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INTRODUCTION 
The ubiquity of smartphones is transforming health services and management of 

patient care to increase patient symptom tracking, accessibility to resources, and 
personalization of care [1]. Indeed, 81% of Americans own a smartphone, and ownership 
among ethnic minorities, who are disproportionally affected by HIV, is equally high [2]. 
Medical and public health practices supported by mobile devices allow medical professionals 
and caregivers to improve communication and patient symptom tracking as well as focus on 
individually tailored treatments and preventative care [3]. Mobile health technologies have 
proven efficacious in reducing disease burden among persons living with HIV (PWH), 
including strategies to improve medication adherence, increase retention in care, and 
facilitate social support systems [4-6]. Furthermore, several studies focusing on optimizing 
HIV care among populations with co-occurring HIV and substance use disorder have found 
promising success using mobile health technologies to promote adherence to antiretroviral 
(ART) medications [7-9]. 

Although mobile health interventions provide streamlined and lower cost alternatives 
to improve HIV-related health care, many published mobile phone tools, such as two-way 
text messaging or ecological momentary assessments (EMA), requires the user to actively 
engage with the device to provide input. While there are advantages of active engagement 
with an mHealth intervention, passive collection of digital data eliminates the need for active 
user engagement by collecting data continuously and objectively in the background, as a user 
goes about their daily activities [10]. For example, accelerometer along with gyroscope, GPS, 
WiFi, and smartphone microphone data have been used to detect physical activity and daily 
behaviors [10]. With the wealth of health-related data captured via passive, as well as active, 
digital health devices, researchers are able to develop and interpret a digital phenotype. 
Digital phenotyping, as defined first by Jukka-Pekka Onnela (2016), is the “moment-by-
moment quantification of the individual-level human phenotype in situ using data from 
personal digital devices” [11]. Digital phenotyping can provide a comprehensive 
understanding of the specific symptomology and experience of disease that can impact 
diagnosis, treatment, and management of disease [12]. 

Considering the potential compounding effects of HIV and aging on the brain, older 
PWH are at a high risk for HIV-Associated Neurocognitive Disorders (HAND) and may be at 
increased risk for other age-related neurodegenerative diseases including Alzheimer’s 
Disease (AD) and its precursor, amnestic mild cognitive impairment (aMCI) [13-15]. 
Identifying preclinical factors that can distinguish among those with HAND, AD, and aMCI 
is challenging due to considerable overlap in neuropsychological profiles [16]. Cognitive 
dysfunction among PWH has been associated with ART non-adherence, unemployment, 
increased dependence in activities of daily living, depressed mood, and increased risky 
behaviors [17, 18]. Considering the multisystem impact of aging, improving 
neuropsychological outcomes among aging PWH is a global mental and public health priority 
[19]. Furthermore, differentiating HAND from neurodegenerative disease pathology is 
critical to understanding the likelihood of cognitive impairment progression and for 
effectively providing targeted interventions. 

Given the increased risk of neurocognitive impairments in PWH, mobile cognitive 
testing provides easily accessible alternatives to traditional neuropsychological evaluations 
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and can potentially detect more nuanced neurocognitive changes [20]. Furthermore, 
advancements in innovative wearable devices and optimization of smart home systems allow 
for streamlined and continuous collection of clinical, physiological and ambient data relevant 
to brain health that may be suggestive of pre-clinical neurocognitive decline [21]. These 
novel methodologies may aid in the efforts to differentiate among HAND, aMCI and AD 
profiles by providing real-time and ecologically valid indications of an individual’s 
neurocognitive and everyday functioning. 

Active and passive digital health technologies can significantly improve the way 
researchers assess cognitive and everyday functioning by transitioning from traditional 
clinical assessments to digital assessments and continuously captured data from daily 
activities. Despite these benefits, there are numerous challenges and barriers to address before 
clinical implementation related to disentangling cognitive profiles among PWH, validating 
active and passive assessment tools, integrating sensor platforms, participant privacy, data 
security, interventional feasibility and ethical issues. Despite these challenges, dissemination 
of mobile cognitive testing and passive digital technologies is becoming more feasible, with 
significant efforts now focused on validating the psychometric properties of these tools (e.g., 
[22]).  

The purpose of this brief review is to (1) discuss the utility of digital health 
assessment in evaluating cognitive trajectories among PWH, (2) review research designs 
amenable to integrating digital technologies, and (3) describe examples of challenges and 
barriers that may arise when implementing digital technologies into research designs.   
 
DIGITAL HEALTH ASSESSMENT MEASURES 
Active Engagement 

Substantial evidence suggests an association between cognitive impairment and 
declines in everyday functioning among PWH; however, there are also cognitively healthy 
older adults with HIV that exhibit functional impairments on lab-based assessments and 
cognitively impaired older PWH that remain functionally unimpaired [17, 23]. These 
unexpected findings may reflect the need to investigate other real-world factors that may 
detrimentally affect functioning in aging PWH. Current research supports the feasibility of 
ecological momentary assessments (EMAs) to monitor real-world variability in mood, stress, 
social support, coping, everyday activities, substance use, and cognition among younger to 
older adults living with HIV [24-28]. For example, one study examined the validity of 
smartphone-based EMAs in relation to lab-based assessments of substance use among older 
adults with and without HIV and found that EMA-reported substance use was significantly 
correlated with lab-based assessments. This study additionally investigated real-time 
ecologically valid data to better understand predictors of health and behaviors and found 
effects of mood and pain on subsequent substance use such that greater anxious mood, 
happiness, and higher pain levels significantly affected substance use [29]. Furthermore, 
results from another study exploring substance use and pain using smartphone-based EMAs 
suggest a bidirectional association between pain and daily drinking and lower levels of daily 
worst pain with higher coping abilities [30]. Another study observed that older PWH spent 
substantial time at home, alone, and engaged in passive leisure activities (e.g., watching TV), 
and that greater time engaged in passive leisure activities correlated with worse cognitive 
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functioning [25]. This last finding is consistent with research among persons with serious 
mental illness including schizophrenia that showed less productive activity, fewer social 
interactions, greater time at home and higher engagement in passive leisure activities in this 
group [31]. Thus, smartphone-delivered EMA may be a useful and feasible method to better 
understand variability and correlates of daily functioning among PWH. 

Traditional assessment of cognition typically requires an in-person comprehensive 
neuropsychological evaluation that is time- and resource intensive, non-ecologically valid, 
and only represents a snapshot of a patient’s cognitive abilities at the time of assessment. 
Traditional instruments are therefore unable to detect subtle, real-world declines in cognitive 
functioning. Advances in digitalizing traditional neuropsychological assessments may 
improve the sensitivity and specificity of clinical diagnoses at earlier stages of neurocognitive 
diseases via frequent and less burdensome digital assessments [20]. Growing research on 
validating mobile cognitive assessments suggests that mobile cognitive assessments are 
feasible and valid among older adults as well as adults with head injury, schizophrenia, and 
substance use disorders [32-36]. Furthermore, results of a validation study evaluating a 
smartphone-based cognitive impairment screener were promising with strong preliminary 
evidence indicating construct and criterion validity as well as high sensitivity to detect 
neurocognitive impairment among PWH [37]. 

Mobile cognitive assessments may serve as an adjunct to traditional 
neuropsychological testing. For example, mobile cognitive data collected via ecological 
momentary cognitive assessment (EMCA) methods can be aggregated and analyzed to 
examine temporal relationships between variability in cognition with indicators of, for 
example, everyday functioning (e.g., mood, activities of daily living, socially-engaging 
activities, physical activity, and passive leisure activities), sleep, physiological functioning, 
and social activity, among others [25]. Moreover, EMCA assessments may be able to serve as 
screening instruments to indicate whether a person needs a more comprehensive laboratory-
based neuropsychological assessment. Overall, mobile cognitive assessments permit remote 
testing on a frequent or infrequent schedule in a person’s natural environment, a design 
flexibility that is not afforded to traditional neuropsychological testing, and may therefore 
provide (1) more reliable indicators of early cognitive difficulties among older PWH that 
clinic-based tools cannot detect, and/or (2) identification of need for comprehensive in-person 
testing. 

There are several challenges associated with traditional in-person neuropsychological 
evaluations that may be addressed using mobile cognitive testing. For instance, evaluating 
individual effort put forth during traditional neuropsychological evaluations to ensure 
interpretability remains a significant challenge. Mobile cognitive tests could integrate built-in 
metrics (e.g., reaction time) or embedded (e.g., symptom validity tests) effort measures to 
gauge the level of effort given to an assessment. Furthermore, smartphone cameras could 
potentially capture videos of pupillometry during task completion as an indicator of 
attentional allocation which could also serve as a measure of effort [38]. More analogous to 
traditional tests of effort, studies currently in preparation have preliminary evidence 
suggesting efficacy of a mobile assessment using a 6-item word list to evaluate effort in both 
cognitively healthy and impaired adults. Finally, individuals invested in their results may feel 
more motivated to provide their best effort on mobile cognitive tests as there is the potential 
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to provide real-time performance feedback to individuals, allowing them to track changes in 
their cognitive health over time.  
Passive Engagement 
 Examples of existing passive features that can be collected from digital health 
technologies are presented in Table 1. Technologies were selected based on the following: (1) 
experience using the product/tech in previous and/or ongoing studies; (2) knowledge of 
products/tech from colleagues, peer-reviewed papers, conference presentations etc.; (3) brief 
review of the literature on novel technologies and applications. This list is meant to be an 
informed sampling from the field, and this commentary should not be viewed as a substitute 
for a systematic review.  

Smartphone functionality has the ability to passively collect a myriad of digital data 
streams from GPS/GIS, microphone, camera, accelerometry, phone usage metrics, and 
keyboard typing features. For example, preliminary evidence from one study suggests that 
symptoms related to pain and mood which were previously only captured via subjective self-
report measures may be alternatively monitored by objective passive movement data (i.e., 
actigraphy) among PWH [39]. Furthermore, this study found that psychomotor and sleep 
patterns measured via wearable sensors were significantly predictive of pain severity, pain 
chronicity, and worry severity among PWH. Another recent study examined the feasibility 
and discriminant ability of continuously captured real-world data from a unified and 
unobtrusive monitoring platform to differentiate between participants with and without 
cognitive impairment. The study design spanned 12-weeks in which participants were 
monitored via consumer-grade smart devices (i.e., iPhone 7 plus, Apple Watch Series 2, iPad 
pro with smart keyboard, a Beddit sleep monitoring device, and all associated applications to 
collect sensor and phone-usage data). Domains assessed include gross motor function, 
autonomic nervous system, circadian rhythm, behavior, social engagement, cognitive control, 
attention, fine motor control, and language. Results indicate that the sensor platform was 
adequately able to differentiate between cognitively healthy controls and participants with 
cognitive impairment from a relatively short period of data collection (i.e., 12-weeks) [40]. 
Although passive metrics of cognition are still in the early stages of clinical validation, they 
hold promise in progressing researcher’s ability to classify and detect early nuanced 
behavioral and cognitive changes associated with neurodegenerative diseases. 
 
RESEARCH DESIGNS 
 Complex continuously collected data could be leveraged to understand the effects of 
comorbid conditions (e.g., substance use and psychiatric disorders) within the context of 
PWH and neurocognitive decline. Depending on the specific aims of the research study, 
digital health technologies can be appropriately integrated into research designs to understand 
complex relationships between everyday life activities, health indicators, and cognitive 
function. Digital health technologies offer the ability to have a myriad of study designs, 
including (for example): (1) burst; (2) longitudinal; (3) hybrid of burst and longitudinal 
designs. Burst designs are characterized by short and intensive assessment periods to capture 
high frequency data that are useful in understanding the effects of comorbidities as well as 
temporal relationships [41]. Burst designs typically range from an average of one day to 
approximately one month. Longitudinal designs offer continuous, objective, unobtrusive 
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measures via sensors and devices to capture real-time data in the home or in everyday 
environments [42]. This design permits a continuous collection of comprehensive functional 
data over a longer span of time with minimal intrusion and burden. This approach offers 
insights into subtle intra-individual behavioral and lifestyle changes that could be indicative 
of early signs of neurodegenerative diseases. Finally, a hybrid of burst and longitudinal 
designs typically employs short periods of data collection over a longer span of time (e.g., 
two-week bursts every quarter for two years). 
 Prior research has used traditional neuropsychological evaluations to examine intra-
individual variability in neurocognitive performance among PWH; however, mobile 
cognitive testing may potentially detect more nuanced neurocognitive changes [43]. Several 
research designs can be employed to investigate fluctuating patterns of neurocognition over 
time using mobile technology. Burst designs using active data collection (e.g., EMCA) can 
provide a wealth of information within a specified time period to examine associations 
between neurocognition, everyday functioning, and mood. Longitudinal designs, employing 
continuous and passively collected data, can be utilized to examine temporal relationships 
and predictors of neurocognitive performance using real-time data from everyday 
environments. Hybrid designs, that leverage both active and passively collected data, offers 
the ability to frequently assess neurocognition as well as everyday behaviors, lifestyle, and 
mood to evaluate intra-individual variability.  

Thus far, studies have yet to assess intra-individual variability in neurocognition 
among PWH using digital health data. We conducted a literature search to assess the use 
digital assessments among PWH (Table 2). In order to identify articles for this non-
systematic review of the literature, we searched the PubMed database using the following 
search terms “digital OR digital assessment OR mobile assessment”, AND “HIV.” Then, we 
reviewed the reference list for pertinence and compiled relevant articles. We also reviewed 
relevant articles reference lists to identify additional articles. Further, we restricted our 
searches to studies published in peer-reviewed English-language journals. No restrictions 
were placed on samples demographics or sample sizes. 
 
CHALLENGES AND BARRIERS 
 Prior to implementing digital technologies into clinical practice, research is warranted 
to identify the potential mechanisms underlying the heterogeneity of aging, especially among 
populations at a higher risk for cognitive impairment such as PWH. Additionally, establishing 
validated assessment tools with normative data across demographic and clinical populations 
that are culturally- or language-unbiased remains a concern with traditional 
neuropsychological evaluations; without the consideration of factors associated with the 
usability of digital technologies and smartphones among older persons with comorbid 
conditions. Moreover, there are limited integrated platforms that have been developed and 
well-validated that incorporate passive data collection methods with active features to 
provide cohesive data on activities of daily living and patterns of behavior [44]. The lack of 
well-validated assessment tools to be implemented into clinical care could be due to, in part, 
funding limitations to support such studies. Considering there are a multitude of companies 
working on commercialized digital health products and platforms, researchers could work 
more closely with industry partners to  develop complex analytic algorithms that can 
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integrate large amounts of digital data and process it in a meaningful way in the context of 
early changes in cognition. 

In order to transition from research settings to commercial use and clinical care, 
health-related digital technology platforms must be sustainable and scalable without driving 
up consumer and healthcare costs. Within the commercial market, there are extant start-up 
companies developing digital technology platforms marketed directly to the consumer; 
however, many lack extensive research validation and involvement of care providers and 
consumers in the product development process [45]. It is crucial on the part of the developer 
to engage clinicians and consumers when addressing the needs and concerns of both parties 
in order to develop an effective product. For example, one study that examined appraisals of 
the potential risks and barriers of participating in a texting-based research study found that 
participants were particularly concerned with information privacy, confidentiality, and data 
security; however, were more likely to participate if these concerns were appropriately 
addressed [46]. 
 
CONCLUSIONS 
 Despite these barriers, the ubiquity of digital health devices across the lifespan makes 
the dissemination of mobile health assessments increasingly feasible [2]. Furthermore, 
increased accessibility to digitally captured health metrics allows individuals to proactively 
monitor their own changes in health and behaviors. Digital phenotyping will continue to 
evolve as new technologies emerge, individuals engage with digital technologies in new 
ways, and advances in data analytics and artificial intelligence continue to improve. This type 
of research requires a multi-disciplinary approach, and could advance our understanding of 
the complex overlap in cognitive profiles among aging PWH. 
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Table 1. Examples of mobile tools for gathering digital phenotyping data 
Device/App Name Device Type Operating 

System 
Method Data Type Behavioral Features 

Collected 
ActiGraph GT9Xa 

[47-49] 
Wrist Worn 
Wearableb 

iOS & 
Android 

-Operation: 
Passive 
-Data Transfer: 
Active 

-Frequency: High 
-Continuity: 
Continuous 

-Energy expenditure 
-Heart ratec 

-Metabolic rate 
-Physical activity 
-Sleep 
 

Anti-sociald Smartphone 
Application  

Android  -Operation: 
Passive 
-Data Transfer: 
Active 

-Frequency: High 
-Continuity: 
Continuous 

-Social activity  

Apple Watch Series 
4a [50-52] 

Smartwatch iOS -Operation: 
Passive 
-Data Transfer: 
Active 

-Frequency: High 
-Continuity: 
Continuous 

-Heart rate 
-Fall detection 
-Physical activity 
-Sleep 

BACtrack Skyn [53, 
54] 
 

Wrist Worn 
Wearable  

iOS -Operation: 
Passive 
-Data Transfer: 
Passive 

-Frequency: 
Moderate 
-Continuity: 
Continuous 

-Skin temperature 
-Transdermal alcohol 
concentration 

BrainChecka [55, 56] Smartphone 
Application 

iOS -Operation: 
Active 
-Data Transfer: 
Passive 

-Frequency: Low 
-Continuity: 
Intermittent 

-Cognition 

BiAffect [57, 58] Smartphone 
Application 

iOS & 
Android 

-Operation: 
Passive 
-Data Transfer: 
Passive 

-Frequency: High 
-Continuity: 
Continuous 

-Cognition 
-Mood 
-Neuropsychiatric 
symptoms  

Centrepoint Insight 
by ActiGrapha,d 

Smartwatch iOS & 
Android 

-Operation: 
Passive 
-Data Transfer: 
Passive 

-Frequency: High 
-Continuity: 
Continuous 

-Metabolic rate 
-Physical activity 
-Sleep 

Delta Cognitive 
Testing Appa 

Smartphone 
Application 

iOS -Operation: 
Active 
-Data Transfer: 
Passive 

-Frequency: Low 
-Continuity: 
Intermittent 

-Cognition 
-Speech/Language  

E4 [59-61] 
 

Smartwatch iOS & 
Android 

-Operation: 
Passive 
-Data Transfer: 
Passive 

-Frequency: High 
-Continuity: 
Continuous 

-Skin temperature 
-Electrodermal activity 
-Heart rate variability 
-Physical activity 
-Blood volume pulse 

EmbracePlus [61] Smartwatch iOS & 
Android 

-Operation: 
Passive 
-Data Transfer: 
Passive 

-Frequency: High 
-Continuity: 
Continuous  

-Blood volume pulse 
-Electrodermal activity 
-Heart rate variability 
-Inter-beat interval 
-Physical activity 
-Skin temperature 

Fitbit [62, 63] Smartwatch  iOS & 
Android 

-Operation: 
Passive 
-Data Transfer: 
Active 

-Frequency: High 
-Continuity: 
Continuous 

-Calorie expenditure  
-GPS 
-Heart rate 
-Physical activity 
-Sleep 

Garmin vivosmart 
[64, 65] 
 

Smartwatch iOS & 
Android 

-Operation: 
Passive 
-Data Transfer: 
Passive 

-Frequency: High 
-Continuity: 
Continuous 

-Blood oxygen saturation 
-GPS 
-Heart rate variability 
-Physical activity 
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-Sleep 
GPS Logger [66] Smartphone 

Application  
Android -Operation: 

Passive 
-Data Transfer: 
Active 

-Frequency: 
Customizable  
-Continuity: 
Continuous 

-GPS/navigation 

KardiaMobile 6La 

[67] 
Smartphone 
Application 

iOS & 
Android 

-Operation: 
Active 
-Data Transfer: 
Passive 

-Frequency: Low 
-Continuity: 
Intermittent 

-6-Lead 
Electrocardiography 

Mezurio [68] Smartphone 
Application 

iOS & 
Android 

-Operation: 
Active 
-Data Transfer: 
Passive 

-Frequency: High 
-Continuity: 
Intermittent 

-Cognition 
-Fine motor control 
-Speech analysis 

mindLAMP [69] Smartphone 
Application 

iOS & 
Android 

-Operation: 
Active & 
Passive 
-Data Transfer: 
Passive 

-Frequency: Low 
-Continuity: 
Intermittent 

-EMA 
-Cognition 
-Phone sensor data 

myTracks [66] Smartphone 
Application 

iOS -Operation: 
Passive 
-Data Transfer: 
Passive 

-Frequency: 
Customizable  
-Continuity: 
Continuous 

-GPS/navigation 

NeuroUXd [70] Weblink to 
Smartphones  

iOS & 
Android 

-Operation: 
Active 
-Data Transfer: 
Passive 

-Frequency: Low 
-Continuity: 
Intermittent 

-Cognition 
-EMA 
-Integration with Fitbit 
-Well-being 

Pillow Automatic 
Sleep Trackerd 

Smartphone 
Application 

iOS -Operation: 
Passive 
-Data Transfer: 
Active 

-Frequency: 
Moderate 
-Continuity: 
Intermittent 

-Sleep 

 
Note. Novel tools are released regularly and the presented list is not a comprehensive list of 
available tools; nor are they being promoted as we have not personally tested many of these 
tools. Interventions were not included as we are focused on digital assessment data for digital 
phenotyping.  
aFDA-cleared or CE-certified 
bActiGraph GT9X can be worn on the wrist, waist, ankle, or thigh 
cHeartrate measurement requires compatible Bluetooth Polar H7 or Polar H10 heart rate 
monitors 
dThis tool has not been validated in the current literature or has an ongoing validation study 
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Table 2. Literature review on the use of digital assessments among persons with HIV 
 

Note. PWH = persons with HIV 
aMobile Color-Word Interference Test assesses the Stroop effect (i.e., cognitive inhibition) 
bMobile Verbal Learning Test assesses verbal learning 
cActiGraph GT9X Link contains an accelerometer, gyroscope, and magnetometer sensors  
dNeuroscreen assesses processing speed, executive function, working memory, verbal 
learning and memory, and motor speed 
eNovel Computerized Cognitive Assessment Device assesses processing speed, episodic 
memory, working memory, and executive function 

Author/Year Sample 
Size (N) 

Study 
Location 

Digital Assessment 
Method 

Assessment 
Frequency 

Anderson et al., 
2016 [71]  

39 PWH Atlanta, 
Georgia 

Novel Computerized 
Cognitive Assessment 

Devicee 

Once during 
study period 

Campbell et al., 
2020 [72] 

67 PWH, 
36 HIV- 

San Diego, 
California 

Mobile Color-Word 
Interference Testa and 

Mobile Verbal Learning 
Testb 

Once/day for 
14 days 

Campbell et al., 
2020 [73] 

52 PWH, 
32 HIV- 

San Diego, 
California 

ActiGraph GT9X Linkc Once/day for 
5-14 days 

Katzef et al., 
2019 [74] 

102 PWH, 
112 HIV- 

South Africa, 
Africa 

Neuroscreend Once during 
study period 

Moore et al., 
2020 [22] 

58 PWH, 
32 HIV- 

San Diego, 
California 

Mobile Color-Word 
Interference Testa 

Once/day for 
14 days 

Robbins et al., 
2014 [37] 

50 PWH  Manhattan, 
New York 

Neuroscreend Once during 
study period 

Robbins et al., 
2018 [75] 

102 PWH South Africa, 
Africa 

Neuroscreend Once during 
study period 
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