+ s—1) (10g(/\0,0(75)) 10%0\0,0(3))) i
_ Csup, (le"(x)]2?)
~ 3log(t) log(log(1))

Combining these, we get that all of the terms on the right-hand side of (5.164) which do not involve
G are bounded above in absolute value by

C C'sup,., (%" (x)])

_l’_
t4log"t (1) v/log(log(t))t?

We now estimate terms in 02G/(t, A(t)), starting with the term involving K;. We again use the
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preliminary estimate on e¢” to justify any differentiations under the integral sign, to get

5 ( Ag))? fo N (2) (K1 (z — £ A1) — 4(11(—’22_@) dx)

- (SR SN ["ovte ) (miwr ) - 2w

64N (1) [\ A(t)?
i L N (w + 1) (Kl(w,)\(t))—m) dw

64N (1) joo N (w + 1) (62K1(w, A1) — %) N(t)dw

A Jo
(5.165)
16 * m )\(t)Q
+ A(t)2L N (w + 1) (Kl(w,)\(t)) — m) dw
+ )\?3)2 L N (w + 1) (52K1(w,)\(t)) _ %) Nty

L 16 f SN+ 1)( (6§Kl(w,)\(t)))\’(t) _ Q(i\—f)w)> N(b)

+ (62K1(w, A(t)) — %) X’(t)) dw

The only term not involving A" which has not already been estimated is the first term on the last
line of the above expression. For w > 1, we start with

a0 w 2 2
r P r —1—p
K 7A t = 5 — 1 + d d
1(10 ( )) J(; )\(t)Q(l + ﬁ)g J{; w ( \/(7’2 1 _ P2)2 T 47”2) par
whence
O2F, (w, A(1))
© 2 4 _ 2,.2 4 2 0 2 1 9
:f 6A()2r (A(6)* = BA()?r? + 2r) [r f oy, r2_1-p ) ar
0 (A(B)? +72)° wo Jy w V(2 —1—p2) + 472

1 CONE)2r(A(E)* = BA(t)*r? + 2rt) (@ P r? —1— p? .
2w L (A(t)? + r2)® L w <1 * \/(7“2 —1-p?)2+ 4r2> dpd
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Then,

|,\zf)2 JOO N'(w + 1) (622K1(w, AN () — Q(i\l—f)w)) N (t)dw]

1

- CIN (1) Jw(l 1 )dw
T B8log?(t) Jy \2w 2(1+w

/ 2 1— 2
n ClA (2t)| J J J " p dwdpdr
t3log™(t) Jo + 7“2 V2 —1—=p2)? + 472

- C N C’)\ (t)? JOO 310g(2+7“)dr
NI RIS N OYO RS
C

< -
t4log" (1)

For w < 1, we first change variables, and start with

I L S REA(t)? — 1 — p?
Kl(w, A(t)) = L (1 i R2)3 L w (1 + \/(RQ)\(t)Q — 1= p2)2 + 4R2)\(t)2> dde

Then,
sK A))| < ——— | “R%pd
BRw N <€ [ [ L Rdpar
which gives

5 | w0 (ki - 530 ) Yo

1+ w)

__cC f N dw___ C

< 5= w

t3log?(t) Jo L+w/ tlog"t(t) ~ ttlog"™(t)
We now consider the expression (5.165), except with all instances of

A()*

replaced with
K(z —t,A(t))

(This expression also appears in 07(G(t, A(t)))). All of the integrals involving K which do not
involve A" have already been estimated, and we get

E ( Ag})? fo N (z) (Kl(x _ @) — 4(11(—22_0) dx) |
16 ( AESQ J:O N2 K (z —t, )\(t))da:) |

C
< —1——— +Csuple”
t4log” (1) z>1?| @)l
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From the explicit expressions, we also get

C
(=AM Eo1 (M), N (), N'(1)) | < ————— + C|e"(t
9 (A Boa MO N0 MO | € s+ CIe0)
Next, we start with
C w w
2 K < o
|at( 3(w7/\(t)))| t210g(t)|1+w2 )\(t)2*2°‘+w2|
Cw

+
#210g@ 200 (1) (N (£)2 -2 + w?)?

and
C 1
12 logb-l-l—ba(t) (A(t)lfa + w)2(1 + 'LU)3

and use our previous estimates on K3 — K30, and 0; (K3 — K30)(w, A(t))) to get

107 Ks.0(w, At))] <

|07 (—16 fo N'(s) (K3(s —t, A\(t)) — K30(s — t,A(1))) ds) |

C
< Csuple” + —
x>5)| (@) t4log"" (1)

Next, we will need an estimate on é‘fvg which is different from that recorded while obtaining the
preliminary estimate on \"”. We start with

O2vs(t,r)
—1—p?+r?

L e (G S
J J ﬁAm (t +w)d(F3(r, p, At + w)))dpdw

L

The second and third lines of (5.166) were already estimated in the course of obtaining the pre-
liminary estimate on A", and do not need to be estimated any differently here. The first line of
(5.166), with the replacement of A" with \” has already been estimated while obtaining the final
estimate on \”. Therefore, we can read off that

5 zle” )]\ log(log(t))A(t)*~** ~ Crlog(log(t))
|0;vs3(t, )| < Crsup (/\(x)2 2a) ; + og (1) (5.167)

+ F3(r, p, AM(t + w)) | dpdw

(5.166)

N (t +w)o?(Fs(r, p, Nt + w)))dpdw

x>t

Next, we estimate 07 F5(t,r) by proceeding line-by-line on the expression (5.140). Denoting, by
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Es ;1 the second partial ¢ derivative of the ith line of (5.140), we get

—1 6" v o —1—p% 412
Esaaa(tir) = == 0 L W ) (\/(1 +p2 —12)2 + 4r? Bl p At w) [ dpdw

2 6r rw
2] B AR A+ w))dpdu

1 6r rw
— - J J E)\”(t + w) 02 (F3(r, p, At + w)))dpdw
rlo Jo w
(5.168)

Note that, with the replacement of A with \"”, the first line of (5.168) was already estimated in
the course of obtaining the final estimate on \”. The same is true for the second line of (5.168),
except with the replacement of A with \”. On the other hand, for the third line of (5.168), we use
our previous estimate of

6tQ(FE’)(T’ P )‘(t + w)))
to get

CT. mnm
+ Crsup (" (z)|)

Brpa(tr)| < —=
| 5,t,t,1( )| t4 10gb+1( ) et

Next, we have

Esii0(t, 1)

-1 - 2 2
J J =N"(t +w Frr + F5(r, p, Mt + w)) | dpdw
6r Jo W V(L +p?—12)2 + 4r?

§V@+m@mmmﬁu+m»@m}

sl
1 I P \n 2

- = =N'(t + w)0; (Fs5(r, p, AM(t + w)))dpdw
rJer Jo W

+ E f’o N (t 4 w)r*w L ! dw 5.169

6r L+w? At +w)?20 + w? (5.169)

2 joo N'(t + w)r*w
r Jor (At + w)? 20 + w?)?

(2 — 2a)A\(t + w) 72N (t + w)dw

+ E J N (t 4+ w)r*w(2 — 2a)
T2 20)A(E 4+ w) 2N (E + W) 4+ A+ w) 2N (¢ + w))
(At + w)?2> + w?)?
__J M@+wyw«2—mmu+ww%xa+mfwj
6r (At + w)272 + w?)3

dw

Only two lines in (5.169) can not be estimated simply by comparing to an analogous term arising
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in the J; F5 estimates. They are estimated as follows:

_1 o) w
| BN+ )R+ w))dpdw
roJer Jo W

Ll :
< i
r Jor Jo w(t 4+ w)*log® 2 (t + w)
Cri\(t + w)?3
dpdw
(T + At +w)ro4(p2 —r2)2 + 2\t + w)22(p? + r?))

C A 1 w 9 90—3
< — _ r At + w)** pdpdw
r L wt? log%”(t) L ( )

C [~ 1 (v p
T L(t)la w L (t + w)tlog® 2 (t + w)
r? At 4+ w)?** 3dpdw
(1 4+ At +w)te=2(p? —12)2 + 2A\(t + w)?*=2(p? + r?))

- Cr
= ttlog"t(t)

=1 J U N+ w)rtu — 20)
(1 = 20)A(E + w) 2N (E + w))2 + At + w) 22N (¢t + w)) dw,
(At 4+ w)? 2> + w?)?

< T

= tilogh (1)
where we use the identical procedure used to estimate an analogous term arising while obtaining
the final estimate on \”. Then, we get

Cr
E t,r)] < ————— + Crsup|e”(z

Next, we have

@ 1 1
Esiia(t,r) = —TJ A" (t + w)w ()\(t)Q—Qa Tt At + w)2—2e + w2)) dw

6r

—2r JOO Nt + w)w
or <—(2 —20)ME)IN () (2= 20)A(E + w) TN (¢ + w)> "

(A(6)2 2 + w?)? N+ w)2 2 1 u2)?
— rf N'(t + w)w
T (2= 20)A0) N (2 - 20)A(E -+ w) 2N+ w)
(o S e
(5.170)

The first and second lines of (5.170) can be estimated based on estimates of analogous terms
arising in the estimation of ¢, F5 done while obtaining the final estimate on \”. On the other hand,
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by appropriately using

|[f(t+w) = fO)] < sup [f(t+ow)|-w
o€[0,1]

we estimate the third line on the right-hand side of (5.170), and in total, we get

n
B ya(tr)] < C;r . bCr : Sup( " (x)] )
sUily t4 log +2(t> t10g3 +1-3 a(t) >t )\(1‘)2 2c

Finally, we have

Es1ia(t, 1)

f J ( w; . %) Nt + w)

(\/( i Sl +F3(r,p,)\(t+w))> dpdw

1+ p?—1r2)2 + 42

(5.171)

“f f ( NOEY %>A’”@+w>6t<Fs<r7p7A<t+w>>>dpdw

w

K <¢ﬁ ) l) Nt w3 (B p At + ) dpd

The only term in (5.171) which can not be estimated simply by reading off estimates of analogous
terms arising in 0, F5 estimates from before is the one involving 02 (F3(r, p, A(t + w))). For this
term, we have

w

<C 1 1
sor g NV
1Og3b—2ab (t)

t410g™ (1) (1 + A(t)10=4(p? — 12)2 + 2A(1)2=2(p? + 72))
<
t4 logb+2( )

-] f (wQ_p 1)A"<t+w)af<F3<r,p,A<t+w>>>dpdw|

dwdp

Combining these, we get

Cr Cr |e””(m)|a:)
O2Es(t,r)| < T e
e Es ()] t4log" (1) tlog(3 2000 () ac;g ()\(95)3_%‘

Next, we need to record new estimates on (9?1}4. First, we note that, by the same procedure used to

obtain estimates on d,v;, we have

log(t) + log(2 + r?)
t

1020, (t,7)| < Cr ( ) sup (|\"(z)|z) (5.172)
z=t
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Note that this time, the preliminary estimate on \” is indeed strong enough to justify the steps
leading up to a d?v; analog of (5.12), but this will be unnecessary for our purposes. We then use

(5.167), and the same estimates for all other é‘f vy, used to obtain the preliminary estimate on ¢2v, .,
and get

[0Fvace(t, 7))

2r
< CLai ()

r4log®(t)

r(log(t)+log(2+712)) 1 le"(z)|x 2-9%2a t (5.173)
og tOg 2 3 10gb+1(t) + Supm}t A(m)2*20‘ A(t) s T < )

r(lo log(2+r e (z)|z 2«

( g(t)+tg( +r%)) t3log%+l(t) + sup, -, J\(m)(Qj\za /\(t)2 2

log(r) log(r) log(r) f
Tt T e T B 7T 3

which leads, via the same procedure used to obtain the preliminary estimate on J2vy, to

~

C CA(t)? 2 " (z)|x t
Ouu(t,r)] < + up | ———1,, r<-=
|G va(t, 7)) 4 10g N 2(1) | tlog® N (1) ame \ M(w)22 9
As usual, for the following estimate, we modify (5.173) by using ch%(t) in the region t — /6 <
r <t + t'/%. (Note that the preliminary estimate on A" implies the following).

" (z) |37) 2-2 1 c¢ 1/6 1/6
sup | ————— @ < , =t <r<t+t
x;{? ()\(iL‘)Zza ®) rtlog® H(t) 92 log®(t)
This gives
C C«/\(t)2f2a |6””(:L‘) |ZL'
62 c rdr) S + N/ N2
|10 vaellL2(rar) HT2 10g2 (1) logZV T2 (1) s;g) Az)2—20
In total, this gives
c CA(t)2 2 ™ (z)|x l
120,(t,r)| < {4 g0 T Tlog? 57 () 5Pzt (A(x)HQ)  TS3
+ Va\l, < C " C}\(t)Q—Qa - <‘e////($)|m) r> t
P12 10g21(7) T Tog2N 122y SUPazt \ Xmyz2e | Z 5

Using the same estimates that were used for 5§ v5 in the course of proving the preliminary
estimate on \", we get

) cos(QQﬁ(r)) -1
|at _)‘(t)< r2 E5|r=R/\(t)>¢0> |

o Cs, (1)
< +
t4log"™ (1) tlog®=2b(¢)
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r2

cos(2Q 1 (r)) —1 ,
|07 (‘A(tK( - ) Uy (1 — X>1(47)) = RAH) ¢0>> |

_ C CA(t)* 2 sup, =, (J\e(x)(;—)‘?i )
< +
t4 10g2b+N_2(t) thgb_3+N(t)

cos(2Q 1 (r)) —1 ,
|atQ (‘A(tK( A;f; ) Us (1 - X>1(47)) |r=R)\(t)a ¢0>> |

P
T ttlog® N2 (t)

) cos(2Qﬁ(r)) -1 9
0; | —A()< 5 le(l—) (01 4 v2 4+ v3) [r=Rag), Do) | |

r og™ (t)
- C C)‘(t)%?a SUPg>¢ (lii;(ﬂi)
< +
4 10g3b+2N(t) thg2N+2b_1(t)
2r C
|07 (A(Wbl (W)Fmﬂr:ma% ¢0>> | < Flog T 12N 2 (7)
O|6””(t) |

10g2b+2N72ba (t)

Combining these, we get

C |e””(:c)|x> 1
PGt hoot) +e(t))| < ——— +C
| t ( 0,0( ) 6( ))| # 10gb+1(t) legt) ()\(x)32a tlog(3—2a)b(t)
and ,
C Csupmzt (gf\(;)?)—(gc)x‘)

RHS,(1)| < + ,
RHS(?)] t41og"™ (1) 4/log(log(t))t2 log® 2% (t)

We now return to (5.164), and note that it is of the form

® 6””(8) ds I
_§£1%@w@»u+s—o+4“3@
B J‘w e////(S)ds

t log()\(]’()(S))()\o’o(t)l_a + s — t)(l + s — t)g

— RHS,(#)
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with

ms < O o e (EE)
<« ————+
! t41og"t (1) 1/log(log(t))t2 log® 2 (t)

We are now in the same situation as for ¢”, and repeating the procedure used there, we get
C
el/l/ t <
e ()] t4log"™ (t)
Using the explicit formula for Ao, we finally conclude

|A””(t) | < C

<—— =T
t41og" (1) ‘

To finish the proof of the proposition, we recall (5.12), and the fact that 9?v; has the same formula
as vy, except for \” replacing \”. Using our estimate on \", we get

C

Ru(t,r)| € ———
G087l rt2log"t (1)

Combining this with (5.172), we get (5.150). O

5.9 Estimates on 0"¢) F)

Later on, when we start to construct the exact solution to (2.1), we will utilize the orthogonality

<F4,¢o(@)> =0, t=T

by integrating by parts in various oscillatory integrals involving F);. Therefore, we will need esti-
mates on certain derivatives of F}; in order to control the integrands which will arise in this process:

Proposition 5.5. For0 <k <2, 0<j<1, j+ k<2 wehave

. . O]l N r C]l T
k| Ak Aj {r<logh(t)} {r<3}
PG AR ONS G e e T g 2 0 e Y
In addition, we have
O]l T C]l re<iAT
|0/ Fa(t, )| < 1 3b+1—2{gflogN(;)} e T 5b+2N—2{ <2}2 e
t*log ) (r? + A(t)?) t*log (t)(r? + A(t)?) (5.175)
Cli<yy '
=2

+
t41og® N 2 (1) (r2 + A(1)2)?

Proof. We start with a lemma which captures a delicate leading order cancellation near the origin
between v; and vs:
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Lemma 5.16 (Near origin cancellation between v; and v5). For 0 < k,j < 2, k+ 7 < 2, we

have
Crlog(log(t))

3,k | Ak AT
trt0y 0] (v1 + va)| < t210gb+1() )

r < log™ (t)

Proof. We use (5.11) and (5.49), to get

(t.1) + ot ) (fo M), b )+Err(t )+ B (L 7)
v T v )= L — , T v , T
' ? ¢ l+a—t t21og"(t) ’
t
<r<-
, 0<r 5

Then, using the modulation equation, and the previous estimates on its terms, we get

o1 (£, 7) + va(t, )| < Crlog(log(t)) Crlog(3+ 2r) Or O
) ) = 2 1Ogb+1( ) t2 longrl( ) 2 longrl( ) t3 logb(t) (5176)

L or<l

2

Note that, for (e.g) r < log™ (t), this estimate is slightly better than what would result from esti-
mating v; and v, separately.
We use (5.13) and (5.49) to obtain the analogous estimate after taking an r derivative:

© N'(s)ds b
1+s—t  2log"(t)

arvl (t, 7') + ar”? (t, 7') = J + Earvl (ta T) + EarUQ (t7 7a)
t

Again, the modulation equation, combined with the estimates for £ ,,, and Ey,,,, from the previous

subsections, give

Clog(log(t)) , Clog(3+2r) ,  C Cr
2 logb-H (t) 2 logb+1( t) 12 logb+1( t) t3 logb (t25.177)

|Oyv1(t, ) + Opva(t, 7)| <

) RS

t
2

We first note that, for j = 1, 2, 8{ v1 solves the same equation with 0 Cauchy data at infinity as
vy does, except with A(2+7) (t) on the right-hand side. Then, we use the fact that A solves

© N'(x)dx 4b
—4 doclog(A(E))N" (¢
| e T P s RO

* N'(s)ds
_4L AT +s—1)(1+s—1t)3
= G(t, \(1))

and differentiate j times for j = 1, 2, to get

|_4J°° N (s) s 8b < C'log(log(t))
¢ 1+s—t Blog’ ()  3log’t(t)
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and

| J A" (s 6b < C'log(log(t))
l1+s —t t41og(t)' — ttlog" (1)
Then, using (5.11),(5.49), we get
rlog(log(t
oo+ ()] < CTEEGERL < g (5.178)
o log(log(t)
T log(log(t
B (01 + wa) (t,7)] < cﬁ r < logV () (5.179)
Next, we use the equations solved by vy, v9, to get
—2r\'(t
720 (v) 4+ vg) = 12 (%) + 120, (v1 + v2) — 10 (v1 + Vo) + (v1 + v2)

which gives
2 rlog(log(t)) N
%0 (V1 + ¥ <C—, r < log™ (t 5.180
oo + )| < O TS a0 (5.180)
Finally, we study 0y,.(v; + v2). Because d;v; has the same representation formula as v, except with
A" replaced by \”, we can use the same procedure used for vy, to get

a0 )\,”(S)ds
Opvi(t,r) = _—
tvl( T) L 1+s—t

+ Eatrvl (tv T)
with Clog(3 + 27)

0 + 2r
| Eopan (1,7)] < —2

t31og" (1)
Then, we use (5.49) to conclude
C'log(log(t)) N
O (1 + ) (t,r)| < ————2, r<log (t 5.181
nton + )] < S 5" (1) (5.181)

]

Next, we note that our previous estimate for d,vs, (5.79), sufficed for all of our purposes up to
now. For estimating derivatives of F;, however, we will require a different estimate which will turn
out to be better in the region r < log” (t), and which will require a more complicated argument
than before. This refinement will also lead to slightly better estimates on d,.v5 and r20,,.v3 near
the origin.

Lemma 5.17 (Near origin refinements of various vs related estimates).

|0,v3(t, )] < W (log(log(t)) + log(6 + 61)) (5.182)
C'log(log(t
|5trv3(t7 T)| < ﬁ"_lét;) < 10gN(t)
Crlog(log(t))

2|0, v3| < r < log™ (t) (5.183)

2 longrl( ) ’
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Proof. We first use the same decomposition on ¢,v3 used before, and only need to use a different
argument for one term, namely:

o] 1 s—t )\”(S) -1 _p2 +7”2
— _— 6r _|_F , 7>\ dod
Jt (S_t)fo T (\/(—1—p2+r2)2+47~2 3(rs 0, Als)) | dpds

We treat different regions of the variable s — ¢. First, from our previous 0,v3 estimate, we have

s—t )\”(S) _1_p2+7.2
Oy dp| < C(s —t)?*N'(s)], s—t<
G <¢@_ < Cls — 12N

1 —p?+1r2)2 + 42

N | —

which gives

t+1 1 s—t N —1—= 2 2
- A i dpds|
e (s=0J r V(=1 —p%+1r2)2 + 472

Next, we have

t+6 1 s—t " 1 2 2

| _j f P)\ (S)ﬁr e dpds|
wl (s—1) Jo r V(=1 =2 +72)2 1 492
t+6 1 0 " S 2

< f —J p'A (S)|I5r T |dpds
iy (s=1) Jo r VEL =2+ 22 1 42

t+6 n
<C f ()]
t

+3 (s—1)
1
o— -
t2log” (1)

For convenience, we recall the definition of F3:

L (2 = PN

Fy(r o, As)) = VAPA(5)22 4 (1 — (12 — p2)\(5)%2)2

Similarly, we have

CrA(s)?T2((p* + rP)A(s)** 2 + 1)
N 207+ P+ (2~ PG

|(9TF3(7", P )‘(8))| <

For the region s — t < A\(t)'™%, we continue this estimate, and get

[0:F5(r, p, A(5))| < CrA(s)™
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So,

HADIT o ()
pN' (s
| J (s — t) f r O F5(r, p, A(s))dpds|

A =t
Cf J LIV (5)[rA ()2 2dpds
T

t2 1Ogb+1( )

t+6 s—t "
|f 1wf PX() o Fyr, o, A(s))dpds|
t 0

e (8= r

t+6 1 0 "
<C J J P MT(S)' 10, Fy(r, p, \(s))|dpds
t 0

e (8 —1)
t+6 " 1 1

c X, - Clonlon(0)

t21log” " (t)

T t_;’_)\(t)l—a (S - t)

Then, we treat the region 6 < s — ¢ < 6 + 67 in a similar fashion:

t+6-+67 1 s—t N (s . 2 +T’2
|—j ———f ) “@(V( p +amﬂmm>@@
t

wo (s=1)Jo r —1—p?+12)2 +4r2

t+6-+67 1 0 |)\”(8)| 1_ p2 i T2
< Or + 0, F3(r, p, A dod
£+6 (s—1) fo P | \/(_1 — 2+ 12)2 + 412 |+ |0rF3(r, p, M(s))| | dpds

t+6-+67 |/\”(S)|
t+6 (s —1)
C'log(6 + 6r)
S b+1
t2log""(t)

<C ds

Now, we study the region s —t > 6 + 6r:
We first note that

” —1—p2+7‘2
or + F3(r,p, A(s)) | pdp = 0
L (\/(1+p2—7“2)2+4r2 3(rp ())>pp

which follows from the fact that the integrand of the expression above is equal to

( ( —1+p*—r?
Vo= 202 (1 + 1) + (1 + 72)2

. L+ (2 — PHA(s)* ))
A1+ 2(p% + r2)A(s5)202 + (p2 — r2)2\(s)do 4
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Then, we use

—14 (s—t)*>—r?

' <V(S =)' =2(s — )2 (=1 +72) + (1 +12)?

> =T (1 + Earvi‘hl)

with
(1+7)2

B vy1| < C——3,
| Or 3,1| (8—t)2

s—t=6+6r

and

L4 (2 — (s = ()N 2

' <\/1 +2((s = t)2 + r2)A(s)2072 + ((s — 1)2 — 12)2\(5)44

) =T (—1 + Eaﬂ,&g)

with
(1+7r)?

B vs2| < C——3,
| Or 372| (S—t)z

s—t>=6+46r

which gives

B 0 1 s—t )\”(S) —1—p2+7“2 . . .
- | @<¢( +&maAUQdM|

terer (5= 1) Jo —1—p?+1r2)2 + 412
» 1 ©N(s) —1—p?+r?
= terer (5 —1) Ltp r o <\/(—1 — p? 4+ 1r?)2 + 42
iy * 1 N(s)
t6rer (5 —1)
L
t

|
+orer (5= 1) (

< ¢
T 21loght(t)

+ F3(7‘, P )‘(5))> dpd8|

r (EaTU371 + Ea,-U3,2) ds|

<

2
2d3

1+7r)
s—t

)

In total, we get

|0,v3(t, )| < (log(log(t)) + log(6 + 67))

t2log" (1)
Note that this estimate is better than (5.79), in the region r < logN (t). For 0y,v3, we recall that the
partial r derivative of the second line of (5.147) was bounded above in absolute value by m,
and an estimate of the r derivative of the first line of (5.147) was inferred from an estimate on ¢,.vs.
Using the above near origin refinement of the 0,v3 estimate, instead of the previous one, gives

C'log(log(t))

——=" r<lo Nt
t3log"™ (1) g (1)

|Orvs(t, )] <

Now, we can prove a different estimate for r%0%v5 than what follows from previous work.

7”25TTU3 = T2F0,1 (t, T’) + 7’2ﬁtt7j3 — 7“&4}3 + Vs
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Using (5.182), as well as our previous estimates on v3, we get

Crlogllog®) 1 .n(y)

2
77| 03| < ;
| 3| t2 longrl( )

]

Finally, the estimate for d;v5 used when estimating \” was based on estimates for No(f) and
0-Na(f) which only used at most two derivatives of \. For future use, we will prove a stronger
estimate on d,v5, which uses the final estimate on \”. (Note that this is the reason why no estimates
on dyv5 were presented in the proposition statement in the \” section). As part of the process, we
will also obtain an estimate on 0;,v,.

Lemma 5.18 (Improved 0,vs, 0;,-v4 estimates).

Cr t
|05 (t, )] < P log T () r<g (5.184)
c t
ST 3N r< s
Goa(t, ) < PR O (5.185)
512 1og21(7) r=g

Proof. For this estimate, we start with

ows(t,7) = f | Lg = L}) — (auNQ(fvs)(s, e (i), )’
AN (o) (s, 1Bz + yl) (B +y) - £)°
Bz + y|?
+51N2(frgl(i|§|x + y|)) dA(y)dsd
This gives
1005 (£, )

CTJJ JBStm S—t) ly[?

(IﬁlzNz(fvs)l(s, Bo+y)) +

|81N2(fv5)|(37 |B‘T + y|)) dA(y)dsdﬂ

Bz + |
(5.186)

In order to proceed, we will have to estimate 0,,.v4, which was not done previously. We start by
noting that, the procedure used to obtain (5.149) was to write

1

atv4(t, T) = TJ atrvll(ta rﬁ)dﬂ

0
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and then, to estimate 0;,v4(t, ) uniformly for 0 < § < 1. So, in the region r < %, we have

C
|Oerva(t, )] < /3 10g3b+2N—2(t)7 TS

N | ~+

For the region r > % we start by introducing the vector field
V = t&t + 7”6,,

and recalling that
1 V4
_attv4 + 6'r'rU4 + _arv4 -5 T V4,c
r r
So, we have

1 1
(—5tt + 6” + ;& - 7‘—2) (V(@tm)) = V (@5’047c) + 25,51}470

We use (5.148), (5.173), and

C
Pogo(t, 1) + [Opvaclt, )| < —————, t =tV <r <t + /0
| t 470( )| | tr 470( )| 19/2 loggb(t)
to get
(1 loaN
{TBL("‘)} t
r3¢3 log‘%’b(t) ) r< 2
log(r) log(r) + log(r)
|V(6tv4 c)|(t T) <(CA{r log?® (t)|t—r|3 r3t1log?® (t)(t—r)2 log2b* 1 (t)rdt|t—r|
3 ) 1
%, %<r<t—t1/6,0rr>t+t1/6
1 1/6 1/6
m, t—1t / <r<g t+t /
and we get

C
+35/12 long_l (t)

IV (Grva,e )l L2rary <
Next, we recall (5.143), and get
C

||atv4,c| |L2('rd'r) < W

Then, we apply the same procedure used before to estimate (e.g.) dyvy4 in the region r > %, to the
equation for V' (d,v4), and get

C

[V (Qwa)l(tr) < 123/12 10201 (1)

But, then,

(t02v4 + 10pvy)
T

_ V(at'U4) . 25?1]4
r T

t
Oprvg(t,r) = — ;@21}4
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and we have already estimated 02v,, during our study of \"”. So, we get

oty ) < ——C >
rv YT = — ’ r=3
trd 13512 10g?~1(t) 2
Now, we can estimate J;, N5 (f), and get
C <t
5 1030 (1) (r2+ M\ (1)2)? T\Q
e No(HI(87) < 4 G o), cuoge) oot
rli=r T RVt T g3 10g30 14 22 () 2

(Note that we only need to estimate . No( f,, ) in the region r < ¢, which is why we used ﬁ = %
to simply the above estimate. In previous estimates, we did not proceed analogously because we
eventually used a single estimate for the entire region % <r<t—t,orr = t+t" for some
v > 0).

Using the estimates on 6{%, g=0,1, k=1,234, we get

Cr r t

t51og® (£)(r2+ A (t)2)? =2
|atN2(f)(t7r)| < C Clog3(r) F>1 > t
r347/2 log% 3 p) r2(t—r)t> 2

Now, we return to (5.186), and use the same procedure used to estimate vs in the region r < %

3
earlier. (In particular, we handle the contribution to d,v5 coming from the term 7,15 ‘gtﬁ% , which

arises in the estimate for 0. N ( f, ), using the same procedure as in (5.96)). This results in

Cr
t9/2 log%+3b72 (t) ’

|Oros (2, 7)] <

N |+

r <

]
Now, we proceed to estimate F}, and various of its derivatives. We recall
Fier) = (1= o) ) ( Foatt) e\ i )
,T) = — Xzil—= < )+ V1 +v2 + v
4 X=1 logN(t) 0,2 2 1 2 3
A cos(2Q%(7‘)) -1
+ (1 — X>1(7)) ( A;,; (vg + v5)
Then, using (5.77), (5.83), (5.91), and (5.176), we get
(1 — X>1(12+))
Z+Vog™ (t) r
Fyt,r) < C &
| 4( )| (TQ + )\(t)2)2 (tg 10g3b+1—2ba(t)> (5187)

(1 - X>1(4t_r)) r
(r2 + A(t)?)? 210g 2V 1(1)

+C
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Next, we will need to record estimates on 0, F;, and 70, F;. By combining (5.122), and (5.184),

we get
Cr t
|Orva + Qpus(t, ) < 3 10g3b+2N72(t)’ S 9

This, combined with the explicit formula for Fj 5, (5.178), and (5.119), gives

Ol ciogh ()" N Clycy r
3 10g3b+172ba(t)(7n2 + )\(t)2)2 (7’2 + )\(t)2)2 3 10g5b+2N72(t)

where we estimate derivatives on the cutoff functions by (e.g.)

|atF4(t7 7’)| <

|X/ ( 2r )| Nr < CH{T<10gN(t)}
“MogV (1) tlogN (1) tlog(t)

Similarly, for the partial  derivative of F;, we use the explicit formula for Fj », (5.182), (5.177),
(5.84), and (5.92), to get

~

Crlciog™ 1)) Lo<ty r
2 10g3b+172ba(t) (7,2 + )\(t)2)2 (7’2 + )\(t)2)2 2 10g5b+2N71(t)

Treating the terms involving x> and Fj » as before, and using (5.179), (5.151), and (5.152), we
get

|0y Fu(t, r)] < (5.188)

EE(r)] < St CLyayyr
t ) t4(7’2 + )\(t)2)2 10g3b+172ba(t) t4 10g5b+2N—2(t) (?"2 N )\(t)2)2
Clyer,

_l’_
t41og” N2 (1) (r2 + A(1)2)2

Next, we note that, exactly as was the case with J;,v4, we can infer the following estimate on 0y, vs
by inspecting (5.184), and the procedure used to obtain it:

C t
< ) <z 1
|05 (t, 7)) P 1og T 5 (5.189)
We use the same procedure, (5.181), (5.189), and (5.185), to get
1 N T Ty 7
{r<log™ ()} {r<3}
rlo.Fy(t,r)| < C +C
OreEa(t,)] 3 1og® 120 (1) (12 + \(1)2)2 31og™ P2V 2 (1) (r2 4 A(t)?2)2
Next, we use the same procedure used for vy + v, v3 to estimate r20%v,, 720%vs:
12020y = 1?04 0(t,7) + 120404 — 10 v4 + vy
So,
20204 (L, 7)]
Cr Cr? Cr Cr
S 312N T 52 N SraNT, T 312N 1
t2log (t) ttlog (t) t?log (t) t?log (t) (5.190)

- Cr
= 12 10g3b+2N71(t) ’

r<

N | =+

200



and
|7"2831)5(t77')|
Cr Cr? Cr Cr
< oo SNT—2 o 5N + 5N
ttlog™(t)  ttlog (t)  t7/21log2 T3(t)  t72logz TT3(t) (5.191)
Cr t

< , <
t3 10g3N+b_2(t) r 2

By using (5.180), (5.183), (5.190), and (5.191), we get

L ctog™ " N Cly<cyr
t2 10g3b+172ba(t)(,r2 +)\(t)2)2 t2 10g5b+2N71(t)(T2 + )\(t)2)2

720, Fy(t,r)| < C

5.10 KEstimates on Fj

Recall that F5 was one of the vg-independent error terms on the right-hand side of (5.26) which was
not included in the modulation equation, and is therefore, not necessarily orthogonal to gbo(m).
Hence, we must prove that it decays sufficiently quickly in sufficiently many norms. This is the

result of the following lemma.
Lemma 5.19. We have the following estimates on Fj:
1 C'log® ()
a0 Ml < ==

155, M)l _ Clog™'(x)
NED) = 35/8

Proof. We recall (5.28):

F5(t,7") = N2(U5)(t7r)
N sin(2(vy + vg + vz + v4))

(cos(?Qﬁ + 2v5) — COS@Q%))

2r2
cos(2(vy + vy +v3 4+ v4)) — 1 i )
+ ( 52 (sm(?Qﬁ + 2v3) —sm(?Qﬁ»
Then, we start with

Cr < t
P2aNOD og 6N T = 3

|Mwmww<{<a$£°g Y

Rl Z 2

Next, we have

e 0 0] (con(2. ) (cos(20s) — 1) (2@ ) sin(205)) |

|U1 + vo +v3 + 1)4| 2 T)\(t)
<C 2 U5(t,7“) +m|?}5(t,r)|
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<cos<2<v1 Fn et ) - 1) (sin(2Q ) (cos(205) — 1) + cos(2Q y ) sin(2u5)) |

< C(Ul + vy +v3 + U4)2 r/\(t)vg n |’U5|
2 2+ A(t)?

r
Using our previous pointwise estimates on vy, Vg, Us, U4, U5, We get

( Cr
(P24 A(E)2)111/2 1og®—3+ 22 (1)
C log(r) log*(t) C'log*(t) log? (1)
: LY —)2:5/2¢3/2
|F5(t, ,,,)| < r3t2log”(¢)|¢ 47"| (t—r)2r
Clog (1) L<r<t—wt orr>t++/t

N
r7/2¢3 10g3T+4b71(t) ’

4
(T, t-Visr<t+vi

r<t

[\

This gives
1 C'log® ()
W||F5($7T)||L2(rdr) < A

We then proceed to estimate || F5 (¢, -A(¢))]| 1
We start with

CA(t) CA(t)|vs(t,7)0rvs(t, 1)
r2(r2 + A(£)?) r(r2 + (1))

N C’|6Tv5(t,r2)|v5(t,r)2 N Clus(t,r)]?

|0, Na(vs)(t,7)] < vs(t,r)? +

(5.192)

r 73

For the two terms on the right-hand side of the above equation which involve 0,v5, we estimate as
follows:

||)\(t)|v5(t,7")(9rv5(t,r)|| I,z

us(t,7) C
_— oot . 2 <
||T(T2 + )\(t)2) ||L ||(62/U5)(t, )\(t))HL (RdR) t21/4 logb_6+5év (t)

< CA(1)

|0,v5 (L, 7)|vs (¢, 1) V2
| 2 lr=rx@) || L2(Rar) < [|(2vs)(t, -A(t))||L2(Rar) - ||r—2||m

11+b
B C'log ()
$31/4
For the other terms in (5.192), we use the v; pointwise estimates. In total, we get
C
£21/410g 677 (1)

[1(02N2(v5)) (¢, -A(0)] £2(rary <
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Next, we have

p sin(2(vy + ve + v3 + v4))
" 2r2

(cos(2Q + 2v5) — COS(QQW) )))

_ cos(2(vy + vy + v3 + mﬁ)@r(vl + vg + v3 + vy) ( 08(2@ S+ 205) — cos(2Q ))

r
sin(2(v + 1;23+ v3 + v4)) (COS(QQ + 205) — COS(QQW) ))
n Sin(2(U1 + 1;22-1- V3 + U4)) (_ sm(2Q _|_ 21}5)6 (Qﬁ + U5) + SHI(2Q )a Q/\(t))

For 0,v,, Kk =1,2,4, we use the pointwise estimates from the previous subsections. On the other
hand, for 0,v3, we use the energy estimate procedure, previously used for ¢,vs, to get

o log(log(s)
[ A lants < @ [0,
t

52 longr1 (s)

10rvs(D)]| 2rary < C

_ Cy/log(log(®))
tlogb-H( )

Then, we have

cos(2(vy + vy + v3 + v4)) 0 (V1 + Vo + V3 + V)
2
. (cos(ZQ + 205) — cos(QQ )) =) | L2(RaR)

lr=RA®)

Op(v1 + v + v
< (01 T22 1) ( 05(2Q 1 + 205) — cos(2Q 1 )) lr=ra@|z2(RaR)
cos(QQﬁ + 205) — COS(QQﬁ)
+118203) (8, RAO) |2y | 3 Iz

C'4/log(log(t))
= t9/2 long—2+% (t)

Using the pointwise estimates on v;, we get

sin(2(vy + vg + vz + v4))
3

[ (COS(QQ +205) — cos(2Q 1 )) lr=ra@)|[22(RaR)
C

<
$11/2 10630315 (1)

We use

sin(2(vy + va + v3 + v4))

| = (_ sm(QQ + 205) 0, (QMlt + v5) + sin(2Q 1 (t))a QW>) |

_Cl+mtvstul (A% ABst )] | [dusirA@) N (5.193)
= r2 (7’2+)\(t)2)2 T2+>\(t)2 T2+>\(t)2 5 5
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The first term in (5.193) which involves 0,.v5 is estimated as follows:

|01 + w2 + 03 + va| [ |Orvs|rA(D)
| r? r2 + \(t)? |T=R>\(t)||L2(RdR)

|v1 + v + v3 + va| [|Opvs|rA(t
| 72 2+ \(t)2 |r=Rx t)||L2((0 537y ) RAR) (5.194)
(v1 + vy + Vg + v4)

r(r? + A(t)?)

where the second line of (5.194) is estimated using the pointwise estimates on 0,.v5 in the region
r < L. In total, we get

C|

+ C[(02vs)(t, RA())||22(rar) - ||

AWz

|1)1 + vo +vs + U4| |5TU5|7">\(75 010g4(t)
2+ A(0)2 lr=rx@) || L2(RaR) < TV

The second term of (5.193) which involves d,.v5 is estimated as follows:

r2

U1+ U2+ U3+ vy

C'log®(t)
tTA(t)

| || - || 2|1 - 11(B205) (8, M) 2 (am) <

The other terms of (5.193) are estimated using the v, pointwise estimates for 1 < k£ < 5. In total,
we get

SiIl(Q(Ul + vo +v3 + ’04))

I = lr=RA(H)
. (— s1n(2Q —|— 2’05)6 (Qﬁ + ’05) + Sin(QQﬁ)arQﬁ) |r=R>\(t)||L2(RdR)
< C'log*(t)
$21/4

Finally, we have

o (<COS(2(U1 + vy +v3 +v4)) — 1) (sm(QQ +20) — sin(2Q 1 )))

272

- _ sin(2(vr + va + v + U4)>&r(1}1 + vy + v3 4 vy) (SIH(QQ +205) — Sm(2@ )>

7’2
ool ot vat o) =D (G0 4 ou) —sinz, )
N (003(2(01 + U2:; vs 1)) — 1) (cos(QQ +205) (0 Q 1+ 0v5) — c08(2Q 1) Qw))

(5.195)
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The second line of (5.195) is estimated by
— Sil’l(2(U1 + vo + V3 + U4))
|| .
(sin(2Q +205) = sin(2Q 1)) lr-mao lr2(rary

V1 + V2 + U3 + vy v5(9 (U1+U2+U4)
< O ()RR

O (V1 + V2 + V3 4 Vy)|r=RA)

lr=ra) || L2(RdR)

U
e A

C'log®™ (1)
£35/8

The third line of (5.195) is estimated by
- (cos(2(vy + vo +v3 +v4)) — 1)

7"3 (Sln(2Qﬁ + 2'1]5) — Sln(zQﬁ)) |7‘=R)\(t)||L2(RdR)
V1 + U2+ U3+ vy

Us
< CH ||%@||7|r:RA(t)||L2(RdR)
6-+b
< C'log”™"(t)
t5

Finally, the fourth line of (5.195) is estimated by

cos(2(vy + v +v3+vg)) — 1
| lr=r0)

72

- (cos@@ﬁ +205)(0,Q 1 + Oyvs) - cos(2Qﬁ)6rQﬁ) e rao || L2

V1 + Vg + V3 4 Uy v rA(t)%vs
< || - 2 r ] ||%73 ( || <)\(t))\(t)25+ /’,,2 + (7"2 + )\(t)2)2 |T:R)\(t)||L2(RdR)

+[|(Ga05) (£, - A(t))||2(Rar))

C'log®*(t)
$19/4

~

Finally, we use our pointwise estimates on all v to get

1 (™ (Fs(t, RA(®)))? Y2 Ologtth(t)
()\(t)Z J;) RQ RdR) < t21/4

Combining all of these estimates, we get

1 C'log®** (1)

mHFs)(t, A < 13578
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5.11 Estimates on Fj

We prove the analogous estimates on Fg:

Lemma 5.20.
1 C

)\(t)2||F6(t,7’)||L2(rdr) < #410g™ 2N 1 (1) (5.196)

1 C

s F t,T 1 < 5
A(t)H 6( )| H/ t9/2 10g4b71+%(t)

Proof. We start with

A

t \(t 4 ¢ 2 " 2 oo/\ t 4(,,2 2 d
Vo, < Cr ()*r (va( ,7;)8 +us(t,7) )dr+CJ (t) (04; vg)rdr

2

C

< 8 10g10b+4N—2 (t)

where we used (5.83), (5.91). This concludes the proof of (5.196).
Next, we have

. cos(2Q 1 (r)) —1
0, Fs(t,r) = X/;1(4_) (é) ( A(t; ) (vg4 + v5)

t t T

Ay <COS(2QM1t)(r)) = 1)

+ X>1(7) (va +v5) O, 2

+ xz1(—

t 72

4 <cos(2QM1t)(7")) - 1) 0 (vg + v5)

We estimate the 2 norm as follows.
C X1 () ()?
O var - || o e |
19/21og? 1% (1) +llorvsllazgan - | (r? + /\(t)Q)zHL""
C

<
19/2 10g5b—1+% (t)

||arF6(t7 T)||L2(7‘dr) <

where we used (5.83), (5.84), (5.91), and (5.93). The last term to estimate is

Fﬁ(t,’f’) || < O
r L2(rdr) ~= 15 10g5b+2N_1(t)

where we used (5.83) and (5.91). Combining these, we get

1 C

o~ F t 71 <
A(t)H 6( 7r)| H/ t9/2 log4bil+%(t)
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5.12 Estimates on v,,..-dependent quantities

Finally, we define v, := v1 + v2 + v3 + v4 + v5; and record some estimates on v.,,-dependent
quantities which will appear as coefficients of various error terms involving the final correction,
which is to be constructed in the next section.

Lemma 5.21. We have the following estimates

Veorr (T, RA(1))

I Veorr (T, RA(2))
RX(z)

RM2)2(1 + R?)

C'log(log(x))
z? log(x)

12 + 1] [l <

Veorr (T, RA(2))

1+ 7

||Lm + ||6R(’Ucorr(xaR)\<x)))||LT7‘ < C

Veorr (T, RA(2))Or(Veorr (2, RA(x)))

| YL g 0.1))
||UCOM(CL’, RX(x))0r(Veorr (2, RA(T))) I N ||6R(Ucmr(x, RA(x))) I
R2A\(2)? L((Le0)) 1+ R)A()? "
B C'log(log(z))
x?log(z)
Proof. From (5.176), (5.77), (5.78), (5.83), and (5.91), we get
o) < 1og (1
|UCOTT(t7T)| < tQIS’TC’(t)’ IOgN(t) <r< %
%, L<r
This gives
||vcow(x,R)\(x)) 2, 4] Veorr (T, RA(T)) o < C'log(log(x))
R\ (z) LU RN (1 + B2 T T 22log(x)
Then, we use (5.177),(5.182), (5.79), (5.84), and (5.92) to get
Bl (1) < log (1)
|8R(Ucorr(l‘7 R/\(J])))| < C)\(ZL') m’ 1OgN(x) < RA(‘Z') < %
\/Lfv RA(z) > 3
This implies
Veorr\ T, RA(x
) e A v, RA@) e < €
Next, we have
log (1 2
Veorr (T, RA(2)) | OR(Veorr (T, R)\(QZ)))| < C'( og(log(r))) R<1

| R)\(l’) | ) | )\(.Z') 4 log2b+2(x) ’
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Clog(log(@)))? | « p <
24 log2?+2(z)? - = Aw)
Vuore (@, BA)) | Or(Veors (2, RA@))) | _ ] 107 s
| RA@) || R\@) | < Wgczb(w)a log™ (z) < }:)\(x) <3
e A E) > 3
and
iy, M) <log"()
|aR(’Ucor7”(x7R)\($)))| < 1 lo N(I) < R)\(IL’) <z
D YE R T O
log’(z) =~ _1 RAz) > 2
Nz 1+R2> T 2
which imply
Ucorr (LC, RA('T))&\R(UCOTT (l’, R)\(QJ)))
| A (1)? |25 0,1)
Ucor’r(xy R)\(ZE))&R(UCOTT(CC, R)\(x))) aR(Ucorr (ZL’, RA('T)))
] 2 2 ||L§((1700)) + | 2 2 [|e
R2A(z) (1 + R?)A(z)
_ Clog(log(z))
22 log(x)

6 Solving the Final Equation (Wave Maps)

The full equation to solve is (5.26) with 0 Cauchy data at infinity. For ease of notation, let us set
u = vg, and re-write (5.26) as
cos(2Q 1 (1))

1 :
—Outt + Ot + —0pu — —;”u = F(t,r) + F3(t,r)
r r

where
F(t,r) = Fy(t,r) + F5(t,r) + Fs(t,r)

and we recall that F}y, F5, and Fj are defined in (5.27), (5.28), and (5.29), and are estimated in
theorem 5.1. and

with
N(f) = (W) cos(2Q 1 ) + (%) SIn(2(Q 1 + Veorr)
Li(f) = Siggf ) 05(2Q 1 )(€08(2ucerr) — 1) — Sir;gf ) Sin(20Q 1 ) sin(2ecs)

Veorr = U1 + V2 + V3 + Vg4 + U5

Note that we will utilize the crucial fact that

(Fy(t, ‘)>¢0(W)> =0
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6.1 The equation for 7 (u)

We will make appropriate changes of variables in order to (formally) derive the equation for the
distorted Fourier transform, discussed in section 4 of [14], of u. (Note, however, that we will not
renormalize the time variable, unlike in [14].) We will denote the distorted Fourier transform of a
function f by F(f). Let

u(t,r) = v(t, m)

Then, if we evaluate the equation for u at the point (¢, RA(¢)), we obtain

— ouv(t,R) + 2?8 Rowu(t, R) + (AA '((tt)) _ 21(%)22 ) Roy(t, R)
))\\(( )) R2522 ( ) + ﬁ (5221}(25, R) + %520(@ R) - wv(t R)>
F(t, RA(t)) + F3(t, RA(t))
Now, let . R)
w(t,
v(t,R) = i
to get
_ onw(t, R) — (()) w(t, R) + QX(( ))(?1(R(32w)(t, R)
=) | 1N(@)? () N()? w
¥ < A1) AN ) wit: B) + ( o) W) Rozult, B) 62)

MO et B + (agzw(t R) - ( 58 ) wlt R))
A(t)? ’ A(t)? ’ 4R? (1 + R?)? ’
= VRF(t, R\(t)) + VRF5(t, RA())
Next, from (5.1) of [14], we have
F(ROpw) = —2£0:F (w) + K (F(w))
where we will use various estimates on K, proven in [14], later on. Making the final change of
variable
y(t.€) = F(w)(t,EA(1)*)

and evaluating the distorted Fourier transform of (6.2) at the point (¢, wA(t)?), we get

= duplt ) — wy(t.) — L 0(t0) + 0K (e 1) ) A

(B + i) 100+ 30 (e s ) 207 3
#2300 (1606 K100t 5520 ) (A7) = J K (K750 ) (A0)

= F(VF(t, A0 (@A) + F(V-Fs(u(y)) (£, A1) (wA()*)

where we write F3(u(y)) to emphasize the dependence of F3 on y, which is related to u via

y(t,§) = F(Veult, A1) (EA())
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6.2 Estimates on F)

Let

ottt + 50k (a5 ) xo?

—A"(t) | N()? N'(t) . )
" ( 2X(t) " 4)\(25)2) y(t,w) + WK (y(t’ A(t)z)) (wA(t)")
#2300 (1600 K10, 550) ) (A0

t)?
-k (Kot 550 ) (A0

FQ(y)(t>w) ==

Note that (6.3) becomes
Oy +wy = —F(V-F(t, A1) (WA[)?) + Fa(y)(t,w) — F(V-E3(u(y)) (¢, A1) (wA(£)?)
Our goal is to prove the following proposition:

Proposition 6.1. There exists C; > 0 such that, for all y satisfying

y(t, W)/ p(WA(E)?)wA(t)?) € C)([To, 0), L*(dw))
and
Oy (t, w) VWAV p(wA(t)?) € C)([Th, 0), L*(dw))
we have the following inequalities, for x = Tj:

Ch
||F2(y)(x)||L2(p(w)\(m)2)dw) < log( ) (||aty( )||L2(p(w)\(:p)2)dw)

(6.4)
1
+5||y($)||L2(p(wA(x)2)dw))
and
|IWA( ) 5 (1) ()] L2 (p(eo(2)2)dw)
S ZTlog(@) xlog( ) (V@) @)l 2@ +110w@)lxpeean) (6.5)
C
+ 72 10;( ) (||\/7A( ) (x)||L2(p(w)\(x)2)dw) + ||y(x)||L2(P(W/\(I)2)dw))

Proof. By the symbol type bounds on a from Proposition 4.7 of [14], we have

§p'(§), _ &(ad’ +ad’)
| | = I <C
p(&) |al
Then, by (5.3) of [14], there exists a constant C' such that, for f € C*((0,00)) and @ = 0, %, we
have

KK Hlzzgoae) < C (K" Fllz2(oae) + 11K (Ko (f))2(0ae))
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1

In addition, we use Proposition 5.2 of [14] to get, for a = 0, 3,

K2 Ko f| 2 (i) < CIKE | L2(oae)

(KM Ee, Kol fl|r2pae) < ClCE™ fl]L2pae)
So, fora = 0,1
KK fl2(paey < ClIKE* ] L2(0ae)

Also, since

(€0c, K1 = [€0c, Kol — €0 (if(g)) /

1
)90

1K (€%, K1 L2(pae) < CIKE™ 2 (pae)

For later convenience, we will record estimates on some terms appearing in (6.3), treating
homogeneous components of a norm with weight (w(x)?)'/? separately:

the symbol type bounds on a imply that for o = 0

1K (ry(, )\(x)g))(W)‘(x)QH|L2(p(w)\(:r)2)dw)

- ( [ ot (#una W))(@)Q %) "’

<505 (f:op(g) (2wt A(i)2>)2czs> ;

< Ol[0y(2)]] 2 (o(wr(z)?)dw)

IVwA() K (Ory (e,

)\(ZL’)Q )) (W)‘(I)Z) | |%2(P(w>\(w)2)dw)

K(aly('xa

))(m(a;)?)) (1+ A@)'w?) " pwA(z)?)dw

Nar
K(@wle, 5 )(©)) VIFERS

(1)? Lw (613/(””’ %O L+ E2(€)de
JOO (51y($,cu))2 (1 + (,LJ)\(:);')z) p(wA(@)?)dw

N
Q
° 8
TN TN

So,

VW) K (Ouy (e, W))(M(W) |22 (pen(@)?)aw)

< C ([101y(@)]| 2(priyyaw) + VW) 019(2)]] 22 (o)) a0))
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Similarly,

| <[§5& K](y(z, )\(;5)2))) (WA@) )22 (per@yawy < CHY@N 22(prce)?)dw)

1 (K(y(:zr» )\(;L‘)z))> (WA@)) |2 (percyyae) < CllY @) 22 A@)2)d)

|| <y($’ A(x)2)) (WA@))] L2 (pr@)ae) < CllY@)||2 o(r)?)a)

|vwA() ([gag, K](y(a, W))) (WA@)) |2 (peor)yae)

< C (|ly(@) || 2(pr@)?2)de) + VOA@)Y(@)]] L2(prce)2)an) )

IVaA) (K (y<x, W>> (wA<x>2>) e2oerers
< C (|ly(@)] 2 (pr@)aw) + WA@Y ()] 22(pr@)?)aw) )

Vi@ (1 (Ko 55)) M@ lpanoms

< C (ly(@)l2(porieya) + V@@ Y@ 22 (oor@y)as))
We thus conclude the inequalities (6.4) and (6.5). L]

6.3 F; Estimates
Our goal in this subsection is to prove the following proposition.
Proposition 6.2. For y satisfying

y(t, )V p(WAD2)wA)?) € CY([To, 0), L (dw))

let F3(u(y)) be given by the expression (6.1), where

. At) - ) r
atter) =\ 207 (ot 5)) () 70
Then, there exists an absolute constant C' > 0 independent of y, such that
IF (V- Fs (u(m)) (t, - MO@A )| z2percn))

Vecorr (ta R>\ (t))
< Clly@ll a2 (“T(t)

+ CIWAO Y72 (ponce)2)iw)

n %||<m<t>>y<t>||i2(pw>2>dw> (1 n ||M||m)

17 +1]

Veorr (t, RA(t)) >
||

RAD2(1 + R?) 66)

R
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and

VWA F (V- Fs(uy) (t, - A0 @A) 2o

< CIVNDYO garomsn - (1P DD,y e OO

aR('Ucorr (t R/\( ))) | | Veorr (ta R)‘(t) ) aR('Ucorr (ta R/\(t)))

|| (1 T RQ))\( ) ||L R/\(t)2 ||L%((071))
Veorr (ty RA(t))Or (Veorr (t, RA(t)))
+| R2§(t)2 Lz oo))> (6.7)

+ CJ A DY 172 (o))
C 2 2
+ m“@/\(t) DO 22(pr)2)de)

. (1 + ||Ucorr(t7 R/\(t))

e+ 00 (e (0 RA(t)))HLx)

where
Veorr = U1 + V2 + V3 + Vg4 + U5

Proof. To prove these estimates, it will be convenient to use the distorted Fourier transforms of
[1], associated to the operators L* L and LL*, where
cos(@r) + 1)

COS(Ql) L¥ = —0. — (

r r

L=0,—

Let us use ¢¢(r) to denote the eigenfunctions denoted by ¢¢(r) in [1], and ¢(r, £) to denote the
eigenfunctions of [14]. By the definitions of these eigenfunctions, there exists f such that

Vo ye(r) = fF(\/€)(r,€) (6.8)

To determine the expression for f, let g € S, with g(0) = 0. Using the definitions of the Fourier
transforms from [1] and [14], and (6.8), we have

f o(r,6)g f ”“ VIOUE) g = f(lme(gywa

where F; is the operator defined in section 3.1 of [1] Using the inversion formula from [14] we
get

L W e VG R G ER
So, for g € S, with g(0) = 0, we have, for all r # 0,
%Q -[ ﬁ&(%)(u»(u%éu(mum

Comparing this to the inversion formula from [1], we get

fu) =~/ 2up(u?)

In order to estimate the F3 terms, we will also use the following lemma
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Lemma 6.1. There exists C' > 0 such that, for all jy with y(€){&) € L*((0,0), p(£)d¢), if v is given

by
o(r) p(&)ds, r>0
-5 ), ve
then, v € C°(0,0), and % admits a continuous extension to [0,00) with %

lim, . o(r) = 0.

v, L(v), L* L(v) € L*((0, o0), rdr)
with
[T 22¢rary = IF @) ()| 220ar) = 71| 2200)a)

||\/y ||L2(p§)d§) ||L5||%2(rdr)

and

TN T2 (perae) = 1L LN F2rary

Moreover, v € Hel, with

||6||HC} <C (||E||L2(7‘d7‘) + ||L(€)||L2(rdr))
o(r)| < Clpllg, 720
o(r) _ _ e
|T<10g(7’)>| <C (||v||L2(rdr) + ||L(U)||L2(rd7“) + ||L LUHLQ(rdr)) , r>0
® [ (L@)(r)* T2
J;) <m rdr < C||L LUHLQ(rdr)
Proof. If f € C1([0,0)) n L?((0,00),rdr), Lf € L*((0,0),rdr), and f(0) = lim,_, f(r
then, since
|COS(Q1(r)) — 1| <1 r>0
r
we have
of-L Ly (COS(Ql(T)) - 1) f e L2((0, 00), rdr)
r r
Then, if M > 1,
M M 2
J (&rf—i)27’dr =J <(6 f)? - 0(f°) f > rdr
L r € r r2

- [ 10 (@7 + B ) rar = 002 + 115

0

Letting M — oo, and using the monotone convergence theorem, we have
Ly = 0 f : d Lf|)3 2
||f||Hel ~ (@:.f)* + rdr < C (|ILf[z2¢ary + 1112200
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Next, for f € C*([0,0)) n H! satisfying f(O) = 0, we have

f(s)
P = | o) s —2f Vs < 2L s a1l
So,
[1£1le0 < CII= ||z/3rdr>||f | otrary < ClI £l (6.17)

Next, for any g € C'((0,00)) n C°([0,0)) such that g(0) = lim, ., g(r) = 0, L*g €
L?((0,00),rdr), and for any M > 1,

| @arar = | @opnar+ [ teos@ur) + 1) 4 ot dr

1 1

M M M

- JM (COS(Ql(”) i 1>2 o(r)2rdr

L r
M

 (eos(@u(a) + g1 — (con(@il) +1) al5)°

+ LOO Lo () ((g’(r))2 + T;éf(—i);)) i

By the monotone convergence theorem,

* 4g(r)?
# 2 _ ! 2
128l = [ (@004 ) v .19
If 7 is as in the lemma statement, for M > 4, define

ou(r) = = [ O xS0 720

We will now record some estimates on 0°¢(r,£), k < 1, which will allow us to prove a certain
regularity of v and v;;. From [14], we have

1 IS 2
qu(r,é)——qbo ;er 10;(r), s
and . 2Re (a(£)v" (1,£))
cla r,
\/_;qb(’f’, g) = \/; ) ng > 4
Therefore,
C__ (oo(r) | log(1+r?) 2 <
|3/2;¢(r7 §)| < <10g(72’>a(<§)| r + 27~2 ) ) r 5 X 4 (6.19)
r¥2(log(r)) R o S
We use

2
%sa r’e <4, £€=1



and the fact that
r — ————— is decreasing on (0, o0)

Vrlog(r))
which gives

1 ce
< )
Vrllog(r)y ~ <log(¢))
in (6.19) to get, forall » = 0

08 | OIVE {@g@ §>1

r?¢ > 4

r3/2(log(r)) (log(€)) 1, €<
Then, if

_ [ 1a(©)¢ e =1\ e
g(é)—( +{1’g o 3%

we have, forallr > 0

_ <Z5(7’,€) - §) 9

< ClY KOV (&) - v/ 9(€

But,

KOV P(E) -1/ g(&) € L((0,0), d€)

by Cauchy-Schwartz, due to the assumptions on 7 and the fact that

) e <

Therefore, by the dominated convergence theorem, v, defined in the lemma statement satisfies

r<1?>(g?)7«)> is continuous on (0, o0), and we have
sl < [ ) sl < OO ons 70
and
: o(r)  [7_ . o(r,€) _
5 o8 (1)) ‘L 7 (—rwaog(r») pIE)dE =0
Similarly,
0(r,§) Vp(§)
S < oV
with
O RS R VG IR
92(8) = <| 3] +{%’ ‘o1 ><£>2 L'((0, 0), dé)
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So, again by the dominated convergence theorem,

tim o) = [ tim () pepie =0

0

The same argument shows that

Jg vaa(r) =0

From (6.19), we also have

|¢(T,§)|< O, r’¢<4
r32 1 Cla()VE, >4

whence,

28 <oscla@ve rzo
v (r)

Then, the dominated convergence theorem shows that v satisfies that =" admits a continuous
extension to a function defined on [0, co0). Similarly,

0 (cb(né)) < C(lgo(r)| + Elog(1 +72%)), 12 <4
"\ ) S Gaget e oy

2 Y

rl

which shows

|0, (¢(\/T’§)) | < C+Cla(®)|]WE, r=0

Therefore, v3; € C*(]0, 90)). Moreover,
o0 . r,
Lo = [tz (Y va (57 s =0
where we used L(¢g) = 0. Again, by the dominated convergence theorem,

tim otr) = [ (6 1w 0, () s () merde =0

Finally, we have
|0 <%) | <C(1+\/E+§|a(5)|>, r=0
and the same dominated convergence theorem based procedure used above shows that v, €
C?((0,0)).
Next, we have
[0 22rary = IF @) ()| 20ar) = 71| 2 (o6)ae)

V&N o = [ EFTONORAEE = [ eI g

0

— fo 0| Fu @) () Pdn = |1nFu @) (0)]|22(an)

= | |L6| |%2(7"d7")
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where we used the L? isometry property of Fy; from [1]. Finally,

) (V¢

0 }- 2 oY)
€7 rone = | s?%&: [REEZCIORT

o0
- | 1B o n = 12 Lol

This shows that v, vy, L(), L(var), L* L(v), L* L(va7) € L*((0,00), rdr). Combining these facts
o(r,€) V/ P(E)

with our estimates on NG and

() (o) < [ ) |y<t,f>¢$’§)

the Dominated convergence theorem gives

e () — 1p(€)de

Ta — D, pointwise, and in L*((0,0),rdr), M — oo

L(vp7) — L(v),in L*((0,0),rdr), M — o
L*L(v3;) — L*L(v),in L*((0,0),rdr), M — o

We conclude the proof of the lemma by noting that (6.16) and (6.17) hold for v;;, and (6.18) holds
for g = L(T37). So, by approximation, we have (6.12), (6.13), and (6.15). O

Now, we can estimate the F3(u(y)) terms, for y such that

y(t, w)r/ p(wA ()2 wA(t)?y € CY([Ty, o), L*(dw)). This is sufficient for our purposes, since all
y in the space Z ( which is the space in which we will construct a solution to (6.3), and is defined
later on) satisfy this condition. Recall that

Fy(u)(t,r) = N(u)(t,7) + Li(u)(t,r)

where u and y are related by

V(1. = FWult, AD)E) (6:20)
and
L)t r) = B (cos(2@ (1)) (cos(2uiom) — 1) — (20, ) sin20rr)) (621)
V() = (D Z2ED oag ()
# (D ki g ) + 20em)

We start with the L? estimate on the L;(u) term. Using the same procedure as in (6.9), we get

1F( L) (£, MO @A) Eagponirri) = ﬁ f " R(L(u)(t, RA()))*dR
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Then,

1
A(t)?

j R(Ly(u) (1, RA(t >>>2dR

tR)\ 4
J Rl NG S (v (1, RN 4R

(u(t, RA( >>)2 R? z
L R (s e e (0 PAO)) 4R

MSYGE

Using the functions v and w (introduced when deriving the equation for y) defined by

r

u(t,r) = v(t, m)

w(t, R)

v(t,R) = NG

we have
[t A Z2rary = 10 N 22(rary = w0 F2ry = 1F @) O 200
= A(t)2||y(t)||%2(p(w)\(t)2)dw)
So, we end up with
||F (V- La(w) (b - MO @A) |22 (ooncey?yae

Veorr (T RA(t
< Olly(O)]| 2 (peorey)av) (l|%”%;€;

Next, we apply (6.10) to our current setting to get

[IVOAE)F (V-Li(w) (- AN @ADL (poriyz)a)
[[L(Ly (u) (2, ')‘(t)))H%?(RdR)

Veorn (£, BA(1))
o my) ””)

1
YOE
Using (6.21), we get

|0r(La(w)(t, RA(?)))|

lv(t, R)| (Veorr (t, R)‘(t)))Q [Veorr (t, RA(1))]
<0 (1uote o+ B ) (R e o )

ol (P G O vt RO RAD) )
On the other hand,
Li(u)(t, RA(t)), _ Clo(t, R)| |Veorr (T, RA(t)) | R
| R | < R3)\(t)2 ( corr(t R)‘( )) (1 + RQ) )
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So, we get

[ L(La(u) (¢, - A0 L2(rar)
C (ol + e@llay) (12D e SO
aR('Ucor?"(t R)\( )))
+ Cllooly, | 2 IO,
Veorr (t, RA(1)) O (Veorr (t, RA())) s
YO LE(0.1)

O(Veorn (£, RAE))) - Veorn (£, RA(1))
+ Cllv(Oe2((1,00),Rar) - | REA(D)? |2z ((1,00))

+ Cllv®)]l gy -

Now, we use (6.9) and (6.10) to translate the right-hand side in terms of y:
||Lv()]z2(rary = AOVWAE YO L2(pry)a)

o) L2(rary = MO NYE)] L2 (o(wrw)?)dw)
Then, we get

VWA F (VL () (- M) @A) 22 (p(nr)2 )
C (IV MDY Ollz2prwyay + 19O 22(peray)as))
(chorr(t R)‘( ))H || vcorr(t7R)‘( )) || . ||a (Ucorr(t RA( )))H
RA() RA(#)*(1+ R?) "7 (1+ B2 o
+||vcow(t, RA(t ))5R(Ucorr(t,R)\(t))) e
R)\(t)2 L7 ((0,1))
Veorr (£, RA())OR (Veorr (, RA(t)))
+|| Rz/\(t)g ||L )))

Now, we treat the NV terms. Recall that
sin(2v(t, R)) — 2v(t, R)
N t, RA\(t)) =
(e, o) = (G

N <cos(§’l]1%(2t;\g;g - 1) $in(2Q1 (R) + 2vgor (£, RA(1)))

) costzau ()

We then use (6.14) and the previous estimates to conclude that, if R < 1, then,

H%)

[o(t, R)|

IN()(t RA)] < C (@)1, + 1L* o) B2 ) <log2(%) + 1) SSYOE

+cn<nmﬂ$;f”(l+wwﬂszwﬂ>

On the other hand, if R > 1, then,

|N(u)(t, RA(t))| < ol RP . C(vgs,l%))2 (1 . |Um(t}%m(t))|)




Then, we get

O LALICRYON e

s (P OWnary + IE0OISaqrary + 12 Lo o ram) (622)

C 4 4 Veorr (t, RA(H)) |12
+ 5 POy + 1200 s (1 |

Finally, we apply (6.11) in our current setting:

o0
L (L*Lo(t, R))*RdR = X(t)*||wA()*Y (O] F2(pgr)2)a)

Using the same procedure as used for L; above, we then translate the rest of the right hand
side, and the left hand side of (6.22) in terms of y, and F (v/-N (u)(t, -A(¢))) (wA(t)?), respectively,
to get

[IF(V/-N (@) (8 - MO (WA L2pre) )

<C (Hy(t)HiQ(p(w)\(t)z)dw) + VA YO 22 peoriey)aw) + ||W)\(t)2y(t)||?i2(p(m(t)2)dw)>
C

Veorr t7R>\ 3
525 (O aniryar + VA0l B (1415 )

We will now estimate |[v/wA(t)F (v/-N (uw)(t, -A(£))) (WA(E)*) || L2(pwr(t)2)dw)» Starting with

|Or(N (u)(t, RA(t)))]
Clo(t, R)]P  _|10rv(t, R)|(v(t, R))*
STz O
(R) + Or(Veorr (t, RA(1)))]
R2A()?

101(R)] +R|:;Zr)gt, BXODL e (M;)' + [Orul(t, R)|)

+ C|Q,1 (v(t, R))?

+C

221



Then, we use our previous estimates to get, for £ < 1:

n(N )t RAD))
3/2
< o (IO + 12 L0 ) (1108
OB (0Ol + 10O s + 12 Lo )
. (|Lv(t,R)| + |”(téR)|)
L Ol TN (1) + 10Oy + 12 Lo B
: <log2(%) + 1)
N C(||U(t)||L2(RdR) + || Lo(®)]|r2rary + || L* Lo(t)] L2 (rar) ) log(R))|Orv]
NOE
) <1 i ||Ucorr(taRR/\(t)) ||LY»)
s (1P (o1, + 12 o) o)
- <log2(%) + 1)
For R > 1, we have
RN )t RAD))
Cllol, .
< sl OBl B+ — g (1o )+ M)
(1 + 10R eorr (t, BA®)) 1 + |22 . )
e — oo, 7)
by (1 1B, (oo, o+ P oo,

Then, we get

10r(N () (8, BAM))| 2 (rar)

c :

< 5 (PO Esqamy + L0 sy + 112° L) sy
Veorr(t, RA(1))

W( 1108t (0, A + 1| A,

(0O Bagrary + 1L0ONR2(ary + 12" Lo () E2(ary )
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Finally, we consider, for R < 1

N(u)(t, RA(t), _ C
| R < A(t)2

Ow
)

QMW%HWM@%W@(Hmﬁ

D)= =

NOE (IIv(t)quel + ||L*Lv(t)||%2(RdR)> (1 T log?(

(s ), )

and for R > 1, we have

N (u)(t, RA(t)) o)1
| 7 | < WW(@RH
ol ot B [ v, RAD)
T (1 " ”T”L””)

Then, we get
LN () (8, A2
C *
(10O ary + WL arary + 1L Lo@ aran

Ok
O " /UCOTT (t? RA(t)) o
e (14 10 amt RAO 1+ 2O )

-memﬂmmmmwmwmw@

)\

>/

We use the same procedure as in the previous estimates, to translate the left and right hand
sides of the above estimate, and combine everything, to get (6.6) and (6.7). O

Before we proceed, we will need one more estimate. First, because A is decreasing, if z > t,
then, A(z) < A(t). Next, we use Proposition 4.7 b of [14] to conclude that there exists a constant
C} > 0 such that

1 4
— < < -
C1€log™(§)
§
= < < C , > —
c, p(§) 1§, & p
Then, if # > t, if wA(t)? < 55, then, wA(2)? < 55, and

PLAE?) _ (@A (@) log”(wA(2)*)
pwA(T)?) 7 wA(t)2log? (WA(t)?)
<C

where we used the fact that 2 — xlog®(z) is increasing on (0, 555).
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If wA(t)? = 75, but wA(z)? < 5, then,

pwA(t)?)

@ S Cw(t)2wA(z)? log?(wA(z)?)

o7 (@A@)%) log* (@A(2)?)

Finally, if wA(t)? = 55, and wA(z)? > 75, then,

In all cases, we have: there exists C', > 0 such that, if z > ¢, then,

P _ ., MD?
oer@?) < Ay ©2

Before setting up the final iteration, we will need to estimate various oscillatory integrals in-
volving Fj:

6.4 Estimates on F)-related oscillatory integrals

Lemma 6.2. We have the following estimates

||f S =DV £y, M) @A) |2yt

log(log( )?
tQ 10gb+1 2ab(t)

|| f cos((t — 2) Vi) F (v Falar, M) @A (@)2)dl 2 onoany

C(log(log(t)))*
== 13 10gb+1 2ab(t)

[IVwA() fo Sin((t\—/; WO (P, @) (WA(@)*)dz || 2gpenn?)an)

_ Clog(log(t)))*

== 12 10g1+b72ab (t)

VoD, ( j ) Si“(“;g)@ F(JFile, -A(x»)(m(x)?)dx) 2oy
_ Clog(log(t)))*

= 13 1Og1+b—2ab(t)
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loA(t)? f ” sin((t ;gwﬂmm AN@)) @A@)) ] 2y
C

1+b—2ba (t)

<
t? log

Proof. We start with

*sin((t — x)y/w) 2
| AR @) A

F(VFa(t, - A1) (@A(1)?)

B r’ NIV (F (i, A@)) (M (@)?) - 27(0)X ()
: PP, Byl M)A @)) da

Then,

CF(WF(t M) (wA®)?) -~ f v O(r, wA () )rFy(t, rA(t))dr
B H T O wAOVEE AW
VwA(t)

In the region r4/wA(t)? < 2, we use proposition 4.4 of [14] to make the decomposition

(r,wA(1)”) = o(r Z (rwA(t)*) ¢;(r*)

\f
where we denote, by gz?o, what was denoted by ¢ in [14]. In our notation,

3o(r) = ()

The first term to consider is then
2
\F A(t) —1 [Ver®
_—f (P E(t, @) )dr — ZJ réo(r)Fy(t, rA(E))dr
0

We will then consider several cases of w.

Casel: 1 < \/52/\@) < 10;5\](\150. In this region, we use the orthogonality of Fy(t,-A\(t)) to ¢, to
get

1 (vm 1 (™
-1 f réo(r) Fa(t, IA(E))dr — —— bo(r)Ea(t, rA(E))rdr
W Jo 2w

225



which gives

1

. L o) Eult, rA (1))

C
<_

(r) rA(t) i
f)(t) /\(t)4’r‘4 (t2 10g3b+1—2ab(t)) d
LT w Go(r) ()
Tt

410g5b+2N72(t) 12 rdr

fk(t)

2 - log™ ()

1< <
VWAL) T A®)

< 2 10g2b+1 2ab(t)

Case 2: ﬁ < 1. Here, we have
1 (vom
= J réo(r) Ey(t, rA(E))dr|
0

QJN onlr) (5 NOIEE 1)At<?g (t))rdr

J'\fk(t) (7’)7“ ( )Td?“
4(r2 4 1)210g™ T2V 2 (1) ¢2
2
7 <1
NN >> Plog (1) VwA(®)
Case3: 0 < 2 We use the orthogonality condition here, and recall that the

At) S VwA(t) 2A(t)
v1 + v2 + v3 and Fj 5 terms are supported in the region r < log (). Then, in the integral below,
only the v4 + v5 term contributes:

—1 (Vam 1 [(®
-1 J réo(r) Fy(t, rA(t))dr| = |—f bo(r)Fa(t, PA(E))rdr |
2w 2w 2
TorD
J 0] rdr
s 21~ 2b+2N—2 2 9
2 tPlog (t)(r?2 +1)
C log™ () .2 t

< < <
2log® 21 A1) VWA(t) T 2X(t)

Case 4: f 0 = 2A() We use the orthogonality condition, and note that Fy(t,7) =0, r >
L. This gives
—1 (Vom I
P réo(r) Fu(t, rA())dr| = |— Go(r) Fu(t, rA(t))rdr| = 0
W Jo 2w A
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Combining these estimates, we get

-

C 2
w3)\(t)4t2 10g172ab(t)a \/(;)\(t) < ]-

1 (® el e, 1< 2 e
o f roo(r)Fu(t, rA(D)dr| < ¢ Ple 0TS YO e
W Jo Plog® N0 D) S YD) S B0

t 2
0 »@ S oo

Using proposition 4.7 b of [14], we have (for example)

NI

&
pla) < {wlog%)’ TS

1
Cz, x=3

This leads to

2
—1 (V@ C
— Fy(t,rX(t))d 20 p(wMB)2)dw) =
||2WJ0 ro(r)Ealt, rA®))dr || (o)) < 3 log 120 1)

The next integral to consider is

R v
-= ZL 2w N2 b, (r?) Fy(t, rA(t))dr
j=1

(6.24)

For this integral, there is of course no orthogonality to exploit. In all cases of w, we will use the

estimate (from proposition 4.4 of [14])

16,(%)] < %bg(l )

We again treat various cases of w.

) 2 log™ (¢)
Casel: 1< N f(t) . Then, we have

1& (&me .
=23 [ 0o, 00 Fie A @)
=170

& ﬁ%\(t) i 0 C{ log(log(t))r
<= I N2
ZJ P A) 3 A(1)3(r2 + 1)262 log® 1720 (¢)
log(t)rA(t) ) dr

A1) (r + 1)21og™ 2V (¢)

; r ;
o =D 2log (1) | (=D 2log" (¢

J
_ Clog(log(t)))*
= 12 10g1+2b72ba(t)

where we used the support properties of the various terms in F);, and the largeness of N.
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.2
Case 2: NEY0) < 1. Here, we have

1 & (B .. ‘
[ J 2040\ (82 6, () Fy (1 r A1) )dr |

J 5 rA(t) 1

C & (V@ . o
<5 TwI \(t)¥ —— log(1 +
o jzlj;] rrw ( ) (] — 1)' Og( r )( /\(t)4(7“2 + 1)2 12 10g3b+1—2ba(t)
rA(t) 1 o
)\(t)4(?"2 + 1)2 2 10g5b+2N72(t)
C 0 NZINO) 2J+3 ij(t)QjC{
; Z (J dr (] _ 1)!t2 10g1—2ba(t)
C 2 _ .

< ) ~
AP log P (E) VoA

Case 3: lof(tgt) < \F/\( 5 <3 A( - Again, we use the support properties of the various terms in

Fy, to get

) ff FHINE)H 5 (r2) Fy(t, rA(D) |

gi Jloi(w(t) r2+idr ) wIA)P 0] log(log(t))
w P12 G=D 2logh ()

c * Tom 2ty WXt CY
* w ]Zzll ( 0 (r2+1)? ) (j — D2 1og? 2N =3(¢)
C(log(log(t)))?  log™(t) _ 2 t
FEm A S VD) - D0

Case 4: f 0 = YOR

Z L\/Jx(t) r2uwi \(t )23¢ (r?) Ey(t, rA (L)) dr |

(7”2 + 1)2 (] _ 1)] t2 10g172ba(t)

i J‘2>\t(t) r20+1dp wj)\(t)ZjC{
0 (7».2 + 1)2 (j _ 1)'t2 log2b+2N*3(t)
_ Clogllog®)? 2 _ 1
RE 1og1+2b D)’ VwAt) T 2M(t)

ogN t . . . -
( J 5 2 \ wiAOHC Tog(log(t))
0
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Then, we get

1 & (T30 5 C(log(log(t)))?
_ = T INEE & (r2) Fu(t. r(t 2 2 < 2
== fo I N(#)2 5 (r*) Fat, rA())dr || 2 ooy Plogt Bagy (02

The third integral to estimate is

1 0¢]
2| etrerevrRE @)
Y mm
2 o0
__2Re j (A2 (r, A (D)D) Fa(t () )dr
“ N0
where we used propositions 4.6 and 4.7 of [14]. The estimates from these propositions also imply
1 o0
2|, s OVERE @)
“ fzm)
C’|a (wA(t
< WA (t)1/2 ) f VT Eu(t rA(t))|dr
V@
. log™ (¢
Casel: 1 < ﬁi(t) < f(tg ).
1 o0
o R G ORI G RN
Y Sw
ogN t
_ Cla(@A(®)?)| f o Jrdr L[ 32
WO (t)1/2 oE . A(t)373t2 log® 120 (t) - A(t)374 1log™ T2V 2 (1) 2
< olaA@)l WA
< w5/4)\(t)1/2 2 10g3b+1—2ab(t))\(t)3
2 N
< Cla@A®T] | vwA®) <2 g7 (®)
W Plog e VEAWD) D)
Case 2: \F @S 1.
1 0
2|, ORI @)
Y S
log? (£)
< Cla(wA(t)?)] 1 J so - 2y N 1 JOO r32dr
S w5/4)\(t)1/2 12 logl Zab() 0 (T2+ 1)2 t210g2b+2N—2(t) (7’2+ 1)2
Cla(wA(t)?)| 2

= 5/4 1/242 1o l—200 (1)’ Y <1
WIAN(E) V22 1og 20 (1) VWA(E)
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N
Case 3: lof( tgt) < \/52A( D) < 3 A( ik In this region, the Fg 2 and vy +v2 +v3 terms do not contribute

to the integral because of the support properties of 1 — x> (logN o ). We get

1 [e@]
2|, s OVERE @)
fA(t)
Cla(wA(t)?)| \rdr
< w5/4/\ 1/2 )33 10g5b+2N_2(t)t2
< ClalwA@?)l WA( )
w t2 10g2b+2N Q(t)
Case 4: \FA( 5= 3 A( Ik In this case, the integral is zero, because of the support properties of
Fy.
Combining the above estimates, we get
1 o0
el R GGG YO)
Y B
( 1 2 1
WAN(1)12e210g' 20 (1)) VWA(D) T
1 1< 2 < log"®)
< Cla(wA(@®)H)|{ V& log!'+0=200 (1) I\N(xt/)@\(t) INPNC)
1 o 2 t
Vet log? N =2 (1) i(t) S Vo® S Do
0 o< 2
L7 200 T V()

which gives

C+/log(log(t))
2 10g1+bf2ab (t)

1 o0
|| - ;J ) ¢(T‘,W)\(t)2)\/;F4(t, T)\(t))dr||L2(p(w)\(t)2)dw) < (626)

VwA(t)

(Note that, by proposition 4.7 b of [14], p(§) = n\Tlg)P)' Now, we consider

_ LOO cos((t — x)\@)f(\/ﬂ(a:, (@) (WA(2)?) - 20A (@)X () d

w

We start by noting that, in the region r < %

4/~

029(r, &) = O (50(7") +

Z( DEg;(r ))>

So,
F(V -Fa(z, M) (wA(2)?)

=LWMWAmmw>1

7
+ JOO , VrFy(x, r A\ (1)) 020 (r, w(2)?)dr

Jar(@)

(rj (wA(2)?) " 65 (r))dr

||M8

(6.27)
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We start with the first term:

- (fm Fy(a.rA(r 1i ) 6,0))d )

2wAN(x)N (x)dz|

f DTN @) f”ﬁ(svw DIr¥i6;(r?)drda

E|E.

o el o 2] 1 / — '
Z jw_? J A) |)\ ) JIA( ) (@, v A (@) |[r¥ log(1 + r?)drdx

The r integral in the last line of the above expression was estimated before, and we get

|_£ COS((t (fom N 17,i $16,(2))d )

]:1

2w ()N (x)dz|

C 2
< Jm 1 {w?’/\(m)‘lzg log!—2b%(g)? \/ij\z(a:) <1 dr
t

og(log(x)))?
gt | il

Finally,

||_L COS((t (fom FEy Az Ti Y16, >

2wA(2) N (2 )dﬂfllw p(wx<t>2>dw>

f I (f T S, A @ Z 1)i=16,(r2))d )

: 2&))\(1’))\ (iL‘) | |L2(p(w)\(t)2)dw)dx

© A 1 Vel 1 & RPN
<] (5@ (f VIR A ) - S A o5 >>d>

7j=1
. QWA(I) /\/(ZL’) | |L2(p(w)\(m)2)dw)dx

¢ (log(log(t)))?
12 10g2+b—2ba (t)

(6.28)

where we used (6.23). The next integral to treat is

w

= % J st =TV 3 v fo: PE (@, A (@) (r, wA ()2 drdz |
t NYE)
1 o0

s OL Wb“() VI Fy (@, r A ()] |62 (r, A (2)?) | drda

VoY)
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We again use
00.€) = Rela(@* (). r> =

and the following symbol type estimate on a from proposition 4.7 of [14]:

a® (o) < Cila(§)]

¢k
as well as, from proposition 4.6 of [14]

V() = 51/4 o(r/&r), TVEZ2

and the asymptotic series representation for o, to get

C
220(r,6)] < L‘;,ff”r, E >

This gives

- [l 05

w

Max)N (x) fooz VT E (2,7 (7))026(r, wA(z)?)drdz|
ToA@)

Cla(wA(z)?)] f 1 J ®
< Ey(z, r X)) |r*drdz
uj3/4)\ 3/2 xlog%H( ) ) | 4( ) ( ))|
VoA(@)
Note that estimates on this integral can not quite be inferred from estimates on a previously treated
integral. So, we start considering cases of w:

Casel: 1< \fi(a:) < 10%\](;():”). Here, we get

alwA(z
L§/4)\((x))3/)2| 5 | Fy(, T)\(x))|7“3/2d7"
JaA(@)

N
alwA@?)] (4 P52 ()
WA\ (z)3/2 2 Ma)4(r2 + 1)222 log®+ =2 (g)

+sz(z) /2dr
2 \(z)3r32210g™ N 2 (1)
2
< Cla(wA(x)?)] 1< 2 < log™ ()
22log! =% () JwA(x) VwA(z) NED)
< 1.

<C dr

Case 2: L)

alwA(x
AP [ sy
o)

ogN T
< Cla@A@))] Jl ey ro/dr +F r5/2dr
S w3\ (z)3/2 0 (r2 +1)222 10g1 Qba( ) o 22(r? + 1)210g2b+2N72(x)
Cla(wA(z)?)] 2
WA (@)3222logt P (2) VwA()

<1
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log™ (z)

Case 3: 2)\(z) fi(z) > A( ) . In this region, only the v4 + v5 term in F}; contributes:
la(wA(z)*)]
w3/4)\( )3/2 | Fy(, 7“)\(1‘))|7”3/2d7”
fmc)
C|a (wA(z)?)] wa) r32dr
w3/4)\ )3/2 2 )3r3a2 10g5b+2N*2($)
N
Cla(wA(z)?)] v o2 log™ (x)

= VoAx)¥222 log® +2N2(z)’

2A(7) T VwA(z) T

Alx)

Case 4: WA(r) = 3 /\( 3 In this region, the integral to estimate is zero, because of the support
properties of Fj.

Combining these estimates, we get

la(wA(x)?)]

vl I R I

Vor@)
( 1 1 2 log™ (x)
~I ~I

I210g1*2ba(x)\/5>\($)’
1
< C|CL(0J)\(;E)2)| . % w3/ (x)3/222 logl—QbQ(Z),

(6.29)

1 T
\/Uj)\(l,)g/QxQ log%b+2N72(x) ’ 2)\(1')

2 x
0 mw Z e

Using the same procedure as in (6.28), we get

2 log™ ()
TN@ Z @)

|| Y J:O COS((t ;x)\@))\ )\I f \[F4(l' T‘)\( ))§2¢(T w)\( ) )d?“daj'HLz(p (WA(1)2)dw)

o
_ Cy/log(log(t))
= 12 10g2+b72ba (t)

(6.30)

To treat the next integral:

B fo cos((t ;x)\@)f(\/az(ﬂ(x, A2))) (wA(z)?)d

we first note that "
J oo(r)Fy(x,rA(x))rdr =0, x =Ty
0

[ ot

So, 0. (Fy(x,7A(z))) is still orthogonal to ¢o(r).

implies
(Fa(z,rA(x)))rdr =0, x =T

Also, by noting the symbol-type estimates,

(5.174), and inspecting the procedure used to estimate f(‘/F‘*(x"’\f)))(m(W) , we get
||]:(\/5z(F4($7-)\(fC))))( A(z)? )|| CA(t) ( (log(log(z)))”
o p(wA(t)?)dw) = )\(.CE) 23 logb+172ab(x)
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where we again use (6.23). Using Minkowski’s inequality, we get

= fo U= IN) p (i (Fule, A A xaromies

C(log(log(t))?
<
12 1Ogb+1—2ab(t)

(6.31)

Combining this with our other estimates in this section, we finally get

||f sin F(VFalr, M) @A) da] 2oty

log(log( )?
t2 10gb+1 2ab(t)

Next, we estimate

4 ( Jt ) Si“((t;g)ﬁ) F(JFix, A@)))(M(@?)@)

— fo cos((t — 2)vVw)F (v -Fi(z, - A2))) (wA(z)?)dz

+]:(\/a (F4(5U Az ))))(W\(CE)Q) da

- (AR A a0 2N + T
_J;OO COS((t;fE)\/ﬁj)( (\/F4(I )\( )))II

(w
+ 2F (V-0 (Fy(z, - A(2)))
+ F(V-Fy(x, M) (wA(x

Note that, while obtaining (6.28) and (6.30), we showed that

TG -AL(L}:B)))’(W(ZU)Q) 2A@)XN @)l 2 (por@a) < O log

(log(log()))?

2+b—2ba (l’)

Similarly, from the procedure used to obtain (6.31), we infer

F (V-0 (Falt, - M) (WA()?) _ Clog(log(t)))*
t

- lzeeawnin < 50 bise 0

Next, we consider the term involving F(\/-Fy(z,-A(x)))”. For this, we start by studying, with

£(2.7) = VP, @),
F@Y© = [ sendot i+ [ 1endor. o
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In the region r+/€ < 2, we use

€ = 2= 200~ DE o). rvE <
7j=2

Then,
| —4 foo cos((t — 2)vVw)A(@)? N (z)*w

Z] J— D(wA(z J\FMZ) (z,7A(2))r¥ ¢;(r*)drdz|

e ’ 2
<C il 1)W‘j_lf <M) M) fﬂ( Eu A @) )6 () drda
=2 t A('T) 0
we then apply the same procedure as in (6.28), and get

|| — 4LOO cos((t — )W) (@) N (7)?w
Z] = 1)(wA(z)?)~ QJI 7 Fa(e, A @) 6, () drde |2 )

. Cllog(log(t)))”
3 10g3+b—2ba (t)

Next, we have

30(r,§) = (630(r, ))o + (020(r, €)1

with
(030(r,€))o = 2Re (a" ()Y (r,€) + 2d'(§) 220" (1, )
ira/E 2 '
+ 2Re (a(f) (a? (‘21 ol m)) + ﬁe"\/ga(r\/g, m))
and )
(@001 )1 = ~2Re () e o))
C
ot el < I

Again, with

[z, r) = VrFy(z,rA(z))
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we have

Joo [z, 7)(3p(r,€))1dr = —2Re <Z€(§/)4 J;: f(x,r)r?eim/fg(r\/g7 r)dr)

2

1 O4f@ %) 2,
= §Re <%T/;/EU(27 \/—5)62
ira/€
+1R (ZS} e\f(ﬁfxrrar\/ )+ 2f (z,r)ro(ra/€,r)
+r f:v r <\[é‘10 T\/ + Oa0( T{,T))dr)

Again, using Proposition 4.6 of [14] to estimate the o terms, we get

A

[ fen@oeonar

.
Cla(®) 2 a(©] [~
< S el + Ot |

(r|6, f(z, )| + | f(x, 7)|) rdr

&m

| _ft COS((t (J VrE(z,rA(@)) ((036(r,€))o + (B3¢(r, )h) |€M(m)2dr>

NG
AN ()N (1) %02 d ]

f lawA(@)?)] 1Falz, 75)|
w2 (z)

(.T} 6 2 10g4b+2(l’)

For the last term, we have

J |||aw)\x )| [Fu(@ 7\f)|

WQ)\ $ 21 4b+2(l‘)

A(?) 1 OO 5 sdy 2
< CL A(:C) x210g2b+2($)>\($)4 (J |F4($ y)| e ) dx
_ Cy/log(log(1))

|22 (p(wnty2)du)

x t3 logb+372ab(t)
So,
M la(wA(z)?)| [Filz, 7)) ax, _ C/log(log(1))
W \(z)8 22 10g4b+2($) L2(p(wA(t)2)dw) = 3 10gb+372ab(t)
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On the other hand, by the same procedure used to obtain (6.29) and (6.30), we get

T, TA(T 7"3/2 7“3/2'7" )02 L4\ Ty T AT T
an (ff (IFu(a, A @) + 7 () 0oy, A >>|)d)

a@A@)®)|  dz
CAD)P2 22 1og? 2 () |22 Gotonty2)a)

_ C\/logog®)
=~ 13 log3+b72ba(t)

Next, by noting the symbol-type character of the estimates (5.174), and inspecting (6.28) and
(6.30), we deduce the following estimate

1= fo cos((t ;x)ﬁ) L 2F (V-0 (Falw, A(@)))) (@A@)?) - 20 (@)X (2)wdi]| 2o on ) o)

 Cllog(log(t)))”
3 10g2+b72bo¢ (t)

The following term was already estimated via (6.28), (6.30) (except with different A\-dependent
coefficients). Taking into account the estimates on X', \”, we get

- fo cos((t ;x)\@) FVFa(z, M) (wA(@)?)20 (N (@) + X@) A" (2)) da|] 22 (proncey?)ae)

. Cllog(log(1)))®
13 log2+b72ba (t)

Finally, we start with estimating ARG )‘(’”))))(“’)‘( ) . Firstly, we note that
O%(Fy(x,\(x))) is still orthogonal to ¢ (). Then we repeat the same procedure used to estimate
F(/ Faz M) wA@)) . By again noting the symbol-type behavior of (5.174), the only contributions

f(*/az(F“(x ’\(I))))(M(x) ) which need to be checked are those due to the last term in (5.175),
Wthh is not dlrectly comparable to terms arising in (5.174). To be clear, we still use the orthogo-
nality of the full function ¢%(Fy(x,7A(z))) to ¢o(r); but, after using the orthogonality as needed,
we can then deduce estimates on all integrals which do not involve the last term in (5.175) just by
comparison with an analogous term in (5.174), as described above. We start with

Case 1: IA( y < 1.

1 (@ 1
-1 J {r\(=)<3} dar|

<5
24 1og"t N 2 (1) (r2 4 1)2

_C Jﬁi() o (r)rdr
h 410" N2 () (r2 + 1)2
C 2
< ,
W2A(x)3atlog" V2 (2) " VwA(w)

<1
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Case2: 1 < IA( 7 < 330 Here, we first use the orthogonality of O%(Fy(x,m\(x))) to ¢o(r).
Using the procedure described above, we only need to estimate
1(* ~ Lira(e)<z) C (»@ dr
] e < | -
w2 24 1og" N 2 () (r2 4 1)2 wJ 2t log? N2 (2)r
<O 2 ¢
24 1og N 72 (1) Vw(z) ~ 2M(z)

Case 3: 557 < \FA( ;- In this case, after again using the orthogonality of O*(Fy(x,rA\())) to
¢o(r), the only 1ntegral to be checked is zero, due to the support properties of F;. Next, we have
Casel: 1 < \F/\(a:) < #@)

1 O \/Ei(z) 9 i . 1{w\(m)<£
- E rP I N)¥ |, (r? —2
w o j ()70 )|x4 log"™2(2)(r2 4 1)2

Z W \z) ¥ CY J\Fm % log(1 + r*)dr
x4 logb+N_2(x)(7“2 +1)2

T
< 1< <
x? log3b+N_3(m) \/5)\(:1:) 2X(x)

“iti ]_1

where we treat the integral in exactly the same way we did in obtaining (6.24)
Case 2: ﬁ <1

1 & (@ 0 : Lia@)<zy
— 2NV b (12 S3 dr
w Z Jo ()7 16x( )|x4 log” ™72 () (r2 4 1)2

. s 2
e Z wJ)\ )2]0] J\/;A(z) r2j+2d7~
(j — Dlztlog"™2(2) Jo

C 2

< : <1
WP ()3t log” N 2 (2)" VwA(z)

Case 3: \/EL >z

Az) = 2X(z)"

1 & (T 50 o0 it g Lipa@)<z
;Z rHW A (@) 9;(r7)] -

24 1og" ™ 2 (1) (r2 + 1)2
Z wWiN(z)% Y J%w(z) 2 log(1 4 r?)dr
G—D! Jo 24 1og" ™72 (1) (12 + 1)2
C 2 T
< ; =
24 log® ™V (2) JwA(z) T 2X(x)

Finally, we consider the following integral in multiple cases:

j 1
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.2
Case 1: NEYO) <

1 ©  2|Re (a(wA(z)?)t (r, wA(@)?)) [V L@ < <5
wl 24 1og" ™2 (1) (r2 4 1)2

fx(z)
wA(1)?) |J2A<z) \rdr
Tw w1/4)\ (x)1/2 S - 24 log" ™72 (2) (12 + 1)2
Cla(wA(z)?)] 2
WA/ N (z) 2zt log" ™V 2 (2) VwA(z)

<1

2 T
VwA(z) < 2X(x)

Case2: 1 <

5}
(r? +1)2

1 (™ Tira@e)<
{A<><) dr

. ffi@ 2IRe (aoAr) )0 (M) IVF

Cla(w(z)?)] PYa) dr
= w5/4/\ 1/2 7’7/2ZL’410gb+N 2()
Cla(wA(z)? )| 2 _ @

3b+N—2 (CL’) ’

= 2tlog

Case 3: f/\(oc) ( 7 In this case, the integral to estimate is zero. Combining all of the
above estimates, and using the procedure described above, we get

Ihe LOO cos((t ;x)\@) F(V-02(Fy(, -/\(x))))(w/\(fE)Q)dx||L2(p(w/\(t)2)d‘”)

. Cllog(log(t)))”
3 logb+1—2ab (t)

In total, we finally get

C(log(log(t)))?
3 logb+172ab(t) (632)

||f cos((t — ) vVw) F(v-Fu(z, A(2))) (wA(2)?)dz|]| 12 (pwrt)2)aw) <
The next integral to estimate is

) fo sin((t — 2)vw) F(V-Fi(z, A(2))) (wA(2)*)dz

BV OE
(7 cos((t = x)yw) Fy(z, M) (wNx)?)) de
[N, (oA A ) )
_ AOF W Et M) (@A(?)?)
RE
=30 [N g (R N )
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In order to estimate _’\(t)]:(‘/F‘*Et’/\(t)))(w’\(t)Q)

that we already obtained on f(‘[F4(t")‘£t)))(”)‘(t)2) , by vJwA(t), and then take the L?(p(w(t)?)dw)

norm. In fact, we only need to consider the region ﬁ+(t) < 1, since, in the other regions, the factor
v/wA(t) that we multiply by, is less than 2. Doing this procedure for each of the terms appearing

in (6.24), (6.25), and (6.26), and combining the resulting estimates, we get

| —ADF(V-Falt, A1) (wA(t)?) |
Vw

_ C CAt)Y?a(wA(t)?)) 2

T WA log T2 (1) w2 logt TR (t) T VWAL

it suffices to multiply the pointwise in w estimates

<1

and

1/2
* dw C
A(t)? <
(J 4 p(w () )w5)\(t)6t4 10g24ab(t)> 2 log1+b72ab(t)

()2

(Jw a(m)z)2P(M(t)2)dw>”2 c_____c

/\(Ltl)2 W 12 1og1+g*2045(t) 2 10g1+b72ab(t)

Then, by the remarks preceding these estimates, we get

ABF(V-Falt, -A0) (WA()?)

I I C(log(log(t)))?
e L2(pwA()2)dw) <

2 10g1+b—2ab (t)

Then, we use the identical procedure as was used to obtain (6.32), and get

A f "= IV g (R A @) Mw)) il nra

_ Cog(log(t)))*
= 13 10g2b+1—2ab(t)

Combining these, we get

Ve (t) fo Sm((t\_/g)ﬁ) F(V-Fa(z, M) (@A (2)?)dz ]| L2 (prc2)aw)

 Cllog(log(1)))”
2 10g1+672ab (t)

Next, we consider

VoD, ( | st =DV £ gy, -A(m»)(wx(:c)%dx)

_ A (F(VFalt, A1) (@WA®)?) (6.33)

B




For () (F(V-0: (Fa(t, M) (wA(t)?))

N,
F(V-0u(Falt, A(t))))(w(t

, we again need only multiply the pointwise estimates for

(Wthh were previously inferred from pointwise estimates for

FO/(Fat, A(t))))(m(t) ) and noting the symbol-type nature of the estimate (5.174)) by VwA(t) in the
region f A(t) = 2, and then take the L?(p(w\(t)?)dw) norm. This results in

= Var®) (f(\/ét(F4(t, AD)))(wA?)?) C(log(log(t)))?

w 3 10g1+b72ab(t)

) |22(p(r(t)2)du) <

Note, however, that doing this same procedure for the term

V() (f(” Fy(t, A0)) @A) -m<t>x<t>>

w

would result in an estimate which is not square integrable against the measure p(wA(t)?)dw. In-
stead, we have to integrate by parts in an appropriate r integral, to gain extra decay in w. In
particular, we first make the decomposition as in (6.27). Then, we can multiply pointwise esti-
mates on the first term in the decomposition (6.27) by /wA(t), and proceed as with our previous
estimates. This results in a contribution to the overall L?(p(wA(t)?)dw) norm of

—van(y (FRE A @A) AN

W

bounded above by:

| = 27(1)°A ( j VEEMt PA() 26 (r, 0N (1)) ) 2oy

 Cllog(log(t )?
3 10gb+2_2ab(t)

For the second term in the decomposition as in (6.27),namely,

NGB JO: rE( ) B0 (r, wA ()2 dr

JaAE)

we start with
a2¢(7n’ f) = (62¢(7n7 5))0 + (62¢(T, f))l

where .
e )

and

(@:6(r, ))ol < % e > 2
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Then,

v}

NN () v f VPR rA®) (@20, wA(1))udr
VWA(t)

= 2O N (E)viRe (%Jj”/%x DEE (1 uA(H), r)d )

A0 PN () <_a(m(t)2>23“F4<t, 2)0(2, f—m)

wl/4 w5/4)\(t)5/2
2A(H) 2N (t) 0 pirv A(t)

e| alw 2 3/24,r o(ry/w , 7)) dr
i R ((A(t)) IO O, (r*PFy(t, rA ()0 (rvwA(t) ))d)

So,

= 2WNONG [ VRGOt

Jor(®)

RIh{U ch(w;@z” Pt )
N ||52Z;4 ) f 2 ([Fy(t, rA@®)] + rA ()]0 Fy(t, rA(E)]) dr

T
where we used the estimates on ¢ following from proposition 4.6 of [14].
This gives

o8}

ks QWA(t)QA/(t)J . VT Ey(t, T)\(t))aﬁ)(?",W)\(t)Q)dﬂ|L2((A(‘1W,oo),p(m(t)2)dw)
Nz

1 A(t)
< CA%?' (JO |F4(t,y)|2y3dy>
CIN@OI [ (* 1 o 32 2
+ A(t)V? (Jéx w3/2 (L #2log' 220 (¢)(r2 + 1)2d7") dw>

A(t)2
C
b+2—2ab(t)

1/2

1/2

<
t3 log

Combining these estimates, and appropriately using (6.30), for the region y/wA(t) < 2, we get

= VoA (f(x/F4(t, -A(t)))’(ZA(t)Z) : 2wA(t)X(t)) [P

) (6.34)
_ C(log(log(t)))
=~ 3 logb+2—2ba(t)
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Now, we start to treat the term inside the x integral in (6.33). Here, we expand

O (F(V -Fa(w, - Ax))) (wA(2)?))
)

= F(v-Fa(w,-A2)))" (@A(2)?) - (2wA(2)N (x))?

+ 27 (v-0s (Fi(z, " M2)))) (wA(x)°) - 2wA(2) N (2)

+ F(VFi(z, A@))) (wA(z)*) - 20((X (2))* + M)A (2))
+ F(V- 0z (Fia(x, - A(2)))) (wA(z)?)

We start by considering

—@3 D) @F (o Fal, A@)) @A) - oM @) (1)

Recall that the last term we estimated was
—VWA(L) - 22X N (8) F (V- Falt, -A(t))) (wA(1)?)

and we used only (5.187), as well as (5.188), because we needed to integrate by parts in the r
variable in one of the terms. We then repeat the same procedure, with the only difference being

O Fy(x, r M) + rN (x) 02 Fy(x, rA(x)) replacing Fy(t, rA(t))

and

M) Fy(z, v M) + N(2) 02 Fy(z, X (2)) + rA(2)N (2) 03 Fy(z, rA(z))
replacing A\(z)02 Fy(z, r\(x))

By noting the symbol-type nature of the estimate (5.174), we get
[[VWA®) - AX(@)N (@) F (V0o (Fal, - A(2)))) (WA @)?)]] L2 o(eorte)?)des)

( (;) ) VWA (@) - 4N (@)X (2) F (V05 (Fa(x, A(@)))) (WA 2)?) ]| 2 (peor(a)?)d)

( )2 (log(log(x)))?

)
(t)
74 logb+2—2ba (I)
and this gives

>/\_/

>l >

()

= A1) f COS((t\;;)W) 2T (V-0 (Fa(z, M) (wA(@)?) - 20 (@) N ()] | 2 peonty 2y

. Cllog(log(1)))”
13 1Ogb+2—2ba (t)

Next, we consider

F (W Fi(z, M) (wA(@)?) - 20(XN(2))* + A(2)A"(2) - VWAR)

w
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We treat this term identically to how (6.34) was treated, noting that the only difference between
the two terms is a coefficient which depends on absolute constants and A\. We therefore get

-0 [ PR A (o)
2w((N(x )) )\(x))\"(x))) dx||L2(p(w>\(t)2)dw)
(1)) Goglos(2))?
| S () et

C(log(log(t)))*
tglogb+2 2ba (t)

Next, we study

VD | 7@ (e, M) @A @)?)

W

2 . Ty AT WALT 2
by multiplying our previous pointwise in w estimates on P02 (VR ’:( DPAE)

( o) ) v/wA(z). We need only check the contributions to

(i (t)) YA F @R (Vo A @) @A) e

coming from the region /wA(x) = 2, just as for previous terms:

The integrals to check are:
1/2
& P(WA()?)dw /
)4Q38 10g2b+2N74 (l’)

( )
2) dw 1/2
e, <L) WAz )(ZJ? 1(;Cg)2b)iN4(a;)>

2 1
)\(ﬁC)) 1'4 logb+172ab(x)

) ’ 12 2
(%) ( J s w3/2x8106gib+24ab(:€)> <C(AA((:?)) :v4logb+1”“b(x)

A(x)

and
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In total, we get

I ZEW Fi@ A@) @A @)?)

" |22 (p(wr(t)2)dw)
A1) \? (log(log(x)))?
< O 1+b—2ab
M) ) atlog't’ 2 (z)

and this gives

|| j cos((t — 2y F(V (i, AN @A@Y 2Dl ona

C(log(log(t)))*
=~ 13 10g1+b 20<b(t)

The last term we need to consider here is

VD (B M) (@A (@)?) - (A ()X ()
We already estimated

F(V-Fala, A@)))" (@A(@)?) - (2wA (@)X (2))”

w

So, we need only prove new estimates in the region y/wA(x) = 2 (by writing

VI = (55) - V@)

So, we again write

F(V-Falx, M) (wA(x)?)
_ L VI (A () 22 (r, wA(z)2)dr (6.35)

0

] ViRt oA dr
o)
and for the second line of (6.35), we simply multiply our previous pointwise in w estimate on

(goﬁw VTFy (A (2)) 02 (r, m(@?)m) AN @) A8 wA () in the region v/w(z) =
2, and estimate the L? (p(w)\(t)Q)dw) norm, as before. We have
WA ()2 N ()

w

C
< ;
24 1og® 2 (2)w52 A ()3
and this leads to

T rE . r M aN2d(r. wo(2)2)dr
IV (50 PR, @) B0, A (@)

<C ()\(t)2> log(log(z)))? )

)\(%)2 $4 10g3+b72ba($)

VwA(z) - fﬂm VrE(@, A (@) 850(r, wA(w)*)dr|

Vw(z) =2

wQA(:v)Q(X(ﬂf)f) || 22 (p(on(t)2)dw)
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For the third line of (6.35), we can not simply multiply our pointwise in w estimates on

<Joo2 VrE(z,rA(2))d39(r, WA($)2)dr> . (2wA(x)N ()

2 w
VwA(z)

by y/wA(t), since doing so would result in an estimate that is not square integrable against the
measure p(wA(t)?)dw. So, we have to integrate by parts in appropriate r integrals, just as in a
previous situation. To be precise, we consider

Jw VT Fy (2, r M 2))050(r, wA(z)?)dr (6.36)
Ve
and write, for ry/€ > 2:
I B \/57 0 «/E,
i (o (280 2
rV&r)  roo(ryEr) irtdio(ryE,r)  r?oio(ryEr) irJE
(1659/4 T T >) ‘ )
\[ ) 5 \/EJ r
(i )

(i)
(6.37)

For each term on the third line of (6.37), inserted into (6.36), we will integrate by parts once in 7.
The insertion of the first term on the third line of (6.37) gives

ZR"'(FQ ViE @) - DI o), )”W@dr)

RE 3/2
V(@) )\(SL’)

ia' (wA(z)?) —232Fy(x, 3-) 2 0
ke <w3/4)\(93)3/2 <w3/4)\( )3/zz\rfA( 77 oA (©3%)

JOO VAW 0r (r*P Fa(, rA(2))o (rvw (@), 1)) dr
2 Z\F)\( ) , |

VW (@)

Then we estimate each term separately:

. ia' (w(x)?) —2%2Fy(a >f) - 2 o2
[2R <w3/4)\(:p)3/2 <w3/4/\( i dion@ % Ton) >>|
o' (wA(x)?)]  [Falz, )

WA ()32 WAN(2)32Jw ()

<C
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The contribution to the L*((57 YELE ), p(wA(t)?)dw) norm of the integrand of (6.33) due to the
above term is thus estimated by

[ <|af<w(x>2>| Fifw. 2) >2w4,(m<t>>2 pA(D)?) o

4 WAN(2)3/2 w3AN(2)32\/w () w (:v2 log4b+2(:ﬂ))2

A(=)?

XN Jdy\ |
<C (m) (L Yy |F4($;y)| E) )\(%)51’2 10g4b+2(x)

=C <i((fﬁ))>2 ! log”l”"“(w)

For the next term of (6.38), we use Proposition 4.6 of [14] again, to get

(N ()2 D irEAE)
2Re (wg/(%(;)g/z) (—f 2 m& (r*P Fy(w, rA(2))o (r/w (@), 7)) dr)) |

1/2

\f>\( )
Cla(wA( ) )|

WA ()22 log! 2 (x)

Then, the contribution of this term to the L%(ﬁ, ), p(wA(t)?)dw) norm of the integrand of
(6.33) is estimated by:

© 4 o)\ 2 172 2
(J = (557 d“) () 7o T T

=¢ (iftﬁ) o 1ogbi°>2ba<x>

By comparing the first and second terms on the third line of (6.37), and recalling the symbol-type
estimates on a from Proposition 4.7 of [14], we can estimate the second term on the third line of
6.37 by repeating the same exact procedure used to estimate the first term of the third line of (6.37).
Next, we treat the fourth line of (6.37). Here, we integrate by parts twice in the r integral
resulting from substitution of the fourth line of (6.37) into (6.36). With £ = wA(¢)?, we have

JZO VrFy(xz,r\(z)) - 2Re <—a(§)r26"‘/ga(r f,r)) dr
2,

455/4
—a(¢) (2P Falr, A (@))o(2, Zo)e”
= Re 26571 -

+%.<@ (" Fule, A @) (/€ 1) é) |¢g>>
+Re<_2§5(/4 = J Ma2(5/2p (z,r\(@))o(ry/E,r) ) )
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Next, we again note the symbol-type character of the estimate (5.174), to get

@ —a TZeir\/EO_ r - o
|f¢2§ WFZL(J:?TA(QT)HRG ( (5) 455/4 ( \/57 )> dr| -4w2)\(x)2)\/(x)2@

Cw?\(x) la(wA(x)?)] 2\ (z)
S \/(;.1’2 log4b+2 (33') ( w3>\($)6 F4,est(w7 \/g ) (639)
b 2 00
—i—% . 2 Fy ea(z, w\(m))dr)
ToA@)

where F} .5 is the expression which appears on the right-hand side of (5.174). Then, the same
procedure used to treat (6.38) also applies to treat (6.39), and we get

” —a(&)r2etVeg(r r
||LWF4<x,m<x>>zRe< SR >>dr

455/4
2 2 2 VWA(T) (AQ)
AWM ()* N (x) - ()\(a:) ||L2((ﬁ,oo)7p(w/\(t)2)d@

=C (ig) o 1ogb+1“m ()

Next, we study the first two lines of (6.37), which are given below:

(030(r.€))2
- \/Ea 0 \/E’
= 2Re (< 51/4 fr’\/ < 0'5125/4 T) + r 10'2(;;»/4 T))
5 \/77 o 5, ) 26 \/E, 262 \/57 ir
T a(e) ( 05259/4 r) T 102(g7/4 r) + w 12’5(;”/4 r) + r 1227;/4 7’))) e \/E>

We note that

C 2
(@36(r, )2l < 'g;ff”, r>
So,
| f VT Fy (2, r A (2)) (826 (r, wA(x)?))odr|
\fi(T)
Cla(w(z
%J VrEy(z, rA(z))|dr
/\(:t)
Finally,

(fo PN B <j°o w*ﬂ(x,rA<x>><a§¢<r,wA(xf))er)

V(@)

ENEY.
-4w2A(I)2A'(x)2M) dw)

=C G((;)))Q ! log”l?’%a(w)

248




Combining all of our estimates, we get

)

: @0 lzenns

oy (A(t) )2 log(log())?

)\(l’) 4 log3+b72ba (x)

and

I J:O cos((t — x)v/w) VWAL 0 (F(V-Fala, M) (@A(@)?)) || L2 (pon1)2)de)

w
_ Clog(log(t)))*
= 13 10g1+b72ab(t)

which imply

IWEAWD ( [ " F e -A(x»)(m(x)?)dx) [
_ Clog(log(t)))*

= 13 log1+b72ab (t)

The last quantity to estimate is

(6.40)

([P =)
A1) ( [ o A A >>d)

= —ANO2F(V-Fult, A1) (wA(t)?) (6.41)
. \/(;/\(t)QJ Sln((t ;517)\@)6926 (f(\/F4(ZE, /\(x)))(w/\(ZE)Q)) dr

t

We can estimate the third line of (6.41), simply by using the estimates which gave (6.40). For
the second line of (6.41), we have, with £ = wA(t)?,

o , 1/2
07 ([ por?) (Fm e A A0 o)

- 1/2
= A(t)? (L p(&) (F(V-Filt, - A1))(©) %)

= A(t) (LOO r (Fy(t, (1))’ dr) v

log ()

1/2
< CA(1) ( J o O J() AW ) /
0 )\(t)8(7’2+ 1)4t410g +2 4ba(t) 0 )\(t)S(T’Q—F 1)4t4 10g10b+4N 4(t)
< ¢ + ¢
T 21ogh () 2 1og? N2 (1)
- C
= 12 1Ogb+1—2ba(t)
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So,

||w/\(t)2 J;OO Sin((t\_/g)\/a)f
C

S 2 10g1+b—2bo< (t)

(\/F4(x, ')\(x)))(W)\(x)2)dl‘| |L2(p(w)\(t)2)dw)

which finishes the proof of the lemma

To proceed, we quickly translate our estimates (5.3) and (5.4), by noting
IF (V- (B + Fo) (2, M) (@A @) )2 (pen @)y

— JO NOL (F5 + F6)" (x,r)dr

[[V@A@)F (V- (Fs + Fo) (2, M) (@A @)L (peon (@)

- o | @ By @ ran
and
Lol < e (1rm+ 1)
So, we have
IF O (4 F3) (AN 0 < e
and
log®**(x)

V(@) F (V- (Fs + Fo) (@, Ma)) @AM@)) |2 preya) < C—z55—
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Now, we recall F'(t,r) = Fy(t,r) + F5(t,r) + Fgs(t,r), and estimate the following quantities:

e x/F(x NNEAEP )2 romins
— f sin f FV i, A@)) (wA@)?)
+]:(\/ (F5 + F6) (ZL‘, /\(ZL‘)))(W)\([E)Q)) deL?(p(w)\(t)z)dw)
< f sin f F(VFa(, M) @M @)2) | 2oy
\/a

SlH
i

C(log(log(t)))?
t2 1Ogb+1 2ab (t)

+ CJ z—t) ([[FW- (Fs + Fs) (@, M) (@) || L2(o(re)2)aw) ) d

C(log(log(t)))? A(1) dx
bI1=2ab (4 +CJ (z —1) A7) ) 2t log? V()

V- (Fs + Fo) (2, M) (w(2)?)d]| L2 puoncey?yaw)

where we used the fact that,

[F (V- (Fs + Fo) (2, M) (@A (@) | 2peonn)an)

oo} w 2 1/2
([ i R x4 )
< C%IIH\/(R + F5) (2, M) (WA (@) )| 2peori@))aw)
where we used (6.23).
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Similarly,
|IJ cos((t — 2)Vw) F(V-F(z, - A@))) (wA(@)*)dz || 2 (por2)aw)
<[ ot~ VT WAL N AP

+ ||f cos((t — ) Vo (Fs + F) (2, M(2))) (WA (@) d ] 22 pnny2))

108‘(108“(75)))2
t3 10gb+1 2ab(t)
( x))) ||./—" F5 + F6 x, )\(ZL‘)))(L&/\(JZ)Q)||L2(p(w)\($)2)dw)) dx
C (log(log(t)) ’
3 1Ogb+1 2ab(

)

(

/3 log3b+2N 1(t)

_ C(log(log(t)

= _
t3 logb+1 2ah

)
t)
)2
t)

|IVwA() Lw sin({f ~1)v) £ (V-F (2, M2))) (@A) ) d || L2gpney2)an)

Jo

< ||\/EA(t)Jt Sln((t\_/g)ﬁ)F (V-Fa(z, - A@))) (@A@)*)dz | 2 (o))
+ |[VwA(t) ro Sin((t:/g)ﬁ) F(- (Fs + Fp) (2, M2)) (@A(@)*)d ]| 20 0)2)a0)
_ C(log(log(t)))*
= 12 logHb 2ocb(t)
T OMD) f (%) (IF (- (Fs + Fo) (2, M) @A @) |2y de
 Clog(log(1))* C

2 10g1+b72ab(t) 13 log4b+2N71(t)
_ Clog(log(t)))*
=~ 12 10g1+b—2ab(t)
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)
< f cos((t = ) m<>(%)f<m<x, A @A)l l2pres)
A j cos((t — 2)Vi)VaA(x >(%)waS+F6><x,-A(m)))(ww?)dﬂ|L2<pw<t>2>dw>
Clog(log(1)))?
t3 10g1+b 2ab(t)
”’f (52) (WBADF( (s F2) (0, AL A i erors) do

log(log(t) 2 L Jw ( ))\\((t)) )2 log" ™% () "

)
(
B C(log(log(t)z

~ —
3 10g1+b 2ab

and, finally,
I sin((e = o)V BARF (VA MDAl nri
< JOO sin((t — x) V) F (V- Fy(z, -)\(a:)))(w)\(x)Q)da;||Lz(p(w,\(t)2)dw)

+ || f sin((t — x) VWA F (V- (F5 + Fp) (x, '/\($)))(W/\($)2)d$||L2(p(w/\(t)2)dw)

t2 10g1+b 2ab(t)
+ (JL At) (%) (IIM2)VWF (V- (Fs + Fs) (2, - M2) (@AM@) )| 22 ooy ) d

C © A log"*C(x)
0 C’L dx

= 2 loglerfZch )\(1’)2 $35/8
- C
=~ 12 10g1+b—2o¢b(t)

6.5 Setup of the final iteration

Let € be given by
1
€=2b+ 5(1 - 2045)

Note that 2b + % > ¢ > 2b. Also, note that (5.5), (5.6), and (5.7) show that
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Veorr (T, RA()) (19 Veorr (T, RA(T)) C

o v < —————— 6.43
|| R)\(ZE) ||L ||R)\(ZE)2(1 +R2)||L 210g€ 2b( ) ( )
Veorr\ T, RA(zx
1 | e T 0 v, BAG) 1 < € (6:44)
Vcorr (x7 R)\(x))aR(UCOTT (37, R)\(SL’)))
] RA(2)? [IF(CRN
Veorr (T, RA(2))OR (Veorr (2, RA(2))) Or (Veorr (2, R/\( )))

<« ¢

= 22 logt ()
Let (Z,|| - ||z) be the normed vector space defined as follows. Z is the set of (equivalence

classes) of measureable functions y : [T, ) x (0,00) — R such that
y(t, w)t?log? (H)A/ p(wA(t)2)wA(t)?) € CO([Ty, o0), L2 (dw))
Oy (t, w)t* log= (VWA p(wA(1)2) € CP([To, ), L*(dw))

and ||y||z < oo where

yllz = Sup (t2 1og? (t) ( [yl z2(per@yaw) + IMEOV@OYE 2oy )an)
=10
+||w>‘(t)2y(t)||L2(p(w)\(t)2)dw)) (6.46)

+t710g2 (t) (|10 (0) | 2 ptenivya) + AV Iy(1)] |L2<p<m<t>2>d“)))

Define 7" on Z by

1)) = - [ )

7 (F)(@,w) = F(V-F(z,-Mx))) (wA(2)°)
—F(V-Fs(u@)) (@, M) (wA(z)*)) dz

Note that a fixed point of 7" is a solution to (6.3) with 0 Cauchy data at infinity. We will prove
the following proposition which implies that 7" indeed has a fixed point in B;(0) < Z.

Proposition 6.3. There exists Ty > 0 such that, for all Ty, > Ty, T is a strict contraction on

We use (6.42), Propositions 6.1 and 6.2, and the equations (6.43), (6.44), and (6.45), to get the
following (note that in the following estimates, C' > (0 denotes a constant (which might involve
C),) whose value may change from line to line, but which is independent of 'Iy)). Also, for ease of
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notation, we will denote F3(u(y)) by F until otherwise mentioned.

[T (y)(t )||L2(p(w>\(t) 2) )

< C'(log(log(t) Cf A(t) I
tglogbﬂ 2ab( x x310g2 ( )
(t) 1 1 1 .
+CJ JE( Az )) <x2 logi(x) (31:210g6 2b( )) * /\(x)x410g€(x)) d
C(log(log(t)))? ¢ ¢ L ¢
T 2loghtiTReb(g) g2 log2 Yt)  2log®2 2(t)  t2log"(t)
C(log(log(t)))* | log™"™(t) +log>""(t) + log™'(¢)
= 2loghtm 2O‘b(t) t21log? (t)

Next,

T (y)(t,w) = — Lw cos((t — x)vw) (Fa(y)(x,w) = F(V-F(z,-M2))) (wA(2)?)
—F (/- Fs(x, )\(x)))(w)\(x)2)) dx

and the same procedure as above gives

187 () ()| 2oy
J A() 1
w>x4log2 "

C(log(log(t)))?
(t)
< > <x2 log a2 10g€ ( ) B\ )w”‘lloge(ﬂf)) o

t3 logb—H 2ab
(log(log ))2 €+2b(t) + log~ 2+ (t) +log ' (t)
t3 logh™~ 2“‘b(t) t3log? (t)

Similarly,
VEADT()(t.0) = =20 [ sinl(t — 2V (Fa(0) 0.0
—F(W-F(z, - M2))) (wA(z)?)
—F (v -F3(z, )\(x)))(w)\(x)z)) dx

and the identical argument as for the previous two terms gives

VWA T () (t, W) 2 (p(wrce)?)dw)
l l 1 fe+2b 1 2+b 1 —1 t
<C(0g1((;g§l))) L oape (t) +log 27"(t) + log (¢)
t2log (1) t3log? (t)
2

_ C(log(log(t))) N Clog*”b( ) + log 2*(t) + log ' (t)
T 2 1oghth et (g t3log? (1)

NN N |
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The next term is

AW T () ()
= [ eosttt - o)) (%) ViA@) (Bay)(,0) — F(VF (. M) @A@)?)

and we get

[IAE)V@WAT (y) (@)l L2(peori?)ae)
C(log(log(t)))?
t3log1+b 200 (1) OJ ( ) x4log2 ()dm

" () st e ] (i) ez

_ C log(log(zﬁ)))2 Lo log 2(t) +log *(t) + log~ +2b(t)
T 3 loghtt 20 (1) t3log? (t)

WA T (y)(t,w)

— - [ sintte—av)

and the same procedure as above gives

[|lwA(t)? T( )&, W)l 22 (p(rw)2)dw)
(t)? A(t) C 1
< 2 10 1+b— 2ab C f ( ZL’) I 3 log% (q;) . 10g($) dx

5 (4) s
L G) () =5 i

< Cl g " (t) + log "M (t) + log 3 (1)
t2 log”b 2ab(t) log? (t)t3

x*log(x
Moreover, by, for example the Dominated convergence theorem,

T(y)(t,w)t* log? (t)2/ p(wA(t)2)(wA(t)?) € CO([Ty, ), L (dw))

dx

C
+C

and

AT (y)(t,w)t* log? (VWA p(WA(L)?) € O ([To, ), L*(dw))
So, if Ty is large enough, then, T'(y) € F% (0) ¢ Zif y € B1(0) c Z. We will now show that 7" is
a strict contraction on B1(0) < Z. Let y1, 4, € Z satisfy

lyallz, 12|z < 1
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T(y1) — T(y2)
- [ el
: Vw
(1) = Ba(ye) — (FWV-(Bs(u(yr)) — Fs(u(y2))) (2, -A(@)))) (wA(2)?))) do
(6.47)

First, note that F5 is linear in ¥, so

Fy(y1) — Fa(y2) = Fa(yr — y2)

Next, we treat Fj starting with the L, terms. We will denote by wu; the function associated to y; via
(6.20). We will also use v;, w; to denote the functions associated to u; in the same way v and w
were used in the above discussion

Recall that

(L1(ur) = La(u2))(t, r)
_ <sin(2u1(t, r)) — sin(2ua(t, r)))

2r2

r r

: <cos(2Q1(m)) (cos(2veopr(t, 7)) — 1) — sin(2Q1(W)) SIn(20cor (2, 7’)))

Since
| sin(2uy) — sin(2uq)| < 2|uy — s

we get (after estimating in terms of u; and then translating to y; in exactly the same manner as done
above)

[P (V- (L (1) = La(u2)) (£ - AN @AE)) ] 22(porn)a)
Veorr(t, RA(1))

< Ol ()~ Ol tarcrrar (1220 m D, 4 2o EN )
Next, we estimate
9 (L) — Ly () (1. RA(H)|
< A=l O IO (ot BN + 1 e 0. FXCO)
i (1t A+ Ht O
O (1t RAO) (st TN+ T A
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Then, we get

[Or((L1(u1) — Ly (ug))(t, RA(t)))||22(rar)
< C (|[v1 = 02|l r2(rary + || L(W1 — 02)||r2(rar) )

(1 Nomte e IO ) (17 P+ s )

n Vcorr (t7 R)‘(t))aR('Ucorr (ta R)‘(t)))

I oo = (ren
||Uco7“7“ (ta RA(t))éR(/UCOT”” (ta R/\(t))) || - 4 ||6R(UCO7”7" (t’ R)‘(t))) || ~ )
ROA(D)? PN T 2y By

Similarly,

|L1(U1)(t» RA(t)) — Ly (u2)(t, RA(1)) |
R
Clvy —vs|(t, R) o R|veor(t, RA(1))]
~ R3>\(t)2 |UCOTT(t7R)\(t))| + (R2 + 1)
We combine these to estimate ||L ((Li(u1) — L1(u2))(t, RA(t))) || 22(rar). and then, as in the

previous estimates, translate the right-hand side in terms of y;, and use the estimates on our ansatz
to get

[INOVWF (V- (L (ur) = La(uz))(t A1) (@AE?) |22 oencer? )
OHyl - y2||L2(p(w>\(t)2)dw) + |[VwA®) (1 — y2)||L2(p(w/\(t)2)dw)

<
t2log® 2 (t)

<C |ly1 ;y2||Z
t+log2 ~2(2)

Now, we treat the nonlinear terms. First, note that, if
ni(x) = sin(2z) — 2z

then, by the mean value theorem,

In1(z1) — n1(z2)| < |21 — z2|maxgep 1|1y (01 + (1 — 0)xs)|
< |z1 — @2|maxgep, 174 sin®(0z1 + (1 — 6)z5)]
< Cloy — o (|21]* + J22f?)
Similarly,
| (cos(2x1) — 1) — (cos(2xq) — 1) | < C (|z1| + |z2]) |21 — 22
So,

U1 — Ty (U] +73)
R2A(1)?
U1 — Vo] (|01] + [2])
REA(1)?

[(N(u1) — N(u2))(t, RA(#))] < C

+C (QLR)] + [veorr (t, RA(E))])
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If R < 1, we use the estimates (6.14) to get

[71(t, R)| - |[o1 (t)||H1 || L* L1 (1)|| L2 (Rar)
VRAE) T A At)
and if R > 1, then, we use (6.17) to get
wtR) _ C

Ton <@ MmOl
In total, we obtain
IV (u1) = N(u)(t, - A0)| L2(rar)
< C[o1 = D2l (||<wA(t)2>y1IIiz@(m(t)Q)dw) + |I<wA(t)Q>yzlIiz(pwmz)dm)

(K@@l eeayyde) T IKVWAE) Y2l L2(pat)2)d)
+ OHUl - UQHH; )\(t)
Veomn (£, BA(E))
N A A
(14 et

which gives

C lyr — 1oz
ME) tlog (2)

[IF (VAN (ur) = N (ua)) (¢, - AN @A) 22 (pormyyae) <

where we used the estimates on the ansatz, and the fact that
lyillz <1, i=1,2

Next, we will estimate dg ((IV(u1) — N(ug))(t, RA(t))), treating the following expression one
line at a time.

Or (N (u1) = N (u2))(t, RA(t)))

cos(2Q1(R)) _ B B ~
= 2R2)\(t)2 (2 (COS(Zvl(t, R)) - 1) 6R’U1 -2 (COS(2U2) — 1) 6RU2)
cos(2Q1 (R)) _ _
TR ( 2R2)\(t)2 ) (n1(v1) — na2(12)) (6.48)

_2 (sm(le(R) + Qeorr (1, RA(E)))

2R2A(t)? ) (sin(27,)0Rv; — sin(202)0Rv2)

SlIl(QQl(R) + 2Uco7“r (ta RA(”)))

+ (cos(20,) — cos(202)) Or (

2R2\(t)?
For R < 1, we estimate the first line of the right-hand side of (6.48) by
|% (2 (cos(2v1(t, R)) — 1) Orv1 — 2 (cos(20s) — 1) Orv2) |
- C I ol ||2@|L(61 —62)| C v(t,R)? [0y — Ua|
A2 VRE R At)?2  R? R
N C H@l —62||L%|||51| + |v2|||L%|L62| N C |vl —62| (|@1| + |62|) [Ta]
02" VR VR R a0 R R R
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where we used the fact that

2(cos(2v1(t, R)) — 1)0rv1(t, R) — 2(cos(205(t, R)) — 1)0rva(t, R)
= 2(cos(201(t, R)) — 1) (Or(T1 — Ua)) + 205U (cos(27) — cos(20s))

to get

12(cos(25, (£, R)) — 1)0uTr(t, R) — 2(cos(20a(t, R)) — 1)oxTs(t, R)|
< CU1(t, R)?|0r(T1 — Ua)| + C01 — s||0rTs| ([71] + [72])

The second line of the right-hand side of (6.48) is estimated by

on (“SZLED) Gon(01) — st | < 55 (o 7 )

The third line of the right-hand side of (6.48) is estimated by

| — 2 <Sln(2Ql(R)2;22>\U(Cto)rg(t’ R)\(t)))> (Sin(QUl)é’Rﬁl — sin(2@2)8}ﬁg) |

(1 N ||vcm(t, RA(1)) | (v, — U2)

L’Ug

<

o= ) Cloull iy ——p— + 1[0 = Tal |5~
R R

1| + (V] \ 01 — s
+( R R

SiH(Q@l)aRﬁl — sin(262)6352 = sin(2@1) (63(51 - 62)) + (sin(QEl) — SiH(QEQ)) 6362

A(t)?

where we used

The final line of (6.48) is estimated by

(cos(20;) — cos(203)) Or (sin(2Q1(R)2—Z;22)\U&O)T;(t, R)\(t)))>

“c (Wll - |52|> g;(j;' (1 + 110 (veors (8, RAE)) |1 + I|MRRW))””)

Now, we will estimate the contribution of each of these terms to

10k (N (u1) = N (uz)) (&, RA®))) [|2((0.1). rar)

We use (6.14) to control || ||, and get

' (01— 7))
[ st (472
CA()?|[{wA(t) >y1||L2(p(w)\(t)2)dw)||<w>\(t)2>(y1 - y2)||%2(p(w>\(t)2)dw)
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Next, we get

r C  (v1(t, R))* [; — Dp|?
o MO R? R

¢ 1 v * T 1 2
)\(t)4f0 ((Hm“% +||L LUlHiQ(RdR)) (logz(}_%) n 1) )

T — = 1
(=Tl + 12201 = By R (1087 1) d

< C/\(t)2||<w>‘(t)2>y1||i2(p(w)\(t)2)dw)||<W)‘(t)2>(y1 - yQ)H%Q(p(w)\(t)Q)dw)
The next term to consider is
e A L R
o MY VR Y VRO R

C o o
< sy (1= il + 12 L =) )

dR

N

RdR

— ® T — — * T — ! (LEQ(LR))Q
(I + 12" L2y + W12l By + 1L vaniz(RdR))L SRR

< OAEPIKWAME ) (1 = v2) |12 (pteon?yaw)
(KA1 By + IADDB:B2uara

N[ 21T (oo ry2ya)
Next, we have

C (‘[T —Ty (0] + 7]\ 2]\
— | RdR
o d, (1 (M) )

C o e
< st (P =il + 1272 = )l s )

— * T — — * T — ! 1 ’
(Il + 11 Lo s amy + [1Talllyy + 11 L0 2 ) j (bg?(ﬁ)ﬂ) RdR
< OXE KA W1 = v2) |72 (pteoniny?yaw)

(A28 2 oriman + ICADD B lEpanin )
For the second line of the right-hand side of (6.48),
C Y/t v\ [ —1)?
— + = | ——RdR
T (34 ’ R4) 7
C

< )\(t)4 (||El||}1{c} + ||L*L61||%2(RdR) + ||§2||i]c} + ||L*L62||AI{2(R(1R)>

1 1 3
(151 = lFy + 20 =~ ) ) [ () 1) am
< C)\(t)2||<w>\(t)2>(yl — y2)||%2(p(w)\(t)2)dw)

. (||<W)\(t)2>yl||%2(p(m(t)2)dw) + ||<w)\(t)2>y2||Zi2(p(w)\(t)2)dw)>
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Next, we treat the third line of the right-hand side of (6.48),

Jy e (1 e )

(Il 2
H} R2

(L7,)? N (01)% + (U2)? [U1 — T |?
R2 RQ RQ

+ 1[0 = I3, ) RAR

Veorr (T, RA(T))
<C (1 + ||T||iw KA () (1 — y2)||%2(p(w>\(t)2)dw)

. <||<W)‘(t)2>y2||%2(p(w)\(t)2)dw) + ||<W/\(t)2>y1||%2(p(w)\(t)2)dw))

The final line of (6.48) is treated as follows.

[ (2 (1t RN O+ 1))
C

0 R RA(t)? -
<5 (1 + 1108 (Veorr (t, RA(E)))[| 2 + ”MW)

(10581 + 12 L0 By + 1Tl + 1L el By

1 1 2
' (||51 — ﬁz“?g +[|L*L(v1 - Wz)“%%RdR)) fo <log2(ﬁ) + 1) RdR
Veorr(t, RA(1)) 2, )

< 0 (1 onlumm b RO +11228

[KwA®? 1 = y2)l 2 gporiyzyan)

- (IKA® 29 B2 rorimany + ICADD BB )

We combine the above estimates to get

L (0r (N (u1) — N(u2))(t, RA(1))))* RAR

< OME? (IKA® 91 I 2oriman + ICAOD B lEnin )
WA (W1 = 2) |72 (poncey?)aw)

+C (1 nttm 1 RO + 122 )

WA X1 = 2) |72 (ponce)?)aw)
: (||<wA(t)2>y2||%2(p(w)\(t)2)dw) + ||<W)‘(t)2>y1||%2(p(w)\(t)2)dw)>
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When R > 1, we can estimate (6.48) by

|0 (N (u1) = N(ug))(t, RA(1))) |

¢ C
< 5! Pl L@ = 22) + 5 0 = 2]

c . _ _
+ 3l =l (1]
C (- _ L
+ 5 il + 1wl ) 1o |
C (- _ L
+ 5 Ul + 1122l ) 122 =)

(1 ottt BN+ 2RO )

R
C Veorr (t, RA(E
+ (1 n ||M||L%)

i+ 1l ) (127 + (2]

A(t) R
(Il | L@ = 5|+ 1[5 = Tl gy | Ll + (11515 + Il ) [72 = Tl
Taking the L2 norm over R > 1, and combining with our previous estimates, we get

10r ((N(u1) — N(ug))(t, RA(t))) | 22(rar)
< CME) WA (1 — y2)]|22(p(rce)2)de)

(A9 IR oran + CABD I Bpancryin)
Vceorr t, RA(t
+ € (1 1O oo, RAO) - )

- (|92l | L2 oonwyde) + IKOAB) D1 || L2 oor)?)aes))
KA W1 = y2)l| L2 (pwr?)aw)

It only remains to consider the following.

|N(u1)(t, RA(t)) — N (u2)(t, R)\(t))|
R

Ty — U] ((T1)* + (T2)? 7| + 7)) |71 — Ty (6.49)
< C| 1 |R(§)\(7)5)2+( b, Al |J]2>l)\(|t))|2 | (|Q1(R)| + |veors (t, RA(E))])
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So,
J "N ()t RA(1) = N(ua)(t, BA®))” 1

: 2
< < (I =Tl + 8L~ 5) B
A(t) H} (RdR)

1 3
: (||51||§'1§ + ||L*L51||%Q(RdR) + ||52||Z;-'[é + ||L*LE2||%2(RdR)) j (10g2(§) + 1) RdR
0

C Veorr (£, RA()) | o
+ — | 1+ || —/—/—=—=i~
(101 + WL L1 By + |52l 2y + 1117 L0 E2(ary )

* 1l 3l 1 : 2
(12 =l 122001 =9 ) [ (1) 1)

< OXE KWM)W = v2) |22 (pteoniy2yaw)
(KA 292 oriman + ICADD Bl Eponin )

Veorr (T, RA(t
e (1 ALz ))||in>

WA (01— y2) 72 poncry)yaw)
' (||<W)‘(t)2>y1||%2(p(w)\(t)2)dw) + ||<w/\(t)2>y2||i2(p(w)\(t)2)dw))

We return to (6.49), and study

( [ ) = NG m@))fRdR) ”2
1 R?

c _ _ _
o1 — U2||L2(RdR) (||U1||12qe1 + ||U2||§{g)

<
0s
C Veorr taR)‘ 3
sy (1Tl + 17l 1 = Tl (1 122 )

We now combine the above estimates, translating between norms of v; and norms of y; as
previously, and use the fact that ||y;||z < 1, as well as the estimates of the ansatz to get

IMEVOF (VAN (1) = N(uz)) (t, - MO @A) 220 r(t)2)d)

||Z/1—y2||z

<C
t4log“ ™" (t)
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We now return to (6.47) to get

(T (y1) = T(y2)) (O] 22 (p(wnr)?)de)
t 1 2|7 @ At 1_ 2|z
o (28) (o -8 A

—i—C’J a:( t)) [l _y2||Zd$
Ax) ) tlog™(x)
log + log =+ () 4+ log = (¢
< Cllyr — v2llz —® 2 logg((t)) @

(T(y1) — T(y2))
= — L cos((t — x)vw)Fa(y1 — ya)da
i Jtoo cos((t — z)Vw) F(v-(Fs(y1) — Fa(y2)) (2, -A())) (wA(x)?)dx

So, the same argument as in the previous estimate gives

10:(T'(y1) — T(w2)) | L2(p(rty2)de)
log ! (t) 4+ log “t?(t) + log 2 "b(t)

< OHyl - y2||Z 13 logg(t)
Similarly,
VO (T (1) — T(y2))
= — L A(t) sin((t — x)v/w) Fa(yr — y2)da
+ A(t) f:o sin((t — 2)vw)F (V- (F3(y1) — F3(y2)) (2, -A(2))) (wA(2)?)dz

and the identical argument gives us
VAT (y1) = T'(2)) (O] 2oty
log 1 (t) + log “t?(t) + log 2"b(¢)
t3log? (1)

< Cllyr — vl

Next, we have
VWA)O(T (y1) — T(y2))

7 (29 conte - P 1 —
A(t)

' j (@) cos((t — )V A @)W F (V(Fy(mn) — Folya)) (@, M) (wA(z))de
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So,
||\F)\ (t)o (T(yl)—T(y2))()||L2 p(wA(£)2)dw)

CJ (/\(t )2 |y — ?/2||Z d —l—CJ ( (t) )2 ||y ;y2||z dr
Mz) /) a*log'* (@)) ztlog? *(x)
A(

el () L'fio;i’?l!f)dx

log ™ (t) + log =" (t) + log=2+(¢)
t3log? (t)

< Cllyr — 2|z

The identical procedure shows that

lwA@®*(T(y1) — T(y2)) (O] 2pern2)a)
log ™ (t) + log =t (t) + log~2(¢)
t3log2 (t)

< C||yl —Z/2||Z

Thﬂs, T is a strict contraction on B, (0) < Z, for Ty large enough; so, T has a fixed point, say
Yo, in Bl(O) c Z O

7 The Energy of the Solution, and its Decomposition as in The-
orem 1.1 (Wave Maps)

Let us define

A _ . r

2O (F wolt, 5p)) (5fg)s 7> 0
0, r=0

ve(t,r) =

Note that vg(t, ) € CY(]0, o)), by the same argument as in Lemma (6.1). Inspecting the derivation
of (6.3), we see that we have a solution to (2.1):

6
ult,r) = Qa (r) + 3, vnlt.7) (7.1)
k=1

Here, we study the energy, (2.2), of our solution, and prove that it has a decomposition as in the
main theorem statement. First, we note that é‘tQ ¢ L*((0, c0), rdr), because

b0 ¢ L*((0,00), rdr), so we have to first capture a dehcate cancellation between the large r behav-

ior of 0,() o and ¢,v; before we can even show that the solution has finite energy. We consider
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the region r > ¢, and use the representation formula for vy, (5.10), which implies

Q0 )\/// 7,2 —1= P2
Gt :J J VAl S—t ( \/1+r2+p2)2—47’2p2> dpds
J*tJrG )\lll J* 7,2 — 1= p2 dod
s
«/s—t — p? \/1+7‘2+p2)2—4r2p2 P
+ J i) J QR P kel dpds (7.2)
vz T Jo (s—1t) \/(1 + 12 + p?)2 — 4r2p?

! J:)g X”;S) f(jt ! ( (s —1)2 — 2 (s i t)>

2_1_ 2
1+ ! P dpds
\/(1 + 12 + p?)2 — 4r2p?

For the second line of (7.2), we have

t+ 2\ t 2 _ 1 — 2
J ' J P 1+ L P dpds
‘ roJo A(s—t)2=p? V(L4724 p?2)2 — 4r2p?

t+§ X"(s) Js—t p < ( 7“2 ))
= 141+0———==| | dpd (7.3)
L r (s— )2 — p? T (r2 — 1 — p2)2 pas

t+ % /\///
_9 f ’ (S)(s—t)derEam(t,r)
t

r

where

C

t+5
Ean(tn)] < 55 | W) - s <
t

«_ ¢
r3tlog”(t)’
For the third line of (7.2), we have

|J~oo )\”I(S) J*S—t p - 7"2 — 1= p2 dpd5|
pr T Jo (1) V(L + 72+ p2)2 — 4dr2p?

0 " 0 2_1_ 2

<CJ MJ pl1+ L P dpds
ez (s —1) Jo V(L + 712+ p?)2 — 4r2p?
C

< -
r2log"™ (1)’

r>=t
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Finally, the fourth line of (7.2) is treated as follows:

0 " s—t 2_1_ 2
|f 4 (S)J p ! _ 1+ L P dpds|
t+g T Jo (s—t)2—p* (s—1) V(L + 72+ p2)2 — dr2p?
Ll &
\r3logb+1 r t+r S—t) P (S—t)
r? —1— p?
1+ dpds
( \/(1+7‘2+02)2—4T2p2) ’

C © r2_—1— p2 oo 1 1
S 0 J pl 1+ — dsdp
rtlog™ (r) Jo \/(1 + 12+ )2 —dr2p? | Jo (s —t)2 — p? (s —1)
C

< —
7”2 longrl( )

r=t

Finally, we further treat the first term on the last line of (7.3)

5N (s) 2 /r r r
2 —td:—(—/\”t ——)\’t+—+)\’t)
| R nas = (e -+ -
2N (t
= ( ) + anhl(t,’f’)
r
where
|E. (t,r)| < L r=t
Orv1, 1\ 0y ~= 2 10gb+1( ) =
Then, we note that 0
—2r\N'(t
atQﬁ(r) = r2 4 )\(t)g
So,
0 (Qu () +0a(tn) [ < 5 > 1
t (1) (%] r \T2logb+1() r =
Using the estimates on d;v;, we then get
C
0 ( o (r) +wv tr) 7 < ———
160 (@511 + 01(60) Wi < o i

Then, we recall
B(u, ) = (1[0l Fagary + Il )
and note that energy estimates for the equations solved by vy, for £ = 3,4, 5 give

* _ Clog(log(t))
< —="_=> 77
2 10g2b+2 (t)

Boa(t) a0 < © [ 1Fa(o)l s
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0

2 C

B(va(t), drea(t) < C U

0

C'log®(t)

Bun(0).0n(0) < € [ Il luzants) < S35

Next, we consider v for b # 1. By Plancherel, we have

161° f’o (x<1(8))

E(vqo(t), Grve(t)) = E(v2(0), Grv2(0)) 2b2(i) d¢
3

- w(b—1)2 Jy log
1602 (5 de 1602 (1 de
< E(vy, Oyvg) < J
7T(b _ 1)2 J;) 1Og2b—2(%) ( 2, Ut 2) 7T(b _ 1)2 0 10g2b—2(%)
where we used properties of X<l This gives, for b # 1,
16b* 16b*

['(3 — 2b,10g(8)) < E(vq, va) <
77

WF(B — 2b,log(4))

(b —1)2

By inspection of vy o for b = 1, we see that E(vq, Gyv9) < oo for b = 1.
Using our estimates on vy and vy, we get

[N p——
¢ t2log™(t)

Finally, we treat the vg term in (7.1). Theorem 5.1 of [14] (the transferrence identity) shows
that

r

N(t)

|[0wv6] | L2(rary < C||T(t)]-‘—1(y0(t7 )\(‘t)z))(m)HLQ(TdT)
+ €l 227 e, 55 7 e .4

. C||AA'(<Z)>\/@.F—1<K<%<@W»)(ﬁﬂm(rdﬂ

The first line of (7.4) is handled by re-scaling, and applying the L? isometry property of F(-):

O VRN S
[ e (f <yo<t,W>><m>) dr
= V() f ot ) 2o (1)) deo

N (8)*A(t)”
t4log (1)
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The second and third lines of (7.4) are treated by again re-scaling and using the L? isometry
property of F(-), as well as the same estimates on /C that we used while estimating F to get

jo 20 6y R

N2 (21, ) 2, T
T R A S e
CAB) 100 (D172 peorcey2yawy T CN O AO[10 ()72 (peonry2yaw)
C

< oD

Yrdr

6 log

This gives
C

t6 10g4b+e (t)
From the definition of vg, we have (using the same argument used when estimating F5, F3)

o6 (@7 = llve(t, - A0 g < C (v (t, - A |2(rary + L (vs(E, - A))|2(rary)

10:v6 172 ¢rary <

and
[ve(t, Al 2(rary = A)Yo ()| ] L2 (p(wrct)2)dw)
1L (v (t, - MO z2(rary = MO VWA Yo (D] 22 (p(orce)?)w)
which gives

o)l < —
(Y 1 XX T e, o
OVITHE ™ 2 10gh T (1)
Finally, we have
sin(u)
Ewwm(u, Ou) = <||5tu||%2(rdr) + ||T||%2(rdr) + ||6’fu||%2(rdr)>

Then, we use

osin®(u—Q 1 +Q 1) w0 sin®(Q 1) o u—Q 1
f A0 2O _rdr < C (J — 2Oy + J — Mt) rdr)
r B r

0 2

to get

6
By (1, 0u) < C (Hﬁt (@, + 1) IBagar) + 2 el

sin(Q 1.
HI8Q 1 Bgrary + II—2 |L2W+Z||vk||

[\')

\_/

By combining our above estimates, and recalling

Sin(@i
||L2(rdr) + ||+m||L2(rd7") =4

16:@ 1

)\(t)
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we get
EWM('U,, 5{&) < QO

and

C

Os(u — )12 + |u — —
10, = 0 By + Il — @ B

2
— s <
ol U2||Hé =
Finally, we note that the remark after the main theorem concerning the regularity of vg follows

from the definition of the space Z, the continuity of dilation on L?, and lemma 9.1 of [14]. This
completes the proof of the main theorem.

A Proof of Theorem 1.2 (Wave Maps)

In this appendix, we will summarize the extra arguments needed to prove Theorem 2.2. To prove
Theorem 2.2, we use a slightly different starting point than for the proof of Theorem 2.1. In
particular, fix b > 0, Ao, € A, and let T, > C, where C; > 100 is some sufficiently large
constant depending on A\g ;. Then, we define the X norm as in the proof of Theorem 2.1, and
write A = Ao + €1, where e; € B;(0) = X. For all such \, we then define v; exactly as in the
main body of the paper. The main difference is a modification of vy: Let ) € C*([0, «0)) satisfy

and define N (8)d
o\ (s)ds
P = (1] 2227 ) v

Then, v, is exactly as in the main body of the paper, except with v, the initial velocity of vs,
given below

w6 = [ " F(t) sin(te)dr

Cén o

The point of this definition is that, by the sine transform inversion, U/.Q’\(] solves

_QJ Sin(te)EiTy(E)dE = F(t), ¢ 0

0

vs 1s defined exactly as in the main body of the paper. Several estimates on v, in the main body of
the paper used the fact that \'(z) < 0, which we no longer have in the setting of this appendix. Un-
less specified later on, analogs of all of these estimates are still true in the setting of this appendix,
and can be proven by instead using that, for some C5, C5 > 0,

Co
log’(t)

< A(t) < Cs

- log®(t) @1
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and t —

( 3 is decreasing. The definitions of vy, v5, and the equation resulting from %, sq1»

are the same as previously. The inner product of the v; linear error term with the re-scaled ¢y is
unchanged. On the other hand, for v, we have

Jooo (608(23%1)\((}?2) — 1) va(t, RA(1)) o (R)RAR

. sin(t€) N o ) 1 _
- QL DA 2f0 (t€)¢ (K1(§)\(t)) SA(t)) So()de
N )\?t) Jt )\107ib£81d: + Euip(t, A1), t=Th
where . 1
Buaat A) = -2 [ sin(e9)6 (K(€0) - s ) @l

and we used the fact that ¢/(¢) = 1, ¢ > 100. In order to prove the pointwise estimates on vy, we
require some estimates on ¢ ({Us). For these, we use
- -1 (* o do
§20(8) = — | F(Z)sin(o)—
T Jo § §

and can then differentiate under the integral sign, using the symbol type estimates on g ;. The
most crucial point to mention regarding the pointwise behavior of vy is the analogue of (5.49),
since it is this which allows us to prove the crucial near origin estimates on F}. In the setting of
this appendix, we prove the analogue of (5.49) by noting, for r < %,

valt,r) = f " J(€) sin(t€) 530 (€)de

0

r r sin?(0)

LOO & (sin(&(t + rcos(0))) + sin(E(t — rcos(h)))) v20(E)dEdO (A.2)
- ;—; Lﬂ sin?(6) (F(t + r cos(0)) + F(t —r cos(9))) df

and then using

Cr

t
Pt reos(0)) = F() + Br(t.r), - [Bre(tn)] € i, v

t =1

The arguments for derivatives of v, are done similarly. The linear error term associated to vs is
studied similarly to the main body of the paper. The modulation equation for A then has the same
form as previously, except with the modified definition of £, ;, given above, and the replacement

4b 4 ro Ny o5(8)ds
A)2log’(t)  At) ), 1+s—t

Recalling that A = Ao + €1, we then substitute e (t) = A 1(t) + e(t), where

J JOO A0.0.6(t2) log(Ao,0(2)))

log(ts)

Ao, ( dtodty
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and proceed exactly as previously. The crucial kernel estimate (5.69) was previously proven using
an argument which used A () +\j ; () < 0, which is no longer true in this context. On the other
hand, (5.69) is still true in the context of this appendix, and is proven with the same calculation of
stk (s, t) as before. Instead of using \j o(t) + Aj (f) < 0, we simply use

()1 —a)No(—=t) @ +1= =, t<-T,

which follows from the lower bound on 7 imposed at the beginning of the entire argument of this
appendix, and where \o(t) = Ao o5(t) + Ao1(¢). Similarly, using the fact that )\, is comparable to
m, which is a decreasing function, we carry out the same procedure as previously, to obtain the
important resolvent kernel estimate (5.72). In this context, the analog of (5.72) has some absolute
constant C, rather than precisely 2, appearing on the right-hand side. Recalling the comment just
above (A.1), the rest of the estimates on vy, required to construct \(t) and estimate A\*)(¢), &k < 4
follow from an argument similar to that used previously.

Recall that the modulation equation in the setting of this appendix is of the same form as the
one in the main body of the paper. In addition, the definition of v; is the same in both settings.
Finally, (A.2) is true. Combined, these imply that we can prove the crucial pointwise estimates on
F, and its derivatives with the same procedure as before. Also, all other subsections involved in
the construction of the ansatz section can be established similarly. Finally, we can then complete

the argument exactly as before, with E(v,, ¢ (Qﬁ + ve)) having the same decay in ¢ as previ-
ously.

We proceed to describe the Yang-Mills component of this thesis. The main differences in the pro-
cedure are extra steps needed to address technical problems caused by the much worse radiation
considered here. On the other hand, the modulation equation for A(¢) in terms of the radiation is
simpler in this problem. As mentioned earlier, in our setup, a necessary condition for the radiation
to have finite energy is that A(¢) approaches a constant.

8 Introduction (Yang-Mills)

For the reader’s convenience, some information appearing in the Background Material section is
repeated here. We consider the Yang-Mills equation in 4 + 1 dimensions, with gauge group SO(4).
This equation can be described by a gauge field, A, which is a Lie(SO(4))-valued one-form on
R*. We write A = A, dz", where, for each u, A, is a Lie(SO(4))-valued function, defined on
R**!. Defining F, a Lie(SO(4))-valued two-form on R**! by

1
F = §Fuydx“ ndz”,  F,=0,A, — A, +[AL A

the Yang-Mills equation can be written as

4
—01Fo, — [Ao, Fo] + Y (0 Fy + [Ay Fu]) =0, forv=0,1,2,3,4
pn=1
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where 0 on the right-hand is the zero in Lie(SO(4)). The Yang-Mills equation has the conserved
energy

4872

The equation is invariant under the scaling symmetry

1
Eyy = — J Tr (F.(t, x)F,(t, x)) dx
R4

A, (t,x) = NAL(AE, M)
The components of F' transform under this symmetry as
F(t,x) = N*F,,(\t, \1)

which means that the energy Fjy), is invariant under the scaling symmetry, because the equation
is considered in 4 spatial dimensions. The Yang-Mills equation is also invariant under gauge
transformations, which are transformations of A of the form

1 1

Ay — gALg —0u99”

where g : R'™ — SO(4).
Small energy global well posedness for the (4 + 1) dimensional Yang-Mills problem was estab-
lished by Krieger and Tataru, [18]. In addition, the works of Tataru and Oh, [24], [25], [21], [22],

[23], established a threshold theorem and dichotomy theorem for this problem, with any compact,
non-abelian gauge group.

With the equivariant ansatz (see also [28], [15])
Abvd §iad — 57 g u(t, |z]) — 1 < < i<
H(t,x)z(#x—#x) — ], 0<pu<4, 1<ij<4

the Yang-Mills equation reduces to

2u(1 — u?)
2

1
—Opu + Opput + ;&nu + =0 (8.1)

The energy Fjy -y, reduces to the following quantity, which is conserved by (8.1).

Byar(u, ) — f ) ((atu)2 () + M) rdr

2
2 Jo r

The equation (8.1) admits a soliton solution, namely u(t,r) = Q1(r) = };:5 In addition, for any

A >0, Qx\(r) = Q1(rA) is a solution. We will study perturbations of Qﬁ’ and it will turn out that

the “main” component of such perturbations will involve solutions to the following linear wave
equation

1 4
—5ttu + 5”»11/ + —67»71 - —2U =0 (82)
r r
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The formally conserved energy for this equation is

1(® ) ,  du?
E(u, du) = —J ((ﬁtu) + (Gyu)” + —) rdr

2 Jo r?
Our goal in this work is to construct global, non-scattering solutions to (8.1). For the 1-equivariant,
critical wave maps equation with S? target, such solutions with topological degree 0 or 1, and en-
ergy in an appropriate range were classified in [2], [3]. As remarked in Appendix A of [2], and
remark 4 of [3], the methods used in this classification result also apply to (8.1). Our procedure
will then be similar to that of the previous work of the author, [26]. In particular, our solutions
will involve a modulated soliton () 5 coupled to radiation, and our procedure to construct these

solutions will be to find a precise relation between the radiation and the dynamics of A(¢). To
describe our main result, we define the following set of functions.

For b > %, let F3, denote the set of functions f such that there exists M > 50, and Cy; > 0,
such that

C
feC®([M,0), |fP0)< ﬁ, fort > M and k > 0

The class of radiation profiles of our solutions can be labeled by £} in the following way. For

f € Fy, we have

~ 8 (PN .

T = g | P sintee)ar
(where ) is an unimportant cutoff function defined before (11.6)), and the radiation profile v, is
given by

—0pv1 + Opp1 + %&vl — 4% =0
v1(0)=0
0w1(0) = v1,
In order to describe the leading order behavior of A(t), we introduce the following family of func-

tions. For b > %, let A, denote the set of functions A\, for which there exists 73, > 50 such that
Ao € C®([Th,,0)), and the following two conditions hold: Firstly, there exists f € F}, such that

Ao(t) f'(t)

—_— = =1 .

Ao(t) t t Ao 8.3)
Secondly,

Mo(t)  tlog(t)’

The condition :\\ggg = @, rather than simply the symbol type estimates, is imposed so as to
guarantee that the radiation profile of our solution has finite energy, see (11.6). Note that the above

conditions on )y imply that A\o(t) — Ay > 0 as ¢ — oo, despite the fact that some Ay € A} (for

b < 1) satisfy o o0 |y
f J —| O(S)|d5da: =
t T )‘O(S)
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To see this, we write

f(t) = — lim M sAg(S)dS — _ lim M (\0(s)s — Ao(s))

d t>1T
o S, Aals) W ), Aas) BT

Integrating by parts and using the assumptions on ‘iggg' , and the fact that b > %, we see that

lim log(Ao(M)) < oo
M—o0

Despite the fact that any \g € A, is asymptotically constant, we do not directly use this fact in any
quantitative estimates of the terms in our ansatz, and their associated error terms. For estimating

the radiation profile, we use 20() ® but for the entirety of the rest of the argument, we only

)\()(t) t

use the symbol-type estimates on %{% (which can be satisfied by non-asymptotically constant \g).
In particular, our solutions are constructed using a similar argument to the previous work of the
author regarding wave maps, [26], rather than assuming apriori that A(¢) is asymptotically constant.

Before we state our main result, we remark that, given any f € Fj, there exists 73, > 50, and
a one-parameter family of \q € A, satisfying (8.3) and (8.4). This can be seen as follows. Given
f € Fy, we can first find w satisfying

1w ¢
=5 0l < s

W'(t) + w(t)?

(where N > 50 is sufficiently large) with a fixed point argument. By inspection of this equation,
w € C®([N,0)). Then, we can define T\, = N + 1, and let \q be given by

t
Mo(t) = cexp (J w(s)ds) , t=N+1, anyc>0

N+1

Then, we have (8.4) and (8.3).

An interesting feature of our solutions is that the radiation profile depends only on f (as per the
formula for v, ; given above) which is invariant with respect to multiplying Ay by a constant. As
we just showed, there is a one-parameter family of \q € Ay, corresponding to a given f € Fy. In
particular, our family of solutions includes functions of the form ) . (r) + vi(t,r) + o(1), for a

one-parameter family of possible asymptotic values of A(t), and the same v;.

Our main result is

Theorem 8.1. Forall b > % and [ € Iy, let \y be any element of A, satisfying (8.3). Then, there
exists To = Ty(No) and a finite energy solution, u, to (8.1), with the following properties.

u(t,r) =Q 1 (r) +vi(t,r) +ve(t,r)

X0
where \(t) € C*([Ty, o))

4

1
_attvl + arrvl + _arvl -5 = 0, E(’Ul, 8,5111) < 0
T T
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and

where, for some €y > 0, we have

C
W) < —a
e ()] Flog (1)’

Remark 1. The initial data for v; in the theorem statement is explicit in terms of f € Fj, as noted
above.

4=2k=0

Remark 2. For % < [ < a <1, wecan let

() = sin(log™(t))

t = 50
log”(t)

Then, f € F; for any % < b < . We then carry out the procedure discussed before the main
theorem, to recover a A\ € A, satisfying (8.3) and (8.4). In this case, we have

Ao(t)  —a log® ! (t) cos(log®(t))
Ao(t) tlog”(t)
Since 1 + 8 — « < 1, this gives rise to \g € A, with
o0 !/
[ Doty
¢ Ao(s)

Nevertheless, as pointed out earlier in a more general context, \q is asymptotically constant.

Remark 3. By choosing

we can show (see (11.6)) that

no=-—S oL ) o
0171(6) - 37r§10gb(%) + O (510gb+1(%)> ) 5 O

which shows that we can have radiation whose initial velocity has quite a large singularity at
low frequencies. In fact, the condition for the radiation to have finite energy in our setting is
01.1(€) € L*((0,00),£dE). The initial velocity therefore satisfies this condition only “logarithmi-
cally”.

Remark 4. A more precise set of estimates on e is as follows. In terms of the parameters 9, d;
defined later on in the paper, we have

C —
C ) Flog TR k=12
et)| < ————, ") < s, k=3
01 < gy 401

t410g?*% (t)’
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Now, we review previous related works. As mentioned before, the work [18] established small
energy global well-posedness for the (4+ 1) dimensional Yang-Mills problem. Regarding the large
energy global well posedness of the Yang-Mills equation in 4 4 1 dimensions, the works of Tataru
and Oh, [24], [25], [21], [22], [23], established a threshold theorem and dichotomy theorem for
the (4+ 1)-dimensional Yang-Mills equation, associated to any compact, non-abelian gauge group.

As previously mentioned, our procedure in this paper is similar to that used in the previous work
of the author, [26]. That work constructed infinite time blow-up solutions to the energy critical,
1-equivariant wave maps problem with S? target, with a symbol class of possible asymptotic be-
haviors of the soliton length scale, A(¢). The main difference in this work is that the initial data
of our radiation is much more singular at low frequencies. This leads to extra technical difficulties
related to the slow decay of the radiation, v;. In addition, the constraint that the radiation has finite
energy implies, in our setting, that A\o(¢) must be asymptotically constant for large ¢, in contrast
with [26].

The work [11] constructs finite time blow-up solutions to the same wave maps problem just men-
tioned, by also understanding the relation between a prescribed radiation field and the dynamics of
the soliton length scale, in the context of finite time blow-up. (The problem of finite time blow-up
for this wave maps equation has also been studied in the preceding works [29], [28], [14], [5], [16]).
Another key reference for our work is the paper of Krieger, Schlag and Tataru [15], which con-
structs finite time blow-up solutions to the same equation considered here, (8.1). In our argument,
we use the “distorted Fourier transform” of [15], as well as related technical information, most
importantly, the transference identity of that paper. For completeness we also mention that there
is an analog of [15] for the energy critical, focusing semilinear wave equation in R**3, namely [17].

Regarding other constructions of non-scattering solutions to (8.1), the work [9] (which also ap-
plies to other energy critical wave equations) constructed two bubble solutions to (8.1). The work
[4] constructed infinite time blow-up and infinite time relaxation solutions to the focusing, energy
critical semilinear wave equation on R'*3. Finally, the work [1] constructed global solutions to
the energy critical wave maps problem with S? target associated to a codimension two manifold
of data. Also, given that our result can be interpreted as some form of stability of the soliton un-
der perturbations, we mention the work [13], which constructed a stable manifold for the quintic,
focusing semilinear wave equation in R'*3, centered around the Aubin-Talentini soliton solution.

9 Notation (Yang-Mills)

We will make use of the following notation. It will be slightly more convenient for our purposes
to modify the usual definition of (x) as follows.

(x)y = V50% + 22
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The elliptic part of the linear wave equation obtained by linearizing (8.1) around (), is

1 2 9
—Oppll — ;0'3Tu 3 (1 — 3Q1(r) )u
As noted in [28], this operator can be expressed as L* L, for

1—r2> (r)

L) ==+
which has the formal adjoint on L?(rdr) given by

1 —7’2) flr)  f(r)

1472

L(f) = f1(r) + 2 (

We denote by ¢, the eigenfunction of L* L, with eigenvalue 0.

T’2

w0 = Ty

Note that this definition of ¢, is a factor of \/r different from that of [15], because part of [15]
studies the conjugation of L*L by \/i;

As mentioned above, the linear wave equation (8.2) will be important for our work, and there-
fore, we will make use of the Hankel transform of order 2, which will be denoted by

fe) = f " ) R )rdr

10 Summary of the proof (Yang-Mills)

As mentioned earlier, the method is similar to that used by the author in [26]. The argument can
be split broadly into two steps: constructing an ansatz, and then completing this ansatz to an exact
solution. These two steps are explained in more detail below.

1. Strategy for constructing the ansatz For b > % we start by taking some f € Fj, and \g € A,
satisfying (8.3). Then, we let A(¢) (which will be chosen later) be any function of the form

At) = Ao(t) (1 + e(t))

where e is small in a C? sense, and consider first, u; (¢,7) = Q . (r) + vi(t,r), where v; solves

—0uv1 + Opp1 + %@«01 — % =
(%1 (0) =0
5tU1(0) =11
and v ; is yet to be chosen. We will choose v, 1, depending on Ao, so that the principal part of the

error term of our final ansatz (which is more complicated than u;) is orthogonal to ¢, (W)’ for
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a choice of A\(t) which is equal to A to leading order. In order to further describe how we choose
the initial data of vy, let us note that substituting u = u; + us into (8.1) gives the equation

2uy(t, r) <1 — 3Q2A<1t)(r)>

r2

1
— 6ttu2 + 67‘7‘11/2 + —5T’LL2 +
r

6(1—Q? v 2

etir) e 30— ( Q}\(lﬂ) 1+6Qﬁ(v1+uz) +2(U1+u2)3

=€\, T) = Oy ﬁ 2 r2 r2

The function u; is not our final ansatz. However, computing the inner product of its error term with
oo (W) still allows us to see how to choose v; ;. The us-independent terms on the right-hand

side of the above equation which contribute to leading order to {e(t, RA(t)), ¢o(R))r2(rar) are

6{1-Q%, |u
OJ

the soliton error term 6”@% and the linear error term associated to v;, which is — =
t

Compared with [26], we do not need a correction analogous to the one denoted by v; in that
paper, since ﬁttQﬁ € L*((0,0),rdr) in this setting, and we therefore have a simpler modulation

equation. We compute the inner product of the linear error term associated to v; in the same way
done in [26], except using the Hankel transform of order 2, this time. We have

vi(t,r) = foo Jo(r&) sin(t&) vy (€)dE

0

and

© 4R R0
| Trmmmm e - S )

(which follows from combining identities from [7]). We can therefore compute

6 (1 _QQ(I)) U1
<_ Nt

72

B =~ [ o€

0

A Ky (EXN())dE  (10.1)
We have an extra factor of £A(¢) inside the integral, relative to the analogous integral in [26]. This
leads to 011 (&) being roughly a factor of % worse at low frequencies &, relative to the initial velocity
for the radiation in [26]. In addition to causing technical difficulties associated to very slow decay
of the radiation v;, this also constrains \o(¢) to asymptote to a constant for large ¢, in order that
the radiation has finite energy. (In addition to our discussion in the introduction, see (11.6) and the
discussion afterwards for more details). We also have

20" (1)
3A(t)

(O0n@ 1

R =
o] MR G0(R))12(rdR)

The modulation equation that we use to choose A(t) is not simply to set the sum of these two inner
products equal to zero, since we will need more to add more corrections to our ansatz. However,
the leading order contribution to the modulation equation is indeed given by the sum of these two
terms. Therefore, we choose the initial data of v; so as to make the sum of these two inner products
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vanish to leading order when \(¢) = A\q(t). We recall that ;\2/8 =1 /Et), t > T),, and extend this
(f)

to a function # defined on [0, o0) with a cutoff ) (whose properties are not so important, as

long as ¢ (x) = 1 for x large enough, and which is defined prior to (11.6)). Then, we let

70 = o | gy

We have ¢(z) = 1 for x > 2T),, which gives, by the inversion of the sine transform, that

o0 e 2 )\l/
| sty - 2 AEEQ

t > 2Ty,
0

This will be sufficient to allow \q(¢) to be a leading order solution to the eventual modulation

equation for A. In particular, in our setting, we can replace K ({A(t)) appearing in (10.1) by f)\;(t)
(recall that Ky (z) = 1 + O (zlog(z)), x — 0) to get the leading order behavior of the integral

as a function of ¢.

As described earlier, the singularity of v7 1(§) for small £ causes technical difficulties, in part
1 1-r2
due to the fact that v, has a very slow (W) decay for large r. Recall also that Q(r) = 1 —
particular, () does not decay at infinity. Therefore, the quadratic and cubic nonlinear error terms
involving v; are very far from having sufficient decay for large r, in order that the rest of our argu-
ment can be carried out. Our first correction to improve these error terms is denoted by vo, which

solves the following equation with 0 Cauchy data at infinity.
(r)

1 4 6Q 1 2
—5@5’02 + 67«7«1}2 + ;5,4]2 — ﬁvg = %U% + 7’_20%

In

On the other hand, v,, only decays logarithmically better than v;, and its nonlinear interaction
with v; as well as its interactions with itself are not perturbative. Therefore, we successively add
corrections, v, which solve

1 4
—8ttvj + arﬂ}j + —ﬁrvj — _QU]' = RHSj(t, 7“)
r r

6Q 1 j=2 9 =2 \? j=2
A E 2 E 2 3
= —7“2 2 VU5 + Ujfl + _7’2 3 Vk Vi1 +3 Ukvjfl + Ujfl

k=1

and prove that the series
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(as well as the series resulting from applying any first or second order derivative termwise) con-
verges absolutely and uniformly on the set {(¢,7)|t = T},r > 0}, where 7} is some sufficiently
large number. Moreover, we get that

1 4
— OyVs + OppUs + ;ﬁrvs — —

r2
GQﬁ

2
- — (201 (v2 + vs) + (v2 + v5)2) + s (31 (v2 + vs)% 4 302 (v + vg) + (va + vs)g)

Let v. = vy + v9 + v,. Then, the only error term of the refined ansatz

ug(t,r) = Qﬁ(r) + v.(t, 1)

is

0@y~ (1% ()

PYO) 72 NO)
which has roughly two powers of r improved decay compared with the nonlinear error terms in-
volving v;.

It turns out that even this major improvement over the ansatz w, still does not have an error term
with sufficient decay in the r variable. In order to rectify this, we introduce a length scale g(t),
and eliminate the portion of the u3 error localized to the region r > g(¢). On one hand, we can not
have ¢(t) too small, since doing so would change the leading order behavior of the inner product
of the error term of the final ansatz, which is not desired. On the other hand, we can not have g(t)
too large, since the whole purpose of the next set of corrections is to improve the large r decay of
the error term of uz. We therefore find an intermediate scale g(¢) which suffices for our purposes,
and add a first correction, wy, which improves the error term of u3. On the other hand, there are
now nonlinear interactions between w, and the previous corrections, which, due to the slow decay
of vy, are not perturbative. Similarly to the case with v;, we add another series of corrections

0
Wg = Z Wi
k=3

to eventually eliminate all the nonlinear error terms involving w; and vy. If we let w, = wy + w;,
then, we end up with our final ansatz

us(t,r) = Q (1) +ve(t, ) + we(t, 7)

The error term of u5 is then decomposed as F); + F5, exactly as in [26], where F} is sufficiently
small in sufficiently many norms so as to allow it to be eventually treated perturbatively, even

though it will end up not necessarily being orthogonal to (bo(m). We have

Fy(t,r) = (1 - ><<1(2—T)) ° (1 _ Q% (T)> we(t,r)

t 72
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where Yy <; is a cutoff whose properties are unimportant for the purposes of this discussion. The
smallness of Fj is more precisely

C)\(t)3
151 =271\ Q(t)

CA(t)° log?(t)

g(t)? log’ (t)t°

where we recall that L has been defined in the notation section. We then choose A(t) so that the

term Fy(t,r) is orthogonal to gbo(@). Unlike in [26], the principal part of the equation for A(¢)

is simply a second order ODE, rather than a Volterra equation of the second kind in the unknown

X’ Once we solve this equation for A\, we then prove that \*) has symbol-type estimates for
< k < 4. As in [26], it is important that, in addition to being orthogonal to ¢o (= ) Fy(t,r) has

ymbol type estimates. We have

A = (1= ) (22,0 - 287 (1- 2, )

|| E5 (¢, BA))| 22(rar) <

17 L (E5(t, RA®))) |2 (ramy <

G

g(t) A r ®

In particular, after choosing A(t), we get, for 0 < j, k < 2,and j + k < 2

knkyj Al TQ)\(t)Q
[r* 0yt o Fu(t, r)| < Clp<gy 5
t2log”(t)(A()* + 7“2)2
9 [ 2M(1)2log(t)
Loy MO | gy <o)

2 2)2 | A(®)?log(t) log(t)
(A(t) +r ) ﬁ (1 g(2 + g(t)) + loggb(t)) s g(t) <r< %

and

(Fu(t, RA(t)), po(R))r2(rar) =0
2. Completion of the ansatz to an exact solution of (8.1) To complete the ansatz u5 to an exact
solution of (8.1), we use the same approach as in [26]. In particular, we substitute v = us + v
into (8.1), and use the “distorted Fourier transform” of [15], which we denote as F to recast the
resulting equation for v into one for y, given by

f(\[v(t, '/\(t)))(t7§) - [mé?%)]

Here, we use the same convention as [15], in terms of denoting F(f) as a two component vector.
The first entry in this vector is {(f, /7¢o(r))r2(ar). (Note that there is a notational difference be-
tween ¢ in this paper and ¢ in [15]). The ch01ce of re-scaling in y;, exactly as in [26] is explained
by noting that the resulting system of equations for ¥, and y; takes the form

[—@:t_y?ttgowyl] =h+F (\/ (F5+ Fy + F5) (t, )\(t))) (w/\(t)g)
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where F; contains perturbative terms depending on y and d;y, some of which are estimated using
the transference identity of [15], and F3 contains other linear and nonlinear error terms depending
on v(y). We solve this equation by finding a fixed-point of the map T given by

T([yo])(w) _ [ P57 (Fao + F (V- (Fy + Fy + Fy) (s1,-M(51)))) dsads

P V) (B (2,w) + F (V- (Fs + Fy + F) (2, -A(2))), (WA (2)?)) d

Y1 t \F

where the subscripts ¢ after, for example Fy, or F (v/- (F3 + Fy + F5) (z,-A(x))) mean the ¢ + 1st
component of the vector, for 2 = 0,1. 7" is defined on a space Z, whose norm is precisely given
in (12.5), but is roughly a weighted L;°L? norm of y and d;y. Our norm on Z is roughly one
derivative stronger than the analogous norm used for iteration in [26]. The most delicate terms
on the right-hand side of the above equation are those involving F. Because of the orthogonality
condition on F}, we have

F (V- () (s1,-M(1)))y = 0

On the other hand, for the second component of the vector equation above, we (just like in [26])
treat the F; term by integrating by parts in the = variable, using both the fact that

F (V- (Fy) (z,-Mx))), () >0, £—0

(which follows from the orthogonality condition on F};) and the fact that F; has symbol-type esti-
mates. The other terms in the equation above can be estimated without such a delicate argument.

11 Construction of the ansatz (Yang-Mills)

Let b > 2 , f e Fy, and \g € A, satisfying (8.3). We will have to introduce some constants
and parameters to describe our setup. Let 7 > exp (900! + 2 20 1J) (1+Ty,), let0 < e <

©(3b-2 21
min{ {8, S65 9000007 900} and define

0 = min{2b — 1,3b — 4e — 2, 5b — 8¢ — 3} (11.1)

Note that § > 0, because b > %, and because of the constraints on €. Also, 1 + § > b. Let

0y = mln{ (04+1-0b), } (11.2)

Define a Banach space X to be the set of functions e € C?([Ty, o0)) satisfying ||e||x < oo, where

lle|]|x = sup (|e(t)| log® %2 (t) + |e/ (t) [t log %2 (t) + |e” (¢)|t? log! T~ (t)) (11.3)

t=Ty

Until more precisely chosen, A denotes any function of the form
At) =Xt)- (1 +et), eeB(0)cX (11.4)
In particular, since 1 + 0 — 5 > b, we have
ol _ o C
At) T tlogb(t) A T #2logb(t)
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For later use, let g(t) = A(t) log” *(t). By the definition of g, constraints on Ay, and (11.4), there
exists M sufficiently large so that

ol _ 1
g() 9001 (1)

log(t) = 2|log(g(t))], > 1600, fort = M, (11.5)

Then, we further constrain 7 to satisfy T > exp (900! + 272(25*1)) (1+Ty,) + M.

The main result of this section is the following theorem concerning the existence of an approx-
imate solution to (8.1).

Theorem 11.1 (Approximate solution to (8.1)). Forall b > 2, f € Fy, and all \y € A, satisfying
(8.3), there exists T3 > 0 such that for all Ty > Ts, there exists Voo € C*([Ty, 00), C*((0,00)))
and \ € C*([Ty, ), such that, if

'LL(t, 7’) = QL(T) + Ucorr(ta T)

At)

then
1 2u(l — u?
EYM(U, ﬁtu) < 0, —8ttu + &ru + —&u + M = —F4(t, 7") — F5(t, 7")
r r
where
CA(t)? CA(t)° log?(t)
F5(t, RA\(t 2 < —F5—, L*L (F5(t, R\(t 2 L —=
S (6 A scnamy < 55wy I 0 RN lascuary < oot

(Fy(t, RA(1)), ¢o(R))2(rar) = 0
ForO0< j, k<2, andj+k <2,

r2\(t)?
t2log” (t) (A (t)2 + r2)2

2 [ r°X(1)*log(t)
Loeg MO” | imamoey TS 90

2 212 ) A(#)?log(t) r log(t)
(A(£)2 +72)2 | A keln (log(?—l—m)—l- logg,,(t)), gty <r <t

[P ort o Fa(t, )| < Clliregoy

+C

A is given by

- Fgregy b =12

k c _
O < | progeagy F=3

¢ k=4

4 logb+55 (t)’
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where 0, 05 are defined in (11.1) and (11.2), respectively and 04, 05 > 0. Finally,

(H%W(t, RA(t))Q1(1) + v, (t, RA(t ))|| )
R2A(1)? i

|aR (QUCOTT(t’ R)\(t))Ql(R) corr t R)\ |
s < (t)2R? >
. (|52 2veorr (£, RA())Q1(R) + Voo, (£, RA(t |)
f R2A(1)?
|aR 2UCOTT t R/\( )) 1( ) corr t R)\ |
> ( NORE )
| 2UCOTT t R)‘( ))Ql(R) corr t R)‘ |
s ( o )
C
< —F
t2log”(t)

11.1 The Cauchy data for the radiation v,

In this section, we will introduce the initial velocity for the first addition to the soliton in our ansatz,
which we will denote by v.

Let ¢ € C*([0,00)) satisfy
< T,
Q/’(x):{o7 x> oo and0< () <1, 20
Xr =

Then, t — (t)f(t), apriori only defined on [T}, o), extends to a smooth function on |0, c0).

Note that ; .
Xi(t) (- ()
Ao(t) t ’

Finally, we define v; ; by specifying its Hankel transform of order 2:

t =27,

o1(6) = 3:52 L - { ) sin(£€)dt (11.6)

As in [26], this definition is made so as to allow A(t) = A(t) to be a leading order solution to
the eventual modulation equation for A. Now, we record some pointwise estimates on v; ; and its
derivatives.

Lemma 11.2. For k > 0, there exist constants Cy, C(k, N), such that

< 1
|08 (2073(€)) | < ey $71
13 1,1 <4 e

3 1
Wa §>Z7N>1
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Proof. We have

T = 37 | % (wle(t)tidwrgfg? [ SN ) 1)
which gives
011 (€)] < WC() £<i (11.8)

Note that the first term of (11.7) is where we use the condition that

OB A0) c
#(t)_ P |f(t)|< logb(t)’ 252T>\0

This condition, along with b > 2 guarantees that v1; € L*((0, %), £d€). (We will see shortly that
v11(§) is rapidly decreasing for large £). Since v;; will end up being the initial velocity of our
radiation component of the solution, vy, this implies that v; has finite energy. This condition also
implies that A(¢) must asymptote to a constant as ¢ approaches inﬁnity, as shown in the introduction.
Now we show that, regardless

/\ (t)
say [2T,\0, o0) to one defined on [0, 0), and even if we didn’t assume the structural condltlon

/\O ( t = f'(t), but rather, only the symbol-type estimates,

A (t)l Cr
() tFlog? (t)

k=1, t=T),

we would still need \o(t) — ¢ to have 171\1 € L?((0,00),£dE). We show this as follows. If 7 €

L*((0, 00), £dE), then, v1; € L*((0, 2T +—),&d€). Even without the structural condition t’;ggg —

f'(t), the second and third terms of (11. 7) are bounded above in absolute value by
T
§log (E) 2T/\o

=), d€) implies that the first

’2T

=), &dE). Let g(t) be any extension of A%(( t)) , which satisfies

(Recall that 2T1A < 1)). Therefore, the condition v1; € L?((0
term of (11.7) is in L*((0

) 2TA

o=z om, e (o.0)

G(:c):?)i(f Ao (t)dt—i—L:; %dt), x > 2T,

If we let
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then, the first term of (11.7) is

G(¢) 1
3 2
N L((0, _2TA0)’£d€)
Therefore, .
2T1 G(1H[? o
f w 1GOF j (G(e")2du < o0, u = log(~)
0 g log(2T)) 5
But,
d u\\2 __ u\ v uN U u i eu)\g(eu) u
T (G(e")” =2G(e")G'(e")e" = 2G (e )37r <—/\0(e“) e
Therefore,
O < OGN <O (14 ) s <O us ogl2y)
— (G(e < e < <C, uz=lo .
du log®(ev) log"*(e*) ) log”(ev) BLE

where we used b > 2 > 1. and

Gal<cro| = R

<C|l1+
o, t1og”(t) (

1 )
log” () )
Ag(z)
Ao(z)

and we stress again that we only use the symbol-type estimates on , and not the structural

condition % = f'(t) for this discussion.

But, now we can conclude that u — (G(e*))? is Lipshitz, whence, the condition

foo (G(e")?du < oo

2Ty,

implies that lim,,_,,(G(e"))? = 0, which is to say that

R 2Y4( tAD(t
f ol )dt < oo, or, equivalently, that lim o)
2Ty, Ao(t) §20% Jor Ao(?)

lim dt < oo
xTr—C0

Therefore, a necessary (but in general insufficient) condition for 011 € L*((0, 00), £d€) is that

1 n
lim ¢ )
=0 Jor Ao(?)

tdt < oo

(In particular, the limit has to exist). Repeating the same computation done in the introduction,
before the main theorem statement, we again get

limlog (7)) <

which implies that, in our setting, A\o(¢) asymptoting to a non-zero constant for large ¢ is necessary
for the radiation v; to have finite energy.
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Continuing our estimates, for each k > 1, there exist constants C ;, such that

# (e @) -2 A g,ﬁff G

Jj=2

To estimate |0} (£*071,1(€)) | for k = 1, in the region £ < 1, it suffices to consider the case £ < Tixo’

since

i 1
|5§ (5201,1(5)) | < Ck, T_)\O < § < 4_1

In the case T),& < 4, we let 0 = ¢£ in the integral defining v 1, and differentiate under the integral
sign. Then, we use the support properties of v, and treat the integral over o € [T),&, 4] and (4, o)
separately. Hence, for some constant C;, whose value may change from line to line:

k+1

4
AEmO) =g N gt [ @0 Q s 119
where

k1 k1
|Err(é)| < C i f Bt L il CixCiodo + i Cin

Ty¢ log"(§)ER-1 & ek=Tlog"(})
4
—k by ¢S
5 log (Z) T/\O

By induction, for 7 > 1,

q) (0), if Wf)(n) (a) =0, forn =0

| wn® @aras = -1y

Using this fact, and the support properties of ¢, we return to (11.9) and (11.8) and get, for k£ > 0,

C

| (f U1 1(5)) | < m’

Finally, for k > 1,

37T = o ghti-1
implies
o (2073(¢ ))I\%, §>%1N>1,k>o
This completes the proof of the lemma. =
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11.2 Estimates on v,

We define v; to be the solution to the following Cauchy problem

—5“’01 + @«ﬂ)l + %57421 - % =0
Ul(O) =0
aﬂ)l (0) =11

Lemma 11.3. We have the following estimates

_Cr? r<it
s (£,7)] < {t21§gb(t>’ : ;; (11.10)
log®(r)’ =
For1 <j+k,and0 < j,k <2,
r2=k < t
Adkut ) <] RO, Pt (1111
2

Vrlogh ((t—rp)(t—ry2 HI+E=1

Proof. From (11.6), we have

AW - f) () F

5T = | st Qe =0

0

Then, we consider r < % and have

n(tr) = [ s noomi@ds = [Tsnto) [ € et + siniet ) i (©)deas

2r (" g (W ) (E) (lﬁo'f)'(tf) O
=5 ) sin*(0) ( I + - ) d

where ; ;
ty =t +rcos(d) = 2 for rr < 3
So,
RS i
ntr)) < ——m— r<-
' t2log”(t) 2
With the same procedure, we get, for 0 < j,k < 2
2-k
; t
R (k)| < O, TS
247 log” (t) 2

Because of the singularity of v; 1(§) for small £, vy does not decay like \/i; for large 7. On the other

hand, its derivatives do decay like % near the cone, because of their improved low frequency be-
havior. Using the same procedure as in [26], we get (11.10).
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To establish (11.11) in the region r > %, we first use the same argument as in [26] to prove

o
\/;7

67 0F v, (t, )| < r>= 1<j+k<2 (11.12)

t
2 Y
Then, we get

on(t,r) — j " I(re)€ cos(t€)o. (€)de

0
Using | Jo(z)] < Cx?, z < 1, as well as the large = asymptotics of J,(x), we get

F(t —
oy (t,r) = Err(t,r) + (TT)
with o ;
[Err(t,r)] < ———, 7=
rlog’(r) 2
and

F) = 5 [ VERAE) (cos(ad) + sinlad) dg

Then, inserting 1 = x<1(w?(t — 7)) + 1 — x<1(w?(t — 7)) into the integral below, where

< 1
x<i(z) e C*(R), 0<x«(r) <1, x«lz)= { ! N i (11.13)
T =

we get
| costle = rioEmi©del =1 | con(l — rlu?) i (o)l
0 —00
- C
= V=gt —rl)

We then use the above result, along with (11.12) in the region |r — ¢| < 50. The sin term in the
expression for ', and the other derivatives of v; are treated similarly. [

[t —r| =50

11.3 Estimates on v, the first iterate

v9 18 defined as the solution to

1 4 6Qa(r) o
=0y + Opp2 + —0pUg — — U2 = L;)vf + —21)? = RHSs(t,r)
r r r r

with 0 Cauchy data at infinity. Now, we record estimates on RH S5, and its various derivatives.
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Lemma 11.4. For(0 < j,k < 2,

) 2—k t
B RES, ()| < —S" . r<t
47 log™ (t) 2
C t
RHS,(t,r)| < —— — r>L
| 2( T)| r2 10g2b(7“) r 9
O RH Sy (1, 7)) + |6, RHS,(t, 7) ¢ ¢
' ? ? 7”5/2«/<t — rylog”(r) log" (¢t — )’ 2
0w RHS,(t,7)| + |2 RHSs (t, )| + | RHS»(t, 1)] < : S el
r5/21og” (r){t — r)3/2log”({t — ) 2
If3<j)j+kand0 < 5,k < 2, then,
, C t
O RHS,(t,1)| < , : v
RIS S o) 2
Let s = sy =2 Ty, and % < 19 < So. Then,
2
|| (6# + ;) 63RHSQ(S, T)]]_g(](’/’ — (S — S0 + TO))HLQ(rdr)
+ |02 RH Sy (s, 7)L<o(r — (5 — 80 + 7o) | L2(rar) (11.14)

C
52(sg — o) log”(s) log®({sy — 7))
Proof. The estimates in the lemma follow from elementary manipulations using Lemma 11.3.
The only important features to note are the following. Note that, although the expression for (for
instance) 0, RH S5 includes a term involving 0,v10,v1, and estimates for both d,v; and 0, v; only
have a factor of og? (<1tir>), as opposed to a factor of ;—— ( ooy Ve still obtain the stated estimates
above. This is because

1 C t
o () Sleg (1 |2

which can be proven by noting that

T — is increasing for z > e?

log”(x)

and
1 1 t

~ 9 >
ro|t—r| "7
In addition, we remark that, for any a > 0, there exists C;; > 0 such that
A(t) < Cut® (11.15)
XYW~ _C

XD S Tlog (D)
a > 0) to estimate some terms involving ¢ derivatives of () . (). O

(which follows from

and b > %). This is used (for some fixed, sufficiently small
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We note one more useful estimate. By the definition of vy, and L? isometry property of the
Hankel transform of order 2, we have

st = | | ) ) " sin((t — )& R Sa(s, ) Jo(r€) déds

1

e * [RHS)(s,€)|
<C£ (L r2§2|RHSQ(s,§)|d§+L ng) ds

© 1 1/2
< CJ ([|1RH S ()| L2 (raryr” (L §3d§) (11.16)
t

1/2
C © e
+7?||RHSQ(S)||L2(TdT) (J; ?> ds

T

N

e @]
CJ ||RHS2(S)||L2(TdT)dS
t
Then, we use an 8 step procedure to estimate all quantities related to vy:

Step 1: We use the fact that, if vo = r2w,, then, w, solves the 6-dimensional free wave equa-
tion, with 0 Cauchy data at infinity, and %";(“) on the right-hand side. We then estimate vy in
the region r < % by using Duhamel’s principle, and the spherical means formula for ws.

Step 2: To estimate 0,v; in the region r < %, we first use the fact that, if ruy := (0, + 2) vy,
then, uy solves
(0, + 2) RHS,(t,7)
r
with 0 Cauchy data at infinity. Then, we use the spherical means formula for ws.

3
—8ttu2 + &TUQ + ;ﬁrug =

Step 3: We estimate 02v, in the region r < £ using the fact that, if
20 := (0, + 1) (0, + 2) v, then 2z, solves

1 1 2
—8tt22 + arrZQ + ;6,«22 = (57« + ;) (ar + ;) RHSQ(t, 7”)

with 0 Cauchy data at infinity, and using the spherical means formula for z,.

Step 4: Differentiating the formulae for vy, rus, and z» with respect to ¢, we show that, for j = 1, 2,
0] vq solves the same equation as vy, except with & RH S, on the right-hand side, and zero Cauchy
data at infinity. Then, we use the same procedure as in steps 1-3 to obtain estimates on all remain-
ing derivatives of v, of the form ¢/ J%v, in the region r < %, for0 < g,k <2

Step 5: Next, we estimate (@ + %) Vo in the region r > %, using a slightly different represen-

tation formula than what was used in Step 2. Using the Fundamental Theorem of Calculus, we
then estimate vy in the region r > %
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Step 6: Similarly, we estimate ¢,vy in the region r = %, using the fact that it solves the same
equation as vy, except with d; RH S5 on the right-hand side.

Step 7: We estimate 07vy and Oy.v in the region t > r > % by using a procedure based
on (11.16), which also takes advantage of the finite speed of propagation. Then, we estimate
||Guv2(t, )| Lo (r=1y) Dy using the fact that dyvs solves the same equation as vy, with 0 Cauchy
data at infinity, except with 07 RH S, on the right-hand side. We estimate ||0;va(t, -) |2 ( r=1y)
similarly. Finally, we use the equation solved by v, to read off estimates on d?vy in the region
t >r > 4, and to estimate ||0}va(t, )|z (=11

Step 8: We estimate 0y,-v5 in the region t > r > % by using the same procedure as for dy,.vs.
Then, we estimate 0y,.,v9 and Oy,.,v- in the region t > r > %, by using the same representation
formulae for (@ + %) (é‘r + %) 0]vs (for j = 1,2) as was used in step 4.

Lemma 11.5. We have the following estimates on vy. For 0 < j, k < 2,

) 2—k t
FFutr) <C—0—( pg 11.17
| tYr 2( )| t2+j long(t) 2 ( )
C t
va(t,7)| € —5—, > (11.18)
log™(t)
C t
oo (t, )| + |0ra(t, )| € ———, 17> =
st + ot )] € s v
|0pva(t, 7)] + [O20a(t, 7)| + |0Pva(t, 1) < ¢ t>r> !
e S G Sl o =) 2
C
2 2
|02 (t, )| Lo (= ty) + 117 v2(E ) L (g 1y + 0502 (8 7)oty < P log (1)’
Forj+k=>3and0 < j,k <2,
, C t
6] 0% vy (t, )| < t>r>— (11.19)

VIt = 5 T log® (1)) 2

Proof. We start with the procedure outlined in step 1. To ease notation, we write z = re; € RS,
and let

y = p(cos(¢), sin(¢) cos(¢pa), ..., sin(¢) sin(gpy) - - - - - sin(¢s)) € R°

Then,
) o0 1 s—t 105 us
vo(t,r)] < Cr J J J integrand d¢dpds
B A R Y . B
where
. sin®(¢) P’
integrand = P (|RHSQ($, |z + yl)| (1 + P y|2>

H@RH&@Jm+yMpO+— )++%RH&@4x+mnf)

p
[z + y
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and we note that

|z +y| = A/p? + 12 + 2rpcos(d)
By using Cauchy’s residue theorem appropriately, we get, for all p # r,

J“ sin*(¢)do B 1[2” sin®(¢)d¢ _ —m (min{r, p}* — 3max{r, p}?)

o PEHT242rpcos(o) 2y p?+r242rpcos(p) 8(max{p, r})*

(11.20)
Then, we use the above estimates for RH .S, and carry out step 1, to get (the r < % part of) (11.18).
Carrying out step 2, we first get

2 o) 1 s—t
O + — ) vy < er —f J sin®(¢) integrand,, dpdpds
|( 7") d o (s=1)72Jo \/S—t — p? grand, dgdp

where

2
iM%me:C@Rﬂ&wﬁx+mmyM@RH&@Jx+mn<L+ p )

|z + y [z + y 2+ y|

+|RH82(37 lz +y])| e P
|z + yl? |z + y

We then use (11.20) to get

T psind(6)de ”( sin’ (¢)p?
owmtwa+mmWw0<CJ Y R 2rpeos(9)

|<6+2> (t.r)] < Cr <t
T i e YIS S50 rx g
r)? 12 1og? (1) 2

Step 3 is similar. Step 4 needs no further explanation. For step 5, we first consider the case r» > 2t,
and argue as in [26] to get a representation formula for py (¢, r) := (6T + %) ve(t, ) which does not
involve any derivatives of (é‘r + %) RHS;:

Jao<c

0

which gives

o (3 + 5 ) RHSa(s, |2 + y))
J‘ (3 - ( +y)) dfdpds

[z + 9y

—%fl wﬁ%up

where we now regard x = re; € R?, y = (pcos(f), psin(f)), and we have

|z +y| = /12 + p? + 2rpcos(d)

Then, we treat several pieces of py separately. If p, ; is defined by

J% 52 + |Z+y|> RHSs(s, |z + y|)
[z +y
(T (2 +Y) Loty <syd0dpds

paaltsr) i= o JJ m
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Then we first note that the integrand in the definition of ps ; Vanlshes unless s > 2(t +r): If
2(t+r)and |z +y| < £ then, p = |y| = |z| — |z +y| = r— 5 = =H2 > s — 1. On the other
hand, the p integration is constrained to the region p < s —t. So,

00) —t P 27 ]_ C
L <C f f J dfdpds < ————
P2 (t,7)] s d AP de Slog®(s) TS Flog®(r)

Then, we let po ;1 = pa — pa2,1. We have po 11 = parr.q + P2.11,p + D2,11,., Where each term will be
defined shortly.

Parra(t,r)

JQW (62 + ﬁ) RHSQ(S7 |.T + y|)

wl L

|z +y]
) ({E\ ) (:E + y)) IL{sftfr>\ac+y|>§}dedpds

For |z + y| in the support of the characteristic functions appearing in the equation above,
ls—|lz+y||l=s—|z+yl=zs—(s—t—r)=t+r
Finally, the integrand vanishes unless s > 2(¢ + r). Then, we use the estimates on RH S, to get

I
rlog?(r)

dfdpds <

27
pti e[ [T
P 2(t-+7) VA S—t —p? 85/2f10g (r)

Next,

parrp(t, )
(2 +9) (& + 5257) RHS:(s, |z + )

f f mj |z +

“Ljoryl> 53 Loy zs—e—rydidpds

This time, for |z + y/| in the support of the characteristic functions appearing in the equation above,
we have

r ror r
s—lz+y||=lz+yl—s= |x|—|y|—sZT—(S—Z&)—SZT—%—Z—HSZZ+§—t> 1

Also, |z +y| = [z] =y =r—(s—t) = T.

|3

dfdpds < ———
pas r10g2b(r)

t+
[p2,11(t, )] < CJ
t

LH \/(S—[‘Z)—Q—p2 L r5/2\/?10g26(7’)
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Finally, we define
pZ,II,c(t> T)
&+ 2 ) RHS3 (s, |2 + y))

;_;L:Og Jos_t \/(S—Z)—Q—,OQL27r ( |z + y| (@ (@+y)

*Lloryl> 23 Llorylzs—t—rydOdpds
L (2425 RHS (s, |r +y)

_1 @
2 L; JBm(O)m(B;(—w))Cm(BSz7-<—z>>c (s —1)2 — [y |z + |
(T (z+y))dA(y)ds

We will prove estimates on ps ;7 . which are valid for any r > % for later use, even though we

assumed r > 2t in the very beginning of this argument. Note that the intersection of the balls in
the integral is empty, unless s > 2(t — ), since 5 < |z + y| < s —t + r. Then, we use polar
coordinates centered at . More precisely, we write z = y+x = (p cos(#), psin(f)). The integrand
of the s integral above is then bounded above in absolute value by

s—t+r o* | (82 + %) RHSs(s, p)|]l{p>max(§757tfr)}
C f p f 2 dfdp
lr—(s—t)] Jo \/(s —t)2 =12 — p2 + 2rpcos(f)
where s )
—(s—t
0* = arccos ('0 (=Y )
2rp
To get this, we first used the inequality W < 1. Then, the only #-dependent term remaining

in the integrand of the s integral in the expression for ps sy . 1S
1 1

V(s—t)?2—]z—af N A/ (s —t)2 = p2 —r2 + 2rpcos(0)

Next, we used the facts that cos(2m — ) = cos(f), and the integrand is supported in the region
p > s—t—r. Note also that 8* is well-defined, for all p in the region of integration in the expression
above, and 0 < 6* < m. Then, we note

o do ! f"‘ ds

0 A (s—1)2—12=p>+2rpcos() V2rpJo 4/cos(0*) (cos(d) — 1) + sin(6*) sin(d)

1
0*

where we made the substitution § = 6* — 0 in the first integral. We then have
G
N — 0%

(Although the singularity of f as 0* approaghes 7 is much better' than \/%0,,5, the above inequality
suffices for our purposes, and slightly simplifies some of our estimates). Using

o2 2
T — 0% = arccos (1 + (s —1) (p+7) )
2pr

7(0%)] < Clog(m - 07)) <
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we get

” do o
<
| L /(s = 1)2 =12 — p? + 2rpcos(f) | (rp)A(p+r—(s—t)A(p+7r+s—1t)/

So, we have

p2,r1.(t, 7))
e} s—t+r
<C J ol (62+ )RH52(5 p)|
max{t+g,2(t—r)} Jmax{s—t—r,3} P
o* 1
dfdpds
A/ (s —t)2 — p2 — 12 + 2rpcos(0)
and our above estimates give
|p2,11,6(t,7)| < J fs - VP Lip>3ydpds
¢ ri/ t-r (P 7= (s =) 552, /(s = pylog’(p) log"((s — p))
(11.21)
Let
1 s—t+r p ]]-{p> }dpdS
Po.11,ci(t,T) = Y L
PV Jir o (P17 = (s =)V 52, /(s — p)log’(p) log"({s — p))
and
Porreii(t,r) == f JS o p Lip>3ydpds
J1,cii\Yy 1/4 . ,0+ r— S 1/4 $5/2 /<S log log <S _ p>)

Note that, in the expression for ps 77, s = t + r, so that s — ¢ — r > 0. Then, we consider
separately two regions of the p integration. In the region s —t —r < p < s —t — 5, we have

|s—p|=s—p>s—(s—t—i)=t+£
2 2

In the region s —t — £ < p < s —t +r, we have

1 - C
(- (s— - = 7

r
2

So,

(e8]
p dpds
|p211czt7’|\ J f VP P
t s—t—r

e T A 0 )

J va t+r \fdpds
tir Jsmimg 148524 /(s — pylog®(s) log"({s — p))

Then, we use

[ N R
N log @) = Cogta—m et
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along with

t
t—r|<r, r=-
2
to get
Potreat.r)] < ——g—
P2,11,cill, x rlog2b(7’)

On the other hand, in the expression for py 17.c4i, s < ¢ + r. So, we make use of the 1 p=3} in the
integrand of (11.21). Also, in this case

(p+ 71— (s — 1)Vt = pt
This gives
s—ttr pY*dpds
|po,11,c,ii(t,7)| < 3 J J 552, /(s — pylog’(p) log"({s — p))

which can be treated in the same way as we treated ps ;7 ;. In the very beginning of this argument,
we considered the region r > 2t. This was so that we could estimate py 17 . If % < r < 2t, then,
we instead decompose ps r; as

porr(t,m) = parra(t,T) + porralt,r)

We then estimate ps ;7 ¢ with the identical procedure used to estimate ps ;7 .. We obtain the same
final estimate for p; ;74 as we did for p; ;7 .. Even though we only have s > ¢ in the integral
defining ps r7,4, as opposed to s = ¢ + ¢ for po 17, the fact that % < r < 2t ensures that we do
indeed get the same final estimate for py 17 4. In total, we finally get

C

—_—, r 2
r log%(r)

|p2 (ta ’l“)| <

N |

Then, we recover v, from ps:
1 T
alt.r) = o [ malt.o)etds
™ Jo

If r > £, then,

t

o (t,7)] < C’J x3dx N C’JT xdx
va(t,r)| < —= _— 1 —
2 ,,,2 0 t2 10g2b(t) TQ %

t
|Ug(t,7’)| < g) , T =3
log™ (t) 2

To similarly estimate 0,vy, we first note that, if u solves

and we finally get

1 4
—0Opu(t,r) + Oppu(t,r) + —Opu(t,r) — Zu(t,r) = F(t,r), t=T, r>0
r r

and w : [Ty, 0) x R? is defined by

w(t,rcos(f), rsin(0)) = u(t,r)cos(20), r >0
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then, w solves
2

O + Agew — (2|$|2 _ 1) F(t|2l), ©#0

Now, we apply this procedure to the case u = 0,09, and F' = ¢; RH Ss. Using u(t,r) = w(t,r,0),
we get

27
Opa(t,r) J integrand ,,, dfdpds (11.22)

]

where

2 2 6 2 1 _2 .9 6
integrand ,, = 01 RH Sy(s, \/7’2 + p? + 2rpcos(f)) (r + 2rpcos(f) + p( sin”( )))

r2 + 2rpcos(f) + p?

Because our estimates on 0; RH S5 are just as good (in fact, slightly better in the region r < %) as
those for 0, RH S5, we can repeat the same procedure used to estimate p,, to get

C t
Ot r)| £ ————, r=-
[Oeve(t,)] rlog®(r) 2
Using (11.14), the finite speed of propagation, as well as an appropriate analog of (11.16), we get
C t
O2ua(t, )| + |Oppva(t, 7 , t>r>—
et S S e o () 2

We then argue as we did for d;v, to get

81)2157“

2T
J integrand ;,, ., dfdpds

w L

where

242 0) + p*(1 — 2sin?(#
integrand ;,,,, = é‘fRHSg(s, \/7"2 + p2 + 2rpcos(h)) (T + 2rpcos(f) + p*( sin”( )))

r2 + 2rpcos(f) + p?

Then, we carry out the same procedure used to estimate p,. The difference here is that we have an
extra factor of —— < -5 in the pointwise estimates for 0? RH Ss(t, 1), relative to those for 0, RH Sy (t, 7).

This leads to o y
Pva(t,r)| € ————, > =

Also, if wy = (& + %) 0;U9, then, wy solves
1 1 2
—OyWy + Cppg + —0pwo — ﬁ’ll)g =0 + - OyRHSs(t,r)
r

with 0 Cauchy data at infinity. Using the analog of the p, representation formula, we can repeat
the same argument used for 6t2v2, and use the previous estimates on 0;vs, to get

C t
Opvo(t,r)| < ————F—, 7> =
The rest of step 7 and step 8 need no further explanation. U
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11.4 Summation of the higher iterates, v;

We now proceed to recursively define subsequent corrections, v;. For j > 3, define RH S, by

6@#(7“) j—1 2 j—2 2 9 j—1 3 j—2 3
RHS;(t,r) = L;) ( vk> - ( vk> + = ( Uk) — <Z Uk>
r k=1 k=1 r k=1 k=1

6Q [ = o [ (=22 =
A 2 2 3
= 2 2 Z VgVj—1 + Uj—l + 7"_2 3 Vk V51 +3 Z Ukvj_l + vj—l

k=1

Then, we let v; be the solution to the following equation, with 0 Cauchy data at infinity
1 4
—éttvj + (’7’ij + —(9ij - _ij = RHSJ (t, 7")
r r

We proceed to prove estimates on v; by induction. Let C; > 9 be such that (11.10), (11.11), and
(11.17) through (11.19) hold, with the constant C' = (' on the right-hand side. Let n > 900 be

1
9005

otherwise arbitrary, and let 7 ,, > el satisfy

90n
C{1 < 67(900!)

logb(TO,n)

and be otherwise arbitrary. Our goal is to show that, for a sufficiently large 7 ,,, we can prove
3

estimates on v; (and its derivatives), valid for all ¢ > Tj, ,, + exp (900! +27 2<2b*1>) (1+T),)+ M
and all » = 0, by induction. In the following estimates, we assume

t> exp (900! + 2—*2<25—1>) (1+Ty) + M + Th

Let

Suppose, for any 5 > 3, and all £ with 2 < £ < j — 1, that

m Dn7k7’2_m t
|07 0 ok (t, )] < 2o logh (1)’ r<g, Uspms<2 (11.24)
D, t
ot r)| < —gE—, T >3
log™ (t)
D, & t
Gt r)| + | (t, 1) < ———, r> =
)|+ ot ) < s v g
D, t
10,005 (t,7)| + |Buvi(t, 7)| + |Gpon(t, T)] < L et 7>
t(t — rylog®((t — ) log"* V(1) 2
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an
aTU t,r T)T i3 + a'r'r/U t,r 7&‘/,- i3 + a U t,/’n SO,,«. 1 < :
1000 g gy + 118r0nlt gy + n (6l nty < i

Dy, 1 t

Oprr Ui (t, )| + |Opr v (t, 1) ] < , t>r>
| t k( )| | tt k( )| \/i<t_r>5/210g2b(<t_r>) lOgb(k*Q)(t)
and, fort > r > £,
Dn k ) — —
N 3,k =2
|attTTUk(t,T)| < \[<t ,r>7/2 10g2b(<t T>) k' =2 j < 3 (1125)
V)T 1og3b<<t S SSk<i—l
Then, for some C independent of n (and t) we have
On an 2—m t
arepris ) <o (e S AT e ]
log”(t) /) t*+Plog™ (t) 2
o t
|[RHS;(t,r)| < —F—, r>=
r2log” (t) 2

|6TRHSJ(t, T)| + |§tRHS](t, 7”)|

of ¢ (01n+ Cr ) C"JCI i st
r3log?(t) \ log(t 524/t — 1y log? Y () log ((t — 1)) 2

0w RHS, (8,7)] + |2RHS, (¢, 7)| + |2 RHS, (¢, 7)|

nj (1-n | _CY nj (_Ci" o )
_ ooy (A + odm) OO (it *+ oo it
10g" =D () log? ({t — )32t — )32 1og® U=V ()3t — r)log®((t— 1)) 2

We will also require another estimate on ¢; RH.S; and 0, RH S;, which is valid for all r > £:

|0FRHS;(t,7)| + |0 RHS;(t, 1)
_ coyor™ . olei ( cr o~ )
h ro2(t — r)3/2 logb(<t ) logb(j_l)(t) r2¢3/2 logb(j_l) (t) logb(t) logb(t)

. —n+2 CSn
ccy’ (Cl A loggb(w) Lot
3t — 1) 1og® Y (8) log® (¢t — 1)) 2

coy (e + 15)

log”(t) t
Owr RHS (t,7)| + |04y RH S (t,1)| < , , t>r>—
e BELS; 0, r) 4 10 RES3 (6101 < o ah 3y g0 D0yt = o 2
coy (e + ) t
|6ttrrRHSj(ta T)| < 5/2 r_ 772 3b ~ b(j—l) s t>r> 5
2 =) log™ ((t — 1)) log™ V(1)
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Then, we repeat the analogs of steps 1-8 used to estimate vy, and get (for C' independent of n (and

1)):

an 2—m Cm t
oM (t,r <C’LA Ci— 4 L , r<—=, 0<pm<?2
tYr Y) 1

t2+p log¥ (t) log®(t) 2’
cey (Cl log? (¢ )) t
|vj (t7 T)| < b 3 rT><
log™ (t) 2
ccrd
O, (t,r)| + |0 (t,r <—1.< )
(e + e, € s (O + o
OCm] C«zn
1820, (1,7)| + 1205 ()] + [0y (1,7)] < Cor Qﬁ"+ )
t{t —r)log G- )(t) log”({t — 1)) log”(t)
t
, t>r>—=
2
1070; ()| e sty + 100 () | e s 2y + 11070 () 1 sty
nj 2n
<G ( or_ . cfn)
t3/210g" D (t) \log"(t)
cep (e + 5) t
|00 (t, )| + [Orrrv (2, 1) | < & t>r>—

Vit = 1)210g" D (1) 1og™ (¢t — 1)) 2

Finally,
nj —-n g
O i G i) (o>
i ()] < - , >7r > =
e VI = 1) 108" (1) log™ (¢t — 1)) 2

Since C' is independent of n, there exists ny such that
max{C, 1}C°7 < ¢~ (900

Now, since C'is also independent of 7 ,,,, we can choose 7 ,,, to satisfy, in addition to our previous
constraints at the beginning of this argument, the following inequality

CQOnO
max{C, 1} < e

g (TUJLO)

By mathematical induction, the above results imply that (11.24) through (11.25) are true (with
n =mng) forall k = 2,and t = Tp,, + exp (900' + 2_2@3—1)) (14+T)\,) + M, := T;. From here

on, we further restrict 7 to satisfy 7y = T7. So, for all j > 2,
||Uj (tar)HL”{rzO,t)Tl} < e (900!
2 —4(9001)
|[0wv; (t, )| Lo rz0,0=m1y + ||000; (£, 7)| |22 =021y < ie
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12003 (7)o g1y + 1187058 ) [ ooy + 107051 Pl rsousmy < e”OTHTH?

o6}
Vg 1= Z v;
=3

(as well as the series resulting from applying any first or second order derivative termwise) con-
verges absolutely and uniformly on the set {(¢,r)|t = T1,r > 0}. Moreover, using the first line of
(11.23), we get, for any N > 4,

Therefore, the series

N 6Q 1 (r) N-1 N-1 \?2
NG
Z RHS;(t,r) = —— | 2u; UL + Vg

2
=3 " k=2 k=2
9 N-1 2 N-1 N-1 3
+—2 3vq ka +3U%Zw€+ ka
r k=2 k=2 k=2

(where the argument (¢,7) of all instances of vy, v; has been omitted, for clarity). Using the
uniformity of the convergence of the series defining v, we get

4 o 1 4
—vs = lim (—attvj + Oppvj + 0,05 — —’Uj)
T

r2 N—00 &— 72
7j=3

1
— OyVs + OppUs + — 005 —
r
N
= J\l{l_r)rcl)oé RHS;(t,r)

60 1 2
_ (201 (v2 + v5) + (v +v5)%) + = (3v1 (v2 + v)” + 30F (V2 + v5) + (v + v,)°)

11.5 Improvement of the large r behavior of the remaining error terms

Let v. = v; +v2 +v5. Despite the major improvement of the decay of the error terms accomplished
via the resummation of the v, above, we will still need to improve the decay of the error terms
which result from substituting Qﬁ + v, into (8.1). The soliton error term, and the linear error
term resulting from v,, namely

0@ 1 — b (1 - Qi (7‘))

X(H) 72 NO)

both contribute to leading order in the modulation equation. Therefore, any improvement of these
error terms should not change their leading order inner product with the appropriately re-scaled
zero eigenfunction ¢y. Keeping this in mind, we let

L r o 6UC N2 _ b—2¢
WRHSs(t,r) := X>1(_g(t)) (@tQMlt) 2 (1 Q)\(lt)(r))) , where g(¢) = A(t) log" ™ (t)
where
. 0, =< %
xz1(2) € CP(R), 0< (@) <1, xzi(2) =
1, =z>1



and define w» to be the solution to the following equation, with 0 Cauchy data at infinity
1 4
—(9ttw2 + ﬁrrwg + —@wg — —2w2 = WRHSQ(t, 7")
r r

Now, we will prove estimates on ws. Note that W RHS> depends on \”. Because our only as-
sumptions on A do not include any more regularity than A € C?([T,, o)), we can not consider
O0,W RH Ss(t,r) until we first choose a specific A by solving the modulation equation, and then
prove that this \ has higher than C? regularity. In terms of estimating ws, this means that we can
not differentiate W RH S, in time, at this point. Therefore, we will first record a set of preliminary
estimates on derivatives of w,, which only involve W RH S5, and its r derivatives. After choosing
A, we can then obtain more optimal, final estimates on the derivatives of ws. This is very similar
to the argument used in the wave maps paper of the author, [26].

Lemma 11.6. [Preliminary estimates on wo] We have the following preliminary estimates on ws

Cr2A(t)? log(2+ 700y los(t)

t
02+r2)t2logh(t) =2
[wa(t,7)] < cx(%g l)og(tr)) o (>)z
t2logb(t) r 2

Cr(t)? log(t)
|a w (t T)| < t210g (t)g(t)27 r < g(t)
r2AB =) e )210g(t) r> g(t)
= 1og D9(t)’ g

CA()* log(t)

|Opwa (t, )| < m, r>0

|02wy(t,7)| < M r>0
TS 21080 () g (1)

Rt )] < SADTOB0

29(t)log"(t)’
CA(t)*log(t)
t2log”(t)g(t)?

Proof. We start with the region r < % Using the same procedure and notation as in step 1 for vy,
as well as the estimates for v.(s, |z + y|) in the two regions |z + y| < 5 and |z + y| > 5, we get

lwy(t,7)] < Cr? f J J Loy 2y Lilargl< 53 A(5)
m s2 lOg ( )(g(5)2 + |x+y|2)2
2
: (1 + 2) dodpds

|Orwsa(t, )] <

[z + 9

0 s—t
+ Crzf J p
0 Jo /(s —t)2—p?
2 ‘ 0
[[snteo AP Uiy Lo () Y
0 |+ y|4/s(s — |z + y[)¥2log"((s — |z + y))
(11.26)
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Denote the first line of (11.26) by ws ;. Then, we consider several pieces of w, ; separately. Let

{|x+y|>g<s)}1{|x+y|<§})‘(s)2 )

t+2
ngatr:—rf f fsm
m s210g"(s)(g(5)? + |z + y/?)?
p2
A1+ — ) dédod
( Ix+yl2> Ppds

Recall that |z + y| = 1/p? + 12 + 2rpcos(¢). For wy ., we have

p<s—t<s = lx+y|=Clr+p)

Therefore,
2
)\

(w2 1.4(t,7)] < f J () dpds
«/s—t — p? s2log”(s )2 +12)2
Cr2\(t)?
T (g(8)? + r2)t2 log"(2)
where we used (11.5) to conclude that
1
s — ——————— is decreasing on [T, c0) (11.27)

s(g(s)? +12)?

For the next integrals to consider, we first appropriately use Cauchy’s residue theorem to conclude

J% sin(¢)d¢ - C
o WGP+ + 72 4 20peos(@F = GG + 77 4 777
JQ’T sin(¢)do 3 C
o (9(s)2 472+ 2 +2rpcos(0)) ~ (g(s)2 + 12+ p2)724/g(s)? + (p — 1)

The important point in the above integrals is that the factor sin*(¢) vanishes when ¢ = 7, which
is precisely when the vectors x = re; and y (defined in step 1 used to estimate v,) are antiparallel.
Therefore, we get much more decay in p* + 1% + g(s)? than we would have without the sin factor.
Now, we consider ws 15 defined by

ngb(t 7”)

=r Jt‘*‘ rg(t) J J \x+y|>g(s)}H{WHJK%}/\(S)Z
s—t — s210g”(s)(g(5)? + |z + y/?)?

p?
1+ dodpd
( |:6+y|2) Papds

which gives

t+L+g(t) ps—t A 2
|w2,1,b(t7 T)| < CTZJ i J £ D) 2 .2 b (S) 2 2\3 deds
: (s —1)2 — p? s?log’(s)g(s)(g(s)* +12)¥
r?\(t)?

t2log" () (g(t) + 1)
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where we again use (11.5) to justify the analog of (11.27). Next, we consider

Loy 20y Ltani<5)A )’
way g o(t,7) =17 sin?
T4 g(t) s210g"(s)(g(s)? + | + y|?)?

p?
A1+ —2_ ) dodpd
( va+y|2) Papds

The point of this definition is to utilize the decay of the integrand in s — t in order to do the s

integral. As we will show later, the difference ( 1)2 (S o) decays sufficiently fast in s so
s—t)2—p?
as to allow an argument which does the s integral first, before the p integral. A similar procedure

was also used in the author’s work regarding wave maps[26], in the estimation of the correction
denoted by v, in that paper. We start by noting

J'S—t pﬂ{p<r} CJ' pdp
o (g(8)2+ p2+12)324/g(s)> + (p — 2412 4 p2)324/g(s)? + 12
< g9(s ) + 72
JSt Pﬂ{ggpgw} iy < Cr r dp
0o G2t P2k (p 2 @ ) g+ (p— 1)
log(1 + g(s))
g(s)? + 12
ft PLip>2ny cr t pip <Y
o (9(s)? + p*+12)324/g(s)> + (p— P+t g(s) +r?

which gives
Cr2A(t)?log(2 + S5) log(t)

t2log"(t)(g(t)* +1?)

|w2,17c(t7 T)| <

Finally, we consider

0 s—t 1 1 T
wa 1 a(t,T) = T‘QJ J ) — J integrand,,  dpdpds
trg+a(t) Jo (s—02—=p* (=1 ) B

where A )2
1 - g(s) ]l{|x+ |<$} S 2
integrand,,, = sin*(¢) { +§‘> e T (1 + p—2>
o s?log’(s)(g(s)* + |z + y[*)? |z +y]

Using again an analog of the observation (11.27), and the ¢ integrals noted above, we first do the
¢ integral. Then, we switch the order of the s and p and ¢ integrals, to do the s integral first:

|w2 I d(t T

CTJ LH( V(s —1)2—p? _(Sit)>

| A(t)?
log" (1)2(g(0)% + 12 + p)2/g(0 + (p — 1)?

dsdp
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Then, we use the same method used to study the p integrals appearing just above our final estimate
for w1 to get
Cr2A(t)*log(2 + ;5

t21og"(t)(g(t)? + 1)

|[wa,r.a(t, )] <
In total, we get
Cr2A(t)*log(2 + ) log(t)
t21og"(t)(g(t)? + r2)
It remains to treat the second line of (11.26), which we denote as ws ;7. If r < %, then, as in the

case of estimating vy, we use that s — [z +y| = s — (r + (s —t)) =t —r > £, and we use the
estimates on v.(s, | + y|) in the region |z + y| > 5 to get

|wa r(t, )| <

0 _ 2 2 2
fwa,11(£.7)] < O f Gk 021 G S\ () .
t

59/243/2 10g®(t) t4log(t)’ 2
Finally, we need to estimate wy(t, r) for r > % We use the analog of (11.22) to get

2

WRHS,(s, |z + y|) (11.28)

2p%sin?(6)
1—
( 2+ p* 4+ 2rp cos(@)) dbdpds

SN

Again, we insert
1= Ljaryi<y + Ljoryl>5)

into the integrand of the above expression, and define w, ;- by

Wo v (t,7) = J f - t . f Ljo sy 3 W RH S (s, 7 + 1)
Vit 2p% sin?(0
1 2 (0) dfdpds
r2 + p? + 2rpcos(6)
and

wo rrr(t, 1) = wa(t, ) — wo Iv(t r)
s—t 2
wtnn<c [ (e o
A (s —1)2 —p? 54 log t2log’(t)

For wy rrr in the region r > 5, we again consider several integrals separately. We have

) dfdpds <

Wa rrr.a(t,7)

ﬂ{‘z_,'_y‘é%}WRHSQ(S, |£C + y|)
<1 2% sin?(0)

r2 4+ p? + 2rpcos(0)

=L =l

> dfdpds
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which gives, via the same reasoning as used to estimate ws 4,

2m 2/\ OMt 2
\wo,117,0(t,7) CJ J f (s)° dfdpds < —(
A (s —1)2 = p? s21og”(s)(g(s)? + 12)2 t2log”(t)
t
, r> 5
Next, we have
wa r11p(t, )
1 [t +g(t) 0 27
S Lz s WRHSy(s, |z +
21 Jiyr L (s —1)? —pQL s (s 2 g./DQ
s 2p* sin”(0)
\1-= dfdpds
r2 + p? + 2rpcos(6)
We use
J% r? + p? + 2rpcos(6) C
5 d@
o (9(s)* + 72+ p* +2rpcos(f V()2 + p2 +124/g(s)> + (p — 1)?
to get
t+5+g (t) A 2 1
\wa,rrrp(t, )] < C'j J (S) dpds
«/s—t — p? s2log’(s g(s)? +r?
t+ +g by 2 Ot 2
B T i 1
g log”(s)g(s)A/g(s)? + 1 t2log’(t)
The next integral to treat is
Wa r11,c(t,7)
_1 [} 1 s—t 27
= —J —f pLir<p<ar J Loty <5y WRHSs(s, [z + y|)
2m t+Z+g(t) (s=t) Jo 0 2 i
2p* sin”(0)
1= dfdpds
72 + p? + 2rpcos(6)
So,
a0 1 )\(5)2 2r p
w AL, )] < C’J f dpds
| 2,111, ( )| 2 g0 (S _ t) 2 IOg \/g —T’)Z\/g 2 1 42 P
foo 1 log(l + 9(s )))‘( ) CA(t)* log(1 + ())
<Cr s <
t+zgr) 5(5 — 1) s1og’(s)4/g(s)? + 12 rtlog’(t)
where we used the fact that (si o) < % Next, we have
-1 oe] 1 s—t
wo, ,d(tﬂ“)::_J —f p(]l 4+ 1 T)
2,111 o b g (S - t) 0 {p<3} {p>2r}
2
f Ljo ey sy W RH Sy (s, 1 + y])
0
2p? sin?(0
1— p~sin’(6) dfdpds
72 + p? + 2rpcos(6)
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which gives

e} s—t A\ 2 1 4+ 1 -
|w2111dt7“ \CJ f P (8) ( to=3) e <p}>d,0d3
t
d

tItg @ ( s21log’(s) \ (1% + p? + g(5)?)

* 1 A(s)?
< C’J (1 + log(s —t) + log(r))ds
t+L+g(t) (s —1) 2 logb(s)

The final integral to estimate is

(t ) _1 0 J'St 1 1
w t,r) = — —
S 2 Jvziando T\NVG-0P—p2 (1)

27
‘fMWqWM%@uwD
0 (1 B 2p? sin?()

r2 + p? + 2rpcos()

) dfdpds

We again switch the order of integration, as previously done to estimate ws r 4. The only difference
here is that we use % < ’ﬁ for one of the factors of % which appear in the integrand of ws 177 .
once the estimates for W RH S, are substituted. This gives

0 pA(t)?
W 111 o (8,7 <OJ d
| 2,111, ( )| 0 (p+t log t\/g +p2+7“2\/g(t)2+(/)—7’)2 P

" AW log(r)
0 t
\wa,111.6(t,7)] < —g, r==
rtlog’(t) 2
Combining the above gives the final pointwise estimate on ws:
Cr2\(t)? log(2+ﬁ) log(t) ¢
DZr)Zlogh(n) 0 | S 2
ualt, )| < § oo 0,
t2logh(t) 2

where we used the fact that

log(1 + ,55) _ Clog(t)

r = t

N | =+

) r=

Next, we consider the derivatives of w,. We recall the remarks prior to the estimation of w,, and
prove a preliminary estimate on 0,w,. Here, we will start with the case r < g(t). We first note that

) p C, p<g,orp>2r
sin (gb) < Csm2( )cos (2)r r
A/12 + p? + 2rpcos(¢) N p)QHWCO;(g) <C, 5<p<2r
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We also note that

J27r dé _ C
o (9(t) +p2 12+ 2rpeos(9))? T \/g(t)2 + 2+ p2(g(t)? + (r — p)2)¥?

Then, we proceed as in step 2 of the estimation of J,vy + %vg, to get

9
| (é} + ;) wg(t, T)|
Lotyl<s3A(s)?

- Or 0 rs—t 0 ™
s L L A (s —1)2 = p? L <52 log®(5)(g(s)2 + 12 4 p2 + 2rpcos(p))?
0 rs—t L 1 otyl> S )\(5)2
Cr P {lz+y|>3}
| NCET [ Wrrerrov e vty ey o s

Denote the first line of the above expression by ¢;(t,r), and the second by ¢;;(t,7). Then, we
estimate ¢;(¢,7) using the same procedure used for ws. The main difference here is that we have
the factor

> dodpds

dodpds

1 1
instead of

VI + T (g0 + (7 = p)) VI + (= (g0 + 77+ )P
This leads to an extra factor of ﬁ when we estimate certain p integrals in the region < p < 2r.
Since we are considering the region r < g(t), we end up with

Cr(t)?
lqr(t, )| < 2b—()2
t2log"(t)g(t)

The same procedure used for wy 1 gives

Cr(t)?

t4log”(t)’
For the region r > ¢(t), we will differentiate our formula (11.28) directly. We emphasize again that
the estimate on d,w, which we will obtain now, in the region r > ¢(t) is a preliminary estimate, and

it will be improved later, once we choose A(t), and show that A € C3([Ty, o0)), thereby allowing
us to estimate d;w, and (—J; + 0,.) wo. We have

< g(t)

lqri(t,r)| <

Orwo(t,r)

S P
2 2 2
Jo Or (WRHSQ(S, |z + y)) (1 - +i§ _illzlrii)os(e))) 1 {josy/<zydfdpds
1 [ et P
2 2p% sin?(0)

o, | WRHS,(s, 1— g yo =y dOdpd
L ( 2(s Ix+yl)< r2+p2+2m608(9)>) {la+y/>53d0dpds
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where we again denote the first line of the right-hand side of the above expression by ¢;;;, and the
second by q;y .

ey e[ o=
J |z + y|A(s)? | + peos(6)|
o s2log’(s)(g(s)? + o +yl?)? |z +yl
|z + y[*A(s)? 7 + pcos(6)|p? sin?(0)
s21og’(s)(g(s)? + |z + y|?)? |z +yl!

) dfdpds

We then use

[+ peos(@)] = [(r = p) + plcos(0) + 1) < [r = p| + p(1 + cos(0))

sz do _ C
o (9] +p? 12+ 2rpeos(0))? T \/g(t)2 + p? +12(g(t)2 + (p — r)?)3P2

p? sin?(0) <C p? cos®(%) <C
P+ 12+ 2rpcos(0) ~  (r—p)2+4drpcos2(d)
fzﬂ (14 cos(0)) 50 < C
o (g(8)2+ 12+ p2+2rpcos(f)? \/(p — )2+ g(s5)2((p + )% + g(5)2)32
and the identical procedure used to estimate ws 177, to get
CA(t)?
t,r)| < ————1log(t), r=g(t
et r) < o ()9(0) g(t) g(t)
Finally,
2
v (t,7)] < f J ( AL) ) dpds
VACES t — p% \s%2(s — |z + y|)!21og"((s — & + y]))
C/\( )?
< 15/2

Then, we use the same observation as in step 3 of estimating v-, along with the identical argument
used to estimate (6r + %) wa, to get

CA(t)*log(t)
t21og"(t)g(t)?’

We can estimate d?w- by using the equation solved by w,. It then remains to estimate d;w,. For
this, we return to (11.28), and make the substitution p = ¢(s — ).

3
|a7%w2(t7 T) + ;aTwQ(t7 T’)| <

integrand,,, | dfdqds (11.29)

o(t, 1) QWJJM
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where

integrand,,, | =W RH S5(s, V(s — )2 4+ 12 + 2rq(s — t) cos())
(1 2¢%(s — t)%sin?(0) )

- r2 4+ q2(s _ t)2 + 2rq(s — t) 008(9)

Then, we can differentiate under the integral sign. The resulting integrals can be estimated with
the same procedure used to estimate analogous integrals arising in the expressions for ¢,w, and
wy. We get

CA(t)*log(t)
t2log" (t)g(t)

The same procedure is used to estimate J;,.ws, and this concludes the proof of the lemma ]

Y

|atw2 (t7 T)| <

11.6 Summation of the higher corrections, w;,

The nonlinear interactions between w, and v, can not be treated perturbatively in our final argu-
ment. Therefore, we will need to define corrections w;, in a similar manner as the corrections vy,
were defined, and sum a series of the form 2,2023 wy,. Because the estimates for w; and w, will be
of a slightly different form, we will first (define and) estimate ws, then prove estimates on w; for
J = 4 by induction. We let

6(@#4‘@0) 2 3 6
WRHS,(t,r) = ——0— L + =2 1+ 222 (2 + 20, , )

72 r

Then,
r2A(t)? log(2+ ﬁ) log(t)

<
[WRHSs(t,r)| < C (g2 +r2)tt1og?(t) ° (S

I

A(t)? log? (1) t
ot
Cr(t)? log(t)
Wa r < g(t)
CA(t)* log(t
10, WRHSs(t,r)| < % g(t) <r <3
CA(t)? log(t) r>13t
t5/2 10g2? (t)r3/2g(t)’ 2
w r<t
9 4 o 27 2
|02W RH Ss(t, 7)| < {t A o) ro L
t5/2r3/2 10g2 (t)g(t)2’ 2

Now, we estimate wj, starting with the region r < g(t). The same remarks concerning the nature
of the estimates on the derivatives of w, apply here for ws, and eventually for w;.

Lemma 11.7. [Preliminary estimates on ws] We have the following preliminary estimates on ws

Cr2\(t)? log(t) <
w(t, )| < | Eemeetiy 7 S 90)
3\5 =) OA(#)2 log?(t) . (t)
t2log?®(t) g
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CrA(t)? log(t
|0 ws(t, )| < {W, r < g(t)

Rlog® gy’ | 0
CA(t)* log(?)
2g()2log (1)
M
t2g(t )log (t)
{E&ﬁgi r<gt)

|0Fws(t,7)] < ;

|atw3 (ta T) | <

Bt )] < { T
g(t)

CA(t)? log?(t)
902 log%(t) ’
CA(t)? log(t)
t2log™ (t)g(1)?

Proof. Using the analog of step 1 when estimating vy, we get

ﬁ
\

|Orrws(t, )] <

integrand, . dpdpds

st < [ T

where

2 $)21o Ifﬂ+y\os 2loo(s
integrand,,, = sin*(¢) <1 + L ) <(>\( )12+ ity ) gg ) n A(s)” log(s) >

[+ \ (9()? + [ + y/? )S4 log™(s)  g(s)s*log™(s)
We use w el
at+y
log(2 + 9(s) ) < C
98+l +yl ~ g(s)?
to get
CriX\(t)*lo
st )] < SO g
29(t)?log™(t)
Using the same procedure as in steps 2 and 3 of estimating vy, we get
Cr(t)? log(t
s (t.)] < S8 g
9(t)*log™(t)
" CA®? 081
)" log(t
2w (t,7)] < S <)
t2g(t)?* log™ ()
To estimate ws in the region r > ¢(t), we use the analog of (11.28), we get
T A(s)?1 CA(t)*log”(t
|ws(t,r) Of J j oz’ )dedpdsg()—;’bg(), r> g(t)
vV ( s—t — p? st1og?( t2log™(t)

Differentiating the analog of (11.28), we get
CA(t)? log(t)

0res(t TS 0 (g0

, r>g(t)
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We then use the observation of step 3 of the v, estimates to get

CA(t)* log(t)

P*ws(t,r)| < , t
Using the same procedure that was used to estimate d;ws, we get
CA(t)*log(t
duwa(t, )] < SAD 1080 0
t2g(t) log™ ()
We then read off estimates on d?ws, based on the equation solved by w3, and the previous estimates.
This completes the proof of the lemma. ]

Now, for j > 4, we define w; to be the solution to the following equation, with zero Cauchy
data at infinity.

1 4
—8ttwj + @ij + —&wj — —2UJJ' = WRHS](t, 7“)
r r

where

6 (QL + vc> j=2
WRHS;(t,r) = 22 2 w?_l + 2 Z WEWj—1

2
r k=2

2 =2 =2 ’ 6w, 1
3 2 i1 (2
+ 3| Wia + 3w;_; E Wy, + 3wj—q g Wy + 2 (vc + QUCQMlt)>

k=2 k=2

As with v;, we will now prove estimates on w; by induction. Let C; > 9 be such that the estimates
of lemmas 11.6 and 11.7 hold, with the constant C' = C5 on the right-hand side. Let p > 900 be

1

900y

otherwise arbitrary, and let 7g, > satisfy

™ CADog () _ )
og'(0) " g(0?log’ (1) |

and be otherwise arbitrary. (We recall that % = ﬁ, and b > 2, so, such a Tp, exists). Our

goal is to show that, for a sufficiently large 7j ,,, we can prove estimates on w; (and its derivatives),
valid for all ¢ > T} + T, and all r > 0, by induction. In the following estimates, we assume
t = T1 + T()’p. Let

t=1Toy

)L k=3
" Vo k=4
Suppose, for any 7 > 4, and all k£ with 3 < k < j — 1, that

Dy k2 A(t)? logk (t) <

t2g()2 log?*F—1)(¢) = g(t)
|wi(t, )| < m() r> g(t)

t21og? k=1 (1) g

(11.30)

315



D, xrA(t)? log?(t)
Egtrriog gy TS 9()

D, A(t)? log?(t)
et "> 9()

Dyih (1) 10g’(1)
£2g()? og"® (1)’
Dyt 1080

|k (t, )| <

02w (t,r)| <

auntt ) < R (1131)
2 DA g0
|5t wk(tvr)| < ( )210g b(k— )(t)
2
DpJg)\(t) log™(t) (11.32)

Oprwi(t, )| <
TS 08 )

Then, for some constant C' independent of t, p, j, we have the following estimates, for ¢ > 11 +T15 .

Cp(j 1) 2)\ 210 t
4g(t )210g(b()1 l)g(t§ )7 S g(t)
CP(] 1))\ 210
|WRHSJ(t7T)| < C 4 logbgj) 1)(%) (t)7 g(t) <r < %

CP(] Da#)21 21002
® o8 (1) 1+ At) 10bg (r) r>t
t5/2 3/2 10gPG=1) (1) t2 log®(t) ! 2

cPU=Dr ()2 log2(t)

: <

oo’ T S 9(t)

U=V 10g? (1) ¢
: <t

t4g_(t) logb(771>(t) 9 g(t) <r \ 2

C3YDA®)? log (1) 39~ DA®)? log? (1)

3r1og® =D ()g(t) T 12¢5/210g"0 2 () [{t—r) log? ((t—r))

0,WRHS,(t,r)| < C

N+

C3Y~ VA2 log (1)
2 ) t4g(t)21og?U= (1) h
|ar WRHS] (t7 T') | < C 052]_1))\(1‘,)2 log2 (t) 1 )\(t)z log2 (T) . t
73/25/2(1)2 logPlU D (¢) t2 log®(t) T 2
Using the same procedure used to estimate w3, we get the following estimates, where the constant
C'is independent of t, j,p, and t = T} + T,

N+

Cr2CBYU V)2 1og? (¢)
t2g(t)2 log?U— V() S g(t)
CcPUD ()2 1log?(t) "
2 1og? =1 (1) T 9( )

jw;(t, )] <

Cre?U Y\ ()2 log? (1)
Ay <90
CCTV ™A ()% log?(t)
Faegr o "> 90

|Orw;(t,7)] <

CCPUTY ()2 1og2 (1)
2 t2g(t)2 logt—D(¢)
B2t r)| < § R

r < g(t)
U=V (1) log?(t)
t2z(t)210gb(ﬂ'*l>(t) , T g(t)
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CCPITIA(1)2 log? (1)
2g(t) log"V =1 (t)
COy VA > g’ (1)

t2g(t)? log"V =1 (t)
CC3U VA1) log’(
t2g(t)*log"V 1 (t)
Therefore, there exists py > 900 such that 0(150(]' -1 < Cg‘)j . Then, by mathematical induction,
(11.30) through (11.32) are true for all 7 > 3, provided that 7Ty ,, is chosen sufficiently large

(though we have slightly better estimates on w3 than what we supposed for the purposes of the
induction argument). Therefore, the series

o)
Wg = Z w;
Jj=3

and the series resulting from applying any first or second order derivative termwise converges
absolutely and uniformly on the set {(¢,7)|t = T} + Tp,,, 7 > 0}. From here on, we will further
restrict Ty to satisfy Ty > 11 + Ty ,,. Then, for ¢ > Ty, let w(t,7) := wo(t, r) + ws(t, 7). Using
the fact that

WRHS;(t,r) = %ﬁ—);q)c) <J21 wk>2 - (j wk>2

|Ovw; (£, )| <

|07 w;(tr)] <

t)

|G (t,7)] <

<

k=2 k=2

we proceed as in the case of v, to get

1 4
_attwc + 67”7"ch + ;67““]6 - :2)6 = X}l(L) (atQQl - 6UC (1 - QL (T)))

This will be useful for us in the next section.

11.7 Choosing \(t)

Let
A = (1= ) (%2, 0 - 280 (1o, )

6 (1 o (T)> (11.33)
2 o we(t,r)
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2 (1 B Q2
Fs(t,r) = (1 . X@(—T)) (t,7) (11.34)

t 72

where we recall that y<; was defined in (11.13). If we substitute u(¢,r) Q ) + ve(t,r) +
we(t, ) +v(t,r) into (8.1), we get

1 2
— uv + 0+~ + 5 (1-3Q_ (1)) v

98 6 (Qﬁ)(r) + ve + wc) v?
=F4( )+F5(t T')+T—2+ 2

+i—s((vc+Q —|—wc> —Qi(lt))

11.7.1 Estimates on [

We will now show that F; decays sufficiently quickly in sufficiently many norms, so that we do
not need to include it in the modulation equation for . By directly substituting the estimates of the
previous sections into the definition of Fj, we get: there exists C' > 0 such that for all \ satisfying
(11.4), we have

[ E5(t, RAE)|| 2(rar) < (11.35)

11.7.2 Solving the modulation equation

Now, we will choose A(t) so that
(Fy(t, RA(1)), ¢o(R))12(rar) = 0

This equation can be re-written in the form

, ®0(R))12(RdR)

r=RX(t)

, Go(R))r2(RrdR)

r=RA(t

+ <X>1(R)\(t)) <attQ1 — r_62,UC (1 - Qi (”))

At)

0uQ g~ (1- Q% ()

A(t)

(11.37)
. ¢o(R))12(Rar)

r=RA(t

<%6 (1 - Q1 (7")) wc(tﬂ")‘ ,¢0( ))L2(RdR)

X(t) =RA(t

The main result of this section is
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Proposition 11.1. There exists T35 > 0 such that for all Ty = T3, there exists a solution, \ (which
is of the form (11.4)) to (11.37), for t = Ty. In addition, \(t) € C*([Ty, o0)), and satisfies

At) = Aoft) (1 + e(t))

where
o m, k=1,2
k c _
le(t)] < Tog? (1)’ " ()] < | gy F=3
= k=4

t4 logb+55 (t) ’
where 0, 09 are defined in (11.1), (11.2), respectively, and d4, 65 > 0.
We start by computing the left-hand side of (11.37). Firstly, we have

2N (1)

(0@ 1 ,00(R))r2(RaR) = B0

A lr=RA(t)
Next, we start by noting that

6(1—Q3(R)) 24R?
vz W = Sara s

Then, we use

e) 3 3
)\242 J R J2(§R)\gt)4)dR _ E3N(t) Ky (EAD)
()2 Jo (1+ R?) 2
(which follows from combining integral identities of [7]) to get the following. By the representa-
tion of v; in terms of its Hankel transform of order 2, noted in previous sections, the choice of 171\ 1s
and the sin transform inversion formula, we get

6 ) 2X6(¢)
<—§01 (1 — Qﬁ(r» r:R)\(t)>¢O(R)>L2(RdR) = —3)\0@) + By ip(t, A1)
where
A O sin(t€) vy 1 3 b
Bt 0) = 32 [ sin9 w0 (o0 - s ) e
) et (0 o))

Using the symbol-type estimates on vy 1, asymptotics of the modified Bessel function of the second
kind, (11.4), and the observation (11.15) we get

C'log(t)

|Ev1,ip(t7 )‘(t))| < 15/2

(where the power of ¢ in the denominator could be improved, but is sufficient for our purposes).
On the other hand, we have

2n,
C 0T2
o0 1 t
—1 _ r< =
2 log2"(t)’ =2
> lon(t )| < { @
k=2 @) 73
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and this gives

C
sip(tLAE))| € ——5——
ot A € 7oy
where
Usip (T, A(t 2 Z Uk (1 - 7’)) B $o(R))L2(Rrar)

Using our estimates from previous sections, we get

C
12log”(t) log®® (1)

[linap(t, A(1)] <

where

linip(t, A(t)) = <X>1(R)\(t)) ( ttQi 6 (1 — Qi (7‘))>

g(t) @ r? N

and we recall the definition of g: g(t) = A(t) log® % (t). Next, for j > 3, we use the estimates on
w; given in (11.30), to get

C 1 1
et NI = 5 ( iy + s

R
PN ¢0(R))12(rdR)

where

weat A0) = A2 6 (1202, () waltor)

; 00(R))r2(Rar)

r=RA(t)

Substituting A(t) = A\o(t) (1 +¢(t)), e € B1(0) = X (where we recall (11.4) and (11.3)) into
(11.37), we get

3G(t, Ao(t) (1 + e(t)))

e'(t) = 5 (1+e(t)) (11.38)

where
G(t, A()) = vsip(t, A()) + lingp(t, A(T)) + weip(t, A(E)) — By ip(t, M)

Let B := B,(0) = X. Our goal is to solve (11.38) for e € B using a fixed point argument. So, we
define 7" on B by

| 3
T = — = 2 1 1
(e)(t) L WESE L 2)\0(3) G(s,Mo(s) (1 +e(s))) (1 + e(s))dsdx
Combining our estimates above, we get

C

|Gt Ao(t) (1 +e(t)))] < S Plog (1)

where we recall the definition of ¢ in (11.1). This gives

JOO Ao(s)%ds

+ s21log'™(s)

|foo g)\o(s)zG(s, No(s) (1+ ¢(s)) (L + e(s)) ds| < C
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Then, we integrate by parts to get

[l | Mf, [1(Dulhils) UMY,

. s2log'™(s)  zlog!td(x) log' ™ (s) slog’*?(s)

Therefore,

[ el Mol)? ( C C )

< +
: s%log!™(s) zlog' () ~ \log"(z)  log(z)

So, there exists Ty > T} + 1}, and C' > 0 such that, for all x > T3,

Joo )\0(3)2d3 <C /\o(I)Q

. s2log't(s)' zlog't(z)

foo Ao(s)%ds

+ s2log'™(s)

(11.39)

So, for all T, = T5, we have

_ ¢
tlog6+1( )

* dx C
OO0 s < s

" C
70 <

In particular, 7' : B — B. Now, we will study the Lipshitz properties of 7. We recall that v,
depends on \. To emphasize the dependence of v, on A, we will write vy = v}. Similarly, we
denote the previously defined functions RH Sy, by RH S;. Our goal is to understand the Lipshitz
(in e) dependence of vy, (t, \o(t) (1 + e(t))) and E,, ;»(t, Mo(t) (1 + €(t))), fore € B. Fori = 1, 2,
let e; € B, and let A\;(t) = A\o(f) (1 + ¢;(t)). Let

t =1

T (e)'(t)] <

t =1

and

=Ty

F(r A(t)) =
(A1) B
Then,
o ©
Vsip(t, A(t)) = 6 J D op(t, ) F(r, A(t))dr
0 k=2
We start with
Cr3\(t) Cr3\(t)?
OoF(rAt)| € 75—, |[Fn X)) < =~
| 2 (’I" ())| (7“2+)\(t)2)4 | (’I“ ())| (7"2+>\(t)2)4
To understand the Lipshitz (in e) dependence of UAO(HE) we start by noting that v — v2 solves

the following equation with 0 Cauchy data at 1nﬁn1ty
1 4 6v, (¢, 7)>
<_att + arr + ;ar - ﬁ) (Uz/\l - U§\2> = M (Qi(t) (7”) - Q#(T))
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There exists an absolute constant C such that, for all e € B we have
C"No(t) < M@ (T+e®)| <C(t), t=T,

Using this, we get

Q1 (r)—Q__(r)] < ClAa(t) = M) Ao(t)

1) X2(1) r2

and this gives

ClAa(s) = Ai(s)[Ao(s)

RHS) s, r — RHS)? s, T rdr) S
|| 2 ( ) 2 ( )||L2(d) 8310g2b(8)

Using the procedure of (11.16), and the estimate (11.39), we get

Cller —eallx Ao(t)?
t1log®2(t) tlog®(t)’

0t — 32 |(t, 1) < r>0, t=T,

Then, a similar induction procedure used to construct v, shows that there exists Cy, mg, T3 > T5

such that, fort = T3,

Cy"|ler — eal|x Ao (t)?
t2logh ™0 %2 (¢) 7

o = v |(tr) <

Jj=2

(The main difference between the procedure used to establish the above estimates, and that used to
construct v is that here, we need only inductively prove estimates on RH.S ;‘1 — RH S;Q, and use
the procedure of (11.16) to estimate vg\l — v]’-\Q). The above estimates imply that, if 7y > 75 (which
we will assume from now on) then, we have

= 10, TZO

[oe]
) ) Cller — eal[x Mo(t)?
Sl —oela, ) < Sl
= t2log™ (t) log” > (t)
This gives

Cller — es||x
S t7)\ t — Ugg ta)\ t < 9
|Vsip(t; A1 () — vsip(t; Aa(t))] Flog® (1) Tog (1

Again using properties of the modified Bessel function of the second kind, we get

=

|ler — eal|x log(t)

|E1;1,ip(t7 )\1 (t)) — Evl,ip(t, >\2 (t))| < C t5/2 10g5_52 (t)

Next, we estimate lin;, (¢, A1 (t)) — lin;, (¢, A\2(t)). We start by noting that

Cller — eaf|x1, - a
) = X1 (—)| < B e
a1(t) g2(t) log® (1)

Next, we let




Then, we use
Fo(r, A (t), M (8), AT (1)) — Fu(r, A1), Ay(t), A3(t))
= Ll DF(r, Ag(£)) - (Aa(t) = Aa(t), A () — A5(2), AT (2) — A5(F)) do
where D F denotes the gradient in the last three arguments of Fj, and
Ao(t) = (oMi(t) + (1 = 0)Aao(t), o X1 (F) + (1 — o) X5(2), o AT() + (1 — o) A3(t))
This gives

[F(r A (8), 4 (8), AT(8) = Fo(r, Aa(8), Aq(1), Az(1))]
COller — ea|x Mo(t)%r* ( 1 1 >

S Blog? (1) (17 + o(02)F \logh(t)  log(?)

Then, we use our estimates above, and recall that b > % to conclude

. . O||€1 — 62||X ( 1 1 ) 1
ling, (t, A1 (L)) — ling, (L, A2(t))] < +
|lingp (¢, M (1)) — ling (¢, A2(1)))] 12 1og) 2 () logb(t) log(t) log2b746(t)

To study we (£, A1 (1)) —weip(t, Ao(t)), we will need to estimate w;," —w,?, where we use the same
notational convention as we used for v;. For later use, let g;(t) = log" > (t)\;(t), i = 0,1,2.
We start with k = 2. We split WRHS," — W RHS,? as follows. We define

WRHSQJZ'p,o (t, 7’)

) (1) - Fan ) - 2 (i) - i)

+ (xn) —xnlE) (@0, 00 - 2D (1- i) )

WRHS, 51 (t,7) = WRHSy (t,7) — WRHSy*(t, 1) — WRHSs i o(t, 7)

and

and write wy (t,7) — wy2(t,1) = Wayipo(t, ) + Wasip1 (), Where way, ; solves the following
equation with 0 Cauchy data at infinity.

4
—OuWatipj + OprWa tip.j + ;aer,lip,j — ﬁwQ,lip,j =WRHS5 1ip

The point of this splitting is that we will need to use a more complicated procedure to estimate
Wa 1ip,0, SINce too many logarithmic losses in estimates are insufficient for our purposes. We have

C||€1 — 62||X:ﬂ'{r>goT(t)})\0(t)4
210"~ (t) log™ (£) (g0 (t)? + 2)?

|WRHSQ7lZ‘p’1 (t, T)| <
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Using the analog of (11.28), and a similar procedure used to estimate various integrals arising in
the wo estimates above, we get

Cller — eallx Ao(t)* log(t)
|w2,lip,1 (tv 7’)| < 3 5—02 2b 57
t21og” (1) log™(t)go (1)
In particular, the procedure used to estimate ws ;;, 1 does not involve any derivatives of

W RH S,ip.1, which is why we did not need to prove any estimates on derivatives of v?l — vg\2.
(Note that vg\l — vg\Q arises in some terms of W RH S5 ;;,1). Next, we note that

r>0

X |WRHSQ,lip,O (t, ’f‘)|

|6,W RH S5 10 (t,7)]

T
T‘)\Q(t)2||€1—62||x > ( 1 ]_ )
<C1 n
=) (ﬁ log™ () (r2 + Ao(t)2)2 ) \log"() ~ log(?)
r t
Xo(t)?[ler — ea|x g | S3
(000 (1) g (02 4 12 v r>;
it 0 " Ve (@) 2
and
|02W RH S ip0(t,7)|
Xo(1)?|le; — 1 1
r=E T 210g? %2 (1) (12 + Ao(8)2)2 \log®(t)  log(t)
N CH{T>gO4(t)})\Q(t)2||€1 — €2||X m, < %
_ 1 t
10g5 62 () (Mo ()2 + r2)2 roT oy log (1) r> 3
1 < t
1, _ s, Ao(t)?[ler —eal|x | ©log"®)’ TS
+C {r="=} 1 + 1 t>7r> t
10g5*52 () (r2 + No(t)2)2 NG 10g”(<t—17">)<t—r>3/2 t<t—r1> log®(t) 10gb(<t—tr>)’ 2
Trog G-y T By "7 2

(Note that we have two estimates on ¢2v,, valid in overlapping regions, which is what gives rise

to the form of the estimates recorded above). Using the same procedure that we used to estimate
OFw, for k =0, 1,2, we get

Cr2?Xo(t)? 10g(2+90?t>)log(t)H€1*€2||X 1 1 Lot
#2(go(t)*+12) log® 2 (¢ ogb(t) Tl /) TS 2
|wagipo(t,r)| < , (90(t)?+72)log®~°2(t) 0 0]
CAo(t) Helfegﬂx 1 + 1 . t
t21log®~%2(t) log®(t) log(t) ) ? 2

Cro(t)? log(t)|ler—ez2|| 1 1
tggo(t)ﬂogg_;?(t)2 - (logb(t) + log(t)) ;< g(t)

Co(1)? log(1)||e1 —es | | )
P o8 (0 (logb(t) + log<t>> s 7> g0(t)

Co(t)? log(t — 1 1
|02ws,1ip0(t, )| < olt)” Log( )|5|i15 colx ( by T ) ol
t2g0(t) log® 2 (1) log”(t)  log(t)

|5rw2,lip,o(t> 7’)| <
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Next, we consider w§1 - w§2, and define W RH S5, 0 by
WRHS&HP’O (t, 7”)
G(Q%JFUCM) A A 2 A\2 PYIIPY X212
= - W2,1ip,0 (wzl + w22) + T_gw&lip,o ((w21) + wylwy® + (wy?) )

r2

6 A1)\2 A
S Walipo ((Ucl) + 2%1@%)

As before, we also define
WRHS3 51 (t,7) := WRHS (t,r) — WRHS2(t,r) — WRHSs350(t, 7)

and, for 7 = 0, 1, we let ws ;;;, ; solve the following equation with 0 Cauchy data at infinity.

1 4
—On W3 1ip,j + OprW3 1ipj + ;arw?),lip,j - ﬁw&lip,j = WRHS3p,

Noting the similarities between W RH S5 1;, 0 and W RH S3, we get

Cr2Xo(t)? log(2+ ) log(t)]|e1 —eal| x ( (| ) rt
WRHSs ot )| < 4 @O0 ko @log 2w\’ Tog) 752
PP T Cho(t)?||e1—ea||x L, 1 r>1t
t5/21:3/2 10g? (t) log® ~22(¢) \ log®(t) log(t) ) ° 2
Conlont) o
||€1 _ 62||X 1 1 %))Et)(igg iogl(’gy S g()(t)
|5TWRH537lip,0(t,T)| < 575 ( + ) : 1 > 3 — ) gO(t) <7<
log™ (1) \log'(t) ~ log(®)) | “glwn,) ™ T
t5/2 log? (t)r3/2go (t)’ 2
Co(t)? log(t) t
||€1—€2||X 1 1 t410g%(t)go(t)2’ T<§
|02W RH S5 4i0(t,7)| € *——— + R TR AVCA
log Q(t) logb(t) log(t) t5/27n3/g(li)gb(t§;?(t)27 r > %

The same procedure used to estimate w3 then gives

Cr2Xo(t)2 log(t)||e1 —ez|| 1 1
2g0(t)2 log?(t) log‘s_é?(t))( (logb(t) T log(t)> ;< go(t)
CXo(t)?log?(t)||e1 —ea||x 1

w3 tip,o(t, )| < '
£2 log®(t) log? %2 (¢) log®(t) + log(t) / 7 r > go(t)

CTAo(t)2log(t)Hel—eg||X( 1 1 )
100103 4ip0(t, )| < 4 L0t 10g () log?22(1) \log?(1) t i) TS 9olt)
T 0P, Y

- Co(t)2 log(t)||e1 —ea|| 1 1
7 1og? (190(1) log™ 2 (1) (1og”<t) + log<t>) 7> 00(1)

o(t)? log(t — 1 1
|Orrw3 ip0(t, )| < o) Ogl(; jex 5—?“){ ( by T ) 0
t2go(t)? log’(t) log"~*2(t) \log’(t) = log(t)
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Next, we note that

4 log(t) log(2+ (t))log(t) t

(W RH Sy (t,7)| < SN = 2llxdo@ ) immggmner + #lommprry 7S 2
P, LAYy = - log(t) log?(t) t
IOg 2(t) 15/2 loggb(f)go(t)2r3/2 - r3/2t5/2g10g2b(t)t2’ r>3

After applying the procedure of (11.16), we get

Cller — ea|x Ao(t)* log(t)
t21og™ (t) log’ =% (t)go(t)?

w3 1ip1 (t,7)] <

Then, we define, for j > 4,

WRHSj,lip,O (t, 7“)

72

6(Q +v) i=2 i=2
T E E
= 2 wjfl,lip,O( 1 + ’LU 2 + 2 Wk, lip, OU) 1 + 2 U)k Wj—1,lip,0

2
+ ﬁ <w]'_17[l’p70 ((wj)\il)Q + w;\ile\il + (wjil)z) + 3'U,)j_17lip7[)( j 1 + w Z Wy,

j=2 =2 i
A2 22 A
+ 3(wj31) Z Wi ip,0 T 3Wj—11ip,0 Z wy'
k=2 k=2

-2
A A A 1,lip,0 A A
s () (G o)) (750

and
W RHS;up1(t,7) := WRHS (t,r) — WRHS*(t,1) = WRH S} 13,0(t,7)

As with previous estimates, all estimates which we will prove by induction are valid for all ¢ >
Th, provided that 7y is sufficiently large. We will no longer explicitly write this after each such

estimate. By using a similar procedure used to estimate w; by induction, we get, for some constant
C3 = (Cy,and all j > 4,

[wj1ipo(t, )| <

CIr2x0()2 log?(t
||el—eg||x( L1 ) e, < go(t)

0—0 b 2002
log’ =% (t) \log’(t) log(t) %jlﬁ(ff), r > go(t)
S i) e
o 2g0(t)2 1og®U=2) (t) log® ~%2 (1) log (t) log (t)
|6ij’hp’0(t’r)| S C?)\o(t)Qlog (Dlle1—e2|lx r >
iU () o 7 () \ o) T 1o 9o(t

J 2 2 .
102w, 1ip0(t, 7)| < Csdo(t) lOg. ()llex €2||X< 1 N 1 )’ .
” 2g0(1)? 10g"0 2 (1) log?* (1) \log’(t)  log(t)
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Using a procedure similar to that used to estimate v]’-\l -0

C3ller — eal[x Mo (1) log(t)
t2log™ (t) log’ = (t)go (t)?

[wjipa (t,7)] <

Finally, this gives

| C Cller — ealxAo(t)*log(t) (1 1
et O) e AT o) (logb(t) +1og<t>)

When combined with our previous estimates, we get

Cller — ealx
log® %2 (t)t2 log" ™% (t)

|G (s, Ai(s)) = G(s, Aa(s))] <

where
03 = min{2b — 4e — 1,3b — 4e — 2}

Note that 93 > 0, by the constraints on e. This implies that there exists a constant C' independent
of Ty such that, for all eq, e; € B, and all ¢ > Ty,

Cller — eaf|x

T(e1) = T(e2)lx < log® (Ty)

Combined with our previous estimates of 7'(e) (and its derivatives) for e € B, we see that there
exists 7, > Tj such that, for all 7, > T, T has a fixed point, say e, € B. By inspection of
the definition of 7', this means that A(t) = Ao(¢) (1 + eo(t)) solves (11.37). From now on, we fix
A(t) = Xo(t) (1 + eo(t)).

11.7.3 Estimating \"

In this section, we will show that ey € C3([T}, o)), and estimate ef (¢). Estimating e (¢) will be

done in two steps, exactly as in [26]. First, we obtain a preliminary estimate on e{ (¢) by differen-
tiating an appropriate expression for efj(¢)(see (11.41) below). Once we establish this preliminary
estimate, we can differentiate W RH S;(t,r) in the ¢ variable, and this allows us to justify a dif-
ferent representation formula for d;w; than what was used to establish (11.31). With this different
representation formula for d,w;, we then proceed to prove an estimate on e (¢) which is stronger
than our preliminary estimate. As a by-product of this procedure, we obtain an estimate on J,w;

which is much better than (11.31), in the region r < .

From (11.37), eg solves

(t) + 22)6(%) el (t) = ;G(t, M) (1 + eo(t)) (11.40)

We start with (11.40), written in the following form.

e4() + e (t) = a(tel(0) + 5 Gralt, DL+ o)
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where

3 * r 4r2\(t)  Pol5g)rdr
Jy G e A )

_ 2ig(1)eh(1)

Grest(t, A1) = G(t, A(t)) — m

There exists a constant C', independent of ¢, Tj, such that

C

lio(1)] < T0gZ0- 29 (1)

So, there exists an absolute constant 75 > T} such that, for all 7T, > T}, we have (for instance)
lio(t)] < gooage- Then,

)\/
3Gl A1) (1 + e0(t)) — 28ef 1)
1 —ig(t)
Because v, ws € C*([Tp, o) x [0, o0)), the right-hand side of (11.41) is in C'*([Tp, o0)). In partic-

ular, ey € C3(| Ty, o0)). We will now estimate the ¢-derivative of the right-hand side of (11.41). We
have

el(t) = (11.41)

et A0) = [ %i (t.1) (1—@1< ())>¢0( proNpCe

which gives

Next, we have

@ r 4r2(N(4))2(r? = 3X(t)?)  6u.(t,r)
([, ot (s
CA(t)?

~ 3log"(t)g(1)?

0

1)) < S (1 :
GIES tg(t)? <1Ogb(t) - lOg(t)>
N ( o) (NG (E) (1 + eo(t)) + 2X4(t)ef (’5))) | < Cholt)

) _
(1 + eo(t)Ao(?) ~ B3log"(t)g(1)?

Using the same procedure used to estimate F,, ;,, we get

C'log(t
|5tEy17ip(t7/\(t))| < t7/2( )

Using (11.31), we get
C'log(t)

|atwczp(t )\( ))| m
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As mentioned before, once we obtain a preliminary estimate on ej, we will be able to prove a
much stronger estimate on e{), via improving (11.31). This gives

C'log(t)
t2log" (t)g(t)

which leads to the following preliminary estimate on e’

C'log(t)
t2log"(t)g(t)

Now that we have this preliminary estimate on e;, we can prove a better estimate on J,w;. We start

with dyw,. We get

|atGrest(t7 )\(t))| <

e (t)] < (11.42)

=)l /1 1 r2\(t)2

OWRHSy(t,r)| < C +
% 2(,7)] (10gb(t) log(t)) B(r? + A(t)?)?
r2A(¢)? 4 r2A(1)2 e ()]
r t3logb(€(r2+>\(t)2)2 (r2+A(1)?)%

—) )\(t)2 1 ) .
g(t) \/(tﬂ“%/?logb((tfr)) tlog ) +1 |6”’( )|) , T >3

r2¢2

r<

N |+

+ Cx1(

100 W RH S, (t,7)|

Lisa) ( Lo, ) rA(t)*
log?(t) \logh(t) = log(t) ) t3(r? + A(t)?)?
rA(t)?
(rZ+A(6)2)2 (t3log b(t) T |e///( )|) ) TS %

/\(t)2 1 2
+ Ol $ 57 \ T vesta )+ e ”'em(”)

A(t)?( 1 + )
rt o \Wrlog® ({¢—r))t—r)32 t<tfr>log’7(<tfr>)logb(t) ’

+ t>r>

N |+

1 g(t) 2
OurWRH S5(t,1)| < C 2 +
| t 2( 7“)| 1Ogb(t) (logb(t) log(t)) t3(r2+)\(t)2)2

)\ 2
i (i + 150)) <
{r=93 A2 A(1)? |<g'(1)]
PV () ? T

+C1

t>r >

DO [+

Now that we have the preliminary estimate on ef, we can justify the analog of step 4 for d,w-,

and carry out the same procedure, to get

Cr2x(t)? log(2+ﬁ) log(t) 1 + supx>t(|e”’(x)|x3/2) r<
(g(t)?+r?) 3 log?(t) t3/2 ) =

A Supy (2%/2 e ()DAL)? 2 ‘
Gy log ) | 572 ) log™(t), t>r>3

[N

|atQU2(t, ’T‘)| <
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CrA(t)? log(1) ( L 4 SPani(@ e (@) r < g(t)

9(0? 108" (¢) B ’
CA(t)? CA(1)? supy 5, (2%2]ef (x)])
|8trw2 (t7 7”)| = 1ogb(<t—r>)§532<t—r>3/2 + t5t/2 -

COXt)? log(t 1 su z)ﬁ(w3/2‘e///($)‘)
+ (;(t) = (tSlogb(t) + = I ) , gty <r<t

|atr7"w2 (t, T)| <

CA(t)* log(t) ( 1 sup, -, (¢¥ 2|€E§’(ﬂo’)|)) CA(t)?
g(t)? t3log”(t) t3/2 t5/21og® ((t — r)){t — r)5/2
Now that we have the above estimates, we proceed to estimate d,w; in the region r < t. We
start with

Cr2\(t)? 10g(2+ﬁ) log(t) 1 sup, 5, (z%/2]el/(z)]) -

t21og" (t)(g(t)2+12) 3 log"(t) 1372 v TS
OA(1)? log? (1) 1 sup, 5, (2%/2 el ()]) t>
r3/2¢1/2 logb(t) t5/2\/<t77'> logb(<t77'>) $3/2 9

N[+

0,W RHS5(t,7)| <
r >

i
2

( OrA(t)? log(t) 1 sup, > (¢33 e (z)])
2 1og?(1)g(t)? <t3 ot T S ) . r<g(t)
CA()2log(t) ( supazy(x¥|ef(x)]) 1 t
= T t)
2 log?(t)g(t) ( t3/2 t3logh(t) ) 7 2 >T=> g(
|atrWRHSS(t7 T)| < < C/\(t)2 ( logQ(t) + 10g(t) (Sup$>t(m3/2|eg/(x)|) + 1 ))
721ogb(t) \ log?((t—r))t5/2{t—r)3/2 g(t) £3/2 3 10g(t)
CA(t)? log(t) t
+r5/2t2 log® (t)g(t) log® ((t—r))4/t—r)’ t>r>3

2 3/2| M
|00 WRHS5(t, )| < CWZ log(1) ( 1b sup,., (¢ |eg (x)|))
t2log”(t)g(t)? \t3log’(t) 13/2
N CA(t)?
£21og? (£)t5/2 1og? ({t — r))(t — r)5/2]

r<g(t)

|00 W RH S3(t,7)| <

CA(t)* log(t) (Supx>t($3/2|68’(fv)|) 1 ) t

+ —>r>qg(t
21og"(t)g(t)? 572 tlog'(t)) 2 o

|5tTTWRH53(t, 7”)| <

¢ A(t)*log(t) ( 1 Supxzt($3/2|€'6'($)|)>
r2log®(t)  g(t)? t3log”(t) t3/2
N CA(t)* log(t)
o212 1og’ (t)g(t)? log” ((t — 1)/t — 1)
CA(t)?1log?(t)

522 1og” (t)g(t) log® ((t — r)){t — r)3/2

CA(t)? log?(t) it
7522 1og®(t) log? (¢t — 1))t — 1r)5/2 2

330



Then, we use the same observation regarding d,w3 as we made for ¢,w, in this section, to get

2 [ _ M) log(t) A(t)? log(t) sup, 5 (22 |ef (z)])
st )| < Cr* (mmatr ot )0 <)
£\, = CA(H)? log?(t) CA(t)? log? () sup, 5, (z%/2[ef (=)]) t>r>g(t)
log? ()t5/2/(t—r log? ((t—r) 372 log (t) g g
(11.43)
|Orw3 (t,7)]
A(t)* log(t) A(t)? log(t) sup, s (232 |ef (z)])
¢ (t3 log" (1)g(t)? logb(t)g(t§2t3/2 ’ ) , r<yg(t)
< A(t)? log(t) supz>t(x3/2|eg’(z)|) i A(t)? log?(t) + A(1)2 log(t)
g(t) log" (1) t3/2 log”(t) log® ({t—r))t5/2(t—r)3/2 5/2 \/<th> log? ((t—71)) log? (t)g(t)
, t>r>g(t)
and
|5m«w3 (t, 7”)
A(t)? log(t) A(t)? log(t) sup, (%2 |eg ()])
¢ <t3 log" (1)g(t)? log”(t)g(t§2t3/2 . ) , r<yg(t)
< ] CA)?log(t) sup, s (2*2[ef(2)]) A(t)? log(t) ( 1 _los(t) . loa(t) )
log® (t)g(t)> 512 £5/2 log? (1) log® (¢t—r))/t—r) \ 9 * g(t)¢t=r) = (t=r)?
, t>1r>g(t)

Using an argument similar to that used to establish (11.30), etc., we get, after a lengthy com-
putation, that there exists C; > max 1, C%, such that, for all j > 4,

CIr2\(t)2 log?(t) 1 sup, > (232 e (z)])
o (t3 oI T A g (0 ) o TS
() < L i ()2 1002 1 sup, > (2% e/ (2)])
|5tw]( 7T)| 04)\(t) log (t) (t5/2\/<tr>logb(<t7“>) log?U—=2)(¢) + 3/2 logb(j_QO)(t)
, t>r>g(t)
CirA(t)? log?(¢) sup, s (%2 ef (2)))
O (t3 0w i) ) - r<g)
. CIN(t)? log?(t) 1 sup,(¢3/2|ef/ (z)])
|atij (t,r)| < + g(t) t5/2\/<t7r>logb(<tfr>) logh(i=2)(¢) tS/Ziogb(j—Qo)(t) )
CINE)2 log?(t)
T T og ey LT > ()
CIN(E)? log?(t) sup, > (z%2|ef (z)])
4 g(t)zg (t3 1Ogb(1j71)(t) + f3/2iogb<j*20>(t) ) ) r< g(t)
CIN(t)? log?(t) 1 sup, > (¢3/2|ef/ (z)|)
|Otrrw; (£, 7)] < : g(t)? £5/2 /{t—r) log? ((t—7)) log?U =2 (¢) t3/2 10gb(j_2())(t) )

CIA®)? log?(1) ( 1 1 )
gD @ tog? () s N T @) 1> 9(t)
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Finally, this gives

|Oywe(t, ) Z |Oywi(t, )

s CTQ)\(t)Qlog(t) < 1 + SuPzZt($3/2‘eg,(x)|)> r< g(t)

g9(t)? t310g"(t) t3/2
log(t SUPy > (13/2|em($)|)
OA(t)? (log(2 + )+ 10;5(3)) log(t) (tg o Ml )
<3, gt)<r<i
CA()2 log?(t) 21,2 ( 1 Supzzt(ffS/?\e’o”(z)D)
log?(£)t5/2 /{t—r) log? ((t—r) + CA(t) log™(t) t31og"(t) + t3/2
s <r<t

Using this estimate, we then get

1 su 32|l (v
D

t3log”(t) t3/2

WWW@A@M<C(

1 1 1
: + +
<10g2b—4e—1(t) 10g4b—86—1(t) long—Se—Q(t))

Let
03 = min{2b — 4e — 1,4b — 8¢ — 1,5b — 8¢ — 2, b}

Combining our previous estimates gives

¢ C'sup,...y(v%2]eg ()])
t3log"* % (t) 132 log™ (t)

If 4 = min{ds, 1 + § — 5}, then (for C independent of t, Tj),

|atGrest(tv )‘(t))| ~=

elll(t)| < C + Csupx>t( 3/2|6/”( )|)
0 3 b+54 3/2 53 )
t3log” () t3/2 1log® (t)

t =1y (11.44)

Recalling the preliminary estimate, (11.42), we see that = — 2%/2|e/’(z)| is a continuous function
on [Tp, o0), which decays at infinity. Therefore, for each ¢ > Ty, there exists y(t) = ¢ such that

sup(a*/?Jeg (2)]) = y(t)*[eg (y(1))]

r=t

But then, for any ¢; > T}, we evaluate (11.44) at the point ¢ = y(¢;), and get

¢ C'sup,zy (1, (@25 (2)])
y(t1)3/2|6”l( (tl))| _ sup(a:3/2|e'”( )|) < N Syt
x>ty y(t1)3/2 logb+54(y(t1)) 10g6 (y( 1))
C C'su . 23/2 M
< o + el )
log” ™ (1) log (t1)

where we used
t > sup(z¥?|ef! (x)]) is decreasing, and y(t,) = t,

=t
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Therefore, there exists My > 0, C' > 0, independent of Tj, such that for all t; > M,, we have

C

g (t1)] <

t3 log
Since eg € C3(|Ty, 0)), we conclude that there exists C' > 0 independent of T such that

n C
ey (H)] < T%)

t="1y
t3 log

nm

which completes the proof of the final estimate on e .

11.7.4 Estimating \"”

By inspection of (11.41), eg € C*([Ty, o0)). Our goal in this section will be to estimate ef’. From
(11.41), we get

01 < (107 Guualt X1+ ealt)) | +12 (D) |1 goetton + o))
€10 (13(Great N0) 1+ calt))] + 2 (PA00 ) [ ieren)

Then, we note

9 C
0y vsip(t, A(1))] < i log® (1)
22 (—_2@'0(75) (Ao() (1 + eo(t)) + 2X5(¢)eq (t ))) < CA(t)?
t 3 (1 + 60( )) Ao(t - g(t)2t4 IOgb(t)
'l” )
ol )2¢2

; (IOg logl ))
)

o [ [* r 4r2 )\ (t)? (7’ —3A(1)?) 6o, 0, T ro rdr
> 1 -Q1(y= SV
(], i (S () ) e i)
CA(t)?
g(t)*ttlog"(t)
Using a similar procedure used to estimate £, ;,, we get

C'log(t)

37 Buvin(t, M) <~

Finally, we have the preliminary estimate

C'log(t) ( o (<tt)>)
t2g(t)%log"(t)

|0 wep(t, A(1))] <
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In total, this gives the preliminary estimate

log(t)
Clog(t) (1 + 154)
t2g(t)? log"(1)

As before, we now start to record a better estimate on d?w; than what was previously obtained,
using a procedure which is justified by the preliminary estimate. We start with

C1 )\(t)2 L rgd
02W RH Ss(t, )| < — j u, OIS EETICHNE
(g2 +r2 e GGy LT

ey (D) <

{ >g(t)} nm t

|attTWRHSQ t /r 7"2+g t)2)7“ t4 lOg t) + |€ ( )|> 9 r < 5
A(t)? \e’”’(t A(t)2 L>1r> t
7'9/2<t )5/2 log? ((t—r))? 2

{ >qu)} 1 " t

|attrrWRHSQ t r | X r2(r2 4 g( t)2 t410g (®) + |€ ( )|) ’ rs 2
MO0 A1) fe et
r9/2<t Y712 log? ((t—1))’ 2

which gives

Cr2(t)? log(2+ﬁ) log(t) ( 1

" Supx>t(333/2‘e”’/( )D) , r < t

21,2 110g®(t) 3/2 2
|5§w2(t 7")| < (g(t) * ) t § 1
’ 1 sup, ¢ (z%2ef(z)]) 2 CA(®)?
CA(t)? <t4 ot 7 ) log*(t) + gy LT L
| Oprws (t,7)]
Cri(t)? 1o SUp,> 3/2 e””x
o (tuolg g + =) s g
CX(1)? log(t) 1 sup, > (23/2]ef’(2)))
< § QU (L et (1)]) + OAND? (s + St
, t>1r>g(t)
it € QOB (L s 0k
R g(t)? t4log”(t) t3/2 t5/21og” ({(t — 1))t — r)7/2
A(t)2r2 log(2+ﬁ)log(t) ( 1 n Squ>z(13/2|6/é”(x)D) r<t
2 < t2 log?(t)(g(t)2+72) t4log®(t) 13/2 ) =2
|at WRHSE}(t; 'I")| ~ C )\(t)g lOgQ(t) Suprt($3/2‘eg//(x)|) + )\(t)2 log2(t) t - > z
t2 log® (¢)t3/2 t9/2 1og® (t) log® ((t—r)){t—r)3/2 2
( CrA(t)2log(t) | CA(t)*rlog(t) sup,s(z*/2|ef’ (z)])
1 log” ()92 Plogaupee o "SI0
CA(t)? log(t) 1 SUP, 5 (7]t (@) ]) t
2 1ogb(t)§(t) (t4 og® (D) A , g(t) <r <3
C(t)% log(t) CO\(t)?
10 WRH S3(t,7)] <\ 5057 ogb ) logb Griya® T 50 ()
CA()? log(t) 1 sup, ¢ (z%2ef(2)])
g(t)r2 1ogP(t) t4210gb(t) 3/2
CAt) ¢
T ey g Gy 2 < <
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(@2 log(t) | MO loa(Dsup,s (e 2lef' @) ¢
t01og>"(t)g()? 12 10g"(£)g(t)?13/2 ’ S 9
M) log(t) | CMO? log(t) sup, (a9 e (@)

9/2(t—r)5/2 1o lo, r 2 log? 2¢3/2
|Ostrs W RHS3(t,7)| < C'{ ¥ gc(t()) g’ ({t— >)9() t Ci(gg%g(tt)

+t9/2<t )72 log (t) log” (¢t=r)) 159/29(1021<>gb(t)<1t—7‘>3/2 log” ((t=))

CA(t)? log?(t) t
| T oy R (gm0

and these give

2 [ _A\(®)*log(t) A(t)? log(t) sup, 5, (/2 |ef(2)])
" (t4g(t)210g2b(t) t 132 10g® (£)g(1)2 <yt
CA()? log? () sup, 5 (23/2|ef (z)]) CA()? log?(t)
log?(t)t3/2 t5/2(t—r)3/2 log®(t) log? ({t—r))?

|at2w3(t? 7ﬂ)| <

+ t>r>g(t)

Cr ( A(1)?log(t) A0 log(t) supm(xg/z'e'ow(“”)) . r<g(t)

t1g()? log™(t) t3/21og" (t)g(1)?
CA(t)? log(t) sup, s, (z%/2 el (z)]) CA(t)? log(t)
[Orerws (t,7)] < P T2 B v Py TE2E X T o sy
CA(t)?
+ t>r>g(t)

log®(t) log® ({t—r))t>/2(t—r)y>/2”
A(t)* log(t) A(t)? log(t) sup,, (%2 |ef () )
<t4g(t>21og2b(t> g ogr )0 "SI0
CA(t)2 log(t) sup, s (x3/2 |l ()]) C(t)? log(t)

O3 ()] < 1ogb(2§§g§t13/2(t)o t ERG e 1c>ng\’((§))21?gbg<(i;r>)g(t)

og og
TR e R T R g meg@ ¢ 7> 90
Then, using an induction argument similar to that used to estimate d;w,, we get that there exists
C5 > Cy + C¥ such that, for all j > 4,

+t5/2

J 02 A(t)? lOgQ(t) (t)? 10g2(t)supx> (x3/2|e””(m)‘)
> (t49(t)2logb(j_l)(t) - 3/2 1ogb(j—2)t(t)g(t)20 , TS g(t)

2
107w (6 S Y in 02 082 (0) supesa @21t @) CIN1)? log?(1)

log"7 =2 (t) 372 T R 0P D () log (=) t>r>g(t)
(£)%1og2(t) A(t)? log? (1) sup, s, (z%2 et (x)])
Car (t4 (02 log?0D(1) T B2 log 0D (15007 TSl
0w, (t,7)] < { CEAD?10g>(V) sup, (@2 ef'(2) CIA)? log(1) i
I\ 3/2g() log?l D (1) log®G =2 (4)¢5/2(¢t—r)3/2 logb ((t—r)) \ 9(t) <t 7“>
. t>r>g(t)

| Oty w;(t, 7))
j A(t)2 log?(t ()2 log? (t) sup, s, (/2] (z)])
g (t4g(t§2)10g§(j(—1))(t) + t3/2g(t)2 logbt(j—Q)(t)O ) 3 r < g(t)
< { G2 log® () sup, (22 e (1)) 4
log®U=2) (1) g(t)2t3/2
, t>r>g(t)

CIA(1)? log?(t) 1,1,
5/2(t—r)3/21ogP =2 (1) logP((t—r)) \ {E—mdg(t) ' g(®)2 T {t—r)?

_l’_

This leads to the improved estimate

Clog(t)  Clog(t)sup,s,(«*?ef’(z)])
t4 10g3b74e (t) 10g2b74e (t)t3/2
which, when combined with our previous estimates from this section, yields

C |, Cow (el (a))
A logb+§5 (t) log2b74efl(t)t3/2

|0 wep (8, A(0))] <

ey (1) <
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where
J5 = min{b, 2b — 4e — 1}

Repeating the argument used to estimate e, we conclude that there exists C' > 0, independent of

1o such that
C

ep ()] < Tg,()

t=>T,
t*log

11.7.5 Symbol-Type estimates on £

Our goal will be to establish symbol-type estimates on £ in the region r < % In order to obtain
these estimates, we first have to obtain improved estimates on d,w,, 0°w,, and dy,w, in the region
£ > 71> g(t). So, we start with the following lemma.

Lemma 11.8. We have the following symbol-type estimates on w.. For 0 < 7,k <2, j+k <2

Cr2\(t)? log(t) <
prtlatatut.r)| < | Crerme "SI0

CA(D)? log(1) (log(2 n g(t)) n ILOggb((tt))) gy <r<t

(11.45)

t2 log®(t)
Proof. First, we recall that wy (¢, r) = S:O dswsy s(t, ), where ws 4 solves
_attwls + arer,s + %67’11]2,5 - %wls =0

was(s,7) =0
Orwa s(s,7) = WRHSy(s,r)

Therefore, since ¢ < s, we expect to obtain better decay for (—&; + 0,) wo s than what we would
have for simply 0,w; ;. We compute d,w, by starting with (11.29), and differentiating under the
integral sign. The key point we will use to obtain our estimate is that, for a differentiable function
g,ands—t >0, 27 >6>0,andq,r > 0, we have

— 0 (g(\/T’Q + (s — )2+ 2rq(s — t) cos(Q)))

J(\712+ ¢2(s — )% + 2rq(s — t) cos(f

(s — t)q* 4+ rq cos(d)
\/7’2 (s —1)2¢* + 2rq(s — t) cos(6)

and

( (V72 + (s — )2 + 2rq(s — t) COS(Q)))

J(\712+ (s — )2 + 2rq(s — t) cos(f

T+ q(s —t) cos(0)
\/TQ 24+ 2rq(s —t) cos(6)

So,

(=0 + ) (917 + 25 = 07 + 2rq(s — 1) cos(6))
((s —=t)g +7) (1 + cos())
A2+ (s — )2 + 2rq(s — t) cos(0)

2 rq(s —t) cos - o tltrond)
JVr2+ ¢ 2+ 2rq(s —t)cos(f)) (¢ — 1) A2+ (s — 1)2¢2 + 2rq(s — t) cos(0)

= g'(\/r2 + ¢?(s — )2 + 2rq(s — t) cos(0))
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For ease of notation, and later use, we introduce the following vectors in R:
r=re;, y=q(s—t)(cos(h),sin(h))
So, the above can be written as

(=0 +8) (gl + 91)) = (¢ (2 +91) - 2 + ) +(§§<§ 2 i)ji);:q?scfst()ecis(ﬁ)

Y- (r+y)
|z + y|

+9'(lz+yl) (¢ —1)

((s—=t)g+7) (1 + cos(h))
r—q(s —1))%+ 2rq(s —t)(1 + cos(f))
y-(z+y)

|z + y]

=@ﬂx+m%m+yD(

+4(lz+yl) (g —1)
(11.46)

We will apply this observation to the integrand of the representation formula for wy. The third line
of (11.46) has a gain of decay, as can be seen below. We note, for s — ¢, ¢, > 0, and 0 < 6 < 2,
that

Cr?, q(s—t) <%
(r—q(s —t))* + 2rq(s — t)(1 4+ cos(f)) > { Crq(s —t)(1 +cos(9)), % <gq(s—t)<2r
Cq*(s —t)?, 2r<gq(s—t)

Therefore,
((s —t)g +r) (1 + cos(h)) B C
(r—q(s —1))2 + 2rq(s — t)(1 + cos(d)) ~ max{r,q(s —t)}

Note that the factor 1 + cos(f) in the numerator of the above expression is crucial in obtaining this
estimate. On the other hand, the fourth line of (11.46) has the factor ¢ — 1. The integrand of the

representation formula for w- contains a factor of 11 Therefore, the factor ¢ — 1 cancels the

—q
singularity of the integrand of the representation formula for ws, and we can obtain a gain of decay
for this term, by appropriately integrating by parts in ¢, as will be seen below. The decomposition
of (11.46), into one term which gains decay in 7 + ¢(s — t), and another, which vanishes at ¢ = 1,

would not be possible if we only applied, for example, 0, to ws.

5"
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Letting p = ¢(s — t), we now have |z + y|

—(—at+a)

=)

1 e o]
o

= 4/12 + p? + 2rpcos(f), like before, and we get

2(t,7)
P 2
Sg s
f (s =V/s =07 = p7 e 2|p :1?)(9)

(1_

dfdpd
r2 + p% 4 2rp cos(é))) pas

) =

2m 2% sin(0)
0oWRH S - 1—
[T los ool (1- 2520 0
1
(D eos(O) Y
(r2 + p2 4 2rpcos(0))
1 o prs—t p 27 4)02 sin2(9)
- — WRHS dfdpd
2 ), .,[) (s —t)2 — p? 2(s, e + ) (s —t)(r? + p? + 2rpcos(0)) pas
1 0 prs—t p 2w 2p2 Sin2(9)
— H
Yol b Yozl VRIS G e ooy
: 2(7" + p)(1 + cos(#))dOdpds
1 [ Vs—t—p
- — ( i J WRHSQ 8,4/ + p2 + 2rpcos(0))
27T t JO S — t +
2 2 2
1 p~sin’(6) dfdpds
r2 + p? 4 2rpcos(6)
| p
— 5 WRHSQ( |z +yl)
T Jo A(s=1)?=p?
—4psin®(0) p
. — 1) dfdpds
(r2 + p? + 2rpcos(f)) \ s —t
We split the s integration into two regions one with s — ¢ < g, and another, with s — ¢- In the

region with s —

estimating ¢

t<z,

we have p < s —1¢ < ¢, and can proceed roughly as we did when prev10usly
wo. On the other hand in the reglon s—1 = g, we use our previous observations, and
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integrate by parts in the fifth line of the above expression to get

| (=0 + 0,) wa(t,r) |W RH S5 (s, |x + y|)|dOdpds

S
+C£8L T

2 WRHS
J (|52WRH52(5, w4yl + ) |;(+8’y||$+y|)|)dedpds
0
+C f J - W RHS, (s, |z + y])| - | + y
wrdo A/s—02—p2 )y (r+p)
4 |WRH(ST2(+S’/)|;” ha y|)|) dbdpds

0 t r2m 1
—i—C’J f J ———|WRHSs(s, |z + y|)|d0dpds
t+ o (s—1)

Finally, the third and fourth lines of the above expression shows the gain we obtain when applying
—0; + 0, to wy. Using a procedure similar to that used to estimate w,, we get

OA(H)* log(2+ 7 ) log(t) 4 >r > g(t)
|a 0y (t ,,,.) | < 2 logb(t)\/r2+g(t)2 ’ 2 (1 1.47)
r ) CA(t)? log?(2) t>r>1
t5/2 [t—r)log" ((t—1)) ?

Using our previously recorded estimate on d,ws in the region r < ¢(t), as well as our improved
estimate, (11.47) fort > r > g(t), we get

CrA(t )2 log(t) log(2+ (t)) ;

|6 WRHSS(‘[; r)| + |WRHSS(t7 r)| < t4 long(t)(r2+g(t)g) 9 7“ < 5
r 9 r ~ C)\(t)Q logz(t) t e i
t9/2<t_'r'> 10gb(t) 10gb((t—r>) ; 3

We then use the same procedure as above to estimate (—d; + 0,) ws. Combining this with the final
estimate on 0,ws, namely (11.43), we get

CA(t)* log? (1) t
|Opws(t,7)] < - Blog™(1) 29(75)<7"<§
rW3\0, x CA(t)? log”(t) % ey

£5/2 /{t—r) log?(t) log® ((t—r)’

With the same procedure used to estimate 0,ws, and an induction argument similar to those previ-
ously used, we get: there exists Cs > C; + C% such that, for all j > 4, we have
C’g A(t)? log?(t) t
3 logb(j—l)(t) ’ g(t) <r< 5
|5rwj (t, 7")| < CIN(#)? log?(t)
£5/2 [{t—r)10g"T =) () log? (¢t—1)’

t
§<T‘<t
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Next, we will estimate J;,w;, for j

Gtwg (t, 7”)

> 2. For this, we start with the formula

_ 2
—f f ( Z)Q VW RH Sy(s,/72 + p? + 2rpcos())
T™Jt Jo A/(S— — p
2 0
(1- p* sin”(0) dfdpds
r2 + p? 4+ 2rpcos(6)
which was used when obtaining the final estimate on \”, and which follows from the fact that J;ws

solves the same equation as wy does, also with 0 Cauchy data at infinity, except with J;W RH S, on

the right-hand side. Then, we estimate (—J; + 0,) d;wo with the same argument used to estimate
(=0 + 0,) wo. Then, we repeat this argument for w;, for j > 3, and get

CA(t)? log(t) log(2+ 5 777) ,
t)<r<s3
|atrw2 (t, T)| < \/7"2+9(t)2t3 logh(t) ’ g( ) r 2

CX(t)? log?(t) t
PG 2 <7 <t

CA(1)1og? (1) t
|Ops(t, )] < 4 Flog @ gty <r<?i
trW3 L, T)| < C)\(t)2 10g2(t) . _,
BRG Ty R logh (1) logh((t—r) 2 S

There exists C7 > 3 (CY + Cy + C5 + Cp) such that for j

> 4, we have
CIA(®)? log?(t) ¢
t4 10gb(j71)(t) 9 g(t) <r< 5

CIA(H)2 log?(t) ¢
t5/2{t—13/2 1og?T =2) (1) log® ((t—r)) 2 <r<t

|Gy (t,7)] <

Finally, we read off estimates on r?0?w; by inspection of the equation it solves, and our previous
estimates. This gives

CA(t)?log(2 + (t))log(t)

r20%wq(t, r)| < , ty<r
R ] o (0

N | o+

CA(t)?1og?(t) t
272 < — 7 = 7 < < —
|r20Zws(t, )| < m log%(t) , gty <r< 5

and, for 7 > 4,

CIN(t)? log?(t) t
242 7
ozw;(t,r)| < : , H<r<-
P3| < S gy 90 < <3
Combining all of our previous estimates, we get (11.45) L
Then, we obtain, for 0 < j,k < 2,and j + k < 2
y 2)\(t)2
k Ak 15 A
Ot Ol Fy(t, r Cly,
| r t 4( )| {r<g t)}tgl 0g ( )(/\(t)Q 4 7’2)2
r2\(t)? lo
+C :H'{Tgé})\(t) t2g($5§)2 loggb((tt))’ g( )
A(t)2 1o r lo.
OO 77 | S5 (o2 )+ 335) . 900 < <
(11.48)
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12 Solving the final equation (Yang-Mills)

Substituting u(t,7) = Q 1 (1) + v.(t,7) + we(t,r) + v(t,r) into (8.1), we get

At)

A(t)

1 2
~0nv+ 0o+~ + (1 . SQL(T)Q) v=Fy(t,r) + Fy(t,r) + FBy(t.r) (121

where F; and F5 were defined in (11.33) and (11.34), and

. 20(t, )P . 6 (Qﬁ(r) + vo(t, 1) + welt, r)) oft, )’
6 ! > 2 (12.2)
+ S5 (st + @, 0+ wien)) =@ (07

We will (formally) derive the equation for the distorted Fourier transform (as defined in [15]) of
an appropriate re-scaling of v. We will call this function y. Then, we will show that the equation
for y has a (weak) solution with enough regularity to rigorously justify the inverse of each step we
perform to derive its equation, thereby obtaining a (weak) solution to the original equation, (12.1).
We start by defining w by

WO
A(t) r
and evaluate (12.1) at the point (¢, RA(t)). Then, we get

RN (t) N(t) (N 1 3
— Opw + Wamw — 0 ow— R (W) <8RRw — —dgw + —w)

— VR (Fy(t, RA(t)) + F5(t, RA(t)) + F3(t, RA(1)))

v(t,r) = w(t,

We will now use the distorted Fourier transform, described in [15]. Two important notational
differences are that we denote by ¢, what is denoted by ¢, in that paper, and we use F to denote
the distorted Fourier transform, rather than~. So, we have

5/2

= Vroo(r)

w0 = e
We follow the notation of [15], which regards the distorted Fourier transform of f € L?((0, o)) as
a two-component vector L]?_)], where a = (f, gb~0> r2(ar)- We will use the transference operator,
IC, of [15], and recall its definition as

F(royu) = —2E0:F (u) + KC(F(u))
where —2£0, acts only on the second component of F(u). Then, for y defined by

e = |, 0|

) )\(t)Q
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we evaluate (12.3) at the point (¢, wA(t)?) to get

[—@t_y?tgowyl] = B+ F (V- (Fs + Fi+ Fy) (A1) (wA(1)?) (12.4)

e (S G) L)L) (G Gy

() ([ ) -2 (20 (10 s
2 t

~(G) (e () o+ e (i) W<t)2)>

As in the definition of the transference operator, in the expression for F3, the operator {0, ap-
Yo(t
n (ta ,\(t 2

pearing in the term involving [/, 0| (l )]) only acts on the second component of

t t
[y1 (zo%)] Also, the symbols (wA(t)?) appearing after, for instance K ([yl (zo%)b e
Yo (t)

: )]> is evaluated at the point wA(t)?. (Recall that the

that the second component of K ([
(s g

Yo @

first component of /C
P ( lyl (t; NOL

)]) is a real number, rather than a function of frequency).

12.1 The Iteration Space

We will now describe the space in which we plan to solve (12.4). We let (Z, || - ||z) denote the
Yo(t)

normed vector space defined as follows. Z is the set of elements ot w) where yg : [T, 0) —
1\

R, and y; is an (equivalence class) of measureable functions, y; : [T, ) x (0,0) — R such that
yo(t) € Cy ([T, 0))

v (t, w)M<wA(t)2>3/ v p(wA(t)?) € CY([To, ), L*(dw))

N0
é‘tyl(t,w)tl/\%@u)\ 0/ pWA(E)2) € CO[Tp, o0), L (dw))

and || [zo] |7 < o where
1

At)? At)?

t*1og" (Do ()] | *10g (AW (2, w)(wA(?)” >||L2<pw<t>2>dw>)
A(t)? A(t)?

t=Ty

1] - s (R OO A
! (12.5)
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12.2 F; estimates

We will now estimate F5, for all [ZO] € B1(0) < Z. We use Proposition 5.2 of [15], which states
1
that IC and [/C, £0¢| are bounded on L%a, for all o € R, which, as defined in [15], has norm

0

110 = FOF + [ HOF©0()dt

0

Then, we proceed exactly as in [26], to get

C\(z)?

o)l < —————
Fol)] 24 log"™(x)

C\(z)?
24 log"™(x)
Az)?

24 log" ()

AM@) | P21 (2, W) L2 (pwr@)?)dw) <

Az) w1 (@, ) || 2 (por(e)?)dw) <

where we define I ; by
_ | F20
he i)

12.3 Fj estimates

The main result of this section is
Proposition 12.1. We have the following estimates
|1F5(t, RA())| L2(rar
< 377 (W + MOt ) ADD Y aganirnas + lt)
A s (8 ) A g anrany ) (12.6)

+C (lyo ()] + AD |y (8, WA 2o ore)a)
20eorr (£, RA()) Q1(R) + va,, (t, RA())
gl R2A(t)?

||z
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and

L L(F( RA( >>>||Lz (e
_ o {00 + MO XA erran)

A(t)?
C (Ino®) + 0Pl (1, XA DY oryas )
A(t)?
+ C (lyo(D)] + A |y (£, ) @A | 2(peney?)a))
. (HQUCOW‘( (t))Ql( ) corr(t R/\( ))

R2\(t)2 Iz (12.7)
+ sup (|aR (2vcorr (2, R/\(t)i\c(gl) gf;)Q 2 (t, RA(t |)
+ sup (|6R QWeorr (£, RA(t ;@2;((5) 2 (t, RA(t |)
s <|6R 2eorr (t, RA(L )fgl)(f}z) 2t RA(t |>
s (| 2 (20corr (t, RA(t )cizt()zz%) 2 (t,RA(t |))

In addition,

(| | 2Vcorr (ta R/\(t))Ql (R) corr (t R)‘( ))

R2A()? ez
|6R (QUCOTT (t’ RA(t))Ql (R) corr t R)\ |
ok ( NOPE )
+ sup ( |a}2% (QUCOTT (ta R/\(t);%cgi\((g) corr t R)‘ |)
=1 12.8
s (122t XU + X (=9
R£ A(t)2R
|612% (QUCOTT (t7 R)\(t))Ql (R) corr t R)\ |
T ( NOE ))
C

<
t2log”(t)

Proof. Like in [26], it is convenient for us to introduce the operator L defined by

L = -ro e () 2

1+ 72 T

which has the formal adjoint on L?(rdr) given by




As noted in [28], L satisfies

1 2
L*L(u)(r) = —0pu — ;@u 3 (1-3Q:1(r)*)u

We start with a lemma similar to Lemma 5.1 of [26].

Lemma 12.1. There exists C > 0 such that, for all [y_y(og)] with 1 (E)XEY*? € L2((0, ), p(€)dE),
1
if v is given by

w0 =77 ([B]) 0= ||¢o||L2<rdT <[ A

then, 0, and U admit continuous extensions to [0, o) (which we also denote by 0,V and v):

00,0 € C°([0,0))

©v(0) = 0,v(0) = lim o(r) = lim 0,v(r) =0

favs Fs

1]l c2rary < C ([50] + [[71()]2ote1ae) (12.9)

| LY]| L2 rar) = = |V&(E) Ol z2(p(e)ae) (12.10)

||L* LU||L2(rdr) = ||€v1(€ )||L2(p(£)d§) (12.11)

AN < o (5] + IR riome) . <1 (12.12
(log (r)>

|Lo(r)| < Cra/Aog(rDI[THENE  l2(peraey, <1 (12.13)

|L*Lv<r>| C/Qog (TN |12(piaey, 0 <7 <1 (12.14)

19]1 < C[oll 4 (12.15)

1ol < C ([IL@)|2(rary + 1101 L2(rary) (12.16)

L8]l + 127l 5y < CIIL* LT | 2(rar (1217)

Proof. The proof of this lemma is very similar to that of Lemma 5.1 of [26], but, we will include
a proof here for completeness. To establish (12.12), it suffices to estimate the following integral,
using the estimates on ¢(r, £), a, and p from section 4 of [15]. For r < 1,

p(§)dE
|J 5/2 /(log(r)) )>|

<W f TOKOY B YLOX | ro Tl - a(©)lp(€)de
4/ 1oglTr 0

€y o /42 [log(r))
4 1/2
— O imexe” = p(e)d C
< <log(7")>||y1(€)<€>/ ||Lz(p(£)d£) (L 6 ) + m||yl(5)<f>/ ||L2(p(£)d§)
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The proofs of (12.13) and (12.14) are similar. The only new point to note is that L(¢g) = 0,
which explains why there is no 7o term on the right-hand sides of these inequalities. Also, we use
the fact that the functions ¢; (which appear in a representation formula of ¢(r, &)) in [15] satisfy
symbol-type estimates. This is not directly stated in Proposition 4.5 of [15]. However, this fact can

be proven in a straightforward manner by noting that
~ o~ ~ u? ~ —u3(2 + u)
¢](U) u f](u)v fO(u) (1 —|—U)27 fl(u) 6(1 +U)2

~ ! ~
and then using an argument by induction to estimate f; (u), given the representation formula of f;

in terms of J?J\:l from [15]. The lemma statement regarding continuity of ¥ and 0,0 is proven with
the Dominated convergence theorem, again using the estimates on ¢(r, £) from section 4 of [15],
and with a similar argument as in [26]. The Dominated convergence theorem also shows that v and
0,v extend continuously to [0, o) with 7(0) = 0,7(0) = lim, . v(r) = lim, ,, 6,0(r) = 0. The
inequality (12.9) follows directly from the L? isometry property of F. To prove (12.13), we first
recall the conjugation of L* L used in [15], namely £, which satisfies

£ =2z () o)

and for which ¢(r, ) are eigenfunctions. Using the Dominated convergence theorem, we have, for
r >0,

LV = [ Lot pmmEnes - [ st omenoi -7 (| | ) ©

where we again emphasize that we regard the distorted Fourier transform as a two-component
vector, following [15]. We can now prove (12.11) using the L? isometry property of F.

HETL( L2 (o)) = [IL@C)V) ()| L2@ary = 1L LD)||22(rar)

Continuing the proof of (12.10), we have

<& @) 07w = F (| ] ) 7 ([] ) o9

Y1
= (), T 2 (pierae) = IV ET 2 (pierae)

(12.18)

On the other hand,

(L @OV (7,0 = j " L L@ (r)e(r)rdr

Recalling the assumptions of the lemma, and (12.9) and (12.11), which we have proven at this
point, we see that
L*L(@)(r)v(r)r € L'((0,0), dr)

Therefore, by the Dominated convergence theorem,

J ) L Lo(r)rdr = lim w@(r)L*LU(r)wgl(%)rdr

0 M —0 0
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where

xé%
0, z=1

0<v(r) <1, < eC®R), Yi(z) <0,9<(x) = {

Then, we inspect integral which arises from the term 0, in the expression for L*, and integrate by
parts once to get, for instance, for all M > 1,

| e tut o (Gprar = = [ 1w, (sya (o) d

0

- [ o0 (ew(r) Y sy + [ AEO ),

0
[l era,,
0 1+r2 r M

For the integral below, we integrate by parts again, to get

* 0, (v(r))?) Y1 (57) *o(r)? (3 vi(ep) C e
[ el = = | T (R + R v <

In total, we have

JOO@(T)L*L@(T)TCZTZ lim OO@(T)L*LU( )w<1( )rdr— lim OO( Lo(r))? w<1( )rdr

0 M—>w 0 M—ow 0

By the Monotone convergence theorem (recall that ¢/, (z) < 0) we get

0

L " (L)) 2rdr — f (r) L* Lo(r)rdr

0

Combining this with the observation (12.18), we get

NG . f(Lw»%dr

which is (12.10). The inequality (12.16) is proven similarly to the analogous estimate in [26],
except that we will not need to use an approximation argument. From the lemma hypotheses, and
what we have established up to now, v € C*([0,00)) n L?((0,00), rdr), and Lv € L*((0, c0), rdr)
with 7(0) = lim, ,,, o(r) = 0. So,

I9(r) = ~T(r) + 20(r) + 7(0) - ( - >

r 1+ r2

which shows that

—4r
14 r?

—v'(r) + %U(r) = Lo(r) —v(r) - ( ) € L*((0,0), rdr) (12.19)
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So, for any M > 4,

J, e Tropprar = [ (e o) i =2 [} oy

M M M
By the Dominated convergence theorem, and the observation (12.19), we have

M

Jim [ () + T rdr = fo

el

(—v'(r) + %E(r))zrdr

We then let M — oo in (12.20) and use the Monotone convergence theorem, to get

2
0 r 0

(12.20)

[ (@00 + 062 ) rar = [ w01+ Zut0)rar < € (1200 + 01 )

where the last inequality follows from (12.19). This in particular, proves that v € H L. with the
estimate (12.16). The next inequality to prove, (12.15), is proven in the same way as in [26]. Since
v e CY([0,0)) n H}, withw(0) = 0, we use the Fundamental theorem of calculus for 72, to get

v

r _ v _ _
)0 51y/rdr < O usean |6l < ClIEI,
v ; :

o(r)? < CLT

The final estimate to prove is (12.17). If we have g € C1(]0,00)) n L?((0,00),rdr), and L*g €

L?((0,0), rdr) with g(0) = lim, 4 g(r) = 0, then, we recall the definition of L*:

L*(f)(r) = f'(r) + V(r)f(r), whereV(r)= M + 1

r r

For M > 4,

1

fjw (L*g)*rdr = JM(QI(T‘))%‘CZT + JM(V(T))QQ(T)zrdT +2 fl V(T)%(Q(T’)Q)—dr

M M M M

The last term in the expression above is

Letting M — oo, we get

M 2
191y > € i | <(gf(r))2+g<r> ) "
M—o0 ﬁ

712
By the Monotone convergence theorem, we then get that g € H 1 and

9l iz < ClIL* gl L2 rary

348



Then, we can apply our previous estimate to get

gll- < i < CIIL*gl| L2 (rary (12.21)

Note that Lv does not quite satisfy all of the stated assumptions on g used in the preceding argu-
ment. Therefore, we define, for M > 4,

_ o(r,
Pulr) = ||¢o||L2<Tdr> )

As in the proof of Lemma 5.1 in [26], we verify, via the Dominated convergence theorem, that
Luar € CH(J0,0)), and that Lvy; € L2((0,00), rdr), L* Lvy; € L*((0,00), rdr) with L(v37)(0) =
lim, o, L(U37)(r) = 0 Therefore, we have (12.21) for ¢ = Luy;. An approximation argument then
establishes (12.17). O

TP xr ()

We recall the definition of Fj.

Fs(t,r) = 2U(;’2r)3 + ’ (Qﬁ(r) . U:Sﬂ”) . wC(t’T)) v(t,r)?

where v is given in terms of our previously defined function y, by

v(t,r) = yo(t) p(§)dE

¢0(A(t) © 5 r )\(t)
M +j yl(ta )\(t)g)gb(m?g) T

0

Now, we will record estimates on quantities associated to Fj, for any BO] satisfying
1

y1(t, w){wA(t)??? € L*(p(wA(t)?)dw). For ease of notation, we let
Ucorr(t7 7") = Uc(t, T) + wc(t7 T)

Using the identical procedure used in [26], and the above lemma, we get (12.6) and (12.7). The
estimate (12.8) follows directly from our estimates on v, and w, O

12.4 F, Estimates

Here, we will estimate certain oscillatory integrals applied to F}, for later use. First, we will need
an estimate related to the function p appearing in the spectral measure associated to the distorted
Fourier transform of [15]. Using the same procedure as we used in [26], and the estimates on p
following from Lemma 4.7 of [15], we get

pENER) _ A

pAGy = R e
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For ease of notation, we define F (v/-F} (z, -\(2))), (wA(z)?) by

oy [FE o, A, (A@))
PR o) aal) = 2O N )

Later on, we will use this notation for F3 and Fjy as well. Because Fy(z, RA\(z)) is orthogonal to
¢o(R) in L*(RAR), we have

) 0
F(V-Fa(w, - Ax))) (wA(x)?) = [_F(\[F4(x, -)\(x)))1(W)\($)2)]

Now, we will prove the following lemma

Lemma 12.2. We have the following estimates

CA(t)?
t2log”(t)

IA(E) (wA(£)2)*? fo Sm((t\_/g W (o, A (A | L2ty S

IAQ) fo Sm((t:/g W)y (V-Fa(, - M2))1 (wA(2)*) || L2 gpencey)aw)
gm(@?( 1 . 1 L 1>

- +
t2 10g2b72671(t) 10g3b72726 (t) logQE (t) logb(t)

o | " cos((t = 2)V) F(V-Fa(, M) A @)dallirpneyio
- A ( 1 L 1 . 1 )

+
t?’ 10gb(t) IOgQE (t) log2b72571(t) log3b72725 (t)

0

IA® (@A0?) | cos((t ~ 2] F (V-Fila, A)iA@ e prnnss

t

- OM? ( 1 1 1 1 )

+ + +
t3 10g26—2e—1(t) 1Og3b—2e—2 (t) logQE (t) logb (t)

Proof. We start by estimating F (y/-Fy(z, -A(x)))1 (wA(x)?), and use the same procedure we used
in [26]. For completeness, we will write out in detail the steps where we use the orthogonality of
Fy(z, R\(z)) to ¢o(R) in L*(RdR). We have

F(V-Fylz, M2))1(wA(z)?) = LOO VREy(x, R\(z)) (R, wA(z)?)dR

o) wA(z)?)du

1 (e 0]
= N2 L VuFy(z, u)d(

Using the descriptions of ¢(r, &) given in [15], we divide into two regions: r?¢ < 4 and r2¢ > 4,
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and get

A(z)32 ), \/EFZL(LU)QS(W,WA(:E)Q)du
1 & N
- A(x)3/2L \/aF4(:(:,u) O(W)du
1 % - NJ’(AEL;)z) (12.23)
+)‘( 2 Jo \/aFZL(x’U)Z u3/2 @) (uPw) du
+ N )3/2Re< 3 VuFy(z, u)a(wA(x) )w+()\(x) (x)%)du)

We use the orthogonality of Fy(x, RA(z)) to ¢o(R) in L?*( RdR), as part of estimating

1 % ~
R, VR A

We split into 4 cases, depending on the range of w.

1 N u
Ydu = Wfo Fy(z, u)upo(——)du

A(x)

Case 1: w < 1—2. In this case, we use the orthogonality to get

1 U

)du = YT J\/Z; F4(£B,U)U¢Q(m)du =0

f“a vyt (57 ( ;

where we used the support conditions on x> (), and the fact that ﬁ > 1600.

Case 2: % <w < ﬁ. In this case, we again use the orthogonality to get

f“F s sl =1 = 5 [ P )l
4\, u)uPg U — 4T, u)pg udu
) AP ) s A@)
4] 2 1
_ CA@) og(:):)w2 (1og(2+ )+ Ogb(ﬂf))
22log’(z) Vwg(z)”  log’(z)
Case 3: )2 <w< /\( 2 Using the orthogonality, we get
N 1 @ u
Fy( du| = — F, d
o, Feutsga = 1= o [ A g
log(z
_ O log(@) (14 53)  cungay
2 log"(z)g(x)! 22 log’(x)
Case 4: A(m) < w. Here, we do not need to use the orthogonality, and simply directly estimate
2
1 Ve u C
— Fy(x,u)upy(——)du| <
|)\(.7;)2 L 1(z,0) %()\(x)) | w3\ ()03 log’(z)
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To estimate the other two integrals of (12.23), we use the same procedure that we used in [26]. In
total, we get

oy F T A ()
B CA(z)? C’u;\(x)z C(z)? C(z)?

x 72 logb (ZE) 2 10g25 (:E) 2 10g2b—2€—1 (l’) 72 IOng—2—2e (.T)

|| 22(p(A(@)2)dw)
(12.24)

which will be used later on. The first integral to estimate is

A0 (A0 [T 2 o Ao

= MO FFl A AV

. )\(t)4 J:’O COS((t\;;)\/a)wax (f(\/F4((E, )\(I)))l(wA(I)2)) dr

Using (12.10), we have

MO F W Fult, MO (A )WVl 2permman) = MO NLELE - AD))||c2(rar)
Then, we use the symbol-type estimates on £y, namely (11.48), to get

C

L(Fy(t, -\t S —— <
|| ( 4( ()))||L2(RdR) 1o b(t)
which gives

CA(t)?

[IXE) F (V- Falt, M) (WA () )Vl L2punt)?yae) < 2log (1)

Next, we note that

Op (F(V-Fal, M) (wA(2)?)) = F(V-0u (Fa(z, -A(2))))1(wA(x)?)
+ F(V-Fylm, - M2)))) (wA(2)?)2X(2) N (2)w

Then, we recall the transference identity of [15], which says

F(Ror)(©) = | _yggur(uy, | + EE@IE

where we write

This gives
|2\ (2) N (2)w F (v Fi(x, ')\(95)))/1(@)\(95)2)\@||%2(p(m(x)2)dw)

< S (IF oV RE G RADOIR, y + I File N, )
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Then, we estimate

C

22 log’ ()

|<R5R (\/EF4(ZL’, R)\([L‘))) 7$0>L2(dR)| <

Next, we again use (12.10) to get

| F(ROR(V REy(w, RA(2))1 (€)X [[72e))ae
< O||L(VROr(VRFy(w, RN@)))12(rany + ClIROR(VRFy(x, RA@))||Z2(ar)

Using (11.48), we get

IV RoRVRE G R g < s
RO R o R iy < o575

which gives

C

z*log® (z)

[[F (ROR(V REx(w, RA(2))1(EXE? [ L2 e1e) <

Similarly

waﬁmnxmm@é<oﬁfmm@Ju@mmR+cﬂﬂma@ﬁmwnme

<« ©
= atlog®(z)

This finally gives

CN(z)?
24 \(2)6 log® (x)

|2\ (@)X (2)wF (v Fu(z, 'A(x)))ll(WA(x)2)\/a||%2(p(w)\(ac)2)dw) <
We again use (12.10), and (11.48) to get

IVWF (V80 (Fa(w, M) (@A) 2 (pon@)e) <

Az)? 120 (Eu(z, RA@)|| 22 (rar)

So, using Minkowski’s inequality and (12.22), we get

IA()* L ) cos((t — 2)v/w)vwd (F(V-Falz, MNx) 1 (@A(@)?)) da|| 2 (pgorcey?)aw)

AN ! 20
< OM?) L <1 - /\(.’B)2> A(w)?x3 logb(x)dx S log”(t)
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where we obtained the last inequality using the same procedure that we used to treat the integral
(11.39). In total, we then obtain

a0 (o) [ S £ A A g < 3o
The next integral to estimate is
a0 [N F o A e
Ay PR AW (1225
a0 [ I (i A A @) de

We recall

Op (F(V-Falw, M) (wA(2)?)) = F(V-0u (Fa(z, -A(2))))1(wA(x)?)
+ F(V-Fy(z, - A2) (wA(@)?)2A(2) N (2)w

This time, however, since the integrand of the third line of (12.25) has a factor of %, we will directly
estimate F (/- Fy(z, -A(x)))} (), rather than using an argument based on the transference identity.
We have

F(V-Fy(z, M2)) (wA(@)?) =TIV +V

where

IV = Lﬁ a2¢(ﬁ,m(x)2)%a(x,u)du

= ) . wA(z)? ﬂ 2. wdu
V_LQJ 62¢()\(x)’ Al )),\(x)3/2F4( ,u)d

then, we get

( Cg(z)? Clog®(x) 16
A(z)222 log?(x) 22 log®(x)’ x?

Cy(z)? C'log() log(2+ﬁ) ( 2 10g(m)> 16 4
|IV| < { Mz)?a? log® (x) + 22 log®(z) : 10g(2 + \/59(90)) + log"(z) ) 7 WS :
& 4 4
wA(z)2x2logh(z)?  g(x)? <ws A(z)?
c 4 <w
\ 22 log?(x)M\(z)8wi’ A (z)?

.
0, w<£

ClawA(2)?)| log(x) (log(2+ 725+ 1242 )
\/i? log” () ’
Cla(wA(z)?)|y/g(x) 4 4
w34\ ()22 logh ()’ g(x)? WS
Cla(wA(@)?)|/9(z) 4

\ /\(J3)2w3/4a:2 logb(x) ) Y

16 4
vl < w < _g(:p)2

Vi

N




In order to estimate

F(V-0a(Faz, -Ax))) 1 (wA(x)?)

w

we note that 0, (Fy(x, RA(z))) is still orthogonal to ¢y(R) in L*(RdR), and we recall our symbol
type estimates on F);, namely (11.48). These two observations, along with an inspection of the
procedure used to obtain (12.24) give

F(V-0u(Fa(, -Ax))) )1 (wA(2)?)

w

|| 22 (o ()2 dw)

|| 2(p(r(@)?)dw)

<C)\(a:)( 1 . 1 P 1)
- 73 10g2b—26—1(x) 10g3b—2—25(x) 10g2e<$) 10gb(x)

Therefore,

A f "= V), (R A @A @) delianm
OA(t)? ( 1 1 1 | )
< + t

+
t2 long—2e—1(t) 10g3b—2—26(t) 10g2e (t) logb(t)

which, when combined with (12.24), gives

IIA(t) fo Sin(t — 2)Ve) (VP - AM@))1 (wA(2)?) || 22 gpeniey)aw)

o
_ O ( 1 N S )
=~ 2 logaerfl(t) 10g3b7272e(t) 1Og26(t) lOgb(t)

The next integral to estimate is

A(t) fo cos((t — 2)Vw) F(V-Fi(z, @)1 (wA(2)*)dz

- ()T A A0

- )\(t) J;oo COS((t ;33)\/5) 533 (]:(\/F4(I, -)\(x)))l(w)\(x)2)) dr

First, we will estimate F (/-Fy(z, -A(x))){(wA(z)?), which is one of the terms arising in the ex-
pression 02 (F(v/-Fi(z, -A(z)))1(wA(x)?)). We have

F(WFy(x, Mx)(wA(x)?) = VI + VII
where L
V= J“W) 26(R, wA(2)?)VRFy(z, RM(z))dR

VII = F 02¢(R, wA\(z)*)V RF,(z, R\(x))dR
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We estimate V[ directly, using (11.48), and estimates on ¢(r, &) from [15]. This leads to

( Clog?(x) 16
i lofgjf;((gfcﬁ))é(%)27 1(:(}}—?(521 ( )1 (2 4+ 2 ) 16 4
wlVI|<{® 1°gb<cﬂj>k(w>4 g<w1>2 OB Zg wg<a:>4> , Bew<ty
Mz)2a2 log®(z) 1+ w)\(x)Q) e O
L )\(x)mwzgz logb(x)y )\(i)g < W

4

On the other hand, to estimate V' /I, we will need to integrate by parts in R, when w > OLL

exactly like we needed to do in an analogous integral in [26]. In particular, we have

1
wVII| =0, w< —g
z
C AMz)?) |1 2 | 16 4
w|VII| < (WA () )|bog(x) (log(Q + )+ ogb(x) ) ;5 W<
Az)22?log’(z) Vwg(z)”  log’(x) v 9(x)
A 2 3/2 4 4
avin < @@ 44
WA\ (x)*2? log’ (x) g(x) A(x)
To estimate V' /1 in the region w > ﬁ, we first use Lemma 4.7 of [15] to get, for R?¢ > 4,

#(R,€) = 2Re (a(&)v" (R, €))

and, using the properties of )" and a, we get

2p(R, ) = 2Re (%eima(m@ R)> + Err

where

R
\Err| < C|a§g§2| + O|a§/)4| ,

Then, we integrate by parts in R for the term

R* >4

N J;() Re <a(w)\2(96) )w5/4f( P eMNOVEG(Ryw (@), R)) VRFEy(x, R\(z))dR

which arises as part of w - V' 11, exactly as we did in an analogous setting in [26]. This leads to

Cy(x)®
Mz)%z4 log? (2)

|lwV ] |%2(p(w>\(a:)2)dw) <

which then leads to

1= a0 [ IV e A DA 10

CA(t)?
T Blogte (t)
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The rest of the terms arising in the expression 0% (F(y/-Fy(z, -A(x)))1(wA(x)?)) can be treated by
using the symbol-type nature of the estimates (11.48), along with the fact that 2(Fy(z, R\(z))) is
still orthogonal to ¢o(R) in L?( RdR). This observation leads to

| = At) J:O =l ;x)ﬁ) F(V-02 (Fa(z, - Mx))))1 (wA(@)?)d ]| 22 (02)a)
<C)‘(t)2( L S . = . )

t3 logb (t) 1Og26 (t) longfQEfl(t) 10g3b72725 (t)

and this finally gives

o | " cos((t = 2) V) F(V-Fal, M) A @)l |y

O 1 1 1
3 b + 2¢ + 2b—2e—1 + 3b—2—2¢
t log’(t)  log™(t) log (t) log (1)

The final integral to treat in this section is
e¢]

At) - wA(t)* - J cos((t — 2)vw) F (v Fi(z, A(@))1 (wA(z)*)dz

t

= MO0 (FFEt A (@A)
=AM cos(t = 2)V)E (FIV-Fila A A @) do

Here, most terms are treated exactly as previously. We will write out in detail how to estimate the
term \(z)*w?F (v/-Fy(z, -A(x)))] (wA(x)?), which is part of 02 (F(v/-Fy(z, -A(x)))1 (wA(x)?), and
for which we use a slightly different argument than previously. We start with

M) W F (v Fi(w, Mx)))] (wA(@)?) = (§0) © (£0¢) (F(V -Filz, - A(@)))1(6))
— &0¢ (F(VFu(z, - A\(2)))1(6))

§=wA(z)?

§=wA(z)?
Then, we use the transference identity, which leads to

M) W F(V - Fi(w, -M2)))] (wA(z)?)

=+ (F(Ron(RoR(VEE (. X)) (0 (x))

(@)
0 K(F(ROn(VEF: (&, RAN@))) (wA(2)?)
+ 27 0 |€0¢, K| F (V- Fa(z, Mz N(wA(z)?)

0 2
-m (’C <[f<RaR<mF4<x,m<x>>>>l ~ o K(F( i, -A(x))))D)) X))

(F(ROR(VRFy(w, RA@))1 (@A()?) = 71 0 K(F(V-File, A@)) (@A(2)?))

N | —

_l’_
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where Wl([zo]) = v;. Using (11.48), and the boundedness properties of IC, we get
1

C

M) w0 F(V-Fa, M) (WA ) )] 22(p(uor(e)?)dw) < o2l (2)

We use the same procedure as before to estimate the other terms arising from
0% (F(y/-Fy(z,-Mx)))1(wA(x)?). Finally, we note that
N 0(F(V-Falt, A(6)))1) (wA(t)*)]
< oW BEAONCNDD 4 o0 yalal PRt A @A)

w

and both terms on the right-hand side of the above inequality have been previously estimated. In
total, we then get

IE) (@) [ con( = eIV FVFul M) NN sencas
CA(t)? 1 1 1 1
< 3 (long_Ze_l(t) - log® 272 (t) * log®(t) * logb(t))

12.5 F; Estimates
In this section, we translate our estimates (11.35) and (11.36) using (12.9) and (12.11), which gives

CX(z)?
b

25 log” ?(z)

IF(V-Fs (@, -A@)))ol <

F(v-F5(x, - AMx wA(2)H) |12 2 CAz)*

|| (\/ 5( ) )‘( )))1( )‘( ) )||L (pwA(z)?)dw) < 5 logb_2(1'>
WAL 2] Fy(x, - AMa WAL 2 2 2 C)\(Jf)4 10g2($)
koM@ P Bl MDAl < g(z)?log"(x)a"

12.6 Setup of the iteration

Define 7" on Z by
T(|:y0:|)(t ) _ . —S;O SZO (F270+.F(\[(F3 +F4+F5) (81,'>\(81)))0) dSldS
o [V T BV (B (r,0) + F (V- (B + Fa+ B (2,M2)), (0A(@)?)) de

where we define F;; by
. F: 2,0
- 1]
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and F (v (F5 + Fy + F5) (z,-M(2))), (wA(2)?) is defined by

oy _ [F (V- (Fs + Fy 4 Fs) (2, -M2)))y (wA(2)?)
PO P ) o) ) = 2 G LR 0 )|

Now, we can proceed with estimating 7" on B;(0) < Z. If BO] € B1(0) ¢ Z, then, we combine
1

all of our previous estimates to get, for a constant C' > 0, independent of Tj:

" 1 1 1 1 )
T <C + + +
”(bl)” Q%Huw e (1) | Tog® (1) log™ T (1)

[ o=

(12.26)
n

Next, we will prove a Lipshitz estimate on 7" restricted to B1(0) < Z. For this, it will be useful to

use the notation 0 )
vy (t, RA(t)) = \/_E}- ([yl(t, A(.t)Q)D (R)

where
L]
yi(t, A(£)2)
Then, for y, z € B1(0) € Z, we have
6(@% + Ucorr)(/l}y + Uz) 2 5 N
Fy(vy) — F3(v2) = (v, — v:2) ( 2 + 7«_2(% + vyv, + v7)
+_2 ((vcorr + Qﬁ)Q - i(ﬂ)))

where, by a slight abuse of notation, we denote by F3(v,) the expression (12.2), with v = v,, and
similarly for F3(v,). This leads to

— F3(v,)) (w NI M Yo~ ~0 1 1
() = Fao) o R ey < i [~ 2l (1ot + s )

* C)‘(t>2 Yo — =0 1 1
2L () = B0t AOD i < gl |0~ 2|1 (o * o)

Since F; depends on y linearly, we get, for some C' > 0, independent of Tj

(L A A T

Combining this with (12.26), we get that there exists M > 0 such that, for all Ty, > M, T'is a strict
contraction on B (0) < Z. If Ty > M, then, by Banach’s fixed point theorem, 7" has a fixed point,

say yy = Bﬁ] € B1(0) c Z.
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13 Decomposition of the solution as in
Theorem 8.1 (Yang-Mills)

We define vy by

A0 -1 rolt) Yo r >0
vp(t,r) = ’ ([yf,l(t7W) ( (t))
0, r=0

and note that v;(¢,-) € C'*([0, 00)), by Lemma 12.1. By the derivation of (12.4), and the regularity
of elements in B1(0) ¢ Z, u(t,r) = Qﬁ(r) + ve(t, ) + we(t,r) + ve(t,7) solves (8.1). It now
remains to estimate the energy of v. — vy + w. + vy. For example, for v, we have

o0
va(t, 1) = f v 5(t,7)ds
t

where v, 5 solves
_&ttUQ,s + 67”7’1)2,5 + %67’1)2,5 - %UQ,S =0
Vo s(s,7) =0
Opva s(s,7) = RHSy(s,r)

By using
2
(6x + E) JQ(I) = Jl(I)

and the representation formula for v, ; using the Hankel transform of order 2, namely
w e —_
vpa(t,r) = J To(ré) sin((t — 5)&) RITSy(s, €)de
0

we can justify the energy estimate

2
||5tv2,s(t77ﬂ)||L2(rdr) + || (ar + ;) UQ,S(ta T)||L2(rdr) < OHRHSQ(S; T)||L2(rdr)

exactly as was done in [26] for the correction denoted by v, in that work. Then, we have

e 2 2 o) © 4,2 0
f ((&« + —) va,s(t, 7")) rdr = f (0,v9.4(t, 7)) rdr + J U;’S rdr + QJ or (v3,) dr
0 r 0 o T 0 ’

(13.1)
Even though the pointwise estimates we recorded for vy ; do not imply that vy 4(t,7) — 0, 7 —
oo, we can prove that lim, ,, v9 5(t,7) = 0 by the Dominated convergence theorem, applied to the
spherical means formula for v, ; (for instance, the analog of the formula (11.22)). Then, the last
integral in the expression above is zero, and we get

10002, (&, )| 2rary + (V2,5 (O] 72 < CIRHSo(s, )| 2rar)
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Using Minkowski’s inequality, we then get
0
1Orva (t, )| L2(rary + |[02(E)] |y < CJ |RHS>(s,7)||r2(rar)ds
t

This same procedure can be applied for v, and all w;. We recall that v, — v, = ZZO:Q v. We then
get

C
110; (ve — v1) (& )| 2ary + 1| (Ve = v1) (B)]| 2 < og? (1)
and C’)\()2
t
0oty )| p2rary + [[W0e(t)|| 11 < ——n
|[Oswe(t, )| L2grary + [we(®)]] o)t 1og" (1)

Finally, exactly as in [26], the transference identity of [15] gives

CIN®] |\ yro(t)

_ Yio(t)
+ C||F 1 .0 . ]) 2
| ([51yf1(t, A(t)2) 15 (dR)

+ S 17 (5 (e i ]))

Therefore, we get

CA(t)?
|O1vp(t, )| L2(rary < m
o () = [lop @ MO < CUIL(vp(t, RAO |22 (rary + [[vp(t, RAE) || 2(rar)

CA(t)?
= 2log (1)
Next, we use the pointwise estimates recorded in the previous sections to get

e, + i, Mo < o
For v+, we have
! CA(t)?
op(t, )|z < |Jug(t,-A(t)) Plog ()

We also need to verify that

\[Oev1 (t, )| L2grary + |01 (2, )||H1 < ©

This can be done by noting that

2
10001 [F2(rary + I (5’“ " ;> OllE2ary = 1072 ()2 easy
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which can be seen, for example using the formula
0
n(ter) = | B€) s (e
Then, we use the same observation as in (13.1), and the fact that b > %, which shows that v/l\ (&) €
L*(&d¢), to conclude
|| @1 ()| [p2rary + |01 (L, )| g < 00
Finally, we can verify that our solution has finite energy, by noting that

oo} r 2
ﬂmw@w<CH@MMN@W@+WWﬁmM+L;EQ—Qlﬁf)W

D)

“or
+J ﬁ(vc+wc+vf)2dr>
0

where we used the fact that
[|ve(t, ) + welt, ) +ve(t, )| — 0, ast— oo

Also, we have

¢
10g2b—1 (t)

which finishes the verification of the energy-related statements in theorem 8.1.

110 (ve = v1 +vp + we) |[L2rary + [Jve — v1 + vp + wel[gn <
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